
ToolManager

An extension for the Amiga Workbench

Version 2.1
16 May 1993

Copyright c© 1990-93 Stefan Becker

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

No guarantee of any kind is given that the programs described in this document are 100% reliable.

You are using this material at your own risk. The author can not be made responsible for any

damage which is caused by using these programs.

This package is freely distributable, but still copyright by Stefan Becker. This means that you can

copy it freely as long as you don’t ask for a more than nominal copying fee. This fee must not be

more than US $5 or 5 DM.

This limit applies to German Public-Domain dealers too!!

Permission is granted to include this package in Public-Domain collections, especially in Fred Fishs

Amiga Disk Library (including CD ROM versions of it). The distribution file may be uploaded

to Bulletin Board Systems or FTP servers. If you want to distribute this program you must

use the original distribution archives ‘ToolManager2_1bin.lha’, ‘ToolManager2_1gfx.lha’ and

‘ToolManager2_1src.lha’.

None of the programs nor the source code (nor parts of it) may be included or used in commercial

programs unless by written permission from the author.

None of the programs nor the source code (nor parts of it) may be used on any machine which is

used for the research, development, construction, testing or production of weapons or other military

applications. This also includes any machine which is used for training persons for any of the above

mentioned purposes.

Chapter 1: Important notes 1

1 Important notes

Welcome to the wonderful world of ToolManager 2.1 :-)

− ToolManager and its concepts have drastically changed (see Appendix B [History], page 30)

since the release 1.5.

− Starting with the ToolManager 2.0 release, this program has a GiftWare option. If you like the

program and use it very often, you should consider to send a little donation to honor the work

that the author has put into this program. I suggest a donation of US $10-$20 or 10-20 DM.

Please don’t send cheques or money orders from outside Europe, because most often cashing

those items costs more than what they amount to.

If you don’t send the donation or can’t afford it, you needn’t feel bad about it. Please send me

a note saying that you are using ToolManager anyway (I like to get fan mail :-). See Chapter 2

[Authors address], page 2.

− Users of ToolManager 1.X/2.0 can start with the quick installation chapter (see Chapter 3

[Quick installation], page 3). Some features haven’t changed and the rest is fairly easy to find

out by trial & error. For a detailed description of the new concept & features browse the

reference part of this document (see Chapter 8 [Objects], page 12).

You must remove any running ToolManager 1.X/2.0 or the new version won’t work. The new

version cannot read the old 1.X configuration file format (Sorry).

− First-time users should read the entire document to understand the concept and purpose of

the program. Start with Chapter 4 [Introduction], page 4.

− ToolManager 2.1 uses some features of AmigaOS Release V38 (and higher) and it supports

the new AmigaOS networking features, which will (hopefully) be available soon to all Amiga

users. If you are still using Release 2.0 (referred to as V37 in this document), you need not

worry since ToolManager doesn’t rely on these features. All extended features are marked in

this documentation.

2 ToolManager 2.1 Documentation

2 Where to send bug reports, comments & donations

The author can be reached at the following addresses:

Postal address:

Stefan Becker
Holsteinstrasse 9

5100 Aachen
GERMANY

Please use the following address after the 1-July-93:

Stefan Becker
Holsteinstrasse 9

52068 Aachen
GERMANY

InterNet Electronic Mail:

stefanb@pool.informatik.rwth-aachen.de

Chapter 3: How to install ToolManager 2.1 the fast way 3

3 How to install ToolManager 2.1 the fast way

The basic ToolManager 2.1 installation consists of the following four parts:

‘Libs/toolmanager.library’ ⇒ ‘LIBS:’

This is the main program of ToolManager. It handles all programs, menus, icons and

docks (see Chapter 10 [Library], page 23).

‘Prefs/ToolManager*’ ⇒ ‘SYS:Prefs’

This is the editor for the configuration (see Chapter 9 [Preferences], page 19).

‘WBStartup/ToolManager*’ ⇒ ‘SYS:WBStartup’

With this utility you can start and stop ToolManager. If it resides in the WBStartup

drawer, ToolManager gets always loaded when your machine boots up.

‘L/WBStart-Handler’ ⇒ ‘L:’

This program starts programs by the Workbench startup method. It is a seperate

process, so that you can quit ToolManager even if you have still programs running that

were started by it with the WB method.

After copying these files, you should quit any older version of ToolManager running on your

machine and double-click the ToolManager icon in the ‘WBStartup’ drawer. Now you can start

the preferences editor and play around (Use the “Test” button instead of the “Use” button while

testing). You should be able to figure out most features with trial & error, for further information

look into the ToolManager object descriptions (see Chapter 8 [Objects], page 12).

The distribution includes an example configuration file called ‘TM_Demo.prefs’. You can load

it into the preferences editor with the Open menu item.

4 ToolManager 2.1 Documentation

4 What is ToolManager?

ToolManager is a flexible program to manage the tools in your working environment. It can

start Workbench and CLI programs, ARexx scripts and generate HotKey events. It even can issue

commands to a ToolManager running on a remote machine. The user interface consists of menus,

icons or dock windows. If you like a noisy computer, you can associate a sound to each of these

items. See Section 8.3 [Sound], page 14.

ToolManager can add items to the Workbench Tools menu. If you select such a menu item, the

program associated with it will be started. Every selected icon on the Workbench will be used as

an argument for the program. This feature is only available when the Workbench is running. See

Section 8.4 [Menu], page 14.

ToolManager can add icons to the Workbench window. When you double-click such an icon,

the program associated with it will be started. If you drop some icons on this icon, the program

will be started with these icons as arguments. This feature is only available when the Workbench

is running. See Section 8.5 [Icon], page 15.

ToolManager can create a dock window from a collection of programs. This window can be

opened on every public screen. Each program is represented by an image or a button gadget. To

start a program you simply click on the image or the button gadget. If the dock window has been

opened on the Workbench screen and the Workbench is running, you can also drop some icons

on the image or the button gadget to start the program with arguments. See Section 8.6 [Dock],

page 15.

Additionally you can assign a Hot Key to each program. If you press this Hot Key, the program

will be started. Note that no arguments can be passed to the program if you use this startup

method. See Section 8.1 [Exec], page 12.

Chapter 5: The concepts behind ToolManager 5

5 The concepts behind ToolManager

ToolManager 2.1 uses a new object-oriented approach to provide a flexible and extendable

system. This approach made it possible to enhance several ToolManager features of the 1.X versions,

e.g. you can now have multiple docks.

An object is a collection of data which describes its features. Each object has a name and a

type. You can create as many objects of each type as you want, but the name of each object has

to be unique, because it is used as a reference to this object.

Currently there are seven different types of objects: Exec, Image, Sound, Menu, Icon, Dock and

Access. The first three of them are basic objects; that means they don’t reference other objects.

They provide data or services for the complex objects.

The last four object types are complex objects; that means they reference simple objects and

rely on them to get access to data or services. The reference is done by name, and if no simple

object with this name exists, the complex object will ignore it. Note that this may reduce the

functionality of the complex object, e.g. an Icon object needs the data from an Image object, so if

this object doesn’t exist it won’t create an icon.

For a detailed description of all object parameters see Chapter 8 [Objects], page 12.

6 ToolManager 2.1 Documentation

6 A guided tour throughToolManager

So you haven’t understood a word until now? Confused by objects, programs and links? Don’t

despair, help is on the way.

I will now guide you through a step-by-step example on how to configure ToolManager. All you

need is to install ToolManager and to run the preferences editor. After each step, use the “Test”

button in the main window to test the configuration.

As an example we use the text display program More in the drawer ‘SYS:Utilities’. First we

must tell ToolManager which program we want to use. Information about programs is stored in

Exec objects. Just select “Exec” as object type in the main window of the preferences editor and

press the “New” button.

After pressing the button you will see the “Edit Exec Object” window. Now open the Utilities

drawer in your Workbench partition, move the More icon out of the drawer and drop it on the edit

window. As you can see, the editor has now set the name of the object and the command to the

program name, and the current directory to System:Utilities. Press the “OK” button to use the

settings.

You can’t do much with the Exec object alone, so as next step we want to add this program to

the “Tools” menu of the Workbench. Select “Menu” as object type and press the “New” button.

Now you will see the “Edit Menu Object” window. Change the name of the object to “Display

Text”.

ToolManager has to know which program it should start when the menu item is selected, so

we link an Exec object to the menu object. Press the “Exec Object” button and select the object

“More” from the requester. Now press “OK” button and the “Test” button in the main window.

You can now see an entry in the “Tools” menu. Select a text file from the Workbench and choose

the new menu entry. The program “More” should start and display the text. This is easy, isn’t it?

Now we can go a step further and create an icon object on the Workbench. For an icon we

need some image data, which is stored in an image object. Select “Image” as object type and press

the “New” button. The “Edit Image Object” window will open. Change the name to “Image for

More” and drop the More icon from the Utilities drawer on the window. Press “OK” to use the

settings.

Chapter 6: A guided tour through ToolManager 7

In the next step we will create the icon object. Select “Icon” as object type and press the

“New” button. Change the name of the object to “Show Text”. Press the “Exec object” button

and select the object “More” from the requester. Press the “Image object” button and select the

object “Image for More” from the requester. Set the X position to 100 and the Y position to 50.

Press the “OK” button and the “Test” button. After a short delay an icon will appear on the

Workbench, on which you can drop the icons of your text files to display them.

I’m sure you now have an idea how to use ToolManager objects and in which way you have to link

them together to build your environment. Now you can figure out the rest of the features by trying

them out one by one. You may also look at the demo configuration in the file ‘TM_Demo.prefs’.

8 ToolManager 2.1 Documentation

7 Description of all files in the distribution

The complete ToolManager 2.1 distribution consists of several directories which are explained

below. Note that the distribution is split up into three parts, so you may not have all directories

which are mentioned below.

7.1 The Docs directory

This directory contains the documentation for ToolManager. The documentation is available

in four different formats and several languages. Additionally there is a file in AutoDoc format

describing the ToolManager shared library interface.

Prefix ‘TM_<language>’

This file contains the documentation for the specified language. Currently available

languages are: Deutsch, English, Français, Svenska.

Postfix ‘.doc’

This file contains the documentation as plain ASCII text.

Postfix ‘.dvi’

This file contains the documentation in TEXs DVI format. To get a printed manual,

run this file through a TEX printer driver.

Postfix ‘.guide’

This file contains the documentation in AmigaGuide format. Although it is only plain

ASCII with some commands, you need AmigaGuide to exploit the hypertext links in

it.

Postfix ‘.tex’

This file contains the documentation in Texinfo format, as specified by the Free Software

Foundation (FSF). Together with the ‘texinfo.tex’ macro package, you can use TEX

and ‘texindex’ to create a file in DVI format (see above).

‘toolmanager.doc’

This file contains the ToolManager shared library interface description in AutoDoc

format.

Chapter 7: Description of all files in the distribution 9

7.2 The Goodies directory

This directory contains additional program packages which are useful for ToolManagers opera-

tion.

‘GetPubName.lha’

This little program prints the name of the frontmost public screen either to stdout or

into an environment variable. It was written by Michael “Mick” Hohmann.

‘upd1_20.lha’

The program upd was written by Jonas Petersson. It is a small program which opens

an ARexx port and waits for commands. Via ARexx you can order upd to play sampled

files. ToolManager uses this feature to implement its Sound objects. See Section 8.3

[Sound], page 14.

7.3 The Graphics directory

This directory contains a rich collection of images from which you can choose your favourite

ones. Just load them as Image objects into ToolManager (see Section 8.2 [Image], page 13).

The files were contributed by various people (see Appendix C [Credits], page 33). Each of them

got a seperate sub-directory in the distribution. As the files were created by different authors, they

come from different environments (palette, depth, resolution, size) and have different design styles.

So not all images may look good on your machine.

To differentiate the image formats that are supported by ToolManager, each file has a postfix

which describes the file format:

‘.anmb’ This is an IFF ANIM file created by a paint/animation program. It can contain se-

veral pictures. Although ToolManager can load complete ANIM files, you must use

something like DPaints “AnimBrush” feature to cut out the interesting part of the

animation.

‘.brush’ This is an IFF ILBM file created by a paint program. It contains only one image.

‘.info’ This is a normal Amiga Icon created with IconEdit (or something similiar). It can

contain two images.

10 ToolManager 2.1 Documentation

7.4 The L directory

This directory contains only one file, namely ‘WBStart-Handler’. You must copy this file to

the ‘L:’ directory, or otherwise ToolManager won’t be able to start any Exec objects by the WB

startup method (see Section 8.1 [Exec], page 12).

The complete package WBStart 1.2 may be found on Fish Disk #757.

7.5 The Libs directory

This directory contains only one file, ‘toolmanager.library’. This is the main program for

ToolManager and must be copied to the ‘LIBS:’ directory.

7.6 The Locale directory

This directory contains all files for ToolManagers Locale support. As locale.library is new with

V38, you need not copy these files if you are using V37. If you are using V38, choose the files for

your language and copy them to the appropriate places.

‘Catalogs/<language>/toolmanager.catalog’

This is a translation file for the specified language. Copy the file for your language to

the directory ‘LOCALE:Catalogs/<language>’.

‘Languages/<language>.language’

Some languages are not supported by the standard V38 Locale distribution. So some

of the translators have supplied a ‘.language’ file, so that ToolManager can use their

translation files. Copy the file for your language to the directory ‘LOCALE:Languages’.

Additional available languages are: Finnish (suomi), Eefeler Platt (eifel).

7.7 The Prefs directory

The ToolManager preferences editor and its icon reside in this directory. Copy both files to the

directory ‘SYS:Prefs’. For further information on the editor see Chapter 9 [Preferences], page 19.

Chapter 7: Description of all files in the distribution 11

7.8 The Programmers directory

This directory contains all files which are needed by the various computer languages and their

compilers to use the ToolManager shared library interface. Look into the sub-directory ‘examples’

for some examples on how to use this interface. For a complete interface description read the file

‘Docs/toolmanager.doc’.

Currently supported languages/compilers are: AmigaOberon, DICE C, M2Amiga Modula-2,

MANX Aztec C and SAS C.

7.9 The Scripts directory

This directory contains a collection of ARexx or Shell scripts which can be used in ToolManagers

Exec objects. Note that they may be specific to the authors environment or shell, so you may have

to modify them.

7.10 The Source directory

This directory contains the complete source code to ToolManager 2.1 and its utilities. Each

program has its own sub-directory. The author provides the source code as an example for OS

2.x/3.0 programming.

The ‘locale’ sub-directory is of interest for translators. If your language is not supported in

this release and you want to do the translation, look at the file ‘empty.ct’. Just fill in the empty

lines and send the file to me. Maybe it will be included in the next release.

7.11 TheWBStartup directory

Only one program resides in this directory: ToolManager. This utility starts and stops Tool-

Manager 2.1. Most of the time this utility will reside in the ‘SYS:WBStartup’ directory, but it can

be used from the Shell too.

12 ToolManager 2.1 Documentation

8 ToolManager objects reference

This chapter describes the ToolManager objects in detail. Each object has a type and a name.

The name is used to reference the object. There are six different types of objects:

8.1 Exec objects

Exec objects describe programs or actions which are started by ToolManager. Three different

types of programs are supported: CLI, Workbench and ARexx. Three different types of actions are

supported: Dock, Hot Key, Network. Each Exec object has the following parameters. The defaults

are set in parantheses:

Arguments (Yes)

This switch controls the handing over of arguments to the program. If a program

doesn’t support arguments or doesn’t need them, you can switch off the argument

passing.

Command The file name of the program or action to start. This name may be relative to the

current directory. If the type is Dock, the command describes the name of the dock

object, which should be opened/closed. For the type Hot Key this string must be a

Commodities Input Description String (see Chapter 11 [Hot Keys], page 24). A remote

command (type Network) is described as object@machine, which tells the ToolManager

running on machine to activate the Exec object named object.

Current Directory (‘SYS:’)

The name of the current directory for the program. Note: ARexx programs ignore this

parameter.

Delay (0) After activation of an Exec object, ToolManager waits Delay seconds before it starts

the program. If this value is negative, the program will be started every Delay seconds.

To stop an Exec object which is waiting for execution, just activate it again. Note: If

Delay is set, the program will be started without arguments.

Exec Type (CLI)

This specifies the type of the program or action. It can be one of: CLI, WB, ARexx,

Dock, Hot Key or Network.

Hot Key You can set a Hot Key for each Exec object. If this Hot Key event is generated, the

program will be started. Note: The program will be started with no arguments.

Output File (‘NIL:’)

This is the file name of the output file. This is only useful for CLI programs.

Chapter 8: ToolManager objects reference 13

Path (path from ToolManager process)

This string sets the command search path for the program. You can specify several

directories by seperating the names with a “;”. This is only useful for CLI programs.

Priority (0)

This sets the priority of the new process which runs the program.

Public Screen (default public screen)

You can set the name of the public screen which should be moved to front before the

program is started. This only works in conjunction with the To Front parameter.

Stack (4096)

This sets the stack size of the new process which runs the program.

To Front (No)

If you set this parameter the public screen specified by Public Screen is moved to

front before the program is started.

8.2 Image objects

Image objects specify the image data which is used by ToolManager for icons or docks. This

object type has only one parameter:

File Name This specifies the name of the file from which ToolManager should read the image data.

ToolManager tries to detect the type of image data automatically:

1. It tries to load it as IFF data. Currently ToolManager can read ILBM (one image)

or ANIM (two or more images) files.

2. It tries to read in an icon file. An icon can have one or two images.

Animations are currently only supported by Dock objects. Icon objects only retrieve the first

and the second image from the animation to build a two image icon. If you want to make an

animation for ToolManager, you should follow these design rules:

Image 1 This should be an image which represents the inactive state.

Image 2 This should be an image which represents the selected state. Normally this is an

inverted copy of the first image.

Image 3 to N-1

These are the images for the animation. Each image will be shown for 1/3 of a second.

Image N The last picture of the animation will be shown one second. After this the first picture

will be shown again.

14 ToolManager 2.1 Documentation

8.3 Sound objects

A Sound object can be used to make ToolManager noisy. ToolManager itself has no ability

builtin to play sound data, it uses ARexx to activate an external sound player daemon. This object

type has two parameters:

Command This sets the ARexx command which ToolManager sends to activate the external sound

player. For upd this could be something like file samples:boing which instructs upd

to play the IFF sample ‘samples:boing’. See Section 7.2 [Goodies], page 9.

ARexx Port

This specifies the ARexx port where ToolManager should send command to. The default

is PLAY which is the port for the program upd.

8.4 Menu objects

Menu objects control the entries in the Workbench Tools menu. The object name is used as the

menu text. To activate such an object, just select the menu entry. Menu objects only work when

the Workbench is running.

This object type has two parameters:

Exec Object

This is the name of an Exec object which should be activated when the menu entry is

selected. Every icon which is selected at this time will be used as an argument for the

program.

Sound Object

This is the name of a Sound object which should be activated when the menu entry is

selected.

Note to ToolManager 1.X users: To simulate the old tool type “Dummy” just create a Menu

object and specify no Exec and Sound object.

Chapter 8: ToolManager objects reference 15

8.5 Icon objects

Icon objects describe application icons in the Workbench window. Such an object can be

activated by double-clicking the icon or by dropping some icons on the application icon. Icon

objects only work when the Workbench is running.

The parameters for this object type are as follows:

Exec Object

This is the name of an Exec object which should be activated when the icon is selected.

Every icon which is dropped on the application icon will be used as an argument for

the program.

Image Object

This is the name of an Image object. The image data of this object is used to build

the application icon.

Left Edge (default: 0)

This sets the left edge for the application icon.

Show Name (default: Yes)

If this parameter is set, the object name will be used as the name for the application

icon.

Sound Object

This is the name of a Sound object which should be activated when the icon is selected.

Top Edge (default: 0)

This sets the top edge for the application icon.

Note: The Workbench is very picky about the position of icons. If you specify coordinates which

the Workbench doesn’t like, it will ignore them and place the icon somewhere else.

8.6 Dock objects

Dock objects describe windows. These windows combine several tools which are represented by

images or gadgets. To start such a tool just click on its image or gadget. Of course you can drop

some icons on the image or gadget to supply arguments for the tool.

Each dock object has several parameters. The defaults are set in parentheses:

16 ToolManager 2.1 Documentation

Activated (Yes)

A dock window can be active (open) or not (closed).

Backdrop (No)

This tells the dock window to go immediately to the back after opening.

Centered (No)

If this parameter is set, the window will always be centered to the current mouse

position when it opens.

Columns (1)

This parameter sets the the number of tool columns. Tools are always sorted row-wise,

starting at the leftmost column and filling up to the rightmost column.

Font (Screen font)

If you have a dock window with the parameter Text set, you can choose the font for

the button gadgets with this parameter.

Frontmost (No)

If you set this parameter, the dock window will always open on the frontmost public

screen.

Hot Key You can set a Hot Key for each Dock object. If this Hot Key event is generated, the

activation status of the dock window will be toggled; that is it will be closed or opened.

Left Edge (0)

This parameter sets the left edge of the dock window. If the parameter Centered is

set, this parameter will be ignored.

Menu (No) You can add a small menu to each dock window. This menu has two items:

Close Dock Close dock window.

Quit TM Quit ToolManager

Pattern (No)

The dock window automatically adjusts its size to the largest image. Each dock entry

has the same size, and smaller images are centered, so they have a blank border around

them. If you don’t like this blank border, set this parameter and the border will be

filled with a pattern.

PopUp (No)

When this parameter is set the dock window will be closed automatically after selecting

one dock entry. This is especially useful in conjunction with the parameters Centered,

Frontmost and a Hot Key of the class rawmouse (see Chapter 11 [Hot Keys], page 24).

Public Screen (Default public screen)

Specifies the public screen on which the dock window should open. If the dock window

was opened via Hot Key, the public screen will be moved to front after the window has

been opened. This parameter will be ignored if the parameter Frontmost is set.

Chapter 8: ToolManager objects reference 17

Sticky (No)

Normally a dock window stores its last position when you close it and pops up at the

same position when you re-open it. If you want the dock window to open always at

the same position, you must set this parameter.

Text (No) You can choose between images and button gadgets in dock windows with this para-

meter. Button dock windows are especially useful when used in conjunction with the

parameter PopUp.

Title This specifies the dock window title. If you supply a title, the dock window will be a

normal OS 2.0 window with dragbar, close gadget, depth gadget and a border. If you

don’t supply a title, you will get a dock window with only a dragbar and no border.

Top Edge (0)

This parameter sets the top edge of the dock window. If the parameter Centered is

set, this parameter will be ignored.

Vertical (No)

If the dock window has the new window design (that is: only a dragbar and no border),

this parameter sets the orientation of the dragbar. This parameter is ignored if you

supplied a window title with the parameter Title.

8.7 Access objects

Access objects control the access rights for network requests. Per default every request is denied,

so a remote ToolManager can’t harm the operation of your machine by activating some of your

Exec objects. With Access objects you can allow specific machines to activate some of your Exec

objects.

The name of an Access object has a special meaning. It is matched with the name of the

remote machine from which a network request was sent. ToolManager uses the following three step

matching scheme:

1. Match with the complete host name

2. Match with the realm name

3. Look for the Access object named anyone

If a corresponding object is found, then this object is used for the access rights of the remote

machine. The object named anyone is used for any network request, for which a corresponding

Access object can’t be found.

18 ToolManager 2.1 Documentation

The Access object type has only one parameter:

Exec Object

This parameter can be used several times and specifies which Exec objects can be

activated from the remote machine. If you don’t specify any object name, then the

remote machine can activate all Exec objects on your machine.

Chapter 9: The ToolManager preferences editor 19

9 The ToolManager preferences editor

With the preferences editor you can manage the global configuration of ToolManager. This

configuration gets automatically loaded when you start ToolManager. To start the editor just

double click its icon. You will then see the main window.

Most of the gadgets in the editor windows have keyboard shortcuts. They are marked with an

underscore (_). Note that if a string gadget is active, you must first press the return key before

you can use the keyboard shortcuts.

9.1 Main window gadgets

The main window has several groups of gadgets:

Object type

With this cycle gadget you can choose the type of objects that you want to create or

edit.

Object list

This gadget shows the list of all objects of the current type. You can select an object

by clicking on its name. If you double-click one item, an edit window will open.

Move object

When an object is selected, you can move it around in the list with these gadgets. If

you click on the Sort gadget, the items in the list will be sorted alphabetically.

Manipulate object

These gadgets manipulate objects. The New gadget creates a new object of the current

type which is selected automatically. When you click on the Edit gadget, an edit

window for the selected object will open. With the Copy gadget you can make a copy

of the selected object. The Remove gadget deletes the selected object.

Configuration

You have several choices to save the configuration. With the Save gadget you can

save the configuration permanently into the file ‘ENVARC:ToolManager.prefs’. For a

temporary change use the Use gadget, which will save the configuration into the file

‘ENV:ToolManager.prefs’. This file will not survive a machine reset. To test the new

configuration without leaving the editor, use the Test gadget. The Cancel gadget will

quit the editor without saving.

20 ToolManager 2.1 Documentation

9.2 Main window menus

The main window has several menu items:

Project With the menu items Open and Save As you can load and save the configuration. The

About item opens an information requester. Selecting the Quit item will leave the

editor without saving.

Edit With these menu items you can restore older configurations. The Last Saved item

loads the last saved configuration from the file ‘ENVARC:ToolManager.prefs’. With

the item Restore you can load the configuration that was active before you started the

editor from the file ‘ENV:ToolManager.prefs’.

Settings You can choose with the Create Icons item wether the menu item Save As should

create an icon or not.

9.3 Create objects window

If you drop an icon on the main window, the “Create objects” window will open. Here you can

choose what objects should be created from this icon. This can be used to add a program to your

configuration very easily and fast.

You can just create an Exec or Image object from the icon, if you select one of the first two

choices. But you can also create a complete Menu and/or Icon object if you select one of the last

three choices.

9.4 Edit windows

Each object type has a different edit window to set the object parameters. For a detailed list of

all object parameters see Chapter 8 [Objects], page 12.

Every edit window has a string gadget for the object name. This name is important, because

it is used to reference this object. Note that there is currently no builtin cross-reference. So if you

change the name of an object which is already referenced by another object, this reference will not

be updated. You have to update this reference by hand.

The button gadgets in the edit windows open different types of requesters. You can choose an

item by clicking on it and pressing the OK gadget, or you simply double-click it. To leave a requester

Chapter 9: The ToolManager preferences editor 21

without changes, use the Cancel gadget. If you wish to clear a field which can only be choosen by

a requester, open the requester and press the OK gadget without selecting an item.

The edit windows for the object types Exec and Image have an additional feature. You can

simply drop an icon on them to set the parameters from this icon.

9.5 Tooltypes

When you start the preferences editor from the Workbench you can set several tooltypes in the

program icon or configuration file icons to control it.

USE If you set this tooltype in an icon for a preferences file, the editor will install this file

as current configuration file.

SAVE If you set this tooltype in an icon for a preferences file, the editor will install this file

as current and as permanent configuration file.

PUBSCREEN

This tooltype tells the editor to open its windows on a specific public screen. If you

don’t supply this tooltype, the default public screen will be used.

CREATEICONS

When this tooltype is set to YES, the editor will create an icon for every preferences

file that is created with the Save As menu item.

DEFAULTFONT

The editor normally uses the public screen font to draw its gadgets. If you set this

tooltype to YES, the editor will use the system default font instead.

XPOS This specifies the initial X position of the editor main window.

YPOS This specifies the initial Y position of the editor main window.

MINLISTCOLUMNS

This specifies the minimum number of columns in the list gadgets.

MINLISTROWS

This specifies the minimum number of rows in the list gadgets.

9.6 CLI Arguments

When the preferences editor is started from the shell, it uses the following command line tem-

plate:

22 ToolManager 2.1 Documentation

FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K,DEFAULTFONT/S

FROM This parameter specifies the name of the preferences file which the editor should load.

USE If you use this parameter, the editor will install the file specified as the FROM parameter

as current configuration file.

SAVE If you use this parameter, the editor will install the file specified as the FROM parameter

as current and as permanent configuration file.

PUBSCREEN

This parameter tells the editor to open its windows on a specific public screen. If you

don’t supply this tooltype the default public screen will be used.

DEFAULTFONT

The editor normally uses the public screen font to draw its gadgets. If you use this

parameter the editor will use the system default font instead.

Chapter 10: The ToolManager shared library interface 23

10 The ToolManager shared library interface

The ToolManager handler is embedded into a Amiga shared library. This library offers se-

veral functions to create and manipulate ToolManager objects, so that you can use them in your

programs.

There are currently six functions available:

AllocTMHandle()

In order to create ToolManager objects you must first allocate a TMHandle. This

handle stores all information about your objects and is used to reference them. Note

that the information stored in this handle is only accessable by the program which

creates it.

FreeTMHandle()

This function frees a TMHandle and all ToolManager objects associated with it. Each

AllocTMHandle() must be matched with a FreeTMHandle()!

CreateTMObjectTags()

CreateTMObjectTagList()

This function creates a ToolManager object. You must supply a name, the object type

and various tags for the object parameters. The name of the object is important, as it

is used to reference the object.

ChangeTMObjectTags()

ChangeTMObjectTagList()

You can modify the parameters of a ToolManager object with this function. The object

state will be updated to reflect the new parameters. Note: Currently Image objects

can’t be modified.

DeleteTMObject()

With this function you can delete a ToolManager object. If the object is linked to other

objects, these objects will be notified to update their state.

QuitToolManager()

This function tells the ToolManager handler to quit as soon as possible.

The complete library interface description is available in AutoDoc format (see Section 7.1 [Docs],

page 8).

24 ToolManager 2.1 Documentation

11 How to define aHotKey

This chapter describes how to define a Hot Key as an Input Description String, which is then

parsed by Commodities. Each time a Hot Key is activated Commodities generates an event which

is used by ToolManager to activate Exec objects or to toggle Dock objects. A description string

has the following syntax:

[<class>] {[-][<qualifier>]} [-][upstroke] [<key code>]

All keywords are case insensitive.

class describes the InputEvent class. This parameter is optional and if it is missing the default

rawkey is used. See Section 11.1 [InputEvent classes], page 24.

Qualifiers are “signals” that must be set or cleared by the time the Hot Key is activated;

otherwise no event will be generated. For each qualifier that must be set you supply its keyword.

All other qualifiers are expected to be cleared by default. If you want to ignore a qualifier, just set

a - before its keyword. See Section 11.2 [Qualifiers], page 25.

Normally a Hot Key event is generated when a key is pressed. If the event should be generated

when the key is released, supply the keyword upstroke. When both press and release of the key

should generate an event, use -upstroke.

The key code is depending on the InputEvent class. See Section 11.3 [Key codes], page 26.

Note: Choose your hot keys carefully, because Commodities has a high priority in the InputEvent

handler chain (i.e. will override existing definitions).

11.1 InputEvent classes

Commodities supports most of the InputEvent classes that are generated by the input.device.

This section describes those classes that are most useful for ToolManager Hot Keys.

rawkey This is the default class and covers all keyboard events. For example rawkey a or a

creates an event every time when the key “a” is pressed. You must specify a key code

for this class. See Section 11.3.1 [rawkey key codes], page 26.

Chapter 11: How to define a Hot Key 25

rawmouse This class describes all mouse button events. You must specify a key code for this class.

See Section 11.3.2 [rawmouse key codes], page 27.

diskinserted

Events of this class are generated when a disk is inserted in a drive. This class has no

key codes.

diskremoved

Events of this class are generated when a disk is removed from a drive. This class has

no key codes.

11.2 Qualifiers

Some keyword synonyms were added to Commodities V38. These are marked with an *.

lshift, left_shift *

Left shift key.

rshift, right_shift *

Right shift key.

shift Either shift key.

capslock, caps_lock *

Caps lock key.

caps Either shift key or caps lock key.

control, ctrl *

Control key.

lalt, left_alt *

Left alt key.

ralt, right_alt *

Right alt key.

alt Either alt key.

lcommand, lamiga *, left_amiga *, left_command *

Left Amiga/Command key.

rcommand, ramiga *, right_amiga *, right_command *

Right Amiga/Command key.

numericpad, numpad *, num_pad *, numeric_pad *

This keyword must be used for any key on the numeric pad.

26 ToolManager 2.1 Documentation

leftbutton, lbutton *, left_button *

Left mouse button. See note below.

midbutton, mbutton *, middlebutton *, middle_button *

Middle mouse button. See note below.

rbutton, rightbutton *, right_button *

Right mouse button. See note below.

repeat This qualifier is set when the keyboard repeat is active. Only useful for InputEvent

class rawkey.

Note: Commodities V37 has a bug which prevents the use of leftbutton, midbutton and

rbutton as qualifiers. This bug is fixed in V38.

11.3 Key codes

Each InputEvent class has its own key codes:

11.3.1 Key codes for InputEvent class rawkey

Some keywords and synonyms were added to Commodities V38. These are marked with an *.

a-z, 0-9, . . .

ASCII characters.

f1, f2, . . ., f10, f11 *, f12 *

Function keys.

up, cursor_up *, down, cursor_down *

left, cursor_left *, right, cursor_right *

Cursor keys.

esc, escape *, backspace, del, help

tab, comma, return, space, spacebar *

Special keys.

enter, insert *, delete *

page_up *, page_down *, home *, end *

Numeric Pad keys. Each of these key codes must be used with the numericpad qualifier

keyword!

Chapter 11: How to define a Hot Key 27

11.3.2 Key codes for InputEvent class rawmouse

These keywords were added to Commodities V38. They are not available in V37.

mouse_leftpress

Press left mouse button.

mouse_middlepress

Press middle mouse button.

mouse_rightpress

Press right mouse button.

Note: To use one of these key codes, you must also set the corresponding qualifier keyword, e.g.

rawmouse leftbutton mouse_leftpress

11.4 Examples for Hot Keys

ralt t Hold right Alt key and press “t”

ralt lalt t

Hold left and right Alt key and press “t”

alt t Hold either Alt key and press “t”

rcommand f2

Hold right Amiga key and press the second function key

numericpad enter

Press the Enter key on the numeric pad

rawmouse midbutton leftbutton mouse_leftpress

Hold middle mouse button and press the the left mouse button

diskinserted

Insert a disk in any drive.

28 ToolManager 2.1 Documentation

AppendixA Most asked questions about ToolManager

Here are the answers to the most asked questions about ToolManager:

− Why can’t ToolManager create multiple “Tools” menus or sub-menus?

Multiple menus or sub-menus are currently not supported by the system software. To create

them, you have to hack them into the system software, which can result in an unstable system.

I don’t want to produce unstable software, so I won’t implement such a thing in ToolManager.

− WB programs won’t start, but all other exec types work fine.

ToolManager relies on the program L:WBStart-Handler to start WB programs. There are two

reasons, why ToolManager can’t execute this program:

The file ‘L:WBStart-Handler’ doesn’t exists. Please copy it from the distribution archive.

The execute flag (e) isn’t set on this file. Use the following command to set this flag:

protect L:WBStart-Handler +e

− How can I create a horizontal dock window?

Just set the number of columns to the number of entries in the dock object.

− How can I create an output window for CLI programs?

Output windows can be created by using the CON: device. Use the following file name to create

an auto-open window with a close gadget which doesn’t close after the program has quit:

CON:10/10/640/100/Output-Window/AUTO/CLOSE/WAIT

The CON: device has many options, please consult your AmigaDOS manual for further infor-

mation.

− How can I put the arguments in the middle of a CLI/Arexx command line?

Normally all arguments are appended to the command line. To insert the arguments anywhere

in the command line, ToolManager uses the same [] syntax, which is used by the AmigaShell

command alias. So for example

Dir [] all

will insert all arguments before the keyword all.

− How can I clear a link from a complex object to a simple object?

After pressing the “xxx Object” button just press the “OK” button without selecting an object.

This means that you choosed no object, and therefore the link will be cleared.

− How can I create sub-docks?

You must use Exec objects of the type Dock. Put such objects in the entries of your main

dock and they will open/close the other docks.

− ToolManager is dead after starting a Network command.

There is currently a problem with the network software, which doesn’t timeout local requests.

So if your machine is called Host1 and you have an Exec object of the type Network with the

Appendix A: Most asked questions about ToolManager 29

command Object@Host1, ToolManager will run into a dead-lock when you activate it. Please

use only names of remote machines!

30 ToolManager 2.1 Documentation

Appendix B TheHistory of ToolManager

2.1, Release date 16.05.1993

− New Exec object types: Dock, Hot Key, Network

− New Dock object flags: Backdrop, Sticky

− New object type: Access

− Network support

− Editor main window is now an AppWindow

− Gadget keyboard shortcuts in the preferences editor

− New tooltypes for the preferences editor

− Several bug fixes

− Enhanced documentation

2.0, Release date 26.09.1992, Fish Disk #752

− Complete new concept (object oriented)

− (Almost) Complete rewrite

− ToolManager is now split up into two parts

− Main handler is now embedded into a shared library

− Configuration is now handled by a Preferences program

− Configuration file format has changed again :-) It is an IFF File now and resides

in ENV:

− Multiple Docks and multi-column Docks

− Docks with new window design

− Dock automatically detects largest image size

− Sound support

− Direct ARexx support for Exec objects

− ToolManager can be used without the Workbench. If the Workbench isn’t running,

it won’t use any App* features.

− Locale support

− Path from Workbench will be used for CLI tools

− Seperate Handler Task for starting WB processes

1.5, Release date 10.10.1991, Fish Disk #551

− Status Window: New/Open/Append/Save As menu items for config file

− Edit Window: File requesters for file string gadgets

− Added a Dock Window (a la NeXT)

Appendix B: The History of ToolManager 31

− Added a DeleteTool

− A list of all active HotKeys can be shown

− Tools can be moved around in the list

− Icon positioning in the edit window added

− Name of the program icon can be set

− CLI tools can have an output file and a path list

− Uses UserShell for CLI tools

− Maximum command line length for CLI tools is now 4096 Bytes

− AppIcons without a name are supported now

− Workbench screen will be moved to front if you pop up the Status window

− Workbench screen can be moved to front before starting a tool via HotKey

− TM will wait up to 20 seconds for the workbench.library

− Added a DELAY switch which causes TM to wait <num> seconds before adding

any App* stuff

− renamed some tooltypes/parameters

− some visual cues added

− some internal changes

1.4, Release date 09.07.1991, Fish Disk #527

− Keyboard short cuts for tools

− AppIcons for tools

− Menu item can be switched off

− Configuration file format completely changed (hopefully the last time)

− CLI commandline parsing is now done by ReadArgs()

− Status & edit window updated to new features

− Safety check before program shutdown added

− Menu item “Open TM Window” only appears if the program icon is disabled

− WB startup method changed. Now supports project icons

− several internal changes

1.3, Release date 13.03.1991, Fish Disk #476

− Now supports different configuration files

− Format of the configuration file slightly changed

− Tool definitions can be changed at runtime

− Now supports CLI & Workbench startup method

− Selected icons are passed as parameters to the tools

32 ToolManager 2.1 Documentation

− Now uses the startup icon as program icon if started from Workbench

− The position of the icon can now be supplied in the configuration file

− The program icon can now be disabled

− New menu entry “Show TM Window”

− Every new started ToolManager passes its startup parameters to the already run-

ning ToolManager process

1.2, Release date 12.01.1991, Fish Disk #442

− Status window changed to a no-GZZ & simple refresh type (this should save some

bytes)

− Status window remembers its last position

− New status window gadget “Save Configuration”: saves the actual tool list in the

configuration file

− Small bugs removed in the ListView gadget handling

− Name of the icon hard-wired to “ToolManager”

1.1, Release date 01.01.1991

− Icons can be dropped on the status window

− Status window contains a list of all tool names

− Tools can be removed from the list

1.0, Release date 04.11.1990

− Initial release

Appendix C: The author would like to thank. . . 33

Appendix C The author would like to thank. . .

ToolManager has gone through many major evolutionary phases since its first implementation

in mid-1990. This development would have been impossible if I hadn’t received the enormous

feedback from various ToolManager users. Many ideas & features resulted from this source. . .

Therefore I would like to thank:

For Alpha/Beta testing, ideas & bug reports:

Amiga section of our local computer club (Computerclub an der RWTH Aachen),

Olaf ’Olsen’ Barthel, Georg Hessmann (Gucky), Markus Illenseer (ill), Klaus Melchior,

Rickard Olsson (Richie), Matthias Scheler (Tron), Ralph Schmidt (laire), Roger We-

sterlund (Budda), Juergen Weinelt, Brian Wright (SteveVai), Petra Zeidler (stargazer)

and many others. . .

Matthew Dillon

Without your excellent C development system DICE and various other tools, ToolMa-

nager wouldn’t exist!

For their excellent graphics work:

Andreas Harrenberg, Georg Hessmann, Michael “Mick” Hohmann, Markus Illenseer,

Oliver Koenen, Klaus Melchior, Rickard Olsson, Jan Peter, Matthias Scheler, Brian

Wright

For the translations:

Tomi Blinnikka (suomi), Jorn Halonen (norsk), Dr. Peter Kittel (deutsch), Jasper Keh-

let (dansk), Klaus Melchior (eifel), Rickard Olsson (svenska), Rullier Pascal (français),

Marc Schaefer (français), Tor Rune Skoglund (norsk), Reinhard Spisser (italiano), An-

drea Suatoni (italiano)

All gals & guys at West Chester:

For developing the Amiga and its superb operating system.

All users who sent me money:

I didn’t ask for it in the 1.X releases, but it’s nice to see when someone appreciates my

work.

All users who sent me a note:

I really enjoyed reading your letters!

and all I forgot to mention. . .

34 ToolManager 2.1 Documentation

Index

A
Access objects . 17

Address . 2

AmigaGuide . 8

Answers . 28

ARexx scripts . 11

ASCII documentation . 8

B
Bug reports . 2

C
Catalog files . 10

CLI Arguments . 21

Comments . 2

Compiler support . 11

Concepts . 5

Configuration . 19

Contributed images . 9

Credits . 33

D
DeleteTool . 9

Diskinserted . 24

Diskremoved . 24

Distribution files . 8

Dock objects . 15

Docs directory . 8

Documentation . 8

Donations . 2

E
E-Mail . 2

Example . 6

Example images . 9

Examples for Hot Keys . 27

Exec objects . 12

F
Fast installation . 3

G
GetPubName . 9

GiftWare . 1

Goodies directory . 9

Graphics directory . 9

Guided tour . 6

H
History . 30

Hot Keys . 24

I
Icon objects . 15

Image objects . 13

Important notes . 1

InputEvent classes . 24

Installation (quick) . 3

InterNet address . 2

Introduction to Hot Keys . 24

Introduction to ToolManager . 4

Introduction to ToolManager objects 5

K
Key codes for rawkey . 26

Key codes for rawmouse . 27

L
L directory . 10

Language files . 10

Languages . 10

Library documentation . 8

Library interface . 23

Libs directory . 10

List: Qualifiers . 25

List: rawkey key codes . 26

List: rawmouse key codes . 27

Index i

Locale directory . 10

Localization . 10

M
Menu objects . 14

O
Objects . 12

P
Postal address . 2

Preferences editor . 19

Prefs directory . 10

Printed documentation . 8

Program concepts . 5

Programm versions . 30

Programmers directory . 11

Q
Qualifiers . 25

Questions . 28

Quick installation . 3

R
Rawkey . 24

Rawmouse . 24

Reference: Distribution files . 8

Reference: Hot Keys . 24

Reference: Library interface . 23

Reference: Preferences editor . 19

Reference: ToolManager objects 12

S
Scripts directory . 11

Shared library interface . 23

Shell scripts . 11

Sound objects . 14

Sound player . 9

Source code . 11

Source directory . 11

T
TEX . 8

Texinfo . 8

Thanks . 33

ToolManager objects . 12

ToolManager shared library interface 23

Tooltypes . 21

Translations . 10

Translators . 11

Tutorial . 6

U
UPD . 9

V
V38 (and higher) features . 1

Versions . 30

W
WBStart 1.2 . 10

WBStart-Handler . 10

WBStartup directory . 11

ii ToolManager 2.1 Documentation

Table of Contents

1 Important notes . 1

2 Where to send bug reports, comments & donations2

3 How to install ToolManager 2.1 the fast way 3

4 What is ToolManager? .4

5 The concepts behind ToolManager 5

6 A guided tour through ToolManager 6

7 Description of all files in the distribution 8

7.1 The Docs directory .8

7.2 The Goodies directory . 9

7.3 The Graphics directory .9

7.4 The L directory .10

7.5 The Libs directory . 10

7.6 The Locale directory . 10

7.7 The Prefs directory . 10

7.8 The Programmers directory . 11

7.9 The Scripts directory . 11

7.10 The Source directory .11

7.11 The WBStartup directory .11

8 ToolManager objects reference . 12

8.1 Exec objects . 12

8.2 Image objects .13

8.3 Sound objects .14

8.4 Menu objects . 14

8.5 Icon objects .15

8.6 Dock objects .15

8.7 Access objects . 17

9 The ToolManager preferences editor 19

9.1 Main window gadgets . 19

iii

9.2 Main window menus . 20

9.3 Create objects window . 20

9.4 Edit windows . 20

9.5 Tooltypes . 21

9.6 CLI Arguments . 21

10 The ToolManager shared library interface23

11 How to define a Hot Key . 24

11.1 InputEvent classes . 24

11.2 Qualifiers . 25

11.3 Key codes . 26

11.3.1 Key codes for InputEvent class rawkey26

11.3.2 Key codes for InputEvent class rawmouse 27

11.4 Examples for Hot Keys . 27

Appendix A Most asked questions about
ToolManager . 28

Appendix B The History of ToolManager 30

Appendix C The author would like to thank.33

Index .34

