
Sinus

Sinus ii

COLLABORATORS

TITLE :

Sinus

ACTION NAME DATE SIGNATURE

WRITTEN BY December 8, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sinus iii

Contents

1 Sinus 1

1.1 Screenblankers for Garshneblanker . 1

1.2 installation . 1

1.3 The new blankers . 2

1.4 xlock . 2

1.5 fire . 2

1.6 The SINUS Screenblanker . 2

1.7 The SINUS Screenblanker - background . 3

1.8 The parameters controlling sinus . 3

1.9 The IFS blanker . 3

1.10 A probability distribution for area selection . 4

1.11 Parameters to manipulate IFS . 4

1.12 Basics of iterated function systems . 5

1.13 cubes . 5

1.14 The Water blanker . 6

1.15 Parameters You can set, parameters You get . 6

1.16 Technical Details on the Water blanker . 6

1.17 Water’s memory requirements . 7

1.18 The Star Trek blanker . 7

1.19 Parameters accepted by the Trek blanker . 8

1.20 Public Domain . 8

1.21 Who wrote these great blankers? :-) . 9

1.22 credits . 9

1.23 The history of these blankers . 10

Sinus 1 / 10

Chapter 1

Sinus

1.1 Screenblankers for Garshneblanker

This document describes my screen blankers for the excellent screen
blanking utility Garshneblanker 3.6 (38.8).

Installation - How to install them
The Blankers - Description of each blanker
Public Domain - This is as PD as it can be
The Author - Address, Email, ...
Credits - People I want to thank
History - The (short) history of these blankers

1.2 installation

The archive AgBlankers has created the following directory structure:

AgBlankers/Blankers contains the blanker executables and
the files they need.

.../MC68000 contains everything for the 68000 CPU

.../MC68020 ... for the 68020

.../MC68030 ... for the 68030

.../MC68040 ... for the 68040
.../Source contains the blanker sources
.../Doc contains documentation

To install the blankers: Copy everything in Blankers/<Your CPU> to
the drawer containing Your Garshneblanker blankers.

The "Sinus" and "IFS" blankers use floating point arithmetics. However,
FPU binaries are not included with my blankers. If You’ve got SAS/C 6.x
You should be able to compile the blankers without problems.

After You’ve installed the blankers You can use Garshneblanker’s
Prefs window to test them. Since the default preferences have to
be usable with any Amiga You can get much nicer results by experimen-
ting a bit. Especially the Display settings should be changed.

Sinus 2 / 10

Recommended DISPLAY settings:

000,no AGA 0[234]0,no AGA 020, AGA 030, AGA 040, AGA
== ←↩

Cubes Hires, 16 Hires, 16 HiresNoFlck, 64 HiresNoFlck, 64 HiresNoFlck, 128
IFS HiresIntl, 8 HiresIntl, 8 HiresNoFlck, 8 HiresNoFlck, 8 HiresNoFlck, 8
Sinus HiresIntl, 8 HiresIntl, 16 HiresNoFlck, 32 HiresNoFlck, 64 HiresNoFlck, ←↩

256
Trek Hires, 16 Hires, 16 HiresNoFlck, 16 HiresNoFlck, 16 HiresNoFlck, 16
Water Lores, 8 Lores, 16 HiresNoFlck, 8 HiresNoFlck, 16 ←↩

HiresNoFlck, 16

1.3 The new blankers

This package gives You the following new screen blankers (the links
surronded by stars are links to iff screenshots. This feature is only
available in Workbench 3.x. Look at the iff files "by hand" if You’ve
got 2.x).

* Sinus - Draws nice *figures* based on a sinus formula

* IFS - Draws iterated function systems like fire for xlock .
Click *here* for some screenshots..

* Cubes - Inspired by the Amigabasic mondrian demo included
with WB1.x this draws @{ " *cube art* " link "cubes.iff/main" } to ←↩

the screen.

* Water - Simulation of @{ " *Waterfalls* " link "water.iff/main" } and such.

* Trek - Simulates importantly blinking @{ " *lamps* " link "trek.iff/main" } ←↩
like in Star Trek.

1.4 xlock

xlock is the most commonly used modular screen saving system for UNIX
machines using X11R5.

1.5 fire

Fire is a screen blanker for xlock which draws iterated function systems.
IMHO the best of its kind.

1.6 The SINUS Screenblanker

The Sinus blanker draws nice figures depending on a simple formula .
The appearance of these figures can be controlled by several different
parameters .

This screenblanker was created and implemented by Karlheinz Agsteiner .

Sinus 3 / 10

1.7 The SINUS Screenblanker - background

The Sinus blanker draws its formulas based on the following sequence
(where needed, I use TeX-like notation)

Let a,b,c,d be values in { min, ..., max };

Then for some real z the functions

x(z) = sin(a * z) + cos(b * z),
y(z) = sin(c * z) + cos(d * z).

define a set of points in |R^2.

The actual plot is produced by an approximation of this set by drawing lines
from (x(z+delta^n),y(z+delta^n)) to (x(z+delta^{n+1}),y(z+delta^{n+1}))
for very small delta values. By setting delta to PI+delta we get more
complicated looking line pictures.

The color of each line depends on its length.

1.8 The parameters controlling sinus

The figures produced by Sinus can be controlled by several parameters
adjustable in the Prefs window:

* SimplePics - Controls how many simple pictures (consisting of short
lines instead of long ones giving a more "clean" look)
should be drawn.

* Range Param - The range for the four parameters in the computation
formula. Roughly, a range of n allows the blanker to
draw n^4 different figures. Larger ranges give more
figures, but as a rule, the larger the range the more
complicated/weird/ugly the figures will look.

* Duration - How many time should Sinus spend with drawing one
figure.

* Delay - How long (in seconds) should Sinus wait after having
completed a figure.

* Display - Like in the other savers. The best results can be
achieved by high resolution and many colors. Monochrome
looks good, too (but monochrome, of course :-))

1.9 The IFS blanker

This screenblanker draws figures that contain random fractals called "iterated
function systems". The basic functions drawn by IFS are roughly the same You
probably know from the Scrawls blanker. However, IFS uses FFP numbers,
and a probability distribution to minimize the probability of recalculating
the same point over and over again. Therefore it looks much faster as Scrawls.

The coloring scheme used in IFS is
inspired by the fire blanker in xlock which is IMHO the best iterated

Sinus 4 / 10

function systems blanker.

Several parameters control this blanker.

1.10 A probability distribution for area selection

When calculating an iterated function system each function roughly
stands for a different area of the figure. If functions are selected
with the same probability, the algorithm spends "too much" time on
the smaller areas. This can make the figure look a bit more structured
but usually it’s just unnecessarily slow. "Special" computes the
compression of each function and selects each function with a probability
proportional to the area the function represents.

1.11 Parameters to manipulate IFS

The iterated function systems produced by IFS can be controlled by
several parameters adjustable in the Prefs window:

* Functions - Sets the maximum number of random transformation
functions that are used to compute the figures.
The larger this number is the more sophisticated
figures can be drawn. However, even 3 random
functions provide a broad range of different
figures while large systems with 8 or more
functions often tend to result in clouds.
I’d suggest a value of about 4 to 6.

* Iterations - Controls how long IFS computes one figure. Each
iteration performs a computation sequence of
about 100 points. Default is 300 iterations.
Of course, large cloudlike structures are
given a longer calculation time as small
figures do.

* Area - Can be either special or uniformal.
Uniformally drawn figures look a bit more
structured in some cases but wastes much time.
Generally, special is far better.

* Transpose - If set to "no", the center of each figure is
set exactly in the middle of the picture. "Yes"
will cause each IFS being displayed with some
offset from this center.

* ContProb - The probability to paint the next ifs without
clearing the screen first (in percent).

* Decrease - The number of percents substracted from ContProb
after each drawing.
Example: ContProb = 120%, Decrease = 20% will
clear the screen after a drawing with the following
probabilities:

0 120% = always
1 100% = always
2 80% = 8 out of 10

Sinus 5 / 10

3 60% = 6 out of 10
4 40% = 4 out of 10
5 20% = 2 out of 10
6 0% = never

Thus the setting 120/20 means "draw at least two
figures and at most 6".

* Display - Like the other blankers. IFS paints each figure
in the same color so 8 colors should suffice for
the most cases (except for very large ContProbs).

1.12 Basics of iterated function systems

Iterated function systems (IFS) are perhaps the most important kind of
Fractals. The basic concept of IFS is self-similarity: A fractal is
composed by parts which are similar to the whole fractal.

Technically, such a fractal is defined by a set of functions
(where needed, I use TeX-like notation)

f_1, ..., f_n

Each f_i is the composition of a rotation, a scalation and a
translation. Thus, every f_i transforms a set of points in
|R^2 into a similar set of points. Starting by a certain set S_0
we can compute the union

n
S_{i+1} = U f_i(S_i)

i=1

The fractal defined by these functions is defined by

lim S_n
n->oo

Example:

f_1 = "scale by factor 2"
f_2 = "scale by factor 2, translate by (0.5,0)"
f_2 = "scale by factor 2, translate by (0,0.5)"

will give a the fractal shown @{ " *here* " link "IFSexample.iff/main"}.

1.13 cubes

The cubes blanker roughly draws the same modern art as the
AmigaBasic mondrian demo contained in the distribution of Amiga-OS1.x
(only much nicer :-)). This blanker doesn’t need any parameters except
the Display mode.

Sinus 6 / 10

1.14 The Water blanker

The Water blanker simulates particles and gravitation. The outcome of
this simulation is that it displays all kinds of waterfalls. This
blanker looks especially good when viewed from >3 meters away.

* parameters

* technical details

* memory requirement

1.15 Parameters You can set, parameters You get

The Water blanker knows of lots of parameters modifying the behavior
of each waterfall. Since the basic waterfall is quite a monotonous
thing most of these parameters are selected randomly. Only two can be
chosen by the user:

* Drops specifies how many drops should build each waterfall.
The best value depends heavily on the machine used. On my
A4000/30, 500-1000 drops look "fluidly" enough and give a
good impression. Notice that every drop requires memory .

* Time specifies how many moves each drop should make until
a new waterfall is created. I use about 500 here.

* Display: as usual. This blanker looks best with 8 or 16
colors. Fewer colors spoil the effect that the water gets
brighter the longer it falls (looks a bit 3D to me), more
colors make the blanker slower.

The following internal parameters that can’t be modified by the
user specify the look of the waterfall:

* Width: How wide is the waterfall (how far are the single drops
spreading)

* Ground: Some waterfalls have a ground from which the drops
reflect. This may not be physically too credible, but it
looks good. :-)

* Sides: There are left->right, right->left and narrow->wide
waterfalls

* initial direction: A waterfall can simply drop water from
some height or blow it into the air first.

1.16 Technical Details on the Water blanker

The basic physical model for the water blanker is very simple.
Waterdrops have a certain initial point and speed and accelerate
downwards due to some gravitation. Every point moves independently,
no interaction takes place between them.

But even this simple model is too complicated for a blanker that
should look nice: Either we have to use hand coded fixed point
arithmetics or have a FPU, or we get incredibly slow. Even with
FPU, we’re suboptimal. The way out of this mess is - of course -

Sinus 7 / 10

precomputation.

Before a waterfall is drawn, a number of paths (adjustable at
compile time by the macro VARIATIONS (default: 32) of a certain
length (macro STAGES=128) are precomputed. Thus, each drop can
only move in 30 different ways. These paths are normalized so
that they correspond to a rectangle of at most

(<width of screen> / 2) x (<height of screen> - 10)

Then, every point is characterized by an initial coordinate
in a 20*10 rectangle, the path it uses and the stage it is
at.

The blanker itself can now calculate each drop by a few
additions and array calculations. Using this method, we get
quite a good speed (about 8700 movements per second in
16 colors on my A4000/30).

Of course, due to all this precalculation Water requires a lot of
memory .

1.17 Water’s memory requirements

The Water blanker precomputes and stores much data in order to gain speed
when drawing the waterfall. Therefore Water is quite a memory intense blanker.
It needs:

Bytes Size Description

25600 VARIATIONS * STAGES * 8 All the paths

128 VARIATIONS * 4 additional data

==> 25728 Bytes allocated in any case plus 16 bytes for every point.

This means that a maximum of 4000*16+25728 = 89728 bytes can be
allocated. If any allocation fails the blanker will do nothing.

1.18 The Star Trek blanker

Have You ever wished Your computer could display important lamps
like the ones featured in the "Star Trek" series? Or the ones
that make transputer systems look so important? Now thanks to
the Trek blanker Your Amiga can look important, too!

Trek organizes the display into rectangles (lamps) and displays blinking
rectangles in them. Lamps can be organized in vertical or horizontal
rows, too. Every lamp blinks in a certain rhythm.
Several different blinking styles exist. To make everything look
even more important, the blanker adds 3D-boxes around every lamp
and seperates some lamps (rows of lamps) by horizontal or

Sinus 8 / 10

vertical lines.

Of course, a blanker as important as this one can be controlled
by loads of parameters .

1.19 Parameters accepted by the Trek blanker

The Trek blanker can look quite differently depending on the following
parameters (modifiable via the Prefs window):

* Rhythms: Controls how many different blanking rhythms should be
used in each display. If two lamps use the same rhythm they will
go on and off at the same time. Thus, a small number of rhythms
will look less chaotic as a large one. Don’t know which setting
is optimally important. :)

* Duration: How many simulation cycles should the blanker spend
with one set of lamps. Default: 500 cycles

* Delay: How long (in ticks) should the blanker pause after each
simulation cycle (default: 3).

* Width, Height: Before actually drawing lamps the Trek blanker
splits the screen into rectangles. When a rectangle gets thinner
as Width or lower as Height, the blanker will use it as a lamp
or a row of lamps. Small values give small lamps, big values
big ones.

* Submode: Controls if a "basic rectangle" will contain one lamp
or a row of lamps. Rows of lamps look more important, IMHO, so
this is the default.

* Background: Controls the background color. Normally, one would
use black here. Of course the blanker looks much better with
a grey background because the 3D borders really don’t look
very good on a black background.

* Free: Controls how many percent of the screen should be left
free (ie. not covered by lamps).

* Display: As usual. The Trek blanker doesn’t look good with
only two colors. If You use 4 colors You get the normal 3D-look
but lamps are all colored in the same color (3 are used for
the 3D-look). 16 Colors is best. High resolution is not
necessary but recommended.

1.20 Public Domain

Everything in this distribution is PD. You can use the sources/binaries/
documentation in any way You like - run it, modify it, include it in
Your .signature, ...

The only exception to this rule is that if You release a modified version
of my blankers which doesn’t add major changes I feel free to make fun
of You in the public (ie. UseNet).

Of course, PD means that I don’t take any responsibility to any
harm any file in this distribution will cause to You or other
persons. This may sound like legal rubbish, but in the case of

Sinus 9 / 10

screen blankers it’s really important - I had some guys screen
saver crash while I was optimizing my hard disk. Hours of endless
fun formatting and installing my hard disk were the result.

One last word about shareware: IMHO it’s absolutely ridiculous what kinds
of programs get released as shareware today. I’ve seen

* memory games (the ones where You have to find two matching cards)

* chess games which can’t play chess at all (but have a vector graphics GUI)

* othello games

* WB icons

* ...

being released as shareware. Most of the time the "reason" given for this
policy was "I’ve invested so much time there". Come on. The criterion for
releasing a program as shareware has to be the quality of this program.
Why should anybody be willing to pay eg. for a memory game?

1.21 Who wrote these great blankers? :-)

I like to hear from You! If You’ve got another Amiga model than I do
(I’ve got an A4000/30) please tell me if my blankers run on Your
configuration. If it doesn’t work, it would be nice if You provided
additional information (Your setup, what’s happening).

Send bug reports etc. to:

karlheinz.agsteiner@informatik.tu-chemnitz.de

My WWW page is located at

http://www.tu-chemnitz.de/~kas/agsteiner.html

or (snail mail):
Karlheinz Agsteiner
Lessingstr. 10
09130 Chemnitz
Germany

1.22 credits

Thanks go to

* Michael D. Bayne for Garshneblanker, the best screen saving system
I’ve seen so far - being able to write blankers without having to
care for a Gadtools interface is great!

* SAS for their compiler, especially Doug Walker and Jim Cooper
for being present on comp.sys.amiga.programmer without getting
tired of answering the same questions over and over again. Too
bad Amiga SAS/C is no longer supported.

* The Free Software Foundation for creating THE ONE EDITOR.

Sinus 10 / 10

* Nicola Salmoria and Philip A. Vedovatti for NewIcons - the best
Icon Package around (the icons included in this distribution
are drawn by them and will look a bit awkward if NewIcons is not
installed.

1.23 The history of these blankers

Ancient history:
Somewhen in 1985: Implemented the sinus blanker on a Commodore 8032 :)
Somewhen in the early ’90s: Implemented sinus, cubes, and early versions
of water and trek using the shadowmaster saving system.

Modern history:
27.02.95 First release of my blankers as PD
13.03.95 Fixed two problems:

* I included different prefs files for the 68000 and the
68020/30/40 versions meeting the different performance
needs of different processors. Unfortunately these prefs
files contained information about the screenmode to use.
Therefore, everyone who had no DblNTSC installed on his
020/030/040 machine only got a black screen.
This version includes no prefs files. Users of slower
machines have to experiment a bit in order to get an
appropriate set of parameters. Thanks to Colin Thompson
and Arthur Hagen for notifying me of this problem.

* Fixed a bug in "water" found by Roberto Patriarca:
When the system wasn’t idling, the blanker would crash.
The cause was that I inserted code between the initialization
routine and the test if this routine succeeded that used
(not necessarily) initialized data giving a division by
zero error if Garshneblanker aborted Water during its
initialization routine.
Thanks, Roberto, for the very precise bug report. It made
it a question of minutes to find the bug.

	Sinus
	Screenblankers for Garshneblanker
	installation
	The new blankers
	xlock
	fire
	The SINUS Screenblanker
	The SINUS Screenblanker - background
	The parameters controlling sinus
	The IFS blanker
	A probability distribution for area selection
	Parameters to manipulate IFS
	Basics of iterated function systems
	cubes
	The Water blanker
	Parameters You can set, parameters You get
	Technical Details on the Water blanker
	Water's memory requirements
	The Star Trek blanker
	Parameters accepted by the Trek blanker
	Public Domain
	Who wrote these great blankers? :-)
	credits
	The history of these blankers

