
Packages in the ‘graphics’ bundle

D. P. Carlisle

1995/04/12

Contents

1 Introduction 2

2 Driver support 2

3 Colour 2

3.1 Package Options : 3

3.2 Defining Colours : 3

3.3 Using Colours : 3

3.4 Named Colours : 4

3.5 Page Colour : 5

3.6 Box Backgrounds : 5

3.7 Possible Problems : 5

4 The Graphics packages 6

4.1 Package Options : 6

4.2 Rotation : 6

4.3 Scaling : 7

4.4 Including Graphics Files : 8

4.5 Other commands in the graphics package : : : : : : : : : : : : : : : 11

4.6 Global setting of keys : 12

4.7 Compatibility between graphics and graphicx : : : : : : : : : : : : : 13

5 Remaining packages in the graphics bundle 13

5.1 Epsfig : 13

5.2 Trig : 13

5.3 Keyval : 14

5.4 Pstcol : 14

5.5 Lscape : 14

1

1 Introduction

This document serves as a user-manual for the packages color, graphics, and graphicx.

Further documentation may be obtained by processing the source (dtx) files of the in-

dividual packages.

2 Driver support

All these packages rely on features that are not in TEX itself. These features must be

supplied by the ‘driver’ used to print the dvi file. Unfortunately not all drivers support

the same features, and even the internal method of accessing these extensions varies be-

tween drivers. Consequently all these packages take options such as ‘dvips’ to specify

which driver is being used.

3 Colour

The colour support is built around the idea of a system of Colour Models. The Colour

models supported by a driver vary, but typically include

rgb Red Green Blue: A comma separated list of three numbers between 0 and 1, giving

the components of the colour.

cmyk Cyan Magenta Yellow [K]Black: A comma separated list of four numbers be-

tween 0 and 1, giving the components of the colour according to the additive

model used in most printers.

gray Grey scale: a single number between 0 and 1.

named Colours accessed by name, e.g. ‘JungleGreen’. Not all drivers support this

model. The names must either be ‘known’ to the driver or added using com-

mands described in color.dtx. Some drivers support an extended form of the

named model in which an ‘intensity’ of the colour may also be specified, so

‘JungleGreen, 0.5’ would denote that colour at half strength.

Note that the named model is really just given as an example of a colour model that

takes names rather than a numeric specication. Other options may be provided locally

that provide different colour models, eg pantone (An industry standard set of colours),

x11 (Colour names from the UNIX window system), etc. The standard distributiondoes

not currently have such models, but the named model could be used as an example of

how to define a new colour model. The names used in the named model are those sug-

gested by Jim Hafner in his colordvi and foiltex packages, and implemented originally

in the color.pro header file for the dvips driver.

2

3.1 Package Options

Most of the options to the color package just specify a driver, e.g. dvips. You should

to set up a site default for these options, for the driver that you normally use. Suppose

that you wish for the color package to always default to use specials for the PostScript

driver, dvips. In that case create a file color.cfg containing the line:

\ExecuteOptions{dvips}

One special option that is of interest is monochrome. If this option is selected the colour

commands are all disabled so that they do not generate errors, but do not generate colour

either. This is useful if previewing with a previewer that can not produce colour.

Three other package options control the use of the named model. The dvips driver (by

default) pre-defines 68 colour names. The dvips option normally makes these names

available in the named colour model. If you do not want these names to be declared in

this model (Saving TEX some memory) you may give the nodvipsnames option. Con-

versely, if you are using another driver, you may wish to add these names to the named

model for that driver (especially if you are processing a document originally produced

on dvips). In this case you could use the dvipsnames option. Lastly the usenames

option makes all names in the named model directly available, as described below.

3.2 Defining Colours

The colours black, white, red, green, blue, cyan, magenta, yellow should be prede-

fined, but should you wish to mix your own colours use the \definecolor command.

\definecolor{name}{model}{colour specification}

This defines hnamei as a colour which can be used in later colour commands. For ex-

ample

\definecolor{light-blue}{rgb}{0.8,0.85,1}

\definecolor{mygrey}{gray}{0.75}

Now light-blue and mygrey may be used in addition to the predefined colours above.

3.3 Using Colours

3.3.1 Using predefined colours

The syntax for colour changes is designed to mimic font changes. The basic syntax is:

\color{name}

This is a declaration, like \bfseries, it changes the current colour to hnamei until the

end of the current group or environment.

3

An alternative command syntax is to use a command form that takes the text to be

coloured as an argument. This is similar to the font commands such as \textbf:

\textcolor{name}{text}

So the above is essentially equivalent to {\color{name}text}.

3.3.2 Using colour specifications directly

\color[hmodeli]{specification}

\textcolor[hmodeli]{specification}{text}

Normally one would predeclare all the colours used in a package, or in the document

preamble, but sometimes it is convenient to directly use a colour without naming it first.

To achieve this \color (and all the other colour commands) take an optional argument

specifying the model. If this is used then the mandatory argument takes a hcolour spec-

ificationi instead of a hnamei. For example:

\color[rgb]{1,0.2,0.3}

would directly select that colour.

This is particularly useful for accessing the named model:

\color[named]{BrickRed} selects the dvips colour BrickRed.

Rather than repeatedly use [named] you may use \definecolor to provide convenient

aliases:

\definecolor{myred}{named}{WildStrawberry} ... \color{myred}.. .

Alternatively if you are happy to use the existing names from the named model, you

may use the usenames package option, which effectively calls \definecolor on every

colour in the named model, thus allowing \color{WildStrawberry} in addition to

\color[named]{WildStrawbery}.

3.4 Named Colours

Using the named colour model has certain advantages over using other colour models.

Firstly as the dvi file contains a request for a colour by name, the actual mix of primary

colours used to obtain the requested colour can be tuned to the characteristics of a par-

ticular printer. In the dvips driver the meanings of the colour names are defined in the

header file color.pro. Users are encouraged to produce different versions of this file

for any printers they use. By this means the same dvi file should produce colours of

similar appearance when printed on printers with different colour characteristics.

Secondly, apart from the so called ‘process colours’ that are produced by mixing pri-

mary colours during the print process, one may want to use ‘spot’ or ‘custom’ colours.

Here a particular colour name does not refer to a mix of primaries, but to a particular

ink. The parts of the document using this colour will be printed separately using this

named ink colour.

4

3.5 Page Colour

\pagecolor{name}

The background colour of the whole page can be set using \pagecolor. This takes the

same argument forms as \color but sets the background colour for the current and all

subsequent pages. it is a global declaration, so you need to use \pagecolor{white}

to ‘get back to normal’.

3.6 Box Backgrounds

Two commands similar to \fbox produce boxes with the backgrounds shaded an ap-

propriate colour.

\colorbox{name}{text}

\fcolorbox{name1}{name2}{text}

The former produces a box coloured with name like this . The latter is similar but puts

a frame of colour name1 around the box coloured name2.

These commands use the \fbox parameters \fboxrule and \fboxsep to determine the

thickness of the rule, and the size of the shaded area.

3.7 Possible Problems

TEX was not designed with colour in mind, and producing colours requires a lot of help

from the driver program. Thus, depending on the driver, some or all features of the color

package may not be available.

Some drivers do not maintain a special ‘colour stack’. These drivers are likely to get

confused if you nest colour changes, or use colours in floating environments.

Some drivers do not maintain colours over a page break, so that if the page breaks in

the middle of a coloured paragraph, the last part of the text will incorrectly be printed

in black.

There is a different type of problem that will occur for all drivers. Due to certain tech-

nical difficulties1, it is possible that at points where the colour changes, the spacing is

affected. For this reason the monochrome option does not completely disable the colour

commands, it redefines them to write to the log file. This will have the same effects on

spacing, so you can produce monochrome drafts of your document, at least knowing

that the final spacing is being shown.

1At least two causes: 1) The presence of a \special hwhatsiti prevents \addvspace ‘seeing’ space on

the current vertical list, so causing it to incorrectly add extra vertical space. 2) A hwhatsiti as the first item in

a \vtop moves the reference point of the box.

5

4 The Graphics packages

There are two graphics packages:

graphics The ‘standard’ graphics package.

graphicx The ‘extended’ or ‘enhanced’ graphics package.

The two differ only in the format of optional arguments for the commands defined. The

command names, and the mandatory arguments are the same for the two packages.

4.1 Package Options

The graphics packages share the same ‘driver’ options as the color package. As for

colour you should set up a site-default in a file, graphics.cfg, containing the line (for

dvips):

\ExecuteOptions{dvips}

The graphics packages have some other options for controllinghow many of the features

to enable:

draft suppress all the ‘special’ features. In particular graphics files are not included

(but they are still read for size info) just the filename is printed in a box of the

correct size.

final The opposite of draft. Useful to over-ride a global draft option specified in the

\documentclass command.

hiderotate Do not show rotated text (presumably because the previewer can not ro-

tate).

hidescale Do not show scaled text (presumably because the previewer can not scale).

4.2 Rotation

graphics: \rotatebox{angle}{text}

graphicx: \rotatebox[hkey val listi]{angle}{text}

This puts text in a box, like \mbox, but rotates the box through angle degrees, like this
.

The standard version always rotates around the reference point of the box, but the keyval

version takes the following keys:

6

origin=hlabeli

x=hdimeni

y=hdimeni

units=hnumberi

So you may specify both x and y, which give the coordinate of the centre of rotation

relative to the reference point of the box, eg [x=2mm, y=5mm]. Alternatively, for the

most common points, one may use origin with a label containing one or two of the

following: lrctbB (B denotes the baseline, as for PSTricks). For example, compare a

default rotation of 180� ... LikeThis ... to the effects gained by using the origin key:

[origin = c] rotates about the centre of the box,...

LikeThis

...

[origin = tr] rotates about the top right hand corner...

LikeThis

...

The units key allows a change from the default units of degrees anti-clockwise. Give

the number of units in one full anti-clockwise rotation. For example:

[units = -360] specifies degrees clockwise.

[units= 6.283185] specifies radians.

4.3 Scaling

4.3.1 Scaling by scale factor

\scalebox{h-scale}[hv-scalei]{text}

Again this is basically like \mbox but scales the text. If v-scale is not specified it defaults

to h-scale. If it is specified the text is distorted as the horizontal and vertical stretches

are different,Like This.

\reflectbox{text}

An abbreviation for \scalebox{-1}[1]{text}.

4.3.2 Scaling to a requested size

\resizebox*{h-length}{v-length}{text}

Scale text so that the width is h-length. If ! is used as either length argument, the

other argument is used to determine a scale factor that is used in both directions. Nor-

mally v-length refers to the height of the box, but in the star form, it refers to the

‘height + depth’. As normal for LATEX 2ε box length arguments, \height, \width,

\totalheight, \depth may be used to refer to the original size of the box.

\resizebox{1in}{\height}{Some text}: Some text

\resizebox{1in}{!}{Some text}: Some text

7

4.4 Including Graphics Files

The functions for graphics inclusion try to give the same user syntax for including any

kind of graphics file that can be understood by the driver. This relies on the file having

an extension that identifies the file type. The ‘driver options’ will define a collection of

file extensions that the driver can handle, although this list may be extended using the

declarations described below.

If the file’s extension is unknown to the driver, the system may try a default file type.

The PostScript driver files set this default to be eps (PostScript), but this behaviour may

be customised if other defaults are required.

graphics: \includegraphics*[hllx,llyi][hurx,uryi]{file}

graphicx: \includegraphics*[hkey val listi]{file}

Include a graphics file.

If * is present, then the graphic is ‘clipped’ to the size specified. If * is omitted, then

any part of the graphic that is outside the specified ‘bounding box’ will over-print the

surrounding text.

If the optional arguments are omitted, then the size of the graphic will be determined

by reading an external file as described below.

graphics version If [hurx,uryi] is present, then it should specify the coordinates of

the top right corner of the image, as a pair of TEX dimensions. If the units are omitted

they default to bp. So [1in,1in] and [72,72] are equivalent. If only one optional ar-

gument appears, the lower left corner of the image is assumed to be at [0,0]. Otherwise

[hllx,llyi] may be used to specify the coordinates of this point.

graphicx version Here the star form is just for compatibility with the standard ver-

sion. It just adds clip to the list of keys specified. (Also, for increased compatibility,

if two optional arguments are used, the ‘standard’ version of \includegraphics is al-

ways used, even if the graphicx package is loaded.)

The allowed keys are listed below.

bb The argument should be four dimensions, separated by spaces. These denote the

‘Bounding Box’ of the printed region within the file.

bbllx,bblly,bburx,bbury Set the bounding box. Mainly for compatibility with older

packages. bbllx=a,bblly=b,bburx=c,bbury=d is equivalent tobb = a b c d.

natwidth,natheight Again an alternative to bb. natheight=h,natwidth=w is equiv-

alent to bb = 0 0 h w.

8

viewport The viewport key takes four arguments, just like bb. However in this case New feature

1995/06/01the values are taken relative to the origin specified by the bounding box in the file.

So to ‘view’ the 1in square in the bottom left hand corner of the area specified by

the bounding box, use the argument viewport=0 0 72 72.

trim Similar to viewport, but here the four lengths specify the amount to remove or New feature

1995/06/01add to each side. trim= 1 2 3 4 ‘crops’ the picture by 1bp at the left, 2bp at

the bottom, 3bp on the right and 4bp at the top.

angle Rotation angle.

width Required width, a dimension (default units bp). The graphic is scaled to this

width.

height Required height. a dimension (default units bp). The graphic is scaled to this

height.

scale Scale factor.

clip Either ‘true’ or ‘false’ (or no value, which is equivalent to ‘true’). Clip the graphic

to the bounding box.

draft a boolean valued key, like ‘clip’. Locally switches to draft mode.

type Specify the graphics type.

ext Specify the file extension.

read Specify the file extension of the ‘read file’.

command Specify any command to be applied to the file.

For all the keys taking length values, the units can be omitted, in which case bp (ie

PostScript points) are assumed.

The first seven keys specify the original size of the image. This size needs to be spec-

ified in the case that the file can not be read by TEX, or it contains an incorrect size

‘BoundingBox’ specification.

bbllx... \bbury are mainly for compatibility for older packages.

bbllx=a, bblly=b, bburx=c, bbury=d

is equivalent to

bb = a b c d.

natheight and natwidth are just shorthands for setting the lower left coordinate to 0

0 and the upper right coordinate to the specified width and height.

The next few keys specify any scaling or rotation to be applied to the image. To get

these effects using the standard package, the \includegraphics call must be placed

inside the argument of a \rotatebox or \scalebox command.

9

The keys are read left-to-right, so [angle=90, height=1in] means rotate by 90 de-

grees, and then scale to a height of 1in. [height=1in, angle=90] would result in a

final width of 1in.

TEX leaves the space specified either in the file, or in the optional arguments. If any part

of the image is actually outside this area, it will by default overprint the surrounding text.

If the star form is used, or clip specified, any part of the image outside this area will

not be printed.

The last four keys suppress the parsing of the filename. If they are used, the main

file argument should not have the file extension. They correspond to the arguments of

\DeclareGraphicsRule described below.

To see the effect that the various options have consider the file a.ps. This file contains

the bounding box specification

%%BoundingBox:100 100 172 172

That is, the printed region consists of a one-inch square, 100 pt in from the bottom and

left hand edges of the paper.

In all the following examples the input will be of the form

left---\fbox{\includegraphics{a}}---right

With different options supplied to \includegraphics.

No optional argument.

left—A —right

graphics: \scalebox{0.5}{\includegraphics{a}}

graphicx: \includegraphics[scale=.5]{a}

left— A —right

graphics: \includegraphics[115,110][135,145]{a}}

graphicx: \includegraphics[bb= 115 110 135 145]{a}

left—A—right

10

graphics: \includegraphics*[115,110][135,145]{a}}

graphicx: \includegraphics[bb= 115 110 135 145,clip]{a}

left—A—right

graphics: \scalebox{0.5}{\includegraphics{a}} and draft option.

graphicx: \includegraphics[scale=.5, draft]{a}

left—

a.ps

—right

4.5 Other commands in the graphics package

\graphicspath{dir-list}

This optional declaration may be used to specify a list of directories in which to search

for graphics files. The format is the same as for the LATEX 2ε primitive \input@path, a

list of directories, each in a {} group (even if there is only one in the list). For example:

\graphicspath{{eps/}{tiff/}}

would cause the system to look in the subdirectories eps and tiff of the current di-

rectory. The default setting of this path is \input@path that is: graphics files will be

found wherever TEX files are found.

\DeclareGraphicsExtensions{ext-list}

This specifies the behaviour of the system when no file extension is specified in the ar- New description

1994/12/01gument to \includegraphics. {ext-list} should be a comma separated list of file ex-

tensions. (White space is ignored between the entries.) A file name is produced by ap-

pending one extension from the list. If a file is found, the system acts as if that extension

had been specified. If not, the next extension in ext-list is tried.

Note that if the extension is not specified in the \includegraphics command, the

graphics file must exist at the time LATEX is run, as the existence of the file is used to de-

termine which extension from the list to choose. However if a file extension is specified,

e.g. \includegraphics{a.ps} instead of \includegraphics{a}, then the graphics

file need not exist at the time LATEX is used. (In particular it may be created on the fly by

the hcommandi specified in the \DeclareGraphicsRule command described below.)

LATEX does however need to be able to determine the size of the image so this size must

be specified in arguments, or the ‘read file’ must exist at the time LATEX is used.

\DeclareGraphicsRule{ext}{type}{read-file}{command}

Any number of these declarations can be made. They determine how the system be-

haves when a file with extension ext is specified. (The extension may be specified ex-

11

plicitly or, if the argument to \includegraphics does not have an extension, it may be

a default extension from the ext-list specified with \DeclareGraphicsExtensions.)

ext the file extension for which this rule applies. As a special case, ext may be given as

* to denote the default behaviour for all undeclared extensions (see the example below).

type is the ‘type’ of file involved. All files of the same type will be input with the same

internal command (which must be defined in a ‘driver file’). For example files with

extensions ps, eps, ps.gz may all be classed as type eps.

read-file determines the extension of the file that should be read to determine size infor-

mation. It may be the same as ext but it may be different, for example .ps.gz files are

not readable easily by TEX, so you may want to put the bounding box information in a

separate file with extension .ps.bb. If read-file is empty, {}, then the system will not

try to locate an external file for size info, and the size must be specified in the arguments

of \includegraphics. If the driver file specifies a procedure for reading size files for

type, that will be used, otherwise the procedure for reading eps files will be used. Thus

the size of bitmap files may be specified in a file with a PostScript style %%BoundingBox

line, if no other specific format is available.

As a special case * may be used to denote the same extension as the graphic file. This is

mainly of use in conjunction with using * as the extension, as in that case the particular

graphic extension is not known. For example

\DeclareGraphicsRule{*}{eps}{*}{}

This would declare a default rule, such that all unknown extensions would be treated as

EPS files, and the graphic file would be read for a BoundingBox comment.

command is usually empty, but if non empty it is used in place of the filename in the

\special. Within this argument, #1 may be used to denote the filename. Thus using

the dvips driver, one may use

\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{‘zcat #1}

the final argument causes dvips to use the zcat command to unzip the file before insert-

ing it into the PostScript output.

4.6 Global setting of keys

Most of the keyval keys used in the graphicx package may also be set using the command

\setkeys provided by the keyval package.

For instance, suppose you wanted all the files to be included in the current document

to be scaled to 75% of the width of the lines of text, then one could issue the following

command:

\setkeys{Gin}{width=0.75\textwidth}

Here ‘Gin’ is the name used for the keyval keys associated with ‘Graphics inclusion’.

All following \includegraphics commands (within the same group or environment)

12

will act as if [width=0.75\textwidth] had been specified, in addition to any other

key settings actually given in the optional argument.

Similarly to make all \rotatebox arguments take an argument in radians, one just

needs to specify:

\setkeys{Grot}{units=6.28318}

4.7 Compatibility between graphics and graphicx

For a document author, there are not really any problems of compatibility between the

two packages. You just choose the interface that you personally prefer, and then use the

appropriate package.

For a package or class writer the situation is slightly different. Suppose that you are

writing a letter class that needs to print a company logo as part of the letterhead.

As the author of the class you may want to give the users the possibility of using ei-

ther interface in their letters (should they need to include any further graphics into the

letter body). In this case the class should load the graphics package (not graphicx, as

this would commit any users of the class to the keyval interface). The logo should be

included with \includegraphics either with no optional argument (if the correct size

information is in the file) or both optional arguments otherwise. Do not use the one

optional argument form, as the meaning of this argument would change (and generate

errors) if the user were to load graphicx as well as your class.

5 Remaining packages in the graphics bundle

5.1 Epsfig

This is a small package essentially a ‘wrapper’ around the graphicx package, defining

a command \psfig which has the syntax

\psfig{file=xxx,...} rather than \includegraphics[...]{xxx}.

It also has a few more commands to make it slightly more compatible with the old

LATEX 2.09 style of the same name.

5.2 Trig

The trig package is not intended to be used directly in documents. It calculates sine,

cosine and tangent trigonometric functions. This are used to calculate the space taken

up by a rotated box. This package is also used by the fontinst program which converts

PostScript files to a form usable by TEX.

As well as being used as a LATEX package, the macros may be extracted with the docstrip

options plain,package. In this case the LATEX package declarations are omitted from

the file, and the macros may be directly used as part of another macro file (they work

with any format based on plain TEX.)

13

5.3 Keyval

The keyval package is intended to be used by other packages. It provides a generic way

of setting ‘keys’ as used by the graphicx package, and splitting up the comma separated

lists of hkeyi = hvaluei pairs.

Like, the trig package, these macros may be extracted and used as part of another macro

file, based on plain TEX, as well as the standard use as a LATEX package.

5.4 Pstcol

PSTricks, by Timothy Van Zandt is an immensely powerful package that enables a very

full featured interface between PostScript and TEX. Unfortunately the colour support in

PSTricks is slightly incompatible with the colour mechanism defined in the color pack-

age. The pstcol package is a (hopefully temporary) package that modifies a very small

number of internal PSTricks functions, to remove this incompatibility. If pstricks is

loaded via this package, you may use any colours defined by color package commands

within pstricks commands, and vice versa.

5.5 Lscape

The lscape package requires and takes the same options as the graphics package. It

defines a landscape environment within which page bodies are rotated through 90 de-

grees. The page head and foot are not affected, they appear in the standard (portrait)

position.

14

