NetSupport

NetSupport

] COLLABORATORS
TITLE :
NetSupport
ACTION NAME DATE SIGNATURE
WRITTEN BY December 8, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

NetSupport iii

Contents

1 NetSupport 1
1.1 NetSupport.doc o o e e e e e 1
1.2 netsupport.library/AllocMemPooled 1
1.3 netsupport.library/ExpungeResident L 2
1.4 netsupport.library/FreeMemPooled e 3
1.5 netsupportlibrary/GetConfig e 3
1.6 netsupport.library/GetConfigEntry 4
1.7 netsupport.library/GetNSPConfigName e e e 6
1.8 metsupport.library/GetSeq e e e e e 6
1.9 netsupport.library/IsFileLocked 7
1.10 netsupport.library/LoadResident e 8
1.11 netsupport.library/LockFile e 9
1.12 netsupport.library/LockFileAttempt e 10
1.13 netsupport.library/MakeLogEntry 11
1.14 netsupport.library/PClose e e e 12
1.15 netsupport.library/POpen L e e e e e e 12
1.16 netsupport.library/SetConfigEntry 13
1.17 netsupport.library/TempName e e e e 14
1.18 netsupport.library/TempNameT e e e 16
1.19 netsupport.library/UnLockFile e 17
1.20 netsupport.library/UnLockFiles e 17

NetSupport 1/17

Chapter 1

NetSupport

1.1 NetSupport.doc

AllocMemPooled ()
ExpungeResident ()
FreeMemPooled()
GetConfig()
GetConfigEntry ()
GetNSPConfigName ()
GetSeqg()
IsFileLocked()
LoadResident ()
LockFile ()
LockFileAttempt ()
MakeLogEntry ()
PClose ()

POpen ()
SetConfigEntry ()
TempName ()
TempNameT ()
UnLockFile ()
UnLockFiles ()

1.2 netsupport.library/AllocMemPooled

NAME
AllocMemPooled —-— allocate a block of memory out of the
libraries memory pool
SYNOPSIS
memblock = AllocMemPooled(blocksize, attributes);
DO DO D1

void * memblock;
ULONG blocksize;
ULONG attributes;

FUNCTION

NetSupport 2/17

This routines allocates a memory block of the requested size
using the libraries internal memory pool. This is a big
advantage when several smaller allocations have to be made,
because memory pooling reduces fragmentation significantly.

Using this routine you won’t have to care about managing the
pool, the library will do for you. If the routine is started
under exec.library v39 or later, the exec pool routines will be
used. Under Kickstart 37, the library will handle the pool
itself.

INPUTS
blocksize = this is the size the requested block in byte

attributes = AllocMemPooled() understands exactly the same
attributes as the original exec routines. Please refer to
AllocMem() or exec/memory.h for further details.

RESULT
The routine returns either the address of the allocated block or
NULL, if the routine failed due to low-memory condition.

NOTE
The library tracks all allocations you do and frees them itself
when CloseLibrary () is called. However, it is strongly
recommended to free all memory IMMEDIATELY when it isn’t needed
anymore. It is very bad programming style to rely on the library
freeing everything for you.

If you’re calling the routine in another process, you created
using CreateNewProc () or a similar routine, you MUST open the
library again! Do not just pass the LibraryBase to the new
process or you’ll break the memory-tracking mechanism, either
causing loss of memory or even a complete system crash.

SEE ALSO
FreeMemPooled ()

1.3 netsupport.library/ExpungeResident

NAME
ExpungeResident -- expunges all resident files and thus frees
memory
SYNOPSIS

ExpungeResident (void) ;

FUNCTION
This routine frees all allocated buffers and expunges all loaded
resident modules. This routine is usually called by the OS when
memory 1is lacking and should not be used by other programs.

INPUTS
none

NetSupport 3/17

RESULT
none

SEE ALSO
LoadResident ()

1.4 netsupport.library/FreeMemPooled

NAME
FreeMemPooled —-- free a memory block previously allocated with
AllocMemPooled()
SYNOPSIS
success = FreeMemPooled (memblock) ;
DO Al
LONG success;

void = memblock;

FUNCTION
This routines frees a memory block, allocated with AllocMemPooled()
earlier. Just the address is required, the library keeps track
of the blocksizes itself.

INPUTS
memblock = pointer the the memory block

RESULT
Either -1L for success or 0L for failure.

NOTE
The memory allocation tracking mechanism will catch an attempt
to free a memory block twice. However, please do NOT rely on
this feature!

SEE ALSO
AllocMemPooled ()

1.5 netsupport.library/GetConfig

NAME
GetConfig -- return a configuration entry or system variable
SYNOPSIS
entry = GetConfig(filename, keyword, dosvarname, default);
DO A0 Al A2 A3

STRPTR entry;
STRPTR filename;
STRPTR keyword;

NetSupport 4/17

STRPTR dosvarname;
STRPTR default;

FUNCTION
GetConfig() does pretty much the same as GetConfigEntry(),
except that this routine is able to recognize local and global
DOS variables.

INPUTS
filename - Pointer to a string, containing the path and filename
to access the configfile in case no variable is set.

When <filename> is NULL, the routine uses the configfile,
you specified as ’"MasterConfig’ in the library’s own
configfile. The default is ’'UULib:Config’.

keyword - Pointer to a keyword string. All comparisons are
case—independent!

dosvarname - pointer to a name of the local shell- and global
enviroment variable to check. When this parameter is
NULL, <keyword> is used. However, some purposes may
require a different variable name than config file
keyword.

default - pointer to a string containing the default parameter,
which is returned in case, the keyword can’t be found.

RESULT
GetConfig () returns a pointer to a static buffer, holding the
provided parameter. Please take note that the contents of this
buffer is lost, when GetConfig() or GetConfigEntry () is called
the next time. You MUST not free or modify this library-internal
buffer!

If no config entry matching your keyword was available, the
provided default is returned.

NOTE
GetConfig() does NOT lock the file in order to avoid deadlocks.

SEE ALSO
GetConfigEntry (), ParseConfigFile()

1.6 netsupport.library/GetConfigEntry

NAME
GetConfigEntry ——- return a configuration entry
SYNOPSIS
entry = GetConfigEntry (filename, keyword, default);
DO A0 Al A2

STRPTR entry;

NetSupport 5/17

STRPTR filename;
STRPTR keyword;
STRPTR default;

FUNCTION
This routine is designed to replace the old Dillon UUCP config
routines and to perform some simple configuration issues.

It checks if the provided keyword is available as local or
global system variable and eventually returned its contents. If
such a variable isn’t set, it loads specified configfile and
searches for the keyword, returning the specified parameter.

INPUTS
filename - Pointer to a string, containing the path and filename
to access the configfile in case no variable is set.

When <filename> is NULL, the routine uses the configfile,
you specified as ’"MasterConfig’ in the library’s own
configfile. The default is ’'UULib:Config’.

keyword - Pointer to a keyword string. All comparisons are
case-independent!

default - pointer to a string containing the default parameter,
which is returned in case, the keyword can’t be found.

RESULT
GetConfigEntry () returns a pointer to a static buffer, holding
the provided parameter. Please take note that the contents of
this buffer is lost, when GetConfigEntry () or GetConfig() is
called the next time. You MUST not free or modify this
library—-internal buffer!

If no config entry matching your keyword was available, the
provided default is returned.

NOTE

GetConfigEntry () does NOT lock the file in order to avoid
deadlocks.

CONFIGFILE SYNTAX
A valid config file may contain one keyword per line. Keywords
MUST begin at the first column. The parameter can be separated
from the keyword using either space(s) or tab(s).

GetConfigEntry () skips all leading blanks or tabs until the
first "non-blank" character. Then it returns the whole line
until the return, truncating any blanks or tabs at the end of
the line. If you specify a keyword alone on a line,
GetConfigEntry () will return a pointer to an empty string.

Lines starting with a "#’ are commentlines and will be ignored.

Example:
KEYWORD parameter

NetSupport 6/17

FOO bar
comment
FO "O BAR"

GetConfigEntry does not parse the parameter and therefore does

NOT remove the double-quotes ’'"’ in the last line!
SEE ALSO
GetConfig(), ParseConfigFile()

1.7 netsupport.library/GetNSPConfigName

NAME
GetNSPConfigName —-- return the name and path of the libraries
own config file.
SYNOPSIS
name = GetNSPConfigName (void) ;
DO

STRPTR name;

FUNCTION
This routine tries to determine which path should be used for the
libraries own config file. You can put the file anywhere you want
and set the variable "NSPConfig" to the path and name of the file
or "S:NSPConfig" will be assumed as default.

INPUTS
none

RESULT
Name and path of the configfile. If the routine fails due to

memory lack, NULL is returned.

NOTE
You must not free or modify the returned pointer!

SEE ALSO

1.8 netsupport.library/GetSeq

NAME

GetSeq —- get a sequential, unique number
SYNOPSIS

number = GetSeqg (bump)

DO DO

ULONG number;
ULONG bump;

NetSupport 7/17

FUNCTION
GetSeq() returns a number which is guaranteed to be unique.
Despite the internal numbers used by TempName (), this number is

still unique when the library was closed and flushed or the machine
has been switched off.

Obviously, this requires the number to be saved on disk.

INPUTS
bump - The returned number is sequential. >bump< is the value that
is added to the current value. Using bump, you
can obtain (allocate) several numbers with one
call--reducing the number of necessary disk
accesses.

RESULT
GetSeq() returns the current value of the counter and writes the
increased counter back to disk.

NOTE
GetSeq(0L) returns the current value, but does NOT increase the
counter!
The file that holds the current seg-counter can be configured in
the library configfile. Please do never change this value manually

unless you know what you do.

EXAMPLE
The current counter is, say, 500. Now you call:

num = GetSeqg(4);
num will have the value of 501. Additionally, you have the right
to use the numbers 502, 503 and 504, because you specified a bump

of 4.

SEE ALSO

1.9 netsupport.library/IsFileLocked

NAME

IsFileLocked —— returns the (lock-)status of a file
SYNOPSIS

boolean = IsFileLocked(filename) ;

DO AQ

LONG boolean;

STRPTR filename;

BACKGROUND
Please refer to LockFile() for a brief description.

FUNCTION
Sometimes you want to know wether a file is locked or not,

NetSupport 8/17

without actually getting the exclusive access on the file--so
this is the routine to use.

INPUTS
filename - Pointer to a string, containing the path and filename
to access the file.

RESULT
IsFileLocked() returns either ZERO (0L) for an unlocked file,
any positive value for ’'file is locked’ or a negative value for
indicating an error.

NOTE
Lockfile() is able to recognize, if the same file is accessed
using two different paths, like "SYS:file" / "WB_2.x:file" for
example. This is archived using the system call SameLock() .
However, due to this feature, LockFile() has to store the DOS
lock of an already locked file, meaning that the file has to
be created if it doesn’t exist already.

SEE ALSO
LockFile (), LockFileAttempt ()

1.10 netsupport.library/LoadResident

NAME
LoadResident —-- loads a file and stores it resident, to buffer
further access
SYNOPSIS
buffer = LoadResident (filename)
DO AQ

STRPTR Dbuffer;
STRPTR filename;

FUNCTION
This routine loads the specified file and stores it in an
internal resident list. The next time this file is accessed,
the buffer will be returned immediately without disk access.

The routine tests wether the file on disk is newer than the
resident version and re-loads it in case it 1is.

INPUTS
filename - name and path of the file that should be loaded

RESULT
If the file couldn’t be loaded for any reason, NULL is returned.
Otherwise the routine returns a pointer to the buffer holding the
file. The length of the file is returned by IoErr(). You must not
modify or free the returned buffer!

NOTE
The routine does NOT lock the file using LockFile()!

NetSupport 9/17

The loaded file is always null terminated and thus can be used
with string routines.

SEE ALSO
ExpungeResident ()

1.11 netsupport.library/LockFile

NAME

LockFile —— lock a file before actually accessing it
SYNOPSIS

success = LockFile (filename) ;

DO A0

LONG success;

STRPTR filename;

BACKGROUND
In a multitasking enviroment, like the Amiga is, it is important
to coordinate and syncronize the usage of the available
resources. This includes devices, memory and, of course, files.
What happens, if your program needs a certain config file, while
another program is reading/writing the file? You’re attempt will
fail, the access will be denied. Now things become difficult.

Say, you just noticed that a file access failed. What should you
do? Maybe the file is free in a few seconds, maybe you can do
some other things while waiting for the file to become
available.

Using the libraries locking mechanism solves many problems for
you. Most packages have recognized this problem and use some
rather strange file locking mechanism, like Dillon UUCP 1.15.
or the OwnDevUnit.Library for this purpose. Well, these
mechanism had several disadvantages: They were not really
designed for files!

Both of them were not able to recognize that "UUMAIL:foobar" and
"UUCP:Mail/foobar" is the same file! And if you’d just used the
filenames without paths (what many authors did to come around
the above problem), a lock to "UUMAIL:foobar" would fail if
"ARCHIVE: foobar" was locked. All this problems are gone with
LockFile() .

Forget about all this pseudo—-names like "LOG-UPDATE.LOCK" and
similar names, lock the complete filename, including path!
LockFile () can handle all those situations, using SameLock () to
determine of the same file is access with two different paths.

Remember: Use the same filename to lock the file, you use for
the actual Open() call, or the mechanism will break!

FUNCTION
LockFile () determines the complete path to the file you

NetSupport 10/17

specified and tests wether this file is locked by some other
process and eventually waits for the file to become available.

UnLockFile () has to be called when the file isn’t required
anymore.

INPUTS
filename - Pointer to a string, containing the path and filename
to access the file.

RESULT
LockFile () returns TRUE if the file could be locked

successfully. If an error occurs, FALSE will be returned.

SEE ALSO
LockFileAttempt (), IsFileLocked(), UnLockFile(), UnLockFiles()

1.12 netsupport.library/LockFileAttempt

NAME
LockFileAttempt —-- try to lock a file
SYNOPSIS
success = LockFileAttempt (filename);
DO AQ
LONG success;

STRPTR filename;

FUNCTION
LockFileAttempt () does mainly the same as LockFile(). The only
difference is, that LockFileAttempt () does not wait for the file
to become available, but returns immediately.

If the locking attempt was successful, UnLockFile() has to be
called when the file isn’t required anymore.

INPUTS
filename - Pointer to a string, containing the path and filename
to access the file.

RESULT
LockFile () returns TRUE if the file could be locked
successfully. If an error occurred, or the file is locked
already, FALSE is returned.

NOTE
Lockfile() is able to recognize, if the same file is accessed
using two different paths, like "SYS:file" / "WB_2.x:file" for
example. This is archived using the system call SameLock ().
However, due to this feature, LockFile() has to store the DOS
lock of an already locked file, meaning that the file has to
be created if it doesn’t exist already.

SEE ALSO

NetSupport

11/17

LockFile (), IsFileLocked(), UnLockFile(), UnLockFiles /()

1.13 netsupport.library/MakeLogEntry

NAME

MakeLogEntry —- generates an entry in the appropriate logfile
SYNOPSIS

MakeLogEntry (system, class, logmessage, ...)

AQ DO Al A2

STRPTR system;
ULONG class;
STRPTR logmessage;

FUNCTION
This routine determines the appropriate logfile for an entry,
using the specified system and class parameters (please refer to
the libraries user manual for further information). Then it
locks this file and writes the logmessage into it, prefaced with
the current date and time.

INPUTS

system - Pointer to a string, specifying the ’'system’, making the
log entry. The system should be a short, descriptive
name for your program, maybe the package it belongs to.
The user can use the system name to direct the log-entries
to certain logfiles, so better be verbose. :-)
You should document the system name your program uses!
If NULL is specified, the log-entry goes into the
default logfile. If no default is specified, "T:Logfile"
is used.

class - value, describing the kind of the logmessage

logmessage - pointer to a string containing the actual message
text. Please refer to RawDoFmt () for usage.

RESULT
none

CLASSES
MLE_DEFAULT - This class is used if no special class can be
determined (OL). This makes it easier to port older
sources to the new routine--however, this entry should
be avoided.

MLE_INFO - This class should be used for plain information logs,
what happened to what time.

MLE_DEBUG[1-9] - This class should be used for debugging output.
The number following the actual name is the debug level
of the log-entry. MLE_DEBUGY9, for example, is a rather
unimportant debug message, while MLE_DEBUGO is rather

NetSupport

12/17

elementary and important to find bugs.

MLE_ERROR - This class should be used to log occurring non-fatal
errors.

MLE_FATAL_ERROR - This class should be used to log fatal errors.
Fatal errors are very important and usually need
immediate fixing. So be careful using this class.

EXAMPLE ENTRY
(10-Nov-93/13:04:18) UUCP, Sending mail to foo@bar.UUCP
(10-Nov-93/13:04:56) TCP/IP, Connected wuarchive.wust.edu
(10-Nov-93/13:05:01) TCP/IP, Starting FTP request for foobar.lha

NOTE

SEE ALSO
RawDoFmt ()

1.14 netsupport.library/PClose

NAME
PClose —- closes a pipe previously opened with POpen ()

SYNOPSIS
returncode = PClose (fh);
DO do

LONG returncode;
BPTR fh;

FUNCTION
This routine closes a pipe previously created with POpen () and
returns the returncode of the executed command.

INPUTS
fh = filehandle returned by POpen ()

RESULT
Code returned by the executed command.

BUGS
Until NetSupport.Library version 1.27, PClose() did not catch the
returncode of the executed program. This has been fixed.

SEE ALSO
POpen ()

1.15 netsupport.library/POpen

NAME
POpen —-- starts a command and redirects its input stream to a

NetSupport 13/17

pipe, whose file handle is returned.

SYNOPSIS
fh = POpen (command, mode) ;
DO A0 DO
BPTR fh;
STRPTR command;
LONG mode;
FUNCTION
This is an equivalent of the UNIX popen() routine, designed for
AmigaOS. POpen() 1is usually used to start an external program

that expects data from the input stream or provides data via the
output stream. The command is started asynchrony, of course.

INPUTS
command = String with the command to be started. The command
should not contain any i/o redirectors like "<file",
although it will work. Additionally, you should not
start a command via POpen("run ...", MODE_PIPETO) either.

mode = This is the mode the pipe should be opened in. MODE_PIPETO
will start the command to read from the pipe and
MODE_PIPEFROM will start the command with its output re-
directed to the returned pipe-handle.

RESULT
The routine returns the file handle of the opened pipe, which you
can use for either reading or writing, depending on the mode you
opened the pipe with. If an error occurs, NULL will be returned.

EXAMPLE

The following code will send some dummy letter to the postmaster
of your UUCP/inet site:

BPTR fh;
STRPTR sendmail = GetConfig (NULL, SENDMAIL, NULL, SENDMAIL);

if (fh = POpen(sendmail, MODE_PIPETO)) {
FPrintf (fh, "To: postmaster\nSubject: Bug report\n\n");
FPuts (fh, "Sorry to bother you, but error #1 occurred\n);
PClose (fh);

SEE ALSO
PClose ()

1.16 netsupport.library/SetConfigEntry

NAME
SetConfigEntry ——- set a configuration entry

NetSupport 14 /17
SYNOPSIS
success = SetConfigEntry(filename, keyword, parameter);
DO AO Al A2
LONG success;

STRPTR filename;
STRPTR keyword;
STRPTR parameter;

FUNCTION
This routine can be used to set a certain entry in a config
file. SetConfigEntry () will load the file and look for the
specified keyword. If the keyword can be found, it will replace
the parameter with the provided one and write the file back.

When the keyword couldn’t be found, SetConfigEntry () will append
the keyword plus parameter at the end of the file.

Please read GetConfigEntry () for a brief description of the
configfile format.

INPUTS
filename - Pointer to a string, containing the path and filename
to access the configfile in case no variable is set.

When <filename> is NULL, the routine uses the configfile,
you specified as ’"MasterConfig’ in the library’s own
configfile. The default is 'UULib:Config’.

keyword - Pointer to a keyword string. All comparisons are
case—independent!

parameter - pointer to a string containing the parameter to be
set behind the keyword in the configfile.

RESULT
SetConfigEntry () either TRUE (!0L) or FALSE (0L) for success/
failure.

NOTE
The specified configfile MUST at least exist or the routine will

faill!

SetConfigEntry () does NOT lock the file in order to avoid
deadlocks.

SEE ALSO
GetConfigEntry (), GetConfig()

1.17 netsupport.library/TempName

NAME
TempName —-- build an unique temporary filename

SYNOPSIS

NetSupport 15/17

tmpname = TempName (buffer);
DO A0

STRPTR tmpname;
STRPTR buffer;

FUNCTION
TempName () builds an unique filename you can use for your
temporary files.

INPUTS
buffer - Pointer to an buffer to hold the filename. The

generated filename will not succeed 12
characters. If NULL is specified, TempName ()
will use an internal buffer and return a pointer
to this one. Please take note, that the internal
buffer will be overwritten the next time you
call TempName (), so copying its contents might be
a good idea.

RESULT
The returned result is a pointer to a buffer holding the name of
the unique filename. The filename will look like this:
"tMPXXXXXXXX", where the "X-part’ will be a hexadecimal number
like "tmp0000a214", for example.

If an error occurs (out of memory), NULL will be returned. If
you provide the buffer, the routine CANNOT fail!

NOTES
These filenames are meant for temporary files and you should use
them only for temporary ones. The number part (which make the
name unique) will be flushed to zero, every time the library is
removed from memory. If you want to generate unique filenames
which won’t be overwritten after your program terminates, use
GetSeq() and similar routines to build the filename.

If you want the filename to contain the "T:" path for temporary
files, call TempNameT (), which will result in "T:tmpXXXXXXXX".

EXAMPLE
Though it doesn’t really matter, you might want to place the
temporary files in certain directories or let them reflect the
program, they belong to. This can be archives as follows:

char tmpname[32];

strcpy (tmpname, "SYS:foobar_");
strcat (tmpname, TempName (NULL)) ;

This code will generate a filename like "SYS:foobar_tmp00000001".

SEE ALSO
TempNameT (), GetSeqg()

NetSupport 16 /17

1.18 netsupport.library/TempNameT

NAME

TempNameT —-- build an unique temporary filename including path
SYNOPSIS

tmpname = TempNameT (buffer);

DO A0

STRPTR tmpname;
STRPTR buffer;

FUNCTION
TempNameT () builds an unique path and filename you can use for
your temporary files.

INPUTS
buffer - Pointer to an buffer to hold the filename. The

generated filename will not succeed 14
characters. If NULL is specified, TempNameT ()
will use an internal buffer and return a pointer
to this one. Please take note, that the internal
buffer will be overwritten the next time you
call TempNameT (), so copying its contents might
be a good idea.

RESULT
The returned result is a pointer to a buffer holding the name of
the unique filename. The filename will look like this:
"T:tmpXXXXXXXX", where the ’'X-part’ will be a hexadecimal number
like "T:tmp0000a214", for example.

If an error occurs (out of memory), NULL will be returned. If
you provide the buffer, the routine CANNOT fail!

NOTES
These filenames are meant for temporary files and you should use
them only for temporary ones. The number part (which make the
name unique) will be flushed to zero, every time the library is
removed from memory. If you want to generate unique filenames
which won’t be overwritten after your program terminates, use
GetSeqg() and similar routines to build the filename.

EXAMPLE
Though it doesn’t really matter, you might the filename to
reflect the program, it belongs to:

char tmpname[32];

strcpy (tmpname, TempNameT (NULL)) ;
strcat (tmpname, ".foobar");

This code will generate a filename like "T:tmp00000001.foobar".

SEE ALSO
TempName (), GetSeq()

NetSupport

17 /17

1.19 netsupport.library/UnLockFile

NAME

UnLockFile —- free an previously locked file
SYNOPSIS

UnLockFile (filename) ;

A0
STRPTR filename;
FUNCTION

UnLockFile () releases a lock on a file, previously obtained
using LockFile().

INPUTS
filename - Pointer to a string, containing the path and filename
to access the file.
RESULT
none
SEE ALSO

LockFile (), LockFileAttempt (), UnLockFiles()

1.20 netsupport.library/UnLockFiles

NAME
UnLockFiles —- free all files locked by a process

SYNOPSIS
UnLockFiles () ;

BACKGROUND
Please refer to LockFile() for a brief description.

FUNCTION
UnLockFiles () releases all filelocks obtained the by calling
process. This can be useful in error situations.

INPUTS
none

RESULT
none

SEE ALSO
LockFile (), LockFileAttempt (), UnLockFile()

	NetSupport
	NetSupport.doc
	netsupport.library/AllocMemPooled
	netsupport.library/ExpungeResident
	netsupport.library/FreeMemPooled
	netsupport.library/GetConfig
	netsupport.library/GetConfigEntry
	netsupport.library/GetNSPConfigName
	netsupport.library/GetSeq
	netsupport.library/IsFileLocked
	netsupport.library/LoadResident
	netsupport.library/LockFile
	netsupport.library/LockFileAttempt
	netsupport.library/MakeLogEntry
	netsupport.library/PClose
	netsupport.library/POpen
	netsupport.library/SetConfigEntry
	netsupport.library/TempName
	netsupport.library/TempNameT
	netsupport.library/UnLockFile
	netsupport.library/UnLockFiles

