NetSupport_internal

NetSupport_internal

] COLLABORATORS
TITLE :
NetSupport_internal
ACTION NAME DATE SIGNATURE
WRITTEN BY December 8, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

NetSupport_internal iii

Contents

1 NetSupport_internal 1
1.1 NetSupport_internal.doc e e e e 1
1.2 MemoryHandling.asm/FreeStaticBuffer 1
1.3 MemoryHandling.asm/GetStaticBuffer 2
1.4 MemoryHandling.asm/NSPAllocMemPooled 2
1.5 netsupport.library/NSPFreeMemPooled Lo 3
1.6 NetSupportLibrary.asm/FreePoolList e 4
1.7 NetSupportLibrary.asm/LockPoolList e e e e 4
1.8 NetSupportLibrary.asm/StuffChar e 5
1.9 SupportRoutines.c/LoadFile 5
1.10 SupportRoutines.c/SPrint L e e 6
1.11 SupportRoutines.c/StringCat e e e e 7
1.12 SupportRoutines.c/StringCopy e e 7

NetSupport_internal

Chapter 1

NetSupport_internal

1.1 NetSupport_internal.doc

FreeStaticBuffer ()
GetStaticBuffer ()
NSPAllocMemPooled ()
NSPFreeMemPooled ()
FreePoolList ()
LockPoolList ()
StuffChar ()
LoadFile ()
SPrint ()
StringCat ()
StringCopy ()

1.2 MemoryHandling.asm/FreeStaticBuffer

NAME
FreeStaticBuffer —-- deallocate a task’s static buffer

SYNOPSIS
FreeStaticBuffer (void);

FUNCTION
This routine gets the tasks static buffer, frees all allocated
memory that has been tracked in the lists and removes the static
buffer itself from the library internal list.

This routine may be modified as more entries are added to the

static buffer structure--currently holding only memory allocations.

However, it is possible to track opened files, and more...

INPUTS
none

RESULT
none

NetSupport_internal 2/8

NOTE
This routine is usually called when the library is closed!

SEE ALSO
GetStaticBuffer ()

1.3 MemoryHandling.asm/GetStaticBuffer

NAME
GetStaticBuffer —-— find a task’s static data buffer

SYNOPSIS
staticbuf = GetStaticBuffer (void);

struct StaticBuffer xstaticbuf;

FUNCTION
Because routines in a shared library have to be re-entrant, it’s
a little bit difficult to store certain data statically, as you
can’t just use an entry in the library header.

GetStaticBuffer () initializes a special structure for each task
and returns a pointer, so the routine can store the required data
in this structure for later usage.

INPUTS
none

RESULT
GetStaticBuffer () returns a pointer to the task’s individual
structure or NULL for failure.

EXAMPLE
Here’s a short example to demonstrate the usage of
GetStaticBuffer. The following routine will count the number of
times it has been called and returns the integer. (Not very
useful, agreed. :—>)

LONG CountMe (void)

{
struct StaticBuffer =*sb;

if (sb = GetStaticBuffer())
return ++ (sb->nspsb_CountMe) ;
else
return 0L;

SEE ALSO
FreeStaticBuffer ()

1.4 MemoryHandling.asm/NSPAllocMemPooled

NetSupport_internal

3/8

NAME

NSPAllocMemPooled —-- allocate memory for library internal usage
SYNOPSIS

memblock = NSPAllocMemPooled(blocksize, attributes);

DO DO D1

void » memblock;
ULONG blocksize;
ULONG attributes;

FUNCTION
This routine does mainly the same as AllocMemPooled(). The only
difference is, that the allocated memory is tracked in a different
list. The advantage is, that FreeStaticBuffer() is able to
determine wether this was an internal required memoryblock or the
user has forgotten to free one of his allocations. Future versions
of the library might pop up a requester a la: "The following
allocated memoryblocks were not freed at run-time:...".

This might be useful for debugging purposes.

INPUTS
blocksize = this is the size the requested block in byte

attributes = AllocMemPooled () understands exactly the same
attributes as the original exec routines. Please refer to
AllocMem() or exec/memory.h for further details.
RESULT
The routine returns either the address of the allocated block or
NULL, if the routine failed due to low-memory condition.

NOTE

SEE ALSO
NSPFreeMemPooled (), AllocMemPooled (), FreeMemPooled()

1.5 netsupport.library/NSPFreeMemPooled

NAME
NSPFreeMemPooled —-- free a memory block previously allocated
with AllocMemPooled()
SYNOPSIS
success = NSPFreeMemPooled (memblock) ;
DO Al
LONG success;

void » memblock;

FUNCTION
This routine frees a block, allocated with NSPAllocMemPooled ()

NetSupport_internal 4/8

1.6

1.7

earlier. Just the address is required, the library keeps track
of the blocksizes itself.

INPUTS
memblock = pointer the the memory block

RESULT
Either -1L for success or 0L for failure.

NOTE
The memory allocation tracking mechanism will catch an attempt
to free a memory block twice. However, please do NOT rely on
this feature!

SEE ALSO
NSPAllocMemPooled (), AllocMemPooled(), FreeMemPooled()

NetSupportLibrary.asm/FreePoolList

NAME
FreeAnyMemPool —-- easy way of releasing the AnyMemPoolSemaphore

SYNOPSIS
FreeAnyMemPool () ;

FUNCTION
Releases the AnyMemPoolSemaphore for usage by other tasks.

INPUTS
none

RESULT
none

NOTE
All registers are preserved.

SEE ALSO
LockAnyMemPool ()

NetSupportLibrary.asm/LockPoolList
NAME
LockAnyMemPool —- easy way of obtaining the AnyMemPoolSemaphore
SYNOPSIS
LockAnyMemPool () ;

FUNCTION

NetSupport_internal 5/8

Tries to obtain the AnyMemPoolSemaphore. If someone else is using
it at the moment, the task is delayed until it becomes free. This
is vital for modifying linked lists.

INPUTS
none

RESULT
none

NOTE
All registers are preserved.

SEE ALSO
FreeAnyMemPool ()

1.8 NetSupportLibrary.asm/StuffChar

NAME
StuffChar -- routine to write one character into a buffer

SYNOPSIS
StuffChar (character, buffer);
DO DO0.b A3

UBYTE character;
STRPTR Dbuffer;

FUNCTION
This is a small assembler routine (two lines, in fact!) that is
suited to be called by RawDoFmt () and writes the provided
character into a buffer.

INPUTS
character = a simple byte wvalue
buffer = pointer to a text buffer

RESULT
none

NOTE
StuffChar () increases the pointer to the buffer by one!! This

behavior is required by RawDoFmt ().

SEE ALSO
RawDoFmt ()

1.9 SupportRoutines.c/LoadFile

NAME
LoadFile —— loads a file into a buffer

NetSupport_internal

6/8

SYNOPSIS
buffer = LoadFile(filename) ;
DO A0

STRPTR buffer;
STRPTR filename;

FUNCTION
LoadFile() ——- determines the length of a given file, allocates
the appropriate buffer and actually loads the file.

INPUTS
filename - pointer to a zero-terminated name string. The string
may contain an relative or absolute path.
RESULT

If everything works, the address of the buffer is returned and
the length of the file is available via IoErr ().

The buffer should be free after usage using NSPFreeMemPooled(),
however the memory allocation tracking mechanism will take
care if you forget to free it.

NOTES
A zero-byte is appended to the loaded file, to enable the
usage of standard C string routines on the contents.

SEE ALSO

1.10 SupportRoutines.c/SPrint

NAME
SPrint —-- format data into a character stream.

SYNOPSIS
SPrint (buffer, fmt, ...);

STRPTR buffer;
STRPTR fmt;

FUNCTION
Perform "C"-language-like formatting of a data stream, outputting
the result a character at a time. Where % formatting commands are
found in the FormatString, they will be replaced with the
corresponding element in the DataStream. %% must be used in the

o

string if a % is desired in the output.

INPUTS
buffer —-- Pointer to a buffer large enough enough to hold the
formatted string.
fmt —-- Control string describing how the string and the parameters

shall be formatted. Please read the autodoc of RawDoFmt ()
for further information.

NetSupport_internal

7/8

RESULT
none

NOTES
This routine expects it’s parameters on the stack. No
registerized version is available.

SEE ALSO
RawDoFmt ()

1.11 SupportRoutines.c/StringCat

NAME

StringCat -- append one string to the end of another one
SYNOPSIS

end_of_string = StringCat (partl, part2);

DO AQ Al

STRPTR end_of_string, partl, part2;

FUNCTION
This routine does the same as the ANSI-C strcat () routine, but
this version is more suitable for a shared library as it doesn’t
require any link libraries, etc...

INPUTS
partl - Pointer to a textbuffer large enough to hold both
strings. No buffer overflow-checking is performed.

part2 - Pointer to a zero-terminated string to be appended at the
end of >partl<.

RESULT
The resulting pointer points to the zero-byte of the copied string
in the destination pointer. Using this pointer, it is possible to

append several strings easily. See StringCopy () for a code example.

SEE ALSO

1.12 SupportRoutines.c/StringCopy

NAME

StringCopy —-—- copiles a zero-terminated string into a buffer
SYNOPSIS

end_of_string = StringCopy (buffer, string);

DO A0 Al

STRPTR end_of_string;
STRPTR buffer;

NetSupport_internal

STRPTR string;

FUNCTION
This routine does the same as the ANSI-C strcpy () routine, but
this version is more suitable for a shared library as it doesn’t
require any link libraries, etc...

INPUTS
buffer - Pointer to a textbuffer large enough to hold the
string. No buffer overflow-checking is performed.

string - Pointer to a zero-terminated string to be copied.

RESULT

The resulting pointer points to the zero-byte of the copied string

in the destination pointer. Using this pointer, it is possible to
append several strings easily. See example.

EXAMPLE
Append two strings in a target buffer using StringCopy () :

STRPTR buffer[256];
const char partl[] = "These two strings ";
const char part2[] "belong together!";

StringCopy (StringCopy (buffer, partl), part2);
Printf ("$s\n", buffer);

SEE ALSO

	NetSupport_internal
	NetSupport_internal.doc
	MemoryHandling.asm/FreeStaticBuffer
	MemoryHandling.asm/GetStaticBuffer
	MemoryHandling.asm/NSPAllocMemPooled
	netsupport.library/NSPFreeMemPooled
	NetSupportLibrary.asm/FreePoolList
	NetSupportLibrary.asm/LockPoolList
	NetSupportLibrary.asm/StuffChar
	SupportRoutines.c/LoadFile
	SupportRoutines.c/SPrint
	SupportRoutines.c/StringCat
	SupportRoutines.c/StringCopy

