

picoJava™: picoJava™:
The Java The Java

Virtual Virtual
Machine in Machine in
HardwareHardware

Marc TremblayMarc Tremblay
Chief Architect Chief Architect

Sun MicroelectronicsSun Microelectronics

The Java™ – picoJava Synergy

• Java’s origins lie in improving the
consumer embedded market

• picoJava is a low cost microprocessor
dedicated to executing Java™-based
bytecodes
– Best system price/performance

• It is a processor core for:
– Network computer
– Internet chip for network appliances
– Cellular phone & telco processors
– Traditional embedded applications

Java in Embedded Devices

• Robust programs
– Graceful recovery vs. crash

• Increasingly complex programs with
multiple programmers
– Object-oriented language and

development environment

• Re-using code from one product
generation to the next
– Portable code

Products in the embedded market require:

• Low system cost
– Processor, ROM, DRAM, etc.

• Good performance

• Time-to-market

• Low power consumption

Important Factors to Consider
in the Embedded World

Various Ways of Implementing
the Java Virtual Machine

 HotJava APIs Applets

Virtual Machine

 Host Porting Interface

Adaptor Adaptor
AdaptorBrowser

OS OS
OS Kona

picoJava
Hardware

Architecture
Hardware

Architecture
Hardware

Architecture

picoJava

• Directly executes bytecodes
– Excellent performance

– Eliminates the need for an interpreter
or a JIT compiler

– Low memory footprint

• Simple core
– Legacy blocks and circuits are not present

• Hardware support for the runtime
– Addresses overall system performance

Java Virtual Machine

• What the virtual machine specifies:
– Instruction set

– Data types

– Operand stack

– Constant pool

– Method area

– Garbage collected heap for runtime
data area

Java Virtual Machine
Code Size

• Java™-based bytecodes are small
– No register specifiers

– Implicit “VARS” register for local
variable accesses

• This results in very compact code
– Average JVM instruction is 1.8 bytes

– RISC instructions typically require
4 bytes

Java Virtual Machine
Code Size (cont.)

• A large application (2500+lines)
coded in both the C++ and Java
languages:
– Java bytecodes are 2-3x smaller than the

RISC code from the C++ compiler

Virtual Machine —
Instruction Set

• Data types: byte, short, int, long, float,
double, char, object, returnAddress

• All opcodes have 8 bits, but are
followed by a variable number of
operands(0, 1, 2, 3, …)

• Opcodes
– 200 assigned

– 24 quick variations

– 2 reserved

JVM – Instruction Set – RISCy

bipush value :push signed integer

iadd :integer add

fadd :single float add

ifeq :branch if equal to O

iload offset :load integer from

:local variable

• Some instructions are “RISCy”:

JVM – Instruction Set – CISCy

• Some instructions are “CISCy”:

 byte 1 byte 2 byte 3 byte 4

 opcode (171) 0..3 byte padding
default offset

numbers of pairs that follow (N)
match 1

jump offset 1
match 2

jump offset 2
...
...

match N
jump offset N

lookupswitch: “traditional” switch statement

Interpreter Loop

Emulation Code
1: get operands

2: perform operation

3: increment PC

4: go to loop

loop: 1: fetch bytecodes

2: indirect jump to

 emulation code

JVM: Stack-Based Architecture

• Operands typically accessed from the
stack, put back on the stack

• Example — integer add:
– Add top 2 entries in the stack and put the

result on top of the stack

– Typical emulation on a RISC processor
1: load tos
2: load tos-1
3: add
4: store tos-1

How to Best Execute
Bytecodes?

• Leverage RISC techniques developed
over the past 15 years

• Implement in hardware only those
instructions that make a difference
– Trap for costly instructions that do not

occur often

How to Best Execute
Bytecodes? (cont.)

• Base clock rate on fundamental
32-bit adder
– Pipeline instructions

– Single cycle execution for most
instructions

• Stack architecture implemented
as a RISC

Dynamic Instruction Mix

loads_loc

loads_mem

Stores

ALU

FP

Stack

Branch

38.3

15.3

17.4

12.8

7.4

7.1
1.7

%

Loads from local variables

Loads from constant pool,
objects’ field, arrays, etc.

3% to memory, 9.8% to local
variables
Add, subtract, booleans, shifts

Mul, add, subtract, compare

Dup, constant push, swap

Invoke methods, branches,
returns, jumps

Implementation of
Important Instructions

getfield_quick offset

– Fetch field from object

– Replaces getfield

– Executes as a “load [object + offset]” on picoJava

isub

– Fully pipelined

– Executes in a single cycle

objectref value

.

value2

value1

results

.

New Paradigm
 —> New Processors

• Early RISC processors were designed
for C and Fortran; benchmarks were
Dhrystone, Hanoi, SPEC89, etc.

• New applications may dictate new
instructions or new hardware support

• For example: multimedia applications
of the ‘90’s led to the creation of new
multimedia instructions
(UltraSPARC’s VIS and X86’s MMX)

New Paradigm
 —> New Processors (cont.)

• The proliferation of the Java language
in the embedded market
– —> Lean processors dedicated to

 executing bytecodes

• Java Runtime
(gc.c, monitor.c, threadruntime.c, etc.)
– Significant time spent synchronizing

threads
– Significant time spent for memory

management
• —> On-chip support reduces overhead

New Paradigm
 —> New Processors

picoJava:
A System Performance Approach

• Accelerates runtime
– Support for threads

– Support for garbage collection

• Simple but efficient, non-invasive,
hardware support

picoJava

• Embedded market very sensitive to
system cost

• picoJava eliminates interpreter or JIT
compiler

• Excellent system performance
• Efficient implementation through use of

the same methodology, process and
circuit techniques developed for our
RISC processors

Best system price/performance for running
Java™-powered applications in embedded markets

picoJava

• Licensing now

• Stay tuned for more information
– Hot Chips

– MicroProcessor Forum

