

Database Database
AccessAccess

Rick CattellRick Cattell
JavaSoftJavaSoft

Database Access

 1. Relational database connectivity: JDBC™

 2. Higher-level relational APIs and tools

 3. Object-oriented databases

 4. Partners and summary

Overview

• Java™ language attractive for database
applications

• Increasing interest for general applications,
not just Internet

• Establish critical mass, libraries, tools for Java

• Have moved quickly with basic database
connectivity

• Not trying to “do it all ourselves”: leverage
partners, existing APIs

Why Java™ is Attractive
for DB Applications

• Zero installation/administration
• Platform-independence
• Secure enterprise applications
• Internet connection
• Better language (than VB, C++, COBOL)
• Increased productivity (no clobbers, memory

leaks, void*...)
• However: the Java language alone is not enough

New Components for
Enterprise Apps

Database
connection

Rapid/4GL
application
development

Enterprise-
level tools

Next two panels cover work in all of these areas

Database Connectivity

Java

Relational
Database

Object
Database

1. Simple
JDBC API

2. Higher-
Level APIs
& Tools

3. ODMG
Mapping

1. SQL Interface: JDBC

JDBC API
JDBC Driver Manager

JDBC-ODBC
Bridge

JDBC-Net
Bridge

Direct JDBC
Driver

ODBC Driver
Manager

Driver
1

Driver
2

DBMS DBMS DBMS

Published
protocol

Proprietary
protocol

Proprietary
protocol

ODBC Driver
Manager

Driver

. . .

. . .

Listener Partners sell
other pieces

We provide
JDBC pieces

JDBC test suite

Java code

Other code

JDBC Product

• Existing C database APIs not practical for Java

• Need solution yesterday; easy to leverage ODBC

• Synergy for ISVs producing connectivity and tools

• Partnership with Intersolv and others

• See http://splash.javasoft.com/jdbc for more info

Alpha Spec
Alpha DM
Endorsees

March June September

FCS Spec, DM
Drivers available
Beta bridge, tests

More drivers available
FCS ODBC bridge
FCS test suite

JDBC Design

• Generally patterned after ODBC and
X/Open CLI

• Faithful to Java language with
ease-of-use emphasis

• Low-level API; build other APIs on top
• Two kinds of users:

– Programmers (need ease of use)
– Programs (need completeness, performance)

• Two modes of operation:
– Untrusted applets and drivers on Internet
– Trusted code accessing company DBMS servers

JDBC Features

• Connection, Statement, ResultSet interfaces

• PreparedStatement and CallableStatement for
compilation and stored procedures

• Metadata and dynamic access

• Dynamic driver selection and loading

• Database naming based on URLS; typically
jdbc:<subprotocol>:<identifier>

• ... More details in Graham Hamilton’s talk

JDBC Example

...
Connection conn =

DriverManager.getConnection(
“jdbc:odbc:sales”);

Statement stmt =
 conn.createStatement();
ResultSet rs = stmt.executeQuery(

“SELECT Name, Sales FROM Customers”);
while (rs.next()) {

String name = rs.getString(“Name”);
 int sales = rs.getInt(“Sales”);
 ...

2. Higher-Level
 Relational Tools and APIs

• Embedded SQL for Java language

• Integration with application-building tools

• Integration with 3-tier tools: RMI, CORBA

• Enterprise repository and administration tools

• Object/relational mapping

Object/Relational Mapping:
Declarations

SQL: CREATE TABLE CUSTOMER (
CUSTID INTEGER NOT NULL,
ADDRESS VARCHAR(50),
SALESREP INTEGER,
PRIMARY KEY (CUSTID),
FOREIGN KEY (SALESREP)REFERENCES SALES);

Java: class Customer {
int CustID;
String address;
Sales salesRep }

Automatically create Java class for each table in database
schema (or vice versa), plus provide tools to embellish for
many-to-one mappings, relationships, etc.

Object/Relational Mapping:
Code

Java transaction object, database object, etc;
transparently fetch/store Java objects from tables,
map foreign keys to Java references

...
Transaction t = Transaction.create();
CustomerSet cs = CustomerSet.query(mycustomers);
Sales s = c.salesRep; /* follows foreign key */
c.address = newAddress; /* obtains write lock */
s.sales = s.sales + thisOrder;
t.commit(); /* writes c and s back to database */
...

Object/Relational Mapping +
GUI Tools

Database
RecordsGUI Elements Java Objects

3. Object Databases for Java

• Transparent persistence for Java objects

• Java ideal for object databases since “safe”

• Cached performance with more powerful data
structures than relational

• More transparent and faster than “pickling”

• Not a JavaSoft product; working with ODMG
consortium (Object Database Management Group):
voting members GemStone, IBEX, O2, Object
Design, Objectivity, POET, UniSQL, Versant

ODMG Timetable

• Formed working group, chaired by me
• Already reached agreement on initial

specification
• Several vendors well along on implementation
• See http://www.odmg.org/ for more

ODMG info

ODMG WG
Draft spec

April June December

Review spec
Java hook?

Freeze spec
Initial products

ODMG Java Binding

• ODMG class library: Database, transaction, query,
and collection classes

• Persistence orthogonal to type: Existing classes can
have persistent and transient instances

• Persistence by reachability: All objects reachable from
designated named root database objects become
persistent on transaction.commit

• ODMG object model: Integrity constraints, can share
data with persistent C++ and Smalltalk programs

• Full database functionality: SQL2 superset OQL,
transaction per thread, object locking

ODMG Example

Database.open(“University”,Database.ReadWrite);

Transaction t = new Transaction;

...

SetOfStudent mathematicians = Students.query

"exists s in this.takes: s.course.name=\"math\"");

Student joe = Students.select(“id = 4132”);

Professor oldAdvisor = joe.advisor;

joe.advisor = newAdvisor;

joe.address = “123 Main Street”;

t.commit()

...

4. Database Partners

Bluestone

Borland

BulletProof

IBM

Companies Products this year

Sapphire/Web database app-builder

InterClient JDBC driver for
InterBase, Latté app-builder

JAGG JDBC/ODBC drivers and
JDesignerPro database app-builder

DB2 JDBC driver. CGI scripting,
app-building tools, Java stored
procedures/user functions / triggers,
Data Access Builder and Visual Age
object/relational mapping on JDBC

Database Partners

Imaginary
Informix
Intersolv

O2 Technology
Object Design

Open Horizon

OpenLink
Oracle
POET

Companies Product this year

Postgres95 and mSQL JDBC drivers, mSQL DBMS
Database app-building tools, DBMS

SequeLink JDBC-net driver, JDBC drivers, ODBC
drivers, joint development of JDBC/ODBC bridge
and test suites
Object database, object/relational mapping

Object database, object/relational mapping,
JDBC driver
Connection JDBC-net driver, security services,
directory services, TP services

JDBC drivers
Database application building tools, DBMS

Object Database

Database Partners

SAS
SCO
Spider
Software
Sybase

Symantec
Versant
Visigenic
Software
WebLogic

Companies Product this year

Java JDBC driver for Share*Net
SQL-Retriever JDBC/ODBC drivers

NetDynamics web/database application
builder for JDBC and ODBC
Optima++ Java database application development
tools, DBMS

JDBC drivers, Café app bulding tools and libraries
Object database
JDBC drivers, OpenChannel JDBC-net driver,
ODBC drivers, source licensee partner
T3Server JDBC-net driver, dbKona API

Database Partners

For more partner info see JDBC web page
and JavaOne panels on database access, engines, and
tools

Note: Listed product names are trademarks of their respective
companies; Java, JDBC, and JDBC-Compliant are JavaSoft trademarks.

Working Set
XDB

Companies Product this year

DataRamp JDBC-net driver and server
JetConnectPro JDBC/ODBC drivers, DB GUI
classes on AWT, JetStream RDBMS/gateway

Summary

• JDBC: Quick to market, access legacy
and relational database, direct use and
generated code

• Higher-level: Object-relational mapping, embedded
SQL, integration with
tools/repository

• Object database: High-performance
persistence for small footprint, embedded use

• Partners: Not trying to do it all ourselves; focus on
APIs so pieces plug together

