

JavaJava BeansBeans
 Component Component
APIsAPIs for Java for Java

Graham HamiltonGraham Hamilton
JavaSoftJavaSoft

Java™ Beans

• Java beans is a set of component APIs
• Allowing pluggable software components
• In an open, portable, platform-neutral way

• Java beans covers a range of components
• From simple lightweight widgets
• To powerful components
• To full scale applications

Overview

• Why Java needs component APIs

• What Java Beans supports

• Implementing Java Beans in
different environments

(Note: Java Beans is the current code name)

Why a Component Model?

• In the past ISVs wrote entire applications
• But this means they duplicate a lot of code
• And their applications can’t plug together

• Customers want to plug together
components
• And compose them into applications
• And use some components to control others

Java and Components

• Applets are a good, simple component model
• They allow simple static integration

• We’d like to enable richer, dynamic integration:
• So that components can interact

• By firing and catching events
• By calling methods on one another

• So that components can merge GUI features

• Without giving up platform portability

Java Components

button Database
viewer

message
log

Composite Applet

call

event

Java Beans as
Components

• Can raise and catch typed events
• Can support persistent properties
• Can be stored as part of a parent
• Can act as servers for other components
• Can merge their GUI with their parent

• e.g. they may merge MenuBars with parent
• Can provide “component editors”

 for builders
• To allow users to customize

component behavior

Java Beans as Containers

• Beans can be containers for other beans

• This allows hierarchical components

• And allows Java compound documents

Keeping it Simple

• Java beans can be very lightweight
• All Java AWT components will be beans
• All AWT containers will be

bean containers

• But some beans will be much larger
• Spreadsheets embedded in word processors

• The Java beans APIs are focused on
making the simple cases easy
• And the hard cases doable

Keeping it Simple

• We don’t want to complicate simple
AWT components

• So runtimes provide default behavior
• But allow an object to override this behavior
• By testing for “instanceof java.beans.XXX”
• This avoids having heavyweight base classes

Related new APIs

• Improved desktop integration from AWT
• Drag-and-drop
• Cut-and-paste

• Java RMI: remote method invocation
• Industry standard CORBA IDL for

remote object access
• Automatic object serialization

Portability

• Java beans, a platform neutral Java API
• A single Java bean can integrate in a

high quality way into a variety of
containers:
• HotJava™ and other Java containers
• MS containers (e.g. Word, Visual Basic,

Explorer)
• Netscape (using JavaScript™ &LiveConnect)
• Opendoc containers
• And will also run outside of any containers

“Write once, run anywhere” at a new level

COM Implementation

• Libraries will bridge Java bean API to COM
• Using standard COM APIs:

• OLE automation, OLE documents, ActiveX

• Java bean events get mapped to COM events
• There will be a Java bean OCX
• Java beans will appear as “first class”

COM and ActiveX components
• While still being completely portable

Beans in Visual Basic

Java Bean Visual Basic
script

COM event

Other OCX
control

Visual Basic Form

Netscape Navigator

Java Bean JavaScript

LiveConnect
event

LiveConnect
“C” server

• Java bean
libraries will bridge
Java bean APIs
to JavaScript and
LiveConnect

HotJava

• HotJava will be
extended to support
the full Java bean
container API

• This will provide a
much higher degree
of integration of
applets into
HotJava

Bean Bean

Applet Bean
Bean

Hot Java

Conclusion

• Java Beans is an open Java component model

• Beans are genuinely platform portable

• They integrate into platform component model

• Java Beans will allow you to write portable
Java components with first-class platform
integration!

