

1.0 1.0
Libraries Libraries
Technical Technical
OverviewOverview

Jonni KanervaJonni Kanerva
Frank YellinFrank Yellin

JavaSoftJavaSoft

Outline

• Introduction

• Functionality in the 1.0 Libraries

• Distributed design of the Java™ platform

• Instructive oddities

• Design patterns

• Extensibility

• Wrapup

Approach

• Yes: explore the universe
– General principles and overview

– Instructive oddballs and treats

– Larger-scale patterns

• No: even-handed skim survey

Background Reading

The Java™ Application Programming
Interface, Vols. 1 & 2
James Gosling, Frank Yellin, The Java Team

Addison-Wesley, 1996

Central Themes

• Functionality
– What can you do with 1.0 java.*?

• Design
– The pieces

– How they fit together and cooperate

• Extensibility
– java.* provides a simple, ubiquitous,

extensible base for your programs.

API Slogans

• Simplicity is power,
accuracy is leverage

• Provide partial designs, ready to be
woven together

• The simple should be simple,
the complex should be possible

API Goals

• Function
– Overall scope is good

– Important problems are solvable

• Partition
– Divide and conquer complexity

– Pieces are understandable

– Pieces are changeable

API Goals (cont.)

• Names
– Simple, direct, systematic

– Reduce chances for misunderstanding

• Extensible
– Easy to specialize

– Easy to connect

• Platform independent

• Implementable

Good API = ???

• Learnable
– Easy to learn, easy to remember

• Usable
– Easy to code to, easy to build tools on

• Flexible
– Allow different solutions and solution styles

Next

• Introduction

• Functionality in the 1.0 Libraries

• Distributed design of the Java™ platform

• Instructive oddities

• Design patterns

• Extensibility

• Wrapup

Functionality
in the 1.0 Libraries

• Java™compatible library = Java package
– Classes

– Interfaces

– Subpackages

• Functionality spread through 8 packages

 Packages in the 1.0 API

• java.lang: core language support
• java.io: input/output streams, data types
• java.net: networking support
• java.util: HashTable, StringTokenizer…
• java.awt: cross-platform window toolkit
• java.awt.peer: interfaces to native GUI
• java.awt.image: image processing
• java.applet: applets and applet contexts

• 21 classes, 2 interfaces, 40 excep/errors

• Class wrappers for primitive data types:
– Boolean, Integer, Double…

• Classes for core language concepts:
– String, Thread, Object

• Access to system resources:
– Process, Runtime, System, …

• Imported by every Java-powered program

Package java.lang

Package java.io

• 23 classes, 3 interfaces, 5 sections

• Byte-oriented stream abstraction for
input and output

• Mix and match filtering

• Cross-platform file abstraction

• Stream tokenizer

Package java.net

• 11 classes, 3 interfaces, 5 exceptions

• URLs

• URL connections

• Sockets

• Internet addresses

Package java.util

• 10 classes, 2 interfaces, 2 exceptions

• Generic utilities:
– Vector, HashTable, Stack, Enumeration,

– BitSet, StringTokenizer

– Date

– …

Package java.awt

• 42 classes, 2 interfaces, 1 exception, 1 error

• GUI elements:
– Button, TextField, Window, Menu, …

• Event handling

• Fonts and font metrics

• Graphics

• Colors

Package java.awt.peer

• 0 classes, 22 interfaces

• Interfaces for communicating with
native GUI elements:
– ButtonPeer, TextFieldPeer, …

• Decouples AWT classes from platform-
specific toolkit implementations

Package java.awt.image

• 9 classes, 3 interfaces

• Image creation

• Image filters

• Color mapping

Package java.applet

• 1 class, 3 interfaces

• The Applet class

• Applet audio and images

• Applet context:
– Applet-browser relationship

– Inter-applet communication

Distributed Design of
the Java™ Platform

• Java platform = runtime + language
 + classes

• java.* standard API
– On all Java-compatible platforms

– Write once, compile once, run everywhere

Classes Complement the
Language and Runtime

• java.* classes are integrated with core
language mechanisms:
– Primitive data types

– Operators

– Class and interface membership

– Control flow

– Runtime and environment

Primitive Data Types
and java.* Classes

• boolean: Boolean
• char: Character
• int, long: Integer, Long
• float, double: Float, Double

Double d = new Double(3.14159);
double simplePi = d.doubleValue();

Operators and
java.* Classes

• Language: +
• Classes: String, StringBuffer

String s = “a” + “b”;
String s = new

StringBuffer().append(“a”).append(“b”).toString();

Class/Interface Types
and java.* Classes

• Language:
– class, interface, implements, extends, instanceof

• Classes: Class, Object

interface Fooable { public void fooIt(); }
class Foo implements Fooable { public void fooIt() {} }
Fooable obj = new Foo();
obj.getClass() ==> “class Foo”
obj.getClass().getSuperclass().isInterface() ==> false
Class.forName("Fooable").isInterface() ==> true

Multithreading and
java.* classes

• Language:
– synchronized (methods and blocks)

• Classes:
– Thread, ThreadGroup,

– Object: wait and notify methods

Thread thread1, thread2; Runnable r;
thread1 = new Thread(r);
thread2 = new Thread(r);
thread1.start(); thread2.start();

Control Flow and
java.* Classes

• Language:
– try, catch, finally, throws

• Classes:
– Throwable, Error, Exception

try {
 sleep(500);
} catch (InterruptedException e) {
 System.out.println(“e = “ + e);
}

Runtime/Environment
and java.* Classes

• Runtime/Environment:
– Object allocation, security, garbage

collection

• Classes:
– Class, ClassLoader, Object

– Runtime, System, SecurityManager

String s1 = (String)”Hello”.getClass().newInstance();
String s2 = System.getProperty(“java.version”);

Recap

• Integrated Java-compatible platform
includes java.* classes
– Standard on all Java-compatible systems

• java.lang.* is the core of the core
– Most tightly integrated

– Imported automatically

Instructive Oddities

• Typical class in java.*:
– Public, concrete, subclassable
– Has instance methods, instance variables

• Variety is the spice of life:
– A classy class
– A very protected class
– A very abstract class
– An abstract but not abstract class
– A half class, half language primitive

java.lang.Math –
A Classy Class

• Two numerical constants:
– Math.E, Math.PI

• Range of standard math functions
– All as class methods:

public static double tan(double a)

• Declared as final – no subclasses

• No constructor

• No instances

java.lang.ClassLoader –
A Very Protected Class

• Key class for security:
– Methods and constructor accessible only from

your own subclass

– Only one method can/must be overridden

protected ClassLoader()
protected final void resolveClass(Class c)

protected final Class findSystemClass (String name)
protected final Class defineClass(byte[] data, int offset, int length)
protected abstract Class loadClass (String name, boolean resolve)

java.lang.Number –
A Very Abstract Class

• Abstract superclass for number objects:
– Integer, Long, Float, Double

public abstract class Number {
 public abstract int intValue();
 public abstract long longValue();
 public abstract float floatValue();
 public abstract double doubleValue();
}

java.awt.Component –
Abstract or Not?

• Contains no abstract methods

• Declared as an abstract class

• Cannot be instantiated

Array – Half Class

• Not in any package

• One final instance variable: length

• Cannot be extended (subclassed)

• Superclass is Object

• Inherits methods from Object

(new int[5]).getClass().getSuperclass() ==> java.lang.Object

Design Patterns

• Weaving partial designs together

• Interactions of classes, interfaces, and
instances

• Design units within larger picture

• Tool for understanding

Recommended Reading

Design Patterns: Elements of Reusable
Object-Oriented Software
Gamma, Helm, Johnson, Vlissides

Addison-Wesley, 1995

Decorator – The Pattern

• Extend functionality of an object
– Not statically through subclassing

– By wrapping it in another object, a decorator

• Decorator’s interface is superset of
decoratee’s

• Decorator forwards some requests to
decoratee

Decorator Example:
java.io Input And Output

• Byte-oriented stream input and output
– Base classes are InputStream, OutputStream

• Mix and match filtering:
– Filter…, Buffered…, Data…, LineNumber...

• FilterInputStream.read():
– Invokes read() on the decoratee InputStream:

return in.read();

Buffered, Numbered,
Line Input from a File

 FileInputStream in1 = new FileInputStream(“data.txt”);
 BufferedInputStream in2 = new BufferedInputStream(in1);
 LineNumberInputStream in3 = new LineNumberInputStream(in2);
 DataInputStream in4 = new DataInputStream(in3);
 String line;
 while ((line = in4.readLine()) != null) {
 System.out.println(in3.getLineNumber() + “: “ + line);
 }
 in4.close();

data.txt readLine()File Buffer Line Data

Composite – The Pattern

• “Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly.” (p. 163)

Composite Example: java.awt
Component and Container

• Abstract superclass: Component
– Presence on screen, size, location
– Receive, handle, and deliver events
– Most AWT GUI elements inherit from

Component

• Container is subclass of Component
– Contains a group of components (“children”)
– Can create arbitrarily deep containment

hierarchy

Component-Container Trees

Frame

Label

Panel

Button Button

BorderLayout

FlowLayout

Frame

LabelPanel

Button Button

Strategy – The Pattern

• “Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets
the algorithm vary independently from the clients
that use it.” (p.315)

Strategy Example:
java.awt.LayoutManager

• How to place components in a container

• Dynamic constraint-based layout

• Interface with 5 methods:
– Add…, remove…, layout…, minimum…,

preferred…

• java.awt package provides:
– BorderLayout, CardLayout, FlowLayout,

GridLayout, GridBagLayout

Flow and Border Layouts

Bridge – The Pattern

• “Decouple an abstraction from its implementation
so that the two can vary independently.” (p. 151)

Bridge Example: java.awt
Components and Peers

MFrame

MLabelMPanel

MButton MButton

Frame

LabelPanel

Button Button

Java AWT Motif Peers

Chain of Responsibility –
The Pattern

• “Avoid coupling the sender of a request to its
receiver by giving more than one object a chance to
handle the request. Chain the receiving objects and
pass the request along the chain until an object
handles it.” (p. 223)

Chain of Responsibility
Example: AWT Events

EventEvent

Frame

LabelPanel

Button Button

Extensibility

• Extensibility pervades java.*
– Subclass a concrete class

– Subclass an abstract class, prespecified holes

– Implement an interface

Extend a Concrete Class

• Six favorite concrete classes to extend
– java.applet.Applet: custom applets

– java.awt.Canvas: custom GUI components

– java.awt.Panel: custom GUI containers

– java.awt.Frame: custom top-level windows

– java.lang.Thread: custom execution thread

– ???

Extend an Abstract Class

• extend java.io.InputStream
– Implement: read()

• extend java.lang.ClassLoader
– Implement: loadClass(String, boolean)

• extend java.awt.Graphics
– 29 abstract methods to implement

– Example: write your own PSGraphics class

Implement an Interface

• As part of the class’s duties
– java.lang.Runnable in an Applet subclass

• As all of the class’s duties
– java.awt.LayoutManager

Upcoming Extensions

• Security: digital certificates, authentication

• Multi-media: 2-D, 3-D, video, audio

• JDBC: database access and connectivity

• Remote Objects: remote method invocation

• Persistent Objects

• Electronic Commerce

Wrapup – 1.0 java.*

• Simple, ubiquitous, extensible base for
your programs:
– Integrated with language

– Available on all Java-compatible platforms

• Goals and progress:
– Learnable, usable, flexible, platform

independent, implementable

