Swn's Warldwide lave Daveloper Conferenis

Remote
Objects for
Java™

Peter B. Kessler
Roger Riggs

Java IDL and Java RMI

Java™ IDL and Java RMI are
complementary technologies

Java DL is aheterogeneous solution
— Uses a standard, language-neutral, interface
description language
— Uses open, standard, wire protocols to interact
with services written in many languages
Java RMI isaJava-only solution

— Uses Javainterfaces and data types to describe
remote interfaces

— Uses a specialized protocol to transmit parameters
and class data

Java IDL
and the
Java ORB

Peter B. Kessler

JavaVM C++ server C server

e e e o N

« Accessto, and delivery of, network services
— Written on heterogeneous platforms
— Written in heterogeneous languages
 Java-compatible virtual machinesin isolation
— Applets talking to remote services
— Applications talking to other applications
« Client-side system administration

What is IDL?

Language-neutral Interface Definition Language

« CORBA standard, specified by Object
Management Group (600+ companies)

- Data, data structures, interfacesto objects
(collections of methods), inheritance, exceptions

+ data passed by-value, objects passed by
reference

+ parameter modes, standard exceptions
« Compilers map from IDL to various languages

« A client may bein adifferent language
than the server

« Portable

 Ubiquitous

« Down-loadable

- Safe

- Statically-typed

« Full-featured programming language
¢ Run-time libraries

pA What is IDL for Java?

-

The mapping from IDL to the Java language

« The API’sto which aclient writes to use
IDL objects from Java

« The API’sto which a server writes to
implement IDL objectsin Java

 Third parties may add value above the
basic mapping, or via server
frameworks, etc.

Mapping IDL to Java

Goal was a simple, natural mapping for
programmer s using the Java language

Example:
interface Ballot {

enum Choice{ favor, oppose, abstain };

exception TimedOut{ };

void mark(in Choice selection) raises (TimedOut);
Iy

public void vote(BallotRef aBallot) ({
try {
aBal | ot . mar k(Bal | ot . Choi ce. favor) ;
} catch (ong. corba. Syst enException that) {

}
}

What Are Stubs and

Skeletons?

Stubs and skeletons are generatedby an IDL
compiler from the description of an interface

client
%

stub |

Skeleton unmarshals \
arguments and calls
servant

Servant receives call from
skeleton as local call

Client operates on IDL object
reference as local object.
Stub marshals arguments for
transmission to server

|skeleton
A

servant

And the processiis reversed for returning results

What Is an ORB?

client machine server machine
client servant
{ 4
stub Dog skeleton
{
ORB OI'}B
0P| NEO|[orbix| - - 10 || NEG|[Orbix| ...

: network :

What Is the Java ORB?

« API’sthe generated stubs use to talk
to the ORB
 Additional functionality for ORB services
 Basic functionality mediating between stubs
and the wire
« Java ORB defines API’'sfor on-the-wire
protocol modules
— So third parties can plug in their own
protocols
— To support amultiplicity of protocols
— To support protocol evolution

Zero-install Client

client machine

000000

network

0)servant running on server.
Java-enabled browser running
on client.

Browser fetches html page.

server machine

.html pages
.Classfiles

-

Zero-install Client

client machine

000000

fommmemmmm s
'
1
'

client applet

network

1) Browser sees <applet> tag.
Fetches class for applet.

server machine

.html pages
.Classfiles

-

Zero-install Client

client machine

2) Applet creates target for
lookup of remote service.
Fetches stub class for IDL
object reference.

client applet server machine

.html pages
.Classfiles

-

network

Zero-install Client

client machine

000000

network

3) Applet uses ORB naming
serviceto find IDL object
reference for remote service.
Fetches classes for Java ORB.

server machine

.html pages
.Classfiles

-

Zero-install Client

client machine

" protocol !
' module

network

4) ORB uses appropriate

protocol module
object reference.
Fetches class for

server machine

to obtain IDL

protocol.

.html pages
.Classfiles

-

Zero-install Client

client machine

000000

client applet
stub

&
)
o
Py,
vy}

protocol
module

o
)
<
<

network

5) Applet uses IDL object
reference as ordinary Java object.
Stub converts method invocations
into invocations through the Java
ORB.

server machine

.html pages
.Classfiles

-

Java ORB Applications

- Using Java applications instead of applets
allows more general communication among

clients and servers

desktop business logic database
client client/server client
stub/skeleton | stub/skel eton | stub/skeleton |
Java ORB Java ORB Java ORB
JavaVM |JavaVM | JavaVM

|
!NO O J——"1"5 : <J——/4.‘O

A

L register(), Balot

=0
servey() i P g

Voter applet looks up Booth service

Voter creates call-back object and registers with Booth
Booth passes new Ballot to Voter for survey

Voter can make choice on Ballot or submit write-ins

Tabulator applet looks up Booth service as Tabular object
Tabulator periodically polls Booth for statistics

Status

« Currently in alpharelease to the net
 Look under:
— http://splash.javasoft.com/pages/intr o.html
« Working with third parties for additional
protocol modules for popular ORBs
« Wewill deliver Java ORB into JDK

Advantages of Java IDL
and the Java ORB

- Standard, language-neutral, interface
definition language

« Connects Java clients and serversto enterprise
network services

« Clients and servers portable
across architectures, operating systems

 Allows mixing of heterogeneous
hardware platforms, operating
environments, implementation languages,
and ORB protocols

o Zero-install clients

Java Remote
Method
Invocation

Roger Riggs
Staff Engineer

Java Remote
Method Invocation

« Method invocation between objects
in different Java Virtual Machines

 Pure Javainterfaces
No new interface definition language

« Pass and return any Java Object
« Dynamic loading of classes

Advantages

 Capitalizes on the Java Object Model
« Minimizes complexity
 Preserves safety of the Java runtime

 Recognizes distribution differences
— Partial failure
— Latency
— No global knowledge

RMI Architecture

/)1

\

/Application or Applet

| Stub | | Skeleton

| Remote Reference

|Transport || Dist GC

| Security | | L oader

|
|
|
|
~

VM2

\

/Application or Applet

| Stub | | Skeleton

| Remote Reference

| Transport || Dist GC

|
|
|
| Security | | L oader |
o | %
|

System Features

« Garbage collection of remote objects,
distributed reference-counting

« Security manager and class |oader
 Designed to support :

— Replication

— Persistent References

— Activation

— Fully multi-threaded

Definitions

« Remote object

— Object whose methods can be invoked from
another JavaVM

+ Remote interface

— Javainterface that declares the methods of
the remote object

Remote Objects
are Java Objects

 Referenced via Remote interfaces
« All types as arguments and returns

« Stub objects have the same remote
Interfaces as the remote object.
— Casting to other Remote interfaces
— Instance of to check type of interfaces

« Exceptions report communication failures

RMI Interfaces and Classes

I nterfaces Classes
---------- >‘ RemoteObject ’
‘ RemoteServer ’

\
‘ Uni castRemoteServer ’

.

P The Remote Interface

package java.rm ;
I nterface Renote {}

RMI Interfaces and Classes

Interfaces Classes
---------- >‘ RemoteObject ’
Counter ‘ RemoteServer ’

\
‘ Uni castRemoteServer ’

Remote Interface Example

public interface Counter
extends java.rm . Renote
{
public void deposit(float ant)
throws java.rm . Renot eExcepti on;
public void withdrawfloat ant)
t hrows OverdrawnExcepti on,
j ava. rm . Renot eExcepti on;
public float bal ance()
throws java.rm . Renot eExcepti on;

Argument and Return
Values

« Any Javalanguage type
« Remote objects are replaced by stubs
— Stub has embedded remote reference
 Objects are passed by copy using
Java Object Serialization
« Classes |oaded on demand
— Stubs, arguments, and return values

Object Serialization

 Objects and graphs of objects

Write to and read from streams
Preserves cycles

Per class methods only to customize

Objects can refuse to be serialized
— Mark Fields as transient

— Throw Exception

— Default isNOT to Serialize

Serialization Example

/!l Wite today's date to a file
Qut put Stream out = new Fil eQut put Strean(“t”);
oj ect Qut put w = Obj ect Qut put Strean{out) ;
w. witeObject(“Today”);
w. witeObject(new Date());
w. flush();

/!l Read string and date fromfile
I nput Streamin = new Fil el nput Stream(“t”);
Qoj ect I nput r = new Obj ect | nput Strean(in);
String today = (String)r.readQject();
Date date = (Date)r.readObject();

Class RemoteException

 No distributed system can mask
communication failures:

— Each remote method must declare
RemoteException

— Thrown when an method invocation fails
» Failures must be handled

Classes

Interface Remote
— Identifies interface to remote objects

Class RemoteObject
— Object methods specialized for remote

Class RemoteServer
— Methods create and export remote objects

Class UnicastRemoteServer
— Non-replicated remote objects

RMI Interfaces and Classes

Interfaces Classes
---------- >‘ RemoteObject ’
‘ Counter ’ ‘ RemoteServer ’
\

‘ Uni castRemoteServer ’

y
Counterlmpl

Implementing a
Remote Object

i mport java.rm.¥*;
i mport java.rm.server.*;
public class Counterlnpl
ext ends Uni cast Renot eSer ver
i mpl ement's Count er

private value = 0;
public Counterlnpl ()
throws Renot eException {...};
publ i c synchroni zed void increnent(int ant)
t hrows Renot eException {
return ++val ue;

%

Locating Remote Objects

 Uniform Resource Locator (URL)

« Defining the name
Count er acct = new Counterlnpl ();

String nane = “rm://java. Sun. COM account ”;

j ava. rm . Nam ng. bi nd(nane, acct);

 Lookup by name
Counter acct =
(Counter)java. rm . Nam ng. | ookup(nane) ;
acct.w t hdraw(1000000. 00) ;

Dynamic Stub Loading

« Classes dynamically loaded
stubs, arguments and return classes
— No type truncation

« Classes subject to a security manager

« Must protect against stub misbehavior
Not always complete

— Applications configurable to disable
stub loading

RMI Security

L everages Java Security mechanisms

For Applets

— AppletClassL oader |oads and
AppletSecurityManager protects

For Applications

— StubClasslL oader loads and
StubSecurityManager protects

Can define own security manager

Status

« Development team

 Alpharelease available now in the
Developers Corner at
— http://java.sun.com/devcorner.html

 Customer ship available late summer or
early fall

Summary

 Pure Java Object Model
« Pass arbitrary objects and graphs
« Dynamic stub to class loading

« Distribution models
— Applet and Application
— Application to Application

