

JavaJava™™
InternalsInternals

Frank YellinFrank Yellin
Tim LindholmTim Lindholm

JavaSoftJavaSoft

About This Talk

• The JavaSoft implementation of the
Java Virtual Machine (JDK 1.0.2)

• Some companies have “tweaked” our
implementation

• Alternative implementations also exist
– Microsoft

– Natural Intelligence

– Companies we don’t even know about

Overview

• Class file format

• Object format

• Memory layout

• Instruction Set

• Security

• Security Manager

• Garbage
collection

• Native methods

• Class loading

• Threads and
monitors

Class File (External)

• Machine independent
– “Stream of bytes”

– No byte sex dependency

– No pointer size dependency

• Constant Pool

• Attributes

• http://java.sun.com/newdocs.html

Class Format (Internal)

name

superclass

constant pool

fields

methods

method table

field1 field2 fieldn

method1 method2 methodn

Field Information

name

signature

class

access

offset

Method Block

code

exception table

invoker

argument count

max locals

(field info)

max stack

max stack

Memory Areas

• Malloc’ed space
– Methods, classes

– Random data structures

• Java heap
– Handle space

– Object space

• Moving more stuff to the Java heap

Java Heap Layout

handles objects

Object Format

method table

data

header

data word 1

data word 2

data word 3

data word n

handle object data

• Java objects refer to other objects via
handles�

Object Data Header

• Next fit allocation�

• Both allocated and free space kept in
linked list

• (Handle allocation, however, is trivial)

 = allocated

 = free

Instruction Set

• Instructions are typed

• Operate on the stack and local
variables

• Non-orthogonal

• All arithmetic operations use the stack

Instruction Set (cont.)

• The Java Virtual Machine is not:
– The world’s greatest virtual machine

• We wanted the Java Virtual Machine
instruction set to be:
– Easy to verify

– Easy to compile

– Easy to interpret

– Portable

– Contain extensive type information

Instruction Categories

• Load/store local variable

• Arithmetic and type conversion

• Conditional/unconditional branch

• Object creation and manipulation

• Array creation and manipulation

• Method invocation

• Stack manipulation

Execution
• �Stack machine model

– One Java stack per thread

– Java stack contains frames

– All instructions use the operand stack

– Local variables are per method
invocation

• Method invocation arguments are
pushed on the operand stack

• Separate (per thread) “C” stack

Java Stack Frames

local variables

frame info

operand stack

current method
local variables
constant pool

return PC

operand stack top

local variables

frame info

operand stack

frame info

local variables

operand stack

old frame

new frame

Java Stack Frames (cont.)

Linking, Loading,
and Initialization

• Class files are loaded as needed

• Class files are loaded from the same
source as the code requesting the class

• Several stage process

Constant Pool Resolution

• All references to String’s, methods,
fields, and (most) constants are done
through the constant pool

• References are initially symbolic

• References are “snapped” the first
time an instruction is executed

Constant Pool (cont.)

• Causes new classes to be loaded,
as necessary

Security

• Low-level security
– The definition of the language

– The verifier

• High-level security
– The Security Manager

When Is the Verifier Run?

• Any class files that comes from an
untrusted sourceuntrusted source (such as the network)

• Not on class files that come from your
local disk

• Choice really depends on your
interpreter or browser and on your
security requirements

Why a Verifier?

• Hostile compilers (or just
broken ones)

• Improve the speed of the interpreter

• Protect against changing APIs

• Protect against stack overflow,
underflow, etc.

Verifier Passes

1. Check the class files syntactically

2. Check the class files semantically

3. Check the bytes codes

4. Runtime checks [optimization]

Halting
 Problem

But. . .

Java High-Level Security

• Code that is downloaded over the Net
is untrusted

• The Java language runs untrusted code
in a trusted environment

• The Security Manager keeps a
watchful eye on untrusted code

The Security Manager

• The Security Manager is the cop:
– Implements security policies

– Throughout the system, security checks
are done at sensitive points

– The system’s Security Manager performs
those checks

What Does it Protect?

• The Security Manager restricts access to:
– The file system

– The network

– Other dangerous runtime calls:
• Setting the Security Manager

• Exiting

• Executing programs

How Does it Work?

• The Security Manager can:
– Scan the stack

– Check the caller’s:
• Thread group

• Namespace

• Digital signature

• Or anything else: it’s extensible!

• You can provide your own

Forthcoming: Signed Classes

1. User declares trusted entity

2. Entity signs Java-powered applet or
application

3. Applet or application is now trusted,
and thus granted more privileges

Java-based technology enables true
internet applications!

Garbage Collection

• Three causes of garbage collection
– Synchronous

– Asynchronous
• (Not always as useful as you might think)

– Explicit

GC Buzzwords

• Conservative or Exact?

• Compacting or Non-compacting?

• Generational?

• “Stop and Copy”?

• Real-time?

Sun’s Garbage Collector
Sun’s garbage collector is:

partially conservative,
optionally compacting,

non-generational,
stop and copy,

and generally pretty fastand generally pretty fast

Finalization

• A generalization of garbage collection

• Normally asynchronous, may
be synchronous

• Guarantees?

Possible New Stuff

• Better low-memory behavior

• Heap contraction (staying small)

• Class garbage collection

• Tunable garbage collection

• Garbage collector “plug ins”

• Better algorithms (faster,
generational, etc.)

Native Methods

• Declaring native methods in the Java
language

• Defining native methods in C

• The “javah” glue

• Dynamic linking at runtime

Declaring Native
Methods in Java:

public native int read();

public static native double
sin(double x);

Defining Native Methods in C

#include “java_io_FileInputStream.h”

long

java_io_FileInputStream_read(

 Hjava_io_FileInputStream *this) {

 . . .

}

Defining Native Methods in C

#include “java_lang_Math.h”

double

java_lang_Math_sin(

 Hjava_lang_Math *this, double f) {

 return sin(f)

}

javah

• To generate .h include files
$ javah -stubs
 java.lang.FileInputStream

• To generate “glue” files
$ javah
 java.lang.FileInputStream

Runtime Dynamic Linking

• The “glue” file generated by javah
must be included in the shareable
library or dll

• What happens internally

Class Loading

• System classes

• The ClassLoader class
– Used by HotJava to download classes

over the network

– Can be used by sophisticated applets to
create classes “on the fly”

Threads

• Priority preemptive
– Not guaranteed time-sliced

• Use platform facilities when possible

• Don’t specify what we can’t deliver

• Program defensively

Threads Implementations

• Solaris

• Windows 95/Windows NT

• MacOS

Monitors

• Java’s synchronization primitive

• Use platform facilities

• Monitor cache

• Implementations
– Solaris

– Windows 95/Windows NT

– MacOS

The Host
Programming Interface

Java

Platform-independent C code

Platform-specific code (C or assembly)

Operating system

HPIHPI

Conclusions

• The Java Virtual Machine
– Synthesis of successful ideas from other

languages and other projects

– Designed to meet a goal, not to be
aesthetically pure

For More Information. . . .

The Java Virtual Machine Specification,
by Tim Lindholm and Frank Yellin

The Java Language Specification, by
James Gosling, Bill Joy, and Guy
Steele

http://java.sun.com/newdocs.html

