Swn's Warldwide lave Daveloper Conferenis

An
Overview
of JIDBC™

Graham Hamilton

.

P Talk Outline

« Overview of JIDBC and its design goals
« Key API classes
« Some examples

So What Is JDBC?

W . JDBCisaJava™ API for executing SQL
statements
o It sdeliberately a“low level” API
— But it’sintended as abase for higher level APIs
— And for application builder tools
« It'sinfluenced by existing database APIs
— Notably the XOPEN SQL CLI
— And Microsoft's ODBC

The JDBC Pieces

Java Application
JDBC AP

JDBC Driver Manager JDBC DriverAPI

ODBC 3rd Party XYZ

bridge driver driver

Y |
Native
ODBC g 3rd Party
code > server side

JDBC Pressures

Follow be widely
“standards” accepted

Efficient ‘ /
Support

Ti t
rrl1r:riect) # J DBC &= D5 to0ls

/ \ Easy to
Support all implement

DB features DB

Independent

; be . Easy
good Java style to use

w7 \What's Good About ODBC:

e -

-

LA

It is“adequate” for database access
Thereisalot of experience with it
It iswidely accepted

It'swidely implemented:

— For virtually all databases

— Onvirtudly all platforms

People (now) know how to implement
it efficiently

What's Bad About ODBC:

e It'shard to learn:
— Simple & advanced features are mixed together
— It has complex options even for simple queries
— There iswidespread use of “void *”

« It's hard to map to Java:
— Copious use of pointers
— Frequent use of multiple results (via pointers)

JDBC Technical Goals

Re-use key abstractions from ODBC
— To ease acceptance/implementation by DB vendors
— To ease learning by |SVs and application writers

Provide alow-level SQL AP
— But we will add higher level APIsin the future

Provide simple interfaces for simple tasks
Support the weird stuff in separate interfaces

Provide a“natural” and “clean” Java API
— Test: IDBC applications should “read well”

P Main JDBC Classes

 DriverManager

« Connection

o Statement

* PreparedStatement
- CadlableStatement
» ResultSet

» ResultSetM etaData
- DatabaseMetaData

P DriverManager

The DriverManager tracks JDBC drivers
JDBC drivers must register themselves
DriverManager maps JDBC URLsto Drivers

The DriverManager opens Connections
— Taking a URL as the target
— With a set of argument properties
— The DriverManager selects a suitable driver

Database URLS

« We need away to open JDBC connections:
— For lots of different kinds of database drivers
— Where different databases need different syntax
— Without requiring human intervention!

« The answer seemed obvious: use URLS!

— it'stheinternet’ s flexible naming scheme

— you can bridge to other names (e.g. ODBC)
 Typica names use

jdbc:<subprotocol >:<stuff>

—eg. jdbc:odbc:axx

—or jdbc:odbenet://wombat: 344/fred

—or jdbc:sybase://wombat:344/fred

P Connection

« A Connection points at a given database
« A Connection provides Statement objects
A Connection is a Transaction session.

— You can implicitly begin transactions

— And then commit or abort them

— Or you can bein “auto commit” mode

Key Classes

Driver M anager

O\

Connection Connection
Statement Statement Statement

ResultSet ResultSet

Statement and
PP PreparedStatement

- Statement allows simple SQL execution
— “executeQuery” can be used for SELECT
— “executeUpdate” can be used for other ssmple SQL
— “execute” coversthe weird cases

 PreparedStatement adds support for IN params
— Through a collection of setX XX methods
— It can be used for compiled SQL statements

CallableStatement

CallableStatement extends PreparedStatement
— For use with stored procedures
It adds support for OUT parameters
Unfortunately you have to register OUTs
— Using “registerOutParameter”
Then retrieve the value after call execution
— Using one of the “getXXX” methods

ResultSet

ResultSet provides results from a SELECT
Y ou can iterate over the rows using “next”

Within arow you can retrieve result columns
— using a set of “getXXX" methods
— using either column names or column indexes

For example:

ResultSet rs = ...

while (rs.next()) {
int a =rs.getlnt(“a"”);
Nuneric b = rs.getNuneric(“b”);
String key = rs.getString(3);

Programming with
database metadata

Humans are only one kind of user
— And they may even be a minority
Tools also do dynamic database programming
— They talk to the database to learn the table layouts
— They talk to the driver to find the DB features
— Then they generate appropriate browsers/controls
We support this with two classes:
— ResultSetMetaData
— DatabaseM etaData

These are low-level APIs
— “For expert use only”

P ResultSetMetadata

 ResultSetM etadata describe a ResultSet
« It lets you find the column count

« For each column it provides:
— the column name
— the column’s SQL type
— the column’ s width
— etc.

 Thisallows generic handling of ResultSets

DatabaseMetaData

» DatabaseM etaData describes a DB connection

« It provides information about feature details:
— e.g. exact details of supported SQL

« It documents implementation limits:
— e.g. the maximum number of columnsin atable

« It describes the database schema:
— the names and types of tables
— the names and types of table columns
— the names and types of stored procedures
— etc.

Implementing a Driver

« Drivers can be implemented as:
— Javabridges to native DB libraries
— Clients using pure Javatalking to database listener
« Drivers must register themselves with
DriverManager
— Best done in class static initialization code
« Drivers must implement the standard JDBC
classes
— Connection, Statement, ResultSet, etc.

P Security Model

« JDBC follows the standard applet security
model

« An applet can only connect back to
its server
— It can’t connect to random databases

 Drivers must conform to security model

— It's mostly automatic for pure Javadrivers
— Some checks are needed for native drivers

 Applications can connect to any server

A simple SELECT example

public void doSel ect() throws SQ.Exception {
/'l Open a dat abase connecti on.
Connection con =
Dri ver Manager . get Connecti on("j dbc: odbc: wonmbat ") ;

/| Create and execute a statenent.
Statenent stnt = con.createStatenent();
Resul t Set rs = stnt.executeQuery(
"SELECT a, b, key FROM Tabl el");

/] Step through the result rows.
while (rs.next()) {
/1 get the values fromthe current row
int a =rs.getlnt(1);
Nurmeric b = rs. getNunmeric(“b");
String key = rs.getString(“key”);
printin(*a=" +a + “, b=" + b + “, key=" + key);

A simple UPDATE example

public voi d doUpdate() throws SQ.Exception {

/1 Open a database connecti on.
Connection con =
Dri ver Manager . get Connecti on("j dbc: odbc: wonbat ") ;

/]l Create a “prepared” statenent.
Prepar edSt at enent stnt = con. prepar eSt at enent (
"UPDATE Tabl el SET a = ? WHERE key = ?");

/1 Now execute the statement with a couple of paraneters
stmt.setlnt(1l, 34);

stnt.setString(2, "count");

int rows = stnt.executeUpdate();

Systemout. println("Updated " + rows + " rows.");

The JDBC spec

« Itson-line in postscript and Acrobat.

« See our JDBC page at:
— http://splash.javasoft.com/jdbc/

« We put it out for public review in March.
« Wewill freeze it on June 8th.

Sun's Warldwide lava Daveloper Conferends

