

Remote Remote
Objects for Objects for

Java™Java™
Peter B. KesslerPeter B. Kessler

Roger RiggsRoger Riggs

Java IDL and Java RMI

• Java IDL is a heterogeneous solution
– Uses a standard, language-neutral, interface

description language
– Uses open, standard, wire protocols to interact

with services written in many languages
• Java RMI is a Java-only solution

– Uses Java interfaces and data types to describe
remote interfaces

– Uses a specialized protocol to transmit parameters
and class data

Java™ IDL and Java RMI are
complementary technologies

Java IDL Java IDL
and the and the

Java ORBJava ORB
Peter B. KesslerPeter B. Kessler

The Problems

• Access to, and delivery of, network services
– Written on heterogeneous platforms
– Written in heterogeneous languages

• Java-compatible virtual machines in isolation
– Applets talking to remote services
– Applications talking to other applications

• Client-side system administration

Java VM C++ server C server

What is IDL?

• CORBA standard, specified by Object
Management Group (600+ companies)

• Data, data structures, interfaces to objects
(collections of methods), inheritance, exceptions
– + data passed by-value, objects passed by

reference
– + parameter modes, standard exceptions

• Compilers map from IDL to various languages
• A client may be in a different language

than the server

Language-neutral Interface Definition Language

What is Java?

• Portable

• Ubiquitous

• Down-loadable

• Safe

• Statically-typed

• Full-featured programming language

• Run-time libraries

What is IDL for Java?

• The API’s to which a client writes to use
IDL objects from Java

• The API’s to which a server writes to
implement IDL objects in Java

• Third parties may add value above the
basic mapping, or via server
frameworks, etc.

The mapping from IDL to the Java language

Mapping IDL to Java

Example:
interface Ballot {

enum Choice { favor, oppose, abstain };
exception TimedOut { };
void mark(in Choice selection) raises (TimedOut);

};

public void vote(BallotRef aBallot) {
try {

aBallot.mark(Ballot.Choice.favor);
} catch (omg.corba.SystemException that) {

...
}

}

Goal was a simple, natural mapping for
programmers using the Java language

What Are Stubs and
Skeletons?
Stubs and skeletons are generated by an IDL
compiler from the description of an interface

client

stub

servant

skeleton

Client operates on IDL object
reference as local object.
Stub marshals arguments for
transmission to server

Skeleton unmarshals
arguments and calls
servant

Servant receives call from
skeleton as local call

And the process is reversed for returning results

What Is an ORB?

client machine server machine

client

stub

ORB

network

servant

skeleton... ...

IIOP NEO Orbix

ORB

IIOP NEO Orbix

What Is the Java ORB?

• API’s the generated stubs use to talk
to the ORB

• Additional functionality for ORB services
• Basic functionality mediating between stubs

and the wire
• Java ORB defines API’s for on-the-wire

protocol modules
– So third parties can plug in their own

protocols
– To support a multiplicity of protocols
– To support protocol evolution

Zero-install Client

0)Servant running on server.
Java-enabled browser running
on client.
Browser fetches html page.

client machine

server machine

Java VM

servant

skeleton

ORB
listener httpd

.html pages

.class files

network

Zero-install Client

1) Browser sees <applet> tag.
Fetches class for applet.

client machine

server machine

Java VM

servant

skeleton

ORB
listener httpd

.html pages

.class files

network

client applet

<applet>

Zero-install Client

2) Applet creates target for
lookup of remote service.
Fetches stub class for IDL
object reference.

client machine

server machine

Java VM

servant

skeleton

ORB
listener httpd

.html pages

.class files

network

client applet

stub

<applet>

Zero-install Client

3) Applet uses ORB naming
service to find IDL object
reference for remote service.
Fetches classes for Java ORB.

client machine

server machine

Java VM

servant

skeleton

ORB
listener httpd

.html pages

.class files

network

client applet

stub

Java ORB

<applet>

Zero-install Client

4) ORB uses appropriate
protocol module to obtain IDL
object reference.
Fetches class for protocol.

client machine

server machine

Java VM

servant

skeleton

ORB
listener httpd

.html pages

.class files

network

client applet

stub

Java ORB

protocol
module

...

<applet>

Zero-install Client

5) Applet uses IDL object
reference as ordinary Java object.
Stub converts method invocations
into invocations through the Java
ORB.

client machine

server machine

Java VM

servant

skeleton

ORB
listener httpd

.html pages

.class files

network

client applet

stub

Java ORB

protocol
module

...

<applet>

Java ORB Applications

• Using Java applications instead of applets
allows more general communication among
clients and servers

desktop

client

stub/skeleton

Java ORB

Java VM

business logic database

client/server

stub/skeleton

Java ORB

Java VM

client

stub/skeleton

Java ORB

Java VM

A Voting Application

Voter applet looks up Booth service
Voter creates call-back object and registers with Booth
Booth passes new Ballot to Voter for survey
Voter can make choice on Ballot or submit write-ins

Tabulator applet looks up Booth service as Tabular object
Tabulator periodically polls Booth for statistics

applet
Voter resolve()

register()

servey()

server

Booth Tabular

Ballot

getInfo()

applet

Tabulator
Y
N

Status

• Currently in alpha release to the net

• Look under:
– http://splash.javasoft.com/pages/intro.html

• Working with third parties for additional
protocol modules for popular ORBs

• We will deliver Java ORB into JDK

Advantages of Java IDL
and the Java ORB

• Standard, language-neutral, interface
definition language

• Connects Java clients and servers to enterprise
network services

• Clients and servers portable
across architectures, operating systems

• Allows mixing of heterogeneous
hardware platforms, operating
environments, implementation languages,
and ORB protocols

• Zero-install clients

Java Remote Java Remote
Method Method

InvocationInvocation

Roger RiggsRoger Riggs
Staff EngineerStaff Engineer

Java Remote
Method Invocation

• Method invocation between objects
in different Java Virtual Machines

• Pure Java interfaces
No new interface definition language

• Pass and return any Java Object

• Dynamic loading of classes

Advantages

• Capitalizes on the Java Object Model

• Minimizes complexity

• Preserves safety of the Java runtime

• Recognizes distribution differences
– Partial failure

– Latency

– No global knowledge

RMI Architecture

Stub Skeleton

Remote Reference

Transport

Application or Applet

VM1

Security Loader

Dist GC

Stub Skeleton

Remote Reference

Transport

Application or Applet

VM2

Security Loader

Dist GC

System Features

• Garbage collection of remote objects,
distributed reference-counting

• Security manager and class loader

• Designed to support :
– Replication

– Persistent References

– Activation

– Fully multi-threaded

Definitions

• Remote object
– Object whose methods can be invoked from

another Java VM

• Remote interface
– Java interface that declares the methods of

the remote object

Remote Objects
are Java Objects

• Referenced via Remote interfaces

• All types as arguments and returns

• Stub objects have the same remote
interfaces as the remote object.
– Casting to other Remote interfaces

– Instance of to check type of interfaces

• Exceptions report communication failures

RMI Interfaces and Classes

Interfaces Classes

Remote RemoteObject

RemoteServer

UnicastRemoteServer

The Remote Interface

 package java.rmi;
 interface Remote {}

Interfaces Classes

Remote RemoteObject

RemoteServer

UnicastRemoteServer

Counter

RMI Interfaces and Classes

Remote Interface Example

public interface Counter
 extends java.rmi.Remote
{
 public void deposit(float amt)

throws java.rmi.RemoteException;
 public void withdraw(float amt)

throws OverdrawnException,
 java.rmi.RemoteException;

 public float balance()
throws java.rmi.RemoteException;

}

Argument and Return
Values

• Any Java language type

• Remote objects are replaced by stubs
– Stub has embedded remote reference

• Objects are passed by copy using
Java Object Serialization

• Classes loaded on demand
– Stubs, arguments, and return values

Object Serialization

• Objects and graphs of objects

• Write to and read from streams

• Preserves cycles

• Per class methods only to customize

• Objects can refuse to be serialized
– Mark Fields as transient

– Throw Exception

– Default is NOT to Serialize

Serialization Example

// Write today’s date to a file
OutputStream out = new FileOutputStream(“t”);
ObjectOutput w = ObjectOutputStream(out);
w.writeObject(“Today”);
w.writeObject(new Date());
w.flush();

// Read string and date from file
InputStream in = new FileInputStream(“t”);
ObjectInput r = new ObjectInputStream(in);
String today = (String)r.readObject();
Date date = (Date)r.readObject();

Class RemoteException

• No distributed system can mask
communication failures:
– Each remote method must declare

RemoteException

– Thrown when an method invocation fails

• Failures must be handled

Classes

• Interface Remote
– Identifies interface to remote objects

• Class RemoteObject
– Object methods specialized for remote

• Class RemoteServer
– Methods create and export remote objects

• Class UnicastRemoteServer
– Non-replicated remote objects

Interfaces Classes

Remote RemoteObject

RemoteServer

UnicastRemoteServer

Counter

RMI Interfaces and Classes

CounterImpl

Implementing a
Remote Object

 import java.rmi.*;
import java.rmi.server.*;
public class CounterImpl

extends UnicastRemoteServer
implements Counter

{
 private value = 0;
 public CounterImpl()

throws RemoteException {...};
 public synchronized void increment(int amt)

throws RemoteException {
 return ++value;
 };
 ...
}

Locating Remote Objects

• Uniform Resource Locator (URL)

• Defining the name
Counter acct = new CounterImpl();
String name = “rmi://java.Sun.COM/account”;
java.rmi.Naming.bind(name, acct);

• Lookup by name
Counter acct =
 (Counter)java.rmi.Naming.lookup(name);
acct.withdraw(1000000.00);

Dynamic Stub Loading

• Classes dynamically loaded
stubs, arguments and return classes
– No type truncation

• Classes subject to a security manager

• Must protect against stub misbehavior
Not always complete

– Applications configurable to disable
stub loading

RMI Security

• Leverages Java Security mechanisms

• For Applets
– AppletClassLoader loads and

AppletSecurityManager protects

• For Applications
– StubClassLoader loads and

StubSecurityManager protects

• Can define own security manager

Status

• Development team

• Alpha release available now in the
Developers Corner at
– http://java.sun.com/devcorner.html

• Customer ship available late summer or
early fall

Summary

• Pure Java Object Model

• Pass arbitrary objects and graphs

• Dynamic stub to class loading

• Distribution models
– Applet and Application

– Application to Application

