


JavaJava  BeansBeans
 Component Component
APIsAPIs for Java for Java

Graham HamiltonGraham Hamilton
JavaSoftJavaSoft



Java™ Beans

• Java beans is a set of component APIs
• Allowing pluggable software components
• In an open, portable, platform-neutral way

• Java beans covers a range of components
• From simple lightweight widgets
• To powerful components 
• To full scale applications



Overview

• Why Java needs component APIs

• What Java Beans supports

• Implementing Java Beans in 
different environments

(Note: Java Beans is the current code name)



Why a Component Model?

• In the past ISVs wrote entire applications
• But this means they duplicate a lot of code
• And their applications can’t plug together

• Customers want to plug together 
components
• And compose them into applications
• And use some components to control others



Java and Components

• Applets are a good, simple component model
• They allow simple static integration

• We’d like to enable richer, dynamic integration:
• So that components can interact

• By firing and catching events
• By calling methods on one another

• So that components can merge GUI features 

• Without giving up platform portability
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Java Beans as 
Components

• Can raise and catch typed events
• Can support persistent properties
• Can be stored as part of a parent
• Can act as servers for other components
• Can merge their GUI with their parent

• e.g. they may merge MenuBars with parent
• Can provide “component editors”

 for builders
• To allow users to customize 

component behavior



Java Beans as Containers

• Beans can be containers for other beans

• This allows hierarchical components

• And allows Java compound documents



Keeping it Simple

• Java beans can be very lightweight
• All Java AWT components will be beans
• All AWT containers will be 

bean containers

• But some beans will be much larger
• Spreadsheets embedded in word processors

• The Java beans APIs are focused on 
making the simple cases easy
• And the hard cases doable



Keeping it Simple

• We don’t want to complicate simple 
AWT components

• So runtimes provide default behavior 
• But allow an object to override this behavior
• By testing for “instanceof java.beans.XXX”
• This avoids having heavyweight base classes



Related new APIs

• Improved desktop integration from AWT
• Drag-and-drop 
• Cut-and-paste

• Java RMI: remote method invocation
• Industry standard CORBA IDL for 

remote object access
• Automatic object serialization



Portability

• Java beans, a platform neutral Java API
• A single Java bean can integrate in a 

high quality way into a variety of 
containers:
• HotJava™ and other Java containers
• MS containers (e.g. Word, Visual Basic, 

Explorer)
• Netscape (using JavaScript™ &LiveConnect)
• Opendoc containers
• And will also run outside of any containers

“Write once, run anywhere” at a new level



COM Implementation

• Libraries will bridge Java bean API to COM
• Using standard COM APIs:

• OLE automation, OLE documents, ActiveX

• Java bean events get mapped to COM events
• There will be a Java bean OCX
• Java beans will appear as “first class” 

COM and ActiveX components
• While still being completely portable
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Netscape Navigator
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•   Java bean 
libraries will bridge 
Java bean APIs 
to JavaScript and 
LiveConnect



HotJava

• HotJava will be 
extended to support 
the full Java bean 
container API

• This will provide a 
much higher degree 
of integration of 
applets into 
HotJava
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Conclusion

• Java Beans is an open Java component model

• Beans are genuinely platform portable

• They integrate into platform component model

• Java Beans will allow you to write portable 
Java components with first-class platform 
integration!




