Swn's Warldwide lave Daveloper Conferenis




picoJava™:
The Java
Virtual
Machine in

Hardware

JavaOne

R P o Marc Tremblay
Chief Architect
Sun Microelectronics




The Java™ — picoJava Synergy

- Java'soriginsliein improving the
consumer embedded mar ket
- picoJavaisalow cost microprocessor

dedicated to executing Java™-based
bytecodes

— Best system price/performance
It isaprocessor corefor:
— Network computer
— Internet chip for network appliances
— Cellular phone & telco processors
— Traditional embedded applications



Java in Embedded Devices

Products in the embedded market require:

 Robust programs
— Graceful recovery vs. crash

« Increasingly complex programs with
multiple programmers
— Object-oriented language and

development environment

 Re-using code from one product
generation to the next
— Portable code



Important Factors to Consider
in the Embedded World

Low system cost
— Processor, ROM, DRAM, etc.

Good performance
Time-to-market
Low power consumption



Various Ways of Implementing

¥ the Java Virtual Machine




picoJava

« Directly executes bytecodes
— Excellent performance

— Eliminates the need for an interpreter
or aJI'T compiler

— Low memory footprint
« Simple core

— Legacy blocks and circuits are not present
 Hardware support for the runtime

— Addresses overall system performance



Java Virtual Machine

« What the virtual machine specifies:
— Instruction set
— Datatypes
— Operand stack
— Constant pool
— Method area

— Garbage collected heap for runtime
data area



Java Virtual Machine
Code Size

 Java™-based bytecodes are small
— No register specifiers
— Implicit “VARS’ register for local
variable accesses
 Thisresultsin very compact code
— Average VM instruction is 1.8 bytes

— RISC instructions typically require
4 bytes



Java Virtual Machine
Code Size (cont.)

« A large application (2500+lines)
coded in both the C++ and Java
languages.

— Java bytecodes are 2-3x smaller than the
RISC code from the C++ compiler



Virtual Machine —
Instruction Set

- Datatypes: byte, short, int, long, float,
double, char, object, returnAddress

« All opcodes have 8 bits, but are
followed by a variable number of
operands(0, 1, 2, 3, ...)

« Opcodes
— 200 assigned
— 24 quick variations
— 2 reserved



JVM — Instruction Set — RISCy

« Some instructions are “RISCy”:

bi push val ue
i add
f add
i feq
il oad of fset

: push signed integer
;i nteger add

:single float add
:branch if equal to O
;1 oad integer from

-l ocal variable



¥ JVM — Instruction Set — CISCy

« Some instructions are “ CISCy”:
| ookupswi t ch: “traditional” switch statement




Interpreter Loop

| oop: 1: fetch bytecodes .
A 0l e i oo Emulation Code
enul ati on code =g 1: g€t operands
2: perform operation
3: increment PC

4: go to | oop



JVM: Stack-Based Architecture

« Operands typically accessed from the
stack, put back on the stack

« Example — integer add:
— Add top 2 entriesin the stack and put the
result on top of the stack
— Typica emulation on a RISC processor

1: | oad tos

2. load tos-1
3: add

4. store tos-1



How to Best Execute
Bytecodes?

 Leverage RISC techniques developed
over the past 15 years

 Implement in hardware only those
Instructions that make a difference

— Trap for costly instructions that do not
occur often



How to Best Execute
Bytecodes? (cont.)

 Base clock rate on fundamental
32-bit adder
— Pipelineinstructions
— Single cycle execution for most
instructions
» Stack architecture implemented
asaRISC



Dynamic Instruction Mix

mloads_loc
mloads_mem
o Stores
OALU

mFP

m Stack

m Branch

Loads from local variables

Loads from constant pool,
objects’ field, arrays, etc.

3% to memory, 9.8% to local
variables

Add, subtract, booleans, shifts
Mul, add, subtract, compare

Dup, constant push, swap

Invoke methods, branches,
returns, jumps



Implementation of
Important Instructions

objectref value

getfield quick offset

— Fetch field from object —>
— Replaces getfield

— Executes as a“load [object + offset]” on picoJava

i sub value2 results

— Fully pipelined valuel | —

— Executesin asingle cycle




New Paradigm
—> New Processors

 Early RISC processors were designed
for C and Fortran; benchmarks were
Dhrystone, Hanoi, SPECS89, etc.

« New applications may dictate new
Instructions or new hardware support
 For example: multimedia applications
of the ‘90’ s led to the creation of new

multimedia instructions
(UltraSPARC’s VIS and X86's MM X)



New Paradigm
—> New Processors (cont.)

» The proliferation of the Java language
in the embedded market
— —> Lean processors dedicated to
executing bytecodes

 Java Runtime
(gc.c, monitor.c, threadruntime.c, etc.)
— Significant time spent synchronizing
threads
— Significant time spent for memory

management
« —> On-chip support reduces overhead



picoJava:
A System Performance Approach

 Accelerates runtime
— Support for threads
— Support for garbage collection

« Simple but efficient, non-invasive,
hardware support



picoJava

Best system price/performance for running
Java™-powered applications in embedded markets

« Embedded market very sensitiveto
system cost

- picoJava eliminatesinterpreter or JIT
compiler

« Excellent system performance

- Efficient implementation through use of
the same methodology, process and

circuit techniques developed for our
RISC processors



picoJava

- Licensing now
« Stay tuned for more information

— Hot Chips
— MicroProcessor Forum



