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CoCoA User’s Manual1  
( v. 0.99b - May 1989 )

Alessandro Giovini & Gianfranco Niesi
Department of Mathematics, University of Genova (Italy)

1  Introduction
CoCoA is a Macintosh system for doing COmputations in COmmutative Algebra. It runs on any Macintosh 
with at  least  512K of  RAM, but  it  takes advantage of  any additional  available  memory;  it  runs also 
underMultiFinder (even though it is not yet capable of performing computations in the background). It is 
written in Pascal (apart from a few “glue routines” in assembler); the release 0.99b of the system consists  
of about 19,000 lines of code. 

CoCoA has been designed for offering the maximum ease of use and flexibility to the mathematician with 
little or no knowledge of computers. 

CoCoA is capable of performing simple and sophisticaed operations on multivariate polynomial rings and 
on various data connected with them (ideals, modules, 

1The CoCoA system (hereby the system) has been entirely designed and implemented by Alessandro Giovini and Gianfranco 
Niesi (hereby the authors) exception made for the code related to the computation of Poincarè series and of Hilbert functions  
which has been written by Massimo Caboara and Anna Bigatti. The development of the system has taken great benefit from long 
discussions with Lorenzo Robbiano and Teo Mora, which have also suggested several improvements to some key algorithms  
and which we gratefully  acknowledge.  

The system is  freely distributed to anyone who requests it, under the only following condition: any research activity which  
benefits of the usage of the system should explicitely quote the system, the authors and the address where the system can be  
requested.

The system is distributed on a 800k Macintosh diskette containing also other files, notably the document “CoCoA x.y User’s  
Manual”, the Microsoft Word 3.02 file containing this manual. The system can be freely redistributed to other users but in this  
case the whole contents of the original diskette should be copied. In case of redistribution, the new users should notify the  
authors so they are included in a user’s list. All users in this list will be kept up to date about the system progress and will have 
the possibility of freely receiveing updated copies of the system as soon as they are available by simply sending a blank diskette  
at the address below.
Alessandro Giovini or Gianfranco Niesi, 
Department of Mathematics, University of Genova, 
viale Leon Battista Alberti 4, 16132, Genova – ITALY. 

Questions and suggestions can be also sent to the following  electronic mail addresses: 
astes@igecuniv.bitnet (A. Giovini)
cocoa@igecuniv.bitnet (G. Niesi)

The system is distributed “as is”. The authors make no warranty on the fitness of the system for any particular application. They  
shall not be liable for any direct, indirect, special, incidental or consequential damages in connection with the use of the system 
or of the manual.

The system has been developed using THINK™ Pascal from Think Technology, so portions of the system are copyright ©Think  
Technology.
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matrices); polynomials may have coefficients either in the field Q of rational numbers or in the residue ring 
Zp.  A current  limit  of  the  system is  that  the  numerator  and denominator  of  the  coefficients  in  Q must  not  exceed 231-

1 =2147483648, and the integer p for Zp must not exceed 215-1 = 32767.

Every operation (sometimes called computation) is performed within the “current ring”, which the user can easily set up and 

change by just pulling down a menu and editing some values; the advanced user has also the possibility of changing the values  

of some special parameters; the meaning of these parameters can be nevertheless safely ignored by most users. 

The user can open up to eight windows (standard text–editing Macintosh windows) in which data can be entered in a format  

which has been chosen to be as close as possible to the usual mathematical notation. Several kinds of computations can be  

performed on the entered data and the results can be stored for later use. If the user modifies the ring, then the already entered or  

computed data can be easily transferred to the new ring (when that makes sense). 

The system is capable of performing the basic operations on polynomials (sums, products, powers, derivatives), on ideals (sums,  

products,  powers),  on modules  (sums) and on matrices  (sums,  products,  powers,  determinants)  as  well  as  more advanced 

operations like intersection and division of ideals, syzygies of ideals or modules,  resultant of two polynomials, elimination and 

substitution of variables, etc. We just give some examples of expressions the system can evaluate: 

xy™-2/3xt(x-z)™(xp-t-3/5)£+4)∞  

(x⁄x‹-x€™)[x⁄=F, x€=G, x‹=H]  

(Elim(t, Ideal(t£-x, t¢-y, t∞-z))&J):(x-y)  

The system displays the exponents as superscripts and the indexes as subscripts, taking advantage of the graphics capabilities of  

the Macintosh (the system uses its own font whose special features will be described later).

Below you see a typical CoCoA screen after that the user has selected and evaluated the expression on the first line; the result of  

this evaluation is displayed immediately below.
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The core of the system is an implementation of Buchberger’s algorithm for computing the  Gröbner basis of an ideal;  the 

algorithm has been optimized in several senses and it is used as a ‘building block’ for some of the operations that the system is  

capable of doing; for most uses the user can however completely ignore the theory of Gröbner bases and even their existence:  

the system will do all the necessary ‘Gröbner stuff’ in the background. However, for an optimal use of the system (and of some  

system parameters) some knowledge of the theory may be useful.

2  Getting started with CoCoA
Upon startup the system draws the menu bar, sets thedefault ring to be Q[t,x,y,z] and opens a text editing 
window. 

The menu bar contains five menus. The first three menus (Apple Menu,  File Menu, Edit Menu) are the 
standard menus which allow typical Macintosh operations (opening desk accessories, opening, saving and 
printing files and doing basic editing actions). 

The fourth menu is theKeyboard menu. This menu allows the user to switch between the Italian keyboard 
and theUK keyboard. This makes easier to locate the keys corresponding to special characters (exponents, 
indexes, etc.).

The last menu is theRing menu. At any time a “current ring” is active within the system; this ring is the 
polynomial ring within which the evaluations are done. The current ring setting can be examined and 
changed at any time by simply pulling down the menu ‘Ring’ and selecting the item ‘Set Ring’. Then a 
dialog box appears (called ‘Ring Setting’); this dialog shows how the current ring is set and enables the 
user to change the setting. The dialog box here below shows the default setting (the one set at startup); its  
content will be discussed in more detail in the next section.
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3  Setting Up The Ring
The current ring  is completely determined by:
• the name (and hence also the number) of the indeterminates;
• their weights;
• the field of the coefficients;
• the term ordering.
Usually the user simply specifies the name of the variables and the 
field of the coefficients, leaving the weights to 1’s (the default) and the 
term ordering to  DegRevLex (the default); in most cases this suffices 
for the system to work optimally. 
Themaximum number of indeterminates that the system can manage is 
23. An  indeterminate is represented by a name consisting of either a 
single letter or a letter followed by an index having up to eleven digits. 
Here  ‘letter’  means  a  character  in  the  set  {a,  ...,  z,  A,  ...,  Z}. 
Corresponding  upper  and  lower  case  letter  yield  different  
indeterminates. For example, x, X and and x123 are legal (and different) indeterminates; 

they are set by entering the string “xXx123” in the “Set Ring” dialog (no spaces!).

Each indeterminate has aweight (a positive integer). The system defaults to the value of 1 for all the indeterminates. If the 

weights specified in the dialog box are less than the indeterminates, then the missing ones – the last ones – are assumed to be 

equal to 1 (the system notifies the user that it is making this assumption).

The  coefficients can be chosen to be either rational numbers or integers modulo p. This is done by setting the  characteristic

either to 0 or to p (p < 32767). When the dialog box is closed pushing the OK button, the system checks whether p is a prime  

number and, if it is not, then a message is given. However all non negative integers are accepted, so it is possible to do some 

work with polynomials whose coefficients are not in a field but it is up to the user to ensure that no illegal operation will be  

attempted. The system simply reports an error message every time the inversion of a  zero–divisor is attempted, but does not 

interrupt a computation; beware hence of computing Gröbner bases in presence of zero–divisors, since it is very likely that you 

end up with avery long sequence of error messages.
Given a current ring, the system can handle objects of the following kind:
• polynomials;
• lists of polynomials;
• matrices of polynomials;
• ideals;
• modules (submodules of a free module).

Each object may have a ‘name’ (see sect. 4). Names of objects have the same structure of names of variables, i.e. they can be a  

single letter or a letter followed by an index (but, of course, an object cannot have the same name of a variable of the current  

ring).

The polynomials are always kept sorted with respect to the given term ordering. All the operations involving polynomials 

preserve and benefit of this ordering. In the current release the user can choose among three predefined term orderings or define 

custom orderings. The predefined term orderings are the following: the ‘degree reverse lexicographic’ (which is the default one), 

the ‘degree lexicographic’, and the ‘pure lexicographic’. Selection of one of these orderings is achieved by just pushing the 

corresponding button in the dialog box. The first two term orderings use the weights appearing in the dialog box to calculate the  

degree. For computations requiring temporarily a different term ordering (for example, in the case of the elimination of variables  

from an ideal), the system changes automatically the term ordering to a more 
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suitable one, performs the computation, and then restores the initial term ordering and gives its output with respect to this one; in 

this way the user never has to deal with temporary changes.

For special purposes, the user can also enter directly a matrix corresponding to a custom ordering by pushing the putton ‘Other’. 

A new dialog is opened where the current ordering is displayed. The user can freely modify this ordering; the system does not 

check whether this is a term ordering, so be careful. Note: The ordering becomes effective only upon exit from the ‘Ring setting’ 

dialog, and so it applies to the number of indeterminates at that moment. So if the user enters a 4×4 matrix, changes the number 

of indeerminates to 5 and then exits, an error message will be displayed.

Each term ordering on the current ring induces several term orderings on free modules. The system allows to choose between  

two of them by pushing the button ‘Modules options’ in the ring dialog box. If M is a free module of rank r over the ring R and  

{e
i
} is the canonical basis, then a term of M is an element of the form Te

i
 where T is a term of R. The possible choices for 

comparing two terms of a module are: 

• the ordering called ‘TO-Pos’ (which is the default one)

T
1
e
i
 > T

2
e
j
  iff  T

1
 > T

2
  in R  or, if  T

1
 = T

2 
,  i < j 

• the ordering called ‘Pos-TO’ 

T
1
e
i
 > T

2
e
j
  iff  i < j  or, if  i = j, T

1
 > T

2
  in R .

By pushing the button ‘Gbasis options’ in the ring dialog box, another dialog box appears; this dialog allows the advanced user 

to change the values of some special parameters which affect the way in which the computation of a Gröbner basis is carried  

out. These parameters will be discussed in some detail in Appendix A.

Finally the button ‘Other Options’ and the corresponding dialog box allow to set some parameters which affect the way in which  

numerical polynomials are written and to choose the variable for Poincare series. More details will be given in Appendix B.

4  Executing commands
As a general rule, to notify the system that some action has to be performed on some data, the user has to 
press the key ‘Enter’; at this point a part of the text of the window is taken as being the ‘currentcommand’:

• if  there is no selection point (the cursor is blinking somewhere) then the part  of text between the  
beginning of the line where the cursor is placed and the cursor itself is taken as current command;

• if there is a nonnull selection range, then the whole selection is taken as current command (in this way  
the system can process multiline commands).

A command may consist of a single instruction or of a sequence of instructions separated by semicolons. In 
this  latter  case  the  instructions  are  executed  in  sequence;  if  some  error  occurs,  then  the  instructions 
subsequent to the error are not executed.

Each instruction can be:
• an expression (including the case of a simple identifier): in this case the expression is evaluated 
and the result is displayed starting at the line after the cursor;
examples:
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• an assignment (a command of the form ‘identifier = expression’): in this case the expression is first evaluated and then 
the resulting value is assigned to the identifier; the computed value is not displayed; this is the way of giving a name to an 
object. The new value overrids any value previosuly associated to that name, which is hence lost.
examples:

• a procedure call (possibly with a parameters list): the behaviour of the system in this case strictly depends on the 
procedure called;
examples: 

Named  objects  (i.e.,  objects  which  have  been  associated  to  a  name  by  the  execution  of  assignments)  are  stored  in  an 

environment the environment is a dynamic data structure which the system keeps transparent to the user. The name of an object 

may be used in expressions at every place where an object of that kind can occur. The list of the identifiers present in the 

environment together with their type can be obtained by executing the command ‘List’.

The expressions follow a simple syntax which is very close to the usual mathematical one (its definition by means of syntax 

graphs can be found in Appendix C, but for most uses the ‘intuition’ will suffice). If the user selects for example the three lines 

below and hits enter, 

then  the  system  executes  the  following  sequence  of  comands:  first  evaluates  and  assigns  the  three  polynomials  to  the  

corresponding names, then builds the ideal consisting of these three polynomials and assigns it to I, then computes the ideal J 

obtained from I by eliminating the indeterminate t and finally displays the ideal J.
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Note: CoCoA 0.99b does not handle properly a transfer of values between rings in the following cases: a change in the order (or  

name) of the indeterminates, or a change to the characteristic of the ring. The term–ordering can instead be changed safely. In 

case of doubt it is safer to reenter the relevant data in the environment from the window. This bug will be eventually fixed. 

5  About identifiers and special characters

There are two kinds of identifier:
• the identifier of a indeterminate or of an object;
• the identifier of a procedure or of a function built in the system.

The identifiers of the first kind must be made of either a single letter or of a letter followed by an index having at most 11 digits.  

Different identifiers do always correspond to different objects,  and identifiers are case-sensitive (corresponding upper- and 

lower-case letters yield different identifiers). If to a name which is already associated with an object is assigned another object,  

then the new association overrids the old one.

The identifier of a procedure or a function consists of a contiguous sequence of letters. The corresponding upper- and lower-case 

letters in the word are equivalent, so, for example, LIST, list, List are all accepted and they all call the same procedure. If the  

procedure or function has some parameters, then these are enclosed within round brackets and usually separated by commas. 
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The system uses its own font containing special characters and makes provision for using both the italian keyboard and the UK  

keyboard. The italian keyboard is assumed by default. If the UK keyboard is used, then the user has to select ‘UK keyboard’  

from the Keyboard menu. We give here a table showing how to enter special characters:

 symbol to enter
 

Italian keyboard

UK keyboard

 superscript digit option-shift-digit 

option-digit 

 subscript digit option-digit

option-shift-digit

 intersection: ∩ &

&

  square brackets cmd-[  ,  cmd-]

[  ,  ]

   curly brackets cmd-{  ,  cmd-}

{  ,  }

6  General procedures

The following procedures are not related to the part of the system devoted to algebraic computations, but only to the system  

management itself.
Cancel(i

1
,…., i

n
) 

This procedure deletes the objects associated to the identifiers i
1,

…., i
n
 from the environment; Note: large values stored in the 

environment tend to slow down the system; so values should be removed using this command as soon as they are not needed 
any more.
Help  
This procedure invokes the online help. A window, called ‘Help Window’ containing a non editable text is opened; however the 
text can be copied and/or printed.
Info  
This procedure displays information related to memory usage and garbage collection; it is of interest only to the system 
developers.
List 
This procedure displays the list of the identifiers of the objects present in the environment together with their type (not their 
value);
Timeron
This procedure enables the displaying of the time that individual instructions take to execute; after its execution, the execution 
of subsequent commands will be followed by their execution time;
Timeroff 
This procedure disables the displaying of the execution time.
Write(i)  or  Write(i . ext)
This procedure displays the object stored in the environment with identifier i  or, in the second form, the part of the ideal or 
module specified by ‘ext’; more precisely the system will display only
• the generators of i   if  ext = Gens;
• the gbasis  of i   if  ext = Gbasis;
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• the standard basis  of i   if  ext = Stbasis; (only for ideals)
• the Poincaré series  of i   if  ext = Poincare; (only for ideals)

7  Algebraic procedures and functions
We give in this section the list of the functions available in the system, 
together with the pattern with which they can be called; some functions 
can also  be  called  like  procedures,  in  which case  after  the  call  the 
resulting value will usually be displayed on the screen. For each of the 
patterns  the  type  of  the  parameters  and  of  the  object  returned  or 
displayed are described. 
The functions of the first five groups (divided according to the type of 
the value returned) leave unchanged their arguments. The sixth group 
contains those functions that can modify their argument. Finally a last 
group  contains  some  special  functions  related  to  the  theory  of  the 
Hilbert function of an ideal.
• Functions returning a polynomial.
Der(F, x) 
F : polynomial; x : indeterminate;
It returns the derivative of the polynomial F  w.r.t. the indeterminate x .
Det(M) 
M : matrix;
It returns the determinant of the square matrix M .
Gcd(F

1
,…, F

n
) 

F
1
,…, F

n
: polynomials;

It returns the greatest common divisor of the polynomials F
1
,…, F

n
 .

Homog(x, F) 
x : indeterminate; F  : polynomial;
It returns the polynomial which is the homogeneization of the polynomial F  w.r.t. the indeterminate x  and current weights of 
the indeterminates.
Lcm(F

1
,…, F

n
) 

F
1
,…, F

n
: polynomials;

It returns the least common multiple of the polynomials F
1
,…, F

n
 .

NormalForm(F, I) 
F : polynomial; I : ideal;
It returns the polynomial which is the normal form of the polynomial F  w.r.t. the ideal I  . If I  is an ideal stored in the 
environment and a Gbasis of I  has already been computed, then that Gbasis is used otherwise the Gbasis of  I  w.r.t. the current 
term ordering is computed.
Resultant(F, G, x) 
F, G : polynomials; x : indeterminate;
It returns the resultant of the polynomials F  and G w.r.t. the indeterminate x  and also displays the Sylvester matrix.

• Functions returning a list of polynomials.
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Note that the value of the expression  {F
1
,…, F

n
}  where F

1
,…, F

n
 are polynomials is the list of the polynomials  F

1
,…, F

n
  and it 

may be assigned to an identifier.
GBasis(F

1,
…, F

n
)

F
1
,…, F

n
: polynomials;

GBasis(L)
L  : list of polynomials;
Both of these two functions return a list of polynomials which is a Gröbner basis of the ideal generated by F

1,
…, F

n
  or by the 

list L . The result depends on the current term ordering and on the setting of the parameters in the window ‘GBasis options’. The 
default setting produces the fully interreduced Gröbner basis with monic polynomials , which is unique.
Gens(I)
I :  ideal;
It returns the list of polynomials than generate the ideal I  .
Homog(x, F

1,
…, F

n
)

x : indeterminate;
F

1
,…, F

n
: polynomials;

Homog(x, L)
x : indeterminate;
L  : list of polynomials;
These two functions return the list of polynomials whose members are the homogeneizated of the polynomials F

1
,…, F

n
 or of 

polynomials in L w.r.t. the indeterminate x.
InterReduce(F

1,
…, F

n
)

F
1
,…, F

n 
: polynomials;

InterReduce(L)
L  :  list of polynomials;
These two functions return the list of polynomials obtained from the polynomials F

1
,…, F

n 
or from the members of L  by 

interreducing them. Note that, in general, the result depends on the current term ordering.
LeadTerm(F

1,
…, F

n
)

F
1
,…, F

n 
: polynomials;

LeadTerm(L)
L  :  list of polynomials;
They return the list of the leading terms of the polynomials F

1,
…, F

n
  or of the members of L  .

StBasis(F
1,

…, F
n
)

F
1
,…, F

n 
: polynomials;

StBasis(L)
L  :  list of polynomials;
They return a list of polynomials which is a standard basis of the ideal generated by F

1
,…, F

n 
or by L .

• Functions returning an ideal.
Elim(x, I)
x : indeterminate;
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I : ideal;
This function returns the ideal obtained by eliminating the indeterminate X from the generators of the ideal I.  A suitable term 
ordering is set during the computation and then the initial ordering is restored.
Elim(x ..y, I)
x, y : indeterminates;
I : ideal;
It returns the ideal obtained by eliminating the indeterminates included between X and Y  from the generators of the ideal I. 
(Note the two dots ‘..’ as part of the syntax). During the computation a suitable term ordering is set and at the end the initial 
ordering is restored.
Homog(X, I)
X : indeterminate;
I : ideal;
It returns the ideal which is the homogeneization of the ideal I w.r.t. the indeterminate X.
Ideal(F

1
,…, F

n
)

F
1
,…, F

n 
: polynomials;

It returns the ideal generated by the polynomials F
1
,…, F

n
.

Ideal(L)
L : list of polynomials;
It returns the ideal generated by the list of polynomials L .
LeadTerm(I)
I : ideal;
This function returns the ideal of the leading terms of the ideal I.
MaxMinors(M)
M  : p×(p+1)  or  p×(p-1)-matrix;
It returns the ideal generated by the maximal minors of the matrix M .

• Functions returning a module.
InterReduce(M)
M  :  module;
It returns the module obtained fromM by interreducing its generators. 
LeadTerm(M)
M  :  module;
It returns the module generated by the leading term of the elements of the Gbasis of M  w.r.t. the current term ordering.
Module(r, F

1
,…, F

rs
)

r  : positive integer;
F

1,
…, F

rs 
: polynomials;

This function returns the submodule (of a free module of rank r) generated by the r-uples
 (F

1,
…, F

r
),…, (F

1,
…, F

rs
). 

If necessary an appropriate number of zero polynomials is added at the end of the list.
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Syz(I)
I : ideal or module;
It returns the module of syzygies of the generators of I. 

• Functions returning a matrix.
Matrix(r, s, F

1
,…, F

rs
)

r, s  : positive integers;
F

1
,…, F

rs 
: polynomials;

It returns the r × s matrix whose entries are the polynomials F
1
,…, F

rs
.  If the polynomials are less than rs, then an appropriate 

number of null polynomials is added at the bottom of the list.
Transp(M)
M : matrix;
It returns the transposed of the matrix M;

• Functions that can modify objects in the environment.

When the parameter in the following patterns is an object stored in the environment (more precisely it is the identifier of an  

object stored in the environment), then the function modify the object (usually it adds some data to the object) and, if it is called  

like a procedure, nothing will be displayed.
GBasis(I)
I  : ideal or module; 
It computes the reduced Gröbner basis of the ideal I  with respect to the current term ordering and returs the result as list of 
polynomials; if I is the identifier of an ideal or module, then the Gröbner basis is also stored in the object I and not displayed, 
otherwise it is simply sent to the screen.
InterReduce(I )
I :  ideal;
It returns the ideal obtained from I   by interreducing the generators. 
StBasis(I)
I  : ideal or module; 
It computes a standard basis of the ideal I  and it behaves like GBasis.
Poincare(I) 
I  : ideal; 
It computes the Poincaré series of the ideal of the leading terms of the idealI  with respect to the current term ordering and 
displays the result; if I is the identifier of an ideal, then the Poincaré series is also stored in the object I .

• Special procedures and functions of an ideal.

If I  is an homogeneous ideal, then I  and the ideal T(I)  of the leading terms of the idealI  have the same Hilbert function. Hence 

for homogeneous ideals the functions below give some numerical invariants of the idealI  . Numeric value are returned as 

constant polynomials.
Dim(I)
I  : ideal; 
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It returns and displays the dimension of the ideal of the leading terms of the idealI  with respect to the current term ordering; if I 
is the identifier of an ideal, then the result is also stored in the object I .
HilbCoeff(I)
I  : ideal; 
It displays the coefficients of the Hilbert polynomial, in the binomial basis of the second type and alternating the signs, of the 
ideal of the leading terms of the idealI  with respect to the current term ordering .
Hilbert(I)
I  : ideal; 
It returs and displays the Hilbert polynomial of the ideal of the leading terms of the idealI  .
HilbertFn(I, n)
I  : ideal; 
It displays the n-th value of the Hilbert function of the ideal of the leading terms of the idealI  .
HilbertFn(I)
I  : ideal; 
It displays the values of the Hilbert function as far as the index of regularity is reached and then the Hilbert polynomial.
Mult(I)
I  : ideal; 
It returs and displays the multiplicity of the ideal of the leading terms of the idealI  with respect to the current term ordering.
Reg(I)
I  : ideal; 
It returs and displays the index of regularity (i.e.  of the ideal of the leading terms of the idealI  with respect to the current term 
ordering.

8  Partial computations
It is possible to compute only a part of a Gbasis or of a syzygy module: 
when the commands  Gbasis(...)  and  Syz(...)  are followed by an index 
N, then the computation is stopped as soon as an element of degree 
greater than N is found. If the ideal is homogeneous, then this gives the 
whole Gbasis (or syzygy module) up to degree N.

9  Substitution of indeterminates
It  is  possible  to  substitute  indeterminates  with  polynomials  within 
expressions. If E is an expression denoting an object O, X

1
,…,X

n
 are indeterminates 

and F
1
,…,F

n 
are polynomials, then

E [X
1
= F

1
,…, X

n
= F

n
] 
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is the object obtained from evaluating E to O and then by simultaneously substituting in O all the occurrences of the variables X
1
,…,X

n
 with 

the polynomials F
1
,…,F

n
. Of course if O is an ideal or a module, then the substitution takes effect only on the generators and the resulting  

value is not associated with any Gröbner basis and/or standard basis with which is possibly associated O.

Example:  if  F  is  the  polynomial  X
2
+Y

3
+Z

4
+T

5
 

then  F  [  X=Y,  Y=X,  T=(Z-T)
2
]  is  the  polynomial 

Y
2
+X

3
+Z

4
+(Z-T)

10
.
 

10 Expressions
Expressions have a rather natural sintax, quite similar to that of Pascal language. Expression are made of  
factors and terms. These objects are described in Appendix C by means of syntax graphs. Here we just give 
an informal description of this syntax.

• An expression consist of a list of terms separated by the (additive) operators: ‘+’, ‘-’.

• A term consists of  factors separated by (multiplicative) operators, which are: ‘*’, ‘:’, ‘mod’, ‘div’, 
‘∩’.

• Afactor consists of one of the followings
• a coefficient;
• an identifier (of an indeterminate or of an object);
• a function call
• an expression enclosed in round  brackets
a factor can be possibly followed by an exponent and/or a substitution and/or the factorial operator.

• A coefficient is an integer (with or without sign ) or a fraction i.e. a (signed) integer followed by the 
character ‘/’ and a positive integer.

The multiplication symbol (*) can be omitted, and exponentiation does not require a symbol; it suffices to 
write the exponent with the appropriate characters (see sect. 5).
Thepriority of the operations – from the highest to the lowest – is:
• exponentiation, substitution, factorial
• *, :, ∩, div, mod
• +, -.
When in doubt, parentheses can be used to enforce a particular order of evaluation.

Operations with equal priority are performed from left to right.

The following table shows what operations the system can perform between two objects of the same or of  
different types; the first column contains is the type of the first operand and the first row the type of the 
second. So, for example, the symbol ':' in the box on the fourth row and second column indicates that it is 
possible to divide an ideal by a polynomial.
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Polynomial List of poly IdealModule Matrix 

Polynomial   +  -  *                                             *                                                         *  

  mod  div

List of poly                                +          

Ideal                 *  :                                               +  *  ∩ :

Module                                          +
 

Matrix              *                                                                              +  -  *  
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Appendix A  Options for Gröbner basis computation
The user may set several parameters that affect the way in which the 
computations of a Gröbner basis is carried out. To have access to these 
parameters the user has simply to push the button ‘Gbasis options’ in 
the  dialog  box  ‘Ring  Setting’;  then  a  second  dialog  box,  called 
‘Gröbner options’ is displayed. Here below is shown the default setting 
of these parameters.

By means of this dialog the user may choose:
• The weights and the ordering for the critical pairs. 
The critical pairs are ordered w.r.t the l.c.m. of the leading terms of the 
two polynomials of the pair and processed by increasing order; to this 
aim the indeterminates can be weighted and ordered in a different way 
from te ones used to manipulate polynomials as elements of the ring. 
However, if the option “with sugar flavour” is selected, then  the 
critical pairs are processed in an order which is as close as possible to 
the order which would have been chosen if the polynomials had been 
homogeneous, hence the weights and ordering are ignored (in this way 
the algorithm runs generally faster – it is the well–known “CoCoA with 
sugar”).
• How to insert in the basis polynomials produced during the 
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computation.
The list of polynomials that at the end of the computation will be a 
Gröbner basis can be kept ordered by increasing length of its members 
or in the ‘natural way’ i.e. 
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by adding new polynomials at the end of the list. Choosing an ordering 
rather another may have considerable effect on the computation.
• Whether or not to interreduce the starting list of polynomials
In this way if one of the starting polynomials is reduced to some other 
polynomial, then the original polynomial is not used in the reduction 
steps.
• Whether or not to interreduce the final list of polynomials
• Whether or not to normalize the polynomial produced during the 
computation.
If the box ‘Normal Form’ is not checked, then only the leading term of 
a new polynomial is reduced as far as it is possible. When ‘Normal 
Form’ and ‘Final InterReduction’ are both checked the resulting 
Gröbner basis is the (unique) reduced Gröbner basis w.r.t. the current 
term ordering.
If the user wishes to follow on the screen the activity connected to the 
computation  of  a  Gröbner  basis,  then,  by  checking  the  appropriate 
boxes, it may ask to the system to display 
• the new nonnull S-polynomials as soon as they are computed and 

reduced;
• the leading term of redundant polynomials, i.e. of those polynomials 

whose  leading  term is  multiple  of  some other  polynomial  in  the 
basis;

• the useless critical pairs whose S-polynomial hence is not computed;
• the Display Status panel;
When this box is checked, an informative panel is kept open during the 
computations of Gröbner bases: the housekeeping of this panel can be 
a little time-wasting but the information it can give can be very 
important to the user about the progress of the computation; this panel 
displays (and continuously updates) the number of polynomials 
computed, their maximum degree, their maximum length and the 
number of critical pairs still to be considered; there is also a ‘Cancel’ 
button to interrupt the computations; obviously the results obtained 
from an interrupted computations are wrong. Note also that there may 
be a considerable delay between the point at which the cancel button is 
pressed and the point where the computation stops (CoCoA checks for 
such an interruption only after having considered a critical pair and not 
during interreduction).This is what the screen looks like during a 
computation of a Gröbner basis when DisplayStatus is selected:
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Appendix B  Numeric polynomials and functions 
In this appendix we will describe two ‘binomial’ shapes available in 
the system for a univariate polynomial with integer coefficients. 
Given a polynomial F and an integer n, we put

bin(F,n) = F(F-1)(F-2)...(m-n+1) / n! 
Let c be an integer and let E be the ring of the univariate polynomial in 
the variable x with integer coefficients. Then both the following two 
sets are basis of E (as free Z-module):
• { bin(x+c, i) / i∈ N }
• { bin(x+c+i, i) / i∈ N }
The  user  can  choose,  besides  the  usual  basis,  one  of  these  two by 
pushing the button ‘Other Options’ in the ring dialog box and handling 
the dialog box that will be open (in particular can be given the integer 
c). The same dialog box allows also to choose the variable by which 
the Poincaré series will be written. Here below is shown the default 
setting of these parameters.

The  following  function  are  useful  in  some  computations  involving 
‘binomials’.

Bin(F, n) 
F

 
: polynomial;  n : integer;
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It returns the polynomial  F(F-1)(F-2)...(F-n+1) / n! (if F is an integer, then this is the usual binomial).
BinExp(n, i)
n, i : positive integers;
It displays the binomial expansion of h  relative to i, that is 

h = bin(n
i
, i) + bin(n

i-1
, i-1) + ... + bin(n

j
, j)

where n
i
 > n

i-1
 > ... > n

j
 ≥ j ≥ 1  (they are uniquely determined by h and i)

BinPower(n, i)
n, i : positive integers;
It displays the value of the expression

 bin(n
i
+1, i+1) + bin(n

i-1
+1, i) + ... + bin(n

j
+1, j+1)

where 
bin(n

i
, i) + bin(n

i-1
, i-1) + ... + bin(n

j
, j) = h.
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Appendix C  Syntax

We  report  here  the  syntax  diagrams  of  commands,  instructions, 
expressions, etc.

command
instruction

;

instruction

=

expression

object 
identifier

expression

procedure 
identifier ( )

parameters
list

expression

simple expression

simple expression

+
-

-

+

term
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* /

term
factor

moddiv

factor

coefficient

indeterminate

object identifier

( )expression

,

)expression

substitution

exponent

function
identifier

(

coefficient

positive
integer

positive
integer

/-

+

indeterminate

letter

index
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letter

function
identifier

letter

substitution
[ ]=indeterminate expression

,
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Index

Apple Menu 3
assignment 6
Bin(F, n) 19
BinExp 20
BinPower(n, i) 20
Cancel 8
characteristic 4
CoCoA with sugar 16
coefficient 14
coefficients 4
critical pairs 16
current  command 5
current ring 2, 3, 4
custom ordering 5
default ring 3
DegRevLex 4
Der(F, x) 9
desk accessories 3
Det(M) 9
Dim(I) 12
Display Status panel 17
Edit Menu 3
Elim(x ..y, I) 11
Elim(x, I) 10
environment 6
expression 14
factor 14
factorial operator 14
File Menu 3
Gbasis options 5
GBasis(F1,…, Fn) 10
GBasis(I) 12
Gcd(F1,…, Fn) 9
Gens(I) 10
Gröbner basis 3
Gröbner options 16
Help 8
Help Window 8
HilbCoeff(I) 13
Hilbert(I) 13
HilbertFn(I, n) 13
HilbertFn(I) 13
Homog(x, F) 9
Homog(x, F1,…, Fn) 10
Homog(X, I) 11
Homog(x, L) 10
Ideal(F1,…, Fn) 11
Ideal(L) 11
indeterminate 4
Info 8

InterReduce(F1,…, Fn) 10
InterReduce(I ) 12
InterReduce(L) 10
InterReduce(M) 11
Keyboard menu 3
Lcm((F1,…, Fn) 9
LeadTerm((F1,…, Fn) 10
LeadTerm(I) 11
LeadTerm(L) 10
LeadTerm(M) 11
List 6, 8
list of the polynomials 10
Matrix(r, s, F1,…, Frs) 12
maximum number of indeterminates 4
MaxMinors(M) 11
menu bar 3
Module(r, F1,…, Frs) 11
Modules options 5
Mult(I) 13
MultiFinder 1
name 4
NormalForm(F, I) 9
object 4
Other Options 19
Partial computations 13
Poincare(I) 12
priority 14
procedure call 6
Reg(I) 13
Resultant(F, G, x) 9
Ring menu 3
Ring Setting 3
sequence of instructions 5
Set Ring 3
StBasis(F1,…, Fn) 10
StBasis(I) 12
StBasis(L) 10
Substitution 13
Sylvester matrix 9
syntax diagrams 21
Syz(I) 12
term orderings 4
Timeroff 8
Timeron 8
Transp(M) 12
UK keyboard 3
weight 4
weights 16
Write(i . ext) 8
Write(i) 8
zero–divisor 4
{F1,…, Fn} 10


