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Chapter 1

ExCalc

1.1 ExCalc.guide

ExCalc

The Best Calculator For Any Computer

Version 1.1

(c) Copyright 1994-1995 Computer Inspirations

Introduction

System Requirements
Installation

Quick Start

Why Another Calculator

ExNumber Structure
Utility Routines
Basic Arithmetic
String Conversions

The CLI Calculator
A Sample CLI Session

ExIntegers

ExInteger Conversions
Logical Operations
ExNumber Math Library

Calculator Features
ARexx Interface
Plotting Equations

Graphical Interface
GUI/CLI Interaction
CanDo Tricks

GUI ExCalc Demo

SHAREWARE

What makes ExCalc special

Minimum requirements on your Amiga
..1s really easy

For the impatient

For the curious

Internal calculator number format
Calculator utility routines
Mathematical routines
Input/Output conversions

CLI calculations
CLI demonstration

Internal huge integer format
Integer input/output conversions
And, Or, Xor, shifts, etc.
Transcendentals & logarithms

Memory, arguments, output formats
ARexx command summary
How to plot equations

General GUI design notes
Interfacing to the CanDo GUI
Doing things CanDo can’t
Demonstrating some features
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Summary Some last words

Register If you like what you see

Updates Where can I get the latest releases
Legal Stuff Copyright, Liability, Trademarks
Known Bugs Honest, it wasn’t my fault...
Future Possible future enhancements

Author If you want to contact me

1.2 Introduction

Introduction

ExCalc is the first calculator available for any computer which provides
calculations which can be accurate to over 50 digits! As well all decimals
are represented exactly so you never loose pennies during a calculation. All
this power is made more accessible through the choice of a GUI interface or
command line entry of complete equations —-- not just numbers. Any entered
equation can be recalled just by clicking on a history window. You also have
access to sixteen memory locations which can store any number.

New features are:

ARexx interface to the calculator

plotting cabability of any equation with one dependent variable
automatic history logging of both equations and results

no more nag requesters

O O O O

Other features include:

full scientific, transcendental, power, and logarithmic operations
programmer functions like and, or, shift, rotate, etc., on 172-bits!
scrolling history window of equations, memory, or results

choice of radian, degree, or gradian angle measurements

from 8 to 52 digits

numbers from -1E9999 to 1E9999

exact decimal number representation

convenience functions like square and cube roots, reciprocal, etc
storage of equations and memory as long as your computer is on
custom fonts with square root and cube root characters

O O o0 O O O O 0 O 0 O

complete calculator engine source code (in Oberon-2) is included
Registering will also get you the complete source code for the GUI which

was written using CanDo. You will be able to customize the GUI, menus, and
keypad configuration any way you like —-- provided you have CanDo.

1.3 System Requirements

System Requirements

This calculator should work on any Amiga running version 2.0 of the
operating system or higher. The base calculator uses a calculation
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engine which is optimised for a 68000 processor. Other processing
engines for 68020 and 68030 are available when you register. See
below for more details.

You shouldn’t have any problems running the calculator on a 512K

Amiga —- although I haven’t tried it. Who has a 512K Amiga anymore
anyway?

1.4 Installation

Installation

To install the calculator Jjust drag the complete ExCalc drawer
over to wherever you want the calculator to reside on your hard
disk or floppy diskette.

1.5 Quick Start

Quick Start

You can use the calculator right away. Just double-click on the
ExCalc icon. Read on if you want to get some background information
on how to use the calculator and want a brief tutorial.

1.6 Why Another Calculator?

Why Another Calculator?

The Amiga has an almost embarrassing abundance of floating point math
libraries which include the Fast Floating Point (FFP) library, IEEE 32-bit
and IEEE 64-bit floating point libraries. The latter two are supported by the
Amiga’s floating point coprocessor. But there are serious deficiencies in all
of these numerical representations.

The chief problem with these floating point formats is that they are encoded as

binary numbers (mathematical base 2) while we tend more naturally to decimal
numbers (base 10). As a consequence, the fractional representations of the
binary numbers are usually slightly different from the decimal number fractions
that we would expect. For example, the number 0.8 is exactly representable as
a decimal number while the closest binary fraction, in IEEE 32-bit format, ends
up being 0.799999952316284. This difference is very important to business
people who can’t get their spreadsheets to balance when accumulated round-off
errors don’t balance out to zero. ExNumbers can represent all decimal
fractions exactly so no pennies are gained or lost.

A second problem is that the maximum resolution supported by the IEEE 64-bit
format is only about 15 digits. This limitation may be very serious to
very large corporations whose accumulated income is numbered in billions of
dollars and to space explorers who need to send a space probe to an exact
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orbital position. With a virtually unlimited number of digits, ExNumbers can
again meet the need for higher resolutions.

There is a down side to the use of ExNumbers. Since they are implemented in
software, they are slower than coprocessor-based floating point numbers for
an equivalent number of digits. Certainly, when using many digits, the
calculations are slower. In the proposed calculator application, however,
the slower speed is not noticeable.

1.7 ExNumber Structure

ExNumber Structure

ExNumbers are represented as an array of 16-bit signed words, each of
which contains four decimal digits and is called a Quad. The exponent is
kept in a separate 16-bit word; and the number’s sign is an enumeration of
‘positive’ and ‘negative’ wvalues.

ExNumber Quads are different from Binary-Coded Decimal (BCD) representations
which are also used to store decimal-encoded numbers. The Quads actually
encode four decimal digits using a binary number so they are stored more
efficiently and are faster than BCD numbers in calculations.

For example, to encode 123456.789 as an ExNumber, we first need to normalize
this number to a value whose mantissa is between -10 and 10. In other words,
the number is represented in scientific notation as 1.23456789E6. Next, this
number is broken into groups of four digits, beginning at the leftmost digit.
The decomposed number can now be represented as 1234 5678 9000 E0006 where the
E0006 is the number’s exponent. Note the trailing zeros in the 9000 Quad.
These extra digit place holders are required to pad this Quad because, if they
were omitted, the final 9 would be interpreted as 0009 which would lead to the
erroneous number 123456.780009. The three Quads from this example are stored
in binary form as shown in Figure 1.

Quad
Index Quads Binary (16-bit integer)
0 1.234 0000 0100 1101 0010
1 5678 0001 0110 0010 1110
2 9000 0010 0011 0010 1000
12 0000 0000 0000 0000 0000
Exponent +5 0000 0000 0000 0101
Sign positive 0000 0000 0000 0000

Figure 1: ExNumber representation of the number ‘123456.789'

1.8 Utility Routines
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Utility Routines

Before dealing with the main mathematical operations, I need to introduce a few
utilities which will be used in these algorithms.

The first of these is the ExCompare function which produces a result to
indicate whether one ExNumber is equal to, greater than, or less than another
ExNumber. Although the algorithm in the ExNumbers module for ExCompare
appears confusing, Table 1 summarizes the decisions which are used to produce
an ExNumber comparison. The notation A(+) indicates that A is positive, Aexp
is an abbreviation for A’s exponent, and A(i) represents the ith Quad of A.

A(+) B(+) A=B A(i)<B(1) Aexp>Bexp Aexp=Bexp Result

F - - - - A>B

T A<B
A>B
A<B
A<B
A>B
A=B
A<B
A>B
A>B
A<B

|

|

|
e e B

e I B e
| |
[ e B

R e I e
| |

HH A3 /A A

‘T’ -True, ‘F’-False, ‘-’'-Don’t Care

Table 1: ExNumber comparison algorithm in tabular form

The ExChgSign procedure negates a number which means that the sign is toggled
from positive to negative and vice versa.

ExAbs takes the absolute value of a number by forcing the sign to be positive.

ExNorm normalizes an ExNumber by removing leading zeros in a fraction and
adjusting the exponent to guarantee a mantissa between -10 and 10. For
example, 0.0000456 would be normalized to 4.56E-6.

ExTimesl0 increments the exponent by 1 to simulate a multiplication by 10.
This procedure is much faster than really multiplying an ExNumber by 10.

Similarly, ExDiv10 subtracts 1 from the exponent to simulate a division by
10. This procedure is also much faster than attempting to divide an ExNumber
by 10.

The ExShiftRight procedure is used for shifting a single digit rightmost into
an ExNumber’s mantissa. Shifting 8 into the number 6.7892 produces the number
8.67892.

ExShiftLeft shifts an ExNumber to the left by a single digit and replaces the
least significant digit with a zero.

The IsZero function returns true if the ExNumber argument passed to it is
equal to zero.
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1.9 Basic Arithmetic

Basic Arithmetic

Some of us may remember how confusing it was when first learning about binary
numbers after having been exposed for most of our lives to decimal numbers.
Well, the bad news is that you can forget most of what you learned about binary
arithmetic; the good news is that the basic ExNumber operations of addition,
subtraction, multiplication, and division are performed in very much the same
way that we are used to from our daily lives.

Addition is the most basic operation in the ExNumbers module and the
ExAddUtility is the heart of the addition algorithm which is used by the
exported ExAdd procedure. Two positive numbers are added together in three
steps: first, set the exponent of the result to the exponent of the larger
number; second, shift the smaller number so that its Quads are aligned with
the larger number; and finally, add together all the related Quads. The
example in Figure 2 illustrates how the numbers 1.2345678E9 and 3.21456E5 are
added together.

Quads Exponent
b4 1.234 5678 0000 +9
% 0.000 3214 5600 +9
X + y 1.234 8892 5600 +9

Figure 2: Added ExNumbers 1.2345678E9 and 3.21456E5

The ExSubUtility subtracts two numbers using almost the same steps also used
by the ExAddUtility with the exception that Quads are subtracted from each other
instead of being added.

To simplify both addition and subtraction algorithms, I made a tacit assumption
that both numbers would be positive. The reason this works is seen in how the
ExAdd procedure checks and manipulates the signs of the two numbers to be added
together. There are two possibilities: both numbers have the same sign (either
positive or negative) so they can be added together using the ExAddUtility
procedure; or the numbers have different signs so we subtract the negative
number from the positive number using the ExSubUtility procedure.

The ExSub procedure is even simpler. This algorithm makes use of the
well-known property that B - C can be rewritten as B + (-C). Thus, by negating
C, a call to the ExAdd procedure produces the correct answer.

ExMult multiplies two ExNumbers together using the same techniques that we were

taught in school. Two nested loops produce a product by using the outer loop

to index the first number’s ith Quad and then the inner loop multiplies this

Quad by each of the Quads in the second number to produce an intermediate

product. Any carries are then shifted into this intermediate product, the
exponent is adjusted accordingly, and the intermediate product is added to the
final result. The above process is repeated until an intermediate product has
been produced and added to the final result for each Quad in the first number.
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Figure 3 demonstrates the multiplication of 1.2345678E5 and 9.8765432E10.

Quads Exponent
X 1.234 5678 0000 +5
y 9.876 5432 0000 +10
1st Quad Product 2nd Quad Product
1.234 5678 0000 +5 1.234 5678 0000 +9
X 5432.0000 +3 X 9876.0000 +7
6.706 1722 8960 +11 1.219 2591 5928 +16
Final Product = Sum of Quad Products

X*Y 1.219 3262 2100 2896 +16

Figure 3: Multiplying Exnumbers 1.2345678E5 and 9.8765432E10

The division algorithm should also be familiar to everyone. First, the
result’s exponent is calculated by subtracting the divisor’s exponent from the
dividend’s exponent. Next, the divisor and dividend are normalized and they
are forced to be positive numbers. This step is equivalent to lining up the
divisor and dividend prior to beginning a manual division. Once again, two
nested loops are used but now the outer loop iterates over all the digits in an
ExNumber while the inner loop increments a quotient counter and subtracts the
divisor from the dividend as long as the dividend is greater than or equal to
the divisor. This is roughly what we do when manually comparing the divisor
with the dividend and estimate a quotient which when multiplied by the divisor
and subtracted from the dividend leaves the dividend less than the divisor. Our
algorithm here, however, replaces the multiplication/subtraction step with
just a series of subtractions. Finally, the divisor is divided by 10 to shift
it within the range of the dividend for the next digit of the quotient and the
whole process repeats. The division algorithm’s outer loop guarantees that
enough quotient digits are produced to fill all the ExNumber Quads. Figure 4
takes you through the steps involved in dividing 3.550E2 by 1.130E2.

Quads Exponent Quotient Digit Remainder

X 3.550 +2 3 1.6 -1

y 1.130 +2 1 4.7 =2

4 1.8 -3

1 6.7 -4

Accumulated Quotient Digits 5 1.05 -4

x/y = 3.14159292035398 9 3.3 -6

230088495575221 2 1.04 -6
238938053097345

1327433

4 3.8 =50

3 4.1 =51

3 7.1 =52

Figure 4: Dividing ExNumber 3.550E2 by 1.130E2
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1.10 String Conversions

String Conversions

Before getting on to the actual calculator project, a couple of procedures
are still missing. We need a way of translating a string into an ExNumber and,
conversely, producing a string from an ExNumber.

The StrToExNum procedure accomplishes the first of our goals. This algorithm
parses a string into a set of digits (0-9), signs (+, -), and punctuation (.,
E). First, leading spaces are stripped off and the sign of the number is
determined. Then, as each digit is encountered, it is packed into a Quad at a
position just to the right of the previous digit. The ExNumber’s Quads are
indexed by a digit counter which is also used to let us know when enough digits
have been gathered. An exponent counter is incremented for each digit in the
number. When reaching the digit maximum, only the exponent counter continues to
be incremented but no more digits are added to the ExNumber. When a decimal is
reached, the exponent counter increments are stopped. If an ‘E’ (exponent) is
encountered, the ExNumber’s mantissa is considered complete and the exponent’s
sign is determined. All following digits are merged into the ExNumber’s
exponent to which the exponent counter is either added or subtracted--depending
on whether the exponent is positive or negative.

The second conversion routine, ExNumToStr, produces a character string from
an ExNumber. Two different floating point number formats are supported:
scientific notation (e.g., 1.23E10) and floating point notation (e.g.,
234.234) . Floating point notation is used whenever the ExNumber is small
enough to be represented in a field of ‘MaxDigits’, which represents the
maximum number of digits selected by the user. Both conversions begin by
checking the sign of the ExNumber and inserting a minus sign if the number is
negative.

The scientific notation conversion continues by rounding the ExNumber to the
number of decimal places specified by the ‘Decimal’ argument. The leftmost
digit is then inserted into the string, followed by a decimal point. Exactly
‘Decimal’ digits are placed after the decimal point (even if they are all
zeros). The exponent symbol, ‘E’, is added to the output string, followed by
the exponent’s sign. A Modula-2 library function called ConvNumToStr, which
converts integers into strings, is then used to convert the exponent into a
string which is appended at the end of the output string.

Converting ExNumbers into floating point notation is a bit more complicated.
As before, the number is rounded to maximum number of digits—-—-in this case, the
exponent size plus the number of specified decimal places. If the ExNumber is
less than zero, a leading ‘0.’ is placed in the string, followed by enough
zeros to reduce the number’s exponent to zero. Next, enough digits are placed
into the output string to satisfy the requested number of decimal places or
exhaust the total number of digits in an ExNumber, whichever comes first.
While placing these digits in the output string, a counter (InCnt) also keeps
track of the decimal point so it can be placed at the right place in the output
string. The last step of the conversion process removes trailing zeros from
numbers like 35.123000000 to give more readable numbers like 35.123.
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1.11 The CLI Calculator

The CLI Calculator

The Calculator module gives the complete calculator source code which
supports the basic mathematical operations discussed here. The calculator is
implemented with a very basic tokenizer (GetToken), which takes a stream of
input characters and translates them into the set of tokens identified at the
top of the Calculator module following the ‘Tokens’ type.

The stream of tokens drive a simple recursive expression evaluator (Expression)
which accepts prioritized infix notation with bracketing limited only by stack
size and input string length restrictions (250 characters). Operators are
ordered as follows:

Highest priority (reciprocal, squared), Medium priority (times, divide), Lowest
priority (plus, minus, negate, and unary plus). Thus, an expression like 2 + 5
* 6 would give the expected result of 32, and not 42.

The calculator also supports ‘friendly’ number entry which allows numbers to
contain punctuation characters like commas, apostrophes, and underscores which
can be used to separate groups of digits (e.g., 5,000 and 1’0007000.45). This
feature is especially useful with 50-digit numbers!

1.12 A Sample Session

A Sample Session

To use the calculator, make sure you either are in the directory which contains
the calculator program or copy the calculator into a directory which is part
of your regular command path. Type ‘Calculator’ from the CLI and you are
greeted with a ‘CALC>' prompt. Simply type in the following equation exactly
as 1t appears (hold down the ALT key and press ‘2’ to get the $72$ character and
similarly to get the $71$ hold the ALT key and press ‘N’, then ‘1’), and
enter a Return:

4 % Pi x (89.234 + 4E1 / 2.0)$72$ - (2-$"1$ % 56.78 % 10)

The answer 149658.8731 appears on the next line after the equation. Note the
use of the name ‘Pi’ to represent the mathematical quantity 3.141592..., the
squared operator ($72$%), and the reciprocal operator ( $71$). These extensions
were trivial to add to the calculator and extend its usefulness. This example
also shows a variety of number formats: integer, floating point, and scientific
notation.

The default settings for the calculator give floating point number results.
If you want to fix the decimal point, just type ‘DEC 2’, for example, to set the
number of decimal points to two digits. To restore to floating point format,
type ‘DEC 0’. To toggle between floating point and scientific notation type
‘SCI’ .

Experiment on your own with the calculator to see how it handles various
errors like illegal characters and mismatched brackets. If you have an Oberon-2
compiler, attempt some extensions to the calculator, to recognize additional
mathematical constants like the base of the natural logarithm (e) or attempt a
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cubed (x$73$) operator.

1.13 ExIntegers

ExIntegers

The most obvious extension for the ExNumbers is a way of performing logical
operations on them. Doing so requires that we restrict the vast dynamic range
(i.e., —-9.9E10000 to 9.9E10000) of the ExNumbers into a more manageable range
that can be exactly represented within the 52 digits or so of ExNumbers. As
well, to give easily discernable ExInteger limits when performing based
arithmetic, a further constraint is imposed so that ExIntegers are within the
range —(2%x%x172) to 2xx172 or -5.98E51 to 5.98E51. ExIntegers can thus exactly
represent any 172-bit integer.

The simplest implementation of ExIntegers to support logical operations in
Modula-2 is a mathematical set implementation. ExIntegers are built up using
an array of the 16-bit set data type (SET).

1.14 Exinteger Conversions

ExInteger Conversions

To give us logical operations on ExNumbers several conversion routines are
defined which translate ExNumbers into ExIntegers and vice versa. These
conversions are hidden from the user of the ExInteger functions so that the
parameters which are passed in and out of the procedures are always seen as
ExNumbers. Thus, the ExInteger package interface is simplified so users
don’t have to perform explicit conversions every time they wish to perform a
logical operation on ExNumbers. We see later that this calling convention
simplifies the interface to the Calculator as well.

The ExNumbToExInt procedure near the end of the ExIntegers module,
converts ExNumbers to ExIntegers. This algorithm first constrains the
ExNumber to the valid ExInteger range (i.e., —(2xx172) to 2xx172). Next, a
loop generates ExInteger set elements by taking the modulo 2%%x16 remainder of
the ExNumber to effectively strip out a 16-bit chunk of the ExNumber and then
type-casts this number into a 16-bit set (LONGBITSET), stored in the
ExInteger. After each loop iteration, the ExNumber is divided by 2x%x16 and
truncated to an integer to give access to the next 16-bit chunk. This loop
terminates when all the ExNumber Quads are zero.

The inverse operation of converting ExIntegers to ExNumbers is performed by the

ExIntToExNumb procedure. A similar loop scans through the ExInteger chunks, in
reverse order (i.e., from highest to lowest), converts each set into a 16-bit
unsigned number, multiplies an accumulated total by 2%%x16, and adds the
converted number to the total. The conversion is complete as soon as each
ExInteger set has been addressed.

Based String Conversions

To enable the calculator to deal with numbers in other bases (e.g.,
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hexadecimal, binary, and octal) I need to introduce two new procedures called
StrToExInt and ExIntToStr. The first of these routines converts a based
string into an ExNumber and the second routine performs the inverse operation
of converting an ExNumber into a based string. Both procedures work only
with integers: StrToExInt returns an illegal number error if requested to
convert a floating point string and ExIntToStr constrains the ExNumber to a
legal integer range before performing a conversion. I won’t go into the
details of these algorithms since they are very similar to the earlier string
conversion routines you saw in the ExNumbers module. The chief difference is
that the divisor becomes a power of the conversion base instead of a power of
ten. The ExIntegers module has the complete source code for StrToExInt and
ExIntToStr if you are interested in the algorithms used for these conversions.

1.15 Logical Operations

Logical Operations

The ExInteger module performs the standard logical operations of AND, OR, XOR,
NOT or one’s complement, bit setting, bit clearing, bit toggling, logical
shifts, arithmetic shifts, and rotations. These functions are grouped
according to the algorithm which implements each operation. For example, the
AND, OR, XOR, and NOT functions all call the LOp procedure to perform the
detailed logical processing of the ExInteger. For this reason, I just describe
the central procedure for each grouping (i.e., LOp in this case) with the
understanding that the other procedures which also use this algorithm have
similar properties.

The ExAnd procedure serves as the representative of the first grouping
which calls the LOp procedure, by passing in a customization function (the And
function) which returns the intersection (equivalent to logical AND) of two
BITSET arguments. The LOp procedure first translates the two operands to
ExIntegers; then the passed function is used, on a 16-bit chunk basis, to
logically AND (in this case) together both ExInteger arguments. The result is
converted back to an ExNumber and is returned to the ExAnd procedure.

The second class of operations uses the LBit procedure to perform single-bit
manipulations such as setting, clearing, and toggling bits. The ExSetBit
procedure is used as an example to illustrate the general bit algorithm.

As before, the ExNumber is converted to an ExInteger. LBit then makes use of
the power procedure ‘xtoi’ from the ExMathLib0 module (described below) which
implements the raising of the ExNumber, x, to the ith integral power, where i
is an integer. The xtoi routine is used here to produce a single-bit mask
based on the principle that 2xxn sets the nth bit of an integer. In this case,
the bit mask is ORed with the ExInteger, using the passed ‘Oper’ function in a
call to LOp. Consequently, the ExNumber returned by this procedure, after
conversion from an ExInteger, has its nth bit set.

Shifting operations are more awkward in an ExInteger format so they are
implemented as multiplications and divisions by powers of two on ExNumbers.
There are three different flavours of shifting algorithms: signed or arithmetic
shifts, unsigned or logical shifts, and rotations.

The simplest shifting operation is the logical shift as implemented by the
LShift algorithm. The ExNumber is first constrained to a valid ExInteger
range. Next, if the bit shift quantity is greater than MaxBase2Bits (172), a
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zero is returned and the algorithm is aborted since the number has been
shifted out of the ExInteger number range; otherwise, a shift mask is
calculated using xtoi, and, for the ExShl procedure, is multiplied times the
number to be shifted. This shifting operation is characterized by the
equation Result = n % 2%%b, where n represents the number to be shifted and b
represents the number of bit positions to be shifted.

The rotation operations, implemented by the LRotate procedure, are slightly
more complicated because the bit which is rotated out of the ExInteger range
must be wrapped around and shifted back into the ExNumber. To help sense the
state of a given bit in an ExNumber, the IsBitSet function was created. It
forms a mask for a selected bit, ANDs this mask with a number, and then returns
true 1if the bit was set. For ExXROR, LRotate calls this function to extract the
least significant bit before shifting the number. After the shift, if the
detected bit was set, the most significant bit of the result is set using the
ExSetBit procedure. The above process is repeated until as many bits have been
rotated as were specified by the ‘bits’ parameter. Note: The worst case shift
has been reduced, using a modulo operation, to the number of bits in an
ExInteger since rotations always preserve the original number.

The final shifting procedure, ExAshr, performs an arithmetic shift right of an
ExInteger. What this means is that the sign bit of the ExInteger is replicated
each time the ExInteger is shifted right so that the number’s sign is
preserved. Since ExNumbers are implemented with a separate sign bit, this
value is easily extracted by setting a SavedBit flag if the sign is negative.

The ExInteger is then shifted right one bit at a time (using ExDiv by two)
until ‘numbits’ have been shifted. For each shift, if the SavedBit flag was
set, the upper bit of the ExInteger is set using ExSetBit to restore the
number’s sign.

1.16 ExNumber Math Library

ExNumber Math Library

Everyone knows that a calculator has transcendental (e.g., sin, cos, tan),
logarithmic (e.g., log, 1ln), and power (e.g., x*x*xy) functions. But these
operations are usually very costly in terms of performance and have algorithms
which can become very complicated--especially since our calculator has up to 52
digits of precision. In fact, during my literature search, the best algorithms
I could find had only from 16 to 24 digits of accuracy. There were a number of
alternatives: 1) come up with the algorithms from scratch which would give 52
digits of accuracy; 2) use a lower—-accuracy algorithm; 3) use existing
lower—accuracy functions from the Amiga’s IEEE math libraries. I opted for the
third choice since I didn’t have the time to invest in producing and testing
the required precision algorithms and the speed penalty could be horrendous.

As well, there was no point in reinventing the wheel when algorithms of
comparable precision already existed on the Amiga.

I essentially created an interface (ExMathLibO module) to the
double-precision IEEE floating point library. The calculator could thus have
15 digits of precision at hardware speeds (if you have a floating point

coprocessor) . Several functions such as square root, cube root, integral
powers/roots, and factorial do have the full ExNumber precision because the
algorithms were easily extended to give 52-digit accuracy. If you have the

ability and time to extend the precision of any other functions, I would
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appreciate hearing from you so that I can update this module with the new
algorithms. Any algorithms I receive will be placed in the public
domain--with the author’s permission.

The heart of the IEEE floating point interface lies in the the ExNumToLongReal
and LongRealToExNum conversion routines. To simplify the conversion process
and demonstrate the power of reuse, I used several compiler-supplied conversion
routines, ConvStrToLongReal which translates a string into a double-precision
IEEE floating point number; and ConvLongRealToStr which performs the inverse
operation. As well, ExNumToStr and StrToExNum, from the ExNumber module,
provide string to ExNumber translations.

An IEEE number is converted to an ExNumber through an intermediate step of
translating the number into a string. StrToExNum takes this string and
produces a valid ExNumber. To reverse this process and produce an IEEE
representation from an ExNumber, ExNumToStr uses an ExNumber to produce a
string which ConvStrToLongReal then translates into the double-precision IEEE
floating point number. The expX procedure shown below demonstrates the
conversion process and the IEEE interface. The expD function is a
compiler-supplied library function which ties directly into the Amiga’s
double-precision IEEE library.

PROCEDURE expX (VAR Result : ExNumType; x : ExNumType);
BEGIN

LongRealToExNum (expD (ExNumToLongReal (x)) ) ;
END expX;

While many routines can be obtained using the IEEE library, some, like the
inverse hyperbolic trigonometric operations, are not available in this library.
I had to develop these algorithms from their basic definitions which follow:

ArcSinh (x) In(x + Sgrt(x*x + 1))
ArcCosh(x) = Ln(x + Sqgrt(xxx — 1))
ArcTanh (x) In((l + x) / (1L - x)) / 2

where Ln represents the natural logarithm of a number and Sgrt represents the
square root of a number.

Several other functions such as integral roots and powers have algorithms
which were easily extended to give full 52-digit precision. The integral root
algorithms are based on Newton’s iterative method of finding roots of a
function whose basis equation is y(n+l) = y(n) - f£(y)/f’ (y) where y(n+l) is
the (n+l)st iterative solution, y(n) is the nth solution, f(y) is the function
whose root is required, and f’ (y) is the derivative of f(y). I applied this
equation to obtain the general root-finding algorithm shown below:

y(n+l) = (y(n) « (r - 1) + x / y(m)*x(r - 1)) / r

where y(n+l) and y(n) are defined as before, r represents the root power
(e.g., r = 2 for a square root), and x is the number whose root we wish to
determine. The Root procedure (top of ExMathLib0O module) implements this
general algorithm and also adds the capability of finding negative roots
(e.g., the cube root of -8 is -2). Both the sqgrtX and rootX exported
procedures use this general-purpose Root routine.

Integral powers are calculated using an algorithm published by Donald
Knuth in his work, "The Art Of Computer Programming", the second volume. I
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have adapted his algorithm to also work for negative powers. The resultant
implementation is shown in the xtoi procedure in the ExmathLib0 module. The
beauty of Knuth’s approach is that the calculation of any integral power
involves only about log(n)/log(2) multiplications where n represents the
number’s integral power. For example, this algorithm calculates 15xx64 using
only six multiplications! The expX and powerX procedures use the xtoi
routine whenever they evaluate integral powers.

The last routine for which I have an extended precision algorithm is the
factorialX procedure which computes the factorial of a number. Because
ExNumbers have a much larger dynamic range (-1x10%x%x10000 to 1x10xx10000) than
most other floating point numbers, factorials can be calculated of numbers as
large as 3249! Compare this with the typical calculator which only gives
factorials as large as 69! However, calculating this large a factorial also
normally requires 3248 multiplications which could take quite a while even on
the fastest Amiga. To reduce this time, precalculated factorials of 500!,
1000!, 2000!, and 3000! have been stored in the ExMathLib0O module. Thus, to
calculate 3249!, only 249 multiplications are required since the algorithm
starts with 3000!. Calling a routine 1000 times recursively can take a lot
of stack space so the factorial procedure calculates factorials using an
iterative algorithm rather than the recursive algorithm everyone is taught in
school to keep the calculator’s stack requirements to the CLI default.

1.17 Calculator Features

Calculator Features
Remembering

The first addition is that the calculator now can store and recall up to
sixteen ExNumbers using the syntax: x STM n where x represents a number or
expression to be stored and n is the location (0 to 15) where the result
should be stored by the StoreMemory routine. To recall the number type Mn
where n represents the ExNumber location to recall via the RecallMemory
routine. The ExNumbers are stored in a simple array which can be easily
extended to allow number storage which is only limited by available memory.

All these storage locations and other calculator state variables are
stored to the RAM: drive (via the StoreState procedure) between calculator
invocations so results from previous calculations can be reused during later

sessions. The persistent memory also helps get around the problem of having
expressions which are longer than the maximum allowable input string of 250
characters. They can simply be split up and calculated in pieces, with

intermediate results stored in the calculator’s memory.

Argument Interface

In addition to the interactive mode, it is possible to use the calculator
much like the Amiga’s Eval program where the expression to be evaluated is
passed to the calculator when it is invoked. For example, typing ‘Calculator
2710" produces the result 1024. The command line argument is extracted by
the GetCLI procedure and then is processed just as if you had typed the
expression interactively. Because the memory is retained between calculator
invocations, you could store the results of one calculation in memory and
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then use those results in a following calculation. Remember that command

line arguments are automatically separated by the operating system if spaces
are left between words so quotation marks must be placed around expressions.
For example, to calculate the sum of the first five factorials, from the CLI,

type:

Calculator "1! + 2! + 3! + 4! + 5!I"

The answer ‘153.’ is displayed when the CLI prompt returns. Of course, the
spaces are optional, and 1!+2!'+3!+4!+5! (with no spaces) would produce the same
result without requiring quotations.

Output Formats

You can toggle the format of the calculator’s output numbers between the

default floating point notation and scientific notation. Just type SCI to
toggle between these two modes. Be careful to type the exact name as shown
because all the calculator functions are case-sensitive. If you type in a

number like 2 and then switch to scientific notation you may be shocked at all
the trailing zeros that get displayed. Several commands let you suppress these
extra digits: DP n lets you enter the number of decimal point digits which
should be displayed where n can be a number between 0 and 52. Specifying a
value of 0 selects the default floating decimal point notation while any other
number fixes the decimal point at n digits. DIG n selects the number of digits
that the calculator uses when performing its calculations. Valid values

for n are from 0 to the default of 52. All calculator format definitions

are saved to the RAM: disk between calculator sessions.

Other Functions

The calculator allows evaluation of any trigonometric function (SIN, COS,
TAN) . The default angular units are in degrees. The command DRG toggles
between angular units in degrees, radians, and grads.

Based numbers, as discussed above, represent a subset of the ExNumbers. To
get the calculator into the based number mode, type BAS n where n represents the
numerical base from 2 to 16. The value for n is always specified in decimal
notation no matter which base the calculator is using. Numbers containing
decimals and exponents are illegal when in a numeric base other than 10. Based
numerical systems greater than 10 use the uppercase alphabetic characters A-F
to represent numbers in addition to the standard digits but every
number must always begin with a valid base digit from 0 to 9;
numbers beginning with the digits A-F require a leading 0. Underscores,
apostrophes, and commas may be used to separate groups of digits no matter
which based representation is being used.

Table 2 below summarizes the calculator operations and commands along
with the required syntax when accessing the calculator from the CLI. An
additional restriction is that the longest allowable expression string cannot
exceed 250 characters.

+ Addition
- Subtraction
*, S\times$ Multiplication
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/,$\div$ Division
5128 Squared
$73% Cubed
-$718 Reciprocal
() Brackets
N, Kk Power
% S\times$ 0.01
&, AND Logical And
|, OR Logical Inclusive Or
XOR Logical Exclusive Or
CPL Logical Complement
MOD Modulo
DIV Integer Division
SQRT Square Root
CBRT Cube Root
ROOT Any Root
e Natural Log Base
e” Power of e
LN Natural Logarithm
LOG Base 10 Logarithm
(A) SIN (Arc) Sine
(A)COS (Arc)Cosine
(A) TAN (Arc) Tangent
(A) SINH (Arc)Hyperbolic Sine
(A) COSH (Arc)Hyperbolic Cosine
(A) TANH (Arc)Hyperbolic Tangent
SBIT Set Bit
CBIT Clear Bit
TBIT Toggle Bit
SHR Shift Right
SHL Shift Left
ASR Arithmetic Shift Right
ROR Rotate Right
ROL Rotate Left
Mn Memory Location n
STM n Store to Memory n
Pi Constant Pi
SCI Toggle Scientific/Floating Point
BAS n Change to Base n
DIG n Use n Digits
DP n Use n Decimal Places
DRG Toggle Degree/Radian/Grad

Table 2: Calculator Operations and Commands

1.18 ARexx Interface

ARexx Interface

Everyone who has spent any time with the Amiga knows the power of the
application interface language called ARexx. This language acts as the
glue which can bind together any two applications into a seamless whole.
Thus, a word processor can "talk" to a spreadsheet using ARexx and a

database manager can query a spelling checker built into a word processor.
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Well, now ExCalc can join the ranks of those programs sporting ARexx

interfaces. The new ARexx commands let you perform practically any
calculator function from an external program through an easy-to-use
interface of four commands: "CALC", "GETINPUT", "GETOUTPUT", and
"GETMEMORY".

In order to access these commands your ARexx program or macro must first
use the "ADDRESS" function to speak to the ExCalc ARexx port called "EXCALC".
For example, the ARexx line to do this would be: ADDRESS "EXCALC".

The command arguments and a brief description of what they do follow
below:

1) CALC [string argument]

Calculates the value of the passed [string argument] and returns a
result string. This command can be used with any of the commands
which are also available via the CLI calculator. For example, you

can change the calculator’s base by sending the command: CALC "BAS 16"
to select base 16 notation. More typically you would pass an
equation to be calculated as: CALC " (56 % 23 + SIN (45.67)) / Pi".

2) GETINPUT [integer argument <= 0]

Returns the equation from the history window (whether currently displayed

or not) which corresponds to the passed integer argument. For example, to
return the current equation you would say: GETINPUT "0". To obtain the
previous equation : GETINPUT "-1". If the input which you requested

doesn’t exist, you will get back the equation which is closest to your
requested position.

3) GETOUTPUT [integer argument <= 0]

Returns the calculated result from the history window (whether currently

displayed or not) which corresponds to the passed integer argument. For
example, to return the current result you would say: GETOUTPUT "O". To
obtain the previous result : GETOUTPUT "-1". 1If the input which you requested

doesn’t exist, you will get back the equation which is closest to your
requested position.

4) GETMEMORY [integer argument between (and including) 0 and 15]
Returns the contents of the memory location passed as an argument. For
example to obtain the contents of memory location 5, you would send the
command: GETMEMORY "5".
Note: Be sure to place quotes around all the arguments passed to ExCalc

ARexx commands. Invalid input ranges to GETINPUT, GETOUTPUT, and GETMEMORY
will return an ARexx error code 10.

1.19 Plotting Equations

Plotting Equations

We all prefer pictures instead of words or equations. ExCalc can now plot




ExCalc 18/28

equations which are a function of a single variable over any range of values.
To set up a plot, enter an equation which is a function of memory location zero
(MO) into the equation entry gadget. For example, you might try: SIN MO + 4.
Now click on the the "Plot" button in the lower right hand corner of the
calculator keypad. A separate plot window should open with an initial range
for MO of 0 to 1. It will take about 12 seconds on a 68030 and about 1 1/2
minutes on a 68000, so please be patient. The "busy" cursor will disappear
when the plot is finished.

If you don’t see the plotted function, chances are that the minimum and
maximum values of the vertical axis are set so that the entire equation is
being clipped outside the visible display area. To automatically calculate
appropriate vertical minimum/maximum values, click on the "New" button. It
will take about the same time to compute the new minimum/maximum values as
it does to plot a function. Once the new values are displayed click anywhere
on the plot to replot the current function.

To plot a new function, Jjust edit the displayed function in the equation
entry gadget or double click on one of the equations in the equation history.
Then click on the "Plot" key again and the new function will be plotted.

You can also adjust the start and end points of the plot. For example,
to better see the full SIN MO function plot, set the end point (x maximum)
to 360. Then click on the plot area to redo the graph. Make sure that the
y maximum is set to 1 and the y minimum is set to -1. That way you will
see the full sinusoidal curve.

It is possible to plot equations which are linear (ie. not dependent on
MO) but they are very boring and rather pointless to plot. Remember to make
all equations dependent on MO. The plotting routine will automatically vary
MO over the range of x min to x max and plot the corresponding y values.

At the moment the plotting routine is very slow. This is because the
entire function is being plotted in Cando and every point has to be calculated
by the external calculation engine and passed back to Cando. If there is
enough interest in a faster plotting routine (ie. I get some registrations),

I will work on a faster plotting routine which should be able to display
complete plots in just a few seconds. The only consolation is that the
plotting speed is relatively independent of the equation complexity. So it
should take about the same time plot a complex equation as it does to plot
a simple equation.

Enjoy the new plotting features and give me some feedback on ways to improve
the plotting function (other than by speeding it up —-—- I already guessed that).

1.20 Graphical Interface

Graphical Interface

Probably the most daunting activity when designing software has to be the
creation of the graphical interface. User interfaces typically make up about
60 percent of the entire application’s code and are very labor-intensive
since they require many iterations of compile-link-execute cycles to get just
the right placement of ‘gadgets’ (i.e., buttons and text fields).
Fortunately, a program called CanDo (see back issues of Amazing/Amiga
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Computing) provides a simpler alternative to the otherwise painful process of
defining a program’s GUI.

I designed the basic arrangement of calculator keys to give a central
numeric cluster with less used keys positioned to the sides of the numeric
cluster. This calculator arrangement is typical of most commercial
calculators with the exception that I opted for a horizontally extended
keypad instead of the more common vertically extended keypad to maximize the
use of the available screen space and give more space to the equation
display, located Jjust above the keypad. To reduce typing (or clicking), a
scrollable region is located Jjust above the display area which shows all the
previously entered equations. You click on one of these equations to bring
it back into the equation display for editing or recalculation.

CanDo V2.01 provides a new tool called ‘SuperDuper’ which can duplicate a
single gadget like a button or text field any number of times with both
vertical and horizontal offsets. Thus, the above matrix of calculator keys
is extremely simple to lay out. First, I defined a single button with
dimensions of 50 by 15 pixels so that 54 of these buttons in a nine by six
matrix would fill the window area. Using the SuperDuper tool with an x
offset of 50 and y offset of 15, I duplicated this button to totally fill the
window both vertically and horizontally. Buttons located in the central area
were then deleted to make room for the central button cluster. Starting with
a single button which was half the horizontal size of the function keys, I
duplicated this button to create the six by six central numeric cluster.

The calculator key labels are composed of text strings written to the
display using a custom font after the initial calculator window has been
created. The Helvetica-like font contains special characters to allow display
of radicals, exponents, and powers on the calculator keys. Unfortunately,
CanDo doesn’t support any font other than Topaz for use in a text field, so
the equation field can’t reproduce the key labels exactly. I was forced to
substitute alphabetic abbreviations for the roots and powers. The equation
recall list uses the same abbreviations as the equation field.

The result window/equation entry field consists of a left-justified text
field outlined with a beveled border. Equations can be entered directly into
this field via the keyboard or by a series of mouse clicks on the calculator
keys.

Above the equation entry field is the equation/memory/result list which
consists of a CanDo document tied to a scrollable list object. I update this
list with either the most recently entered equation or a list of the current
calculator contents or a history of the calculated results. The choice of
what gets displayed is selectable via the History/Show menu items (more about
the menus below). Only the displayed selection gets logged to the list
object by calculations so when displaying the equations, for example, the
previous calculated results are not retained. Of course, memory locations are
kept current and will always display the exact calculator memory contents.

To the left of the history list is the calculator status display which
shows the current angular measurement system, the type of floating point
display (either floating decimal point or scientific notation), the number of
decimal places, the numerical base (from 2 to 16), and the number of
significant calculator digits in use. The five buttons immediately below
this status display control these calculator attributes.
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Three menu bar items: Project, Custom, and History give access to project
items such as iconification, printing, and an ‘about’ box; item list display,
clearing, and printing; and calculator customization options including
selection of the processor-specific calculator (i.e., 68000, 68020, or
68030) . The menu-based customization options duplicate the left-most
calculator keys to a degree, although they are less flexible.

When I defined the calculator key labels in the window startup script, I
also added a string to the key which gets appended to the active equation
string via a call to "ProcessKey" when you click on a calculator key. This
same string also gets displayed in the equation entry field. CanDo doesn’t
allow the setting of the cursor in the text field so, unfortunately, the
cursor doesn’t follow along when new text is appended via key clicks. When
entering equations from the keyboard, everything works as you would expect.

There are some complications to this approach. For instance, when you
have entered a <Return> or clicked on the Equals key, you expect the
following key clicks to start a new equation and not Jjust append to the end
of the equation which was just calculated. The "AddKeyToDisplay" routine
encapsulates these intricacies as follows:

kkhkkkkhkkkkhkkKkkkx
* Global routine "AddKeyToDisplay"
If First
Let First = False
SetText "Display",Argl
ElseIf (ArgCount > 1) And LastKeyNumber
SetText "Display",Argl| |TextFrom("Display")
Let LastKeyNumber = False

Else
SetText "Display", TextFrom("Display") | |Argl
EndIf
If FindChars("01234567890ABCDEF.",Argl,1) = 0
Let LastKeyNumber = False
EndIf

SetObjectState "Display",On
* End of routine "AddKeyToDisplay"
kkhkkkkhkkkkhkkKkkkx

Here the "First" flag is set by other routines whenever the display should
be cleared and a fresh equation is started (e.g., when the ‘=’ key has been
entered). The "LastKeyNumber" flag is used to prepend new strings to an
existing equation in the case where a number was previously entered and then
a function like ‘SIN’ is selected via a button click. For example, if you
just entered the number ‘45’ and then clicked on the ‘SIN’ key, the
calculator equation would be ‘SIN 45’ instead of ‘45 SIN’. This simple
addition makes the calculator much more user-friendly since it automatically
corrects a common mistake you might make.

1.21 GUI/CLI Interaction

GUI/CLI Interaction

The heart of the calculator interface is the "Calculate" routine which
both submits the final equation string for computation to the external
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calculator and parses the entered equation in order to update the status
display area.

As a first step, the equation is extracted from the "Display" text entry
object and then passed to the "CallExCalc" routine to be processed as follows:

R IR I I i b b S b b
* Global routine "CallExCalc"
SetPointer Dir || "Brush/BusyCursor",5,5
Dos State.Calculator||" >RAM:Result.txt " || Char(34) || Argl || Char (34)
OpenFile "RAM:Result.txt","ResultBuffer",READONLY ,OLDFILE
FileReadLine "ResultBuffer",Arg2
Close "ResultBuffer"
SetPointer
* End of routine "CallExCalc"
R I b b b b O b b

In this routine I am invoking the calculator defined in the
"State.Calculator" field (i.e., either a 68000-, 68020-, or 68030-based
calculator) and redirecting the calculator’s normal output to a RAM-based

text file called "Result.txt". I then open this file from within CanDo, read
the result, and return the calculated result to the caller of this routine
via the second argument ‘Arg2’. A busy pointer is also displayed as long as

this routine is waiting for the external calculator to return an answer.

Note that CanDo’s ‘Dos’ calling routine will wait until the calculator has
calculated and placed the result in the output file and terminated its
execution. I thus avoid synchronization problems in attempting to access the
‘Result.txt’ file which might otherwise occur if the CanDo script used the
usual ‘Dos Run’ command sequence which does not wait.

To speed up the external calculator, I make the chosen calculator resident
during CanDo’s ‘After Attachment’ script with the following line:

Dos "Run >Nil: <Nil: c:Resident " || Dir || State.Calculator

As a second step, the ‘Calculate’ routine updates the history display and
parses the equation string to determine whether the status area needs to be
updated with a new decimal point, numeric base, or the number of digits. This
step is essential to guarantee that the CanDo status area always accurately
reflects the state of the external calculator.

If an error has occurred (i.e., the key word "Illegal" is contained in the

external calculator’s result), no status or history update is allowed to
prevent erroneous history and status wvalues.

1.22 CanDo Tricks

CanDo Tricks
Printing From CanDo
One disappointment with CanDo is its lack of a built-in print command.

Since I wanted to be able to print the history list contents, I defined the
following "Print" routine:
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*hkkhkhkkkkkKkk
* Global routine "Print"
OpenFile "RAM:Print.dat", "PrintBuf",WRITEONLY ,NEWFILE
FileWriteChars "PrintBuf",Argl
Close "PrintBuf"
Dos "Copy RAM:Print.dat PRT:"; Print the above file & wait
* End of routine "Print"

Ak kkhkkkkhkhkkkhKhkk*k

The argument to this routine (‘Arg’) is written to an external text file
and then this file is copied to the printer port via a ‘Dos’ copy. I had to
go this indirect route because I wanted the CanDo script to wait until the
given file had been sent to the printer because the print routine is called
multiple times when printing all the history information. I thus prevented
the possibility that a subsequent print command would attempt to open the
‘PRT:’ device a second and even a third time while it was still busy. This
bug actually occurred during development and I was scratching my head for
quite a while until I finally discovered the root of this problem.

Menu Tricks

The CanDo menu system poses some additional challenges, especially when
attempting to give programs the "look and feel" of the V2.0 operating system.
I was forced to simulate the separating lines, typically seen dividing unlike
menu items, by using a text string consisting of a series of hyphens which I
then disabled so that the menu item takes on the familiar ghosted appearance
and is inactive when you attempt to select it.

Another limitation is that mutually-exclusive menu items (in which a
series of alternatives can each be checked but two or more are not allowed to
be active simultaneously) are not explicitly supported by CanDo. To
implement mutually-exclusive menu items, I defined a routine in CanDo like
the following:

*hkkkkhkkkkhkkkkkx

* Global routine "SetDigitsMenu"
SetObjectState "8",0ff
SetObjectState "12",0ff
SetObjectState "16",0ff
SetObjectState "20",0ff
SetObjectState "32",0ff
SetObjectState "40",0ff
SetObjectState "52",0ff
If Match(Argl,"8","12","16","20","32","40","52") > O

SetObjectState Argl,On

EndIf

* End of routine "SetDigitsMenu"

kAhkkhk Ak kkkhkkKkkkK

which set the state of all the listed menu buttons to an ‘off’ condition.
For checked menu items this means that the checkmark is removed. The caller
of this clearing routine then toggles an internal flag and sets its own
button checkmark to either ‘on’ or ‘off’ depending on the internal flag.
Using CanDo’s built-in toggle buttons would have been easier but I couldn’t
always guarantee that the checkmark imagery would be synchronized with the
actual toggle state of the button. Keeping an internal toggle state flag
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avoids any problems.

1.23 GUI ExCalc Demo

GUI ExCalc Demo

Once the calculator is installed and displaying the GUI interface,
you can use the mouse to click on any calculator keys to enter the
corresponding symbol in the display object. Alternatively, you can use the
Amiga’s keyboard to enter equations by clicking on the display object and
then typing normally from the keyboard. You can switch back and forth
between using mouse clicks and keyboard entry, keeping in mind that the
calculator is case-sensitive and expects function names in uppercase
characters. When in doubt, click on the desired function to get the proper
capitalization for that operation.

If the equation history log has been enabled via the History/Display menu,
all the equations which you enter are displayed in the history area. Other
History/Display menu options show the calculation results or the current
calculator memory contents. Select the equation option to keep track of the
equation you’ll enter. Click on the ‘CE’ button and enter the equation:

SQRT (372 + 472)

which computes the length of the hypotenuse of a right-angle triangle with
sides of length 3 and 4. Click on the ‘=’ or enter a <Return> and the answer
‘5.7 should be displayed. ©Notice that this equation has also become the
first history element in the history display. Click on the ‘CE’ button again
and click on the equation in the history display. It should reappear in the
equation display. Click on the display object around the ‘372’ and use the
keyboard cursor keys to position the cursor over the ‘3’. Replace the '3’
with a ‘5’ and similarly replace the ‘4’ with a ‘12’ to get the equation:

SQRT (472 + 1272)

Click on the ‘=’ key to get the new result of '13.’. ©Now click on the
‘CH’ and ‘CE’ buttons to clear the history display and clear the answer.

I will be using memory location 2 (M2) to store the number whose root is
being found. Initialize this location with the number 100 as follows:

100 STM 2

Similarly initialize memory location 1 (M1) with an initial guess of the
root, in this case the original number divided by 2:

M2 / 2 STM 1

Next enter the following equation which iteratively computes the square
root of a number followed by an ‘=’ (see the second article for details):

0.5 » (ML + M2 / Ml) STM 1

where M1 is the current estimate of the square root and M2 is the number
whose root is being found. The first iteration should display the answer
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*26.7. Recall the equation from the history display and click on ‘=’ again.
The second iteration gives '14.923....’. Keep recalling the equation and
clicking on ‘=’ until the answer ‘10.’ is displayed after about four more
iterations. From the History/Display menu options select the display of the
calculator memory contents. Memory locations 0 to 15 are displayed in the
history display with M1l set to '10.’ and M2 set to '100.’. Clicking on a
memory location in the history window recalls the contents of that location.

For the last example, make sure that the answer ‘10.’ is still displayed
and click on the ‘BAS’ key. Now click on ‘1’ then ‘6’ to enter ‘BAS 16’.
Click on '=’. The status display shows that the calculator is now operating
with base 16 numbers and the previous result of ‘10.’ is now displayed as the
converted number ‘000A’. Click on ‘CE’ and enter the following equation:

(O'FFFF' 0000’ FFFEF OR 1234'0000) AND 0O’AAAA

from the keyboard and end with a <Return>. The answer ‘OFFFF1234AAAA’ 1is
displayed. Note the use of apostrophes to visually separate groups of four
hexadecimal digits. This capability is extremely useful when entering very
large numbers. The calculator also allows the use of a comma as a separator.

The memory contents have not been altered when the calculator switched
bases. The reason for this is that fractional results could get truncated
when working with numerical bases other than ten, so only numbers which are
actually recalled from memory and used in a calculation are truncated.

1.24 Summary

Summary

I have just touched on a few of the calculator’s capabilities in this
brief demonstration. To fully appreciate all the calculator features,
experiment on your own with the calculator and attempt some useful
modifications of the supplied Oberon-2 source code or the CanDo decks which
make up the user interface. Some suggestions are to give the CanDo interface
the capability of storing in the history log both formulae and calculated
results. The calculator could be extended with statistical functions and
imaginary numbers. I would be interested in hearing about the uses you find
for this calculator and any additions you make. Happy computing!

1.25 ExCalc.guide/M1_REGIS

Registration

As you may have noticed, ExCalc is a shareware product. All functions are
available for testing without paying any money. However, the program will
shut itself down after half of hour and will not restart until the next time
you power on your computer. As well, shareware reminders will pop up while
the calculator starts up and when it automatically exits. If you continue
using ExCalc beyond an initial evaluation period of 30 days, you are required
to mail your registration form along with $20 US.
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When you register, you will receive an updated and personalized ExCalc
program (without the shareware reminder screens and automatic power-down),
the complete CanDo GUI source code, and calculator engines for both 68020 and
68030 processors.

To get registered for ExCalc, please print the file OrderForm on
your printer (if no printer is available, please copy the information), fill
out this form and send it to the given address. I will endeavour to act upon
your registration within two weeks after I get the registration form and
the shareware fee. In most cases it will be done faster. Your updated
program will be shipped by (snail)mail.

Please contact the author directly for site licenses and other special
licensing agreements.

The author reserves the right to refuse registration requests.

1.26 ExCalc.guide/M1_UPDAT

Updates

When you become a registered user, you will get the latest personalized
release of ExCalc and will be entitled to receive one free update. Each
update after that will cost $10 US for registered ExCalc owners to cover
shipping, duplication, and material costs. Of course none of this applies if
you have not registered.

1.27 ExCalc.guide/M1_RIGHT

Legal Stuff

Liability
Distribution
Trademarks
Copyright

1.28 ExCalc.guide/Liability
Libability

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDER AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
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IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

1.29 ExCalc.guide/Distribution

Distribution

Distribution of the shareware version of ExCalc and associated files are
allowed on any data medium and can be made available on bulletin boards or
other networks only if the original, unchanged, compressed file is
distributed or the entire directory structure below is kept intact:

Fonts (dir)
CalcFontl (dir)
13 13b
CalcFont2 (dir)
11
CalcFont3 (dir)
8
CalcFont4 (dir)
11

CalcFontl. font
CalcFont3.font

Source (dir)

CalcFont2.font
CalcFont4d. font

Calculator.mod Calculator.mod.info
ExIntegers.mod ExIntegers.mod.info
ExMathLib0.mod ExMathLib0O.mod.info

ExNumbers.mod.info
InOutExt.mod.info
Calculator.info
ExCalc.guide
ExCalcVl.1l
Fonts.info
OrderForm.info
Product-Info.info

ExNumbers.mod

InOutExt .mod
Calculator
Disk.info
ExCalc.guide.info
ExCalcVl.1l.info
OrderForm
Product—-Info
Source.info

It is also allowable to levy copy charges for the distribution on floppy
disks or CD-ROMs, as long as it has been stated clearly for the user that
(s)he has not thereby paid for the shareware fee. It is not permissible to
copy, distribute or reproduce the non-shareware versions of ExCalc and/or the
calculator engines without obtaining the written permission of the author.

Special Versions

If you want me to program a special version of ExCalc e.g. for
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commercial release as part of any commercial software package, please
contact the author directly.

1.30 ExCalc.guide/Trademarks

Trademarks
ExCalc is a trademark of Computer Inspirations.

CanDo 1s a trademark of Inovatronics.

1.31 ExCalc.guide/Copyright

Copyright

ExCalc, the accompanying files and the ExCalc manual are
Copyright (c) 1994-1995, Computer Inspirations. All Rights reserved.

1.32 ExCalc.guide/M1_BUGRP

Known Bugs
v1.0

1) After releasing the first version, it was found that on some machines
the calculator would never exit. This bug was related to some critical
timing inside the Cando interface and is really a Cando bug. However,
a workaround eliminated this problem.

2) Some people objected to the "nag" reminders when the calculator started
up. To make everyone happy, these nag reminders have been removed.
However, you are still obligated to send in a shareware fee after
evaluating the calculator for 30 days. As well, each time you power
on your Amiga you will have a fixed 30 minute period to do your
evaluation. After that time, the calculator will refuse to work
until you restart your computer.

3) The LSL & LSR functions did not work. This was the fault of using
incorrect keywords which should have been SHL and SHR. This has
been fixed.

There are no other known bugs. If, however, you find a problem, please
forward to the author a complete description of your machine configuration along
with details on how to reproduce the bug. If the problem can be duplicated,

a free upgrade patch of the ExCalc software or a description of a work—-around
will be shipped to the person who first reports the problem. Note: This
offer only applies to registered ExCalc owners.

The author has no obligation to fix alleged bugs that cannot be duplicated.
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1.33 ExCalc.guide/M1_FUTUR

Future

The following list gives an idea of some features future releases of
ExCalc may have. The ordering of this list is not significant.

o Metric conversion support.

o GUI integrated with the calculator.

o Speed improvements for extremely large numbers.

o Improved accuracy algorithms for transcendental functions.

o Statistical function support.

Please contact the author if there are some features which you consider

more important than others. As well, suggestions for additional features
are welcome, but no guarantees regarding implementation can be made.

1.34 Author

Author

Michael Griebling

c/o Computer Inspirations
150 Clark Blvd., Suite One
Brampton, Ontario

Canada, Lo6T 4Y8

Tel. (416) 840-4648

e-mail: grieblm@trt.allied.com
or mgriebling@bix.com
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