Irit Solid modeler G. Elber 125

between the mouse’s position and the position of the button. The reason for the flaw is incorrect
callback information returned from the scale in repeattive mode.

* Binary data files are not documented, nor will they be. They might change in the future and are
in fact machine dependend. Hence, one platform might fail to read the other’s binary data file.

Irit Solid modeler G. Elber 124

[0.418 2.698]
[0.57 2.812]
[0.57 3.42]
[0.19 3.572]
[0 3.572]

[OBJECT [COLOR 2] SOMESRF
[SURFACE BEZIER 3 3 E3
[0 0 0]
[0.05 0.2 0.1]
[0.1 0.05 0.2]

[0.1 -0.2 0]
[0.15 0.05 0.1]
[0.2 -0.1 0.2]

[0.2 0 0]
[0.25 0.2 0.1]
[0.3 0.05 0.2]

29 Bugs and Limitations

Like any program of more than one line, it is far from being perfect. Some limitations, as well as
simplifications, are laid out below.

*If the intersection curve of two objects falls exactly on polygon boundaries, for all polygons, the
system will scream that the two objects do not intersect at all. Try to move one by EPSILON into the
other. 1 probably should fix this one - it is supposed to be relatively easy.

* Avoid degenerate intersections that result with a point or a line. They will probably cause wrong
propagation of the inner and outer part of one object relative to the other. Always extend your object
beyond the other object.

* If two objects have no intersection in their boundary, IRIT assumes they are disjoint: a union
simply combines them, and the other Boolean operators return a NULL object. One should find a
FAST way (3D Jordan theorem) to find the relation between the two (A in B, B in A, A disjoint B)
and according to that, make a decision.

* Since the boolean sum implementation constructs ruled surfaces with uniform speed, it might
return a somewhat incorrect answer, given non-uniform input curves.

* The parser is out of hand and is difficult to maintain. There are several memory leaks there that
one should fix.

* The X11 driver has no menu support (any easy way to have menus using XIib!?).

* IBM R6000 fails to run the drivers in -s- mode.

* Rayshade complains a lot about degenerate polygons on irit2ray output. To alleviate the problem,
change the ’equal’ macro in common.h in libcommon of rayshade from EPSILON (le-5) to le-7 or even
lower.

* On the motif-based drivers (xmtdrvs etc.) clicking the mouse left and right of the scale’s button
produces stepped transformations. This step size is constant, and is not proportional to the distance

Irit Solid modeler G. Elber 123

[0BJECT A_VECTOR
[VECTOR 1 2 3]

[0BJECT CTL_POINT
[CTLPT E3 1 2 3]

[OBJECT STR_OBJ
[STRING "string"]

]
[OBJECT UNIT_MAT
[MATRIX
1000
0100
0010
0001
]

[OBJECT [COLOR 4] POLY10BJ
[POLYGON [PLANE 1 0 0 0.5] 4
[-0.5 0.5 0.5]
[-0.5 -0.5 0.5]
[-0.5 -0.5 -0.5]
[-0.5 0.5 -0.5]
]
[POLYGON [PLANE 0 -1 0 0.5] 4
[0.5 0.5 0.5]
[-0.5 0.5 0.5]
[-0.5 0.5 -0.5]
[0.5 0.5 -0.5]

[OBJECT [COLOR 63] ACURVE
[CURVE BSPLINE 16 4 E2

[KV000011123456789 1011 11 11 11]
[0.874 0]
[0.899333 0.0253333]
[0.924667 0.0506667]
[0.95 0.076]
[0.95 0.76]
[0.304 1.52]
[0.304 1.9]
[0.494 2.09]
[0.722 2.242]
[0.722 2.318]
[0.38 2.508]

Irit Solid modeler G. Elber 122

[TRIMCRV
[TRIMCRVSEG
[CURVE ...
]

[TRIMCRVSEG
[CURVE ...
]

POINT_TYPE -> E1 | E2 | E3 | E4 | E5 | P1 | P2 | P3 | P4 | P5

ATTRS -> [ATTRNAME ATTRVALUE]
| [ATTRNAME]
| [ATTRNAME ATTRVALUE] ATTRS

Some notes:

* This definition for the text file is designed to minimize the reading time and space. All information
can be read without backward or forward referencing.

* An OBJECT must noever hold different geometry or other entities. I.e. CURVEs, SURFACEs,
and POLYGONs must all be in different OBJECTs.

* Attributes should be ignored if not needed. The attribute list may have any length and is always
terminated by a token that is NOT "[’. This simplifies and disambiguates the parsing.

* Comments may appear between '[OBJECT ...]7 blocks, or immediately after OBJECT OBJ-
NAME, and only there.

A comment body can be anything not containing the [’ or the "]’ tokens (signals start/end of
block). Some of the comments in the above definition are illegal and appear there only of the sake of
clarity.

* 1t is preferred that geometric attributes such as NORNALSs will be saved in the geometry structure
level (POLYGON, CURVE or vertices) while graphical and others such as COLORs will be saved in
the OBJECT level.

* Objects may be contained in other objects to an arbitrary level.

Here is an example that exercises most of the data format:

This is a legal comment in a data file.
[OBJECT DEMO
[OBJECT REAL_NUM
And this is also a legal comment.
[NUMBER 4]

Irit Solid modeler G. Elber 121

[KV{P} {ATTRS} kvO kvl kv2 ...] ;V Knot vector
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} (W} x v 2 ...]

;Defines a Bspline trivariate with #UPTS * #VPTS * #WPTS control
;points. If the trivariate is rational, the rational component is
;introduced first. Points are printed row after row (#UPTS per row),
; #VPTS rows, #WPTS layers (depth).
;If trivariate 1s periodic in some direction KVP prefix the knot vector
;that has length of ’Length + Order + Order - 1°.

| [TRIVAR BSPLINE {ATTRS} #UPTS #VPTS #WPTS UORDER VORDER WORDER POINT_TYPE

[KV{P} {ATTRS} kvO kvl kv2 ...] ;U Knot vector
[KV{P} {ATTRS} kvO kvl kv2 ...] ;V Knot vector
[KV{P} {ATTRS} kvO kvl kv2 ...] ;W Knot vector

[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} (W} x v 2 ...]

;Defines a trimmed surface. Encapsulates a surface (can be either a
;Bspline or a Bezier surface) and prescribes its trimming curves.
;There can be an arbitrary number of trimming curves (either Bezier
; or Bspline). Each trimming curve contains an arbitrary number of
;trimming curve segments, while each trimming curve segment contains
;a parameteric representation optionally followed by a Euclidean
;representation of the trimming curve segment.
| [TRIMSRF
[SURFACE ...
]
[TRIMCRV
[TRIMCRVSEG
[CURVE ...
]

[TRIMCRVSEG
[CURVE ...
]

Irit Solid modeler G. Elber 120

;Defines a Bezier surface with #UPTS * #VPTS control points. If the
;surface is rational, the rational component is introduced first.
;Points are printed row after row (#UPTS per row), #VPTS rows.
| [SURFACE BEZIER {ATTRS} #UPTS #VPTS POINT_TYPE
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} (W} x v 2 ...]

;Defines a Bezier trivariate with #UPTS * #VPTS * #WPTS control
;points. If the trivariate is rational, the rational component is
;introduced first. Points are printed row after row (#UPTS per row),
; #VPTS rows, #WPTS layers (depth).
| [TRIVAR BEZIER {ATTRS} #UPTS #VPTS #WPTS POINT_TYPE
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} (W} x v 2 ...]

;Defines a Bspline curve of order ORDER with #PTS control points. If the
;curve is rational, the rational component is introduced first.
;Note length of knot vector is equal to #PTS + ORDER.
;If curve is periodic KVP prefix the knot vector that has length of
;’Length + Order + Order - 1°.
| [CURVE BSPLINE {ATTRS} #PTS ORDER POINT_TYPE
[KV{P} {ATTRS} kvO kvl kv2 ...] ;Knot vector
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} (W} x v 2 ...]

;Defines a Bspline surface with #UPTS * #VPTS control points, of order
;UORDER by VORDER. If the surface is rational, the rational component
;is introduced first.
;Points are printed row after row (#UPTS per row), #VPTS rows.
;If surface is periodic in some direction KVP prefix the knot vector
;that has length of ’Length + Order + Order - 1°.

| [SURFACE BSPLINE {ATTRS} #UPTS #VPTS UORDER VORDER POINT_TYPE

[KV{P} {ATTRS} kvO kvl kv2 ...] ;U Knot vector

Irit Solid modeler

| [STRING "a string"]

| [MATRIX mOO ... m03
ml0 ... ml3
m20 ... m23
m30 ... m33]

G. Elber 119

;A polyline should be drawn from first point to last. Nothing is drawn
;from last to first (in a closed polyline, last point is equal to first).

| [POLYLINE {ATTRS} #PTS
[{ATTRS} x y 2]
[{ATTRS} x y 2]

[{ATTRS} x y 2]

;#PTS = number of points.

;Defines a closed planar region. Last point is NOT equal to first,
;and a line from last point to first should be drawn when the boundary

;of the polygon is drawn.
| [POLYGON {ATTRS} #PTS
[{ATTRS} x y 2]
[{ATTRS} x y 2]

[{A%TRS} xy z]

;Defines a 'cloud" of points.

| [POINTLIST {ATTRS} #PTS
[{ATTRS} x y 2]
[{ATTRS} x y 2]

[{ATTRS} x y 2]

;Defines a Bezier curve with #PTS control points. If the curve is
;rational, the rational component is introduced first.

| [CURVE BEZIER {ATTRS} #PTS POINT_TYPE

[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

Irit Solid modeler G. Elber 118

e -s Size: Size in inches of the page. Default is 7 inches.
o -t XTrans YTrans: X and Y translation. of the image. Default is (0, 0).

o -1 #Ulso[:# VIso]: Specifies the number of isolines per surface, per direction. If #VIso is not
specified, #Ulso is used for #VIso as well.

o -f PolyOpti SampPerCrv: Controls the method used to approximate curves into polylines.
If PolyOpti == 0, equally spaced intervals are used. Otherwise, an adaptive subdivision that
optimizes the samples is employed.

¢ -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4. This enforces the dump of
freefrom geometry as polygons.

e -M: Dumps the control mesh/polygon as well.
e -G: Dumps the freeform geometry.
o -T: Talkative mode. Prints processing information.

e -i: Internal edges (created by IRIT) - default is not to display them, and this option will force
displaying them as well.

e -0 OutName: Name of output file. By default the name of the first data file from DFiles list is
used. See below on the output files.

e -z: Prints version number and current defaults.

27.2 Usage

Irit2Xfg converts freeform surfaces and polygons into polylines in a format that can be used by XFIG.
Example:

irit2Xfg -1 -f 0 16 saddle.dat > saddle.xfg

However, one can overwrite the viewing matrix by appending a new matrix in the end of the
command line, created by the display devices:

x11drvs b58.dat
irit2Xfg -1 -f 0 16 b58.dat irit.mat > saddle.xfg

where irit.mat is the viewing matrix created by x11drvs.

28 Data File Format

This section describes the data file format used to exchange data between IRIT and its accompanying
tools.

[0BJECT {ATTRS} OBJNAME
[NUMBER n]

| [VECTOR x y z]

| [CTLPT POINT_TYPE {w} x y {z}]

Irit Solid modeler G. Elber 117

creates b58.scn and b58.geom with low resolution (FineNess of 5).

One can ray trace this scene after converting the scn file to a sff file, using scn2sff provided with
the RTrace package.

Once done with the parameter setting of RTrace, a fine approximation of the model can be created
with:

irit2scn -1 -g -F 0 64 b58.dat

which will only recreate b58.geom (because of the -g option).
One can overwrite the viewing matrix by appending a new matrix in the end of the command line,
created by the display devices:

wntdrvs b58.dat
irit2scn -1 -F 0 8 b58.dat irit.mat

where irit.mat is the viewing matrix created by wntdrvs. The output name, by default, is the last
input file name, so you might want to provide an explicit name with the -o flag.

26.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such attributes are sup-
ported by Irit2Scn and can be set within ITRIT. See also the ATTRIB IRIT command.

If a certain surface should be finer than the rest of the scene, one can set a ”resolution” attribute
which specifies the relative FineNess resolution of this specific surface.

Example:

attrib(srfl, "resolution", 2);

will force srfl to have twice the default resolution, as set via the *-f” flag.

Almost flat patches are converted to polygons. The patch can be converted into two polygons (by
subdividing along one of its diagonals) or into four by introducing a new point at the patch center.
This behavior is controlled by the ’-4’ flag, but can be overwritten for individual surfaces bu setting
?twoperflat” or "fourperflat”.

RTrace specific properties are controlled via the following attributes: ”SCNrefraction”, "SCNtex-
ture”, ”SCNsurface. Refer to the RTrace manual for their meaning.

Example:

attrib(srfl, "SCNrefraction'", 0.3);

Surface color is controlled in two levels. If the object has an RGB attribute, it is used. Otherwise
a color as set via IRIT COLOR command is used if set.
Example:

attrib(tankBody, "rgb", "244,164,96");

27 Irit2Xfg - IRIT To XFIG filter

27.1 Command Line Options

irit2xfg [-s Size] [-t XTrans YTrans] [-I #UIso[:#VIso[:#WIso]l]]
[-f PolyOpti SampPerCrv] [-F PolyOpti FineNess] [-M] [-G] [-T]
[-i] [-o OutName] [-z] DFiles

Irit Solid modeler G. Elber 116

attrib(srf1l, "transp", "0.3");
attrib(srfl, "texture", "wood");

Surface color is controlled in two levels. If the object has an RGB attribute, it is used. Otherwise
a color as set via the IRIT COLOR command is being used if set.
Example:

attrib(tankBody, "rgb", "244,164,96");

26 Irit2Scn - IRIT To SCENE (RTrace) filter

SCENE is the format used by the RTrace ray tracer. This filter was donated by Antonio Costa
(acc@asterix.inescn.pt), the author of RTrace.

26.1 Command Line Options

irit2scn [-1] [-4] [-F PolyOpti FineNess] [-o OutName] [-g] [-T] [-z] DFiles

e -1: Linear - forces linear (degree two) surfaces to be approximated as a single polygon along
their linear direction. Although most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free-form shape (saddle-like) that is
not representable using a single polygon. Note that although this option will better emulate the
surface shape, it will create unnecessary polygons in cases where one is enough.

e -4: Four - Generates four polygons per flat patch.

e -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

e -0 OutName: Name of output file. By default the name of the first data file from DFiles list is
used. See below on the output files.

o -g: Generates the geometry file only. See below.
o -T: Talkative mode. Prints processing information.

e -z: Prints version number and current defaults.

26.2 Usage

Irit2Sen converts freeform surfaces and polygons into polygons in a format that can be used by RTrace.
Two files are created, one with a ’.geom’ extension and one with ’.scn’. Since the number of polygons
can be extremely large, the geometry is isolated in the ’.geom’ file and is included (via '#include’) in
the main ’.scn’ file. The latter holds the surface properties for all the geometry as well as viewing and
RTrace specific commands. This allows for the changing of the shading or the viewing properties while
editing small (*.scn’) files.

If *-g’ is specified, only the ".geom’ file is created, preserving the current ’.scn’ file.

In practice, it may be useful to create a low resolution approximation of the model, change the
viewing/shading parameters in the ’.scn’ file until a good view and/or surface quality is found, and
then run Irit2Scn once more to create a high resolution approximation of the geometry using ’-g’.

Example:

irit2scn -1 -F 0 8 b58.dat

Irit Solid modeler G. Elber 115

creates b58.ray and b58.geom with low resolution (FineNess of 5). At such low resolution it can
very well may happen that triangles will have normals ”over the edge” since a single polygon may
approximate a highly curved surface. That will cause RAYSHADE to issue an ”Inconsistent triangle
normals” warning. This problem will not exist if high fineness is used. One can ray trace this scene
using a command similar to:

RAYSHADE -p -W 256 256 bb8.ray > b58.rle

Once done with parameter setting for RAYSHADE, a fine approximation of the model can be
created with:

irit2ray -1 -g -F 0 64 b58.dat

which will only recreate b58.geom (because of the -g option).
Interesting effects can be created using the depth cue support and polyline conversion of irit2ray.
For example

irit2ray -G 5 -P -p -0.0 0.5 solidl.dat

will dump solid1 as a set of polylines (represented as truncated cones in RAYSHADE) with varying
thickness according to the z depth. Another example is

irit2ray -G 5 -P -p -0.1 1.0 saddle.dat

which dumps the isolines extracted from the saddle surface with varying thickness.
Each time a data file is saved in IRIT, it can be saved with the viewing matrix of the last INTERACT
by saving the VIEW_MAT object as well. l.e.:

save("b58", b58);

However one can overwrite the viewing matrix by appending a new matrix in the end of the
command line, created by the display devices:

os2drvs bb8.dat
irit2ray -1 -F 0 16 b58.dat irit.mat

where irit.mat is the viewing matrix created by os2drvs. The output name, by default, is the last
input file name, so you might want to provide an explicit name with the -o flag.

25.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such attributes are sup-
ported by Irit2Ray and can be set within IRIT. See also the ATTRIB IRIT command.

If a certain surface should be finer than the rest of the scene, one can set a ”resolution” attribute
which specifies the relative FineNess resolution of this specific surface.

Example:

attrib(srfl, "resolution", 2);

will force srfl to have twice the default resolution, as set via the *-f” flag.

Almost flat patches are converted to polygons. The rectangle can be converted into two polygons
(by subdividing along one of its diagonals) or into four by introducing a new point at the patch center.
This behavior is controlled by the ’-4’ flag, but can be overwritten for individual surfaces bu setting
?twoperflat” or "fourperflat”.

RAYSHADE specific properties are controlled via the following attributes: ”specpow”, "reflect”,
“transp”, "body”, "index”, and "texture”. The value of this attributes must be strings as it is copied
verbatim. Refer to RAYSHADE’s manual for their meaning.

Example:

Irit Solid modeler G. Elber 114

e -1: Linear - forces linear (degree two) surfaces to be approximated by a single polygon along
their linear direction. Although most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free-form shape (saddle-like) that is
not representable using a single polygon. Note that although this option will better emulate the
surface shape, it will create unnecessary polygons in cases where one is enough.

e -4: Four - Generates four polygons per flat patch. Default is 2.

¢ -G GridSize: Usually objects are grouped as lists of polygons. This flags will coerce the usage
of the RAYSHADE grid structure, with GridSize being used as the grid size along the object
bounding box’s largest dimension.

¢ -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

o -f PolyOpti SampPerCrv: Controls the method used to approximate curves into polylines.
If PolyOpti == 0, equally spaced intervals are used. Otherwise, an adaptive subdivision that
optimizes the samples is employed.

e -0 OutName: Name of output file. By default the name of the first data file from the DFiles
list is used. See below on the output files.

o -g: Generates the geometry file only. See below.

¢ -p Zmin Zmax: Sets the ratios between the depth cue and the width of the dumped polylines.
See also -P. Closer lines will be drawn wider.

o -P: Forces dumping polygons as polylines with thickness controlled by -p.

e -M: If -P (see -P and -p) then converts the control mesh/polygon to polylines which are repre-
sented as a sequence of truncated cones.

o -T: Talkative mode. Prints processing information.

o -I #Ulso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate, per direc-
tion. If #VIso or #WIlso is not specified, #Ulso is used for #VIso etc.

o -s ObjSeq#: Sets object sequence number if no object name. Default 1.

e -z: Prints version number and current defaults.

25.2 Usage

Irit2Ray converts freeform surfaces into polygons in a format that can be used by RAYSHADE. Two
files are created, one with a ’.geom’ extension and one with ’.ray’. Since the number of polygons can
be extremely large, the geometry is isolated in the ".geom’ file and is included (via '#include’) in the
main ’.ray’ file. The latter holds the surface properties for all the geometry as well as viewing and
RAYSHADE specific commands. This allows for the changing of the shading or the viewing properties
while editing small (".ray’) files.

If *-g’ is specified, only the ".geom’ file is created, preserving the current ".ray’ file.

In practice, it may be useful to create a low resolution approximation of the model, change the
viewing/shading parameters in the ’.ray’ file until a good view and/or surface quality is found, and
then run Irit2Ray once more to create a high resolution approximation of the geometry using ’-g’.

Example:

irit2ray -1 -F 0 8 bb8.dat

Irit Solid modeler G. Elber 113

24.3 Advanced Usage

One can specify several attributes that affect the way the postscript file is generated. The attributes
can be generated within IRIT. See also the ATTRIB IRIT command.

If a certain object should be thinner or thicker than the rest of the scene, one can set a ”width”
attribute which specifies the line width in inches of this specific object.

Example:

attrib(srf1l, "width", 0.02);

will force srfl to have this width, instead of the default as set via the -W’ flag.

If a (closed) object, a polygon for example, needs to be filled, a "fill” attribute should be set, with
a value equal to the gray level desired.

Example:

attrib(poly, "fill", 0.5);

will fill poly with %50 gray.

If an object, a polygon for example, needs to be painted in a gray level instead of black, a ”gray”
attribute should be set, with a value equal to the gray level desired.

Example:

attrib(poly, "gray", 0.5);

will draw poly with %50 gray.

Dotted or dashed line effects can be created using a "dash” attribute which is a direct PostScript
dash string. A simple form of this string is "[a b]” in which a is the drawing portion (black) in inches,
followed by b inches of white space. See the postScript manual for more about the format of this string.
Here is an example for a dotted-dash line.

attrib(poly, "dash", "[0.006 0.0015 0.001 0.0015] 0");

Surface color is controlled (for color postscript only - see -¢) in two levels. If the object has an RGB
attribute, it is used. Otherwise, a color as set via the IRIT COLOR command is used.
Example:

attrib(Ball, "rgb", "255,0,0");

An object can be drawn as “tubes” instead of full lines. The ratio between the inner and the outer
radii of the tube is provided as the TUBULAR attribute:

attrib(final, "tubular", 0.7);

25 Irit2Ray - IRIT To RAYSHADE filter

25.1 Command Line Options

irit2ray [-1] [-4] [-G GridSize] [-F PolyOpti FinelNess]
[-f PolyOpti SampPerCrv] [-o OutName] [-g] [-p Zmin Zmax] [-P]
[-M] [-T] [-I #UIso[:#VIso[:#WIso]]] [-s 0ObjSeq#] [-z] DFiles

Irit Solid modeler G. Elber 112

e -P: Dumps the curve/surface (as polygons). See -F, -1, -4 for control on polygonal approximation.

o -W #LineWidth: Sets the line drawing width in inches. Default is as thin as possible. This
option will overwrite only those objects that do not have a "width” attribute. See also -d. If
LineWidth is negative its absolute value is used to scale the current width of the object if has
one, or the default width otherwise.

o -w WidenLen WidenWidth: If end points of polylines should be made wider, and if so to
what width.

e -b R G B: Sets a colored background. RGB are three integers prescribing the Red, Green, and
Blue coefficients. if no -c¢ (i.e. a gray level drawing) this color is converted to a gray level using
RGB to T.V. Y(1Q) channel conversion.

e -c: Creates a color postscript file.

o -C: Curve mode. Dumps freeform curves and surfaces as cubic Bezier curves. Higher order curves
and surfaces and/or rationals are approximated by cubic Bezier curves. This option generates
data files that are roughly a third of piecewise linear postscript files (by disabling this feature,
-C-), but takes a longer time to compute.

o -T: Talkative mode. Prints processing information.

e -i: Internal edges (created by IRIT) - the default is not to display them, and this option will
force displaying them as well.

e -0 OutName: Name of output file. Default is stdout.

¢ -d [Zmin Zmax]: Sets the ratios between the depth cue and the width of the dumped data. See
also -W, -p. Closer lines/points will be drawn wider/larger. Zmin and Zmax are optional. The
object’s bounding box is otherwise computed and used.

¢ -D [Zmin Zmax]: Same as -d, but depth cue the color or gray scale instead of width. You
might need to consider the sorting option of the illustrt tool (-s of illustrt) for proper drawings.
Only one of -d and -D can be used.

e -p PtType PtSize: Specifies the way points are drawn. PtType can be one of H, F, C for
Hollow circle, Full Circle, or Cross. PtSize specifies the size of the point to be drawn, in inches.
Vectors will also be drawn as points, but with an additional thin line to the origin. See also -d.

e -u: Forces a unit matrix transformation, i.e. no transformation.

e -z: Prints version number and current defaults.

24.2 Usage

Irit2Ps converts freeform surfaces and polygons into a postscript file.
Example:

irit2ps solidl.dat > solidl.ps
Surfaces are converted to polygons with fineness control:
irit2ps -f 0 32 -c -W 0.01 saddle.dat > saddle.ps

creates a postscript file for the saddle model, in color, and with lines 0.01 inch thick.

Irit Solid modeler G. Elber 111

e -4: Four - Generates four polygons per flat patch. Default is 2.

e -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

o -T: Talkative mode. Prints processing information.

e -z: Prints version number and current defaults.

23.2 Usage

Irit2Plg converts freeform surfaces and polygons into polygons in a format that can be used by the
REND386 renderer.
Example:

irit2plg solidl.dat > solidl.plg
Surfaces are converted to polygons with fineness control:
irit2plg -F 0 16 - view.mat < saddle.dat > saddle.plg

Note the use of -’ for stdin.

24 Irit2Ps - IRIT To PS filter

24.1 Command Line Options

irit2ps [-1] [-4] [-s Size] [-I #UIso[:#VIso[:#WIso]]l] [-F PolyOpti FineNess]
[-f PolyOpti SampPerCrv] [-M] [-G] [-P] [-W LineWidth]
[-w WidenLen WidenWidth] [-b R G B] [-c] [-C] [-T] [-i] [-o OutName]
[-d [Zmin Zmax]] [-D [Zmin Zmax]] [-p PtType PtSize] [-u] [-z] DFiles

e -1: Linear - forces linear (degree two) surfaces to be approximated by a single polygon along
their linear direction. Although most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free-form shape (saddle-like) that is
not representable using a single polygon. Note that although this option will better emulate the
surface shape, it will create unnecessary polygons in cases where one is enough.

e -4: Four - Generates four polygons per flat patch. Default is 2.
e -s Size: Controls the size of the postscript output in inches. Default is to fill the entire screen.

o -I #Ulso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate, per direc-
tion. If #VIso or #WIlso is not specified, #Ulso is used for #VIso etc.

¢ -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

o -f PolyOpti SampPerCrv: Controls the method used to approximate curves into polylines.
If PolyOpti == 0, equally spaced intervals are used. Otherwise, an adaptive subdivision that
optimizes the samples is employed.

e -M: Dumps the control mesh/polygon as well.

¢ -G: Dumps the curve/surface (as freeform geometry). Default. See -1, -C, -f for control on
polyline approximation.

Irit Solid modeler G. Elber 110

irit2nff -c -1 -g -F 0 64 b58.dat

which will only recreate b58.geom (because of the -g option).
One can overwrite the viewing matrix by appending a new matrix in the end of the command line,
created by a display device:

xgldrvs bS8.dat
irit2nff -1 -F 0 32 b68.dat irit.mat

where irit.mat is the viewing matrix created by xgldrvs.

22.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such attributes are sup-
ported by Irit2Nff and can be set within IRIT. See also the ATTRIB IRIT command.

If a certain surface should be finer than the rest of the scene, one can set a ”resolution” attribute
which specifies the relative FineNess resolution of this specific surface.

Example:

attrib(srfl, "resolution", 2);

will force srfl to have twice the default resolution, as set via the *-f” flag.

Almost flat patches are converted to polygons. The rectangle can be converted into two polygons
(by subdividing along one of its diagonals) or into four by introducing a new point at the center of the
patch. This behavior is controlled by the -4’ flag, but can be overwritten for individual surfaces by
setting a "twoperflat” or a "fourperflat” attribute.

NFF specific properties are controlled via the following attributes: 7kd”, ”ks”, ”shine”, "trans”,
”index”. Refer to the NFF manual for detail.

Example:

attrib(srf1l, "kd", 0.3);
attrib(srfl, "shine'", 30);

Surface color is controlled in two levels. If the object has an RGB attribute, it is used. Otherwise,
a color, as set via the IRIT COLOR command, is used if set.
Example:

attrib(tankBody, "rgb", "244,164,96");

23 Irit2Plg - IRIT To PLG (REND386) filter

PLG is the format used by the rend386 real time renderer for the IBM PC.

23.1 Command Line Options
irit2plg [-1] [-4] [-F PolyOpti FineNess] [-T] [-z] DFiles

e -1: Linear - forces linear (degree two) surfaces to be approximated by a single polygon along
their linear direction. Although, most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free form shape (saddle like) that is
not representable using a single polygon. Note that although this option will better emulate the
surface shape, it will create unnecessary polygons in cases where one is enough.

Irit Solid modeler G. Elber 109

22 Irit2Nff - IRIT To NFF filter

22.1 Command Line Options

irit2nff [-1] [-4] [-c] [-F PolyOpti FineNess] [-o OutName] [-T] [-gl
[-z] DFiles

e -1: Linear - forces linear (degree two) surfaces to be approximated by a single polygon along
their linear direction. Although, most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free-form shape (saddle-like) that is
not representable using a single polygon. Note that although this option will better emulate the
surface shape, it will create unnecessary polygons in cases where one is enough.

e -4: Four - Generates four polygons per flat patch. Default is 2.

e -c: Output files should be filtered by cpp. When set, the usually huge geometry file is separated
from the main nff file that contains the surface properties and view parameters. By default all
data, including the geometry, are saved into a single file with type extension ".nff’. Use of ’-¢’
will pull out all the geometry into a file with the same name but a ’.geom’ extension, which will
be included using the '#include’ command. The ".nff” file should, in that case, be preprocessed
using cpp before being piped into the nff renderer.

e -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

e -0 OutName: Name of output file. By default the name of the first data file from the DFiles
list is used. See below on the output files.

o -g: Generates the geometry file only. See below.
o -T: Talkative mode. Prints processing information.

e -z: Prints version number and current defaults.

22.2 Usage

[rit2Nff converts freeform surfaces into polygons in a format that can be used by an NFF renderer.
Usually, one file is created with ".nff” type extension. Since the number of polygons can be extremely
large, a ’-¢’ option is provided, which separates the geometry from the surface properties and view
specification, but requires preprocessing by cpp. The geometry is isolated in a file with extension
".geom’ and included (via ’#include’) in the main .nff” file. The latter holds the surface properties for
all the geometry as well as the viewing specification. This allows for the changing of shading or the
viewing properties while editing small (*.nff”) files.

If ’-g’ is specified, only the *.geom’ file is created, preserving the current ".nff’ file. The

b

-g’ flag can
be specified only with *-c’.

In practice, it may be useful to create a low resolution approximation of the model, change view-
ing/shading parameters in the ".nff” file until a good view and/or surface quality is found, and then
run Irit2Nff once more to create a high resolution approximation of the geometry using *-g’.

Example:

irit2nff -c -1 -F 0 8 b58.dat

creates b58.nff and b58.geom with low resolution (FineNess of 5).
Once done with parameter setting, a fine approximation of the model can be created with:

Irit Solid modeler G. Elber 108

20 Irit2Dxf - IRIT To DXF (Autocad) filter

Due to lack of real documentation on the DXF format (for surfaces), this filter is not really complete.
It works only for polygons, and is provided here only for those desperate enough to try and fix it...

21 Irit2Iv - IRIT To SGI’s Inventor filter

IV is the format used by the Inventor modeling/rendering package from SGI.

21.1 Command Line Options

irit2iv [-1] [-4] [-P] [-F PolyOpti FineNess] [-f PolyOpti SampPerCrv]
[-T] [-z] DFiles

e -1: Linear - forces linear (degree two) surfaces to be approximated by a single polygon along
their linear direction. Although, most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free form shape (saddle like) that is
not representable using a single polygon. Note that although this option will better emulate the
surface shape, it will create unnecessary polygons in cases where one is enough.

e -4: Four - Generates four polygons per flat patch. Default is 2.
e -P: Polygonize freeform shapes. Default is to leave freeform curves and surfaces as is.

e -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

o -f PolyOpti SampPerCrv: Controls the method used to approximate curves into polylines.
If PolyOpti == 0, equally spaced intervals are used. Otherwise, an adaptive subdivision that
optimizes the samples is employed.

o -T: Talkative mode. Prints processing information.

e -z: Prints version number and current defaults.

21.2 Usage

Irit2lv converts freeform surfaces and polygons into polygons and saved in iv Inventor’s ascii file format.
Example:

irit2iv solidl.dat > solidl.iv
Surfaces are converted to polygons with fineness control:
irit2iv -F 0 16 - view.mat < saddle.dat > saddle.iv

Note the use of -’ for stdin.

Irit Solid modeler G. Elber 107

17 Dat2Bin - Data To Binary Data file filter

17.1 Command Line Options

dat2bin [-t] [-z] DFiles

e -t: Dumps data to stdout as text instead of binary. -z: Print version number and current defaults.

17.2 Usage

It may be sometimes desired to convert .dat data files into a binary form, for example, for fast loading
of files with large geometry. Binary files can be somewhat larger, are unreadable in editors but are
much faster to load in. A binary file must have a ’.bdt’ file type.

Example:

dat2bin b58polys.dat > b58polys.bdt
dat2bin -t b58polys.bdt | more

to convert a text file b58polys.dat into a binary file b38polys.bdt and to view the content of the
binary file by converting it back to text. At this time data through pipes must be in text. That is, the
following is ullegal:

dat2bin b58polys.dat | xglmdrvs -

It should be remembered that the binary format is not documented and it might change in the
future. Moreover, it is machine dependent and can very well may be unreadible between different
platforms.

18 Dat2Irit - Data To IRIT file filter
Converts ".dat” and ’.bdt’ data files to .irt’ IRIT scripts.
18.1 Command Line Options

dat2irit [-z] DFiles

e -z: Print version number and current defaults.

18.2 Usage

It may be sometimes desired to convert .dat data files into a form that can be fed back to IRIT - a
Virt’ file. This filter does exactly that.
Example:

dat2irit b58.dat > b58-new.irt

19 Dxf2Irit - DXF (Autocad) To IRIT filter

Due to lack of real documentation on the DXF format (for surfaces), this filter is not really complete.
It only work for polygons, and is provided here only for those desperate enough to try and fix it...

Irit Solid modeler G. Elber 106

16.3 Usage

illustrt is a simple line illustration tool. It process geometry such as polylines and surfaces and dumps
geometry with attributes that will make nice line illustrations. illustrt is geared mainly toward its use
with irit2ps to create postscript illustrations. Here is a simple example:

illustrt -s -1 0.1 solidl.dat | irit2ps -W 0.05 -4 0.2 0.6 -u - > solid.ps

make sure all segments piped into irit2ps are shorter than 0.1 and sort them in order to make
sure hidden surface removal is correctly applied. Irit2ps is invoked with depth cueing activated, and a
default width of 0.05.

illustrt dumps out regular IRIT data files, so output can be handled like any other data set. illustrt
does the following processing to the input data set:

o Converts surfaces to isocurves (-1’ flag) and isocurves and curves to polylines (™-S’ flag), and
converts polygons to polylines. Polygonal objects are considered closed and even though each
edge is shared by two polygons, only a single one is generated.

¢ Finds the intersection location in the projection plane of all segments in the input data set and
trims away the far segment at both sides of the intersection point by an amount controlled by
the ’-t’ and ’-a’ flags.

e Breaks polylines and long lines into short segments, as specified via the -1’ flag, so that width
depth cueing can be applied more accurately (see irit2ps’s -d’ flag) as well as the Z sorting.

o Generates vertices of polygons in the input data set as points in output data controlled via the
? ?
-p’ flag. set.

e Applies a Z sort to the output data, if *-s’, so drawing in order of the data will produce a properly
hidden surface removal drawing.

Here is a more complex example. Make sure tubular is properly set via ”attrib(solid1, ”"tubular”,
0.7);” and invoke:

illustrt -s -p -1 0.1 -t 0.05 solidl.dat |
irit2ps -W 0.05 -d 0.2 0.6 -p h 0.05 -u - > solid.ps

makes sure all segments piped into irit2ps are shorter than 0.1, generates points for the vertices,
sorts the data in order to make sure hidden surface removal is correctly applied, and trims the far edge
by 0.05 at an intersection point. Irit2ps is invoked with depth cueing activated and a default width of
0.05, points are drawn as hollowed circles of default size 0.05, and lines are drawn tubular.

Objects in the input stream that have an attribute by the name of ”IllustrtNoProcess” are passed
to the output unmodified. Objects in the input stream that have an attribute by the name of
7?SpeedWave” will have a linear segments added that emulate fast motion with the following at-
tributes ” Randomness,DirX,DirY,DirZ,Length,Distance,LengthRandom,DistanceRandom,Width” Ob-
jects in the input stream that have an attribute by the name of ”HeatWave” will have a spiral
curves added that emulate a heat wave in the +7 axis with the following attributes ”Random-
ness,Length,Distance,LengthRandom,DistanceRandom,Width”. Examples:

attrib(Axis, "IllustrtNoProcess", "");
attrib(0bj, "SpeedWave", "0.0005,1,0,0,5,3,3,2,0.05");
attrib(Obj, "HeatWave'", "0.015,0.1,0.03,0.06,0.03,0.002");

Irit Solid modeler G. Elber 105

TN
KA

Figure 52: Some examples of the use of the illustration tool illustrt.

16.2 Command Line Options

illustrt [-I #IsoLines] [-S #SampPerCrv] [-s] [-M] [-P] [-p]
[-1 MaxLnLen] [-a] [-t TrimInter] [-o OutName] [-Z InterSameZ]
[-m] [-z] DFiles

o -T #IsoLines: Specifies number of isolines per surface, per direction.

o -S #SampPerCrv: Specifies the samples per (iso)curve.

e -s: sorts the data in Z depth order that emulates hidden line removal once the data are drawn.
e -M: Dumps the control mesh/polygon as well.

e -P: Dumps the curve/surface as isocurves.

e -p: Dumps vertices of polygons/lines as points.

e -1 MaxLnLen: breaks long lines into shorter ones with maximal length of MaxLnLen. This
option is necessary to achieve good depth depending line width in the ’-d’ option of irit2ps.

e -a: takes into account the angle between the two (poly)lines that intersect when computing how
much to trim. See also -t.

e -t TrimInter: Each time two (poly)line segments intersect in the projection plane, the (poly)line
that is farther away from the viewer is clipped TrimInter amount from both sides. See also -a.

e -0 OutName: Name of output file. Default is stdout.

e -7 InterSameZ: The maximal Z depth difference of intersection curves to be be considered
invalid.

e -m: More talkative mode. Prints processing information.

e -z: Prints version number and current defaults.

Irit Solid modeler G. Elber 104

e -H: Dumps both visible lines and hidden lines as separated objects. Hidden lines will be dumped
using a different (dimmer) color and (a narrower) line width.

e -4: Forces four polygons per almost flat region in the surface to polygon conversion. Otherwise
two polygons only.

o -W Width: Selects a default width for visible lines in inches.

e -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY_APPROX_OPT for the meaning of FineNess. See also -4.

e -q: Quiet mode. No printing aside from fatal errors. Disables -m.
e -0 OutName: Name of output file. Default is stdout.
e -z: Prints version number and current defaults.

o -c: Clips data to screen (default). If disabled (-c-’), data outside the view screen ([-1, 1] in x
and y) are also processed.

Some of the options may be turned on in poly3d-h.cfg. They can be then turned off in the command
line as ’-7-".

14.3 Configuration

The program can be configured using a configuration file named poly3d-h.cfg. This is a plain ASCII
file you can edit directly and set the parameters according to the comments there. ’poly3d-h -z’ will
display the current configuration as read from the configuration file.

The configuration file is searched in the directory specified by the IRIT_PATH environment variable.
For example, ’setenv IRIT_PATH /u/gershon/irit/bin/’. If the IRIT_PATH variable is not set, the
current directory is searched.

14.4 Usage

As this program is not interactive, usage is quite simple, and the only control available is using the
command line options.

15 poly3d-r - A Simple Data Rendering Program

Retired. Sources can be found in the contrib directory, but this program is no longer supported. A
new renderer is expected soon.

16 Illustrt - Simple line illustration filter

16.1 Introduction

illustrt is a filter that processes IRIT data files and dumps out modified IRIT data files. illustrt can
be used to make simple nice illustrations of data. The features of illustrt include depth sorting, hidden
line clipping at intersection points, and vertex enhancements. illustrt is designed to closely interact
with irit2ps, although it is not neceessary to use irit2ps on illustrt output.

See Figure 52 for some output examples of using this tool.

Irit Solid modeler G. Elber 103

YA 7RERNN
’:ﬂ{"“‘\‘?@.
DTN
Y

> ‘c";/

0

Figure 51: Some examples of the use of hidden line removal tool poly3d-h to remove hidden lines.

3. Intersects edges, and splits edges with non-homogeneous visibility (the scan line algorithm).

4. Applies a visibility test of each edge.

This program can handle CONVEX polygons only. From IRIT one can ensure that a model consists
of convex polygons only using the CONVEX command:

Cnvx0bj = convex(Obj);

just before saving it into a file. Surfaces are always decomposed into triangles.
poly3d-h output is in the form of polylines. It is a regular IRIT data file that can be viewed using
any of the display devices, for example.

14.2 Command Line Options

poly3d-h [-b] [-m] [-i] [-e #Edges] [-H] [-4] [-W Width]
[-F PolyOpti FineNess] [-q] [-o OutName] [-c] [-z] DFiles > OutFile

e -b: BackFacing - if an object is closed (such as most models created by IRIT), back facing
polygons can be deleted, therefore speeding up the process by at least a factor of two.

e -m: More - provides some more information on the data file(s) parsed.

e -i: Internal edges (created by IRIT) - default is not to display them, and this option will force
displaying them as well.

e -e n: Number of edges to use from each given polygon (default all). Handy as "-e 1 -4’ for freeform
data.

Irit Solid modeler G. Elber 102

e The locations of windows as set via [-g] and [-G] and/or via the configuration file overwrites in
x11drvs the Geometry X11 defaults. To use the Geometry X11 default use -G ” 7’ and -g” ”’
or set the string to empty size in the configuration file.

o In os2drvs, only -G is used to specify the dimensions of the parent window that holds both the
viewing and the transformation window.

13 Utilities - General Usage

The IRIT solid modeler is accompanied by quite a few utilities. They can be subdivided into two major
groups. The first includes auxiliary tools such as illustrt and poly3d-h. The second includes filters such
as irit2ray and irit2ps.

All these tools operate on input files, and most of the time produce data files. In all utilities that
read files, the dash (’-”) can be used to read stdin.

Example:

poly3d-h solidl.dat | irit2ps - > solidl.ps

All the utilities have command line options. If an option is set by a ’-x’ then ’-x-’ resets the option.
The command line options overwrite the settings in config files, and the reset option is useful for cases
where the option is set by default, in the configuration file.

All utilities can read a sequence of data files. However, the last transformation matrices found
(VIEW_MAT and PRSP_MAT) are actually used.

Example:
poly3d-h solidl.dat | x11drvs solidl.dat - solidl.mat

x11drvs will display the original solid1.dat file with its hidden version, as computed by poly3d-h,
all with the solid1.mat, ignoring all other matrices in the data stream.

Under unix, compressed files with a postfix ”.Z” will be automatically uncompressed on read and
write. The following is legal under unix,

poly3d-h solidl.dat.Z | xl1idrvs solidl.dat.Z - solidl.mat
where solid1.dat.Z was saved from within IRIT using the command
save("solidl.dat.Z'", solidl);

or similar. The unix system’s "compress” and ”zcat” are used for the purpose of (un)compressing
the data via pipes. See also SAVE and LOAD.

14 poly3d-h - Hidden Line Removing Program

14.1 Introduction

poly3d-h is a program to remove hidden lines from a given polygonal model. Freeform objects are
preprocessed into polygons with controlled fineness. See Figure 51 for some output examples of using
this tool.

The program performs 4 passes over the input:

1. Preprocesses and maps all polygons in a scene, and sorts them.

2. Generates edges out of the polygonal model and sorts them (preprocessing for the scan line
algorithm) into buckets.

Irit Solid modeler G. Elber 101

domain. The default staring and terminating times are set as the minimal and maximal parametric
domain values of all animation curves. An object at time t below the minimal parametric value will be
placed at the starting value of the animation curve. Similarly, an object at time t above the maximal
parametric value will be placed at the termination value of the animation curve. The user can also set
a bouncing back and forth mode, the number of repetitions, and if desired, request the saving of all
the different scenes in the animation as seperate files so a high quality animation can be created.

12.5 Specific Comments
e The x11drvs supports the following X Defaults (searched at /.Xdefaults):

#ifndef COLOR

irit*MaxColors: 1
irit*Trans*BackGround: Black
irit*Trans*BorderColor: White
irit*Trans*TextColor: White
irit*Trans*SubWin*BackGround: Black
irit*Trans*SubWin*BorderColor: White
irit*Trans*CursorColor: White
irit*View*BackGround: Black
irit*View*BorderColor: White
irit*View*CursorColor: White
#else

irit*MaxColors: 15
irit*Trans*BackGround: NavyBlue
irit*Trans*BorderColor: Red
irit*Trans*TextColor: Yellow
irit*Trans*SubWin*BackGround: DarkGreen
irit*Trans*SubWin*BorderColor: Magenta
irit*Trans*CursorColor: Green
irit*View*BackGround: NavyBlue
irit*View*BorderColor: Red
irit*View*CursorColor: Red
#endif

irit*Trans*BorderWidth: 3
irit*Trans*Geometry: =150x500+510+0

irit*View*BorderWidth: 3

irit*ViewxGeometry: =500x500+0+0

e The Motif-based display drivers contain three types of gadgets which can be operated in the
following manner. Scales: can be dragged or clicked outside button for single (mouse’s middle
button) or continuous (mouse’s left button) action. Pushbuttons: activated by clicking the
mouse’s left button. The control panel: allowes rotation, translation of the objects in three axes
determine perspective ratio, viewing object from top, side, front or isometrically, determining
scale factor and clipping settings, and operate the matrix stack.

The environment window toggles between screen/object translation, depth cue on/off, ortho-
graphic/perspective projection, wireframe/solid display, single/doubble buffering, showing/hiding
normals, including/excluding surface mesh, surface isolines/polygons, and four/two per flat.
Xglmdrvs allowes inclusion /exclusion of internal edges, and in xmtdrvs pro/anti aliasing. Scales
set normals length, lines width, buttons sensitivity, the number of islolines and samples.

Irit Solid modeler

G. Elber

MoreSense: More sensitive mouse control.

LessSense: Less sensitive mouse control.

ScrnObject: Toggle screen/object transformation mode.
PerspOrtho: Toggles perspective/orthographic trans. mode.
DepthCue: Toggles depth cueing drawing.

DrawSolid: Toggles isocurve/shaded solid drawing.
BFaceCull: Cull back facing polygons.

DblBuffer: Toggles single/double buffer mode.

AntiAlias: Toggles anti aliased lines.

DrawlIntrnl: Toggles drawing of internal lines.

DrawVNrml: Toggles drawing of normals of vertices.
DrawPNrml: Toggles drawing of normals of polygons.
DSrfMesh: Toggles drawing of control meshes/polygons.
DSrfPoly: Toggles drawing of curves/surfaces.

4PerFlat: Toggles 2/4 polygons per flat surface regions.
Morelso: Doubles the number of isolines in a surface.
Lesslso: Halves the number of isolines in a surface.
FinrAprx: Doubles the number of samples per curve.
CrsrAprx: Halves the number of samples per curve.
LngrVecs: Doubles the length of displayed normal vectors.
ShrtrVecs: Halves the length of displayed normal vectors.
WiderLns: Doubles the width of the drawn lines.

NarrwLns: Halves the width of the drawn lines.
FinrAdaplso: Doubles the number of adaptive isocurves.
CrsrAdaplso: Halves the number of adaptive isocurves.
FinerRld: Doubles number of ruled surfaces in adaptive isocurves.
CrsrRld: Halves number of ruled surfaces in adaptive isocurves.
RuledSrfApx: Toggles ruled surface approx. in adaptive isocurves.
AdaplIsoDir: Toggles the row/col direction of adaptive isocurves.
Front: Selects a front view.

Side: Selects a side view.

Top: Selects a top view.

Isometry: Selects an isometric view.

Clear: Clears the viewing area.

Obviously not all state options are valid for all drivers.

100

The IRIT server defines in iritinit.irt

several user-defined functions that exercise some of the above state commands, such as VIEWSTATE
and VIEWSAVE.

In addition to state modification via communication with the IRIT server, modes can be interac-
tively modified on most of the display devices using a pop-up menu that is activated using the right
button in the transformation window. This pop up menu is somewhat different in different drivers, but
its entries closely follow the entries of the above state command table.

12.4 Animation Mode

All the display drivers are now able to animate objects with animation curves’ attributes on them. For
more on the way animation curves can be created see the Animation Section of this manual (Section 11).

Once a scene with animation curves’ attributes is being loaded into a display device, one can enter
”animation” mode using the ”Animation” button available in all display devices. The user is then
prompt (either graphically or in a textual based interface) for the starting time, termination time
and step size of the animation. The parameter space of the animation curve is serving as the time

Irit Solid modeler

¢ TransMode: Selects between object space transformations and screen space transformation.

G. Elber

¢ ViewMode: Selects between perspective and orthographic views.

99

¢ NormalLength: Sets the length of the drawn normals in thousandths of a unit. Same as -L’.

¢ DebugObjects: Debug objects. Prints to stderr all objects read from the communcation port
with the server IRIT. Same as ’-d’.

¢ DebugEcholnput: Debug input. Prints to stderr all characters read from the communcation
port with the server IRIT. Lowest level of communications.

o LightSrcPos: Sets the location of the (first) light source as a rational four coefficient location.
W of zero sets the light source at infinity.

12.3 Interactive mode setup

Commands that affect the status of the display device can also be sent via the communication port
with the IRIT server. The following commands are recognized as string objects with object name of

"COMMAND_”:
BEEP Makes some sound.
CLEAR Clears the display area. All objects are deleted.
DCLEAR Delayed clear. Same as CLEAR, but delayed until next
object is sent from the server. Useful for animation.
DISCONNECT Closes connection with the server, but does not quit.
EXIT Closes connection with the server and quits.

GETOBJ NAME

MSAVE NAME

REMOVE NAME
ANIMATE TMin TMax Dt
STATE COMMAND

Requests the object named NAME that is returned in the
output channel to the server.
Saves the transformation matrix file by the name NAME.

Request the removal of object named NAME from display.

Animates current scene from TMin to TMax in Dt steps.
Changes the state of the display device. See below.

The following commands are valid for the STATE COMMAND above,

Irit Solid modeler G. Elber 98

12.2 Configuration Options

The configuration file is read before the command line options are processed. Therefore, all options in
this section can be overriden by the appropriate command line option, if any.

¢ TransPrefPos: Preferred location (Xmin, YMin, Xmax, Ymax) of the transformation window.
¢ ViewPrefPos: Preferred location (Xmin, YMin, Xmax, Ymax) of the viewing window.

¢ BackGround: Background color. Same as ™-b’.

¢ Internal: Draws internal edges. Same as -i’.

¢ DrawVNormal: Draws normals of vertices. Same as -n’.

¢ DrawPNormal: Draws normals of polygons. Same as -n’.

b

¢ MoreVerbose: Provides some more information on the data file(s) parsed. Same as -m’.

¢ UnitMatrix: Forces a Unit matrix. That is, input data are not transformed at all. Same as

u’.

¢ DrawSolid: Requests a shaded surface rendering, as opposed to isocurve surface representation.
¢ BFaceCull: Requests the removal of back facing polygons, for better visibility.

¢ DoubleBuffer: Requests drawing using a double buffer, if any.

¢ NumOfIsolines: Specifies number of isolines per surface, per direction. Same as ’-I’.

¢ SamplesPerCurve: Specifies the samples per (iso)curve. See -f’.

¢ PolylineOpti: Controls the method used to subdivide a curve into polylines that approximate
it. See -f’.

¢ LineWidth: Sets the linewidth, in pixels. Default is one pixel wide. Same as -1’
¢ AdapIsoDir: Selects the direction of the adaptive isoline rendering.
¢ FineNess: Controls the fineness of the surface to polygon subdivision. See ’-F’.

¢ PolygonOpti: Controls the method used to subdivide a surface into polygons that approximate
it. See -F’.

¢ DepthCue: Set depth cueing on. Drawings that are closer to the viewer will be drawn in more

intense color. Same as ’-¢’.

¢ FourPerFlat: Forces four polygons per almost flat region in the surface to polygon conversion.
Otherwise two polygons only. Same as -4’.

¢ AntiAlias: Request the drawing of anti aliased lines.
¢ DrawSurfaceMesh: Draws control mesh/polygon of curves and surfaces, as well. Same as -M’.

¢ DrawSurfacePoly: Draws curves and surfaces (surfaces are drawn using a set of isocurves, see
-1, or polygons, see -f). Same as -P’.

¢ StandAlone: Runs the driver in a Stand alone mode. Otherwise, the driver will attempt to
communicate with the IRIT server. Same as ’-s’.

Irit Solid modeler G. Elber 97

o -c: Sets depth cueing on. Drawings that are closer to the viewer will be drawn in more intense
color.

o -C: Cache the piecewise linear geometry so curves and surface can be redisplay faster. Purging
it will free memory, on the other hand.

e -m: Provides some more information on the data file(s) parsed.
e -a: Sets the support of antialiased lines.

o -gx1,x2,yl,y2: Prescribes the position and location of the transformation window by prescribing
the domain of the window in screen space pixels.

o -G x1,x2,y1,y2: Prescribes the position and location of the viewing window by prescribing the
domain of the window in screen space pixels.

o -1 #IsoLines: Specifies number of isolines per surface, per direction. A specification of zero
isolines is possible only on the command line and it denotes the obvious.

¢ -F PolyOpti FineNess: Controls the method used to approximate surfaces into polygons. See
the variable POLY _APPROX_OPT for the meaning of FineNess. See also -4.

o -f PolyOpti SampPerCrv: Controls the method used to approximate curves into polylines.
If PolyOpti == 0, equally spaced intervals are used. Otherwise, an adaptive subdivision that
optimizes the samples is employed.

¢ -1 LineWidth: Sets the linewidth, in pixels. Default is one pixel wide.

e -r: Rendered mode. Draws object as solid.

e -B: Back face culling of polygons.

e -2: Double buffering. Prevents screen flicker on the expense of possibly less colors.

e -d: Debug objects. Prints to stderr all objects read from communcation port with the server

IRIT.

e -D: Debug input. Prints to stderr all characters read from communcation port with the server
IRIT. Lowest level of communication.

e -L NormalLen: Sets the length of the drawn normals in thousandths of a unit.

e -4: Forces four polygons per almost flat region in the surface to polygon conversion. Otherwise
two polygons only.

¢ -b BackGround: Sets the background color as three RGB integers in the range of 0 to 255.
o -S LgtSrcPos: Sets the lighting via the light source position.

o -7Z ZMin ZMax: Sets the near and far Z clipping planes.

e -M: Draw control mesh/polygon of curves and surfaces, as well.

¢ -x ExecAnim: Command to execute as a subprocess every iteration of display of an animation
sequence. This command can for example save the display into an image file, saving the animation
sequence. One parameter is passed, which is an running index starting from one.

e -P: Draws curves and surfaces (surfaces are drawn using a set of isocurves, see -1, or polygons,
see -f).

e -z: Prints version number and current defaults.

Irit Solid modeler G. Elber 96

All display devices are clients communicating with the server (IRIT) using IPC (inter process
communication). On Unix and Window NT sockets are used. A Windows NT client can talk to a
server (IRIT) on a unix host if hooked to the same netwrok. On OS2 pipes are used, and both the
client and server must run on the same machine. On AmigaDOS exec messages are used, and both the
client and server must run on the same machine.

The server (IRIT) will automatically start a client display device if the IRIT_DISPLAY environment
variable is set to the name and options of the display device to run. For example:

setenv IRIT_DISPLAY xgldrvs -s-

The display device must be in a directory that is in the path environment variable. Most display
devices require the ’-s-’ flags to run in a non-standalone mode, or a client-server mode. Most drivers
can also be used to display data in a standalone mode (i.e., no server). For example:

xgldrvs -s solidl.dat irit.mat

Effectively, all the display devices are also data display programs (poly3d, which was the display
program prior to version 4.0, is retired in 4.0). Therefore some functionality is not always as expected.
For example, the quit button will always force the display device to quit, even if poped up from IRIT,
but will not cause IRIT to quit as might logically expected. In fact, the next time IRIT will try to
communicate with the display device, it will find the broken connection and will start up a new display
device.

Most display devices recognize attributes found on objects. The following attributes are usually
recognized (depending on the device capability.):

e COLOR: Selects the drawn color of the object to be one of the 8 /16 predefined colors in the IRIT
system: white, red, green, blue, yellow, cyan, magenta, black. RGB: Overwrites (if supported)
the COLOR attribute (if given) and sets the color of the object to the exact prescribed RGB set.
DWIDTH: Sets the width in pixels of the drawn object, when drawn as a wireframe.

All display devices recognize all the command line flags and all the configuration options in a
configuration file, as described below. The display devices will make attemps to honor the requests, to
the best of their ability. For example, only xgldrvs can render shaded models, and so only it will honor
a DrawSolid configuration options.

12.1 Command Line Options

?7?7drvs [-s] [-u]l [-n] [-N] [-i] [-c] [-C] [-m] [-a] [-g x1,x2,y1,y2]
[-G x1,x2,y1,y2] [-I #IsolLines] [-F PolygonOpti FineNess]
[-f PolylineOpti SampPerCrv] [-1 LineWidth] [-r] [-B] [-2]
[-d] [-D] [-L NormalLen] [-4] [-b BackGround] [-S LgtSrcPos]
[-Z ZMin ZMax] [-M] [-P] [-x ExecAnim] [-z] DFiles

e -s: Runs the driver in a Standalone mode. Otherwise, the driver will attempt to communicate
with the IRIT server.

e -u: Forces a Unit matrix. That is, input data are not transformed at all.
e -n: Draws normals of vertices.
e -N: Draws normals of polygons.

e -i: Draws internal edges (created by IRIT) - default is not to display them, and this option will
force displaying them as well.

Irit Solid modeler G. Elber 95

scl_y = scl;
scl_z = scl;
mov_xyz = creparam(circle(vector(0, 0, 0), 2.0), 4.0, 5.0);

attrib(d, "animation", list(mov_xyz, visible));
free(visible);

visible = creparam(cbezier(list(pt12, pti3)), 0.0, 5.0);

attrib(a, "animation", list(rot_x, mov_x, scl, scl_x, visible));
attrib(b, "animation", list(rot_y, mov_y, scl, scl_y, visible));
attrib(¢, "animation", list(rot_z, mov_z, scl, scl_z, visible));

color(a, red);

color(b, green);
color(c, blue);
color(d, cyan);

demo = list(a, b, ¢, d);

interact(demo);
viewanim(0, 5, 0.01);

In this example, we create four objects, three cubes and one sphere. Animation curves to translate
the three cubes along the three axes for the time period of t = 0 to t = 1.2 are created. Rotation
curves to rotate the three cubes along the three axes are then created for time period of t = 1.2 to t
= 2.5. Finally, for the time period of t = 2.5 to t = 4.0. the cubes are (not only) unifomly scaled. For
the time period of t = 4 to t = 5, the cubes become invisible and the sphere, that becomes visible, is
rotated along a circle of radius 2.

12 Display devices

The following display device drivers are available,

Device Name Invocation Environment
xgldrvs xgldrvs -s- SGI 4D GL regular driver.
xogldrvs xogldrvs -s- SGI 4D Open GL/Motif driver.
xgladap xgladap -s- SGI 4D GL adaptive isocurve
experimental driver.
x11drvs x11drvs -s- X11 driver.
xmtdrvs xmtdrvs -s- X11 Motif driver.
xglmdrvs xglmdrvs -s- SGI 4D GL and X11/Motif driver.
wntdrvs wntdrvs -s- IBM PC Windows NT driver.
wntgdrvs wntgdrvs -s- IBM PC Windows NT Open GL driver.
0s2drvs 0s2drvs -s- IBM PC OS2 2.x driver.
amidrvs amidrvs -s- AmigaDOS 2.04+ driver.
nuldrvs nuldrvs -s- [-d] [-D] A device to print the
object stream to stdout.

Irit Solid modeler G. Elber 94

CREPARAM(mov_x, 3.0, 5.0);

to set the time of the motion in the x axis to be from ¢ = 3 to ¢t = 5. for ¢ < 3, mov_x(3) is used,
and for ¢ > 5, mov_x(5) is employed.

the animation curves are regular objects in the IRIT system. Hence, only one object named mov_x
or scl can exist at one time. If you create a new object named mov_x, the old one is overwritten! To
preserve old animation curves you can detach the old ones by executing free(mov_x)’ that removes the
object named mov_x from IRIT’s object list but not from its previous used locations within other list
objects, if any. For example:

mov_x = cbezier(ctlpt(E1, 0.0),

ctlpt(E1, 1.0));
attrib(objl, "animation", list(mov_x));
free(mov_x);

mov_x = cbezier(ctlpt(E1, 2.0),

ctlpt(E1, 3.0));
attrib(obj2, "animation", list(mov_x));
free(mov_x);

11.2 A more complete animation example

a = box(vector(0, 0, 0), 1, 1, 1);
b = box(vector(0, 0, 0), 1, 1, 1);
¢ = box(vector(0, 0, 0), 1, 1, 1);
d = sphere(vector(0, 0, 0), 0.7);
pt0 = ctlpt(el, 0.0);

ptl = ctlpt(el, 1.0);

pt2 = ctlpt(el, 2.0);

pté6 = ctlpt(el, 6.0);

pt360 = ctlpt(el, 360.0);

pt10 = ctlpt(el, -4.0);

ptil = ctlpt(el, 1.0);

ptl2 = ctlpt(el, .0);

pt13 = ctlpt(el, -1.0);

visible = creparam(cbezier(list(pt10, pti1l)), 0.0, 5.0);

mov_x = creparam(cbezier(list(ptO, pt6, pt2)), 0.0, 1.2);
mov_y = MOV_X;

mov_z = mOovV_X;

rot_x = creparam(cbspline(2,

list(ptO, pt360, ptO),
list(KV_OPEN)),

1.2, 2.5);

rot_y = rot_x;

rot_z = rot_x;

scl = creparam(cbezier(list(ptl, pt2, ptl, pt2, ptl)),
2.5, 4.0);

scl_x scl;

Irit Solid modeler G. Elber 93

10.7.53 WHITE
A constant defining a WHITE color.

10.7.54 YELLOW
A constant defining a YELLOW color.

11 Animation

The animation tool adds the capability of animating objects using forward kinematics, exploiting
animation curves. Each object has different attributes, that prescribe its motion, scale, and visibility
as a function of time. Every attribute has a name, which designates it’s role. For instance an attribute
animation curve named MOV _X describes a translation motion along the X axis.

11.1 How to create animation curves in IRIT

Let OBJ be an object in IRIT to animate.
Animation curves are either scalar (E1/P1) curves or three dimensional (E3/P3) curves with one
of the following names:

MOV _X, MOV_Y, MOV _7 | Translation along one axis

MOV _XYZ Arbitrary translation along all three axes
ROT_X, ROT.Y, ROT_Z | Rotating around a single axis (degrees)
SCL_X, SCL_Y, SCL_Z Scale along a single axis

SCL Global scale

VISIBLE Visibility

The visibility curve is a scalar curve that enables the display of the object if the visibility curve is
positive at time t and disables the display (hide) the object if the visibility curve is negative at time t.
The animation curves are all attached as an attribute named ”animation” to the object OBJ.

Example:

mov_x = cbezier(ctlpt(E1, 0.0),
ctlpt(E1, 1.0));

scl = cbezier(ctlpt(E1, 1.0),
ctlpt(E1, 0.1));

rot_y = cbezier(ctlpt(E1, 0.0),
ctlpt(E1, 0.0));

ctlpt(E1, 360.0));
attrib(0BJ, "animation", list(mov_x, scl, rot_y));

To animate OBJ between time zero and one (Bezier curves are always between zero and one), by
moving it a unit size in the X direction, scaling it to angular speed from zero to 360 degrees.

OBJ can now be save into a file or displayed via one of the regular viewing commands in IRIT (i.e.
VIEWOBJ).

Animation is not always between zero and one. To that end one can apply the CREPARAM
function to modify the parametric domain of the animation curve. The convention is that if the time
is below the starting value of the parametric domain, the starting value of the curve is used. Similarly
if the time is beyond the end of the parameter domain of the animation curve, the end value of the
animation curve is used.

Example:

Irit Solid modeler G. Elber

10.7.39 POINT_TYPE

A constant defining an object of type point.

10.7.40 POLY_TYPE

A constant defining an object of type poly.

10.7.41 RED

A constant defining a RED color.

10.7.42 ROW

A constant defining the ROW direction of a surface or a trivariate mesh.

10.7.43 SGI
A constant designating an SGI system, in the MACHINE variable.

10.7.44 STRING_TYPE

A constant defining an object of type string.

10.7.45 SURFACE_TYPE

A constant defining an object of type surface.

10.7.46 SUN
A constant designating a SUN system, in the MACHINLE variable.

10.7.47 TRIMSRF_TYPE

A constant defining an object of type trimmed surface.

10.7.48 TRIVAR_TYPE

A constant defining an object of type trivariate function.

10.7.49 TRUE

A non zero constant. May be used as Boolean operand.

10.7.50 UNDEF_TYPE

A constant defining an object of no type (yet).

10.7.51 UNIX

A constant designating a generic UNIX system, in the MACHINE variable.

10.7.52 VECTOR_TYPE

A constant defining an object of type vector.

92

Irit Solid modeler G. Elber 91

10.7.25 MSDOS
A constant designating an MSDOS system, in the MACHINE variable.

10.7.26 NUMERIC_TYPE

A constant defining an object of type numeric.

10.7.27 OFF
Synonym of FALSE.

10.7.28 ON
Synonym for TRUE.

10.7.29 P1

A constant defining a P1 (W and WX coordinates, in that order) rational control point type.

10.7.30 P2

A constant defining a P2 (W, WX, and WY coordinates, in that order) rational control point type.

10.7.31 P3

A constant defining a P3 (W, WX, WY, and WZ coordinates, in that order) rational control point
type.

10.7.32 P4

A constant defining a P4 rational control point type.

10.7.33 P5

A constant defining a P5 rational control point type.

10.7.34 PARAM_CENTRIP

A constant defining a centripetal length parametrization.

10.7.35 PARAM_CHORD

A constant defining a chord length parametrization.

10.7.36 PARAM_UNIFORM

A constant defining an uniform parametrization.

10.7.37 PI
The constant of 3.141592...

10.7.38 PLANE_TYPE

A constant defining an object of type plane.

Irit Solid modeler G. Elber

10.7.11 E3

A constant defining an E3 (X, Y and Z coordinates) control point type.

10.7.12 E4

A constant defining an E4 control point type.

10.7.13 E5

A constant defining an E5 control point type.

10.7.14 FALSE

A zero constant. May be used as Boolean operand.

10.7.15 GREEN
A constant defining a GREEN color.

10.7.16 HP
A constant designating an HP system, in the MACHINE variable.

10.7.17 IBMOS2
A constant designating an IBM system running under OS2, in the MACHINE variable.

10.7.18 IBMNT

A constant designating an IBM system running under Windows NT, in the MACHINE variable.

10.7.19 KV_FLOAT

A constant defining a floating end condition uniformly spaced knot vector.

10.7.20 KV_OPEN

A constant defining an open end condition uniformly spaced knot vector.

10.7.21 KV_PERIODIC

A constant defining a periodic end condition with uniformly spaced knot vector.

10.7.22 LIST_TYPE

A constant defining an object of type list.

10.7.23 MAGENTA
A constant defining a MAGENTA color.

10.7.24 MATRIX_TYPE

A constant defining an object of type matrix.

90

Irit Solid modeler G. Elber]9

10.6 System constants

The following constants are used by the various functions of the system to signal certain conditions.
Internally, they are represented numerically, although, in general, their exact value is unimportant and
may be changed in future versions. In the rare circumstance that you need to know their values, simply
type the constant as an expression.

Example:

MAGENTA;

10.7 AMIGA
A constant designating an AMIGA system, in the MACHINE variable.

10.7.1 APOLLO
A constant designating an APOLLO system, in the MACHINE variable.

10.7.2 BLACK
A constant defining a BLACK color.

10.7.3 BLUE
A constant defining a BLUE color.

10.7.4 COL

A constant defining the COLumn direction of a surface or a trivariate mesh.

10.7.5 CTLPT_TYPE

A constant defining an object of type control point.

10.7.6 CURVE_TYPE

A constant defining an object of type curve.

10.7.7 CYAN
A constant defining a CYAN color.

10.7.8 DEPTH
A constant defining the DEPTH direction of a trivariate mesh. See TBEZIER, TBSPLINE.

10.7.9 E1

A constant defining an E1 (X only coordinate) control point type.

10.7.10 E2

A constant defining an E2 (X and Y coordinates) control point type.

Irit Solid modeler G. Elber]

10.5.5 POLY_APPROX_ OPT

A variable controlling the algorithm to convert surfaces to polygons. This two digit number control
the method that is used to subdivide a surface into polygons. The first digit (units) can be one of:

1 An alternate U and V subdivision direction. Once U is
subdivided and then V is subdivided.

2 A min max subdivision direction. In other words, the
direction that minimizes the maximal error is selected.

The second digit (tenths) can be one of:

0 A fixed sized regular grid. The side of the grid is set
via the RESOLUTION variable.

1 This mode is not for general use.
Maximal distance between the surface and its polygonal
approximation is bounded by bilinear surface fit.
Maximal distance allowed is set via POLY_APPROX_TOL.
Recommended choice for optimal polygonization.

3 This mode is not for general use.

10.5.6 POLY_APPROX UV

A Boolean predefined variable. If TRUE, UV values of surface polygonal approximation are placed on
attribute lists of vertices.

10.5.7 POLY_APPROX_TOL

A numeric predefined tolerance control on the distance between the surface and its polygonal approx-
imation in POLY_APPROX_OPT settings.

10.5.8 PRSP _MAT

Predefined matrix object (MatrixType) to hold the perspective matrix used/set by VIEW and/or
INTERACT commands. See also VIEW_MAT.

10.5.9 RESOLUTION

Predefined numeric object (NumericType) that sets the accuracy of the polygonal primitive geometric
objects and the approximation of curves and surfaces. Holds the number of divisions a circle is divided
into (with minimum value of 4). If, for example, RESOLUTION is set to 6, then a generated CONE
will effectively be a six-sided pyramid. Also controls the fineness of freeform curves and surfaces when
they are approximated as piecewise linear polylines, and the fineness of freeform surfaces when they
are approximated as polygons.

10.5.10 VIEW_MAT

Predefined matrix object (MatrixType) to hold the viewing matrix used/set by VIEW and/or INTER-
ACT commands. See also PRSP_MAT.

Irit Solid modeler G. Elber 7

VIEWCLEAR();

VIEW(axes, off);
VIEWSTATE("LngrVecs'");
VIEWSTATE("DrawSolid");
VIEWSAVE("matrixil");
VIEWREMOVE("axes");
VIEWDISC();

10.4.33 VIEWOBJ

VIEWOBJ(GeometricTreeType Object)

Displays the (geometric) object(s) as given in Object. Object may be any GeometricType or a
list of other GeometricTypes nested to an arbitrary level.

Unlike IRIT versions prior to 4.0, VIEW_MAT is not explicitly used as the transformation matrix.
In order to display with a VIEW_MAT view, VIEW_MAT should be listed as an argument (in that
exact name) to VIEWOBJ. Same is true for the perspective matrix PRSP_MAT.

Example:

VIEWOBJ(list(view_mat, Axes));

displays the predefined object Axes in the viewing window using the viewing matrix VIEW_MAT.

10.5 System variables

System variables are predefined objects in the system. Any time IRIT is executed, these variable are
automatically defined and set to values which are sometimes machine dependent. These are regular
objects in any other sense, including the ability to delete or overwrite them. One can modify, delete,
or introduce other objects using the IRITINIT.IRT file.

10.5.1 AXES
Predefined polyline object (PolylineType) that describes the XY 7 axes.

10.5.2 DRAWCTLPT

Predefined Boolean variable (NumericType) that controls whether curves’ control polygons and sur-
faces” control meshes are drawn (TRUE) or not (FALSE). Default is FALSE.

10.5.3 FLAT4PLY

Predefined Boolean object (NumericType) that controls the way almost flat surface patches are con-
verted to polygons: four polygons (TRUE) or only two polygons (FALSE). Default value is FALSE.
10.5.4 MACHINE

Predefined numeric object (NumericType) holding the machine type as one of the following constants:

MSDOS, SGI, HP, SUN, APOLLO, UNIX, IBMOS2, IBMNT, and AMIGA.

Irit Solid modeler G. Elber 86

10.4.30 VARLIST

VARLIST()

List all the currently defined objects in the system.

10.4.31 VECTOR

VectorType VECTOR(NumericType X, NumericType Y, NumericType Z)

Creates a vector type object, using the three provided NumericType scalars.

10.4.32 VIEW

VIEW(GeometricTreeType Object, NumericType ClearWindow)

Displays the (geometric) object(s) as given in Object.

If ClearWindow is non-zero (see TRUE/FALSE and ON/OFF) the window is first cleared (before
drawing the objects).

Example:

VIEW(Axes, FALSE);

displays the predefined object Axes in the viewing window on top of what is drawn already.

In version 4.0, this function is emulated (see iritinit.irt) using the VIEWOBJ function. In order
to use the current viewing matrix, VIEW_MAT should be provided as an additional parameter. For
example,

VIEW(1ist(view_mat, 0bj), TRUE);

However, since VIEW is a user defined function, the following will not use VIEW_MAT as one
would expect:

VIEW(view_mat, TRUE);

because VIEW_MAT will be renamed inside the VIEW user defined function to a local (to the user
defined function) variable.
In iritinit.irt one can find several other useful VIEW related functions:

VIEWCLEAR Clears all data displayed on the display device.
VIEWREMOVE Removes the object specified by name from display.

VIEWDISC Disconnects from display device (which is still running)
while allowing IRIT to connect to a new device.
VIEWEXIT Forces the display device to exit.
VIEWSAVE Request sdisplay device to save transformation matrix.
BEEP An emulation of the BEEP command of versions prior to 4.0.

VIEWSTATE Allows to change the state of the display device.

For the above VIEW related functions, only VIEWREMOVE, VIEWSAVE, and VIEWSTATE
require a parameter, which is the file name and view state respectively. The view state can be one of
several commands. See the display device section for more.

Examples:

Irit Solid modeler G. Elber 85

10.4.26 SAVE
SAVE(StringType FileName, AnyType Object)

Saves the provided Object in the specified file name FileName. No extension type is needed
(ignored if specified), and ”.dat” is supplied by default. Object can be any object type, including list,
in which structure is saved recursively. See also LOAD. If a display device is actively running at the
time SAVE is invoked, its transformation matrix will be saved with the same name but with extension
type of 7.mat” instead of ”.dat”.

This command can also be used to save binary files. Ascii regular data files are usually loaded in
much more time then binary files due the the parsing required. Binary data files can be loaded directly
like ascii files in IRIT, but must be inspected through IRIT tools such as dat2irit. A binary data file
must have a 7.bdt” (Binary DaTa) type in its name.

Under unix, files will be saved compressed if the given file name has a postfix of 7.Z”. The unix
system’s ”compress” will be invoked via a pipe for that purpose.

Example:

SAVE("0Objl.bdt.Z", 0bjl);
Saves Objl in the file Objl.bdt.Z as compressed binary file.

10.4.27 SNOC
SNOC(AnyType 0Object, ListType ListObject)

Similar to the lisp cons operator but puts the new Object in the end of the list ListObject instead
of the beginning, in place.
Example:

Lst = 1list(axes);
SNOC(Srf, Lst);

and now Lst is equal to the list ’list(axes, Srf)’.

10.4.28 SYSTEM
SYSTEM(StringType Command)
Executes a system command Command. For example,

SYSTEM("1s -1");

10.4.29 TIME
TIME(NumericType Reset)

Returns the time in seconds from the last time TIME was called with Reset TRUE. This time
is CPU time if such support is available from the system (times function), and is real time otherwise
(time function). The time is automatically reset at the beginning of the execution of this program.

Example:

Dummy = TIME(TRUE);

TIME(FALSE);

prints the time in seconds between the above two time function calls.

Irit Solid modeler G. Elber 84

All the %’ commands can include any modifier that is valid in the C programming language printf
routine, including | (long), prefix character(s), size, etc. The point, vector, plane, and object commands
can also be modified in a similar way, to set the format of the numeric data printed.

Also supported are the newline and tab using the backslash escape character:

PRINTF("\\tThis is the char \"\\/%\"\\n", nil());

Backslashes should be escaped themselves as can be seen in the above example. Here are few more
examples:

PRINTF("this is a string \"%s\" and this is an integer %8d.\\n",
1list("STRING'", 1987));

PRINTF("this is a vector [%8.51vf]\\n", list(vector(1,2,3)));

IritState("DumpLevel', 9);

PRINTF('"this is a object %8.61Df...\\n", list(axes));

PRINTF("this is a object %10.81Dg...\\n", list(axes));

This implementation of PRINTF is somewhat different than the C programming language’s version,
because the backslash always escapes the next character during the processing stage of IRIT’s parser.
That is, the string

’\\tThis is the char \"\\/\"\\n’
is actually parsed by the IRIT’s parser into
’\tThis is the char "\%"\n’

because this is the way the IRIT parser processes strings. The latter string is the one that PRINTF
actually see.
10.4.24 PROCEDURE

ProcName = PROCEDURE(Prmi, Prm2, ... , PrmN):LclVall:LclVar2: ... :LclVarM:
ProcBody;

A procedure is a function that does not return a value, and therefore the return variable (see
FUNCTION) should not be used. A procedure is identical to a function in every other way. See
FUNCTION for more.

10.4.25 RMATTR

RMATTR(AnyType Object, StringType Name)

Removes attribute named Name from object Object. This function will have no affect on Object
if Object have no attribute named Name.

See also ATTRIB.

Irit Solid modeler G. Elber 83

10.4.20 MSLEEP

MSLEEP(NumericType MilliSeconds)

Causes the solid modeller to sleep for the prescribed time in milliseconds.
Example:

for (i =1, 1, sizeof(crvs),
¢ = nth(crvs, i):
color(c, yellow):
msleep(20):
viewobj(¢)

)3

Displays an animation sequence and sleeps for 20 milliseconds between iterations.
10.4.21 NTH
AnyType NTH(ListType ListObject, NumericType Index)

Returns the Index (base count 1) element of the list ListObject.
Example:

Lst = list(a, list(b, c), d);
Lst2 = NTH(Lst, 2);

and now Lst2 is equal to ’list(b, ¢).

10.4.22 PAUSE

PAUSE(NumericType Flush)

Waits for a keystroke. Nice to have if a temporary stop in a middle of an included file (see
INCLUDE) is required. If Flush is TRUE, then the input is first flushed to guarantee that the actual
stop will occur.

10.4.23 PRINTF

PRINTF(StringType CtrlStr, ListType Data)

A formatted printing routine, following the concepts of the C programming language’s printfroutine.
CtrlStr is a string object for which the following special "%’ commands are supported:

%d, %i, %o, %x, %X Prints the numeric object as an octal or hexadecimal integer.
Toe, %f, %g, Prints the numeric object in several formats of

%E, %F floating point numbers.

Tos Prints the string object as a string.

%ope, %opf, %opg Prints the three coordinates of the point object.

Tove, %ovt, Tovg Prints the three coordinates of the vector object.

%Pe, %P, %Pg, Prints the four coordinates of the plane object.

%De, %Df, %Dg, Prints the given object in IRIT’s data file format.

Irit Solid modeler G. Elber 82

This user-defined function in version 4.0 of IRIT is an emulation of the INTERACT function that
used to exist in previous versions.
Example:

INTERACT(list(view_mat, Axes, 0bj));

displays and interacts with the object Obj and the predefined object Axes. VIEW _MAT will be
used to set the starting transformation.

See VIEW and VIEWOBJ for more.

10.4.17 LIST
ListType LIST(AnyType Eleml, AnyType Elem2, ...)

Constructs an object as a list of several other objects. Only a reference is made to the Elements,
so modifying Elem1 after being included in the list will affect Elem1 in that list next time list is used!

Each inclusion of an object in a list increases its internal used reference. The object is freed iff in
used reference is zero. As a result, attempt to delete a variable (using FREE) which is referenced in
a list removes the variable, but the object itself is freed only when the list is freed.

10.4.18 LOAD
AnyType LOAD(StringType FileName)

Loads an object from the given FileName. The object may be any object defined in the system,
including lists, in which the structure is recovered and reconstructed as well (internal objects are
inserted into the global system object list if they have names). If no file type is provided, ”.dat” is
assumed.

This command can also be used to load binary files. Ascii regular data files are usually loaded in
much more time then binary files due the the parsing required. Binary data files can be loaded directly
like ascii files in IRIT, but can only be inspected through IRIT tools such as dat2irit. A binary data
file must have a ”.bdt” (Binary DaTa) type in its name.

Under unix, compressed files can be loaded if the given file name has a postfix of 7.2”. The unix

system’s ”zcat” will be invoked via a pipe for that purpose.

10.4.19 LOGFILE

LOGFILE(NumericType Set)
or

LOGFILE(StringType FileName)

If Set is non zero (see TRUE/FALSE and ON/OFF), then everything printed in the input window,
will go to the log file specified in the IRIT.CFG configuration file. This file will be created the first
time logfile is turned ON. If a string FileName is provided, it will be used as a log file name from now
on. It also closes the current log file. A ”LOGFILE(on);” must be issued after a log file name change.

Example:

LOGFILE("Datal');

LOGFILE(on);

printf("Resolution = %1f\\n", list(resolution));
LOGFILE(off);

to print the current resolution level into file Datal.

Irit Solid modeler G. Elber 81

10.4.15 IRITSTATE

IRITSTATE(StringType State, AnyType Data)

Sets a state variable in the IRIT solid modeller. Current supported state variables are,

State Name | Data Type Comments

InterpProd | ConstantType | TRUE for Bspline sym. products via interpolation
FALSE for Bspline sym. products via bezier
Debugkunc | NumericType | > 0 user func. debug information. > 2 print params
on entry, ret. val. on exit. > 4 global var. list
FloatFrmt StringType Specifies a new printf floating point format.
InterCrv NumericType | If TRUE Boolean operations creates only
intersection curves. If FALSE, full Boolean
operation results.

Coplanar NumericType | If TRUE, Coplanar polygons are handled by Boolean
operations.

PolySort NumericType | Axis of Polygon Intersection sweep in Boolean
operations: 0 for X axis, 1 for Y axis, 2 for

7 axis.

EchoSource | NumericType | If TRUE, irit scripts are echoed to stdout.
DumpLevel | NumericType | Controls the way variables/expressions ar dumped.
Only object names/types if >= 0, Scalars and
vectors are dumped if >= 1, Curves and Surfaces
are dumped if DumpLvl >= 2, Polygons/lines are
dumped if DumpLvl >= 3, and List objects are
traversed recursively if DumpLv]l >= 4.

TrimCrvs NumericType | Number of samples the higher order trimmed curves
are sampled, in piecewise linear approximation.

If zero, computed symbolically as composition.

Example:

IRITSTATE("DebugFunc", 3);
IRITSTATE("FloatFrmt", "%8.51g");

To print parameters of user defined functions on entry, and return value on exit. Also selects a
floating point printf format of ”

10.4.16 INTERACT

INTERACT(GeometryTreeType Object)
A user-defined function (see iritinit.irt) that does the following, in order:
1. Clear the display device.
2. Display the given Object.

3. Pause for a keystroke.

Irit Solid modeler G. Elber R0

distptpt = FUNCTION(ptl, pt2):
return = sqrt(sqr(coord(ptl, 1) - coord(pt2, 1)) +
sqr(coord(ptl, 2) - coord(pt2, 2)) +
sqr(coord(ptl, 3) - coord(pt2, 3)));

crvlength = FUNCTION(crv, n):pd:t:tl:t2:dt:ptl:pt2:i:
return = 0.0:
pd = pdomain(crv):

t1 = nth(pd, 1):
t2 = nth(pd, 2):
dt = (t2 - t1) / n:

ptl = coerce(ceval(crv, t1), e3):

for (i =1, 1, n,
pt2 = coerce(ceval(crv, t1 + dt * i), e3):
return = return + distptpt(ptl, pt2):
ptl = pt2);

Try, for example:

crvlength(circle(vector(0.0, 0.0, 0.0), 1.0), 30) / 2;
crvlength(circle(vector(0.0, 0.0, 0.0), 1.0), 100) / 2;
crvlength(circle(vector(0.0, 0.0, 0.0), 1.0), 300) / 2;

See PROCEDURE and IRITSTATE’s ”Debugkunc” for more.

10.4.13 IF

IF(NumericType Cond, AnyType TrueBody { , AnyType FalseBody })

Executes TrueBody (group of regular commands, separated by COLONs - see FOR loop) if the
Cond holds, i.e., it is a numeric value other than zero, or optionally, if it exists, executes FalseBody
if the Cond does not hold, i.e., it evaluates to a numeric value equal to zero.

Examples:

IF (machine == IBM0S2, resolution = 5, resolution = 10);
IF (a>b, max = a, max = b);

sets the resolution to be 10, unless running on an IBMOS2 system, in which case the resolution
variable will be set to 5 in the first statement, and set max to the maximum of a and b in the second
statement.

10.4.14 INCLUDE

INCLUDE(StringType FileName)

Executes the script file FileName. Nesting of include file is allowed up to 10 levels deep. If an
error occurs, all open files in all nested files are closed and data are waited for at the top level (standard
input).

A script file can contain any command the solid modeler supports.

Example:

INCLUDE("general.irt");

includes the file "general.irt”.

Irit Solid modeler G. Elber 79

10.4.11 FREE

FREE(GeometricType Object)

Because of the usually huge size of geometric objects, this procedure may be used to free them.
Reassigning a value (even of different type) to a variable automatically releases the old variable’s
allocated space as well.

10.4.12 FUNCTION

FuncName = FUNCTION(Prml, Prm2, ... , PrmN):LclVali:LclVar2: ... :LclVarM:
FuncBody;

Defines a function named FuncName with N parameters and M local variables (N, M >= 0). Here
is a (simple) example of a function with no local variables and a single parameter that computes the
square of a number:

sqr = FUNCTION(x):
return = x * X;

Functions can be defined with optional parameters and optional local variables. A function’s body
may contain an arbitrary set of expressions including for loops, (user) function calls, or even recursive
function calls, all separated by colons. The returned value of the function is the value of an automat-
ically defined local variable named return. The return variable is a regular local variable within the
scope of the function and can be used as any other variable.

If a variable’s name is found in neither the local variable list nor the parameter list, it is searched
in the global variable list (outside the scope of the function). Binding of names of variables is static as
in the C programming language.

Because binding of variables is performed in execution time, there is a somewhat less restrictive
type checking of parameters of functions that are invoked within a user’s defined function.

A function can invoke itself, i.e., it can be recursive. However, since a function should be defined
when it is called, a dummy function should be defined before the recursive one is defined:

factorial = function(x):return = x; # Dummy function.
factorial = function(x):
if (x <= 1, return = 1, return = x * factorial(x - 1));

Overloading is valid inside a function as it is outside. For example, for

add = FUNCTION(x, y):
return = x + y;

the following function calls are all valid:

add(1, 2);
add(vector(1,2,3), point(1,2,3));
add(box(vector(-3, -2, -1), 6, 4, 2), box(vector(-4, -3, -2), 2, 2, 4));

Finally, here is a more interesting example that computes an approximation of the length of a curve,
using the sqr function defined above:

Irit Solid modeler G. Elber 78

10.4.6 COMMENT
COMMENT

Two types of comments are allowed:

1. One-line comment: starts anywhere in a line at the ’#’ character, up to the end of the line.

2. Block comment: starts at the COMMENT keyword followed by a unique character (anything
but white space), up to the second occurrence of that character. This is a fast way to comment out
large blocks.

Example:

COMMENT $
This is a comment

10.4.7 ERROR

ERROR(StringType Message) ;

Breaks the execution and returns to IRIT main loop, after printing Message to the screen. May
be useful in user defined function to break execution in cases of fatal errors.

10.4.8 EXIT
EXITQ);

Exits from the solid modeler. NO warning is given!

10.4.9 FOR
FOR(NumericType Start, NumericType Increment, NumericType End, AnyType Body)

Executes the Body (see below), while the FOR loop conditions hold. Start, Increment, End
are evaluated first, and the loop is executed while <= End if Increment > 0, or while >= End
if Increment < 0. If Start is of the form ”Variable = Expression”, then that variable is updated
on each iteration, and can be used within the body. The body may consist of any number of regular
commands, separated by COLONs, including nesting FOR loops to an arbitrary level.

Example:

step = 10;
rotstepx = rotx(step);
FOR (a =1, 1, 360 / step,
view_mat = rotstepx * view_mat:
view(list(view_mat, b, axes), ON)

)

Displays b and axes with a view direction that is rotated 10 degrees at a time around the X axis.

10.4.10 HELP
HELP(StringType Subject)

Provides help on the specified Subject.
Example:

HELP ((1]) ;
will list all IRIT help subjects.

Irit Solid modeler G. Elber 77

10.4.3 CLNTCLOSE

CLNTCLOSE(NumericType Handler, NumericType Kill)

Closes a communication channel to a client. Handler contains the index of the communication
channel opened via CLNTEXEC. If Kill, the client is send an exit request for it to die. Otherwise, the
communication is closed and the client is running stand alone. See also CLNTREAD, CLNTWRITE,

and CLNTEXEC.
Example:

h2 = clntexec("nuldrvs -s-");

CLNTCLOSE(h2,TRUE);

closes the connection to the nuldrvs client, opened via CLNTEXEC.

10.4.4 CLNTWRITE

CLNTWRITE(NumericType Handler, AnyType Object)

Writes one object Object to a communication channel of a client. Handler contains the index
of the communication channel opened via CLNTEXEC. See also CLNTREAD, CLNTCLOSE, and
CLNTEXEC.

Example:

h2 = clntexec("nuldrvs -s-");

CLNTWRITE(h2, Model);

clntclose(h2,TRUE);

writes the object named Model to client through communication channel h2.

10.4.5 COLOR

COLOR(GeometricType Object, NumericType Color)

Sets the color of the object to one of those specified below. Note that an object has a default
color (see IRIT.CFG file) according to its origin - loaded with the LOAD command, PRIMITIVE, or
BOOLEAN operation result. The system internally supports colors (although you may have a B&W
system) and the colors recognized are: BLACK, BLUE, GREEN, CYAN, RED, MAGENTA,
YELLOW, and WHITE.

See the ATTRIB command for more fine control of colors using the RGB attribute.

Irit Solid modeler G. Elber 76

10.3.3 ROTY

MatrixType ROTY(NumericType Angle)

Creates a rotation around te Y transformation matrix with Angle degrees.

10.3.4 ROTZ

MatrixType ROTZ(NumericType Angle)

Creates a rotation around the 7 transformation matrix with Angle degrees.

10.3.5 SCALE

MatrixType SCALE(VectorType ScaleFactors)

Creates a scaling by the ScaleFactors transformation matrix.

10.3.6 TRANS

MatrixType TRANS(VectorType TransFactors)

Creates a translation by the TransFactors transformation matrix.

10.4 General purpose functions
10.4.1 ATTRIB

ATTRIB(AnyType Object, StringType Name, AnyType Value)

Provides a mechanism to add an attribute of any type to an Object, with name Name and value
Value. This ATTRIB function is tuned and optimized toward numeric values or strings as Value
although any other object type can be saved as attribue.

These attributes may be used to pass information to other programs about this object, and are
saved with the objects in data files. For example,

ATTRIB(Glass, "rgb", "255,0,0");
ATTRIB(Glass, 'refract'", 1.4);

RMATTR(Glass, "rgb"); # Removes 'rgb" attribute.

sets the RGB color and refraction index of the Glass object and later removes the RGB attribute.
Attribute names are case insensitive. Spaces are allowed in the Value string, as well as the double
quote itself, although the latter must be escaped:

ATTRIB(Glass, "text", "Say \'"this is me\"");
See also RMATTR for removal of attributes.

10.4.2 CHDIR

CHDIR(StringType NewDir)

Sets the current working directory to be NewDir.

Irit Solid modeler G. Elber 75

Figure 50: Three trimmed surfaces created from the same Bspline surface. In thin lines is the original
surface while in thick lines are the trimmed surfaces.
m = trans(vector(-1, 0, 0)) * rotx(45) * trans(vector(1, 0, 0));

constructs a transform to rotate an object around the X = 1 line, 45 degrees. A matrix representing
the inverse transformation can be computed as:

InvM = m = -1

See also overloading of the - operator.

10.3.1 HOMOMAT
MatrixType HOMOMAT(ListType MatData)

Creates an arbitrary homogeneous transformation matrix by manually providing its 16 coefficients.
Example:

for (a=1, 1, 720 / step,
view_mat = save_mat *

HOMOMAT(1list(list(1, 0, 0, 0),
list(0, 1, 0, 0),
list(0, 0, 1, -a * step / 500),
list(0, 0, 0, 1))):
view(list(view_mat, b, axes), on)
)
looping and viewing through a sequence of perspective transforms, created using the HOMOMAT
constructor.

10.3.2 ROTX

MatrixType ROTX(NumericType Angle)

Creates a rotation around the X transformation matrix with Angle degrees.

Irit Solid modeler G. Elber 74

Creates a trimmed surface from the provided surface Srf and the trimming curve TrimCrv or
curves TrimCrvs. If UpperLevel, an additional trimming curve is automatically being added that
contains the entire parametric domain of Srf. No validity test is performed on the trimming curves
which are assumed two dimensional curves contained in the parametric domain of Srf.

Example:
spts = list(list(ctlpt(E3, 0.1, 0.0, 1.0),
ctlpt(E3, 0.3, 1.0, 0.0),
ctlpt(E3, 0.0, 2.0, 1.0)),
list(ctlpt(E3, 1.1, 0.0, 0.0),
ctlpt(E3, 1.3, 1.5, 2.0),
ctlpt(E3, 1.0, 2.1, 0.0)),
list(ctlpt(E3, 2.1, 0.0, 2.0),
ctlpt(E3, 2.3, 1.0, 0.0),
ctlpt(E3, 2.0, 2.0, 2.0)),
list(ctlpt(E3, 3.1, 0.0, 0.0),
ctlpt(E3, 3.3, 1.5, 2.0),
ctlpt(E3, 3.0, 2.1, 0.0)),
list(ctlpt(E3, 4.1, 0.0, 1.0),
ctlpt(E3, 4.3, 1.0, 0.0),
ctlpt(E3, 4.0, 2.0, 1.0)));

sb = sbspline(3, 3, spts, list(1list(KV_OPEN), list(KV_OPEN)));

TCrvi

cbspline(2,

list(ctlpt(E2, 0.3, 0

ctlpt(E2, 0.7, O

ctlpt(E2, 0.7, O.

ctlpt(E2, 0.3, 0

ctlpt(E2, 0.3, 0

list(KV_OPEN));

circle(vector(0.5, 0.5, 0.0), 0.25);
cbspline(3,

list(ctlpt(E2,

ctlpt(E2,

ctlpt(E2,

ctlpt(E2, s

list(KV_PERIODIC));

TCrv2
TCrv3

TSrf1
TSrf2
TSrf3

TRIMSRF(sb, TCrvl, false);

TRIMSRF(sb, TCrvl, true);

TRIMSRF(sb, list(TCrvi, TcRv2 * ty(1), TCrv3 * ty(2)),
false);

constructs three trimmed surfaces. Tsrfl contains the out boundary and excludes what is inside
TCrvl, TSrf2 contains only the domain inside TCrv1l. TCrv3 has three holes corresponds to the
three trimming curves. See Figure 50.

10.3 Object transformation functions

All the routines in this section construct a 4 by 4 homogeneous transformation matrix representing the
required transform. These matrices may be concatenated to achieve more complex transforms using
the matrix multiplication operator . For example, the expression

Irit Solid modeler

AR VTA

SESOSN\

AN

/N
i\ /
“=;"‘;"K‘L"‘ A

- ’) , v -
1%‘?"«;5%“\"?‘.1\\‘
INERIR NLX. DT
SIS Y

G. Elber

—F
. ?‘?ﬂl‘\\“!

o
‘@AY el ,*
SRR\ Y

b

SO\
AN\

73

AN\ /
X o

Figure 49: A region can be extracted from a freeform trivariate using TREGION.

Extracts a region of TV between MinParam and MaxParam in the specified Direction. Both
MinParam and MaxParam should be contained in the parametric domain of TV in Direction.

Example:

Tvl = tbezier(list(1list(list(ctlpt(
ctlpt(
list(ctlpt(
ctlpt(
list(list(ctlpt(
ctlpt(
list(ctlpt(
ctlpt(

Tvirl = TREGION(Tvl, row, 0.1, 0.2);

Tvir2 = TREGION(Tvl, row, 0.4, 0.6);
Tvir3 = TREGION(Tvl, row, 0.99, 1.0);

E3,
E3,
E3,
E3,
E3,
E3,
E3,
E3,

N NNDNOOOO
= W N PP WN -

-

-

N NOONNOO
g o N oo WwWwN e~ O

- - - - -

-

N O N ONONO

-

-

8),
4)),
2),
0)),
1),
3)),
5,
NONDEDEDEDE

extracts three regions of Tvl along the ROW direction. See Figure 49.

10.2.102 TRIMSRF

TrimSrfType TRIMSRF(SurfaceType Srf,
CurveType TrimCrv,

NumericType UpperLevel)

or

TrimSrfType TRIMSRF(SurfaceType Srf,
ListType TrimCrvs,

NumericType UpperLevel)

Irit Solid modeler G. Elber 72

Figure 48: A torus primitive can be constructed using a TORUS constructor...

10.2.99 TORUS

PolygonType TORUS(VectorType Center, VectorType Normal,
NumericType MRadius, NumericType mRadius)

Creates a TORUS geometric object, defined by Center as the center of the TORUS, Normal as
the normal to the main plane of the TORUS, MRadius and mRadius as the major and minor radii of
the TORUS. See RESOLUTION for the accuracy of the TORUS approximation as a polygonal model.

Example:
T = TORUS(vector(0.0, 0.0, 0.0), vector(0.0, 0.0, 1.0), 0.5, 0.2);

constructs a torus with major plane as the XY plane, major radius of 0.5, and minor radius of 0.2.
See Figure 48.

10.2.100 TREFINE

TrivarType TREFINE(TrivarType TV, ConstantType Direction,
NumericType Replace, ListType KnotList)

Provides the ability to Replace a knot vector of TV or refine it in the specified direction Direction
(ROW, COL, or DEPTH). KnotList is a list of knots to refine TV at. All knots should be contained
in the parametric domain of TV in Direction. If the knot vector is replaced, the length of KnotList
should be identical to the length of the original knot vector of TV in Direction. If TV is a Bezier
trivariate, it is automatically promoted to be a Bspline trivariate.

Example:

TV = TREFINE(TREFINE(TREFINE(TV,
ROW, FALSE, list(0.333, 0.667)),
COL, FALSE, list(0.333, 0.667)),
DEPTH, FALSE, list(0.333, 0.667));

refines TV in all directions by adding two more knots at 0.333 and 0.667.

10.2.101 TREGION

TrivarType TREGION(TrivarType Srf, ConstantType Direction,
NumericType MinParam, NumericType MaxParam)

Irit Solid modeler G. Elber 71

Evaluates the provided trivariate TV at the given UParam, VParam and WParam values.
UParam, VParam, WParam must be contained in the surface parametric domain if TV is a Bspline
surface, or between zero and one if TV is a Bezier trivariate. The returned control point has the same
type as the control points of TV.

Example:

CPt = TEVAL(TV1, 0.25, 0.22, 0.7);

evaluates TV at the parameter values of (0.25, 0.22, 0.7).

10.2.98 TINTERP
TrivarType TINTERP(TrivarType TV);

Given a trivariate data structure, computes a new trivariate in the same function space (i.e. same
knot sequences and orders) that interpolates the given triavriate, TV, at the node parameter values.
Example:

tv = tbspline(3, 3, 2,

list(1ist(list(ctlpt(E3, 0.1, 0.1, 0.0),
ctlpt(E3, 0.2, 0.5, 1.1),
ctlpt(E3, 0.3, 0.1, 2.2)),
list(ctlpt(E3, 0.4, 1.3, 0.5),
ctlpt(E3, 0.5, 1.7, 1.7),
ctlpt(E3, 0.6, 1.3, 2.9)),
list(ctlpt(E3, 0.7, 2.4, 0.5),
ctlpt(E3, 0.8, 2.6, 1.4),
ctlpt(E3, 0.9, 2.8, 2.3))),
list(list(ctlpt(E3, 1.1, 0.1, 0.5),
ctlpt(E3, 1.3, 0.2, 1.7),
ctlpt(E3, 1.5, 0.3, 2.9)),
list(ctlpt(E3, 1.7, 1.2, 0.0),
ctlpt(E3, 1.9, 1.4, 1.2),
ctlpt(E3, 1.2, 1.6, 2.4)),
list(ctlpt(E3, 1.4, 2.3, 0.9),
ctlpt(E3, 1.6, 2.5, 1.7),
ctlpt(E3, 1.8, 2.7, 2.5))),
list(list(ctlpt(E3, 2.8, 0.1, 0.4),
ctlpt(E3, 2.6, 0.7, 1.3),
ctlpt(E3, 2.4, 0.2, 2.2)),
list(ctlpt(E3, 2.2, 1.1, 0.4),
ctlpt(E3, 2.9, 1.2, 1.5),
ctlpt(E3, 2.7, 1.3, 2.6)),
list(ctlpt(E3, 2.5, 2.9, 0.7),
ctlpt(E3, 2.3, 2.8, 1.7),
ctlpt(E3, 2.1, 2.7, 2.7)))),

list(list(KV_OPEN),
list{ KV_OPEN),
1list(KV_OPEN)));
tvi = TINTERP(tv);

creates a quadratic by quaratic by linear trivairatiate tvi that interpolates the control points of tv
at the node parameter values.

Irit Solid modeler G. Elber 70

N

“;ii;lr.;!/~k

| F P~

Figure 47: A trivariate can be subdivided into two distinct regions using TDIVIDE.

ctlpt(E1, 2.2)),
list(ctlpt(E1, 2.3),
ctlpt(E1, 2.1)))));

DuTV = TDERIVE(TV, ROW);
DvTV = TDERIVE(TV, COL);
DwTV = TDERIVE(TV, DEPTH);

computes the gradiate of a scalar trivariate field, by computing its partials with respect to u, v,
and w.

10.2.96 TDIVIDE

TrivarType TDIVIDE(TrivarType TV, ConstantType Direction,
NumericType Param)

Subdivides a trivariate into two at the specified parameter value Param in the specified Direction
(ROW, COL, or DEPTH). TV can be either a Bspline trivairate in which Param must be conatined
in the parametric domain of the trivariate, or a Bezier trivariate in which Param must be in the range
of zero to one.

It returns a list of the two sub-trivariates. The individual trivariates may be extracted from the
list using the NTH command.

Example:

TvDiv = TDIVIDE(Tv2, depth, 0.3);
Tv2a = nth(TvDiv, 1) * tx(-2.2);
Tv2b = nth(TvDiv, 2) * tx(2.0);

subdivides Tv2 at the parameter value of 0.3 in the DEPTH direction, See Figure 47.

10.2.97 TEVAL

Ct1PtType TEVAL(TrivarType TV,
NumericType UParam,
NumericType VParam,
NumericType WParam)

Irit Solid modeler G. Elber 69

assumed periodic. The knot vector may also be a list of a single constant KV_OPEN or KV_FLOAT or
KV_PERIODIC, in which a uniform knot vector with the appropriate length and with open, floating
or periodic end condition will be constructed automatically.

The created surface is the piecewise polynomial (or rational) surface,

m n {
T(u,v,w) =33 "> PijrBiy(u)Bje(v) Brg(w) (15)

1=0 =0 k=0

where Pj;; are the control points CtlMesh, and [/, m and n are the degrees of the surface, which
are one less than UOrder, VOrder and WOrder and y, £ and ¢ are the three knot vectors of the
trivariate.

Example:

TV = TBSPLINE(2, 2, 2,

list(1list(1list(ctlpt(E3, 0.1, 0.1, 0.0),
ctlpt(E3, 0.2, 0.5, 1.1),
ctlpt(E3, 0.3, 0.1, 2.2)),
list(ctlpt(E3, 0.4, 1.3, 0.5),
ctlpt(E3, 0.5, 1.7, 1.7),
ctlpt(E3, 0.6, 1.3, 2.9)),
list(ctlpt(E3, 0.7, 2.4, 0.5),
ctlpt(E3, 0.8, 2.6, 1.4),
ctlpt(E3, 0.9, 2.8, 2.3))),
list(list(ctlpt(E3, 1.1, 0.1, 0.5),
ctlpt(E3, 1.3, 0.2, 1.7),
ctlpt(E3, 1.5, 0.3, 2.9)),
list(ctlpt(E3, 1.7, 1.2, 0.0),
ctlpt(E3, 1.9, 1.4, 1.2),
ctlpt(E3, 1.2, 1.6, 2.4)),
list(ctlpt(E3, 1.4, 2.3, 0.9),
ctlpt(E3, 1.6, 2.5, 1.7),
ctlpt(E3, 1.8, 2.7, 2.5)))),

list(1list(KV_OPEN),
list(KV_OPEN),
list(KV_OPEN)));

constructs a trilinear Bspline trivariate with open end conditions. See Figure 46.
10.2.95 TDERIVE
TrivarType TDERIVE(TrivarType TV, NumericType Dir)

Returns a vector field trivariate representing the differentiated trivariate in the given direction
(ROW, COL, or DEPTH). Evaluation of the returned trivariate at a given parameter value will return
a vector representing the partial derivative of TV in Dir at that parameter value.

TV = tbezier(list(list(list(ctlpt(E1, 0.1),
ctlpt(E1, 0.2)),
list(ctlpt(E1, 0.3),
ctlpt(E1, 0.4))),
list(list(ctlpt(E1, 2.4)

Irit Solid modeler

68

Figure 46: A trivariate Bezier of degree 2 by 3 by 3 (left) and a trilinear Bspline (right). Both share

the same control mesh.

list(1list(

list(

list(

ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(
ctlpt(

E3,
E3,
E3,
E3,
E3,
E3,
E3,
E3,
E3,
E3,
E3,

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

il e o e R i e A e)
0 O N O N1 WL O
NNNR, PR, P, OO ONN
~N W oD WN R 00O
N, ONRFLRONEFLEONLR
O ~N O N O O N W
AN T o W W WA N T W

- -
~—
~—
-

-

~—
-

- -
~—
-

-

D))))

creats a trivariate Bezier which is linear in the first direction, and quadratic in the second and third.

See Figure 46.

10.2.94 TBSPLINE

TrivarType TBSPLINE(NumericType UOrder,

NumericType VOrder,
NumericType WOrder,
ListType CtlMesh,

ListType KnotVectors)

Creates a Bspline trivariate with the provided UOrder, VOrder and WOrder orders, the control
mesh CtlMesh, and the three knot vectors in KnotVectors. CtlMesh is a list of planes, each of
which is a list of rows, each of which is a list of control points. All control points must be of point type
(E1-E5, P1-P5), or regular PointType defining the trivariate’s control mesh. Trivariate’s point type
will be of a space which is the union of the spaces of all points. KnotVectors is a list of three knot
vectors. Each knot vector is a list of NumericType knots of length Z£CtlPtList plus the Order. If,
however, the length of the knot vector is equal to Z£CtlPtList + Order + Order - 1 the curve is

Irit Solid modeler G. Elber 67

10.2.91 SYMBSUM

CurveType SYMBSUM(CurveType Crvl, CurveType Crv2)
or

SurfaceType SYMBSUM(SurfaceType Srfl, SurfaceType Srf2)

Computes the symbolic sum of the given two curves or surfaces as a curve or surface. The sum is
computed coordinate-wise.
Example:

SumCrv = SYMBSUM(Crvi, Crv2)

10.2.92 SYMBDIFF

CurveType SYMBDIFF(CurveType Crvl, CurveType Crv2)
or

SurfaceType SYMBDIFF(SurfaceType Srfl, SurfaceType Srf2)

Computes the symbolic difference of the given two curves or surfaces as a curve or surface. The
difference is computed coordinate-wise.
Example:

DiffCrv = SYMBDIFF(Crvi, Crv2)
DistSqrCrv = symbdprod(DiffCrv, DiffCrv)

10.2.93 TBEZIER

TrivarType TBEZIER(ListType CtlMesh)

Creates a Bezier trivariate using the provided control mesh. CtlMesh is a list of planes, each of
which is a list of rows, each of which is a list of control points. All control points must be of type
(E1-E5, P1-P5), or regular PointType defining the trivariate’s control mesh. Surface’s point type will
be of a space which is the union of the spaces of all points.

The created trivariate is the piecewise polynomial (or rational) function,

m n I
T(u,v,w)= Z Z Z PiixBi(u) B (v) Bi (w) (14)
1=0 j=0 k=0

where P;j;, are the control points CtlMesh. and [, m and n are the degrees of the trivariate, which
are one less than the number of points in the appropriate direction.

Example:

TV = TBEZIER(list(list(list(ctlpt(E3, 0.1, 0.1, 0.0),
ctlpt(E3, 0.2, 0.5, 1.1),
ctlpt(E3, 0.3, 0.1, 2.2)),

list(ctlpt(E3, 0.4, 1.3, 0.5),
ctlpt(E3, 0.5, 1.7, 1.7),
ctlpt(E3, 0.6, 1.3, 2.9)),

list(ctlpt(E3, 0.7, 2.4, 0.5),

Irit Solid modeler G. Elber 66

A _'—,{47/

%%y
23

N
N

mg:',l’-r
Ll

X
'\,
N

Figure 45: Three examples of the use of SWPSCLSRF (Srfl, Srf2, Srf3 from left to right in swpsclsrf
documentation).

Computes the symbolic product of the given two curves or surfaces as a curve or surface. The
product is computed coordinate-wise.
Example:

ProdSrf = SYMBPROD(Srf1, Srf2)

10.2.89 SYMBDPROD

CurveType SYMBDPROD(CurveType Crvl, CurveType Crv2)
or

SurfaceType SYMBDPROD(SurfaceType Srfl, SurfaceType Srf2)

Computes the symbolic dot (inner) product of the given two curves or surfaces as a scalar curve or
surface.
Example:

DiffCrv = symbdiff(Crvi, Crv2)
DistSqrCrv = SYMBDPROD(DiffCrv, DiffCrv)

Computes a scalar curve that at parameter ¢ is equal to the distance square between Crvl at ¢ and
Crv2.

10.2.90 SYMBCPROD

CurveType SYMBCPROD(CurveType Crvl, CurveType Crv2)
or

SurfaceType SYMBCPROD(SurfaceType Srfl, SurfaceType Srf2)

Computes the symbolic cross product of the given two curves or surfaces as a curve or surface.
Example:

NrmlSrf = SYMBCPROD(sderive(Srf, ROW), sderive(Srf, COL))

computes a normal surface as the cross product of the surface two partial derivatives (see SNRML-

SRF).

Irit Solid modeler G. Elber 65

in general. Manual refinement (in addition to ScaleRefine) of the axis curve at the proper location,
where accuracy is important, should improve the accuracy of the output. The parametric domains of
ScaleCrv and FrameCrv do not have to match the parametric domain of Axis, and their domains
are made compatible by this function.

Example:
Cross = arc(vector(-0.11, -0.01, 0.0),
vector(-0.1, -0.1, 0.0),
vector(-0.1, -0.11, 0.0)) +
arc(vector(0.1, -0.11, 0.0),
vector(0.1, -0.1, 0.0),
vector(0.11, -0.1, 0.0)) +
arc(vector(0.11, 0.1, 0.0),
vector(0.1, 0.1, 0.0),
vector(0.1, 0.11, 0.0)) +
arc(vector(-0.1, 0.11, 0.0),
vector(-0.1, 0.1, 0.0),
vector(-0.11, 0.1, 0.0)) +
ctlpt(E2, -0.11, -0.1);
scaleCrv = cbspline(3,
list(ctlpt(E2, 0.05, 1.0),
ctlpt(E2, 0.1, 0.0),
ctlpt(E2, 0.2, 2.0),
ctlpt(E2, 0.3, 0.0),
ctlpt(E2, 0.4, 2.0),
ctlpt(E2, 0.5, 0.0),
ctlpt(E2, 0.6, 2.0),
ctlpt(E2, 0.7, 0.0),
ctlpt(E2, 0.8, 2.0),
ctlpt(E2, 0.85, 1.0)),

list(KV_OPEN));

Axis = circle(vector(0, 0, 0), 1);

Frame = circle(vector(0, 0, 0), 1)
* rotx(90) * trans(vector(1.5, 0.0, 0.0));

Srf1 = SWPSCLSRF(Cross, Axis, scaleCrv, off, 0);
Srf2 = SWPSCLSRF(Cross, Axis, scaleCrv, off, 2);
Srf3 = SWPSCLSRF(Cross, Axis, 1.0, Frame, 0);

constructs a rounded rectangle cross-section and sweeps it along a circle, while scaling and orienting
in several ways. The axis curve Axis is automatically refined in Srf2 to better approximate the

requested scaling.
See also SWEEPSRF for sweep with no scale. See Figure 45.

10.2.88 SYMBPROD

CurveType SYMBPROD(CurveType Crvl, CurveType Crv2)
or

SurfaceType SYMBPROD(SurfaceType Srfl, SurfaceType Srf2)

Irit Solid modeler G. Elber 64

Figure 44: Three examples of the use of SWEEPSRE (Srfl, Srf2, Srf3 from left to right in sweepsrf
documentation).

arc(vector(1.0, 0.1, 0.0),
vector(0.9, 0.1, 0.0),
vector(0.9, 0.0, 0.0)) +
ctlpt(E2, 0.2, 0.0);
Axis = arc(vector(-1.0, 0.0, 0.0),
vector(0.0, 0.0, 0.1),
vector(1.0, 0.0, 0.0));

Axis = crefine(Axis, FALSE, list(0.25, 0.5, 0.75));
Srf1 = SWEEPSRF(Cross, Axis, OFF);

Srf2 = SWEEPSRF(Cross, Axis, vector(0.0, 1.0, 1.0));
Srf3 = SWEEPSRF(Cross, Axis,

cbezier(list(ctlpt(E3, 1.0, O.

ctlpt(E3, 0.0, 1.

ctlpt(E3, -1.0, 0.

b

-

b

o O O
o O O
o O O
~—

)))

b b

constructs a rounded rectangle cross-section and sweeps it along an arc, while orienting it several
ways. The axis curve Axis is manually refined to better approximate the requested shape.
See also SWPSCLSREF for sweep with scale. See Figure 44.

10.2.87 SWPSCLSRF

SurfaceType SWPSCLSRF(CurveType CrossSection, CurveType Axis,
NumericType Scale | CurveType ScaleCrv,
CurveType FrameCrv | VectorType FrameVec
| ConstType OFF,
NumericType ScaleRefine)

Constructs a generalized cylinder surface. This function sweeps a specified cross-section Cross-
Section along the provided Axis. The cross-section may be scaled by a constant value Scale, or
scaled along the Axis parametric direction via a scaling curve ScaleCrv. By default, when frame
specification is OFF, the orientation of the cross section is computed using the Axis curve tangent
and normal. However, unlike the Frenet frame, attempt is made to minimize the normal change, as
can happen along inflection points in Axis. If a VectorType FrameVec is provided as a frame ori-
entation setting, it is used to fix the binormal direction to this value. In other words, the orientation
frame has a fixed binormal. If a CurveType FrameCrv is specified as a frame orientation setting,
this vector field curve is evaluated at each placement of the cross-section to yield the needed binormal.
ScaleRefine is an integer value to define possible refinement of the Axis to reflect the information
in ScalingCrv. Value of zero will force no refinement while value of n > 0 will insert n times the
number of control points in ScaleCrv into Axis, better emulating the scaling requested. The resulting
sweep is only an approximation of the real sweep. The scaling and axis placement will not be exact,

Irit Solid modeler G. Elber 63

Figure 43: A surface of revolution, VTailAntn in surfrev documentation, can be constructed using

SURFREV or SURFPREV.

ctlpt(E3, 0.03, 0.0,

+
ctlpt(E3, 0.001, 0.0,);

0.3)
0.0)

constructs a piecewise linear Bspline curve in the XZ plane and uses it to construct a surface of
revolution by rotating it around the Z axis. See also SURFPREV. See Figure 43.

10.2.86 SWEEPSRF

SurfaceType SWEEPSRF(CurveType CrossSection, CurveType Axis,
CurveType FrameCrv | VectorType FrameVec | ConstType OFF)

Constructs a generalized cylinder surface. This function sweeps a specified cross-section Cross-
Section along the provided Axis. By default, when frame specification is OFF, the orientation of the
cross section is computed using the Axis curve tangent and normal. However, unlike the Frenet frame,
attempt is made to minimize the normal change, as can happen along inflection points in Axis. If a
VectorType FrameVec is provided as a frame orientation setting, it is used to fix the binormal direction
to this value. In other words, the orientation frame has a fixed binormal. If a CurveType FrameCrv
is specified as a frame orientation setting, this vector field curve is evaluated at each placement of the
cross-section to yield the needed binormal.

The resulting sweep is only an approximation of the real sweep. The resulting sweep surface will not
be exact, in general. Refinement of the axis curve at the proper location, where accuracy is important,
should improve the accuracy of the output. The parametric domains of FrameCrv do not have to
match the parametric domain of Axis, and its parametric domain is automatically made compatible
by this function.

Example:
Cross = arc(vector(0.2, 0.0, 0.0),
vector(0.2, 0.2, 0.0),
vector(0.0, 0.2, 0.0)) +
arc(vector(0.0, 0.4, 0.0),
vector(0.1, 0.4, 0.0),
vector(0.1, 0.5, 0.0)) +
arc(vector(0.8, 0.5, 0.0),
vector(0.8, 0.3, 0.0),
vector(1.0, 0.3, 0.0)) +

Irit Solid modeler G. Elber 62

Figure 42: Extracts an iso bilinear surface from a trilinear function, using STRIVAR.

TV1 = tbezier(list(list(list(ctlpt(E3, 0.1, 0.0, 0.8),
ctlpt(E3, 0.2, 0.1, 2.4)),
list(ctlpt(E3, 0.3, 2.2, 0.2),
ctlpt(E3, 0.4, 2.3, 2.0))),
list(list(ctlpt(E3, 2.4, 0.8, 0.1),
ctlpt(E3, 2.2, 0.7, 2.3)),
list(ctlpt(E3, 2.3, 2.6, 0.5),
ctlpt(E3, 2.1, 2.5, 2.7)))));

Srf = STRIVAR(TV1, col, 0.4);

extracts an iso surface of TV1, in the col direction at parameter value 0.4. See Figure 42.

10.2.84 SURFPREV

SurfaceType SURFPREV(CurveType Object)

Same as SURFREV but approximates the surface of revolution as a polynomial surface. Object
must be a polynomial curve. See SURFREV.

10.2.85 SURFREV

PolygonType SURFREV(PolygonType Object)
or

SurfaceType SURFREV(CurveType Object)

Creates a surface of revolution by rotating the first polygon/curve of the given Object, around
the 7 axis. Use the linear transformation function to position a surface of revolution in a different

orientation.
Example:
VTailAntn = SURFREV(ctlpt(E3, 0.001, 0.0, 1.0) +
ctlpt(E3, 0.01, 0.0, 1.0) +
ctlpt(E3, 0.01, 0.0, 0.8) +
ctlpt(E3, 0.03, 0.0, 0.7) +

Irit Solid modeler G. Elber 61

srf = sbspline(2, 4,

list(list(ctlpt(E3, 0.0, 0.0, 1.0),
ctlpt(E2, 0.0, 1.0),
ctlpt(E3, 0.0, 2.0, 1.0)),
list(ctlpt(E2, 1.0, 0.0),
ctlpt(E3, 1.0, 1.0, 2.0),
ctlpt(E2, 1.0, 2.0)),
list(ctlpt(E3, 2.0, 0.0, 2.0),
ctlpt(E2, 2.0, 1.0),
ctlpt(E3, 2.0, 2.0, 2.0)),
list(ctlpt(E2, 3.0, 0.0),
ctlpt(E3, 3.0, 1.0, 2.0),
ctlpt(E2, 3.0, 2.0)),
list(ctlpt(E3, 4.0, 0.0, 1.0),
ctlpt(E2, 4.0, 1.0),
ctlpt(E3, 4.0, 2.0, 1.0))),

list(list(KV_OPEN),
list(XV_OPEN)));

srf = sreparam(sreparam(srf, ROW, O, 1), COL, 0, 1);
Ensures that the Bspline surface is defined over the unit size parametric domain.

10.2.81 STANGENT

VectorType STANGENT(SurfaceType Srf, ConstantType Direction,
NumericType UParam, NumericType VParam)

Computes the tangent vector to Srf at the parameter values UParam and VParam in Direction.
The returned vector has a unit length.
Example:

Tang = STANGENT(Srf, ROW, 0.5, 0.6);

computes the tangent to Srfin the ROW direction at the parameter values (0.5, 0.6).
10.2.82 STRIMSRF
SurfaceType STRIMSRF(TrimSrfType TSrf)

Extracts the surface of a trimmed surface TSrf.
Example:

Srf = STRIMSRF(TrimSrf);
extracts the surface of TrimSrf.
10.2.83 STRIVAR
SurfaceType STRIVAR(TrivarType TV)

Extracts an iso surface from a trivariate function TV.
Example:

Irit Solid modeler G. Elber 60

Figure 41: A region can be extracted from a freeform surface using SREGION.

Srf = SREFINE(SREFINE(Srf,
ROW, FALSE, list(0.333, 0.667)),
COL, FALSE, 1list(0.333, 0.667));

refines Srf in both directions by adding two more knots at 0.333 and 0.667.

10.2.79 SREGION

SurfaceType SREGION(SurfaceType Srf, ConstantType Direction,
NumericType MinParam, NumericType MaxParam)

Extracts a region of Srf between MinParam and MaxParam in the specified Direction. Both
MinParam and MaxParam should be contained in the parametric domain of Srf in Direction.

Example:

Srf = ruledSrf(cbezier(list(ctlpt(E3, -0.5, -0.5, 0.5),
ctlpt(E3, 0.0, 0.5, 0.0),
ctlpt(E3, 0.5, -0.5, 0.0))),

cbezier(list(ctlpt(E3, -0.5, 0.5, 0.0),
ctlpt(E3, 0.0, 0.0, 0.0),
ctlpt(E3, 0.5, 0.5, 0.5))));

SubSrf = SREGION(Srf, ROW, 0.3, 0.6);

extracts the region of Srf from the parameter value 0.3 to the parameter value 0.6 along the ROW
direction. the COLumn direction is extracted as a whole. See Figure 41.

10.2.80 SREPARAM

SurfaceType SREPARAM(SurfaceType Srf, ConstantType Direction,
NumericType MinParam, NumericType MaxParam)

Reparametrize Srf over a new domain from MinParam to MaxParam, in the prescribed Direc-
tion. This operation does not affect the geometry of the surface and only affine transforms its knot
vectors. A Bezier surface will automatically be promoted into a Bspline surface by this function.

Example:

Irit Solid modeler G. Elber 59

Figure 40: A vector field normal (right) computed for a unit sphere using SNRMLSRF. The normal
field degenerates at the norph and south poles because the surface is not regular there.

10.2.76 SPHERE

PolygonType SPHERE(VectorType Center, NumericType Radius)

Creates a SPHERE geometric object, defined by Center as the center of the SPHERE, and with
Radius as the radius of the SPHERE. See RESOLUTION for accuracy of SPHERE approximation as
a polygonal model.

10.2.77 SRAISE

SurfaceType SRAISE(SurfaceType Srf, ConstantType Direction,
NumericType NewOrder)

Raises Srf to the specified NewOrder in the specified Direction.

Example:
Srf = ruledSrf(cbezier(list(ctlpt(E3, -0.5, -0.5, 0.0),
ctlpt(E3, 0.5, -0.5, 0.0))),
cbezier(list(ctlpt(E3, -0.5, 0.5, 0.0),
ctlpt(E3, 0.5, 0.5, 0.0))));

Srf = SRAISE(SRAISE(Srf, ROW, 3), COL, 3);

constructs a bilinear flat ruled surface and raises both its directions to be a bi-quadratic surface.

10.2.78 SREFINE

SurfaceType SREFINE(SurfaceType Srf, ConstantType Direction,
NumericType Replace, ListType KnotList)

Provides the ability to Replace a knot vector of Srf or refine it in the specified direction Direction
(ROW or COL). KnotList is a list of knots to refine Srf at. All knots should be contained in the
parametric domain of Srfin Direction. If the knot vector is replaced, the length of KnotList should
be identical to the length of the original knot vector of Srfin Direction. If Srfis a Bezier surface, it
is automatically promoted to be a Bspline surface.

Example:

Irit Solid modeler G. Elber 58

Figure 39: A morphing sequence between a bottle and a glass. Snapshots computed using SMORPH.

MergedSrf = SMERGE(Srfl, Srf2, ROW, TRUE);

10.2.73 SMORPH
SurfaceType SMORPH(SurfaceType Srfl, SurfaceType Srf2, NumericType Blend)

Creates a new surface which is a convex blend of the two given surfaces. The two given surfaces
must be compatible (see FFCOMPAT) before this blend is invoked. Very useful if a sequence that
”morphs” one surface to another is to be created.

Example:

for (1 =0.0, 1.0, 11.0,
Msrf = SMORPH(Srfi, Srf2, i / 11.0):
color(Msrf, white):
attrib(Msrf, "rgb", "255,255,255"):
attrib(Msrf, "reflect", "0.7"):
save("morpl-" + i, Msrf)

)3
creates a sequence of 12 surfaces, morphed from Srfl to Srf2 and saves them in the files "morph-
0.dat” to "morph-11.dat”. See also CMORPH. See Figure 39.
10.2.74 SNORMAL
VectorType SNORMAL(SurfaceType Srf, NumericType UParam, NumericType VParam)

Computes the normal vector to Srf at the parameter values UParam and VParam. The returned
vector has a unit length.
Example:

Normal = SNORMAL(Srf, 0.5, 0.5);

computes the normal to Srf at the parameter values (0.5, 0.5). See also SNRMLSRF.

10.2.75 SNRMLSRF
SurfaceType SNRMLSRF(SurfaceType Srf)

Symbolically computes a vector field surface representing the non-normalized normals of the given
surface. That is the normal surface, evaluated at (u,v), provides a vector in the direction of the normal
of the original surface at (u,v). The normal surface is computed as the symbolic cross product of the
two surfaces representing the partial derivatives of the original surface.

Example:

NrmlSrf = SNRMLSRF(Srf);

See Figure 40.

Irit Solid modeler G. Elber 57

,‘}\“i[/;“' .

R ,,'/*0\ \' 4/'\\\ ;?‘€>

A AR
IR

LRI
LAY
SRR

Figure 38: A surface least square fitting a data set with insufficient degrees of freedom (left) and
actually interpolating the data set (right), all using SINTERP.

USize by VSize control points. The knots will be spaced according to Param which can be one of
PARAM_UNIFORM, PARAM_CHORD or PARAM_CENTRIP. The former prescribed a uniform knot
sequence and the latters specified a knot spacing accoridng to the chord length and a square root of
the chord length. Currently only PARAM_UNIFORM is supported. PtList is a list of list of points
where all lists should carry the same amount of points in them, defining a rectangular grid. All points
in PtList must be of type (E1-E5, P1-P5) control point, or regular PointType. If USize and VSize
are equal to the number of points in the grid PtList the resulting curve will interpolate the data set.
Otherwise, if USize or VSize is less than the number of points in PtList the point data set will be
least square approximated. In no time can USize or VSize be larger that the number of points in
PtList or lower than UOrder and VOrder, respectively. If USize or VSize are zero, the grid size
is used, forcing an interpolation of the data set.

All interior knots will be distinct preserving maximal continuity. The resulting Bspline surface will
have open end conditions

Example:

pl = nil();
pll = nil(Q);
for (x = -5, 1, 5,
pl = nil():
for (y = -5, 1, 5,
snoc(point(x, y, sin(x * Pi / 2) *x cos(y * Pi / 2)),
pl)
):
snoc(pl, pll));

s1
s2

sinterp(pll, 3, 3, 8, 8, PARAM_UNIFORM);
sinterp(pll, 3, 3, 11, 11, PARAM_UNIFORM);

Samples an explicit surface sin(x) * cos(y) at a grid of 11 by 11 points, least square fit with a grid
of size of 8 by 8 surface s1, and interpolate surface s2 using this data set. See Figure 38.

10.2.72 SMERGE

SurfaceType SMERGE(SurfaceType Srfl, SurfaceType Srf2,
NumericType Dir, NumericType SameEdge)

Merges two surfaces along the requested direction (ROW or COL). If SameEdge is non-zero (ON
or TRUE), then the common edge is assumed to be identical and copied only once. Otherwise (OFF
or FALSE), a ruled surface is constructed between the two surfaces along the (not) common edge.

Example:

Irit Solid modeler G. Elber 56

Figure 37: A surface can be constructed from a list of curves substituted as rows into its mesh using
SFROMCRVS. The surface does not necessarily interpolate the curves.

10.2.70 SFROMCRVS

SurfaceType SFROMCRVS(ListType CrvlList, NumericType OtherOrder)

Constructs a surface by substituting the curves in CrvList as rows in a control mesh of a surface.
Curves in CrvList are made compatible by promoting Bezier curves to Bsplines if necessary, and
raising degree and refining as required before substituting the control polygons of the curves as rows in
the mesh. The other direction order is set by OtherOrder, which cannot be larger than the number

of curves.
The surface interpolates the first and last curves only.
Example:
Crvl = cbspline(3,
list(ctlpt(E3, 0.0, 0.0, 0.0),
ctlpt(E3, 1.0, 0.0, 0.0),
ctlpt(E3, 1.0, 1.0, 0.0)),
list(KV_OPEN));
Crv2 = Crvl * trans(vector(0.0, 0.0, 1.0));
Crv3 = Crv2 * trans(vector(0.0, 1.0, 0.0));
Srf = SFROMCRVS(1list(Crvi, Crv2, Crv3), 3);

See Figure 37.

10.2.71 SINTERP

SurfaceType SINTERP(ListType PtList, NumericType UOrder, NumericType VOrder,
NumericType USize, NumericType VSize,
ConstantType Param)

Computes a Bspline polynomial surface that interpolates or approximates the rectangular grid
of points in PtList. The Bspline surface will have orders UOrder and VOrder and mesh of size

Irit Solid modeler G. Elber 55

—

Figure 36: A surface can be subdivided into two distinct regions using SDIVIDE.

It returns a list of the two sub-surfaces. The individual surfaces may be extracted from the list
using the NTH command.
Example:

SrflLst = SDIVIDE(Srf, ROW, 0.5);
Srfl = nth(Srflst, 1);
Srf2 = nth(Srflst, 2);

subdivides Srf at the parameter value of 0.5 in the ROW direction. See Figure 36.

10.2.68 SEDITPT

SurfaceType SEDITPT(SurfaceType Srf, CtlPtType CPt, NumericType Ulndex,
NumericType VIndex)

Provides a simple mechanism to manually modify a single control point number Ulndex and
VIndex (base count is 0) in the control mesh of Srf by substituting CtIPt instead. CtlPt must have
the same point type as the control points of Srf. Original surface Srf is not modified.

Example:

CPt = ctlpt(E3, 1, 2, 3);
NewSrf = SEDITPT(Srf, CPt, O, 0);

constructs a NewSrf with the first control point of Srf being CPt.

10.2.69 SEVAL

Ct1PtType SEVAL(SurfaceType Srf, NumericType UParam, NumericType VParam)

Evaluates the provided surface Srf at the given UParam and VParam values. Both UParam
and VParam should be contained in the surface parametric domain if Srf is a Bspline surface, or
between zero and one if Srfis a Bezier surface. The returned control point has the same type as the
control points of Srf.

Example:

CPt = SEVAL(Srf, 0.25, 0.22);

evaluates Srf at the parameter values of (0.25, 0.22).

Irit Solid modeler G. Elber

Figure 35: From left to right: original surface, normal curvature in the U direction, normal curvature in
the V direction, sum of square of principle curvatures (different scales). All computed using SCRVTR.

CrvtrXYZ = CrvtrZXY * rotx(-90) * roty(-90) * scale(vector(1, 1, 0.001));
color(CrvtrXYZ, green);

view(CrvtrXYZ, off);

Computes the sqaure of the normal curvature in the U and V direction, flips its scalar value from
X to 7 using rotations and scale the fields to reasonable values and display them. Then, display a total
bound on the normal curvature as well.

Due to the large degree of the resulting fields be warned that rational surfaces will compute into
large degree curvature bound fields. See also IRITSTATE(”InterpProd”, FALSE); for faster symbolic
computation. See Figure 35.

10.2.66 SDERIVE

SurfaceType SDERIVE(SurfaceType Srf, NumericType Dir)

Returns a vector field surface representing the differentiated surface in the given direction (ROW
or COL). Evaluation of the returned surface at a given parameter value will return a vector tangent to
Srf in Dir at that parameter value.

DuSrf SDERIVE(Srf, ROW);

DvSrf SDERIVE(Srf, COL);

Normal = coerce(seval(DuSrf, 0.5, O.
coerce(seval(DvSrf, 0.5, 0.

5), VECTOR_TYPE) ~
5), VECTOR_TYPE);

computes the two partial derivatives of the surface Srf and computes its normal as their cross
product, at the parametric location (0.5, 0.5).

10.2.67 SDIVIDE

SurfaceType SDIVIDE(SurfaceType Srf, ConstantType Direction,
NumericType Param)

Subdivides a surface into two at the specified parameter value Param in the specified Direction
(ROW or COL). Srf can be either a Bspline surface in which Param must be conatined in the
parametric domain of the surface, or a Bezier surface in which Param must be in the range of zero to
one.

Irit Solid modeler G. Elber 53

10.2.65 SCRVTR

SurfaceType SCRVTR(SurfaceType Srf, ConstType PtType, ConstType Dir)

Symbolically computes the extreme curvature bound on Sef. If Dir is either ROW or COL, then
the normal curvature square of Srfin Dir is computed symbolically and returned. Otherwise, a upper
bound on the sum of the squares of the two principal curvatures is symbolically computed and returned.

Returned value is a surface that can be evaluated to the curvature bound, given a UV location.
The returned surface value is a scalar field of point type P1 (scalar rational). However, if PtType is
one of E1, P1, E3, P3 the returned surface is coerced to this given type. If the types are one of E3,
P3, then the Y and Z axes are set to be equivalent to the U and V parametric domains.

This function computes the square of the normal curvature scalar field for surfaces as (in the U
parametric direction, same for V),

2
) N

HH(U7U)::ZEE_§E§
du? du
and computes &(u,v) = ky(u, v)* + ky(u,v)? as the scalar field of
(g11l22 + L1922 — 2912012)* — 2 |G| | L]

)= EHEE ’)

where g;; and [;; are the coefficients of the first and second fundamental forms G and L.
See also CCRVTR.

Example:

cross = cbspline(3,

list(ctlpt(E2, 0.0, 0.0),
ctlpt(E2, 0.8, 0.0),
ctlpt(E2, 0.8, 0.2),
ctlpt(E2, 0.07, 1.4),
ctlpt(E2, -0.07, 1.4),
ctlpt(E2, -0.8, 0.2),
ctlpt(E2, -0.8, 0.0),
ctlpt(E2, 0.0, 0.0)),
list(KV_OPEN));
cross = coerce(cross, e3);
s = sFromCrvs(list(cross,
cross * trans(vector(0.5, 0, 1)),
cross * trans(vector(0, 0, 2))), 3);

view(1list(s, axes), on);

UCrvtrZXY = scrvtr(s, E3, row);

VCrvtrZXY = scrvtr(s, E3, col);

UCrvtrXYZ = UCrvtrZXY * rotx(-90) * roty(-90) * scale(vector(1, 1, 0.001));
VCrvtrXYZ = VCrvtrZXY * rotx(-90) * roty(-90) * scale(vector(1, 1, 10));
color(UCrvtrXYZ, red);

color(VCrvtrXYZ, magenta);

view(list(UCrvtrXYZ, VCrvtrXYZ), off);

CrvtrZXY = scrvtr(s, E3, off);

Irit Solid modeler G. Elber 52

Figure 34: A bezier surface (left) of degree 3 by 5 and a Bspline surface (right) of degree 3 by 3
(bi-quadratic). Both share the same control mesh.

Creates a Bspline surface from the provided UOrder and VOrder orders, the control mesh
CtlMesh, and the two knot vectors KnotVectors. CtlMesh is a list of rows, each of which is a
list of control points. All control points must be of point type (E1-E5, P1-P5), or regular PointType
defining the surface’s control mesh. Surface’s point type will be of a space which is the union of the
spaces of all points. KnotVectors is a list of two knot vectors. Each knot vector is a list of Numeric-
Type knots of length #CtIPtList plus the Order. If, however, the length of the knot vector is equal
to #£CtlPtList + Order 4+ Order - 1 the curve is assumed periodic. The knot vector may also
be a list of a single constant KV_OPEN or KV_FLOAT or KV_PERIODIC, in which a uniform knot
vector with the appropriate length and with open, floating or periodic end condition will be constructed
automatically.

The created surface is the piecewise polynomial (or rational) surface,

m n

S(u,v) =" PijBiy(u)Bje(v) (11)

1=0 7=0

where P;; are the control points CtlMesh, and m and n are the degrees of the surface, which are one
less than UOrder and VOrder. y and £ are the two knot vectors of the surface.

Example:

Mesh = list (list(ctlpt(E3, 0.0, 0.0, 1.0),
ctlpt(E3, 0.0, 1.0, 0.0),
ctlpt(E3, 0.0, 2.0, 1.0)),

list(ctlpt(E3, 1.0, 0.0, 0.0),
ctlpt(E3, 1.0, 1.0, 2.0),
ctlpt(E3, 1.0, 2.0, 0.0)),
list(ctlpt(E3, 2.0, 0.0, 2.0),
ctlpt(E3, 2.0, 1.0, 0.0),
ctlpt(E3, 2.0, 2.0, 2.0)),
list(ctlpt(E3, 3.0, 0.0, 0.0),
ctlpt(E3, 3.0, 1.0, 2.0),
ctlpt(E3, 3.0, 2.0, 0.0)),
list(ctlpt(E3, 4.0, 0.0, 1.0),
ctlpt(E3, 4.0, 1.0, 0.0),
ctlpt(E3, 4.0, 2.0, 1.0)));

Srf = SBSPLINE(3, 3, Mesh, list(list(KV_OPEN),
list(3, 3, 3, 4, 5,6, 6, 6)));

constructs a bi-quadratic Bspline surface with its first knot vector having uniform knot spacing
with open end conditions. See Figure 34.

Irit Solid modeler G. Elber 51

Figure 33: A cylinder can be cunstructed as a RULEDSREF of two different circles.

10.2.63 SBEZIER

SurfaceType SBEZIER(ListType CtlMesh)

Creates a Bezier surface using the provided control mesh. CtlMesh is a list of rows, each of which
is a list of control points. All control points must be of type (E1-E5, P1-P5), or regular PointType
defining the surface’s control polygon. Surface’s point type will be of a space which is the union of the
spaces of all points.

The created surface is the piecewise polynomial (or rational) surface,

S(u,v) = Z:ZPiJBi(u)BJ(U) (10)

where P;; are the control points CtlIMesh. and m and n are the degrees of the surface, which are one
less than the number of points in the appropriate direction.

Example:

Srf = SBEZIER(list (list(ctlpt(E3, 0.0, 0.0, 1.0),
ctlpt(E3, 0.0, 1.0, 0.0),
ctlpt(E3, 0.0, 2.0, 1.0)),

list(ctlpt(E3, 1.0, 0.0, 0.0),
ctlpt(E3, 1.0, 1.0, 2.0),
ctlpt(E3, 1.0, 2.0, 0.0)),
list(ctlpt(E3, 2.0, 0.0, 2.0),
ctlpt(E3, 2.0, 1.0, 0.0),
ctlpt(E3, 2.0, 2.0, 2.0)),
list(ctlpt(E3, 3.0, 0.0, 0.0),
ctlpt(E3, 3.0, 1.0, 2.0),
ctlpt(E3, 3.0, 2.0, 0.0)),
list(ctlpt(E3, 4.0, 0.0, 1.0),
ctlpt(E3, 4.0, 1.0, 0.0),
ctlpt(E3, 4.0, 2.0, 1.0))));

See Figure 34.

10.2.64 SBSPLINE

SurfaceType SBSPLINE(NumericType UOrder, NumericType VOrder,
ListType CtlMesh, ListType KnotVectors)

Irit Solid modeler G. Elber 50

Figure 32: The layout (prisa in hebrew...) of a freeform surface can be approximated using the PRISA
function.

a vector whose X component controls the space between the different surfaces’ layout, and whose Y
component controls the space between different layout pieces.
Example:

cross = cbspline(3,

list(ctlpt(E3, 0.7, 0.0, 0.),
ctlpt(E3, 0.7, 0.0, 0.06),
ctlpt(E3, 0.1, 0.0, 0.1),
ctlpt(E3, 0.1, 0.0, 0.6),
ctlpt(E3, 0.6, 0.0, 0.6),
ctlpt(E3, 0.8, 0.0, 0.8),
ctlpt(E3, 0.8, 0.0, 1.4),
ctlpt(E3, 0.6, 0.0, 1.6)),

list(KV_OPEN));
wglass = surfrev(cross);
wgl_ruled = PRISA(wglass, 6, -0.1, COL, vector(O, 0.25, 0.0));
wgl_prisa = PRISA(wglass, 6, 0.1, COL, vector(O, 0.25, 0.0));

Computes a layout of a wine glass in wgl_prisa and a three-dimensional ruled surface approximation
of wglass in wgl_ruled. See Figure 32.

10.2.62 RULEDSRF
SurfaceType RULEDSRF(CurveType Crvl, CurveType Crv2)

Constructs a ruled surface between the two curves Crvl and Crv2. The curves do not have to
have the same order or type, and will be promoted to their least common denominator.
Example:

Circ = circle(vector(0.0, 0.0, 0.0), 0.25);
Cyl = RULEDSRF(circ, circ * trans(vector(0.0, 0.0, 1.0)));

Constructs a cylinder of radius 0.25 along the Z axis from 0 to 1. See Figure 33.

Irit Solid modeler G. Elber 49

Figure 31: Polygons or polylines can be manually constructed using the POLY constructor.

Example:
circ_domain = PDOMAIN(circle(vector(0.0, 0.0, 0.0), 1.0));
10.2.60 POLY
PolygonType POLY(ListType VrtxList, NumericType IsPolyline)

Creates a single polygon/polyline (and therefore open) object, defined by the vertices in VrtxList
(see LIST). All elements in VrtxList must be of VectorType type. If IsPolyline, a polyline is created,
otherwise a polygon.

Example:

V1 = vector(0.0, 0.0, 0.0);
V2 = vector(0.3, 0.0, 0.0);
V3 = vector(0.3, 0.0, 0.1);
V4 = vector(0.2, 0.0, 0.1);
V5 = vector(0.2, 0.0, 0.5);
V6 = vector(0.3, 0.0, 0.5);
V7 = vector(0.3, 0.0, 0.6);
V8 = vector(0.0, 0.0, 0.6);
V9 = vector(0.0, 0.0, 0.5);
V10 = vector(0.1, 0.0, 0.5);
V11 = vector(0.1, 0.0, 0.1);
V12 = vector(0.0, 0.0, 0.1);
I = POLY(1list(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, Vi1, V12),

FALSE);

constructs an object with a single polygon in the shape of the letter 1. See Figure 31.

10.2.61 PRISA

ListType PRISA(SurfaceType Srfs, NumericType SamplesPerCurve,
NumericType Epsilon, ConstantType Dir, VectorType Space)

Computes a layout (prisa) of the given surface(s) Srfs, and returns a list of surface objects rep-
resenting the layout. The surface is approximated to within Epsilon in direction Dir into a set of
ruled surfaces and then developable surfaces that are laid out flat onto the XY plane. If Epsilon is
negative, the piecewise ruled surface approximation in 3-space is returned. SamplesPerCurve con-
trols the piecewise linear approximation of the boundary of the ruled/developable surfaces. Space is

Irit Solid modeler G. Elber 48

Figure 30: Offset approximation (thick) of a Bspline curve (thin) (See also Figure 3.)

with it, which is used to compute the normal. The returned curve or surface only approximates the
real offset. If the resulting approximation does not satisfy the accuracy required by Tolerance, Crv
or Srf is subdivided and an offset approximation fit is computed to the two halfs. For curves, one
can request a Bezier interpolation scheme in the offset approximation by setting BezlInter. Negative
OffsetDistance denotes offset in the reversed direction of the normal.

Example:

0ffCrv = OFFSET(Crv, -0.4, 0.1, off);

offsets Crv by the amount of —0.4 in the reversed normal direction, Tolerance of 0.1 and no Bezier
interpolation. See also AOFFSET and LOFFSET. See Figure 30.

10.2.58 PCIRCLE
CurveType PCIRCLE(VectorType Center, NumericType Radius)

Same as CIRCLE but approximates the circle as a polynomial curve. See CIRCLE.

10.2.59 PDOMAIN

ListType PDOMAIN(CurveType Crv)

or

ListType PDOMAIN(SurfaceType Srf)

or

ListType PDOMAIN(TrimSrfType TrimSrf)
or

ListType PDOMAIN(TrivarType TV)

Returns the parametric domain of the curve (TMin, TMax) or of a (trimmed) surface (UMin,
UMax, VMin, VMax) or of a trivariate function (UMin, UMax, VMin, VMax, WMin, WMax) as a list
object.

Irit Solid modeler G. Elber 47

Figure 29: Individual polygons can be merged into a complete model using MERGEPOLY.

Approximates the zero and first moment of curve Crv.

Example:

a = circle(vector(0, 0, 0), 1);
a = cregion(a, 0, 1);

p = moment(a, 0);

v = moment(a, 1);

view(list(a, p, v), on);

a = cregion(a, 0, 1) *x rz(45);
p = moment(a, 0);
v = moment(a, 1);

view(list(a, p, v), on);

computes and displays the zero and first moment of a quarter of a circle in two orientations.
10.2.56 NIL
ListType NIL()

Creates an empty list so data can be accumulated in it. See CINFLECT or CZEROS for examples.
See also LIST and SNOC.

10.2.57 OFFSET

CurveType OFFSET(CurveType Crv, NumericType OffsetDistance,
NumericType Tolerance, NumericType BezInterp)

or

SurfaceType OFFSET(SurfaceType Srf, NumericType OffsetDistance,
NumericType Tolerance)

Offsets Crv or Srf, by translating all the control points in the direction of the normal of the curve
or surface by an OffsetDistance amount. Each control point has a node parameter value associated

Irit Solid modeler G. Elber 46

10.2.53 LOFFSET

CurveType LOFFSET(CurveType Crv, NumericType OffsetDistance,
NumericType NumOfSamples, NumericType NumOfDOF,
NumericType Order)

Approximate an offset of OffsetDistance by sampling NumOfSamples samples along the offset
curve and least square fitting them using a Bspline curve of order Order and NumOfDOF control
points.

Example:

0ffCrvl = LOFFSET(Crv, -0.4, 100, 10, 4);

See also OFFSET and AOFFSET.

10.2.54 MERGPOLY

PolygonType MERGEPOLY(ListType PolyList)

Merges a set of polygonal objects in PolyList list to a single polygonal object. All elements
in ObjectList must be of PolygonType type. This function performs the same operation as the
overloaded ~ operator would, but might be more convenient to use under some circumstances.

Example:

Vrtxl = vector(-3, -2, -1);

Vrtx2 = vector(3, -2, -1);

Vrtx3 = vector(3, 2, -1);

Vrtx4 = vector(-3, 2, -1);

Polyl = poly(list(Vrtxl, Vrtx2, Vrtx3, Vrtx4), false);

Vrtxl = vector(-3, 2, 1);

Vrtx2 = vector(3, 2, 1);

Vrtx3 = vector(3, -2, 1);

Vrtx4 = vector(-3, -2, 1);

Poly2 = poly(list(Vrtxl, Vrtx2, Vrtx3, Vrtx4), false);

Vrtxl = vector(-3, -2, 1);

Vrtx2 = vector(3, -2, 1);

Vrtx3 = vector(3, -2, -1);

Vrtx4 = vector(-3, -2, -1);

Poly3 = poly(list(Vrtxl, Vrtx2, Vrtx3, Vrtx4), false);

PolyObj = MERGEPOLY(1list(Polyl, Poly2, Poly3));

See Figure 29.

10.2.55 MOMENT

PointType MOMENT(CurveType Crv, O);
or

VectorType MOMENT(CurveType Crv, 1);

Irit Solid modeler G. Elber 45

Figure 28: A warped box in a general position can be constructed using the GBOX constructor.

10.2.51 GPOLYGON
PolygonType GPOLYGON(GeometryTreeType Object, NumericType Normals)

Approximates all Surface(s)/Trimmed surface(s)/Trivariate(s) in Object with polygons using the
RESOLUTION and FLAT4PLY variables. The larger the RESOLUTION is, the finer (more polygons)
the resulting approximation will be.

FLAT4PLY is a Boolean flag controlling the conversion of an (almost) flat patch into four (TRUE) or
two (FALSE) polygons. Normals are computed to polygon vertices using surface normals, so Gouraud
or Phong shading can be exploited. It returns a single polygonal object.

If Normals is set, surface normals will be evaluated at the vertices. Otherwise flat shading and
constant normals across polygons are assumed.

Example:

Polys = GPOLYGON(list(Srf1l, Srf2, Srf3), off);

Converts to polygons the three surfaces Srfl, Srf2, and Srf3 with no normals.

10.2.52 GPOLYLINE
PolylineType GPOLYLINE(GeometryTreeType Object, NumericType Optimal)

Converts all Curves(s), (Trimmed) Surface(s), and Trivariate(s) Object into polylines using the
RESOLUTION variable. The larger the RESOLUTION is, the finer the resulting approximation will
be. It returns a single polyline object.

If Optimal is false, the points are sampled at equally spaced interval in the parametric space. If
Optimal true, a better, more expensive computationally, algorithm is used to derive optimal sampling
locations as to minimize the maximal distance between the curve and piecewise linear approximation
(L infinity norm).

Example:

Polys = GPOLYLINE(list(Srfil, Srf2, Srf3, list(Crvil, Crv2, Crv3)),
on);

converts to polylines the three surfaces Srfl, Srf2, and Srf3 and the three curves Crvl, Crv2,
and Crv3.

Irit Solid modeler G. Elber 44

10.2.48 FFEXTREME

Ct1PtType FFEXTREME(CurveType Crv, NumericType Minimum)
or

Ct1PtType FFEXTREME(SurfaceType Srf, NumericType Minimum)

Computes a bound on the extreme values a curves Crv or surface Srfcan assume. Returned control
points provides a bound on the minimum (maximum) values that can be assumed if Minimum is TRUE

(FALSE).

Example:
Bound = FFEXTREME(Srf, false);

Computes a bound on the maximal values Srf can assume.

10.2.49 GBOX

PolygonType GBOX(VectorType Point,
VectorType Dx, VectorType Dy, VectorType Dz)

Creates a parallelepiped - Generalized BOX polygonal object, defined by Point as base position,
and Dx, Dy, Dz as 3 3D vectors to define the 6 faces of this generalized BOX. The regular BOX
object is a special case of GBOX where Dx = vector(Dx, 0, 0), Dy = vector(0, Dy, 0), and Dz =
vector(0, 0, Dz).

Dx, Dy, Dz must all be independent in order to create an object with positive volume.

Example:

GB = GBOX(vector(0.0, -0.35, 0.63), vector(0.5, 0.0, 0.5),
vector(-0.5, 0.0, 0.5),
vector(0.0, 0.7, 0.0));

See Figure 28.

10.2.50 GETLINE

AnyType GETLINE(NumericType RequestedType)

Provides a method to get input from keyboard within functions and or subroutines. Requested-
Type can be one of NUMERIC_TYPE, POINT_TYPE, VECTOR_TYPE, or PLANE_TYPE in which
the entered line will be parsed into one, three, or four numeric values (sperated by either spaces or
commas) and the proper object will be created and returned. In any other case, including failure to
parse the numeric input, a STRING_TYPE object will be constructed from the entered line.

Example:

Pt = GETLINE(point_type);

to read one point (three numeric values) from stdin.

Irit Solid modeler G. Elber 43

Figure 27: An extrusion of a freeform curve using EXTRUDE to create a freeform surface.

Creates an extrusion of the given Object. If Object is a PolygonObject, its first polygon is used
as the base for the extrusion in Dir direction, and a closed PolygonObject is constructed. If Object is
a CurveType, an extrusion surface is constructed instead, which is not a closed object (the two bases
of the extrusion are excluded, and the curve may be open by itself).

Direction Dir cannot be coplanar with the polygon plane. The curve may be nonplanar.

Example:

Cross = cbspline(3,

list(ctlpt(E2, -0.018, 0.001),
ctlpt(E2, 0.018, 0.001),
ctlpt(E2, 0.019, 0.002),
ctlpt(E2, 0.018, 0.004),
ctlpt(E2, -0.018, 0.004),
ctlpt(E2, -0.019, 0.001)),

list(KV_OPEN));
Cross = Cross + -Cross * scale(vector(1, -1, 1));
Napkin = EXTRUDE(Cross * scale(vector(1.6, 1.6, 1.6)),
vector(0.02, 0.03, 0.2));

constructs a closed cross section Cross by duplicating one half of it in reverse and merging the two
sub-curves. Cross is then used as the cross-section for the extrusion operation. See Figure 27.
10.2.47 FFCOMPAT

FFCOMPAT(CurveType Crvl, CurveType Crv2)
or

FFCOMPAT(SurfaceType Srfi, SurfaceType Srf2)

Makes the given two curves or surfaces compatible by making them share the same point type,
same curve type, same degree, and the same continuity. Same point type is gained by promoting a
lower dimension into a higher one, and non-rational to rational points. Bezier curves are promoted to
Bspline curves if necessary, for curve type compatibility. Degree compatibility is achieved by raising
the degree of the lower order curve. Continuity is achieve by refining both curves to the space with the
same (unioned) knot vector. This function returns nothing and compatibility is made in place.

Example:

FFCOMPAT(Srf1, Srf2);

See also SMORPH.

Irit Solid modeler G. Elber 42

Figure 26: Computes the zero set of a given freeform curve, in the given axis, using CZEROS.

10.2.45 CZEROS

ListType CZEROS(CurveType Crv, NumericType Epsilon, NumericType Axis)

Computes the zero set of the given Crv in the given axis (1 for X, 2 for Y, 3 for Z). Since this
computation is numeric, an Epsilon is also required to specify the desired tolerance. It returns a list
of all the parameter values (NumericType) the curve is zero.

Example:

xzeros = CZEROS(cb, 0.001, 1);
pt_xzeros = nil();
pt = nil();
for (i =1, 1, sizeof(xzeros),
pt = ceval(cb, nth(xzeros, i)):
snoc(pt, pt_xzeros)
);

interact(1list(axes, cb, pt_xzeros), 0);

Computes the X zero set of curve cb with error tolerance of 0.001. This set is then scanned in
a loop and evaluated to the curve’s locations, which are then displayed. See also CINFLECT. See
Figure 26.

10.2.46 EXTRUDE

PolygonType EXTRUDE(PolygonType Object, VectorType Dir)
or

SurfaceType EXTRUDE(CurveType Object, VectorType Dir)

Irit Solid modeler G. Elber 41

Figure 24: Extracts the trimming curves in Euclidean space (middle) and parametric space (right) of
a trimmed surface (left), using CTRIMSREF.

Figure 25: A cylinder primitive can be constructor using the CYLIN constructor.

Irit Solid modeler G. Elber 40

Tang = CTANGENT(Crv, 0.5);

computes the tangent vector to Crv at the parameter value of 0.5.

10.2.42 CTLPT

CPt = CTLPT(ConstantType PtType, NumericType Coordl, ...)

Constructs a single control point to be used in the construction of curves and surfaces. Points can
have from one to five dimensions, and may be either Euclidean or Projective (rational). Points’ type
is set via the constants E1 to E5 and P1 to P5. The coordinates of the point are specified in order,
weight is first if rational.

Examples:

CPt1
CPt2

CTLPT(E3, 0.0, 0.0, 0.0);
CTLPT(P2, 0.707, 0.707, 0.707);

constructs an E3 point at the origin and a P2 rational point with a weight of 0.707. The Projective
Pi points are specified as CTLPT(Pn, W, W X1, ... | W Xn).

10.2.43 CTRIMSRF

ListType CTRIMSRF(TrimSrfType TSrf, NumericType Parametric)

Extract the trimming curves of a trimmed surface TSrf. If Parametric is not zero, then the
trimming curves are extracted as parametric space curves of TSrf. Otherwise, the trimming curves
are evaluated into Euclidean space as curves on surface TSrf.

Example:

TrimCrvs = CTRIMSRF(TrimSrf, FALSE);

extracts the trimming curves of TrimSrf as Euclidean curves on TrimSrf. See Figure 24.

10.2.44 CYLIN

PolylineType CYLIN(VectorType Center, VectorType Direction,
NumericType Radius)

Creates a CYLINder geometric object, defined by Center as center of the base of the CYLINder,
Direction as the CYLINder’s axis and height, and Radius as the radius of the base of the CYLINder.
See RESOLUTION for the accuracy of the CYLINder approximation as a polygonal model.

Example:

Cylinderl = CYLIN(vector(O, O, O), vector(1, O, 0), 10);

constructs a cylinder along the X axis from the origin to X = 10. See Figure 25.

Irit Solid modeler G. Elber 39

Figure 22: Computes the locations on the freeform curve with local extreme distance to the given

point, using CRVPTDST.

Figure 23: Extracts an isoparametric curve from the given surface, using CSURFACE.

direction. The returned curve is in the surface Srf. It is equal to,

C1) = Sltsr) = 3 P Bl Byoo) = 3 (Z PMBAuo)) B =Y QB0 O

where Q; = 377 P;; B;(ug) are the coefficients of the returned curve, and similar for the other para-
metric direction S(ug,?). param is vg is equation (9)
Example:

Crv = CSURFACE(Srf, COL, 0.45);

extracts an isoparametric curve in the COLumn direction at the parameter value of 0.15 from

surface Srf. See also CMESH, COMPOSE. See Figure 23.

10.2.41 CTANGENT

VectorType CTANGENT(CurveType Curve, NumericType Param)

Computes the tangent vector to Curve at the parameter value Param. The returned vector has
a unit length.
Example:

Irit Solid modeler G. Elber 38

Figure 21: Computes the locations on the freeform curve with local extreme distance to the given line,

using CRVLNDST.

location on Crv closest to the line. If, however, Epsilon is negative, -Epsilon is used instead, and all
local extrema in the distance function are returned as a list (both minima and maxima). If the line
and the curve intersect, the point of intersection is returned as the minimum.

Example:

Param = CRVLNDST(Crv, linePt, lineVec, TRUE, 0.001);

finds the closest point on Crv to the line defined by linePt and lineVec. See Figure 21.

10.2.39 CRVPTDST

NumericType CRVPTDST(CurveType Crv, PointType Point, NumericType IsMinDist,
NumericType Epsilon)

or

ListType CRVPTDST(CurveType Crv, PointType Point, NumericType IsMinDist,
NumericType Epsilon)

Computes the closest (if IsMinDist is TRUE, farthest if FALSE) point on Crv to Point. Since this
operation is partially numeric, Epsilon is used to set the needed accuracy. It returns the parameter
value of the location on Crv closest to Point. If, however, Epsilon is negative, -Epsilon is used
instead, and all local extrema in the distance function are returned as a list (both minima and maxima).

Example:

Param = CRVPTDST(Crv, Pt, FALSE, 0.0001);

finds the farthest point on Crv from point Pt. See Figure 22.

10.2.40 CSURFACE

CurveType CSURFACE(SurfaceType Srf, ConstantType Direction,
NumericType Param)

Extract an isoparametric curve out of Srfin the specified Direction (ROW or COL) at the specified
parameter value Param. Param must be contained in the parametric domain of Srf in Direction

Irit Solid modeler G. Elber 37

Figure 20: Extracts a sub region from a curve using CREGION.

arcl = arc(vector(0.0, 0.0, 0.0),
vector(0.5, 2.0, 0.0),
vector(1.0, 0.0, 0.0));

crvl = arc(vector(1.0, 0.0, 0.75),
vector(0.75, 0.0, 0.7),
vector(0.5, 0.0, 0.85)) +

arc(vector(0.5, 0.0, 0.75),

vector(0.75, 0.0, 0.8),
vector(1.0, 0.0, 0.65));

arcl = CREPARAM(arcil, 0, 10);

crvl = CREPARAM(crvi, 0, 10);

Sets the domain of the given two curves to be from zero to ten. The Bezier curve arcl is promoted
to a Bspline curve.

10.2.37 CROSSEC

PolygonType CROSSEC(PolygonType Object)

This feature is NOT implemented.

10.2.38 CRVLNDST

NumericType CRVLNDST(CurveType Crv, PointType PtOnLine, VectorType LnDir,
NumericType IsMinDist, NumericType Epsilon)

or

ListType CRVLNDST(CurveType Crv, PointType PtOnLine, VectorType LnDir,
NumericType IsMinDist, NumericType Epsilon)

Computes the closest (if IsMinDist is TRUE, farthest if FALSE) point on Curve to the line
specified by PtOnLine and LnDir as a point on the line and a line direction. Since this operation is
partially numeric, Epsilon is used to set the needed accuracy. It returns the parameter value of the

Irit Solid modeler G. Elber 36

Figure 19: Refines a 90 degrees corner quadratic Bezier curve at three interior knots (result is a Bspline
curve) using CREFINE. The control polygons are also shown.

10.2.34 CREFINE

CurveType CREFINE(CurveType Curve, NumericType Replace, ListType KnotList)

Provides the ability to Replace a knot vector of Curve, or refine it. KnotList is a list of knots
to refine Curve at. All knots should be contained in the parametric domain of the Curve. If the knot
vector is replaced, the length of KnotList should be identical to the length of the original knot vector
of the Curve. If Curve is a Bezier curve, it is automatically promoted to be a Bspline curve.

Example:

Crv2 = CREFINE(Crv, FALSE, list(0.25, 0.5, 0.75));

refines Crv and adds three new knots at 0.25, 0.5, and 0.75. See Figure 19.

10.2.35 CREGION

CurveType CREGION(CurveType Curve, NumericType MinParam,
NumericType MaxParam)

Extracts a region from Curve between MinParam and MaxParam. Both MinParam and
MaxParam should be contained in the parametric domain of the Curve.
Example:

SubCrv = CREGION(Crv, 0.3, 0.6);

extracts the region from Crv from the parameter value 0.3 to the parameter value 0.6. See Figure 20.

10.2.36 CREPARAM

CurveType CREPARAM(CurveType Curve, NumericType MinParam,
NumericType MaxParam)

Reparametrize Curve over a new domain from MinParam to MaxParam. This operation does
not affect the geometry of the curve and only affine transforms its knot vector. A Bezier curve will
automatically be promoted into a Bspline curve by this function.

Example:

Irit Solid modeler G. Elber 35

Figure 18: Raises a 90 degrees corner quadratic Bezier curve to a quintic using CRAISE. The control
polygons are also shown.

the Y axis etc. Index 0 denotes the weight of CtIPtType. For a PolygonType that contains more than
one polygon, the Indexth polygon is returned. For a PolygonType that contains a single Polygon, the
Indexth vertex is returned. For a CurveType or a SurfaceType, the Indexth CtIPtType is returned.
For a ListType, COORD behaves like NTH and returns the Indexth object in the list.

Example:

a = vector(1, 2, 3);
vector(COORD(a, O), COORD(a, 1), COORD(a, 2));

a = ctlpt(P2, 6, 7, 8, 9);
ctlpt(P3, coord(a, 0), coord(a, 1), coord(a, 2), coord(a, 3));

a = plane(10, 11, 12, 13);
plane(COORD(a, O), COORD(a, 1), COORD(C a, 2), COORD(C a, 3));

constructs a vector/ctlpt/plane and reconstructs it by extracting the constructed scalar components
of the objects using COORD.
See also COERCE.

10.2.33 CRAISE

CurveType CRAISE(CurveType Curve, NumericType NewOrder)

Raise Curve to the NewOrder Order specified.

Example:

Crv = cbezier(list(ctlpt(E2, -0.7, 0.3),
ctlpt(E2, 0.0, 1.0),
ctlpt(E2, 0.7, 0.0)));

Crv2 = CRAISE(Crv, 5);

raises the 90 degrees corner Bezier curve Crv to be a quartic. See Figure 18.

Irit Solid modeler G. Elber 34

Figure 17: A cone (left) can be constructed using the CONE constructor and a truncated cone (right)
using the constructor CONE2.

Conel = CONE(vector(0, 0, 0), vector(1, 1, 1), 1);

constructs a cone based in an XY parallel plane, centered at the origin with radius 1 and with
tilted apex at (1,1, 1).
See also CON2. See Figure 17.

10.2.31 CONVEX

PolygonType CONVEX(PolygonType Object)
or

ListType CONVEX(ListType Object)

Converts non-convex polygons in Object, into convex ones. New vertices are introduced into the
polygonal data during this process. The Boolean operations require the input to have convex polygons
only (although it may return non convex polygons...) and it automatically converts non-convex input
polygons to convex ones, using this same routine.

However, some external tools (like irit2ray and poly3d-h) require convex polygons. This function
must be used on the objects to guarantee that only convex polygons are saved into data files for these
external tools.

Cnvx0bj = CONVEX(Obj);
save("data", Cnvx0bj);

converts non-convex polygons into convex ones, so that the data file can be used by external tools
requiring convex polygons.

10.2.32 COORD
AnyType COORD(AnyType Object, NumericType Index)

Extracts an element from a given Object, at index Index. From a PointType, VectorType,
PlaneType, CtIPtType and MatrixType, a NumericType is returned with Index 0 for the X axis, 1 for

Irit Solid modeler G. Elber 33

Figure 16: A circle in the parametric space of the freefrom surface is composed to create a closed loop
curve on the surface using COMPOSE.

ctlpt(E3, 1.0, 0.5, 0.0),
ctlpt(E3, 1.0, 1.0, 1.0))));
crv = coerce(circle(vector(0.0, 0.0, 1.0), 0.4), p2) *
trans(vector(0.5, 0.5, 0.0));
comp_crv = COMPOSE(srf, crv);

compose a circle Crv to be on the surface Srf. See Figure 16.

10.2.29 CON2

PolygonType CON2(VectorType Center, VectorType Direction,
NumericType Radiusl, NumericType Radius2)

Creates a truncated CONE geometric object, defined by Center as the center of the main base of
the CONE, Direction as both the CONE’s axis and the length of CONE, and the two radii Radius1/2
of the two bases of the CONE.

Unlike the regular cone (CONE) constructor which has inherited discontinuities in its generated
normals at the apex, CON2 can be used to form a (truncated) cone with continuous normals. See
RESOLUTION for the accuracy of the CON2 approximation as a polygonal model.

Example:

Cone2 = CON2(vector(0, 0, -1), vector(0, 0, 4), 2, 1);

constructs a truncated cone with bases parallel to the XY plane at Z = —1 and Z = 3, and with
radii of 2 and 1 respectively. See Figure 17.

10.2.30 CONE

PolygonType CONE(VectorType Center, VectorType Direction,
NumericType Radius)

Creates a CONE geometric object, defined by Center as the center of the base of the CONE;,
Direction as the CONE’s axis and height, and Radius as the radius of the base of the CONE. See
RESOLUTION for accuracy of the CONE approximation as a polygonal model.

Example:

Irit Solid modeler G. Elber 32

This curve is not necessarily in the surface Srf. It is equal to,

and similar for the other parametric direction.
Example:

Crv = CMESH(Srf, COL, O);

extracts the first column of surface Srf as a curve. See also CSURFACE.

10.2.27 COERCE

AnyType COERCE(AnyType Object, ConstantType NewType)

Provides a coercion mechanism between different objects or object types. PointType, VectorType,
PlaneType, CtlPtType can be all coerced to each other by using the NewType of POINT_TYPE,
VECTOR_TYPE, PLANE_TYPE, or one of E1-E5, P1-P5 (CtIPtType). Similarly, CurveType, Sur-
faceType, TrimSrfType, and TrivarType can all be coerced to hold different CtIPtType of control
points, or even different open end conditions from KV_PERIODIC to KV_FLOAT to KV_OPEN. If a
scalar (E1 or P1) curve is coerced to E2 or P2 curve or a scalar (E1 or P1) surface is coerced to E3
or P3 surface, the Y (YZ) coordinate(s) is (are) updated to hold the parametric domain of the curve
(surface).

Example:

CrvE2 = COERCE(Crv, E2);

coerce Crv to a new curve that will have an E2 CtIPtType control points. Coerction of a projective
curve (P1-P5) to a Euclidean curve (E1-E5) does not preseve the shape of the curve.

10.2.28 COMPOSE

CurveType COMPOSE(CurveType Crvl, CurveType Crv2)
or

CurveType COMPOSE(SurfaceType Srf, CurveType Crv)

Symbolically compute the composition curve Crv1(Crv2(t)) or Srf(Crv(t)). In Crv1(Crv2(t),
Crvl can be any curve while Crv2 must be a one-dimensional curve that is either E1 or P1. In
Srf(Crv(t)), Srf can be any surface, while Crv must be a two-dimensional curve, that is either E2 or
P2. Both Crv2 in the curve’s composition, and Crv is the surface’s composition must be contained
in the curve or surface parametric domain.

Example:
srf = sbezier(list(list(ctlpt(E3, 0.0, 0.0, 0.0),
ctlpt(E3, 0.0, 0.5, 1.0),
ctlpt(E3, 0.0, 1.0, 0.0)),
list(ctlpt(E3, 0.5, 0.0, 1.0),
ctlpt(E3, 0.5, 0.5, 0.0),
ctlpt(E3, 0.5, 1.0, 1.0)),
list(ctlpt(E3, 1.0, 0.0, 1.0),

Irit Solid modeler G. Elber 31

40\ 8\

(a) (b)

Figure 14: A morphing sequence using convex blend (a) and edge cutting (b).

el =<

Figure 15: A multiresolution decomposition of a curve of an animal using list squares. Original curve
is shown on the left.

for ((1 =2), 1, sizeof(MRCrv),
sum = symbsum(sum, nth(MRCrv, 1)):
snoc(sum * tx((3 -1) * 1.5), MRCrvs)
);

A1l = MRCrvs * sc (0.25);
view(All, on);

Computes a multiresolution decomposition to curve CrossSec as MRCrv and display all the
decomposition levels by summing them all up. The use of none as on object name allows one to
display an object in the display device without replacing the previous object in the display device,
carrying the same name.

creates two metamorphosis animation sequences, one that is based on a convex blend and one that
is based on corner/edge cutting scheme. See Figure 15.

10.2.26 CMESH

CurveType CMESH(SurfaceType Srf, ConstantType Direction, NumericType Index)

Returns a single ROW or COLumn as specified by the Direction and Index (base count is 0) of
the control mesh of surface Srf.
The returned curve will have the same knot vector as Srf in the appropriate direction. See also

CSURFACE.

Irit Solid modeler G. Elber 30

Simple convex blend.

Corner/Edge cutting scheme, scaled to same curve length.
Corner/Edge cutting scheme, scaled to same bounding box.

Same as 1 but with filtering out of tangencies.

Same as 2 but with filtering out of tangencies.

Multiresolution decompsition based metamorphosis. See CMULTRES.

Uk W N~ O

In Method 1, Blend is a number between zero (Crv1) and one (Crv2) defining the similarity to
Crvl and Crv2, respectively. A single curve is returned.

In Methods 2 to 5, Blend is a step size for the metamorphosis operation and a whole list describing
the entire metamorphosis operation is returned.

Examples:

crvl = cbezier(list(ctlpt(E2, 0.3, 0.0)
ctlpt(E2, 0.0, 0.5),
ctlpt(E2, -0.2, 0.0)
crvlia = crvl * trans(vector(-0.4, 0.0, 0.0));
crvlb = crvlia * scale(vector(-1.0, 1.0, 1.0));

for (i =0, 1, 300,
c cmorph(crvia, crvib, 0, i / 300.0):
color(c, yellow):
viewobj(¢)

)

crvs = cmorph(crvia, crvib, 2, 0.003);
snoc(crvib, crvs);
for (i =1, 1, sizeof(crvs),

¢ = nth(crvs, i):

color(c, yellow):

viewobj(¢)

)

creates two metamorphosis animation sequences, one that is based on a convex blend and one that
is based on corner/edge cutting scheme. See alost SMORPH. See Figure 14.

10.2.25 CMULTIRES

ListType CMULTIRES(CurveType Crv, NumericType Discont)

Computes a multiresolution decomposition of curve Crv using least squares approximation. The
resulting list of curves describes an hierarchy of curves in linear subspaces of the space Crv was in
that can be sum algebraically to form Crv. Each of the curves in the hierarchy is a least squares
approximation of Crv in the subspace it is defined in. Discont is a boolean flat that controls the way
tangent discontinuities are computed throughout the decomposition.

Example:

MRCrv = CMULTIRES(Animal, false);

sum = nth(MRCrv, 1);
MRCrvs = list(sum * tx{(3.0));

Irit Solid modeler G. Elber 29

XY plane. Use the linear transformation routines to place the circle in the appropriate orientation and
location.

10.2.22 CIRCPOLY

PolygonType CIRCPOLY(VectorType Normal, VectorType Trans, NumericType Radius)

Defines a circular polygon in a plane perpendicular to Normal that contains the Trans point.
Constructed polygon is centered at Trans. RESOLUTION vertices will be defined with Radius from
distance from Trans.

Alternative ways to construct a polygon are manual construction of the vertices using POLY, or
the construction of a flat ruled surface using RULEDSREF.

10.2.23 CLNTREAD

AnyType CLNTREAD(NumericType Handler, NumericType Block)

Reads one object from a communication channel of a client. Handler contains the index of the
communication channel opened via CLNTEXEC. If no data is available in the communication channel,
this function will block for at most Block millisecond until data is found or timeout occurs. In
the latter, a single StringType object is returned with the content of "no data (timeout)”. See also
CLNTWRITE, CLNTCLOSE, and CLNTEXEC.

Example:

h2 = clntexec("xmtdrvs -s-");

Model = CLNTREAD(h2);

clntclose(h2,TRUE);
reads one object from client through communication channel h2 and save it in variable Model.

10.2.24 CMORPH

CurveType CMORPH(CurveType Crvl, CurveType Crv2,
NumericType Method, NumericType Blend)

or

ListType CMORPH(CurveType Crvl, CurveType Crv2,
NumericType Method, NumericType Blend)

Creates a new curve which is a metamorph of the two given curves. The two given curves must be
compatible (see FFCOMPAT) before this blend is invoked. Very useful if a sequence that ”morphs”
one curve to another is to be created. Several methods of metamorphosis are supported according to
the value of Method,

Irit Solid modeler G. Elber 28

Figure 12: The Inflection points of a freeform curve can be isolated using CINFLECT.

Figure 13: A Helix is sampled at 100 locations is least square fit using CINTERP by a quadratic
Bspline curve and 21 control points.

former prescribes a uniform knot sequence and the latters specify knot spacing according to the chord
length and a square root of the chord length. All points in PtList must be of type (E1-E5, P1-P5)
control point, or regular PointType. If Size is equal to the number of points in PtList the resulting
curve will interpolate the data set. Otherwise, if Size is less than the number of points in PtList the
point data set will be least square approximated. In no time can Size be larger that the number of
points in PtList or lower than Order. Size of zero forces interpolation by setting Size to the data
set size. All interior knots will be distinct preserving maximal continuity. The resulting Bspline curve
will have open end conditions.
Example:

pl = nil();
for (x = 0, 1, 100,

snoc(point(cos(x / 5), sin(x / 5), x / 50 - 1), pl)
);
¢ = CINTERP(pl, 3, 21, PARAM_UNIFORM)

Samples a helical curve at 100 points and least square fit a quadratic Bspline curve with 21 point
to the data set. The curve will have a uniform knot spacing. See Figure 13.

10.2.21 CIRCLE

CurveType CIRCLE(VectorType Center, NumericType Radius)

Constructs a circle at the specified Center with the specified Radius. The returned circle is a
Bspline curve of four piecewise Bezier 90 degree arcs. The construced circle is always parallel to the

Irit Solid modeler G. Elber 27

Figure 11: The X local extremums of a freeform curve are isolated using CEXTREMES.

10.2.19 CINFLECT

ListType CINFLECT(CurveType Crv, NumericType Epsilon)
or

CurveType CINFLECT(CurveType Crv, NumericType Epsilon)

Computes the inflection points of Crv in the XY plane. Since this computation is numeric, an
Epsilon is also required to specify the desired tolerance. It returns a list of all the parameter values
(NumericType) in which the curve has an inflection point. If, however, Epsilon is negative, a scalar
field curve representing the sign of the curvature of the curve is returned instead.

The sign of curvature scalar field is equal to,

o(t) =2'()y"(t) — 2" ()y'(1). (7)
Example:

inflect = CINFLECT(crv, 0.001);
pt_inflect = nil();
pt = nil();
for (i =1, 1, sizeof(inflect),
pt = ceval(crv, nth(inflect, 1)):
snoc(pt, pt_inflect)
);

interact(1list(axes, crv, pt_inflect), 0);

Computes the set of inflection points of curve crv with error tolerance of 0.001. This set is then
scanned in a loop and evaluated to the curve’s locations which are then displayed with the erv. See

also CZEROS, CEXTREMES, and CCRVTR. See Figure 12.

10.2.20 CINTERP

CurveType CINTERP(ListType PtList, NumericType Order, NumericType Size,
ConstantType Param)

Computes a Bspline polynomial curve that interpolates or approximates the list of points in PtList.
The Bspline curve will have order Order and Size control points. The knots will be spaced according

to Param which can be one of PARAM_UNIFORM, PARAM_CHORD or PARAM_CENTRIP. The

Irit Solid modeler G. Elber 26

Figure 10: The evolute (thick) of a freeform curve (thin) can be computed using CEVOLUTE.

E(t) is computed symbolically as the symbolic sum of C'(¢) and % where the latter is,

(C'(1) x C"() x ") "]
1C (@) (C(1) x C"(1))?
_ () x ")) x ¢ (¢)] (6)
(C'(1) x C"(1))?

The result of this symbolic computation is exact (upto machine precision) unlike a similar operation
which is only approximated, the OFFSET or the AOFFSET.

Example:
crv = cbspline(3,
list(ctlpt(E3, -1.0, 0.1, 0.2),
ctlpt(E3, -0.1, 1.0, 0.1),
ctlpt(E3, 0.1, 0.1, 1.0),
ctlpt(E3, 1.0, 0.1, 0.1),
ctlpt(E3, 0.1, 1.0, 0.2)),

list(KV_OPEN));
CEVOLUTE(Crv);

cev
See Figure 10.

10.2.18 CEXTREMES

ListType CEXTREMES(CurveType Crv, NumericType Epsilon, NumericType Axis)

Computes the extreme set of the given Crv in the given axis (1 for X, 2 for Y, 3 for Z). Since this
computation is numeric, an Epsilon is also required to specify the desired tolerance. It returns a list
of all the parameter values (NumericType) in which the curve takes an extreme value.

Example:

extremes = CEXTREMES(Crv, 0.0001, 1);

Computes the extreme set of curve crv, in the X axis, with error tolerance of 0.0001. See also

CZERO. See Figure 11.

Irit Solid mogeler G. Elber 25

Figure 9: A Bspline curve is subdivided into two distinct regions using CDIVIDE.

10.2.15 CEDITPT

CurveType CEDITPT(CurveType Curve, CtlPtType CtlPt, NumericType Index)

Provides a simple mechanism to manually modify a single control point number Index (base count
is 0) in Curve, by substituting CtIPt instead. CtIPt must have the same point type as the control
points of the Curve. Original curve Curve is not modified.

Example:

CPt = Ctlpt(E3, 1, 2, 3);
NewCrv = CEDITPT(Curve, CPt, 1);

constructs a NewCrv with the second control point of Curve being CPt.

10.2.16 CEVAL

Ct1PtType CEVAL(CurveType Curve, NumericType Param)

Evaluates the provided Curve at the given Param value. Param should be in the curve’s para-
metric domain if Curve is a Bspline curve, or between zero and one if Curve is a Bezier curve. The
returned control point has the same point type as the control points of the Curve.

Example:

CPt = CEVAL(Crv, 0.25);

evaluates Crv at the parameter value of 0.25.
10.2.17 CEVOLUTE
CurveType CEVOLUTE(CurveType Curve)

Computes the evolute of a curve. The evolute is defined as,

where N (¢) is the unit normal of C'(¢) and k(t) is its curvature.

Irit Solid modeler G. Elber 24

Figure 8: The hodograph (thick) of a bspline circle (thin) constructed as four 90 degrees rational bezier
arcs, computed using CDERIVE.

10.2.13 CDERIVE

CurveType CDERIVE(CurveType Curve)

Returns a vector field curve representing the differentiated curve, also known as the Hodograph
curve.
Example:

Circ = circle(vector(0.0, 0.0, 0.0), 1.0);
Hodograph = CDERIVE(Circ);

See Figure 8.

10.2.14 CDIVIDE

ListType CDIVIDE(CurveType Curve, NumericType Param)

Subdivides a curve into two sub-curves at the specified parameter value. Curve can be either a
Bspline curve in which Param must be within the Curve’s parametric domain, or a Bezier curve in
which Param must be in the range of zero to one.

It returns a list of the two sub-curves. The individual curves may be extracted from the list using
the NTH command.

Example:

CrvLst = CDIVIDE(Crv, 1.3);
Crvl = nth(Crvlst, 1);
Crv2 = nth(Crvlst, 2);

subdivides the curve Crv at the parameter value of 0.5. See Figure 9.

Irit Solid modeler G. Elber 23

Figure 7: Extreme curvature locations on a freeform curve computed using CCRVTR.

inflection points. Since this operation is partially numeric, Epsilon is used to set the needed accuracy.
It returns the parameter value(s) of the location(s) with extreme curvature along the Crv. If, however,
Epsilon is negative, the curvature scalar field curve is returned as a two dimensional rational vector
field curve, for which the first dimension is equal to the parameter, and the second is the curvature
value at that parameter

This function computes the curvature scalar field for planar curves as,

(") = 2"yl
(@ (1) + (y'(1)*)?

and computes kN for three dimensional curves as the following vector field,

K(t) = ; (3)

KON () = k() B(t) x T(t) = CH/g’ng « HgH _ (@ X"g/"”)r ¢ (4)

The extremum values are extracted from the computed curvature field. This curvature field is
a high order curve, even if the input geometry is of low order. This is especially true for rational
curves, for which the quotient rule for differentiation is used and almost doubles the degree in every

differentiation.
See also CZEROS, CEXTREMES, and SCRVTR.
Example:
crv = cbezier(list(ctlpt(E2, -1.0, 0.5),
ctlpt(E2, -0.5, -2.0),
ctlpt(E2, 0.0, 1.0),
ctlpt(E2, 1.0, 0.0))) * rotz(30);

crvtr = CCRVTR(crv, 0.001);

pt_crvtr = nil();

pt = nil();

for (i =1, 1, sizeof(crvtr),
(pt = ceval(crv, nth(crvtr, i))):
snoc(pt, pt_crvtr)

);

interact(list(crv, pt_crvtr));

finds the extreme curvature points in Crv and displays them all with the curve. See Figure 7

Irit Solid modeler G. Elber 22

Figure 6: A intersection point of two freeform curve computed using CCINTER.

Computes the intersection point(s) of Crvl and Crv2 in the XY plane. Since this computation
involves numeric operations, Epsilon controls the accuracy of the parametric values of the result.
It returns a list of PointTypes, each containing the parameter of Crvl in the X coordinate, and
the parameter of Crv2 in the Y coordinate. If, however, Epsilon is negative, a scalar field surface
representing the square of the distance function is returned instead. If SelfInter is TRUE, Crv1 and
Crv2 can be the same curve, and self-intersection points are searched instead.

Example:
crvl = cbspline(3,
list(ctlpt(E2, O,),
ctlpt(E2, 0, 0.5),
ctlpt(E2, O. 5, 0.7),
ctlpt(E2, 1, 1)),

list(KV_OPEN));
cbspline(3,
list(ctlpt(E2, 1, 0)
ctlpt(E2, 0.7, 0.25),
ctlpt(E2, 0.3, 0.5),
ctlpt(E2, 0, 1))
list(KV_OPEN));
inter_pts = CCINTER(crvil, crv2, 0.0001, FALSE);

crv2

Computes the parameter values of the intersection point of crvl and erv2 to a tolerance of 0.0001.
See Figure 6.

10.2.12 CCRVTR

NumericType CCRVTR(CurveType Crv, NumericType Epsilon)
or

CurveType CCRVTR(CurveType Crv, NumericType Epsilon)

Computes the extreme curvature points on Crv in the XY plane. This set includes not only points
of maximum (convexity) and mimumum (concavity) curvature, but also points of zero curvature such as

Irit Solid modeler

G. Elber

Figure 5: A cubic periodic curve created using KV_PERIODIC end conditions.

constructs an arc of 180 degrees in the X7 plane as a rational quadratic Bspline curve.

Example:

¢ = CBSPLINE(4,
list(ctlpt(E2, 0.5,
ctlpt(E2, -0.5,
ctlpt(E2, -0.5,
ctlpt(E2, 0.5,
list(KV_PERIODIC));
color(c, red);
viewobj(c);

cl = cregion(c, 3, 4);

color(c1, green);

c2 = cregion(c, 4, 5);

color(c2, yellow);

c3 = cregion(c, 5, 6);

color(¢3, cyan);

c4 = cregion(c, 6, 7);

color(c¢3, magenta);

viewobj(1list(c1, c2, c3, c4));

O O O O
o o0 0 O
(NN 7

21

creates a periodic curve and extracts its four polynomial domains as four open end Bspline curves.

See Figure 5.

10.2.11 CCINTER

ListType CCINTER(CurveType Crvl, CurveType Crv2, NumericType Epsilon,

or

NumericType SelflInter)

SurfaceType CCINTER(CurveType Crvl, CurveType Crv2, NumericType Epsilon,

NumericType SelflInter)

Irit Solid modeler G. Elber 20

10.2.9 CBEZIER

CurveType CBEZIER(ListType CtlPtList)

Creates a Bezier curve out of the provided control point list. CtIPtList is a list of control points,
all of which must be of type (E1-E5, P1-P5), or regular PointType defining the curve’s control polygon.
Curve’s point type will be of a space which is the union of the spaces of all points. The created curve
is the polynomial (or rational),

k
€)=Y RBi), 1)

where P; are the control points CtlPtList, and k is the degree of the curve, which is one less than the
number of points.
Example:

545 = sin(pi / 4);

Arc90 = CBEZIER(list(ctlpt(P2, 1.0, 0.0, 1.0),
ctlpt(P2, s45, s45, s45),
ctlpt(P1, 1.0, 1.0)));

constructs an arc of 90 degrees as a rational quadratic Bezier curve.

10.2.10 CBSPLINE

CurveType CBSPLINE(NumericType Order, ListType CtlPtList,
ListType KnotVector)

Creates a Bspline curve out of the provided control point list, the knot vector, and the specified
order. CtlPtList is a list of control points, all of which must be of type (E1-E5, P1-P5), or regular
PointType defining the curve’s control polygon. Curve’s point type will be of a space which is the union
of the spaces of all points. The length of the Knot Vector must be equal to the number of control points
in CtlPtList plus the Order. If, however, the length of the knot vector is equal to #£CtIPtList +
Order + Order - 1 the curve is assumed periodic. The knot vector list may be specified as either list(
KV_OPEN) or list(KV_FLOAT) or list(KV_PERIODIC) in which a uniform open, uniform
floating or uniform periodic knot vector with the appropriate length is automatically constructed.

The created curve is the piecewise polynomial (or rational),

C(t)=>_ PBi(1), (2)
=0
where P; are the control points CtlPtList and k is the degree of the curve, which is one less than the
Order or number of points. 7 is the knot vector of the curve.
Example:

545 = sin(pi / 4);
HalfCirc = CBSPLINE(3,

list(ctlpt(P3, 1.0, 1.0, 0.0, 0.0),
ctlpt(P3, s45, =45, 845, 0.0),
ctlpt(P3, 1.0, 0.0, 1.0, 0.0),
ctlpt(P3, s45, -s45, 845, 0.0),
ctlpt(P3, 1.0, -1.0, 0.0, 0.0)),

list(0, 0, O, 1, 1, 2, 2, 2));

Irit Solid modeler G. Elber 19

ctlpt(E3, 1.0, 0.2, 0.2)),
list(KV_OPEN));
Cbsp4 = cbspline(4,

list(ctlpt(E3, 0.4, 1.0, 0.4),
ctlpt(E3, 0.25, 1.0, 1.0),
ctlpt(E3, 0.5, 1.0, -2.0),
ctlpt(E3, 0.75, 1.0, 1.0),
ctlpt(E3, 1.0, 1.0, 0.3)),

list(KV_OPEN));
Srf = BOOLSUM(Cbzril, Cbzr2, Cbsp3, Cbsp4);

10.2.6 BOX

PolygonType BOX(VectorType Point,
NumericType Dx, NumericType Dy, NumericType Dz)

Creates a BOX polygonal object, whose boundary is coplanar with the XY, XZ, and Y Z planes.
The BOX is defined by Point as base position, and Dx, Dy, Dz as BOX dimensions. Negative
dimensions are allowed.

Example:

B = BOX(vector(0, 0, 0), 1, 1, 1);

creates a unit cube from 0 to 1 in all axes.

10.2.7 BZR2BSP

CurveType BZR2BSP(CurveType Crv)
or

SurfaceType BZR2BSP(SurfaceType Srf)

Creates a Bspline curve or a Bspline surface from the given Bezier curve or Bezier surface. The
Bspline curve or surface is assigned open end knot vector(s) with no interior knots, in the parametric
domain of zero to one.

Example:

BspSrf = BZR2BSP(BzrSrf);

10.2.8 BSP2BZR

CurveType | ListType BSP2BZR(CurveType Crv)
or

SurfaceType | ListType BSP2BZR(SurfaceType Srf)

Creates Bezier curve(s) or surface(s) from a given Bspline curve or a Bspline surface. The Bspline
input is subdivided at all internal knots to create Bezier curves or surfaces. Therefore, if the input
Bspline does have internal knots, a list of Bezier curves or surfaces is returned. Otherwise, a single
Bezier curve or surface is returned.

Example:

BzrCirc = BSP2BZR(circle(vector(0.0, 0.0, 0.0), 1.0));

would subdivide the unit circle into four 90 degrees Bezier arcs returned in a list.

Irit Solid modeler G. Elber 18

Figure 4: A boolean sum of a circle creates a disk (left) using BOOLONE and a general boolean sum
of four curves (right).

10.2.5 BOOLSUM

SurfaceType BOOLSUM(CurveType Crvl, CurveType Crv2,
CurveType Crv3, CurveType Crv4)

Construct a surface using the provided four curves as its four boundary curves. Curves do not have
to have the same order or type, and will be promoted to their least common denominator. The end
points of the four curves should match as follows:

Crvl start point, to Crv3 start point.
Crvl end point, to Crv4 start point.
Crv2 start point, to Crv3 end point.
Crv2 end point, to Crv4 end point.

where Crvl and Crv2 are the two boundaries in one parametric direction, and Crv3 and Crv4
are the two boundaries in the other parametric direction.

Example:

Cbzrl = cbezier(list(ctlpt(E3, 0.1, 0.1, 0.1),
ctlpt(E3, 0.0, 0.5, 1.0),
ctlpt(E3, 0.4, 1.0, 0.4)));

Cbzr2 = cbezier(list(ctlpt(E3, 1.0, 0.2, 0.2),
ctlpt(E3, 1.0, 0.5, -1.0),
ctlpt(E3, 1.0, 1.0, 0.3)));

Cbsp3 = cbspline(4,

list(ctlpt(E3, 0.1, 0.1, 0.1),
ctlpt(E3, 0.25, 0.0, -1.0),
ctlpt(E3, 0.5, 0.0, 2.0),
ctlpt(E3, 0.75, 0.0, -1.0),

Irit Solid modeler G. Elber 17

N

Figure 2: A 90 degree arc constructed using the ARC constructor.

B

Figure 3: Adaptive offset approximation (thick) of a Bspline curve (thin). On the left, the self intersec-
tions in the offset computed in the right are eliminated. Both offsets were Computedusmg AOFFSET.
(See also Figure 30.)

Computes an offset of OffsetDistance with globally bounded error (controlled by Epsilon). The
smaller Epsilon is, the better the approximation to the offset. The bounded error is achieved by
adaptive refinement of the Crv. If TrimLoops is TRUE or on, the regions of the object that self-
intersect as a result of the offset operation are trimmed away.

Example:
0ffCrvl = AOFFSET(Crv, -0.4, 0.01, TRUE);
0ffCrv2 = AOFFSET(Crv, -0.4, 0.01, FALSE);

computes an adaptive offset to Crv with OffsetDistance of 0.5 and Epsilon of 0.03 and trims
the self-intersection loops. See also OFFSET and LOFFSET. See Figure 3.

10.2.4 BOOLONE

SurfaceType BOOLONE(CurveType Crv)

Given a closed curve, the curve is subdivided into four segments equally spaced in the parametric
space that are fed into BOOLSUM. Useful if a surface should ”fill” the area enclosed by a closed curve.
Example:

Srf = BOOLONE(circle(vector(0.0, 0.0, 0.0), 1.0));

Creates a disk surface containing the area enclosed by the unit circle. See Figure 4.

Irit Solid modeler G. Elber 16

10.2 GeometricType returning functions
10.2.1 ADAPISO

CurveType ADAPISO(SurfaceType Srf, NumericType Dir, NumericType Eps,
NumericType Fulllso, NumericType SinglePath)

Constructs a coverage to Srf using isocurve in the Dir direction, so that for any point p on surface
Srf, there exists a point on one of the isocurves that is close to p within Eps. If Fulllso, the extracted
isocurves span the entire surface domain, otherwise they may span only a subset of the domain.
If SinglePath, an approximation to a single path (Hamiltonian path) that visits all isocurves is
constructed.

srf = sbezier(list(list(ctlpt(E3, -0.5, -1.0, 0.0),
ctlpt(E3, 0.4, 0.0, 0.1),
ctlpt(E3, -0.5, 1.0, 0.0)),
list(ctlpt(E3, 0.0, -0.7, 0.1),
ctlpt(E3, 0.0, 0.0, 0.0),
ctlpt(E3, 0.0, 0.7, -0.2)),
list(ctlpt(E3, 0.5, -1.0, 0.1),
ctlpt(E3, -0.4, 0.0, 0.0),
ctlpt(E3, 0.5, 1.0, -0.2))));

aiso = ADAPISO(srf, COL, 0.1, FALSE, FALSE);

Constructs an adaptive isocurve approximation with tolerance of 0.1 to surface srf in direction
COL. Isocurves are allowed to span a subset of the surface domain. No single path is needed.
The SinglePath option is currently not supported.

10.2.2 ARC

CurveType ARC(VectorType StartPos, VectorType Center, VectorType EndPos)

Constructs an arc between the two end points StartPos and EndPos, centered at Center. Arc
will always be less than 180 degrees, so the shortest circular path from StartPos to EndPos is selected.
The case where StartPos, Center, and EndPos are collinear is illegal, since it attempts to define a
180 degrees arc. Arc is constructed as a single rational quadratic Bezier curve.

Example:

Arcl = ARC(vector(1.0, 0.0, 0.0),
vector(1.0, 1.0, 0.0),
vector(0.0, 1.0, 0.0));

constructs a 90 degrees arc, tangent to both the X and Y axes at coordinate 1. See Figure 2.

10.2.3 AOFFSET

CurveType AOFFSET(CurveType Crv, NumericType OffsetDistance,
NumericType Epsilon, NumericType TrimLoops)

or

SurfaceType AOFFSET(SurfaceType Srf NumericType OffsetDistance,
NumericType Epsilon, NumericType TrimLoops)

Irit Solid modeler G. Elber 15

10.1.14 RANDOM
NumericType RANDOM(NumericType Min, NumericType Max)

Returns a randomized value between Min and Max.

10.1.15 SIN
NumericType SIN(NumericType Operand)

Returns the sine value of the given Operand (in radians).

10.1.16 SIZEOF
NumericType SIZEOF(ListType List | PolyType Poly | CurveType Crv)

Returns the length of a list, if List, the number of polygons if Poly, or the length of the control
polygon if Crv. If, however, only one polygon is in Poly, it returns the number of vertices in that

polygon.
Example:

len = SIZEOF(list(1, 2, 3));
numPolys = SIZEOF(axes);
numCtlpt = SIZEOF(circle(vector(0, 0, 0), 1));

will assign the value of 3 to the variable len, set numPolys to the number of polylines in the axes
object, and set numCtIPt to 9, the number of control points in a circle.

10.1.17 SQRT
NumericType SQRT(NumericType Operand)

Returns the square root value of the given Operand.

10.1.18 TAN
NumericType TAN(NumericType Operand)

Returns the tangent value of the given Operand (in radians).

10.1.19 THISOBJ
NumericType THISOBJ(StringType Object)

Returns the object type of the given name of an Object. This can be one of the constants UN-
DEF_TYPE, NUMERIC_TYPE, STRING_TYPE, VECTOR_TYPE, POINT_TYPE, CTLPT_TYPE,
MATRIX_TYPE, POLY_TYPE, CURVE_TYPE, SURFACE_TYPE, TRIMSRF_TYPE, or TRIVAR_TYPE.
This is also a way to ask if an object by a given name do exist (if the returned type is UNDEF_TYPE
or not).

10.1.20 VOLUME
NumericType VOLUME(PolygonType Object)

Returns the volume of the given Object (in object units). It returns the volume of the polygonal
object, not the volume of the object it might approximate.
This routine decomposes all non-convex polygons to convex ones as a side effect (see CONVEX).

Irit Solid modeler G. Elber 14

10.1.8 CLNTEXEC
NumericType CLNTEXEC(StringType ClientName)

Initiate communication channels to a client named ClientName. ClientName is executed by
this function as a sub process and two communication channels are opened between the IRIT server
and the new client, for read and write. See also CLNTREAD, CLNTWRITE, and CLNTCLOSE.
if ClientName is an empty string, the user is provided with the new communication port to be
used and the server blocks for the user to manualy executed the client after setting the proper
IRIT.SERVER_HOST/PORT environment variables.

Example:

hi
h2

CLNTEXEC("");
CLNTEXEC('"nuldrvs -s-");

executes two clients, one is named nuldrvs and the other one is prompted for by the user. As a
result of the second invokation of CLNTEXEC, the user will be prompted with a message similar to,

Irit: Startup your program - I am waiting...

setenv IRIT_SERVER_PORT 2182

and he/she will need to set the proper environment variable and execute their client manually.

10.1.9 CPOLY
NumericType CPOLY(PolygonType Object)

Returns the number of polygons in the given polygonal Object.

10.1.10 EXP
NumericType EXP(NumericType Operand)

Returns the natural exponent value of the given Operand.

10.1.11 LN
NumericType LN(NumericType Operand)

Returns the natural logarithm value of the given Operand.

10.1.12 LOG
NumericType LOG(NumericType Operand)

Returns the base 10 logarithm value of the given Operand.

10.1.13 MESHSIZE
NumericType MESHSIZE(SurfaceType Srf, ConstantType Direction)

Returns the size of Srf’s mesh in Direction, which is one of COL or ROW.
Example:

RSize
CSize

MESHSIZE(Sphere, ROW);
MESHSIZE(Sphere, COL);

Irit Solid modeler G. Elber 13

10.1 NumericType returning functions
10.1.1 ABS

NumericType ABS(NumericType Operand)

Returns the absolute value of the given Operand.

10.1.2 ACOS

NumericType ACOS(NumericType Operand)

Returns the arc cosine value (in radians) of the given Operand.

10.1.3 AREA

NumericType AREA(PolygonType Object)

Returns the area of the given Object (in object units). Returned is the area of the polygonal
object, not the area of the primitive it might approximate.

This means that the area of a polygonal approximation of a sphere will be returned, not the exact
area of the sphere.

10.1.4 ASIN

NumericType ASIN(NumericType Operand)

Returns the arc sine value (in radians) of the given Operand.

10.1.5 ATAN

NumericType ATAN(NumericType Operand)

Returns the arc tangent value (in radians) of the given Operand.

10.1.6 ATAN2

NumericType ATAN2(NumericType Operandl, NumericType Operand2)

Returns the arc tangent value (in radians) of the given ratio: Operandl / Operand2, over the
whole circle.

10.1.7 COS

NumericType COS(NumericType Operand)

Returns the cosine value of the given Operand (in radians).

Irit Solid modeler G. Elber 12

I

Figure 1: Geometric Boolean operatioms between a box and a truncated cone. Shown are union (left),
intersection (bottom center), box minus the cone (top center), and cone minus the box (right).

There are several flags to control the Boolean operations. See IRITSTATE command for the
?InterCrv”, ”Coplanar”, and ”PolySort” states.

9.10 Priority of operators

The following table lists the priority of the different operators.

Lowest Operator Name of operator
priority comma,

: colon

&&, ||| logical and, logical or

=,==,!=,<=,>=,<,> assignment, equal, not equal, less
equal, greater equal, less, greater

+, - plus, minus
*/ multiply, divide
Highest = power
priority -, ! unary minus, logical not

9.11 Grammar

The grammar of the IRIT parser follows similar guidelines as the C language for simple expressions.
However, complex statements differ. See the IF, FOR, FUNCTION, and PROCEDURE below for the
usage of these clauses.

10 Function Description

The description below defines the parameters and returned values of the predefined functions in the
system, using the notation of functions in ANSI C. Listed are all the functions in the system, in
alphabetic order, according to their classes.

Irit Solid modeler G. Elber 11

NumericType o NumericType -> NumericType
StringType o StringType -> NumericType
PointType o PointType -> NumericType
VectorType o VectorType -> NumericType
PlaneType o PlaneType -> NumericType

The returned NumericType is non-zero if the condition holds, or zero if not. For PointTypes,
VectorTypes, and PlaneTypes, only == and ! = comparisons are valid. This is either the same or
different. For NumericTypes and StringTypes (uses strcmp) all comparisons are valid.

9.8 Logical operators &&, |||, !

Complex logical expressions can be defined using the logical and (&&), logical or (||||) and logical not
(1). These operators can be applied to NumericTypes that are considered Boolean results. That is,
true for a non-zero value, and false otherwise. The returned NumericType is true if both operands are
true for the and operator, at least one is true for the or operator, and the operand is false for the not
operator. In all other cases, a false is returned. To make sure Logical expressions are readable, the
and and or operators are defined to have the same priority. Use parentheses to disambiguate a logical
expression and to make it more readable.

9.9 Geometric Boolean Operations

The IRIT solid modeling system supports Boolean operations between polyhedra objects. Freeform
objects will be automaticaly converted to a polygonal representation when used in Boolean operations.
The 4, *, and — are overloaded to denote Boolean union, intersection and subtraction when operating
on geometric entities. — can also be used as an unary operator to reverse the object orientation inside
out.

Example:

resolution = 20;
B = box(vector(-1, -1, -0.25), 2, 1.2, 0.5);
C = con2(vector(0, 0, -1.5), vector(0, 0, 3), 0.7, 0.3);

D = convex(B - C);
E = convex(C - B);
F = convex(B + C);
G = convex(B * C);

tr = rotx(-90) * roty(40) * rotx(-30);

A1l = 1ist(D * tr * trans(vector(0.6, 0.5, 0.0)),
E * tr * trans(vector(3.0, 0.0, 0.0)),
F % tr * trans(vector(-2.0, 0.0, 0.0)),
G * tr * trans(vector(0.7, -1.0, 0.0)))

* scale(vector(0.25, 0.25, 0.25))
* trans(vector(-0.1, -0.3, 0.0));
view_mat = rotx(0);
view(list(view_mat, All), on);
save("booleans'", list(view_mat, All));

A complete example to compute the union, intersection and both differences of a box and a truncated
cone. The result of this example can be seen in Figure 1 with its hidden lines removed.

Irit Solid modeler G. Elber 10

NumericType * NumericType -> NumericType

VectorType * NumericType -> VectorType (Vector scaling)

VectorType * VectorType -> NumericType (Inner product)

MatrixType * NumericType -> MatrixType (Matrix Scaling)

MatrixType * PointType -> PointType (Point transformation)
MatrixType * CtlPtType -> Ct1PtType (Ctl Point transformation)
MatrixType * VectorType -> VectorType (Vector transformation)
MatrixType * MatrixType -> MatrixType (Matrix multiplication)
MatrixType * GeometricType -> GeometricType (Object transformation)
MatrixType * ListType -> ListType (Object hierarchy transform.)
PolygonType * PolygonType -> PolygonType (Boolean INTERSECTION operation)

Note: Boolean INTERSECTION of two disjoint objects (no common volume) will result with an
empty object. Object hierarchy transform transforms any transformable object (GeometricType) found
in the list recursively.

9.4 Overloading /

The / operator is overloaded above the following domains:

NumericType / NumericType -> NumericType
PolygonType / PolygonType -> PolygonType (Boolean CUT operation)

Note: Boolean CUT of two disjoint objects (no common volume) will result with an empty object.

9.5 Overloading "~

The = operator is overloaded above the following domains:

NumericType ~ NumericType -> NumericType

VectorType ~ VectorType -> VectorType (Cross product)

MatrixType =~ NumericType -> MatrixType (Matrix to the (int) power)
PolygonType ~ PolygonType -> PolygonType (Boolean MERGE operation)
StringType ~ StringType -> StringType (String concat)

StringType ~ RealType -> StringType (String concat, real as real string)

Note: Boolean MERGE simply merges the two sets of polygons without any intersection tests.
Matrix powers must be positive integers or -1, in which case the matrix inverse (if it exists) is computed.

9.6 Assignments

Assignments are allowed as side effects, in any place in an expression. If 7Expr” is an expression, then
?var = Expr” is the exact same expression with the side effect of setting Var to that value. There is
no guarantee on the order of evaluation, so using Vars that are set within the same expression is a bad
practice. Use parentheses to force the order of evaluation, i.e., 7 (var = Expr)”.

9.7 Comparison operators ==, ! =, <, >, <=, >=

The conditional comparison operators can be applied to the following domains (o for a comparison
operator):

Irit Solid modeler G. Elber 9
9 Operator overloading
The basic operators 4+, —, *, /, and ~ are overloaded. This section describes what action is taken by

each of these operators depending on its arguments

9.1

Overloading +

The + operator is overloaded above the following domains:

NumericType
VectorType
MatrixType
PolygonType
CurveType
CurveType
Ct1PtType
ListType
StringType
StringType

+
+
+
+
+
+
+
+
+
+

NumericType ->
VectorType ->
MatrixType ->
PolygonType ->
CurveType ->
Ct1lPtType ->
Ct1lPtType ->
ListType ->
StringType ->
RealType ->

NumericType
VectorType
MatrixType
PolygonType
CurveType
CurveType
CurveType
ListType
StringType
StringType

(Vector addition)

(Matrix addition)

(Boolean UNION operation)

(Curve curve profiling)

(Curve control point profiling)
(Control points profiling)

(Append lists operator)

(String concat)

(String concat, real as int string)

Note: Boolean UNION of two disjoint objects (no common volume) will result with the two objects
combined. It is the USER responsibility to make sure that the non intersecting objects are also disjoint
- this system only tests for no intersection.

9.2 Overloading —

The — operator is overloaded above the following domains:
As a binary operator:

NumericType
VectorType
MatrixType
PolygonType

NumericType ->
VectorType ->
MatrixType ->

PolygonType ->

As a unary operator:

- NumericType ->
- VectorType
- MatrixType
- PolygonType ->

- CurveType

- SurfaceType ->

NumericType
VectorType
MatrixType
PolygonType
CurveType
SurfaceType

->
->

->

NumericType
VectorType
MatrixType
PolygonType

(Vectoric difference)
(Matrix difference)
(Boolean SUBTRACT operation)

(Scale vector by -1)

(Scale matrix by -1)

(Boolean NEGATION operation)

(Curve parameterization is reversed)
(Surface parameterization is reversed)

Note: Boolean SUBTRACT of two disjoint objects (no common volume) will result with an empty
object. For both a curve and a surface parameterization, reverse operation (binary minus) causes the
object normal to be flipped as a side effect.

9.3 Overloading *

The * operator is overloaded above the following domains:

Irit Solid modeler G. Elber 8

8 Language description

The front end of the IRIT solid modeler is an infix parser that mimics some of the C language behavior.
The infix operators that are supported are plus (+), minus (-), multiply (*), divide (/), and power (7),
for numeric operators, with the same precedence as in C.

However, unlike the C language, these operators are overloaded, ! or different action is taken, based
upon the different operands. This means that one can write 1 4+ 2°, in which the plus sign denotes
a numeric addition, or one can write "PolyObjl + PolyObj2’, in which case the plus sign denotes the
Boolean operation of a union between two geometric objects. The exact way each operator is overloaded
is defined below.

In this environment, reals, integers, and even Booleans, are all represented as real types. Data are
automatically promoted as necessary. For example, the constants TRUE and FALSE are defined as
1.0 and 0.0 respectively.

Each expression is terminated by a semicolon. An expression can be as simple as ’a;” which prints
the value of variable a, or as complex as:

for (t =1.1, 0.1, 1.9,
cbl = csurface(sb, COL, t):
color(cbl, green):
snoc(cbil, cb_all)
);

While an expression is terminated with a semicolon, a colon is used to terminate mini-expressions
within an expression.

Once a complete expression is read in (i.e., a semicolon is detected) and parsed correctly (i.e. no
syntax errors are found), it is executed. Before each operator or a function is executed, parameter type
matching tests are made to make sure the operator can be applied to these operand(s), or that the
function gets the correct set of arguments.

The parser is totally case insensitive, so Obj, obj, and OBJ will refer to the same object, while
MergePoly, MERGEPOLY, and mergePoly will refer to the same function.

Objects (Variables if you prefer) need not be declared. Simply use them when you need them.
Object names may be any alpha-numeric (and underscore) string of at most 30 characters. By assigning
to an old object, the old object will be automatically deleted and if necessary its type will be modified

on the fly.
Example:
V = sin(45 * pi / 180.0);
V=V % vector(1, 2, 3);
V=V *x rotx(90);
V=Vx%xV;

will assign to V a NumericType equal to the sine of 45 degrees, the VectorType (1, 2, 3) scaled by
the sine of 45, rotate that vector around the X axis by 90 degrees, and finally a NumericType which is
the dot (inner) product of V with itself.

The parser will read from stdin, unless a file is specified on the command line or an INCLUDE
command is executed. In both cases, when the end of file is encountered, the parser will again wait for
input from stdin. In order to execute a file and quit in the end of the file, put an EXIT command as
the last command in the file.

'In fact the C language does support overloaded operators to some extent: 1 + 2’ and °1.0 4+ 2.0’ implies invocation
of two different actions.

Irit Solid modeler G. Elber 7
ADAPISO CINFLECT CREPARAM | MERGEPOLY | SINTERP SYMBDIFF
ARC CINTERP CROSSEC MOMENT SMERGE SYMBDPROD
AOFFSET CIRCLE CRVLNDST NIL SMORPH SYMBPROD
BOOLONE CIRCPOLY CRVPTDST OFFSET SNORMAL SYMBSUM
BOOLSUM CLNTREAD | CSURFACE PCIRCLE SNRMLSRF TBEZIER
BOX CMESH CTANGENT PDOMAIN SPHERE TBSPLINE
BSP2BZR CMORPH CTRIMSRF POLY SRAISE TDERIVE
BZR2BSP CMULTIRES | CTLPT PRISA SREFINE TEVAL
CBEZIER COERCE CYLIN PROCEDURE | SREGION TINTERP
CBSPLINE COMPOSE CZEROS RULEDSRF SREPARAM TORUS
CCINTER CON2 EXTRUDE SBEZIER STANGENT TREFINE
CCRVTR CONE FFCOMPAT SBSPLINE STRIMSRF TREGION
CDERIVE CONVEX FFEXTREME | SCRVTR STRIVAR TRIMSRF
CDIVIDE COORD GBOX SDERIVE SURFPREV TSUBDIV
CEDITPT CPOLY GETLINE SDIVIDE SURFREV
CEVAL CRAISE GPOLYGON SEDITPT SWEEPSRF
CEVOLUTE CREFINE GPOLYLINE | SEVAL SWPSCLSRF
CEXTREMES | CREGION LOFFSET SFROMCRVS | SYMBCPROD

Functions that create linear transformation matrices:
| HOMOMAT | ROTX | ROTY | ROTZ | SCALE | TRANS |
Miscellaneous functions:
ATTRIB ERROR IF LOGFILE RMATTR | VECTOR
CHDIR EXIT INCLUDE MSLEEP SAVE VIEW
CLNTCLOSE | FOR INTERACT | NTH SNOC VIEWOBJ
CLNTWRITE | FREE IRITSTATE | PAUSE SYSTEM
COLOR FUNCTION | LIST PRINTF TIME
COMMENT HELP LOAD PROCEDURE | VARLIST
Variables that are predefined in the system:
AXES MACHINE POLY_APPROX_TOL | VIEW_MAT
DRAWCTLPT | POLY_APPROX_OPT | PRSP_MAT
FLAT4PLY POLY_APPROX_UV RESOLUTION

Constants that are predefined in the system:

AMIGA E3 MAGENTA PARAM_CENTRIP | SURFACE_TYPE
APOLLO E4 MATRIX_TYPE PARAM_CHORD SUN

BLACK E5 MSDOS PARAM_UNIFORM | TRIMSRF_TYPE
BLUE FALSE NUMERIC_TYPE | PI TRIVAR_TYPE
COL GREEN OFF PLANE_TYPE TRUE
CTLPT_TYPE | HP ON POINT_TYPE UNDEF_TYPE
CURVE_TYPE | IBMOS2 P1 POLY_TYPE UNIX

CYAN IBMNT P2 RED VECTOR_TYPE
DEPTH KV_FLOAT | P3 ROW WHITE

Bl KV_OPEN P4 SGI YELLOW

E2 LIST_-TYPE | P5 STRING_TYPE

Irit Solid modeler G. Elber
+ CCINTER CPOLY IF RULEDSRF SURFREV
- CCRVTR CRAISE INCLUDE SAVE SWEEPSRF
* CDERIVE CREFINE INTERACT SBEZIER SWPSCLSRF
/ CDIVIDE CREGION IRITSTATE SBSPLINE SYMBCPROD
- CEDITPT CREPARAM | LIST SCALE SYMBDIFF
= CEVAL CROSSEC LN SCRVTR SYMBDPROD
== CEVOLUTE CRVLNDST LOAD SDERIVE SYMBPROD
= CEXTREMES | CRVPTDST LOFFSET SDIVIDE SYMBSUM
< CHDIR CSURFACE LOG SEDITPT SYSTEM
> CINFLECT CTANGENT LOGFILE SEVAL TAN
<= CINTERP CTLPT MERGEPOLY | SFROMCRVS | TBEZIER
>= CIRCLE CTRIMSRF MESHSIZE SIN TBSPLINE
ABS CIRCPOLY CYLIN MOMENT SINTERP TDERIVE
ACOS CLNTCLOSE | CZEROS MSLEEP SIZEOF TEVAL
ADAPISO | CLNTEXEC ERROR NIL SMERGE TIME
ARC CLNTREAD EXIT NTH SMORPH TINTERP
AREA CLNTWRITE | EXP OFFSET SNOC THISOBJ
ASIN CMESH EXTRUDE PAUSE SNORMAL TORUS
ATAN CMORPH FFCOMPAT PCIRCLE SNRMLSRF TRANS
ATAN2 CMULTIRES | FFEXTREME | PDOMAIN SPHERE TREFINE
ATTRIB COERCE FOR POLY SQRT TREGION
AOFFSET | COLOR FREE PRINTF SRAISE TRIMSRF
BOOLONE | COMMENT FUNCTION PRISA SREFINE TSUBDIV
BOOLSUM | CON2 GBOX PROCEDURE | SREGION VARLIST
BOX CONE GETLINE RANDOM SREPARAM | VECTOR
BSP2BZR | CONVEX GPOLYGON RMATTR STANGENT | VIEW
BZR2BSP | COORD GPOLYLINE | ROTX STRIMSRF VIEWOBJ
CBEZIER | COS HELP ROTY STRIVAR VOLUME
CBSPLINE | COMPOSE HOMOMAT ROTZ SURFPREV

7 Functions and Variables

This section lists all the functions supported by the IRIT system according to their classes - mostly,
the object type they return.
Functions that return a NumericType:

ABS
ACOS
AREA
ASIN

ATAN
ATAN?2

COS
CLNTEXEC

CPOLY
EXP
LN
LOG

MESHSIZE
RANDOM
SIN
SIZEOF

SQRT
TAN

THISOBJ
VOLUME

Functions that return a GeometricType:

Irit Solid modeler G. Elber 5

5 Data Types

These are the Data Types recognized by the solid modeler. They are also used to define the calling
sequences of the different functions below:

ConstantType Scalar real type that cannot be modified.
NumericType Scalar real type.

VectorType 3D real type vector.

PointType 3D real type point.

CtlPtType Control point of a freeform curve or surface.
MatrixType 4 by 4 matrix (homogeneous transformation matrix).
PolygonType Object consists of polygons.

PolylineType Object consists of polylines.

CurveType Object consists of curves.

SurfaceType Object consists of surfaces.

TrimSrfType Object consists of trimmed surfaces.

TrivarType Object consists of trivariate function.
GeometricType One of Polygon/lineType, CurveType, SurfaceType,
TrimSrfType, TrivarType.

GeometricTreeType | A list of GeometricTypes or GeometricTreeTypes.
StringType Sequence of chars within double quotes - ” A string”.
Current implementation is limited to 80 chars.
AnyType Any of the above.
ListType List of (any of the above type) objects. List
size is dynamically increased, as needed.

Although points and vectors are not the same, IRIT does not destinguish between them, most of
the time. This might change in the future.

6 Commands summary

These are all the commands and operators supported by the IRIT solid modeler:

Irit Solid modeler G. Elber 4

#if COLOR

irit*Trans*BackGround: NavyBlue
irit*Trans*BorderColor: Red
irit*Trans*BorderWidth: 3
irit*Trans*TextColor: Yellow
irit*Trans*SubWin*BackGround: DarkGreen
irit*Trans*SubWin*BorderColor: Magenta
irit*Trans*Geometry: =150x500+500+0
irit*Trans*CursorColor: Green
irit*View*BackGround: NavyBlue
irit*View*BorderColor: Red
irit*View*BorderWidth: 3
irit*View*Geometry: =500x5004+-0+0
irit*View*CursorColor: Red
irit*MaxColors: 15

#else

irit*Trans*Geometry: =150x500+500+0
irit*Trans*BackGround: Black
irit*View*Geometry: =500x5004+-0+0
irit*View*BackGround: Black
irit*MaxColors: 1

#endif

4 First Usage

Commands to IRIT are entered using a textual interface, usually from the same window the program
was executed from.

Some important commands to begin with are,

1. include("file.irt”); - will execute the commands in file.irt. Note include can be recursive up to
10 levels. To execute the demo (demo.irt) simply type ’include(”demo.irt”);’. Another way to run the
demo is by typing demo(); which is a predefined procedure defined in iritinit.irt.

2. help(””); - will print all available commands and how to get help on them. A file called irit.hlp
will be searched as irit.cfg is being searched (see above), to provide the help.

3. exit(); - close everything and exit IRIT.

Most operators are overloaded. This means that you can multiply two scalars (numbers), or two
vectors, or even two matrices, with the same multiplication operator (x). To get the on-line help on
the operator '+’ type "help(”+”);’

The best way to learn this program (like any other program...) is by trying it. Print the manual
and study each of the commands available. Study the demo programs (*.irt) provided as well.

The ”best” mode to use irit is via the emacs editor. With this distribution an emacs mode for irit
files (irt postfix) is provided (irit.el). Make your .emacs load this file automatically. Loading file.irt
will switch emacs into Irit mode that supports the following three keystrokes:

Meta-E | Executes the current line
Meta-R | Executes the current Region (Between Cursor and Mark)

Meta-S | Executes a single line from input buffer

The first time one of the above keystrokes is hit, emacs will fork an Irit process so that Irit’s stdin
is controlled via the above commands. This emacs mode was tested under various unix environments
and under OS2 2.x.

Irit Solid modeler G. Elber 3

IRIT [-t] [-z] [file.irt]

-t Puts IRIT into text mode. No graphics will be displayed and
the display commands will be ignored. Useful when one needs to
execute an irt file to create data on a tty device...

-Z Prints usage message and current configuration/version
information.

file.irt | A file to invoke directly instead of waiting to input from

stdin.

3.1 IBM PC OS2 Specific Set Up

Under OS2 the IRIT_DISPLAY environment variable must be set (if set) to os2drvs.exe without any
option (-s- will be passed automatically). os2drvs.exe must be in a directory that is in the PATH
environment variable. IRIT_BIN_IPC can be used to signal binary IPC which is faster. Here is a
complete example:

set IRIT_PATH=c:\irit\bin\
set IRIT_DISPLAY=o0s2drvs.exe
set IRIT_BIN_IPC=1

assuming the directory specified by IRIT_PATH holds the executables of IRIT and is in PATH.
If IRIT_BIN_IPC is not set, text based IPC is used which is far slower. No real reason not to use
IRIT_BIN_IPC unless it does not work for you.

3.2 IBM PC Window NT Specific Set Up

The NT port uses sockets and is, in this respect, similar to the unix port. The envirnoment variables
IRIT_DISPLAY, IRIT_SERVER_HOST, IRIT_BIN_IPC should all be set in a similar way to the Unix
specific setup. As a direct result, the server (IRIT) and the display device may be running on different
hosts. For example the server might be running on an NT system while the display device will be
running on an SGI4D exploiting the graphic’s hardware capabilities.

3.3 Unix Specific Set Up

Under UNIX using X11 (x11drvs driver) add the following options to your .Xdefaults. Most are self
explanatory. The Trans attributes control the transformation window, while the View attributes control
the view window. SubWin attributes control the subwindows within the Transformation window.

Irit Solid modeler G. Elber 2

predefined functions and procedures if you have some. This file will be searched much the same way
IRIT.CFG is. The name of this initialization file may be changed by setting the StartFile entry
in the configuration file. This file is far more important starting at version 4.0, because of the new
function and procedure definition that has been added, and which is used to emulate BEEP, VIEW,
and INTERACT for example.

The solid modeler can be executed in text mode (see the .cfg and the -t flag below) on virtually
any system with a C compiler.

Under all systems the following environment variables must be set and updated:

path Add to path the directory where IRIT’s binaries are.
IRIT_PATH Directory with config., help and IRIT’s binary files.
IRIT_DISPLAY The graphics driver program/options. Must be in path.
IRIT_BIN_IPC If set, uses binary Inter Process Communication.

For example,

set path = ($path /u/gershon/irit/bin)
setenv IRIT_PATH /u/gershon/irit/bin/
setenv IRIT_DISPLAY "xgldrvs -s-"
setenv IRIT_BIN_IPC 1

to set /u/gershon/irit/bin as the binary directory and to use the sgi’s gl driver. If IRIT_DISPLAY
is not set, the server (i.e., the IRIT program) will prompt and wait for you to run a client (i.e., a
display driver). if IRIT_PATH is not set, none of the configuration files, nor the help file will be found.

If IRIT_BIN_IPC is not set, text based IPC is used, which is far slower. No real reason not to use
IRIT_BIN_IPC, unless it does not work for you.

In addition, the following optional environment variables may be set.

IRIT_MALLOC If set, apply dynamic memory consistency testing.
Programs will execute much slower in this mode.
IRIT_NOSIGNALS If set, no signals are caught by IRIT.
IRIT_SERVER_HOST Internet Name of IRIT server (used by graphics driver).
IRIT_SERVER_PORT Used internally to the TCP socket number. Should not

be set by users.

For example,

setenv IRIT_MALLOC 1
setenv IRIT_NO_SIGNALS 1
setenv IRIT_SERVER_HOST irit.cs.technion.ac.il

IRIT_MALLOC is useful for programmers, or when reporting a memory fatal error occurrence.
IRIT_.NO_SIGNALS is also useful for debugging when contorl-C is used within a debugger. The
IRIT.SERVER_HOST/PORT controls the server/client (IRIT/Display device) communication.

IRIT_SERVER_HOST and IRIT_SERVER_PORT are used in the unix and Window NT ports of
IRIT.

See the section on the graphics drivers for more details.

A session can be logged into a file as set via LogFile in the configuration file. See also the LOGFILE
command.

The following command line options are available:

Irit Solid modeler G. Elber 1

1 Introduction

IRITis a solid modeler developed for educational purposes. Although small, it is now powerful enough
to create quite complex scenes.

IRIT started as a polygonal solid modeler and was originally developed on an IBM PC under
MSDOS. Version 2.0 was also ported to X11 and version 3.0 to SGI 4D systems. Version 3.0 also
includes quite a few free form curves and surfaces tools. See the UPDATE.NEW file for more detailed
update information. In Version 4.0, the display devices were enhanced, freeform curves and surfaces
have further support, functions can be defined, and numerous improvement and optimizations are

added.

2 Copyrights

BECAUSE IRIT AND ITS SUPPORTING TOOLS AS DOCUMENTED IN THIS DOCUMENT ARE
LICENSED FREE OF CHARGE, I PROVIDE ABSOLUTELY NO WARRANTY, TO THE EXTENT
PERMITTED BY APPLICABLE STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING, I GERSHON ELBER PROVIDE THE IRIT PROGRAM AND ITS SUPPORTING TOOLS ”AS
I[S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THESE PROGRAMS IS WITH YOU. SHOULD THE [RIT PROGRAMS PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL GERSHON ELBER, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR
OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR A
FAILURE OF THE PROGRAMS TO OPERATE WITH PROGRAMS NOT DISTRIBUTED BY
GERSHON ELBER) THE PROGRAMS, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

IRIT is a freeware solid modeler. It is not public domain since I hold copyrights on it. However,
unless you are to sell or attempt to make money from any part of this code and/or any model you
made with this solid modeler, you are free to make anything you want with it.

IRIT can be compiled and executed on numerous Unix systems as well as OS2, Windows NT and
AmigaDOS. However, beware the MSDOS support is fading away.

You are not obligated to me or to anyone else in any way by using IRIT. You are encouraged to share
any model you made with it, but the models you made with it are yours, and you have no obligation
to share them. You can use this program and/or any model created with it for non commercial and
non profit purposes only. An acknowledgement on the way the models were created would be nice but
is not required.

3 Command Line Options and Set Up of IRIT

The IRIT program reads a file called irit.cfg each time it is executed. This file configures the system.
It is a regular text file with comments, so you can edit it and properly modify it for your environment.
This file is being searched for in the directory specified by the IRIT_PATH environment variable. For
example ’setenv IRIT_PATH /u/gershon/irit/bin/’. Note IRIT_PATH must terminate with ’/’. If the
variable is not set only the current directory is being searched for irit.cfg.

In addition, if it exists, a file by the name of iritinit.irt will be automatically executed before
any other ".irt’ file. This file may contain any IRIT command. It is the proper place to put your

20 Irit2Dxf - IRIT To DXF (Autocad) filter

21 Irit2Iv - IRIT To SGI’s Inventor filter

21.1 Command Line Options
21.2 Usage o o e

22 Irit2Nff - IRIT To NFF filter

22.1 Command Line Options
222 Usage o e
22.3 Advanced Usage o

23 Irit2Plg - IRIT To PLG (REND386) filter

23.1 Command Line Options
23.2 Usage o e

24 Irit2Ps - IRIT To PS filter

24.1 Command Line Options,
242 Usage oo e
24.3 Advanced Usage o

25 Irit2Ray - IRIT To RAYSHADE filter

25.1 Command Line Options
252 Usage o e
25.3 Advanced Usage oo

26 Irit2Scn - IRIT To SCENE (RTrace) filter

26.1 Command Line Options
26.2 Usage o
26.3 Advanced Usage o

27 Irit2Xfg - IRIT To XFIG filter

27.1 Command Line Options
272 Usage o o i o e

28 Data File Format

29 Bugs and Limitations

108

108
108
108

109
109
109
110

110
110
111

111
111
112
113

113
113
114
115

116
116
116
117

117
117
118

118

124

10.7.40POLY_TYPE« . e
10.7T41RED . . o o e
10.7.42ROW L . L L e e
10.7.43SGL . L o e e e
10.7.44STRING_TYPE o e
10.7.45SURFACE_TYPE o e
10.7.46SUN . L o oo e e e e
10.747TRIMSREF_TYPE o . o e
10.748 TRIVAR_TYPE o e
10.7T49TRUE . . . o o e
10.7.50UNDEF_TYPE e
10.751UNIX L o e
10.7.52VECTORTYPE . . o o o o e
10.7.3WHITE o oo e
10.7.54YELLOW . . . oo o e e e

11 Animation
11.1 How to create animation curves in IRIT
11.2 A more complete animation example oo

12 Display devices
12.1 Command Line Options o i e e
12.2 Configuration Options« . . o L e e
12.3 Interactive mode setupo e
12.4 Animation Mode L
12.5 Specific Comments L e e e

13 Utilities - General Usage

14 poly3d-h - Hidden Line Removing Program
14.1 Introduction o oL L e e
14.2 Command Line Options o o e
14.3 Configuration L e e e e
14.4 Usage . . . o o o o e

15 poly3d-r - A Simple Data Rendering Program

16 Illustrt - Simple line illustration filter
16.1 Introduction o . oL L e e
16.2 Command Line Options o 0 e e
16.3 Usage o o

17 Dat2Bin - Data To Binary Data file filter
17.1 Command Line Options o i e
17.2 Usage o o o

18 Dat2Irit - Data To IRIT file filter
18.1 Command Line Options o 0 i e e
18.2 Usage . . . o o o

19 Dxf2Irit - DXF (Autocad) To IRIT filter

102

102
102
103
104
104

104

104
104
105
106

107
107
107

107
107
107

107

10.5.2 DRAWCTLPT e e e 87

10.5.3 FLATAPLY o o e e 87
10.5.4 MACHINE 0 e 87
10.5.5 POLY_APPROX_OPT e 88
10.5.6 POLY_APPROX_UV o s s s e 88
10.5.7 POLY_APPROX_TOL o s e 88
10.5.8 PRSP_MAT e 88
10.5.9 RESOLUTION e e e s s 88
10.5. 10 VIEW _MAT . L . oo e e 88
10.6 System constants oL Lo e e e e 89
10.7 AMIGA . . . e 89
10.7.1 APOLLO o e 89
10.7.2 BLACK o e e 89
10.7.3 BLUE e e e 89
10.7.4 COL . . o o e e e 89
10.7.5 CTLPT_TYPE s e 89
10.7.6 CURVE_TYPE e 89
10.7.7 CYAN . e 89
10.7.8 DEPTH o e 89
10.7.9 E1 © oo e e e 89
10.7.00E2 0 oo e 89
10.7.01E3 « o e e e 90
10.7.02E4 0 oo e e e 90
10.7.13ED5 « o e e e 90
10.7.14FALSE . . o e 90
10.7.15GREEN . o e 90
10706 HP oo o e 90
10.7.17TIBMOS2 . . L . o e e 90
10.7A8IBMNT .. oo e e e 90
10. 719KV _FLOAT o o e 90
10.720KV_OPEN o e 90
10.721KV_PERIODIC e 90
10.7.22LIST_TYPE . . . o o e 90
10.7.23MAGENTA . . . o e 90
10.724MATRIX_TYPE o e 90
10.7.25 MSDOS o e e e 91
10.726 NUMERIC_TYPE 91
10.727T0OFF .« . o o e e e 91
10.7280N L L o o e e e 91
10.720P1 © L o e e e e 91
10.7.30P2 © o e 91
10.7.31P3 « o e e e 91
10.7.32P4 o o e e e e 91
10.7.33P5 « o e e e 91
10.7.34PARAM_CENTRIP o o e 91
10.7.35 PARAM_CHORD e 91
10.7.36 PARAM_UNIFORM 0 o e 91
10.7.37TPL o e 91
10.7.38PLANE_TYPE e 91

10.7.39POINT_TYPE e 92

10.296 TDIVIDE 0 0 oo e e 70

10.2.97TTEVAL . . o . o e e 70
10.2.98TINTERP . . . o 0 o o o e 71
10.2.99TORUS o e e 72
10.2.1000REFINE © . . o o 72
10.2.10MREGION . . o o e 72
10.2.10XRIMSRE . o o o e 73
10.3 Object transformation functions L L o L 74
10.3.1 HOMOMAT o e e 75
10.3.2 ROTX . . . o e 75
10.3.3 ROTY . . . o e 76
10.3.4 ROTZ . . . o o e e e 76
10.3.5 SCALE o e 76
10.3.6 TRANS e 76
10.4 General purpose functions Lo oL e 76
10.4.1 ATTRIB . . . o o 76
10.4.2 CHDIR o e e 76
10.4.3 CLNTCLOSE s e s s s e 77
10.4.4 CLNTWRITE e s e e 77
10.4.5 COLOR o o e e 77
10.4.6 COMMENT 0 e 78
10.4.7 ERROR o o e 78
10.4.8 EXIT . . . o e e e 78
10.4.9 FOR . . . o o e e 78
10.4.10HELP .« o 0o o e e 78
104 11FREE o o 0 e 79
10.4.12FUNCTION . oo o e e 79
104 031F © L o e e e 80
10.4.14INCLUDE « . . 00 0o e e 80
10.4.151IRITSTATE . . . o o o e e e e 81
10416 INTERACT o o o e 81
104 0TLIST © o o o e e e 82
104 18LOAD « o L L e e 82
10.4.19LOGFILE .« . . L 0 82
10.420MSLEEP . . . 0 0 oo 83
1042INTH © o0 e e 83
10.4.22PAUSE . . L o e e e e 83
10.4.23PRINTE . L L o e 83
10.4.24PROCEDURE o e 84
10425 RMATTR . . . o o o e 84
10.4.26SAVE L o L e 85
10.4.27SNOC .« L L e e e 85
10.4.28SYSTEM . . . L o e 85
10.420TIME .« . . o o o e e e e 85
10.4.30VARLIST . . . o o o e 86
10.4.31VECTOR . . . o o o e 86
10.4.32VIEW L 0 o e e e 86
10.4.33VIEWOBJ . . o o o e 87
10.5 System variables oL L 87

10.5.1 AXES . . o o e e e 87

10246 EXTRUDE 0 0o e 42

10.247FFCOMPAT oo e 43
10.248FFEXTREME . . . o o . o e 44
10.249GBOX . . . L e e e 44
10.250GETLINE © .. o0 o o e 44
10.2.51GPOLYGON . . oo o e e e 45
10.2.52GPOLYLINE oo e e 45
10.2.53LOFFSET . . o oo o e 46
10.2.54MERGPOLY o e e 46
10.2.55MOMENT .. oo o e e 46
10256 NIL L o o e 47
10.2.570FFSET . . . oo e e e 47
10.2.58PCIRCLE . . . o o o o e e e 48
10.2.59PDOMAIN . . . o o o e e 48
10.2.60POLY o e e e 49
10.2.61PRISA . . . L . o e e e 49
10.2.62RULEDSRE o e 50
10.2.63SBEZIER o e e e 51
10.2.64SBSPLINE o e e 51
10.2.65SCRVTR . . . o o e e e 53
10.2.66SDERIVE . . . o o L o e 54
10.2.67SDIVIDE . . . o oo o e e 54
10.2.68SEDITPT . . . o oL o e e 55
10.2.69SEVAL . . o o e e e 55
10.2.70SFROMCRVS . . . o e e e 56
10.2.71ISINTERP . . . o o e e 56
10.2.72SMERGE . . . o o o o e 57
10.2.73SMORPH o . o e e 58
10.2.74SNORMAL o e e e 58
10.2.75SNRMLSRE o e 58
10.2.76 SPHERE . . .« . . o e 59
10.2.77SRAISE .« . . . o e e 59
10.2.78SREFINE . . . o o . o e e 59
10.2.79SREGION . . . o o o o e e e 60
10.2.80SREPARAM o . o e 60
10.2.81STANGENT o e e e 61
10.2.82STRIMSRE . . . o o o e 61
10.2.83STRIVAR o o e e 61
10.2.84SURFPREV o e 62
10.2.85SURFREV . . o o o e e 62
10.2.86 SWEEPSRF o o e 63
10.2.87SWPSCLSRE oo e 64
10.2.88SYMBPROD e 65
10.2.89SYMBDPROD o e 66
10.2.90SYMBCPROD o e 66
10.2.91SYMBSUM . . . oo o e e 67
10.2.92SYMBDIFF o e 67
10.2.93TBEZIER o o e 67
10.2.94TBSPLINE . . . oL o e 68

10.2.95TDERIVE . . . o o oo e 69

10.L.17SQRT . o o o e e e 15

101 A8TAN Lo e e e 15
10.1.19THISOBJ . . . o o o e 15
10.1.20VOLUME o o e e 15
10.2 GeometricType returning functions L o L o o 16
10.2.1 ADAPISO . . . o o o e 16
10.2.2 ARC . . o o e e e 16
10.2.3 AOFFSET o e 16
10.2.4 BOOLONE o e 17
10.2.5 BOOLSUM o e e 18
10.2.6 BOX . . o o e e e 19
10.2.7 BZR2BSP e 19
10.2.8 BSP2BZR o e 19
10.2.9 CBEZIER o e 20
10.2.10CBSPLINE o oo e 20
10.2.11CCINTER . . o o e e 21
10.2.12CCRVTR .« . . o o e 22
10.2.13CDERIVE . . o o o e 24
10.2.14CDIVIDE © . . L oo e e e e 24
10.2.15CEDITPT . . . L o e e 25
10216 CEVAL . . o . L e 25
10.217CEVOLUTE . . . o o o e e 25
10.218CEXTREMES . . o . o e 26
10.2.19CINFLECT . . o . 0 o o e 27
10.220CINTERP . . . o 0 0 o e 27
10.221CIRCLE oo o e 28
10.2.22CIRCPOLY o e e 29
10.2.23CLNTREAD . . . o o o e 29
10.224CMORPH . . . L o 29
10.225CMULTIRES . . . o o o e 30
10.226CMESH L o e e 31
10.227COERCE . . . o o o e e 32
10.2.28COMPOSE o o e e 32
10.2.20C0ON2 .« . L L e e e 33
10.2.30CONE .« . . o e e 33
10.2.31CONVEX .« . . o e e e 34
10.2.32CO0RD L e 34
10.2.33CRAISE o e 35
10.2.34CREFINE © . . o o e 36
10.2.35CREGION . . o o 36
10.2.36 CREPARAM o e 36
10.2.37CROSSEC . . o o e 37
10.2.38CRVLNDST . . . o o e 37
10.2.39CRVPTDST . . . o o o e 38
10.240CSURFACE o o o e e 38
10.241CTANGENT . . . 0o 39
10.242CTLPT . . o o o e e e 40
10.243CTRIMSRE o o e 40
10.244CYLIN Lo o e e e 40

10.2.45CZEROS . . . o o e e e 42

Contents

10

Introduction
Copyrights

Command Line Options and Set Up of IRIT

3.1 IBM PC OS2 Specific Set Up o e
3.2 IBM PC Window NT Specific Set Up i s
3.3 Unix Specific Set Up o o o o e

First Usage

Data Types

Commands summary
Functions and Variables
Language description

Operator overloading

9.1 Overloading + e e
9.2 Overloading — L e e
9.3 Overloading * e e e
9.4 Overloading / e
9.5 Overloading ™ L e e e
9.6 Assignments e e e
9.7 Comparison operators ==, ! =, <, >, <=, >=
9.8 Logical operators &&, |||, ! o
9.9 Geometric Boolean Operations o e
9.10 Priority of operators L e e e
.11 Grammart ot e e e e e e e e e e e e

Function Description

10.1 NumericType returning functions o oo
10.1.1 ABS o o o e e e
10.1.2 ACOS . . . o e e s
10.1.3 AREA © . . o e e
10.1.4 ASIN L e e e
10.1.5 ATAN . e e e
10.1.6 ATAN2 . . L e e e
10.1.7 COS . . o e e e
10.1.8 CLNTEXEC e e e s s e
10.1.9 CPOLY o e e
10.1I0EXP © o 0 e
T0.LITLN © oo e e e
10.1.12L0G . . 0 o e e e e
10.1.13MESHSIZE . . . 0 o e
10.1.TARANDOM . . L . o e
10.15SIN Lo e e e
10.1.16SIZEOF . . o . o e e

Version 5.0 User’s Manual

A Solid modeling Program

Copyright (C) 1989, 1990-1995 Gershon Elber

EMail: gershon@cs.technion.ac.il

Join IRIT mailing list: gershon@cs.technion.ac.il
Mailing list: irit-mail@cs.technion.ac.il
Bug reports: irit-bugs@cs.technion.ac.il

This manual is for IRIT Version 5.0.

