Institut flir Computersysteme, ETH Ziirich 22.10.93

Oberon V4

H. Mdssenbdck

Oberon V4 is a cleared up version of Oberon V2.2 (The version number V3 refers to "Gadgets Oberon”
which has a graphical user interface.) It resulted from the desire to integrate the text editors Edit and
Write. This document explains the differences between V4 and V2.2. What is not described here remains
as explained in the book "The Oberon System" by M. Reiser (see reference [1] below).

1. Text Editing

General. The following features make the behavior of text frames more natural:

- A text frame may now contain lines of varying heights. Thus, large fonts can be displayed without
being clipped to a fixed line raster.

— Characters entered from the keyboard obtain the font attribute of the character at the caret position.

— A text may contain objects such as pictures, tables or buttons. These objects are called elements (see
below) and are described in detail in the file Elem.Guide.Text. A special element, called a paragraph
control character (or Parc) controls the formatting of the text between itself and the following Parc.
Formatting attributes are described in the file Edit. Guide.Text.

— When a text selection expands over two viewers all selected lines are shown in reverse video.

— When a text is modified, an exclamation mark is shown at the end of the corresponding viewer's
menu. This indicates that the text should be stored before the viewer is closed.

Backward scrolling. Clicking the right mouse key in the scroll bar moves the respective line to the
bottom of the frame. Dragging on the right key tracks lines by underlining them. On release the currently
underlined line will move to the bottom of the frame.

Keyboard.

— Auto-scrolling. Pressing the return key when the caret is in the last line of a frame scrolls the frame up
one line.

— Auto-indentation. Pressing the line feed key causes a line break with auto—indentation, i.e., as many
tabulator or blank characters are inserted at the beginning of the new line as there are tabulator or
blank characters at the beginning of the previous line.

— Cursor keys. The caret can be moved one character to the left or to the right by pressing the cursor left
or cursor right key.

— Shifting lines. A couple of selected lines in the focus frame can be shifted to the left or to the right by
pressing the cursor left or cursor right key while a selection exists. Shifting to the right means inserting
a tabulator character at the beginning of every line (or a blank at the beginning of every line that
already starts with a blank). Shifting to the left means deleting a tabulator or blank character at the
beginning of every line.

Menu bar. A user can choose the menu commands of a viewer opened with Edit.Open. The text to
appear in the menu line should be stored to a file with the name Edit. Menu.Text. If such a file exists,
Edit.Open will display its contents as the viewer's menu. Otherwise, Edit.Open will use a standard menu.

A menu text may now also contain elements. A new kind of elements, called MenuElems (see below)
was especially designed to be used in the menu bar.

An exclamation mark at the end of the menu text indicates that the text in the corresponding contents
frame was modified. The mark will disappear after executing Edit.Store.

2. Module Edit

The following commands have been added or modified:

— Edit.Search searches the selection in the target frame. If the command is invoked from the menu of a
viewer, the target frame is that viewer's contents frame; otherwise the target frame is the focus frame.
Searching starts at the caret position or at position O if no caret is set. Successive invocations of
Edit.Search will place the caret at the next occurrence of the searched pattern. If the pattern is not
found, no caret is set. The next call to Edit.Search will start searching from the beginning of the text
(wrap—around).

— Edit.Replace cooperates with Edit.Search. It replaces the previously found pattern by the selection and
searches for the next occurrence of the pattern. Successive calls to Edit.Replace allow replacing all
occurrences of a pattern in a text.

— Edit.ReplaceAll works like Edit.Replace but replaces all occurrences of a previously found pattern from
the caret position to the end of the text at once.

— Edit.ClearReplaceBuffer clears the replace buffer. If no selection exists, the next call to Edit.Replace will
replace the previously found pattern by the empty string.

— Edit.ChangeFont (fontName | "1")

Edit.ChangeColor (colorNumber | "1")

Edit.ChangeOffset (voffNumber | "1")

Changes the font, color or vertical offset attributes of the selection to fontName, colorNumber or
voffNumber, respectively. If the command is followed by a "+", the parameter is taken from the
selection in the command frame.

— Edit.ChangeBackgroundColor (colorNumber | "1")

Changes the background color of the marked frame to colorNumber. If the command is followed by a
"+", the parameter is taken from the selection in the command frame.

3. Elements

Elements are objects such as pictures, tables or buttons that can be inserted in a text and flow with it
while the text is edited. Clicking at an element with the middle mouse key causes the element to react in
some specific way (most elements will allow editing their contents in response to such a click). The
following list shows some currently implemented element kinds:

- GraphicElems pictures drawn with the Draw editor

- PictureElems bitmaps drawn with the Paint editor

— TableElems formatted tables

- PopupElems buttons that react as pop up menus

- MenuElems texts that react as pop up menus (for the menu bar of a viewer)

- FoldElems hypertext folding of text pieces

- LineElems width—adapting lines of various thickness

A detailed description of how to use these elements can be found in the file Elem.Guide. Text.

As an example we look at menu elements that may conveniently be used in the menu of a viewer. The
command MenuElems.Insert inserts an empty menu element represented by an empty rectangle at the
caret position. A middle—left click at the element opens a text viewer into which several commands, each
on a separate line, can be entered. The first line is interpreted as the menu name. Invoking
MenuElems.Update from the viewer's menu will store the commands as the menu element's contents.
Note that the file Edit. Menu.Text may also contain menu elements.

4. Modifications in the Programming Interface

Texts

— The type Texts.Elem is the base type for all elements. Although it was already part of Oberon V2.2, it
was not described in the book by M.Reiser (see [1] below). Elements are represented by the character
Texts.ElemChar in the text. They can be read with Texts.Read(R, ch). If ch = Texts.ElemChar, R.elem
contains the element, otherwise R.efem = NIL. A faster way to read elements is to use Texts.ReadElem
and Texts.ReadPrevElem which skip characters that are not elements. An element can be written to a
buffer with Texts.WriteElem. There are several messages understood by elements such as the FileMsg
for loading and storing elements, the Copy/sg for obtaining a copy of an element, and the Identify/Msg
for obtaining the name of a command that upon invocation will generate an element of this type and
install it in the global variable Texts.new. An element is contained in at most one text. This text can be
obtained with Texts. ElemBase.

— In Texts.Load and Texts.Store the file parameter has been replaced by a rider parameter:
Texts.Load(text, file, pos, length) ==> Texts.Load(rider, text)
Texts.Store(text, file, pos, length) ==> Texts.Store(rider, text)

— Texts.Reader and Texts.Writer are not extensions of Files.Rider any more.

— The new procedure Texts.Close(text, fileName) writes a text to the file with the designated name and
creates a backup (fileName.Bak) if a file with this name already existed.

— The new procedure Texts.ElemPos(e) returns the position of the element e in the text containing e.

— Text files start with a tag and a version number. The tag is OFOX and the current version number is
01X. Note that only text files have a tag and a version but not texts.

TextFrames
Text frames have become more powerful and at the same time their interface has become simpler.
— New or renamed fields in TextFrames.FrameDesc:

f-hasSel true if a selection is visible in f (replaces f.sel > 0)
fhasCar true if a caret is visible in f (replaces f.car > 0)
f.showsParcs true if Parcs contained in f.text should be visible in f
fbarww width of the scroll bar in f

ffocus frame of the element in fthat has the focus, or NIL

— TextFrames.Open(frame, handler, text, org, col, left, right, top, bottom, Isp) has been replaced by
TextFrames.Open(frame, text, org). The other parameters are set to the default values exported in the
global variables of TextFrames. Other values can be assigned immediately after the call to Open.

— TextFrames.Parc is the type of paragraph control characters that control the formatting of texts. Its
fields are described in a report by C. Szyperski (see [2] below). The global variable defParc holds the

default Parc implicitly assumed at the beginning of every text. The procedure ParcBefore(text, pos, parc,
parcPos) returns the first Parc in the specified text before the position pos.

— The InsertElem/Nsg can be used to insert an element at the caret position in the focus viewer.

— There are several messages that can be sent to elements. Most of them existed already in Oberon V2.2
but they were not described in the book by M.Reiser (see [1] below).

DisplayMsg causes an element to display itself on the screen

TrackMsg is sent to an element when the mouse is clicked at it

FocusMsg is sent to an element when it becomes the new focus or when the focus is removed
from it

NotifyNisg is the base type of messages that can be used to notify an element of a certain event.

Sending a Notify/Msg to a frame fwill cause the message to be distributed to all
elements that represent subframes of f.
— The following procedures have been removed, since they had the same effect as a
MenuVieweres.Modify/Msg.
Suspend(f) MenuViewers.ModifyMsg (id and dY arbitrary, Y=F.Y, H=0)
Extend(F, newY) MenuViewers.ModifyMsg (dY arbitrary, id = extend, Y = newY, H = F.Y + F.H — newY)
Reduce(F, newY) MenuViewers.ModifyMsg (dY arbitrary, id = reduce, Y = newY, H=F.Y + F.H — newY)
Modify(F, id, dY, Y, H) MenuViewers.ModifyMsg (parameters in record fields)

Restore(F) Suspend followed by an Extend to the original height.

— The following procedures have been removed. They should be replaced by the corresponding message.
Copy Oberon.CopyMsg (msg.F must be set to NIL before the message is sent)
CopyOver Oberon.CopyOverMsg
Defocus Oberon.ControlMisg (id = defocus)

Delete TextFrames.Update/Msg (id = delete)
Edit Oberon.InputNisg (id = track)
GetSelection Oberon.SelectionVsg

Insert TextFrames.Update/Msg (id = insert)
Neutralize Oberon.ControlMsg (id = neutralize)
Replace TextFrames.Update/Msg (id = replace)
Update TextFrames.Update/Msg

Write Oberon.InputNisg (id = consume)

— The procedure TextFrames.Call is not exported any more.

Oberon

— Oberon.Task has a new field time. A task tis only activated if t.time <= Oberon.Time().
— The procedure Oberon.ShowMenu has been eliminated.

— The first parameter of Oberon.Call is now a value parameter.

References
[1] M.Reiser: The Oberon System. User Guide and Programmer's Manual. Addison—Wesley, 1991
[2] C.A.Szyperski: Write: An Extensible Text Editor for the Oberon System. ETH report 151, 1991

