OD.doc

OD.doc

] COLLABORATORS
TITLE :
OD.doc
ACTION NAME DATE SIGNATURE
WRITTEN BY December 7, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

OD.doc iii

Contents

1 OD.doc 1
1.1 OD -- The Oberon-A module definition utility 1
1.2 Whatis OD? 1
1.3 Copyright and distribution L L e e e 2
1.4 WhatdoIneedtorun OD? e 2
1.5 Running OD fromthe CLI e 2
1.6 Running OD from the Workbench 3
1.7 Running OD fromthe FPE utility e e 4
1.8 Reporting bugs and suggestions L. e e e e e e e 4

OD.doc

Chapter 1

OD.doc

1.1 OD -- The Oberon-A module definition utility

SRCSfile: OD.doc $
Description: Documentation for the Oberon-A module definition utility.

Created by: fjc (Frank Copeland)
SRevision: 1.2 $
SAuthor: fjc $
S$Date: 1995/01/25 23:37:04 $

Description What is OD?
Distribution Copyright and distribution
Requirements What do I need to run OD?

Running OD...

Shell ...from the Shell

Workbench ...from the Workbench

FPE ...from FPE

The Author Contacting the author

Bugs & Suggestions Reporting bugs and suggestions
Changes Changes since the last release

To Do Bugs to fix and improvements to make

1.2 What is OD?

OD is the Oberon-A module definition utility. Its purpose is to create
a summary of the objects exported by a module, to act as a reference
for programmers. It is similar in most ways to the Oberon System’s
"browser’ utility.

The definition file created by OD closely resembles an Oberon-2 module
containing only declarations and procedure headings. It 1is produced
directly from a module’s symbol file, and contains only those
declarations exported by the module and visible to its «clients. It is

OD.doc

structured roughly as follows:

DEFINITION <module>;

CONST

<name> = <value>;
TYPE

<name> = <type>;
VAR

<name> : <type>;

<procedure heading>
END <module>.

Within each division, identifiers are listed alphabetically. It 1is not
possible to reproduce the structure of the original module.

Type-bound procedures and library call procedures are shown as part of
the declaration of the associated record type.

1.3 Copyright and distribution

OD is part of Oberon-A and is:
Copyright © 1994-1995, Frank Copeland

See Oberon—-A.doc for its conditions of use and distribution.

1.4 What do | need to run OD?

OD requires Release 2.04 (V37) of the Amiga operating system, or a
later version.

1.5 Running OD from the CLI

Format: OD <files> [TO <directory>] [MAKEICONS]
[EXTERNAL] [SIZE] [EXPAND]

Template: FILE/A,MAKEICONS/S, TO/K,
EXTERNAL/S, SIZE/S,EXPAND/S

OD.doc 3/4

Purpose: Generates definition files from symbol files.
Path: OBERON-A:0D

Specification: OD reads the symbol file specified in the FILE
parameter and generates a definition file which is output in the
directory specified in the TO parameter, or in the current directory
if there is none. You can specify several symbol files to be
processed by giving an AmigaDOS pattern as the FILE argument.

OD uses the standard AmigaDOS pattern matching routines, so the FILE
arguments must fully specify the symbol file name, including the
extension. If a TO parameter is given, it must be the name of an
existing directory.

If the EXTERNAL argument is given, additional information about
external type and procedure declarations is output. If the SIZE
argument is given the size of all objects is output. If the EXPAND
argument is given extended types are output with the fields and
type-bound procedures of the base type(s) are output.

If the MAKEICONS argument is given, an icon is created for the
definition file. The default icon 1is found in "ENV:0D/def file.info".

OD requires a stack of at least 10000 bytes. See the AmigaDOS manual
entry for the STACK command.

1.6 Running OD from the Workbench

See Running OD from the Shell for a general description of OD’s
operation and the effect of the various arguments.

OD can be run in two ways:

1. Use extended selection to select one or more symbol files. Then hold
down the shift key and double-click on the OD icon.

2. Select the icon for the drawer in which the symbol file(s) are
stored, then double-click the OD icon. In this case the pattern for
the name(s) of the symbol file(s) to be processed must be specified
in a tooltype as "FILE=<pattern>".

All arguments available when running OD from the Shell can be specified
as tooltypes in OD’s icon. The tooltypes can be edited by clicking the
icon and selecting the "Information" item from the Workbench "Icons"
menu.

For switch arguments like MAKEICONS the name of the argument is entered
as a tooltype. Keyword arguments like FILE are entered as
"FILE=<argument>". The standard WINDOW tooltype is also understood by
OD. If it is omitted a default console window is opened.

A typical list of tooltypes might look like this:

WINDOW=CON:0/0/640/200/0D’ing.../CLOSE/WAIT

OD.doc

4/4

FILE=#7?.sym
EXTERNAL
(SIZE)
(EXPAND)

Enclosing the SIZE argument in parentheses disables it without the need
to delete the entire tooltype. To enable it, edit the tooltype to
remove the parentheses and save the icon.

Set the default stack to at least 10000 bytes.

1.7 Running OD from the FPE utility

A tool button in the FPE window can be configured to run OD (see
FPE.doc). In the button editor, set the Command field to the full path
name of the OD program. Set the Arguments field to "Code/!M.Sym", or
wherever else the module’s symbol file may be found. If you wish the
definition file to go somewhere else than the current directory, add
the destination to the Arguments field. Specify a console window as the
Console field. Put at least 10000 in the stack field.

For example:
Command="DH1 :Oberon—-A/0OD"
Arguments="Code/!M.Sym TO OBERON-A:Defs"
Console="CON:0/11/540/189/0D"ing !'M.../CLOSE/WAIT"
Stack=10000
To create a definition file:

1. select the module in the Module gadget.

2. click on the tool button OD is bound to.
3. sit back and relax for a bit.

1.8 Reporting bugs and suggestions

You are encouraged to report any and all bugs you find, as well as any

comments or suggestions for improvements you may have.

Before reporting a suspected bug, check the file ToDo.doc to see 1if it

has already been noted. If it is a new insect, clearly describe its
behaviour including the actions necessary to make it repeatable.
Indicate in your report which version of OD you are using. Include

an example of a definition file or symbol file that demonstrates the

bug.

	OD.doc
	OD -- The Oberon-A module definition utility
	What is OD?
	Copyright and distribution
	What do I need to run OD?
	Running OD from the CLI
	Running OD from the Workbench
	Running OD from the FPE utility
	Reporting bugs and suggestions

