
00c76cd0-11

00c76cd0-11 ii

COLLABORATORS

TITLE :

00c76cd0-11

ACTION NAME DATE SIGNATURE

WRITTEN BY December 7, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

00c76cd0-11 iii

Contents

1 00c76cd0-11 1

1.1 " . 1

1.2 The Signal class -- abstracting Exec Signals . 1

1.3 The MessagePort class -- abstracting Exec MsgPorts . 2

1.4 The IdcmpPort class -- abstracting Intuition IDCMP ports . 2

1.5 The GadToolsPort class -- abstracting GadTools IDCMP ports . 2

1.6 The EventLoop class -- abstracting the event loop . 3

1.7 Overview of the Amiga event handling system . 3

1.8 Definition of the Signal class . 3

1.9 Using the Signal class . 4

1.10 Signal class example . 5

1.11 Definition of the MessagePort class . 6

1.12 Using the MessagePort class . 6

1.13 MessagePort class example . 7

1.14 Definition of the IdcmpPort class . 7

1.15 Using the IdcmpPort class . 9

1.16 IdcmpPort class example . 10

1.17 Definition of the EventLoop class . 11

1.18 Using the EventLoop class . 12

1.19 EventLoop class example . 12

00c76cd0-11 1 / 13

Chapter 1

00c76cd0-11

1.1 "

$RCSfile: Events.doc $
Description: Documentation for event handling classes.

Created by: fjc (Frank Copeland)
$Revision: 1.3 $

$Author: fjc $
$Date: 1995/06/29 18:56:58 $

__

Module Events exports five classes that abstract the Amiga event
handling system. Four of the classes implement object-oriented shells
around the basic system components: Exec Signals and MsgPorts, Intuition
IDCMP ports and GadTools IDCMP ports. The remaining class abstracts the
standard event loop.

~Overview~~~~~ Overview of Amiga event handling
~Definition~~~ Definition of module Events
~Source~~~~~~~ Source code of module Events
~Terminology~~ Explaining the jargon.

Classes

~Signal~~~~~~~ Abstraction of Exec Signals
~MessagePort~~ Abstraction of Exec MsgPorts
~IdcmpPort~~~~ Abstraction of Intuition IDCMP ports
~GadToolsPort~ Abstraction of GadTools IDCMP ports
~EventLoop~~~~ Abstraction of the event loop

1.2 The Signal class -- abstracting Exec Signals

The Signal class is an abstraction of the Exec library’s Signal
mechanism. A Signal object has one field, sigBit, which contains the
bit number of the Exec Signal it corresponds to. Its behaviour is
contained in two methods, SimpleLoop() and HandleSig(). SimpleLoop()
implements a simple event loop which waits for the object’s Signal to

00c76cd0-11 2 / 13

be received by the Task. HandleSig() contains the code that is to be
executed when the object’s Signal is received.
__

~Definition~ Definition of the Signal class
~Usage~~~~~~ Using the Signal class
~Example~~~~ Signal class example

1.3 The MessagePort class -- abstracting Exec MsgPorts

The MessagePort class is an extension of the Signal class that
abstracts the Exec MsgPort mechanism. A MessagePort object is
associated with an Exec MsgPort and its Signal. It has one new field,
’port’, which is a pointer to a MsgPort structure. The MessagePort
class overrides the Signal class HandleSig() method and replaces it
with a version which removes and replies to any Messages queued at the
object’s MsgPort. It defines a new method, HandleMsg(), which is
responsible for dealing with individual Messages. Other new methods
deal with the creation and management of MsgPorts.
__

~Definition~ Definition of the MessagePort class
~Usage~~~~~~ Using the MessagePort class
~Example~~~~ MessagePort class example

1.4 The IdcmpPort class -- abstracting Intuition IDCMP ports

The IdcmpPort class extends the MessagePort class to deal with
IntuiMessages from an IDCMP message port. It overrides the
HandleMsg() method with an implementation which passes the IntuiMessage
to a handler procedure depending on the value in the Class field. The
programmer must declare and install handler procedures for each class of
IntuiMessage expected by the program.
__

~Definition~ Definition of the IdcmpPort class
~Usage~~~~~~ Using the IdcmpPort class
~Example~~~~ IdcmpPort class example

1.5 The GadToolsPort class -- abstracting GadTools IDCMP ports

GadToolsPort is an extension of the IdcmpPort class that is intended to
be used with the high-level user interface objects provided by the
GadTools library. It is identical in interface and operation to the
IdcmpPort class, except that it uses the GadTools library functions for
obtaining and replying to messages from a Window’s IDCMP port.

Simply use an extension of GadToolsPort in place of an extension of
IdcmpPort whenever a Window contains GadTools gadgets.

00c76cd0-11 3 / 13

1.6 The EventLoop class -- abstracting the event loop

A EventLoop object is used to group a number of Signal objects that are
to be processed together using a single event loop. The associated
Signal objects must be created and initialised by the programmer before
adding them to the EventLoop object.
__

~Definition~ Definition of the EventLoop class
~Usage~~~~~~ Using the EventLoop class
~Example~~~~ EventLoop class example

1.7 Overview of the Amiga event handling system

It is assumed that you are familiar with the Amiga event handling
system, specifically Exec Signals and MsgPorts and Intuition IDCMP
ports.

The Amiga event handling system consists, like most of the system
software, of objects and concepts which are built up in layers. At the
lowest level, Signals are used to notify Tasks of events. MsgPorts are
built on top of Signals to provide message-based event handling. The
Intuition IDCMP system builds on the MsgPort system by defining a
specific format for messages and a set of standard event types. The
GadTools IDCMP system extends the Intuition system to support the
handling of higher-level user interface objects.

Any event-based Amiga program must contain an inner event loop, where it
waits for Signals and responds to the ones it receives. In most cases
these Signals will be associated with one or more MsgPorts, so the loop
must also contain code to remove Messages from the MsgPorts and deal
with them. Most MsgPorts will be associated with Intuition Windows, and
so the event loop must include code to identify and deal with the
IntuiMessages it receives.

This common behaviour presents an opportunity for the creation of
classes that can be re-used by any number of programs. This module
defines four classes (Signal, MessagePort, IdcmpPort and GadToolsPort)
that abstract the Exec Signal and MsgPort mechanisms, and the Intuition
IDCMP mechanism. A programmer will typically extend one or more of these
classes to implement the specific behaviour required by an application.
A fifth class (EventLoop) abstracts the event loop itself. These five
classes can be used as the basis for the event handling of any
event-based Amiga application. There is also scope for the creation of
other general classes to deal with events generated by, for instance,
the Timer device and ARexx.

1.8 Definition of the Signal class

TYPE

Signal * = POINTER TO SignalRec;

00c76cd0-11 4 / 13

SignalRec * = RECORD
sigBit : SHORTINT; (* The signal bit to wait for *)

PROCEDURE (h : Signal) HandleSig () : INTEGER;
-- Performs the appropriate action when the signal is received.

END;

CONST

(* These are the legal return codes from Signal.HandleSig() *)

Pass = 0; (* Did not handle the signal *)
Continue = 1; (* Handled the signal, continue running *)
Stop = 2; (* Handled the signal, stop listening for it *)
StopAll = 3; (* Handled the signal, exit the event loop *)

(* Disables garbage collection *)

NoGC = 0;

PROCEDURE SimpleLoop (sig : Signal; collectFreq : INTEGER);
-- Implements a simple event loop which listens for the Exec Signal

associated with the ’sig’ parameter. The ’collectFreq’ parameter
determines how frequently the garbage collector is called. Pass
NoGC if you don’t want it called at all.

1.9 Using the Signal class

Signal is an abstract class and Signal objects perform no useful work.
To make use of the class, the programmer must create a concrete class
by extending Signal and implementing the desired behaviour. At a
minimum, the subclass must override the HandleSig method and substitute
a method which performs whatever action is triggered by the receipt of
the signal associated with the object.

The minimum initialisation required for a Signal object is to set the
’sigBit’ field to the value of the Exec Signal associated with the
object. As Exec Signals are global to the Task, only one Signal object
per Exec Signal can be active within a Task at any one time.

The HandleSig method implements the primary behaviour of the Signal
class and its descendants. It is called by the SimpleLoop() procedure
(or the Do() method of an EventLoop object) when the sigBit associated
with the object is received by the Task.

Each descendant class is expected to override this method and provide
its own implementation. In order for the SimpleLoop (and EventLoop.Do)
methods to work, the replacement methods must implement at least the
following behaviour:

- If the method performs no action for a given event, it must return
the constant ’Pass’.

- If the Signal no longer needs to be part of the event loop (ie-
when a Window is closed), it must return ’Stop’.

- If the event causes the program to terminate, the method must

00c76cd0-11 5 / 13

return ’StopAll’.
- In all other cases it must return ’Continue’.

An event loop involving a single Signal object, and hence a single
Signal, is implemented in the SimpleLoop procedure. If an event loop
involving several Signal objects is required, the programmer should
create an EventLoop object.

The collectFreq parameter of SimpleLoop determines how often the
garbage collector will be called. The value passed is the number of
times the signal must be received before the garbage collector is
activated. The value passed depends on the application, and how often
the signal is likely to be received. For example, a window receiving
intuiTick events will get approximately 6 per second, so a collectFreq
value of 60 will activate the garbage collector approximately every 10
seconds. A window receiving mouseMove events will be notified *many*
times per second, and a correspondingly higher value must be used. If
you don’t wish to use the garbage collector, pass the constant ’NoGC’.

If any value other than NoGC is used for collectFreq, care must be
taken to make sure that there are no ’live’ local pointer variables
when SimpleLoop is called. See the section on Garbage~Collection in
OC.doc.

1.10 Signal class example

A Break object is associated with one of the break signals
defined in Dos.mod. When one of these signals is received, the
program is expected to abort. This class is not very useful, as the
only input handler that routinely reports these signals is the console
handler. This is normally only associated with CLI programs, which do
not use an event loop.
__

TYPE
Break = POINTER TO BreakRec;
BreakRec = RECORD (SignalRec) END;

PROCEDURE (b : Break) HandleSig * () : INTEGER;
(* Overrides the method defined by Signal *)
BEGIN

RETURN StopAll (* Stop the event loop and exit the program *)
END HandleSig;
...
VAR breakC : Break;
...
BEGIN

...
NEW (breakC); breakC.sigBit := Dos.ctrlC;
...
SimpleLoop (breakC, NoGC);
...
(* Clean up and exit *)
...

00c76cd0-11 6 / 13

END ...

1.11 Definition of the MessagePort class

TYPE

MessagePort * = POINTER TO MessagePortRec;
MessagePortRec * = RECORD (SignalRec)

port - : Exec.MsgPortPtr;

PROCEDURE (mp : MessagePort) HandleMsg
(msg : Exec.MessagePtr)
: INTEGER;

-- Handles the receipt of a message at the object’s MsgPort.

PROCEDURE (mp : MessagePort) FlushPort;
-- Flushes all pending messages at the object’s MsgPort.

PROCEDURE (mp : MessagePort) AttachPort
(port : Exec.MsgPortPtr);

-- Attaches an existing MsgPort to the object.

PROCEDURE (mp : MessagePort) DetachPort;
-- Detaches the object’s MsgPort.

PROCEDURE (mp : MessagePort) MakePort
(name : ARRAY OF CHAR;

priority : SHORTINT)
: BOOLEAN;

-- Creates a MsgPort and attaches it to the object.

PROCEDURE (mp : MessagePort) DeletePort;
-- Deletes the MsgPort attached to the object.

END;

1.12 Using the MessagePort class

Like Signal, MessagePort is an abstract class and must be extended in
order to be useful. The derived class must at the least override the
HandleMsg() method and replace it with an implementation of the desired
behaviour.

A MessagePort object must be initialised with either the AttachPort()
or the MakePort() method. AttachPort() is used when the programmer
wishes to associate the object with a pre-existing MsgPort, such as one
belonging to an Intuition window. MakePort() is used to create an
entirely new MsgPort. Both these methods initialise the object’s
’sigBit’ field. If AttachPort() is used, it is up to the programmer to
ensure that only one MessagePort object is associated with that MsgPort
at any one time.

00c76cd0-11 7 / 13

A MessagePort object must be cleaned up when it is no longer required.
If it was initialised with AttachPort(), call DetachPort(). Similarly,
call DeletePort() to clean up an object initialised with MakePort().

FlushPort() is mainly used by other methods when detaching Exec MsgPorts
from MessagePort objects. However, under some circumstances user
programs may need to use it directly.

The HandleMsg() method is responsible for dealing with individual
Exec Messages after they have been remove from the MsgPort queue with
Exec.GetMsg(). Each descendant class is expected to override this
method and provide its own implementation. In order for the SimpleLoop
(and EventLoop.Do) methods to work, the replacement methods must
implement at least the following behaviour:

- If the method performs no action for a given Message, it must
return the constant ’Pass’.

- If it is no longer necessary to wait for Messages at the MsgPort,
the method should return ’Stop’.

- If the Message causes the program to terminate, the method must
return ’StopAll’.

- In all other cases it must return ’Continue’.

If the method returns any result other than ’Pass’ it must first call
’Exec.ReplyMsg (msg)’ to remove the Message from the MsgPort. If it
returns ’Pass’, it should *never* call Exec.ReplyMsg().

1.13 MessagePort class example

See IdcmpPort.

1.14 Definition of the IdcmpPort class

TYPE

IdcmpPort * = POINTER TO IdcmpPortRec;

IdcmpPortRec * = RECORD (MessagePortRec)
PROCEDURE (ip : IdcmpPort) SetupWindow

(window : Intuition.WindowPtr);
-- Associates an IdcmpPort object with an Intuition window.

PROCEDURE (ip : IdcmpPort) CleanupWindow
(window : Intuition.WindowPtr);

-- Breaks the association of an IdcmpPort with an Intuition window.

PROCEDURE (ip : IdcmpPort) HandleSizeVerify
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleNewSize
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

00c76cd0-11 8 / 13

PROCEDURE (ip : IdcmpPort) HandleRefreshWindow
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleMouseButtons
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleMouseMove
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleGadgetDown
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleGadgetUp
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleReqSet
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleMenuPick
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleCloseWindow
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleRawKey
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleReqVerify
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleReqClear
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleMenuVerify
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleNewPrefs
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleDiskInserted
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleDiskRemoved
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleActiveWindow
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleInactiveWindow
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleDeltaMove
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleVanillaKey
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

00c76cd0-11 9 / 13

PROCEDURE (ip : IdcmpPort) HandleIntuiTicks
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleIdcmpUpdate
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleMenuHelp
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleChangeWindow
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

PROCEDURE (ip : IdcmpPort) HandleGadgetHelp
(msg : Intuition.IntuiMessagePtr)
: INTEGER;

-- Each of these methods handles a single class of IDCMP message.

PROCEDURE (ip : IdcmpPort) DefaultHandler
(msg : Intuition.IntuiMessagePtr;

flag : INTEGER)
: INTEGER;

-- Default handler for message classes that don’t have their own
handler. Calling this method should be considered a bug, leading
to the program halting.

END;

1.15 Using the IdcmpPort class

IdcmpPort is an abstract class that must be extended to be useful.
Extensions of IdcmpPort will typically override one or more of the
Handle[IDCMP class] methods, and may also implement the SetupWindow()
and CleanupWindow() methods.

An IdcmpPort object must be initialised using one of the AttachPort()
or MakePort() methods, and cleaned up with one of the DetachPort() or
DeletePort() methods. When the MsgPort is the userPort of an Intuition
Window, use the AttachPort() and DetachPort() methods; it is easiest to
make these calls inside the SetupWindow() and CleanupWindow() methods.

The SetupWindow() method can be used to perform other tasks needed to
associate an Intuition Window with an IdcmpPort object. These can
include creating and attaching Intuition Menus and Gadgets to the
window. Removing and deallocating such objects can be performed by the
CleanupWindow() method.

Each of the handler procedures for individual IDCMP classes is expected
to behave in a similar way to the MessagePort.HandleMsg() method. Each
method must implement at least the following behaviour:

- If the method performs no action for a given IntuiMessage, it must
return the constant ’Pass’.

- If it is no longer necessary to wait for IntuiMessages at the
MsgPort, the method should return ’Stop’.

- If the IntuiMessage causes the program to terminate, the method
must return ’StopAll’.

00c76cd0-11 10 / 13

- In all other cases it must return ’Continue’.

If the method returns any result other than ’Pass’ it must first call
’Exec.ReplyMsg (msg)’ to remove the IntuiMessage from the MsgPort. If
it returns ’Pass’, it should *never* call Exec.ReplyMsg().

The DefaultHandler() method is intended to trap any messages received
with invalid ’class’ fields. It currently causes the program to HALT,
and there is no reason to change this behaviour.

1.16 IdcmpPort class example

TYPE

MyPort *= RECORD (Events.IdcmpPort) END;

(*---------------------------------*)
PROCEDURE (p : MyPort) SetupWindow*

(window : Intuition.WindowPtr);

BEGIN
p.AttachPort (window.userPort);
...

END SetupWindow;

(*---------------------------------*)
PROCEDURE (p : MyPort) CleanupWindow*

(window : Intuition.WindowPtr);

BEGIN
...
p.DetachPort;

END CleanupWindow;

(*---------------------------------*)
PROCEDURE (p : MyPort) HandleCloseWindow*

(message : Intuition.IntuiMessagePtr)
: INTEGER;

BEGIN (* HandleCloseWindow *)
Exec.ReplyMsg (message);
RETURN Events.Stop

END HandleCloseWindow;

(*---------------------------------*)
PROCEDURE (p : MyPort) HandleGadgetUp*

(message : Intuition.IntuiMessagePtr)
: INTEGER;

VAR result, gadgetId : INTEGER;

BEGIN (* HandleGadgetUp *)
result := Events.Pass; gadgetId := message.Code;
CASE gadgetId OF

...

00c76cd0-11 11 / 13

process gadget releases
...

ELSE
...
default actions
...

END; (* CASE gadgetId *)
RETURN result

END HandleGadgetUp;

...

VAR
port : MyPort;
window : Intuition.WindowPtr;

...
BEGIN

...
window := Intuition.OpenWindowTags (...);
...
NEW (port);
port.SetupWindow (window);
...
SimpleLoop (port, NoGC);
...
port.CleanupWindow (window);
...
Intuition.CloseWindow (window);
...

END
...

1.17 Definition of the EventLoop class

TYPE

EventLoop * = POINTER TO EventLoopRec;
EventLoopRec * = RECORD

PROCEDURE (el : EventLoop) AddSignal
(signal : Signal)
: Signal;

-- Adds a Signal object to the event loop. If a Signal object with
the same ’sigBit’ value is already installed, it is returned.

PROCEDURE (el : EventLoop) RemoveSignal
(signal : Signal);

-- Removes a given Signal from the event loop.

PROCEDURE (el : EventLoop) Collect
(collectFreq : INTEGER);

-- Determines the frequency of garbage collection.

PROCEDURE (el : EventLoop) Do;
-- Starts the processing of the event loop. At least one call to

AddSignal() must be made before this method is called.

00c76cd0-11 12 / 13

END;

PROCEDURE InitEventLoop (el : EventLoop);
-- Initialises the EventLoop object.

1.18 Using the EventLoop class

The EventLoop class is a concrete class that is intended to be used
directly. A EventLoop object is used to group together several Signal
objects and process them all in a single event loop.

InitEventLoop() must be called to initialise an EventLoop object before
it can be used. One or more calls to AddSignal() should then be made to
attach Signal objects to the EventLoop object.

The Collect() method must be called to enable garbage collection and
specify its frequency. The value passed in the ’collectFreq’ parameter
indicates the number of signals that must be received between
activations of the garbage collector. The higher the value, the less
frequent the activations. Garbage collection can be disabled by passing
’NoGC’ as the parameter. It is disabled by default when an EventLoop
object is initialised by InitEventLoop().

The Do() method implements an event loop using all the Signal objects
attached to the EventLoop object. At least one Signal object should be
attached to the EventLoop object before calling it. Further Signal
objects may be attached after the call, but only by Signal objects
already attached. Signal objects are automatically removed from the
EventLoop when their HandleSig() methods return ’Stop’. The method
exits when all Signal objects have been removed or when one object’s
HandleSig() method returns ’StopAll’. If garbage collection is
activated, care must be taken to make sure that there are no ’live’
local pointer variables when the Do() is called. See the section on
Garbage~Collection in OC.doc.

The RemoveSignal() method will not normally be used, as individual
Signal objects know best when they should be de-activated.

1.19 EventLoop class example

...
VAR

sig, ignore : Signal;
mp : MessagePort;
ip : IdcmpPort;
eventLoop : EventLoop;

...
BEGIN

...
NEW (eventLoop); InitEventLoop (eventLoop);
...

00c76cd0-11 13 / 13

NEW (sig); NEW (mp); NEW (ip);
...
ignore := eventLoop.AddSignal (sig);
ignore := eventLoop.AddSignal (mp);
ignore := eventLoop.AddSignal (ip);
...
eventLoop.Collect (100); (* Activate garbage collection *)
eventLoop.Do;
...
(* Clean up *)
...

END

	00c76cd0-11
	"
	The Signal class -- abstracting Exec Signals
	The MessagePort class -- abstracting Exec MsgPorts
	The IdcmpPort class -- abstracting Intuition IDCMP ports
	The GadToolsPort class -- abstracting GadTools IDCMP ports
	The EventLoop class -- abstracting the event loop
	Overview of the Amiga event handling system
	Definition of the Signal class
	Using the Signal class
	Signal class example
	Definition of the MessagePort class
	Using the MessagePort class
	MessagePort class example
	Definition of the IdcmpPort class
	Using the IdcmpPort class
	IdcmpPort class example
	Definition of the EventLoop class
	Using the EventLoop class
	EventLoop class example

