HitMon11 v0.24 Manual

HitMon11 v0.24 Manual

COLLABORATORS
TITLE -
HitMon11 v0.24 Manual
ACTION NAME DATE SIGNATURE
WRITTEN BY October 27, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

HitMon11 v0.24 Manual iii

Contents
1 HitMon11 v0.24 Manual 1
1.1 Main SCreen L e e 1
1.2 1.0 Copyrightnotice e e e |
1.3 LIDisclamer e e e e 1
1.4 12 Author o L 1
1.5 1.3 Copyright & Trademarks L e 2
1.6 1.4 Special thanks o e e 2
1.7 20C0ntentso e e e e e e e e e 2
1.8 3.0 General information e e e e 3
1.9 3.1 Known Bugsand Weeknesses L e 3
1.10 3.2 DOS Command line format and options e 4
1.11 3.3 Internal Command Line Format And Options ittt 5
1.12 4.0 Command Summary L e e e 5
1.13 Command BF (Block Fill) e 6
1.14 Command CALL e e e 6
1.15 Command CLRM (Call Macro) e e e e e e e e e e e e e e e e e 6
1.16 Command DASM (Disassemble) e 7
1.17 Command DEFM (Define Macro) e e e e e e 7
1.18 Command DELM (Delete Macro) e e e e e e e 7
1.19 Command DOS e 8
1.20 Command DR (Display Registers) e e 8
1.21 Command EEPROM e 8
1.22 Command EEPROM CLR e 9
1.23 Command EEPROM BULK e 9
1.24 Command EEPROM ROW 0 e 9
1.25 Command EEPROM ERASE e 10
1.26 Command FIND e e e 10
1.27 Command G (GO) e 11
1.28 Command LOADM (Load Macros) v i i e e e e e e e e e e e e e e 11
1.29 Command LOADS (Load S19-Record) e 12

HitMon11 v0.24 Manual iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37

Command LSTM (List Macros) o o i i e e e e e e e 12
Command MD (Memory Dump) L 12
Command MM (Memory Modify) o e 13
Command MS (Memory Set) e e e e 13
Command QUIT e 14
Command RESTART 14
Command SAVEM (Save Macros) i i i e e e e e e e e e 14
Command VERF (Verify) 14

HitMon11 v0.24 Manual 1/15

Chapter 1

HitMon11 v0.24 Manual

1.1 Main Screen

HitMonll v0.24 Manual.
SVER: HitMonll_Manual_Guide 0.24 (15-Feb-94)

See Contents

1.2 1.0 Copyright notice

1.0 Copyright notice

This program is freeware. There should be no charge when copying
this program. You are not allowed to make any money by distributing
this program. You are allowed to take a nominal fee to cover
copying and disk costs but nothing more. If you distribute this

program see to that all files (listed in the file "OnTheDisk.txt")
are kept together. You are not allowed to change any of the files.

1.3 1.1 Disclamer

1.1 Disclamer
I believe this program workes as stated in this manual, but I don’t

guarantee anything. Neither do I take any responsibility for any
damage made directly or indierctly by this program.

1.4 1.2 Author

1.2 Author

All code by: Richard Karlsson

HitMon11 v0.24 Manual

2/15

1.5

1.6

1.7

If vyou want to send in a bug report, have any questions or for some
other reason want to contact me, do so at:

During September-June:

Mail: Richard Karlsson
c/o Kleivan
Palmaersgata 28
S-582 49 Linkoping

SWEDEN
Phone: +46 13 173 423
E-mail: d93ricka@und.ida.liu.se

During June-September:

Mail: Richard Karlsson
Klovergrand 4
SF-22100 Mariehamn

FINLAND
Phone: +358 28 22 441
E-mail: No certain e-mail. You can always try my

"winter" e-mail address. But most certainly you
will have to send snail mail.

1.3 Copyright & Trademarks

1.3 Copyrights & Trademarks

Motorola is a registred trademark of Motorola Inc.

Amiga is a registerd trademark of Commodore-Amiga, Inc.

Commodore and CBM are registered trademarks of Commodore
Electronics Limited.

1.4 Special thanks

1.4 Special thanks

Special thanks to Fredrick Karlsson for writing the expression
evaluator for the assembler included in this package, to Motorola
for their great processors, and to Commodore for the greatest
Computer, the Amiga.

2.0 Contents

HitMon11 v0.24 Manual

3/15

1.8

1.9

2.0 Contents

Copyright

Disclamer

Author

Copyrights & Trademarks
Special thanks

N = S = S
N S)

2.0 Contents

3.0 General information

3.1 Known Bugs and Weeknesses

3.2 DOS Command Line Format and Options

3.3 1Internal Command Line Format and Options

4.0 Command Summary

3.0 General information

3.0 General information

The HitMonll is a monitor intended to be used to upload Motorola S-
Records to the Hcll line of processors from Motorola. And also for
faciliating debugging of programs. It should run on any Commodore
Amiga computer. I Dbelieve it’s the most powerful Hcll monitor of
it’s kind that can be run on an Amiga.

3.1 Known Bugs and Weeknesses

3.1 Known Bugs and Weeknesses

This program is still in it’s early stage and many functions is
still to be added to the program, I hope. The program is based on a
S-Record wuploader I wrote a long time ago in pure hardware code,
and that version was not intended to reach the public and thus was
not very user friendly (i.e. if you did anything wrong the program
would crash). Some of these weeknesses are still in the program so
I would advice you to restart the program (Write restart at the

prompt) 1f anything goes wrong. If for example you loose contact
with the Hcll the program has no possability to retain contact.
You’ll have to Restart. As soon as you see an error message

regarding the contact with the Hcll no more contact will Dbe
possable after that point. But some commands will still give you

output. For example if you MD (Memory Dump) after contact has been
lost, vyou will first get an error message but then MD will still
output a Memory Dump. The contents of this memory dump 1is most

certainly wrong. Restart HitMonll to start over.

- If you DefM (Define Macro) a macro that already exists no error
will Dbe reported. You will then have two macros with the same name,
but only the first one defined will ever be called. Advice: DelM

HitMon11 v0.24 Manual

4/15

1.10

the first macro before redefining it.

— The DOS command executed with the "DOS" command can’t ask for
inputs from the keyboard. I.e. 'Dir Dfl:’ works fine, Dbut ’'Dir ?’
doesn’t work. But it will return control to the monitor. So no
tilts or hangs, as far as I can see.

- No other known bugs...

Features I would like to add to the program in the future:

- Step by step debugging.

- Breakpoints.

- Symbols.

— The possability to import a symboltable from the assembler.

- Better error control.

- I'm not very satisfied with the way the program handles numbers
overall, it considers every value greater than 255 and less than -
256 as 16 bit and the rest of the numbers as 8 bit. This 1is a
weekness that will be removed.

— Other numeric formats than HEX will be allowed.

— Expressions will be allowed.

3.2 DOS Command line format and options

3.2 DOS Command line format and options

Usage:
HitMonll <Talker> <Crystal> [-m <Macro file>] [-d <Device>] [-u
<Device Unit>]

<Talker> The filepath to the Talker file to be used.

<Crystal> The processors crystal frequency, in kilo herz.

<Macro file> The file path to a macro file to load at startup. If
no macro file is specified none is loaded. If this

macrofile contains a macro called AutoStart, then
that macro will be ran as soon as the Talker has been
uploaded to the Hcll.

<Device> The device to use when recieving/sending data from/to
the Hcll. If this is not specified it defults to
"serial.device"

<Device unit> Which unit number of the device to use. If this is
not specified it defults to 0.

The first thing the program will do is load the talker and macro
files. Then it will try to make contact with the Hcll, and upload
the talker. The talker is a little Dbut powerful program written by
Motorola that resides inside the Hcll RAM. There are different
talkers written for all Hcll models. Remember that the talker is in
RAM and thus you can’t change the RAM during the operation of the
monitor. This shouldn’t be a problem since the RAM will be cleared
anyway when the Hcll looses it’s power and thus you will never have

any data there that is needed when your program starts. If it is
not possible to upload the talker to the Hcll HitMonll will tell
you to reset you Hcll in BootStrap mode (ModA = 0, ModB = 0). When

the processor 1s reset the program starts uploading the talker

HitMon11 v0.24 Manual

5/15

1.11

1.12

again. If it fails to do so you will be instructed to reset your
Hcll again. This is repeated until it works without any problems.
Sometimes you will have to reset your processor many times and only
after a while does it work. I don’t know why this is the case and I
will try to fix the problem till the next release. Sometimes it
helps to adjust the crystal frequency given to HitMonll. I don’t
think there is any idea to change it by more than plus or minus 200
kilohertz. If the program tells you over and over again to reset
your Hcll, but the upload fails every time, you probably have set
the wrong crystal frequency, or picked the wrong talker file. If
nothing happens when you reset you Hcll, you have maybe reset it in
the wrong mode (Should be BootStrap), or else the connection
between the Amiga and the Hcll is faulty. Remember that you have to
convert the voltages from the Amiga to the Hcll to TTL levels and
the voltages from the Hcll +to the Amiga to RS232 levels. When the
talker has uploaded properly the processor state is written to the
screen. Also if a macro file was specified at the command line and
that macro file contains a macro called AutoStart, then that macro
is run.

3.3 Internal Command Line Format And Options

3.3 Internal Command Line Format And Options.

When the monitor is ready to accept commands from vyou if writes a
prompt to the left of the screen. It looks like this:

>
At the prompt you can write any of the supported commands. No white
spaces are allowed infront of the command (not including the one
after the '>").

If the command takes any options they should be separated by

spaces, any number of spaces works fine. All commands accepted are
listed and explained in chapter 4.

4.0 Command Summary

4.0 Command Summary

This is a list of all supported commands right now:

BF Addrl [Addr2] Byte|Word Set MCU Memory byte (s) (Block
CALL Addr Calls a soubroutine in MCU memory.
CLRM Clear Macros

DASM [Addrl] [Addr2] Disassemble MCU memory.

DEFM MacroName Defines a macro

DELM MacroName — Deletes a macro.

DOS Command [Argl] [Arg2] [...] Executes a DOS command.

DR Display Registers

EEPROM [Addrl] [Addr2] Define EEPROM range

EEPROM CLR Clear all EEPROM ranges.

HitMon11 v0.24 Manual

6/15

EEPROM BULK Addr
EEPROM ROW Addr
EEPROM ERASE [Enable|Disable]

FIND <Addrl> <Addr2> <8|16]|32>
G Addr

LOADM <MacroFile>
LOADS <File>

LSTM

MD [Addrl] [Addr2]
MM Addr

MS Addr Value
QUIT

RESTART

SAVEM FileName
VERF <S—-Record>

1.13 Command BF (Block Fill)

BF Addrl [Addr2] Byte|Word

Bulk erase EEPROM

Row erase EEPROM space.
EEPROM erase Dbefore write
enable or disable.

Finds a sequence of bytes 1in MCU

Starts a MCU program.

Load Macros

Load motorola S19-record

List Macros.

Memory Dump

Memory Modify

Memory Set

Ends the HitMonll program.

Restarts HitMonll.

Saves macros to file.

Verifys MCU content to a S—Record

Set MCU Memory
Fill).

byte (s) (Block

This command programmes one or more MCU memory locations, staring
at Adrl ending at one location less than Adr2. If no Adr2 1is
specified only one byte|word is written.

1.14 Command CALL

CALL Addr

* Kk khk*x ——

Calls a soubroutine in MCU memory.

This command calls a soubroutine in the MCUs memory at address

<Addr>. Control 1is turned back

subroutine has ended.

Example:
Call $ee0O0

1.15 Command CLRM (Call Macro)

CLRM
Clears all macro definitions.

Example:
Clrm

to the monitor as soon as the

Calls the subroutine at address
See00

Clear Macros

Macros not saved will be lost.

All macros cleard.

HitMon11 v0.24 Manual

7/15

1.16 Command DASM (Disassemble)

DASM [Addrl] [Addr2] Disassemble MCU memo

ry.

Disassembles MCU memory starting from address <Addrl> ending at

<Addr2> or as soon as the opcode at <Addr2> ends.
specified HEX 100 (256) bytes of memory will be asse
from <Addrl>. If no address is specified disassembl
the current address, and contine for 256 more byte
address will be wupdated, so that disassembly can
writing only ’DAsm’.

Example:

If Addr2 is not
mbled, starting
y will start at
s. The current
be contined by

Dasm $ee00 $£000 Will disassemble MCU memory from

address HEX ee00
S£000.

1.17 Command DEFM (Define Macro)

DEFM MacroName Defines a macro

Defines a macro with the name <MacroName>. You can
macro contents separated by returns (Enter). When
press return twize.

If you want your macro to contain commandline ar
them as \n. Where n is the number of the argument s
When the macro is run these will be replaced by t
arguments, or with nothing if there are no arguments.

Example:

DefM LD <Enter> Defines the macro LD
EEPRom Bulk \0 <Enter>

LoadS S19:Current.S19 <Enter>

EEPRom Erase Enable <Enter>

<Enter>

Here vyou’re returned to the prompt. When the macro
be replaced by the first argument.

1.18 Command DELM (Delete Macro)

to address HEX

now write the
you’re finished

guments specify
tarting from O.
he command line

is run \0 will

HitMon11 v0.24 Manual

8/15

1.19

1.20

1.21

DELM MacroName — Deletes a macro.

The macro with the name <MacroName> will be deleted from memory. If
the macro has been saved to disk it will be safe there.

Example:
DelM AutoStart The macro called AutoStart will be
deleted.
—— kk*k*k ——
Command DOS
DOS Command [Argl] [Arg2] [...] Executes a DOS command.

Executes the DOS command <Command> with the specified arguments.
Control 1is returned to the monitor as soon as the DOS command is
finished. No Ctrl-C’s can be sent to the DOS command.

Example:

DOS Dir Sou: Dirs the volume or assign Sou:. But
only if dir is found in the current
path and 1if that 1is what the dir
command found does...

—— kkk*k ——

Command DR (Display Registers)

DR Display Registers

Display the current wvalues in the MCU register, stackpointer, CCR
and PC. The CCR is displayed both in HEX and BIN form. DR takes no
aruments.

Example:
DR Displays the current MCU registers.
—— kk*k*k ——
Command EEPROM
EEPROM [Addrl] [Addr2] Define EEPROM range

Defines the address space between <Addrl> and <Addr2> (Excluding
<Addr2>) as EEPROM space. If only <Addrl> 1is specified only the
byte at <Addrl> is defined as EEPROM space.

Anytime a value 1s written to an address that is included in an

HitMon11 v0.24 Manual 9/15

EEPROM range a special EEPROM algorithm will Dbe used to program
that address. This is completely transparent to the user.

If no address 1is specified a 1list will be displayed with all the
current EEPROM ranges.

Examples:

EEPROM $103f Defines address HEX 103f as EEPROM
space.

EEPROM $b600 $b800 Defines addresses between $b600 and
Sb800 as EEPROM memoory. (Including
$b600, excluding $b800)

EEPROM Displays all current EEPROM ranges.

1.22 Command EEPROM CLR

EEPROM CLR Clear all EEPROM ranges.
Any EEPROM ranges specified by the EEPROM command are turned back
to normal memory. The actual memory of the MCU isn’t changed only

the 1list that specifies what memory that should Dbe treated as
EEPROM is cleard.

1.23 Command EEPROM BULK

EEPROM BULK Addr Bulk erase EEPROM

Bulk erases the EEPROM area in which <Addr> is included. The whole
area will be erased. An erased EEPROM byte reads HEX FF.

See the manual to your Hcll to see how the EEPROM areas are defined
in your Hcll and how they can be moved around.

Example:
EEPROM Bluk $b600 Clears the EEPROM area at $b600.

1.24 Command EEPROM ROW

EEPROM ROW Addr Row erase EEPROM space.

Row erases the EEPROM Row in which <Addr> is included. All bytes in

HitMon11 v0.24 Manual

10/15

1.25

1.26

the row will be erased. An erased EEPROM byte reads HEX FF.

See your Hcll manual how the ROWs are defined in your Hcll, and how
they can be moved.

Example:
EEPROM Row $b600 Erases the EEPROM Row in which
address HEX $b600 is included.

Command EEPROM ERASE

EEPROM ERASE [Enable|Disable] EEPROM erase Dbefore write
enable or disable.

Enables or disables the 'EEPROM erase before write’ feature. If
it’s enabled any EEPROM byte that is written to will be byte erased
before 1if is written to. If it’s disabled it will not Dbe erased
before it’s written to.

If this feature is enabled programming time will take about twize
as long. And 1if 1it’s not enabled and the EEPROM byte to be
programmed 1s not ©previously erased the write may fail. Good
practice 1is to normally have this feature enabled, but if you are
going to program a large amount of EEPROM addresses and the area in
which theese are contained can be erased without loss of data, then
you should BULK erase the whole area, disable the EEPROM erase
before write feature, then program the desired addresses, possably
by loading a S-Record, when this is finished enable the EEPROM
erase before write feature again.

Actually its only the first character after ERASE that is checked
for. So, E for enable and D for disable.

If neither Enable or Disable are specified the current state of the
EEPROM erase before write feature will be listed.

Examples:

EEPROM Erase Lists the current state of the
EEPROM erase before write feature.

EEPROM Erase Enable Enables the EEPROM erase Dbefore
write feature.

EEPROM Erase Disable Disables the EEPROM erase Dbefore

write feature.

Command FIND

HitMon11 v0.24 Manual

11/15

1.27

1.28

FIND <Addrl> <Addr2> <8|16]|32> Finds a sequence of bytes in MCU
memory.

Searches from <Addrl> to <Addr2> for the occurence of the byte
sequence 1in the last operand. If 1is’t a Dbyte (8 bit), that byte
will be searched for. If it’s a 16 bit word, that 16 bit word will
be serached for. And if it’s a 32 bit word, that 32 bit word will
be searched for. Even if a 16 or 32 bit word is specified the
search will be performed at every byte boundery.

Examples:

FIND $8000 $9000 $12 Searches for the occurence of HEX
12 from address $8000 to $8fff

FIND $8000 $9000 $123 Searched for the occurence of HEX
0123 in the same address space as
above.

FIND $8000 $9000 $12345 Searched for the occurence of HEX

00012345 in the same address space
as above.

—— kkhk*x*kx ——

Command G (Go)

G Addr Starts a MCU program.

Starts MCU program at address <Addr>. Control will not return to
the monitor.

Example:
G $ee00 Starts code execution at address
HEX ee00.
—— Kk kkk ——

Command LOADM (Load Macros)

LOADM <MacroFile> Load Macros

Loads macros from the file <MacroFile> and adds them to the current
macros 1in memory. This file may either Dbe produced by the SaveM
command or edited by a standard text editor as for example Ed on
the Workbench disk. The file should look like this:

DefM <MacroName>

Begin

<Commandl> [Argl] [Arg2] [...]
[<Command2>] [Arg...]

[...]

HitMon11 v0.24 Manual

12/15

1.29

1.30

1.31

End

DefM <Macro2>
Begin
[<Command. . .>]
[...]

End

I hope vyou get the idea. ’'\n’ will as usual with macros be
replaced by the command line arguments (n is the number of the
argument starting from 0).

Command LOADS (Load S19-Record)

LOADS <File> Load motorola S19-record

Loads the file <File>, checks if it’s a wvalid Motorola S19 record
and 1if it is uploads it to the Hcll. While uploading the remaining
bytes to upload are displayed on screen. The value is updated every
256 bytes or less. If data is uploaded to EEPROM, 256 bytes takes
quite long so don’t get impatient. If vyou have an LED on the TxD
and/or on the RxD 1line(s) you can see that something indeed is
happening, else you’ll just have to wait for it to finish.

Command LSTM (List Macros)

LSTM List Macros.

Lists the macros currently in memory. Here you can see which macros
are currently available.

Examples:
LstM Lists current macros.

Command MD (Memory Dump)

MD [Addrl] [Addr2] Memory Dump

MD displays memory using the standard HEX dump format. I.e at the
very left end of the 1line the address is displayed in HEX.
Following the address is the current content (byte) of that
address, followed Dby the contents of the following 15 addresses
(totaling 16) separated by spaces. After the HEX values the same 16
bytes are listed again but 1in ASCII format enclosed by quotes. An
example shows how it all can look:

HitMon11 v0.24 Manual 13/15

$8000 20 43 6f 70 79 72 69 67 68 74 2c 20 28 63 29 31 "Copyright,
(C)l"

(Normally it will be on one line. But this document is not 80 chars
wide, so it didn’t fit.)

If only <Addrl> 1is specified the dump starts at <Addrl> and
displays 256 bytes forward from that address. If <Addr2> 1is also
specified the dump is displayed from <Addrl> to <Addr2>, excluding

<Addr2>.

Examples:

Md $8000 Dumps memory between $8000 and
$8100 (Excluding $8100)

Md $8000 $8300 Dumps memory between $8000 and

$8300 (Excluding $8300)

—— kkkx*kx ——

1.32 Command MM (Memory Modify)

MM Addr Memory Modify

Modifies the memory starting at address <Addr>. The address to be
modified 1is displayed and it’s current value. You can now write the
value vyou would like this address to be changed to or press return
not to change it and quit back to the monitor command line. After
the address has been changed vyou’ll be presented with the next
address in the same way. Press return without any value to return
to the monitor commandline. If the value entered can’t be decoded
or if the memory address doesn’t change to the value you stated the
same address will be showed again.

Example:
MM $b600 Start modifying memory from address
HEX b600.
—— kkkk ——
1.33 Command MS (Memory Set)
MS Addr Value Memory Set

Sets the memory position <Addr> to the byte value of <Value>.
Example:

Ms $8000 $12 Sets the address HEX 8000 to the
value HEX 12.

HitMon11 v0.24 Manual

14 /15

1.34

1.35

1.36

—— Kkk*kk ——

Command QUIT

QUIT Ends the HitMonll program.

Quit will quit the program without confirmation. It wont check if
you have saved changed macros. If anything is written but the quit
command the program will not quit. This ensures you will not quit
the program by mistake.

Usage:
Quit Quits the program.

Command RESTART

RESTART Restarts HitMonll.

If contact has been lost with the MCU, the MCU has to be reset (in
bootstrap mode) and the HitMonll will have to be restarted. The
Restart command acts exactly 1like quiting the program and
restarting it with the same arguments.

Example:
Restart Restart HitMonll, and wait for new
contact with the MCU.
—— kkkk ——
Command SAVEM (Save Macros)

SAVEM FileName Saves macros to file.

Saves macros currently in memory to the file specified by
<FileName>. To see what macros are beeing saved use the ’'LstM’
command. Macros that have been changed must be saved Dbefore the
program is exited, or they will be lost.

Example:
SaveM S:Setup.Mcr Saves macros to file ’S:Setup.Mcr’.

1.37 Command VERF (Verify)

HitMon11 v0.24 Manual 15/15

VERF <S-Record> Verifys MCU content to a S—-Record

Loads the S-Record <S-Record> (May include path) and verifys MCR
memory content to the information in the S-Record. If there is
differences they are reported to the screen. Addresses not found in
the S-Record are not verified.

Example:
VERF T:Current.S19 Checks if MCU memory is the same as
the S-Record says it should be.

	HitMon11 v0.24 Manual
	Main Screen
	1.0 Copyright notice
	1.1 Disclamer
	1.2 Author
	1.3 Copyright & Trademarks
	1.4 Special thanks
	2.0 Contents
	3.0 General information
	3.1 Known Bugs and Weeknesses
	3.2 DOS Command line format and options
	3.3 Internal Command Line Format And Options
	4.0 Command Summary
	Command BF (Block Fill)
	Command CALL
	Command CLRM (Call Macro)
	Command DASM (Disassemble)
	Command DEFM (Define Macro)
	Command DELM (Delete Macro)
	Command DOS
	Command DR (Display Registers)
	Command EEPROM
	Command EEPROM CLR
	Command EEPROM BULK
	Command EEPROM ROW
	Command EEPROM ERASE
	Command FIND
	Command G (Go)
	Command LOADM (Load Macros)
	Command LOADS (Load S19-Record)
	Command LSTM (List Macros)
	Command MD (Memory Dump)
	Command MM (Memory Modify)
	Command MS (Memory Set)
	Command QUIT
	Command RESTART
	Command SAVEM (Save Macros)
	Command VERF (Verify)

