Barfly

Barfly

COLLABORATORS
TITLE :
Barfly
ACTION NAME DATE SIGNATURE
WRITTEN BY October 27, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Barfly iii

Contents

1 Barfly 1
1.1 Barfly.guide 1
1.2 Barfly.guide/BI_CRIGHT e 2
1.3 Barfly.guide/BI_REG e 2
1.4 Barfly.guide/IN_PURPOSE 3
1.5 Barfly.guide/IN_SYSR e 4
1.6 Barfly.guide/IN_INST o e 5
1.7 Barfly.guide/OT_UPD e e 5
1.8 Barfly.guide/OT_SUP e 5
1.9 Barfly.guide/OT_HIST o 6
1.10 Barfly.guide/OT_FUT e e e e e e 6
1.11 Barfly.guide/OT_ACK e e e e e e e e e 7
1.12 Barfly.guide/ASoft e 8
1.13 Barfly.guide/BDebugTop e 8
1.14 Barfly.guide/UB_COMW e e e e 9
1.15 Barfly.guide/UB_REGW 11
1.16 Barfly.guide/REGW_Window e 12
1.17 Barfly.guide/REGW_LocalMenus ittt e e e e 14
1.18 Barfly.guide/REGW_PublicMenus e 15
1.19 Barfly.guide/UB_FPUW e e e 21
1.20 Barfly.guide/FPUW_Window e e e 22
1.21 Barfly.guide/FPUW_LocalMenus e 22
1.22 Barfly.guide/UB_DISSW 22
1.23 Barfly.guide/DISSW_Window e e 23
1.24 Barfly.guide/DISSW_LocalMenus ittt e e 23
1.25 Barfly.guide/UB_MEMW e e e e 25
1.26 Barfly.guide/MEMW_Window e 25
1.27 Barfly.guide/MEMW_LocalMenus ittt e e 25
1.28 Barfly.guide/UB_COPPW e e e 27
1.29 Barfly.guide/COPPW_Window e 27

Barfly

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

Barfly.guide/COPPW_LocalMenus 28
Barfly.guide/UB_STRUCTW e e e e e e e e e e e e s e e 28
Barfly.guide/STRUCTW_Window e e e e s e 29
Barfly.guide/STRUCTW_Format e e e e e e e e e e e e 30
Barfly.guide/STRUCTW_LocalMenus ittt e e e e s e e 31
Barfly.guide/UB_SOURCEW e e e e e e 32
Barfly.guide/SOURCEW_Window e e e e e 33
Barfly.guide/SOURCEW_LocalMenus it e e e e e e e e e 33
Barfly.guide/UB_SNOOPW 34
Barfly.guide/SNOOPW_Window e e e e e e e e 34
Barfly.guide/SNOOPW_LocalMenus o o i ittt e e e e 34
Barfly.guide/UB_BREAKW e e 35
Barfly.guide/BREAKW_Window e 35
Barfly.guide/BREAKW_LocalMenus 0 i ittt it e e e e e e e 35
Barfly.guide/UB_WATCHW e e 36
Barfly.guide/WATCHW_Window e e e e e e e e e e e e e 37
Barfly.guide/WATCHW _LocalMenus ettt 37
Barfly.guide/UB_CHECKW e e e 38
Barfly.guide/CHECKW_Window e e 38
Barfly.guide/CHECKW_LocalMenus v i ittt it e e e e e e e e e e 38
Barfly.guide/UB_ARGUMENTS e 39
Barfly.guide/UB_TECHINFOS e e e e e e e e e e e 40
Barfly.guide/UB_CONFIG e e e e e e e e 41
Barfly.guide/CO_TOOLTYPES 42
Barfly.guide/CO_BARFLYFD 42
Barfly.guide/CO_CONFIGCMDS e 42
Barfly.guide/CC_REGW 43
Barfly.guide/CC_FPUW e e e e 43
Barfly.guide/CC_DISSW o 44
Barfly.guide/CC_MEMW e e e e 45
Barfly.guide/CC_COPPW 45
Barfly.guide/CC_STRUCTW e e e e e e e e e e e e s e e 46
Barfly.guide/CC_SOURCEW e e e e e e 46
Barfly.guide/CC_BREAKW e 47
Barfly.guide/CC_WATCHW e e e e e 47
Barfly.guide/CC_CHECKW e 47
Barfly.guide/CC_SNOOPW e 47
Barfly.guide/CC_INFOW 48

Barfly.guide/CC_OTHERW e 48

Barfly v
1.69 Barfly.guide/CM_MISC 49
1.70 Barfly.guide/CM_TASKSTACK 50
1.71 Barfly.guide/CM_TASKPRI 50
1.72 Barfly.guide/CM_SETBREAK e 50
1.73 Barfly.guide/CM_CLICKBREAK 50
1.74 Barfly.guide/CM_SHOWMEM e e e 51
1.75 Barfly.guide/CM_DEFCOMMAND 51
1.76 Barfly.guide/CM_AUTODOCDIR e 52
1.77 Barfly.guide/CM_AUTODOCALIAS e 52
1.78 Barfly.guide/CM_AREXXPATH e 52
1.79 Barfly.guide/CM_AREXXINPUT 52
1.80 Barfly.guide/CM_AREXXOUTPUT e e 53
1.81 Barfly.guide/CM_AREXXCMD 53
1.82 Barfly.guide/CM_EXECMD 53
1.83 Barfly.guide/CM_LOADINCLUDE e et 53
1.84 Barfly.guide/CM_ADDSTRUCT e e 53
1.85 Barfly.guide/CM_CLICK2FRONT e e e e e e 54
1.86 Barfly.guide/CM_CENTERW 54
1.87 Barfly.guide/CM_SCREENFRONT e e e e 54
1.88 Barfly.guide/CM_OPENSCREEN 54
1.89 Barfly.guide/CM_OPENPSCREEN 55
1.90 Barfly.guide/CM_SCREENFONT e e 55
1.91 Barfly.guide/CM_QUIETEX 55
1.92 Barfly.guide/CM_DISXP e e 55
1.93 Barfly.guide/CM_TRACEBREAK 55
1.94 Barfly.guide/CM_CRASHEDTASK 56
1.95 Barfly.guide/CM_CATCHHIT e e 56
1.96 Barfly.guide/CM_CACHEFILE e 56
1.97 Barfly.guide/CM_POPPATH 56
1.98 Barfly.guide/CM_AUTOACT e e 56
1.99 Barfly.guide/CM_NOBREAKTERRORS e 57
1.100Barfly.guide/UB_AREXX e e e 57
1.101Barfly.guide/UB_HOWTOUSE e e 62
1.102Barfly.guide/BAsmTop e e e 64
1.103Barfly.guide/UA_ASSEMBLER 65
1.104Barfly.guide/UA_SYNTAX L 65
1.105Barfly.guide/UA_DATATYPES o 69
1.106Barfly.guide/UA_OPERATIONS e e e 71

1.107Barfly.guide/UA_INST e 72

Barfly vi

1.108Barfly.guide/AT_ HUNK L 72
1.109Barfly.guide/HU_SECTION e e e e e 73
1.110Barfly.guide/HU_CODE e e e e 74
1.111Barfly.guide/HU_DATA L 75
1.112Barfly.guide/HU_BSS 75
1.113Barfly.guide/HU_CSEG e 76
1.114Barfly.guide/HU_DSEG 76
1.115Barfly.guide/HU_IDNT e e e e e e e e e e e e e e 76
1.116Barfly.guide/HU_IDENTIFY e e e e e 76
1.117Barfly.guide/HU_BDEBUGARG e 77
1.118Barfly.guide/HU_SMALLDATA e e e e e e e s 77
1.119Barfly.guide/HU_XREF e e 77
1.120Barfly.guide/HU_XDEF 78
1.121Barfly.guide/HU_GLOBAL e e e e e e e e 78
1.122Barfly.guide/HU_PUBLIC e e e e e 78
1.123Barfly.guide/HU_OUTPUT e e e e e e e e e s e e 78
1.124Barfly.guide/HU_OBJFILE e e 79
1.125Barfly.guide/HU_EXEOBIJ e e 79
1.126Barfly.guide/HU_LINKOBJ e e 79
1.127Barfly.guide/HU_ORG e e e e 79
1.128Barfly.guide/HU_ADDSYM 79
1.129Barfly.guide/HU_DEBUG 80
1.130Barfly.guide/AL SYMBOL 80
1.131Barfly.guide/SY_CARGS 80
1.132Barfly.guide/SY_RS . . .« . . 80
1.133Barfly.guide/SY_SO o 81
1.134Barfly.guide/SY_FO 81
1.135Barfly.guide/SY_RSRESET 82
1.136Barfly.guide/SY_RSSET o 82
1.137Barfly.guide/SY_CLRSO 82
1.138Barfly.guide/SY_CLRFO 83
1.139Barfly.guide/SY_SETSO L 83
1.140Barfly.guide/SY_SETRS o 83
1.141Barfly.guide/SY_SETFO 83
1.142Barfly.guide/SY_RSVAL L 83
1.143Barfly.guide/SY_SOVAL L . 84
1.144Barfly.guide/SY_FOVAL 84
1.145Barfly.guide/AIL_DATA L e 84

1.146Barfly.guide/DA_ALIGN e 85

Barfly vii

1.147Barfly.guide/DA_CNOP 85
1.148Barfly.guide/DA_PAD L 85
1.149Barfly.guide/DA_QUAD 86
1.150Barfly.guide/DA_EVEN 86
1.151Barfly.guide/DA_ODD L e 86
1.152Barfly.guide/DA_DC 86
1.153Barfly.guide/DA_DB 87
1.154Barfly.guide/DA_DW e e e e 87
L.155Barfly.guide/DA_DL e 87
1.156Barfly.guide/DA_UB e e e e 87
1.157Barfly.guide/DA_UW o e 87
1.158Barfly.guide/DA_UL 88
1.159Barfly.guide/DA_SB 88
1.160Barfly.guide/DA_SW 88
1.161Barfly.guide/DA_SL e 88
1.162Barfly.guide/DA_PB 88
1.163Barfly.guide/DA_PW 89
1.164Barfly.guide/DA_PL 89
1.165Barfly.guide/DA_NB 89
1.166Barfly.guide/DA_NW 89
1.167Barfly.guide/DA_NL 89
1.168Barfly.guide/DA_DS 90
1.169Barfly.guide/DA_DSB 90
1.170Barfly.guide/DA_DCB 90
1.171Barfly.guide/DA_BLK 91
1.172Barfly.guide/DA_ASCIL L e 91
1.173Barfly.guide/DA_CSTRING 91
1.174Barfly.guide/DA_DSTRING 91
1.175Barfly.guide/DA_PSTRING o 92
1.176Barfly.guide/DA_ISTRING 92
1.177Barfly.guide/DA_BITSTREAM e 92
1.178Barfly.guide/DA_SPRINTX 92
1.179Barfly.guide/AL_ LISTING o 93
1.180Barfly.guide/LI_LIST L 93
1.181Barfly.guide/LI_NOLIST o e e e e 94
1.182Barfly.guide/LI_PRINTX o e e 94
1.183Barfly.guide/LI_LISFILE 94
1.184Barfly.guide/AI_STRUCTURE e e s 94

1.185Barfly.guide/ST_MACRO e 95

Barfly viii

1.186Barfly.guide/ST_ENDM 95
1.187Barfly.guide/ST_MEXIT e e e e e e 95
1.188Barfly.guide/ST_FAIL o e 96
1.189Barfly.guide/ST_END L 96
1.190Barfly.guide/ST_IF 96
1.191Barfly.guide/ST_IFD e e e e 96
1.192Barfly.guide/ST_IFND L e 96
1.193Barfly.guide/ST_IFV e e e e 97
1.194Barfly.guide/ST_IFNV L 97
1.195Barfly.guide/ST_IFMACROD 97
1.196Barfly.guide/ST_IFMACROND 97
1.197Barfly.guide/ST_IFCMACROD 97
1.198Barfly.guide/ST_ IFCMACROND e 98
1.199Barfly.guide/ST_IFC 98
1.200Barfly.guide/ST _IFNC 98
1.201Barfly.guide/ST_IFCC e e 98
1.202Barfly.guide/ST_ELSE L 98
1.203Barfly.guide/ST_ELSEIF 99
1.204Barfly.guide/ST_ENDC L o 99
1.205Barfly.guide/ST_ENDIF 99
1.206Barfly.guide/ST_REPEAT 99
1.207Barfly.guide/ST_REPT e e e 99
1.208Barfly.guide/ST_PROCSTART e 99
1.209Barfly.guide/ST_PROCEND 100
1.210Barfly.guide/AL FILE o 100
1.211Barfly.guide/FI_INCDIR 100
1.212Barfly.guide/FI_INCPATH o 101
1.213Barfly.guide/FI_INCLUDE e 101
1.214Barfly.guide/FI_INCLUDE2 e e e 101
1.215Barfly.guide/FI_INCBIN e e e e e e 101
1.216Barfly.guide/FI_INCBIN2 102
1.217Barfly.guide/FI_IBYTES o e e 102
1.218Barfly.guide/FI_DSBIN 102
1.219Barfly.guide/FI_DOSCMD 102
1.220Barfly.guide/FI_PURE 103
1.221Barfly.guide/AIL_MISC e e 103
1.222Barfly.guide/MI_TRASHREG 103
1.223Barfly.guide/MI_SUPER e 103

1.224Barfly.guide/MI_ MCXXX e 103

Barfly ix

1.225Barfly.guide/MI_BOPT 104
1.226Barfly.guide/AI_META 110
1.227Barfly.guide/ME_MB e e 110
1.228Barfly.guide/ME_MW . . © . . L e e e 110
1.229Barfly.guide/ME_ML e e e 110
1.230Barfly.guide/ME_MQ e e 111
1.231Barfly.guide/ME_XOR e 111
1.232Barfly.guide/ME_XORI e e e e 111
1.233Barfly.guide/ME_BHS 111
1.234Barfly.guide/ME_BLO 111
1.235Barfly.guide/UA_MACROS o e 112
1.236Barfly.guide/UA_HMACROS e e e 115
1.237Barfly.guide/HM_REG e e 115
1.238Barfly.guide/HM_BRANCH e 116
1.239Barfly.guide/HM_FOR e 116
1.240Barfly.guide/ HM_NEXT e e 116
1.241Barfly.guide/HM_IF 116
1.242Barfly.guide/HM_ELSE e 117
1.243Barfly.guide/HM_ENDIF e 117
1.244Barfly.guide/HM_WHILE e 117
1.245Barfly.guide/HM_ENDWHILE e 118
1.246Barfly.guide/HM_CALL e e 118
1.247Barfly.guide/HM_RETURN 118
1.248Barfly.guide/HM_DEF e e e 119
1.249Barfly.guide/HM_ENDDEF 119
1.250Barfly.guide/HM_LET e 119
1.251Barfly.guide/UA_SYMBOLS o e e 120
1.252Barfly.guide/UA_OPTIMIZING e e e e e e e e e e e s 121
1.253Barfly.guide/OP_DIRECT o 121
1.254Barfly.guide/OP_ADDRESS 123
1.255Barfly.guide/OP_OPTIMIZE 125
1.256Barfly.guide/OP_REGISTER e 129
1.257Barfly.guide/OP_HOWDOESITWORK e 131
1.258Barfly.guide/OP_PROBLEMS e 132
1.259Barfly.guide/UA_PRE © . . . e 133
1.260Barfly.guide/UA_CLI e e e e 133
1.261Barfly.guide/UA_AREXX e 135
1.262Barfly.guide/UA_COMP 136
1.263Barfly.guide/UA_LITERATURE e e e e e e 137
1.264Barfly.guide/UA_SOFTWARE e 138
1.265Barfly.guide/UA_EA 138

1.266Barfly.guide/UA_OPCODES e 141

Barfly 1/144

Chapter 1

Barfly

1.1 Barfly.guide

Barfly 1.0
An Intuition controlled Debugger and Optimizing Assembler

Copyright (c) 1989-94 Ralph Schmidt

— Shareware -

Chapters for all users...

Copyright Your rights.

Registration How to become a registered user.
Introduction...

Purpose What is Barfly made for?

System requirements Which computer can run Barfly?

Installation How to install Barfly.
Using BDebug...

The Debugger Debugger Documentation
Using BAsm...

The Assembler Assembler Documentation
Includes & Linker...

Additional SW Where to get the include and Linker
Other topics...

Updates How to get updates.

Support How to reach the author.

History History of Barfly.

Future Future of Barfly.

Barfly

2/144

Acknowledgements

1.2 Barfly.guide/BI_CRIGHT

Basic Informations
kAkhk Ak Kk hkKhhkhkhkhkkkhkKh*xKh*x*%

Copyright and other legal stuff

The author wishes to thank...

Copyright (c) 1989-94 Ralph Schmidt

Permission is granted to make and
manual provided the copyright notice
preserved on all copies.

No guarantee of any kind is given
this document are 100% reliable. You
own risk. The author can not be made
is caused by using these programs.

distribute verbatim copies of this
and this permission notice are

that the programs described in
are using this material at your
responsible for any damage which

Permission is granted to include this package in Public-Domain
collections, especially in Fred Fishs Amiga Disk Library (including
CD-ROM versions of it). The distribution file may be uploaded to
Bulletin Board Systems or FTP servers. If you want to distribute this
program you must use the original distribution archive Barfly.lha.

None of the programs may be included or used in commercial programs
unless by written permission from the author.

None of the programs may be modified in any way. This especially
includes changing the copyright notices or removing any of the Shareware

restrictions.

None of the programs may be used on any machine which is used for the

research, development, construction,
or other military applications. This
used for training persons for any of

testing or production of weapons
also includes any machine which is
the above mentioned purposes.

None of the programs may be used by more than the registrated owner.

1.3 Barfly.guide/BI_REG

Registration

As you may have noticed in the copyright I’'m working for five years
at Barfly. It has always consumed and will continue to consume a large

amount of my time.

Barfly

3/144

I cannot afford just working for fun. Thus, I decided to release
Barfly as Shareware. I already tried to release Barfly as a commercial
product but the story behind it is more than sad. To sum it...german
Amiga software companys aren’t worth any time...they suck. Some people
may think the price is too high for a Shareware product but i think
that BAsm is as powerful as the 2 main available commercial
Assemblers...if not more powerful if you compare the speed and the
optimize functions;there’s no commercial Debugger available that can
compete with BDebug. I’ve used Barfly myself for commercial Amiga
applications. Z3-Fastlane device,CDRive, SCSIConfig, ...

The unregistered version of Barfly pops up the About requester at
the start and has some functions disabled:

Assembler:

o only 8192Bytes large code possible

o the Section commands aren’t available
Debugger:

o Only 1 Window per Obiject

o Enforcer Catch not available

o Task Catch not available

o Crashed Task Catch not available

o Limited Step count (about 150-200 Steps)

Registered users will be shipped a disk with the newest public
release of Barfly, along with a personalized, so-called "keyfile". It
enables all the missing features and disables the Shareware reminders.
This keyfile will work with all future releases of Barfly, so you can
simply download the latest version from your local bulletin board
without having to wait weeks for your update passing through the slow
mail channels. The keyfile must not be distributed in any way.

The fee for a Barfly registration is
70.- DM (D-Mark),
70.—- SFr (Schweizer Franken),
230.- FF (French Francs),
50.- US$ (US Dollar)

The fastest, cheapest and easiest way to register is put the money
together with the filled registration form into a letter and send it to

Please allow 2-5 weeks delivery for the registrated version.

Ralph Schmidt

Kleiner Hellweg 4

33154 Salzkotten

FR Germany

Phone: +49-5258-5637

E-Mail: laire@uni-paderborn.de
Irc: Laire on #amiga, #amigager

1.4 Barfly.guide/IN_PURPOSE

Introduction
*hkkKhkkhk k) k*x*k

Barfly 4/144

BDebug is an Intuition controlled multi-task system Debugger for O0OS
2.04 and newer.

You can use BDebug to debugging your programs, catching tasks,
reseach enforcer hits, follow Source-Level Informations and other
advanced functions. The Debugger supports assemblers,SAS C,Dice and
GCC.

Some of BDebug’s features are:

x font-sensitive, resizable and Style Guide compliant GadTools GUI

* Object-Oriented that results in a low learning curve

* Supports 68000...68060 and the FPUs

* Can debug multiple tasks at the same time

* Not limited by the amount of window objects.

* highly configurable

* keyboard support

BAsm is a very fast optimizing Assembler for 0OS 2.04 and newer.
Some of BAsm’s features are:

* 68000-68060, 6888x

* Very Fast

* Include and Incbin Cache

* Strong Optimizer with Multi-Pass Optimizing

* High Level Macros

* ARexx

* Supports 0SS 2.04 and OS 3.0 Hunks

* SAS D1 Source Level Format

1.5 Barfly.guide/IN_SYSR

System requirements

Barfly requires Amiga operating system version 2.04 or better.

Barfly 5/144

Kickstart 1.3 is not supported; this operating system is considered
obsolete.

Barfly requires at least one megabyte of RAM to run. A hardisk or a
faster CPU is not required but increase performances and comfort, of
course.

1.6 Barfly.guide/IN_INST

Installation

It is really easy to install Barfly:

1. Copy the the binary and the icon (called "BDebug" and
"BDebug.info") to any directory.

2. Copy the the binary and the icon (called "BAsm" and "BAsm.info")
to any directory.

Then copy the supplied configuration files from "s/Barfly/#?" to "S:"
directory of your system partition or create env:Barflypath with the
path to a directory that contains Barfly/#?.

1.7 Barfly.guide/OT_UPD

Other topics

khkkKhkhkkhkkhkkkKhk

Whenever a new release of Barfly gets released, I will post some
information in the appropriate newsgroups of some electronic networks.
The new archive will soon be available on many bulletin boards and on
all AmiNet FTP servers. Major releases will also come with some PD
disks, especially on Fred Fish’s collection.

As mentioned above, registered users will neither need a new keyfile

nor a special personalized program version. They can use all new
features immediately.

1.8 Barfly.guide/OT_SUP

Barfly 6/144

Support

If you have some questions, comments, suggestions or even flames,
please feel free to contact me at one of the following addresses. If
you send your letter via e-mail, there’s a good chance for getting a
quick reply.

Snailmail: Ralph Schmidt
Kleiner Hellweg 4
33154 Salzkotten
FR Germany
Phone: +49-5258-5637

E-Mail: laire@uni-paderborn.de
Irc: Laire on #amiga, #famigager

1.9 Barfly.guide/OT_HIST

History

* 0.0 - 1.0
not released

1.10 Barfly.guide/OT_FUT

Here are some ideas for future versions of BDebug:
* Full Source Level support for GCC and perhaps SAS.
* Better BDebug Arexx support...the current one is a bad excuse.
* Mungwall Trace methods.
* Automatic Refresh of some Windows (Task Window...)
* Amigaguide file mode in the autodocs functions.
* Highlight changed registers
* Better documentation.

* BAsmOption for the easy BAsm options configuration.

Barfly 7/144

* Other things i’m too lazy to mention now.
Important:
There is absolutely NO guarantee that these features will ever be

implemented. So don’t be disappointed, if they aren’t in the next
version.

1.11 Barfly.guide/OT_ACK

Acknowledegments

Thanks must go to:

- Dirk Leschner, Frank Jakobs
for being my best friends

- Matthias Scheler
for his manual design and Filer.

— S.Schaem, Bgrge Ngst, Alexis Wilke, Michael B. Smith, Marc Heuler
for their superb betatesting efforts

- Mike Schwartz

for a lot suggestions to improve basm. Sad he has left the Amiga
community 2 years ago.

- Stefan Becker
for Toolmanager and being a nice guy.

— Christoph Wolf
for DynamiCache and being a nice guy.

- Brian Cerveny (Redwine)
for Grapevine and being a nice guy (Really ?).

— All my IRC friends.
for many great hours. Thanks!
Andrew Denton (Guardian), Kenneth Dyke (Nyx), Bill Coldwell (Cryo),
Brian Cerveny (Redwine), Joseph Hillenburg(xterm), Scott
Ellis(ScottE), Chris Wichura (Caw), John Wiederhirn (John_W), Mike
Schwartz (mykes), Markus Illenseer(ill), Petra Zeidler (stargazer),
Michael van Elst (mlelstv), Holger Lubitz (holgi), Ralph

Babel (rbabel), Seth Harman (Budha) and a lot guys 1 haven’t
mentioned here.

Barfly 8/144

— Chris Schneider and Urban D. Mueller

for some suggestions 2-3 years ago and installing Aminet.
— Michael "billy" B&hnisch

for his cleanup on MakeBarflyFD 2-3 years ago.
- Steve Wright

for designing the icons 2 years ago.

And of course to all the other Beta testers and registered users.

1.12 Barfly.guide/ASoft

The V40 Includes can be ftp’ed from the FTP-Server.
ftp.rz.uni-wuerzburg.de: pub/amiga/frozenfish/bbs/com

A superb Linker "1lk" by Alex Wilke should be soon availble on Aminet.

1.13 Barfly.guide/BDebugTop

BDebug 1.0
An Intuition controlled Debugger

Copyright (c) 1989-94 Ralph Schmidt

— Shareware -
Using BDebug...
Command Window Debug Methods
Register Window Register Window Object
FPU Window FPU Window Object
Disassembler Window Disassembler Window Object
Memory Window Memory Window Object
Copper Window Copper Window Object
Struct Window Struct Window Object
Source Window Source Window Object
Snoop Window Snoop Window Object
Breakpoint Window Breakpoint Manager Window Object
Watchpoint Window Watchpoint Manager Window Object
Checksum Window Checksum Manager Window Object
Arguments Requester Arguments

Technicals Technical Details

Barfly 9/144
Configurations Configuration Details
Arexx Arexx
Problem Analysis Problem Analysis

1.14 Barfly.guide/UB_COMW

Usage of BDebug

*hkhkhkhkhkhkkkkkkk*x

The Command Window

Debugger Philosophy

BDebug is a multitasking Debugger that supports the Motorola
processors 68000...68060 and 68881...68882. The Debugger allows to
debug unlimited tasks parallel. Because of the Debugger’s complexity
BDebug was designed in an object-oriented way to allow an easy and
comfortable way to use it. The register window REGWindow is the Root
class of the task object that can be expanded by several subclass
windows. Every subclass window has privat menus and inherits the
public menus of its father object.

Debug Methoden

The Debugger offers a variety of different Debug methods that can be

activated by menu or gadget.

Debug Task

is used to select a task you wanna debug. If you doubleclick on a

task a REGWindow and a couple of information windows opens. Which type

and how many are opened depends on the current configuration. After
the task could be stopped the contents of the REGWindow and all other
information windows gets refreshed. If the task is in the Wait state
the task is stopped when it gets a signal.

Task Listview Layout

Taskaddress & Priority & Status & [!]Name

A process 1is marked by ! at the beginning of the name.

You should know what task you can stop and what kind of task should
never be stopped. For example the Input.device should never be stopped.

Debug File

Barfly

10/ 144

is used to load and stop a program. This function is equal to the
bdebug cli startup with the exception that you can enter the parameter
in a requester. If no error occur all configurated windows are opened
and the PC stops at the defined programstart breakpoint that normally
points to the first command of the program.

Debug Next Task

is used to debug the next task that is opened. The Debugger waits
until another task is created by AddTask and a couple of information
windows opens. Which type and how many are opened depends on the
current configuration. After the new task was caught the pc points to
the beginning of the task and Catch Next Task is disactivated. To
catch a program that is started from the WV you have to use Debug Next
Task to catch the WB Startup Task WBL that starts the program. Now you
have to activate Debug Next Task again and let the current task run.
After a short time the task WBL ends and the program’s task is caught.

You should avoid to start a new task between the 2 Debug Next Task
phases because it’s easy to catch the wrong one.

You should notice that AddTask is patched and points to a new
routine. Thus you should be careful with programs that also patch
AddTask. Furthermore it’s useful know in what sequences these
patches have to be removed. The Debugger can only be closed when
all patched system function that were installed after the Debugger
was started are removed.

If you start a program in the shell without c:Run no new task is
created. Instead the program is run as a subroutine in shell’s
task so you can’t catch the task that easy.

Debug Crashed Task

is used to catch tasks that crash so you track down the bug location
a lot easier. If the system itself doesn’t run anymore you shouldn’t
expect that bdebug still runs because it depends on a working system.
If a task crashes and the option Debug Crashed Task is activated a
couple of information windows opens. Which type and how many are opened
depends on the current configuration. Task Held Requester.

Catch Enforcer Hit

is used to tell the Debugger to stop the task it controlls when an
enforcer hit happens. Unfortunately the Debugger can’t stop the task
at exactly the same location where the hit happened. Mostly the hit
command is 1-2 instructions above the stopped task’s PC.

This function needs Enforcer V37.x by M. Sinz and it must be
installed before BDebug is started. Please read the documentation.

Barfly

11/144

Select Display Mode

This function allows you to chooce the Screen Mode for the Debugger.

How to start ?

The Register Window

If you only want to debug a program you have to start bdebug with

the program’s name and parameters or by using Debug Program in the
command window. Another method is to move a program’s icon on the
command window or specify BDebug as in the icon as the DefaultTool.

Name :

BDEBUG - The CLI Startup

Synopnis:

BDEBUG [?] [<Program> [Argument]]

Function:
BDebug activates the Debugger, loads and stops the optional
entered program. If it can find a local config file with the
suffix x.bdebug it loads it.
Inputs
«+ ? shows an information message
* program name If no program name is entered BDebug looks for
env:BDebugProgram and loads the program instead that the env:

points to.

* argument line of the program. If there are spaces in
parameters you have to enclose the argument with "".

1.15 Barfly.guide/UB_REGW

Usage of BDebug

*hkhkhkkhkhkkkhkkkkkkxk*x

The Register Window The Register Window
Local Menus Local Menus

Barfly 12/144

Public Menus Public Menus

1.16 Barfly.guide/REGW_Window

Register Window

The register window is the most important control layer of the
Debugger and every debugged task has one. You can link unlimited other
information windows to the REGWindow or you can tell the Debugger to

give up controlling the task. In the title line of the window you can
see the ID number of the task, so you can recognize what information
window belongs to this task. Furthermore the title line also contain

the task address,the state, RUN,WAIT or STOP and the name of the task.
The task is in the RUN state if the task has the controll at the moment
instead of the traphandler; the task is in the STOP state when the task
waits and the traphandler controlls what happens. The task is the WAIT
state only when the Debugger has to wait to catch a task by a Debug
Task. 1In the upper area of the window you see the normal data and
address registers where the address register also have additional
information fields. To change a register or to watch memory where the
register points to you only need to doubleclick on the register or on
the register’s memory contents. Furthermore you may change other
usermode registers by this method. Supervisor register can’t be
changed because that makes not much sense for a system Debugger.

68000 Registers
DO=XXXXXXXX VYYYV AD=XXXXXXXX Argl Arg2 [!]
DI=XXXXXXXX YVVY Al=XXXXXXXX Argl Arg2 [!]
D2=XXXXXXXX YYVY AZ2=XXXXXXXX Argl Arg2z [!]
D3=XXXXXXXX YVYYYV A3=XXXXXXXX Argl Arg2 [!']
D4=xXXXXXXXX YVVY A4=XXXXXXXX Argl Arg2 [!]
D5=XXXXXXXX YYVVY AS=XXXXXXXX Argl Arg2 [!]
DO=XXXXXXXX YVVY ALG=XXXXXXXX Argl Arg2 [!]
D7=XXXXXXXX YVVY AT=XXXXXXXX Argl Arg2z [!]
USP=XXXXXXXX SSP=xXxXXxXXxXX PC=xxxxxxxx SR=XxxXxXx
% [!] shows i1if the address register points on an odd address.
x* 1f the address register points on an illegal memory area the char
* is shown in Argl and Arg2 to avoid crashes by reading non

readable io-addresses. You can config the readable memory areas.

x 1f the address register points on the following system structures
the name of the Node is shown in Argl and the Name of the

Barfly 13/144

structure in Arg2.
* Library
* Device
* Port
* Task
* Resource
* MemHead
x* 1f the address register points to the custom chip area the name of
the register is shown in Argl and the ID-Word CUSTOM is shown in

Arg2. Custom register map is $dff000-$dff200.

* i1f the address register points to a symbol the symbol and the
contents is shown.

* Otherwise 8Bytes of the memory are shown where the register points
to. The 8 Bytes are shown hexadecimal in Argl and ascii in Arg2.

68010 Registers
VBR=xxxxXxxxXxX SFC=xxxxxxxx DFC=xxxxxxxx
68020 Registers
VBR=xxxxxxxX SFC=xxxxxxxx DFC=xxxxxxxX
MSP=xxxxxxxX ISP=xxxxxXxXX CACR=xxxxXxXxXX CAAR=XXXXXXXX
68030 Registers
VBR=xxxxxxxX SFC=xxxxxxxx DFC=xxxxxxxXx
MSP=xxxxxxxX ISP=xxxxxXxXX CACR=xxxXxXxXX CAAR=XXXXXXXX
CRP=XXXXXXXXXXXXXXXX SRP=XXXXXXXXXXXXXXXX
TTO=xxxxxXXXX TTI=XXXXXXXX TC=xxxX PSR=XXXXXXXX
68040 Registers
VBR=xxxxxxxX SFC=xxxxxxxx DFC=xxxxxxxX
MSP=xxxxXxxXxX ISP=xxxxxxxxXx CACR=XXXXXXXX
URP=xxXxXxxXX SRP=XXXXXXXX TC=xxxx PSR=XXXXXXXX
ITTO=xxxxxXxXxXX ITTl=xxxxxXXXX DTTO0=xXxXxxxxXXX DTT]1=XXXXXXXX
68060 Registers

VBR=XXXXXXXX SFC=XXXXXXXX DFC=XXXXXXXX

Barfly

14 /144

1.17

CACR=xxxxXxxXxX PCR=xxxxxxxXx BUSCR=XXXXXXXX
URP=xxxxxXxXx SRP=XXXXXXXX TC=xxxxX PSR=XXXXXXXX
ITTO=xxxxxxxXX ITT1l=xxxxxXXXX DTTO0=xxxxxxXXX DTTI=XXXXXXXX
Type Information
XXXXXXXX [Symbol] Mnemonic operandl[,...]]
(EA) : [Addressl=Contents]...[Address2=Contents]
In the (EA) line you can see the addresses and their contents the

current command accesses. The contents of illegal addresses
aren’t shown.

Barfly.guide/REGW_LocalMenus

Local Menus

*

Close Window

closes the REGWindow, all connected windows and disactivates the
Debugger for this task. To disactivate the Debugger you have to
choose if the task should keep running so it’s the task’s business

to stop. Furthermore you can end the task by runing the cleanup
routine of the task or just removing the task from the list but
this can cause sideeffects you can’t always oversee. If the task

is a process then the Remove option is equal to the Cleanup option.

If it’s only a task the Cleanup option is equal to the Cleanup
option. Beware that the Remove option doesn’t free any resources
of the task.
You should really know what you’re doing if you for example
remove a task from the system.
ZOOM Windows
expands all windows of the task.

Log File

activates or disactivates the loging of the register and PC
changes.

Big View

shrinks the REGWindow to a 68000 register layout or expands it
back to the full layout.

Open DissWindow

Barfly

15/ 144

1.18

opens a DissWindow with the configured dimensions.
Open MemWindow
opens a MemWindow with the configured dimensions.
Open FPUWindow

opens a FPUWindow with the configured dimensions. The menu is
only available if a FPU is installed.

Open BreakWindow

opens a BreakpointWindow with the configured dimensions.

Open CoppWindow

opens a CoppWindow with the configured dimensions.

Open StructWindow

opens a StructWindow with the configured dimensions.

Open SnoopWindow

opens a SnoopWindow with the configured dimensions.

Open WatchWindow

opens a WatchpointWindow with the configured dimensions.

Open ChecksumWindow

opens a ChecksumWindow with the configured dimensions.

Save Window Settings

saves the positions and count of all window the current task
controlls. The saved file then contains the appropriate commands
you have to enter yourself into the configuration file. Because

of the Debugger’s window concept it makes no sense to save a full
configurations file.

Barfly.guide/REGW_PublicMenus

Public Menus

*

*

Step 1

runs the current command and stops the task afterwords.

Step X

Barfly 16/ 144

runs X commands and stops the task afterwards.
* Step Debug Line

runs commands until the PC meets another source line. If the PC
is outside the program or if no debug informations are available a
single step i used. The command enters rubroutines.

* Trace Debug Line

is simular to Step Debug Line with the exception that it runs
subroutines.

* Trace over Calls

runs the current command or subroutine and stops the task
afterwards. Depending on the configuration and the memory area a
breakpoint or single steps are used. If a crashes happen in
certain program parts you should remove the command Tracebreak
from the configuration.

You should avoid to use Tracebreak in Libraries and Devices
that are located in the ram. If another task accesses the
routine at the same time you can expect an illegal exception.

Some Amiga MMU Setups don’t like that programs write to the
kickstart rom. For example breakpoints.

* Trace X over Calls

runs X commands or subroutines and stops the task afterwards.
Depending on the configuration and the memory area a breakpoint or
single steps are used.

* Trace Work

is simular to the command Trace over Calls with the exception that
all commands are run. This function is useful to trace loops.

Example:
moveq #10,d0
0$:
dbra do, 0s

If you use the function on the command dbra the Debugger sets
a breakpoint after the dbra and runs the task. It drops back
to single step when it hits a Jmp, bra, rts

* Trace over 0S-Calls

runs the current command or the OS function and stops the task
afterwards.

Barfly

17 /144

Trace on Flow

stops the task when a PC direction occurs. This means the PC is
stopped when it hits a Jsr, Jmp, bcc, rts

Trace on Adress
runs the task until the PC is equal to the entered address. This
function is not very fast because the task is running in single
step mode and after each instruction the PC is compared with the
Adress.
Trace out of 0OS
runs the task until the PC is outside of the kickstart. This
functions is useful when you catch a task inside the 0S and you
wanna get as fast as possible back to the program’s code. It
works simular as Trace on Adress.
You shouldn’t use this command if your task only runs in the
kickstart.
(PC) ++
jumps over the current command. Useful to jump over Illegal
breakpoints that you can use for debugging purposes in your
program.
PC-2
subtract 2 Bytes from the PC.
Write Nop
overwrites the current command with a Nop.
Write Illegal
overwrites the current command with an Illegal.
Run Task
runs the task and only stops on exceptions.
Run Watched Task
runs the task in trace mode and stops when a WatchPoint condition
is true. If there are no watchpoints the command behaves like Run
Task.

Run History Task

runs the task in trace mode and saves the registers each step into
the history stack.

Barfly

18/ 144

Stop Task

stops the task.

Send Signal

sends a signal to the task. Default Signal is CTRL-C = 12
Undo Level

sets the undobuffer’s depth.

Undo

undos the last changes in the registerframe.

View Refresh

activates and disactivates the copperlist refresh after each trace
operation. This function is helpful if you debug programs that
install own copperlists.

Show (EA)

activates and disactivates the output of the address and address
contents that are access by the current assembler command.

Symbol

activates and disactivates the use of symbols in the REGWindow.
Delete Symbols

erases all symbols of the task.

Copy Symbols

can copy a symbol list of the task to a different task. This
function is helpful if you a task is started from another task and
you wanna keep the symbol list.

Load Symbols

loads the symbols of a program where you can select an alternative
process’s segmentlist for calculating the symbol and debug
informations. Normally you choose the same process but sometimes
it’s helpful to select a different process. For example if the
task you debug is created in a program you have to choose the
program’s task to get the correct symbol addresses.

Set Hunklist

sets a new segment list for the SourceWindow and some other hunk
related functions. Because the position in the SourceWindow
depends on the segments it’s sometimes helpful if you load new
symbols and debug informations for this task. If you load an
alternative Hunklist by selecting a custom task when you use Load

Barfly 19/144

Symbols this routine is called automaticly.
* Reset Hunklist
removes the alternative hunklist.
* Show Value
shows the value of an argument.
* Show Last Exception
shows the last exception.
* Open Task Window
opens a window to show the task structure of the task.
* Open System Window
opens a window to show the ExecBase structure.
* Open Proces Window
opens a window to show the process structure of the process.
* Open CLI Window
opens a window to show the cli structure of the process.
* Open Hunk Window
opens a window to show the hunks of the process.

* Open Symbol Window

opens a window to show the symbols of the process. If you
doubleclick on a symbol you get the hunk where the symbol is
located.

* Open Library Window
opens a window to show the libraries. If you doubleclick on a
library entry it opens a FD: window that shows all functions of
the library when the library is defined in the Barfly.FD file.
Furthermore if you doublelick on a function you have the choice to
see the function in a DissWindow or the autodocs documentation.

* Open Device Window
opens a window to show the devices.

* Open Resource Window

opens a window to show the resources.

* Open Port Window

Barfly

20/ 144

opens a window to show the public ports.
Open Resident Window
opens a window to show the resident modules.
Open Interrupt Window
opens a window to show the interrupts.
Open AutoDocs Window
opens a filerequester to choose the needed autodocs information of
a library. Now a window is opened that shows all function of the
chosen autodoc file. If you now click on a function another
window is opened that shows the function documentation.
Open History Window
opens a HistoryWindow that shows the last saved registerframes of
the undobuffer. The undobuffer is organized as a stack that the
first entry is the last entry in the HistoryWindow. The
HistoryWindow isn’t updated automatic.
Stack Check
controlls the stack check. If the register A7 points out of the
stack bounds or points on an odd address a warning is shown. The
Debugger only checks the task when the task give back the control
to the traproutine, so it’s not possible to notice every stack
problem.
You should be aware that this function doesn’t work with a
WShell task because the WShell doesn’t set the correct stack
task values.
Find Task of Adress
trys to find the task that belongs to the entered address. The
command checks if the address is in the task,process,cli, mementry
structure and the hunks. It’s not safe to assume that the
function can check all cases.
Load Binary
loads a file with an optional length into a memory area. If the
Debugger should allocate the memory block automaticly you have to
close the memory requester.
Save Binary

saves a memory area into a file.

Freeze Task

Barfly 21/144

freezes a selectable task. When bdebug ends the frozen tasks are
warmed up again.

* Warm up Task

warms up a frozen task.
* Kill Task

kills a selectable task.

You should know what task you can kill.

* Show Task
shows the task structure of a selectable task.
* Show Prozess
shows the process structure of a selectable process.
* Show CLI
shows the cli structure of a selectable process.
* Show Hunk
shows the hunks of a selectable process.
* Send Task Signal
sends a signal to a selectable task.
* Set Task Priority
sets a priority of a selectable task.
* Refresh Code Cache
refreshes the Code Cache.
* Refresh Data Cache

refreshes the Data Cache

1.19 Barfly.guide/UB_FPUW

Usage of BDebug

khkkhkkkhk Ak kA kkhAkxkK

The FPU Window

Barfly

22/144

The FPU Window The FPU Window
Local Menus Local Menus

1.20 Barfly.guide/FPUW_Window

FPU Window

The FPU Window shows the FPU register FPO to FP7 in the 96Bit

Extended format and the registers FPCR,FPSR and FPIAR in hexadecimal.

You can only open this window if a FPU is available.
Register Window Layout
FPO=FloatingPoint
FP1l=FloatingPoint
FP2=FloatingPoint
FP3=FloatingPoint
FP4=FloatingPoint
FP5=FloatingPoint
FP6=FloatingPoint
FP7=FloatingPoint
FPCR=xxxxXxxXxX FPSR=XXXXXXXX

FPIAR=XXXXXXXX

1.21 Barfly.guide/FPUW_LocalMenus

Local Menus

* Close Window

closes the window.

1.22 Barfly.guide/UB_DISSW

Barfly 23/144

Usage of BDebug

*hkhkhkhkhkhkkkkkkk*k

The Disassembler Window

The Disasembler Window The Disassembler Window
Local Menus Local Menus

1.23 Barfly.guide/DISSW_Window

Disassembler window

The DissWindow shows the memory contents in assembler mnemonics. The

address of the window’s view can be absolut or relative. In the
absolut mode the window is set to a fixed adress and you can read in
the title No Link. In the relative mode the window is connected with a

register so the window’s view depends on the registers value. You can
see this mode by the title string Link to * where x represents the
register name. The PC is shown by the colour pen 2. If the linked
register value is outside of the window’s view area the whole contents
of the window will be refreshed. You can change size of the window and
scroll through the memory area by using the cursors. In the title you
see an ID-String with the format \#x.y where X represents the REGWindow
number and y the number of the MemWindow. By a doubleclick in a line
of the window you can sets or remove a breakpoint. You can disable this
function in the configuration.

1.24 Barfly.guide/DISSW_LocalMenus

Local Menus

* Close Window
closes the window.
* Shrink Window
shrinks the window.
* Expand Window
expands the window to screen size.

* Link to Register

Barfly

24 /144

links the window with a register. If you enter the string NO it
switches to the absolute mode.

Change Adress

changes the view address of the window.

Clear Adress

resets the view address of the window.

Refresh Window

refreshes the window.

.W Branches

activates and disactivates the output of the old branch width size.

Neg. Offsets

activates and disactivates the output of negative values in the
indirect address modes with offset.

Neg. Data

activates and disactivates
direkt address mode.

Opcode Data

activates and disactivates
bytes.

Auto Refresh

activates and disactivates
each step.

Symbols

activates and disactivates

Show Lib Call

the

the

the

the

output of negative values in the

additional output of the command

global refresh of the window after

symbol output in the window.

activates and disactivates the symbolic output of library
functions so all library functions that are defined in the
configuration file <BarflyPath>/Barfly/BARFLY.FD are recognized.

Guess Lib Call

activates and disactivates the guessing of function call names.
It only works in connection with the option Show Lib Call.
Fortunately you can’t expect that the function names always fit
because the the library base register A6 can change until the
program counter meets the function.

Barfly 25/144

* Mark Block End
activates and disactivates marking after the instruction
JMP, BRA,RTS,RTE,RTD and RTR to make program
blocks more visible.
* Set/Clear Breakpoint
sets/removes a breakpoint on the first entry in the window.
Breakpoints are shown by changing the pen from colour 1 to colour
3 and the char > at the beginning of a line.
* Pick/Clear Breakpoint
sets/removes a breakpoint through a symbol list.

* Disassemble to File

disassembles a memory area into a file.

1.25 Barfly.guide/UB_MEMW

Usage of BDebug
kkhkAkhkkhkkhkkhkkkkkkKk Kk

The Memory Window

The Memory Window The Memory Window
Local Menus Local Menus

1.26 Barfly.guide/MEMW_Window

Memory window

The MemWindow shows the memory contents hexadecimal and in ascii.You
can change size of the window and scroll through the memory area by
using the cursors. In the title you see an ID-String with the format
\#x.y where X represents the REGWindow number and y the number of the
MemWindow.

1.27 Barfly.guide/MEMW_LocalMenus

Barfly

26/144

Local Menus

Close Window

closes the window.

Shrink Window

shrinks the window.

Expand Window

expands the window to screen size.
Link to Register

links the window with a register. 1If you enter the string NO it
switches to the absolute mode.

Change Adress

changes the view address of the window.
Clear Adress

resets the view address of the window.
Refresh Window

refreshes the window.

Memory Offset Step

defines the data format in the window. The following options can
be selected: None, Byte, Word and Long.

Edit

activates the edit mode of the MemWindow. In the edit mode you
can switch between hex and ascii input by the key RETURN. With ESC
you can leave the edit mode. Only the cursor right and left are
changed to the normal. With these both keys you can access each

Byte. In the edit mode you can’t change the size of the window.
Copy
copies a memory area into another memory area. The function uses

CopyMem so it doesn’t handle memory areas that overlap.
Fill
fills a memory area with a value of a certain data-width.

Compare

Barfly

27 /144

compares a memory area with another memory area.

* Search
searches a value of a certain data-width in a memory area. If the
value is found the address and the value are shown and you can
goon with Search Next to find the next address.

* Search Next
Searches the next wvalue. Look at Search

* Pred
sets the address of the window on the preceding entry of the list.
If the node points on an odd, illegal or address NULL the command
has no effect. The next node is equal to LN_PRED, the second
longword of the memory view.

* Succ
sets the address of the window on the next entry of the list. If
the node points on an odd, illegal or address NULL the command has

no effect. The next node is equal to LN_SUCC, the first longword
of the memory view.

1.28 Barfly.guide/UB_COPPW

Usage of BDebug
kAhkAkhkAhkkkkhkkkkhkkKhk*k

The Copper Window

The Copper Window The Copper Window
Local Menus Local Menus

1.29 Barfly.guide/COPPW_Window

CopperWindow

The CopperWindow shows the memory contents as copper commands. You
can change size of the window and scroll through the memory area by
using the cursors. In the title you see an ID-String with the format
\#x.y where X represents the REGWindow number and y the number of the
CoppWindow.

Barfly 28/144

1.30 Barfly.guide/COPPW_LocalMenus

Local Menus

* Close Window
closes the window.
* Shrink Window
shrinks the window.
* Expand Window
expands the window to screen size.
* Link to Register

links the window with a register. If you enter the string NO it
switches to the absolute mode.

* Change Adress

changes the view address of the window.
* Clear Adress

resets the view address of the window.
* Refresh Window

refreshes the window.
* Goto Into List

sets the window list on the standard copperlist
GfxBase->gb_copinit.

1.31 Barfly.guide/UB_STRUCTW

Usage of BDebug
kkhkAkhkAhkhkkkhkkhkkhkkKk Kk

The Structure Window

The Structure Window The Structure Window
The Structure Format The Structure Format
Local Menus Local Menus

Barfly 29/144

1.32 Barfly.guide/STRUCTW_Window

StructWindow

opens window that can be connected with a structure. You can use
new structure entries by expanding the the
<BarflyPath>/Barfly/Barfly.Include file or loading a new custom file.
By a doubleclick on a structure window entry you can cause several
actions depending on the datatype. Every datatype is connected with an
action that is normally started automaticly. With the configuration
command NoAutoStructAction you can change this behaviour so that an
action type requester is opened.

The following datatypes are available.

*

APTR opens a MemWindow.

* CSTR shows a string.

* BPTR opens a MemWindow at the address BPTRx4.
* BSTR shows a string at the address (BPTRx4)+1
* CPTR opens a DissWindow.

* FPTR opens a DissWindow.

* BYTE doesn’t cause an action.

* WORD doesn’t cause an action.

* LONG doesn’t cause an action.

* FLOAT doesn’t cause an action.

* DOUBLE doesn’t cause an action.

* EXTENDED doesn’t cause an action.

* RPTR doesn’t cause an action.

The following action types are available.

*

MemWindow opens a MemWindow.

* DissWindow opens a DissWindow.

* CoppWindow opens a CoppWindow.

* StructWindow opens a StructWindow.

* NewStruct sets a new structure.

Barfly 30/144

1.33 Barfly.guide/STRUCTW_Format

Structure Macro Fileformat

In the beginning you define the root directory entries with the

Macro Menudir. The first parameter is the name of the entry,then the
address of the parent directory and then the address of the
subdirectory. In the root directory the parent address is fortunately
NULL. The last entry of the directory is defined by the Macro
MENUDIREND.
Label ListViewMacro Link
RootDir:
MENUDIR exec, 0,Exec_Dir
MYCUSTOMENTRY :
MENUDIREND CusTOM, 0,0

The design of a subdirectory only differs from the root directory
entries by a parent directory address.

Label ListViewMacro Link
Exec_Dir:

MENUDIR nodes.i,RootDir,Nodes_Dir

MENUDIREND tasks.i,RootDir, Tasks_Dir

to define the structure directory entries you have to use MENUITEM
and MENUITEMEND. The first parameter in the Item Macros is the name of
the entry and also the name of the structure. The second parameter
defines the address of the parent directory.

Label ListViewMacro Link

Nodes_Dir:
MENUITEM LN, Exec_Dir

MENUITEMEND

To define a structure you can use the normal assembler syntax that
you probably have to adjust to your custom needs. For example you can
tell BDebug more informations about the datatype an entry represents.
By redefining APTR to a CSTR you can tell Debugger that the entry is a
stringpointer. Or you can tell that APTR points to a structure by APTR
LN_SUCC, Node.

Label IncludeTypeMacro Name, Link

Barfly 31/144
LN_Struct:
STRUCTUREB LN, O
APTR LN_SUCC, LN
APTR LN_PRED, LN
UBYTE LN_TYPE
BYTE LN_PRI
CCSTR LN_NAME
LABEL LN_SIZE
1.34 Barfly.guide/STRUCTW_LocalMenus

Local Menus

Close Window

closes the window.

Shrink Window

shrinks the window.

Expand Window

expands the window to screen size.
Link to Register

links the window with a register. If you enter the string NO it
switches to the absolute mode.

Change Adress

changes the view address of the window.

Clear Adress

resets the view address of the window.

Refresh Window

refreshes the window.

Load Custom Struct

loads additional structure files. The new structure entries are
place in the CUSTOM directory. The format of custom structure
files is equal to the file BARFLY.INCLUDE.

Select Structure

opens the structure include directory requester where you can

select the needed structure. The parent gadget is placed in the
upper border.

Barfly

32/144

1.35

Goto Sysbase...

sets the window adress on the ExecBase.
Goto Gfxbase...

sets the window address on the GFXBase.
Save Window....

saves the contents of the window in a file.
Full Address

this switch decides if the StructWindow also shows the address of
the entries.

Offset Address

this switch decides if the StructWindow also shows the offset of
the entries.

Pred

sets the address of the window on the preceding entry of the list.
If the node points on an odd, illegal or address NULL the command
has no effect. The next node is equal to LN_PRED, the second
longword of the memory view.

Succ
sets the address of the window on the next entry of the list. If
the node points on an odd, illegal or address NULL the command has

no effect. The next node is equal to LN_SUCC, the first longword
of the memory view.

Barfly.guide/UB_SOURCEW

Usage of BDebug

*hkkhkkhkkhkhkkkkkkk*x

The Structure Window

The Source Window The Source Window
Local Menus Local Menus

Barfly

33/144

1.36 Barfly.guide/SOURCEW_Window

Source window

The SourceWindow shows the source line that belongs to the window
address. If the program file doesn’t have the needed debug informations
the Source window can’t be opened. If the address points to an area with
no relevant debug information, for example the Kickstart or beyond the
program hunks, you only see a small message.

1.37 Barfly.guide/SOURCEW_LocalMenus

Local Menus

* Close Window
closes the window.
* Shrink Window
shrinks the window.
* Expand Window
expands the window to screen size.
* Link to Register

links the window with a register. If you enter the string NO it
switches to the absolute mode.

* Change Adress

changes the view address of the window.
* Clear Adress

resets the view address of the window.
* Refresh Window

refreshes the window.
* Set Breakpoint

sets a breakpoint on the active line.
* Show HunkInfo

shows the hunk of the current source line.

Barfly 34 /144

1.38 Barfly.guide/UB_SNOOPW

Usage of BDebug
kkhkAkhkkhkkhAkkhkkhkkk Kk Kk

The Snoop Window

The Snoop Window The Snoop Window
Local Menus Local Menus

1.39 Barfly.guide/SNOOPW_Window

Snoop Window

The SnoopWindow snoops the task’s allocations.

1.40 Barfly.guide/SNOOPW_LocalMenus

Local Menus

* Close Window
closes the window.
* Shrink Window
shrinks the window.
* Expand Window
expands the window to screen size.
* Refresh Window
refreshes the window.
* Auto Refresh
activates/disactivates display refresh by an allocation.
* Snoop Memory
activates/disactivates snooping.

* Snoop Mask

Barfly

35/144

sets the allocation filter mask. Is the Mask 20 only allocations
with the size 20 are recorded. Default -1.

* Snoop Max Entries

sets the maximal recorded snoop entries.

1.41 Barfly.guide/UB_BREAKW

Usage of BDebug
kkhkkhkAhkkhkkhkkkkkKkk*k

The Breakpoint Window

The Breakpoint Window The Breakpoint Window
Local Menus Local Menus

1.42 Barfly.guide/BREAKW_Window

Breakpoint window

The BreakWindow handles all breakpoints and contains the functions
that are needed with breakpoints. In general breakpoints are addresses
in the program where the task should be stopped. The breakpoints are
handled global so they aren’t deleted when close the window.

1.43 Barfly.guide/BREAKW_LocalMenus

Local Menus

* Toggle

activates and disactivates all breakpoints.
* All

selects all breakpoints.
* Clear

unselects all breakpoints.

Barfly

36/144

1.44

On

activates all selected breakpoints.
Off

disactivates all selected breakpoints.
Hit

sets the amount of hits for a breakpoint until it should stop the
program. Default is 1.

shows the hunk where the breakpoint is located and if the
breakpoint is equal to a symbol.

Input
this breakpoint sets and removes a breakpoint.
Pick

this breakpoint sets and removes a breakpoint using the symbol
list.

Delete

removes every selected breakpoint.

Goto

opens a DissWindow for every selected breakpoint.
Run

runs the program until the PC hits a selected breakpoint.

Barfly.guide/UB_WATCHW

Usage of BDebug

khkkhkkhkhkkhkkkhkhkkkhAkxkk

The Watchpoint Window

The Watchpoint Window The Watchpoint Window
Local Menus Local Menus

Barfly 37/144

1.45 Barfly.guide/WATCHW_Window

Watchpoint window

The Watchwindow allows to set breakpoints that aren’t dependend on a
certain PC address but from other conditions. Every watchpoint has a
condition,data width and state if it’s activated or not. There are 3
types of different watchpoints available now. The Memory watchpoint
compares the saved contents of the address with the current contents
and dependent on the condition the program is stopped or not. The
Register watchpoint compares the saved contents of a register with the
current contents and dependent on the condition the program is stopped
or not. The Argument watchpoint compares the saved value of an argument
with the current contents and dependent on the condition the program is
stopped or not. The last watchpoint type is the most powerful because
it can simulate the first two types with the cost of a slowdown. The
use of watchpoints is very time consuming because the whole program is
run in single stepping To use watchpoints you have to run the task with
Run Watched Task.

If an error happens during a dynamic argument in the exception
handler the screen is blinked.

1.46 Barfly.guide/WATCHW_LocalMenus

Local Menus

* Toggle

activates and disactivates all watchpoints.
* All

selects all watchpoints.
* Clear

unselects all watchpoints.
* On

activates all selected watchpoints.
* Off

disactivates all selected watchpoints.
* Add

opens a requester where the parameter for a watchpoint have to be

Barfly 38/144

adjusted and adds the new watchpoint to the list. TIf you
doubeclick on a watchpoint you can change the parameter.

* Refresh

refreshes the watchpoint arguments.
* Check

checks all selected watchpoints.
* Delete

removes all selected watchpoints.

1.47 Barfly.guide/UB_CHECKW

Usage of BDebug

kkhkAkhk Ak hkkAkkkhkkkkKkk*k

The Checksum Window

The Checksum Window The Checksum Window
Local Menus Local Menus

1.48 Barfly.guide/CHECKW_Window

Checksum Window

The ChecksumWindow controlls all checksum areas that are been
checked each time the task stops. Helpful to find illegal random
writes bugs. The checkpoints are controlled global so they aren’t
deleted when you close the window.

1.49 Barfly.guide/CHECKW_LocalMenus

Local Menus

* Toggle

activates or disactivates all checksum areas.

Barfly 39/144

* All
selects all checksum areas.
* Clear
unselects all checksum areas.
* On
activates all selected checksum areas.
* Off
disactivates all selected checksum areas.
* Address
adds a checksum area into the list.
* Hunk
adds a hunk of the current process into the checksum area list.
* Task
adds a hunk of selectable process into the checksum area list.
* Refresh
calculate a new checksum for all selected areas.
* Delete
removes all selected checksum areas.
* Check

checks all areas for checksum errors.

1.50 Barfly.guide/lUB_ARGUMENTS

Usage of BDebug

khkkAkkkhk Ak kA kkhk Ak kK

Requester Arguments

Argument Structur

An argument can use absolut values,symbols and registers as operands
and the operators +,—-,*,/,1,!,&,<<,>>,~. Additionally to the normal
symbols there are some special symbols available.

Barfly

40/ 144

* By {Argument}.[b,w, 1]
defined by the argument.

isn’t

* \#d?

* \#m?

* \#c?

* \#h?

defined in the

represents the

represents the

represents the

represents the

Hunk:0ffset output

* \#ea?

represents the

Register Window.

you can read from a memory address, that is

If you specify an illegal address that

legal memory space an error is shown.

address

address

address

address

address

of the Disswindows with the ID ?
of the Memwindows with the ID ?
of the Coppwindows with the ID ?

of the hunk ?. Helpful for enforcer

of the EA with the number ?. Check

* \#em? represents the contents where the address EA number ?

points to.

error
* \#ls
* \#le
* \#11

* \#p

is shown.

represents the

represents the

represents the

represents the

a loaded program.

Check Register Window. If the address EA is illegal an

start address of a loaded binary file.

end address of a loaded binary file.

length address of a loaded binary file.

start address of the programs. Only true for

If you have the following Enforcer Hit output Hunk 0:$1lc you can
calculate the adress by entering the argument #hO0+$1llc.

1.51 Barfly.guide/UB_TECHINFOS

Usage of BDebug
kAhkkhkAhkkkkhkkkkkkk*k

Technical Informations

The Debugger can catch all exceptions if the system is still working.
If an exception is caused the traphandler catches the exception and
tells the Debugger what went on so it can react on the exception. If
the exception wasn’t caused by the Debugger the type and the possible

reason for the exception is shown.

The Return-Adress of the debugged

task points on an internal ILLEGAL. If the PC points on this ILLEGAL
the task is closed and all windows are removed. You should step over
this ILLEGAL because it increases possibility of a system crash. If a
task is caught by Debug Next Task and notices a finalPC pointer the
Return-Adress isn’t set on an internal ILLEGAL because the finalPC

Barfly 41/144

pointer is sometimes used for parsing an argument. In this case the
Debugger notices that the task ends by the RemTask () function.

If the task changes the Return-Adress the Debugger tries to
determine the taskend by RemTask.

Exception Handler

Every task contains in the task structure a pointer to its exception
handler that is named TC_TRAPCODE When an exception happens in this
task the exception checks if the Debugger knows this task. If this is
not the case something seriously is broken and the Deadend Alert
35000000 will be poped up. If all goes well the registers are saved,
the Debugger task gets a message and the exception handler waits for a
msg by the Debugger to go on. When the Debugger gets the message it
causes the appropriate function. For example refreshing the windows.

If the Debugger gets a step command it sends the exception handler the
appropriate message and the handler does a step.

Debug Informations

Currently the following formats are supported.

* BASM Specialformat This format allows the Debugger to decide if
the code is in the Mainpart,Includes or in a Macro.

* SAS D1 This format only allows a Source-Code connection. It
doesn’t support local variables, Structures and Macros.

* GCC STABS This format is very powerful and offers all a
source—level Debugger needs. Unfortunately the Debugger only
supports a simple Source-Code connection at the moment. It’s
planned to support more in the future.

GCC Compiler and BDebug

Unfortunately you can’t debug programs that are using the current
ixemul.library because in Openlibrary () initroutine the Task field
TC_TRAPCODE is changed. Hopefully there’ll be soon an ixemul.library
available that doesn’t change the traphandler. If you’re using GCC
with the link 1lib gerlib that is available on Aminet FTP Servers you
shouldn’t experience any problems with BDebug.

1.52 Barfly.guide/UB_CONFIG

Usage of BDebug

*hkhkhkhkkhkhkkkkkkk*k

Configuration

Barfly 42 /144

The default configuration file is named BDEBUG.Config and is located
in the directory <BarflyPath>/ or s:Barfly/. Obviously it’s not
optimal to be forced to use the same config file for different
programs. Therefore you can also specify a local config file with
program name and the suffix .BDebug.

Tooltypes Available Tooltypes
Barfly.FD The Barfly.FD format
Commands Configuration Commands

1.53 Barfly.guide/CO_TOOLTYPES

ToolTypes

The following tooltypes are supported to activate the know functions
of the commandwindow.

* CatchNextTask
* CatchCrashedTask

* CatchEnforcerHit

1.54 Barfly.guide/CO_BARFLYFD

Barfly.FD

If you want to create a new Barfly.FD file that contains the library
function name you have to follow the following the instructions. First
the assign FD: has to point to the directory that contains the FD files
that should be contained in the new Barfly.FD. Afterwards you should
check every FD file if the Library, Resource, Device name exist in the

first line in the following style: % "foobar.libary". If this is not
the case you have to add the name yourself so that a correct FD
database can be build up. If you’re more experienced with FD files you

can yourself add new entries to the Barfly.FD file because the layout
is pretty obvious.

1.55 Barfly.guide/CO_CONFIGCMDS

Barfly

43 /144

Configuration Commands

Window Config Commands...

Register Window Register Window Object

FPU Window FPU Window Object

Disassembler Window Disassembler Window Object
Memory Window Memory Window Object

Copper Window Copper Window Object

Struct Window Struct Window Object

Source Window Source Window Object

Breakpoint Window Breakpoint Manager Window Object
Watchpoint Window Watchpoint Manager Window Object
Checksum Window Checksum Manager Window Object
Snoop Window Snoop Memory Window Object

Info Window Information Windows

Other Windows Other Windows

Misc Commands...

Misc Commands Miscellaneous Commands

1.56 Barfly.guide/CC_REGW

Register window

This command defines the position of a REGWindow.

RegFlags=flag[|flags...]

This command defines certain flags in the REGWindows.
* AUTOVIEWREFRESH

* SYMBOLS

* STACKCHECK

* NOBIGVIEW

1.57 Barfly.guide/CC_FPUW

Barfly 44 /144

FPU Window

This command defines the position of a FPUWindow.

OpenFPUWindows=Count

This command tells the Debugger to open a FPUWindow.

1.58 Barfly.guide/CC_DISSW

Disassembler window

This command defines the position,the dimension and linked register
of the DissWindow.

Beispiel: DISSWINDOW=0/0/300/100/PC

DissFlags=flag[|flags...]

This command defines certain flags in the DISSWindow.
* AUTOREFRESH

* SHOWLIB

* GUESSLIB

* SHOWEA

* WORDBRANCHES

* NEGOFFSETS

* NEGDI

+ OPCODEDATA

* BLANKAFTERJMPBRA

OpenDissWindows=Count

This command tells the Debugger to open a number of DissWindows.

Barfly 45/144

1.59 Barfly.guide/CC_MEMW

Memory window

This command defines the position,the dimension and linked register
of the MemWindow.

Example: MEMWINDOW=0/0/300/100/A0

OpenMemWindows=Count

This command tells the Debugger to open a number of MemWindows.

MemoryOffsetStep=Count

This command defines the Offset-Step of the MemWindows.
* 0 no Space

* 1 Space after each Byte.

* 2 Space after each Word.

* 4 Space after each Longword.

1.60 Barfly.guide/CC_COPPW

Copper window

This command defines the position,the dimension and linked register
of the CoppWindow.

Example: COPPWINDOW=0/0/300/100/A0

OpenCoppWindows=Count

This command tells the Debugger to open a number of CoppWindows.

Barfly 46 /144

1.61 Barfly.guide/CC_STRUCTW

StructWindow

This command defines the position,the dimension and linked register
of the StructWindow.

Example: StructWINDOW=0/0/300/100/A0

StructFlags=flag[|flags...]

This command defines certain flags for the StructWindow
* AUTOREFRESH

* ADDRESSFORMAT

* OFFSETFORMAT

* NEWWINDOW

OpenStructWindows=Count

This command tells the Debugger to open a number of StructWindows.

1.62 Barfly.guide/CC_SOURCEW

Source window

This command defines the position,the dimension and linked register
of the SourceWindow.

Example: SOURCEWINDOW=0/0/300/100/A0

OpenSourceWindows=Count

This command tells the Debugger to open a number of SourceWindows.

Barfly 47 / 144

1.63 Barfly.guide/CC_BREAKW

Breakpoint window

This command defines the position of a BreakPointWindow.

OpenBreakWindows=Count

This command tells the Debugger to open a BreakPointWindow.

1.64 Barfly.guide/CC_WATCHW

Watchpoint window

This command defines the position of a WatchpoinzWindow.

OpenWatchWindows=Count

This command tells the Debugger to open a WatchPointWindow.

1.65 Barfly.guide/CC_CHECKW

Checksum window

This command defines the position of a ChecksumWindow.

ChecksumWindows=Count

This command tells the Debugger to open a ChecksumWindow.

1.66 Barfly.guide/CC_SNOOPW

Barfly 48 /144

SnoopMemory window

This command defines the position of a SnoopMemWindow.

OpenSnoopMemWindow=Count

This command tells the Debugger to open a SnoopMemWindow.

SnoopMask=Mask

This command defines the snoop mask. The mask defines the length of
memory blocks that should be recorded. Default is -1 so everything is
recorded.

SnoopMax=Count

This command defines the count of snoop entries. Default is 100.

HistoryEntrys=Count

This command defines the count of history entries. Default is 5.

1.67 Barfly.guide/CC_INFOW

Information Windows

This command defines the position and dimensions of a standard
information window. For example the Library Window belongs to this

group.

Example: GLOBALVIEWWINDOW=0/0/300/100
GLOBALVIEWWINDOW=0/200/300/100

1.68 Barfly.guide/CC_OTHERW

Other Windows

Barfly

CommandWindow=x/y/width/height

This command defines the position of the small CommandWindow.

This

command has no function in local configuration files.

FileShell=<Window Specifikation>

This command defines the shell that is opened with the loaded
program. You should always open the shell on the Debugger’s Public
Screen. The shell parameters are the same you know from the CLI.

1.69 Barfly.guide/CM_MISC

Misc

Task Stack
Task Priority
SetBreak
ClickBreak
Showmem
DefCommand
AutoDocDir
AutoDocAlias
Arexxpath
Arexxinput
Arexxoutput
Arexxcommand
Execute Cmd
LoadInclude
AddStructFile
ClicktoFront
CenterWindow
Screeninfront
OpenScreen
OpenPubScreen
ScreenFont
QuietException
DisableXWindow
TraceBreak
CrashedTask
Catch Hit
Cache File

Pop Path Request
Auto Action
NoBreakErr

Define program’s stacksize
Sets the Debugger Priority
Set a breakpoint
Define DissWindow Action on a Click
Define readable Memory areas
Define custom commands
Set the autodocdir
Define the library/autodoc alias
Define the arexxpath
Define the arexx input handle
Define the arexx output handle
Define an arexxcommand
Define the programs that should be started
Load struct database file
Load a custom struct database file
Activate click to front
Center requester windows ?
Screen to front ?
Define an own screen
Define a Pubscreen
Define an own screenfont
Set certain exceptions quiet
Disable Waitpointer
Define the trace method
Activate catching crashed tasks
Activate catching Enforcer hits
Activate file caching
Disable path requester
Activates the StructWindow action requester
Ignores SetBreak config errors

Barfly

50/144

1.70 Barfly.guide/CM_TASKSTACK

TaskStack=Count

This command defines the stack of the loaded program. Defaullt are
4096 Bytes.

1.71 Barfly.guide/CM_TASKPRI

Priority=Count

This command defines the Debugger’s priority.

1.72 Barfly.guide/CM_SETBREAK

SetBreak=Argument

This command can be used to define a list of breakpoints that are
set before the program is started. This is useful to pass the module
Main.c for example. If no breakpoints are defined or if a parsing
problem occurs the standard breakpoint, first program instruction, is
set.

* SETBREAK=_main ; SAS C Main Program Start

* SETBREAK=_main ; GCC C Main Program Start

* SETBREAK=@main ; DICE C Main Program Start

* SETBREAK=! ; Programstart (Default)

1.73 Barfly.guide/CM_CLICKBREAK

ClickBreak=State

This command can be used to define the action of the DissWindow on a
doubleclick.

State=0
No Action (Default) .

State=1

Barfly

51/144

Set/Clear Breakpoint and pop up a Requester for a Set.

State=2
Set/Clear Breakpoint.

1.74 Barfly.guide/CM_SHOWMEM

ShowMem=Start :End

defines the adress areas that are legal to the Debugger so you can
look at adress areas that are not in the memorylist or in the rom.
Illegal adress areas are shown with * in the windows. You should never
define the custom chip areas as legal because a read access on a
writeonly register can cause a deadly crash.

Example: SHOWMEM=5e80000:$£00000 defines the Zorro 2 area
as free.

By this command you can overrule the internal enforcer legal
memory areas so you should beware of hits.

1.75 Barfly.guide/CM_DEFCOMMAND

DefCommand=Key,Qualifier[|Qualifier...],Function

This commands allows to connect menu functions with key sequences.
Because of the object-oriented concept of the Debugger that allowes
multiple instances of objects it’s not easy to decide what object is
meant. Therefore if the object is active it’s used and if no object of
this type is active the first entry the object-type list is used. As
the key parameter every Rawkey can be used with the exception of TAB
and the functionkeys that are used internal. The key is searched first
in the local and then in the global configuration.

As qualifiers you can use the following keys.

* LSHIFT

* RSHIFT

* CAPSLOCK

* CTRL

* LALT

* RALT

Barfly

52/144

* LCOMMAND
* RCOMMAND
Bespiel: DEFCOMMAND=$15, CTRL, "Step 1 Position"

Defines CTRL-Z as Step 1 Position

1.76 Barfly.guide/CM_AUTODOCDIR

AutoDocDir=<Path>

This command sets the path for the autodocs directory.

1.77 Barfly.guide/CM_AUTODOCALIAS

AutoDocAlias=Library,File

This command sets an alias for Libraries,Devices or Resources to

define the connected Autodocs file. There’s no other way because it’s

not possible to build the autodocs file by knowing the library name.

1.78 Barfly.guide/CM_AREXXPATH

ArexxPath=<rx-path>

This command sets the Arexx-Script Start-Command. In a normal
system the path should be <sys:Rexxc/rx>.

1.79 Barfly.guide/CM_AREXXINPUT

ArexxInput=<File>

This command sets the Arexx-Command Input-File. If you don’t
specify the file, NIL: is used.

Barfly

53/144

1.80 Barfly.guide/CM_AREXXOUTPUT

ArexxOutput=<File>

This command sets the Arexx—-Command Output-File. If you don’t
specify the file, NIL: is used.

1.81 Barfly.guide/CM_AREXXCMD

ArexxCommand=[1...10],<Pfad>

This command sets the 10 entries in the Arexx-Menu. You specify the
number and the path of the Arexx-Script.

ArexxCommand=1, "Rexx:Example.rexx"

1.82 Barfly.guide/CM_EXECMD

ExecuteCommand=<File>

this command can set up a list of programs that should be run before
the debugged program’s task is started. This parameter only works with
programs that are loaded by the Debugger. Furthermore you have to make
sure that the loaded programs have to end otherwise the task can’t be
started. For example you could use these command to set breakpoints
with Arexx-Scripts.

1.83 Barfly.guide/CM_LOADINCLUDE

LoadInclude

tells the Debugger to load the structure information file
Barfly.Include.

1.84 Barfly.guide/CM_ADDSTRUCT

Barfly 54 /144

AddStructFile=Filename

tells the Debugger to load a custom structure information file and
adds it into the CUSTOM/ subtree.

1.85 Barfly.guide/CM_CLICK2FRONT

ClicktoFront

activates the Debugger’s own ClicktoFront handler. This function
should only be used if you don’t use an own Commodity for this task.

1.86 Barfly.guide/CM_CENTERW

CenterWindow

activates the centering mode for every stringrequester windows.

1.87 Barfly.guide/CM_SCREENFRONT

ScreenInFront

activates the ScreenToFront mode that pops the screen to front after
every trace operation.

1.88 Barfly.guide/CM_OPENSCREEN

OpenScreen[=width, height, depth, mode]

tells the Debugger to open an own screen. If you don’t enter
dimension parameters the wb screen is cloned. You can use the
screenmodes in the mode string that you can see in the Prefs/ScreenMode
requester. This command has no function in local configuration files.

OPENSCREEN=1448, 560, 2,PAL:HighRes Interlace

Barfly

55/144

1.89 Barfly.guide/CM_OPENPSCREEN

OpenPubScreen=Name

tells the Debugger to open on the Pubscreen with the specified name.

This command has no function in local configuration files.

1.90 Barfly.guide/CM_SCREENFONT

ScreenFont=fontname/Height

defines a font for a Debugger screen.

in local configuration files.

1.91 Barfly.guide/CM_QUIETEX

QuietException=Exception Nummer

This command has no function

masks off certain exceptions for the exception requester so that
only a DisplayBeep is caused instead of a textrequest. With the value
-1 you can mask off every exception and for example with the value 4

you mask off the Illegal exception.

1.92 Barfly.guide/CM_DISXP

DisableXPointer

disactivate the Wait-Pointer.

1.93 Barfly.guide/CM_TRACEBREAK

TraceBreak

tells the Debugger to use breakpoints in the Subroutine Traces
instead of single steps. The advantage is a speed up and the
disadvantage is that you can cause crashes while you step through

resident/reentry code.

Barfly 56 / 144

1.94 Barfly.guide/CM_CRASHEDTASK

CrashedTask

activates the CatchCrashedTask mode.

1.95 Barfly.guide/CM_CATCHHIT

CatchEnforcerHit

activates the CatchEnforcerHit mode.

1.96 Barfly.guide/CM_CACHEFILE

DoNotCacheFullFile

tells the Debugger not to cache program files while reading the
Symbol/Debug informationen to save memory. Obviously the parsing speed
will decrease.

1.97 Barfly.guide/CM_POPPATH

DoNotPopPathRequest

tells the Debugger to ignore errors from opening source files and
not to open a path requester.

1.98 Barfly.guide/CM_AUTOACT

NoAutoStructAction

tells the Debugger to open a type-requester by an action in the
StructurWindow.

Barfly 577144

1.99 Barfly.guide/CM_NOBREAKTERRORS

NoBreakpointErrors

tells the Debugger to ignore SETBREAK= errors that cause the
Debugger to always set an error on the program start.

1.100 Barfly.guide/UB_AREXX

Usage of BDebug

*hkhkhkkhkhkhkkkkkkk*k

SIMPLEREQUEST "

* result: "OK’

TWOGADREQUEST "

* result: "OK’,’FALSE’

TRIGADREQUEST "

* result: ’"OK’,’FALSE’,’RESUME’

NEXT_ROOTWINDOW

* result: "OK’,’FALSE’

NEXT_SUBWINDOW

* result: "OK’,’FALSE’

Barfly 58 /144

FIRST_DISSWINDOW

* result: "OK’,’FALSE’

FIRST_MEMWINDOW

* result: "OK’,’FALSE’

FIRST_COPPWINDOW

* result: "OK’,’FALSE’

FIRST_FPUWINDOW

* result: "OK’,’FALSE’

FIRST_BREAKPOINTWINDOW

* result: "OK’,'FALSE’

FIRST_STRUCTWINDOW

* result: "OK’,’FALSE’

FIRST_SOURCEWINDOW

* result: "OK’,’FALSE’

FIRST_SNOOPWINDOW

* result: "OK’,’FALSE’

Barfly

59/144

FIRST_WATCHWINDOW

* result: "OK’,’FALSE’

ACTIVATE_ROOTWINDOW

* result: "OK’,’FALSE’

ACTIVATE_SUBWINDOW

* result: "OK’,’FALSE’

OPEN_DISSWINDOW ’(@REG’ |

* result: -

OPEN_MEMWINDOW ’Q@REG’ | "Argument’

* result: -

OPEN_COPPWINDOW ’@REG’ |

* result: -

OPEN_SOURCEWINDOW ’@REG’

* result: -

OPEN_STRUCTWINDOW ’@REG’

* result: -

OPEN_BREAKPOINTWINDOW

"Argument’

"Argument’

"Argument’

" Argument’

Barfly

60/144

* result: -

OPEN_FPUWINDOW

* result: -

OPEN__SNOOPMEMORYWINDOW

* result: -

DOMENU ’Menu-String’

* result: -

SET_BREAKPOINT ’'Argument’

* result: "OK’,’FALSE’

CLEAR_ICACHE ’'Address,Length’

* result: ’OK’

CLEAR_ICACHE ’Address,Length’

* result: "OK’

GOTO_ADDRESS ’Address’

* result: "OK’,’FALSE’

CLEAR_ADDRESS

Barfly

61/144

* RC: -
* result: "OK’,’FALSE’

LINK_REGISTER ’Register’

* result: "OK’,’FALSE’

SET_REGISTER ’'Register,Value’

* result: "OK’,’FALSE’

Read_Byte ’"Address’

RC : 0=0k Result: Result-String

Read_Word ’Address’

RC : 0=0k Result: Result-String

Read_Long ’Address’

RC : 0=0k Result: Result-String

Write_Byte ’'Address,Value’

RC : 0=0k

Write_Word ’'Address,Value’

RC : 0=0k

Write_Long ’'Address,Value’

RC : 0=0k

RC : 0=0k Result: Filepath-String

ASIL_FileRequester_Load

Barfly

62/144

RC : 0=0k Result: Filepath-String

IS_ADDRESS_LEGAL ’Address’

* result: "OK’,’FALSE’

LOAD_BINARY ’Name,Destination,Length’

1.101 Barfly.guide/UB_HOWTOUSE

Usage of BDebug

*hkhkhkhkkhkhkkkkkkk*k

How to use BDebug ?

First you should be sure that all necessary configurations file have
been installed because without Barfly.FD file you don’t see any
function names in the disassembler window; and without Barfly.Include
the StructWindow is unusable. Are these preconditions fullfilled you
should analyse the problem and anticipate how the Debugger can be used.
Because the debugging of programs depends heavily on the situation i
can only list some general points. The reality probably looks
different... as always:—)

Point of departure:
* Program from the CLI
* 1 Task

The program can be started by bdebug Program [Argument] or
can be loaded the command window Debug File. By this method
all symbol and debug files are loaded. TIf the Debugger can’t
find one source file you can add additional paths if you
haven’t disabled this function. The standard breakpoint is
the first command in the program. Sometimes this
uncomfortable and so you can set a different start breakpoint
for example to jump over the CStartup code or to set it on an
important program position.

* Creates further Tasks

In this case you should be sure how you wanna catch the next

Barfly

63/144

*

Task. You could catch the Task by Next Task or compile the
program with an illegal in the task and catch it with Crashed
Task. After you caught the task you probably would like to
use see symbole and debug source. These Informationen can be
loaded afterwards by using Load Symbols.

Program from the WB

In this case you should use Next Task and then catch the task WBL.
Afterwards you have to activate Next Task again and run WBL. You
could also use the illegal strategic. After the right task was
caught you can load the symbols again.

Is it a Handler, Filesystem or something simular.

In this case you should use the illegal strategic and catch the
task by Crashed Task. An alternative method would be to catch the
waiting task with Debug Task and wait as long as the task gets
woken up by a signal.

After you’ve solved the first stage how you can controll the problem

task

you should think about how the problem looks like and where it

could be located.

Problem Type:

*

Enforcer

If an Enforcer Hit is caused Enforcer outputs the hit’s program
address and mostly also the hunk offset. You can now directly
Jump to the address by entering the address in the DissWindow by
Change Address or you open a HunkWindow, doubleclick on the hunk
where the hit is located and then enter the offset Enforcer showed.
The Debugger itself can also automaticly stop a debugged program
if a hit happens.

Mungwall

These hits aren’t that easy to find as Enforcer hits because
Mungwall hits aren’t showed when the problem happened but only
after a FreeMem. 1In this case you should remember the memoryblock
where it happened and determine where the responsible AllocMem is
located in the program, so you get an overview between what area
the problem is caused. Now you should open a MemWindow that
points to this certain memory area and step through the program
and look if something changes the mungwall borders in the
MemWindow. Mungwall borders are before and after the allocated
memory area. If you’re more experienced you could also use the
WatchpointWindow and set a watchpoint on the certain memory block.

Crash

If it’s just an ordinary crash the error should be pretty easy to
find single stepping through the responsible code area. If it’s a
random crash you should be using Crashed Task and hope that the
task can be caught. After the task got caught you should check
the instructions that cause the crash. If the PC points to data

Barfly

64 /144

fields that don’t look like real code the PC is probably set wrong
by a stack cleanup error. In this case you should check the nexts
addresses on the stack if these point to legal program code.

Sideeffects and mysterious
These bugs are the worst to find and there’s no general strategic

how to find them. In these cases only intuition and patience can
help.

Problems that can happen

*

*

Why does the Debugger react so slow on keyboard commands that
controll the tracing ?

This happens if you debug a task with a higher priority as the
Debugger’s priority. For example. DOS-Handler. Workaround is to
higher the priority of the Debugger.

Why does the Debugger blockate by opening the filerequester.

This happens when you debug a handler, because the filerequester
normally tests every handler with a IsFilesystem(). When you debug
a handler it can’t reply the IsFilesystem packet and therefore the
filerequester is busy.

If you debug the following program on a 68040 with 68040.library
or 68060.library the instruction rts is run if you cause a
Single-Step on the instruction fetox. Because this command isn’t
implemented in the 68040 and 68060 it has to be emulated. It seems
to forget the tracebit.

mc68040

fmove.x #1.3, fp0
fmove.x #255, fpl
fetox.x fpO0, fpl
rts

If a program doesn’t return from a DOS funktion you could
accidently entered a char in shell window.

1.102 Barfly.guide/BAsmTop

BAsm 1.0
A cli/arexx controlled Assembler
Copyright (c) 1989-94 Ralph Schmidt

- Shareware -

Barfly

Using BAsm...

The Assembler
Syntax

Datatypes
Operations
Instructions
Macros

Highlevel Macros
Defined Symbols

Some comments about the Assembler
Syntax Description
Datatype formats
Datatype Operations
Assembler Instructions
Assembler Basic Macros
Assembler Highlevel Macros
Predefined Symbols

Optimizing Optimize Methods

Includes Precompiled Includes and database

CLI Assembler CLI Convention

ARexx ARexx Interface

Compatibility Compatibility to other Assemblers
Addendum. . .

Literature Amiga Literature

Software Amiga Software

Addressmodes Address Modes

Opcodes 68xxx Opcodes

1.103 Barfly.guide/UA_ASSEMBLER

The Assembler
R I b b I b I I

The assembler understands the commands and addressmodes from the
68000 through the 68060 and both the Floating-Point Units, 68881 and
68882. It supports only the 68851 MMU commands, which are also
supported by the 68030. The assembler achieves it’s speed by
translating the source in a single pass, followed by a backpatch phase
which corrects all unresolved references.

1.104 Barfly.guide/UA_SYNTAX

A comment can start in several different ways. In a pure comment it
starts either with a ; or x. A comment can only be started after an
assembler command or symbol with a ; if an assembler command or symbol
exists within that line.

;A comment
*A comment

Barfly 66 /144

move.l a0,a0 ;A comment

Opcode/Instructions arrangement

[label[:]] [opcode] [operand[, operand[, operand...]]111]
* Opcodes

An Opcode can be a Motorola Mnemonic, an assembler command, or a
Macro call.

* Operations
In a Motorola mnemonic operands are based on legal addressmoes; in
assembler privat instructions the parameters depend on the

instruction.

Symbol structure

A symbol can represent the following types:
* Value

* Program Counter

* Register

* Register List

* Macro

Symbols can only be defined once. The exceptions are local labels
and symbols defined by Set.

Structure rules for Symbols.

* The first letter of a symbol can be one of the following: a...z,
A...Z,_, @, . and \.

* From the second letter on, the symbol can contain the following
letters: a...z,A...%2,0...9, _,@ and

* If a symbol consists of only numbers and ends with $, then it is a
numerical local label.

* A symbol is ended by an illegal letter.
* If a symbol begins with a . or \, then it is a local label.
* A macro symbol should not contain a

* To avoid a conflict, a symbol should not end with .b,.w or .1.

ThisIsALabel ;That is a normal label

Barfly 67 /144

ThisIsALabell.loop: ;That is a normal label
This@_TIs_Q@A_@Label

15$: ;That is a numerical local label
.ThisIsALabel ;That is a local label
.ThisIsALaell: ;That is a local label
\ThisIsALabel.loop: ;That is a local label

ThisIsASymbol=10
ThisIsASymbol = 10
ThisIsASymbol equ 10

The relative label

This symbol represents an offset to the start of a program.

label
label:
label nop
label: nop

The local Label

A local label is only valid between two normal relative labels, thus
you cannot reference local labels outside of that scope. Otherwise it
works simular as a normal label. There are 2 different prefixes that
introduce a local label: . and \ that define 2 different local labels.
A special case is the Backward Reference Label that is introduced with

It doesn’t depend on a certain define area between normal labels
thus you can only access the symbol if it were defined earlier.

label_O0:
.local:

bra.s .local
label_1:
.local:

bra.s \local
\local:

nop
label_end:

dbra do, ..

dbra di, ..
..Hello:
dbra dl,..Hello

The local numerical label

Addionally to the non-numerical local label there are also the
numerical labels which are based of 4 digits with the postfix $. BASM
handles the number as a hash key with the consequence that there’s no
difference between 001$ and 15$.

Barfly 68 /144

label_0:
123%: nop
label_1:
123$: nop

The absolute Symbol

The absolute symbol is defined by a direct value initializing that
is initiated by =, equ or set. If you define a symbol by set you can
change it as often as needed.

valuel=2
value2 equ valuelx2
value3 set value?2

The Register Symbol

The register symbol is defined by equr or fequr that is used for FPU
registers.

Ptr equr al
PI fequr fp2

move.l (Ptr),do ;move.l (al),doO
fmove.x PI, fp0 ; fmove.x fp2, fp0

The Register List Symbol

The register list symbol is defined by reg and represents the
register mask for Movem and fmovem. You must not mix FPU and Integer
registers with each other in a register list.

mask reg d0/d2/d4-d7/a0-a4/a6-a7
maskl reg dO-a6

mask2 reg d0-6

fmask reg fpO-fp2/fpd-£fp5

The Macro Symbol

By using the command macro or cmacro after the symbol, the symbol is
defined as a macro. The macro block is terminated by the command endm.
The Macro cmacro is case-insensitive and therefore useful to emulate
commands that are missing from the core.

Barfly

69/144

Symbol[:] macro

Symbol[:] endm

1.105 Barfly.guide/UA_DATATYPES

Datatypes

The assembler understands 3 distinct datatypes.

* 32Bit Integer

* 96Bit Extended Floating Point

* 96Bit Packed Binary Floating Point

At the moment only integer datatypes are supported in arithmetic
arguments so you can only use the FPU datatypes as constants.

o o +

| Format | Representation |

Fom o +

Fo——————— t———————————— +

| Decimal | 1024 |

Fom o +

| Hexadecimal | $400

o o ———————— +

| Binary | $10000000000

fo——————— f—————— +

| Ascii | "OK", ’'OK’ or ‘OK' |

Fo— o +

Furthermore you can use symbols or the character ‘x’ that represents

the program counter in arguments. There are limitation in the use of
symbols in arguments. For example you can only add or subtract

constants from an external label, Floatingpoint Values can only be used

as simple constants

Joe e .

By the postfix ‘k’ after decimal value the

value is multply by $1000.

| Packed
+ _____________

Datatype Conversion

+ -+ — 4+ + — +

Floating Point Format

_____________________________________ +
Representation |
_____________________________________ +
7777777777777777777777777777777777777 +
"[+,-13. 145637848298628[e[+,-1123] |
_____________________________________ +
"7 [+,-13. 145637848298628[e[+,-1123]|
_____________________________________ +

Barfly 70/ 144

All commands are performed with these 3 datatypes and then converted
into the required datatype. For example a 32Bit integer can be
converted into 16Bit and 8 Bit; an extended floating point into a
double or single floating point. Floating point datatypes are rounded
by a convertation. If a rouding error occurs the parser returns with
an error.

Datatype Format

Internal Datatype Structure

+————— - +
| Bit 31 | 30..0 \
Fo———— Fo————— +
Fo———— Fom———— +
| S | Integer

+———— +———— +

e et Fom +
| Bit 31 | Bits 30..23 | Bits 22..0 |
Fo———— o o +
o o o +
| Sign | Biased Exponent | Fraction |
fomm————— e fom +
* Double Floating Point
fomm fom fom +
| Bit 63 | Bits 62..52 | Bits 51..0 |
fo——————— et Fom +
e fom R +
| Sign | Biased Exponent | Fraction |
fomm fom fom +
* Extended Floating Point
e o o +
| Bit 95 | Bits 94..80 | Bits 62..0 |
fomm fom fom +
fo—m————— Fom fom +
| Sign | Biased Exponent | Mantisse \
e fom o +
* Packed Binary Floating Point
fo————— o e fo————— o Fo————— e fo————— +
| MEYY | EXP2 | EXP1 | EXPO | EXP3 | 0000 | 0000 | MOle |
R +————— e +————— +————— F————— R +————— +
| MO15 | M0O14 | MO013 | MOl12 | MO11 | MO10 | MOO9 | MOO8 |
o= o= fom o= e fom e e +

Barfly

| MO07 | MOO6 | MOO5 | M004 | MOO3 | MO02 | MOO1 | MOOO |

+——— +-——— - +——— +-—— - +——— +-——— +
* M is the sign (+ or -) of the fraction
* E i1s the sign (+ or -) of the exponent

* Y are the internal flags for infinity and NAN

* E002-000 are the numbers of the exponent from 2 to 0, EXP3 is used
internally.

*+ M016-000 are the numbers of the fraction from 16 to 0. Each number
lies in the range from 0 to 9..

1.106 Barfly.guide/lUA_OPERATIONS

Operations
Operators

fo————— o ————_—_—————— +
| Operator | Function |
fom————— f——_——_——————— +
f——————— 4 +
| AE 4 | 32Bit signed Addition |
fo————— o +
| =t | 32Bit signed Subtraction |
Fom————— f—————_—_—_——————— +
| Yx! | 32Bit signed Multiplication |
o o +
| VA4 | 32Bit signed Division |
F—— o ————_——————— +
| T | 32Bit Or

fm————— f—————— +
| AR | 32Bit Or [
f—————— o +
| ‘&’ | 32Bit And

Fm————— ——_————————— +
| A | 32Bit Eor |
f—————— $— +
| T | logic 32Bit Shift to the left |
fo————— o +
| Y>> | logic 32Bit Shift to the right|
Fom————— o —————— +
| A | 32Bit Not |
o o +

Basm cares for the operator priorities but be careful while
porting Seka Sources because Seka doesn’t care for the priorities.

Functions

Barfly 72/144

The following functions are supported.

* _bitnum(Argument) calculates the bit number of the argument. If
this is impossible an error occurs.

* _bitfield(Argument) calculates the bit mask of the argument. If
this is impossible an error occurs.

*

_extb (Argument) equal to the 680xx command extb

* _extw (Argument) equal to the 680xx command extw

* _min (Argument [, Argument, ...]) calculate the minimum of the
argument.

* _max (Argument [, Argument, ...]) calculate the maximum of the
argument.

1.107 Barfly.guide/UA_INST

Assembler Commands

Instruction Groups...

Hunk/Link Instructions
Symbol Instructions
Data Instructions
Listing Instructions
Structure Instructions
File I/0 Instructions
Misc Instructions

68xxx Meta Instructions

1.108 Barfly.guide/Al_HUNK

Hunk/Link Commands

Section
Code
Data
BSS
CSEG
DSEG

Barfly

73/144

IDNT
Identify
BDebugArg
Smalldata
XRef

XDef
Global
Public
Output
Objfile
Exeob]
Linkobj
Org
Addsym
Debug

1.109 Barfly.guide/HU_SECTION

defines a new logical unit so that the DOS-Loader has the
opportuntity to place smaller hunks into free memory blocks. Another
use for this command is to set different memory types for the hunk to
load gfx data into the chipmem. If you don’t specify the section type
it assumes "",Code,Public.

* Name = Hunkname
* Hunk type

CODE
starts a code segment.

DATA
starts a data segment.

BSS
starts an undefined data segment.

DEBUG
starts a custom debug segment.

CUSTOM
starts a Custom—-Hunk area.

* Reloc—Mode defines the width of the hunk relocation. Default 32Bit

RELOC16
sets the reloc width to 1l6bit. (V37)

RELOC32
sets the reloc width to 32bit. (Default)

Barfly

74/ 144

* Memtype defines the memory attributes of the hunk. If you add a

_p, _c, or _f upon the type parameter, you cannot use more
memtypes.The memtype DEBUG does not allow memory attribute
suffixes.
PUBLIC

loads the hunk into the memory with the highest priority.
Code Suffix _p.

CHIP
loads the hunk into chip memory. Code Suffix _c.

FAST
loads the hunk into fast memory. Code Suffix _f.

ADVISORY
ignores the hunk if the OS doesn’t understand the type. A
kind of Debug-Hunk that can be used by the 0S. (V39)

ATTR="
loads the hunk into the memory with specified memory
attributs. (V37)

1.110 Barfly.guide/HU_CODE

[Label] code [Name[, Memtyp]]

defines a new code hunk and is equivalent to the command section
?,code, ?.

* Name = Hunkname
* Memtype defines the memory attributes for the hunk.

PUBLIC
loads the hunk into the memory with the highest priority.
Code Suffix _p.

CHIP
loads the hunk into chip memory. Code Suffix _c.

FAST
loads the hunk into fast memory. Code Suffix _f.

ADVISORY
ignores the hunk if the OS doesn’t understand the type. A
kind of Debug-Hunk that can be used by the 0S. (V39)

ATTR="?
loads the hunk into the memory with specified memory
attributs. (V37)

Barfly 75/144

1.111 Barfly.guide/HU_DATA

[Label] data [Name[, Memtyp]]

defines a new data hunk and is equivalent to the command section
?,data, ?.

* Name = Hunkname
* Memtype defines the memory attributes for the hunk.
PUBLIC
loads the hunk into the memory with the highest priority.

Code Suffix _p.

CHIP
loads the hunk into chip memory. Code Suffix _c.

FAST
loads the hunk into fast memory. Code Suffix _f.

ADVISORY
ignores the hunk if the OS doesn’t understand the type. A
kind of Debug-Hunk that can be used by the 0S. (V39)

ATTR="?

loads the hunk into the memory with specified memory
attributs. (V37)

1.112 Barfly.guide/HU_BSS

[Label] Dbss [Name[, Memtyp]]

defines a new BSS hunk and is equivalent to the command section
?,bss, ?.

* Name = Hunkname
* Memtype defines the memory attributes for the hunk.
PUBLIC
loads the hunk into the memory with the highest priority.

Code Suffix _p.

CHIP
loads the hunk into chip memory. Code Suffix _c.

FAST
loads the hunk into fast memory. Code Suffix _f.

ADVISORY

Barfly

76 /144

ignores the hunk if the OS doesn’t understand the type.

kind of Debug-Hunk that can be used by the 0S. (V39)
ATTR="?

loads the hunk into the memory with specified memory
attributs. (V37)

1.113 Barfly.guide/HU_CSEG

[Label] cseg [Name[, Memtyp]]

has the same function as the command code.

1.114 Barfly.guide/HU_DSEG

[Label] dseg [Name[, Memtyp]]

has the same function as the command data.

1.115 Barfly.guide/HU_IDNT

idnt Name

defines the name of the HUNK_UNIT hunk in the object file.

* Name = Hunkname

1.116 Barfly.guide/HU_IDENTIFY

identify Name

defines the name of the actual hunk.

* Name = Hunkname

Barfly 777144

1.117 Barfly.guide/HU_BDEBUGARG

BDebugArg Argument

defines a parameter in env:BDebugProgram. It doesn’t active this
function you have to activate by option "-J" in BOPT.

* Argument = Argument Text

1.118 Barfly.guide/HU_SMALLDATA

smalldata [Register]

activates the smalldata mode for the hunk. Optionally, you can also
define the smalldata register. Default register is A4. The program
itself must initialize the smalldata register with the address of the
smalldata data hunk.

bopt w2- ;68020 Addressmode warnings off
mc68020 ;68020 mode activated

smalldata a3 ;Default is A4!!!
xref _LinkerDB ;Special linker symbol

lea.l _LinkerDB, a3 ;Address of the smalldata data segments
move.l #0, (d_test.l,a3’)

move.l #"TEST",d_test (a3)

moveq #0,d0

tst.b array(a3,d0.w)

rts
section "__ MERGED",BSS ;The smalldata data segments are defined
;the following way
d_test:
ds.l 1
array:
ds.b 20

1.119 Barfly.guide/HU_XREF

xref Symbol[, Symbol...]

imports a symbol so that you can access symbols that were exported
by XDef. The linker resolves these reference during the link process
and creates a program file. If the assembler finds a XRef in the source

Barfly 78/144

it creates an object file. This decision can be overruled.

* Symbol = Name of the importet symbol.

1.120 Barfly.guide/HU_XDEF

xdef Symbol[, Symbol...]

exports a symbol as global so that other object files can import the
symbol by XRef. There’s no need to define a symbol before you mark them
with XDef. If the assembler finds a XRef in the source it creates an
object file. This decision can be overruled.

* Symbol = Name of the global symbol

1.121 Barfly.guide/HU_GLOBAL

global Symbol[, Symbol...]

has the same function like XDef.

1.122 Barfly.guide/HU_PUBLIC

public Symbol[, Symbol...]

has the same function like XDef.

1.123 Barfly.guide/HU_OUTPUT

sets an output filename. If you don’t specify a filename the
assembler uses the source filename and adds the appropriate filetype
suffix.

* Name = Filename

Barfly 79 /144

1.124 Barfly.guide/HU_OBJFILE

has the same function like Output.

1.125 Barfly.guide/HU_EXEOBJ

writes a program file if you wanna overrule the assembler.

1.126 Barfly.guide/HU_LINKOBJ

linkobj

writes an object file if you wanna overrule the assembler.

1.127 Barfly.guide/HU_ORG

org Address

activates the absolute mode. All command that refer to hunk related
functions aren’t allowed. For example:. section, xdef, xref. The
parameter address sets the base address of the created code.

* Address = Absolute Address

1.128 Barfly.guide/HU_ADDSYM

writes a symbol hunk.

Barfly

80/144

1.129 Barfly.guide/HU_DEBUG

writes a SAS D1 debug hunk to see source level informations while
debugging the program through bdebug.

1.130 Barfly.guide/Al_SYMBOL

Symbol Commands

CArgs
RS

SO

FO
RSReset
RSSet
Clrso
Clrfo
Setso
Setrs
Setfo
RSVal
SOvVal
FOVal

1.131 Barfly.guide/SY_CARGS

CArgs [#0ffset,]Symbol[, Symbol.w[, Symbol.1]

defines the symbol offsets for a stack function. The first Symbol
starts with the offset 4 but if you like to use a different Offset it’s
possible to specify one. Then the offset is increased according to the
size of the symbol. If the symbol has no size specifier the default size
is word. Sorry..i would use a longword here but to be compatible with
Devpac i1i’'m forced to use word.

cargs Testl.w,Test2.1

move.w Testl(a7),d0 ;Testl=4
move.l Test2(a7),d0 ;Test2=4+2=06

1.132 Barfly.guide/SY_RS

Barfly 81/144

Symbol rs[.width] Count

initializes the Symbol with the value of the counter __ RS and
increases the __ RS counter afterwards by CountxWidth. You can use this
command as a replacement for the include exec/types.i macros to
increase the parsing speed.

* Width

B
1 Byte Valuearea: -$80 <= x < $100

W
2 Bytes Valuearea: -$8000 <= x < $10000
L
4 Bytes Valuearea: -$80000000 <= x < $10000000
S
4 Bytes (Single IEEE-Float)
D
8 Bytes (Double IEEE-Float)
X
12 Bytes (Extended IEEE-Float)
P
12 Bytes (Packed BCD-Float)
Q

16 Bytes (Quadword)

1.133 Barfly.guide/SY_SO

Symbol so[.width] Count

This command has the same function like rs with the exception that
the Symbol ___SO is used instead of the __RS symbol. Internally both
symbols are handled equal. Devpac has introduced the symbol __RS and
Macro68k knows the functionality by the name __SO.

1.134 Barfly.guide/SY_FO

Barfly 82/144

decreases the counter _ FO by CountxWidth and initializes the Symbol
with the new value. Useful to create the negative local stackframe
symbols needed by link.

* Width

B
1 Byte Valuearea: -$80 <= x < $100

W
2 Bytes Valuearea: -$8000 <= x < $10000
L
4 Bytes Valuearea: -$80000000 <= x < $10000000
S
4 Bytes (Single IEEE-Float)
D
8 Bytes (Double IEEE-Float)
X
12 Bytes (Extended IEEE-Float)
P
12 Bytes (Packed BCD-Float)
Q

16 Bytes (Quadword)

1.135 Barfly.guide/SY_RSRESET

rsreset

initializes the counter _ RS to 0.

1.136 Barfly.guide/SY_RSSET

rsset Value

initializes the counter _ RS with the Value

* Value = New Index

1.137 Barfly.guide/SY_CLRSO

Barfly 83 /144

has the same function like rsreset

1.138 Barfly.guide/SY_CLRFO

has the same function like foreset.

1.139 Barfly.guide/SY_SETSO

setso Value

has the same function like rsset

1.140 Barfly.guide/SY_SETRS

setrs Value

has the same function like rsset

1.141 Barfly.guide/SY_SETFO

setfo Value

initializes the counter _ FO with the Value

* Value = New Index

1.142 Barfly.guide/SY_RSVAL

Barfly 84 /144

Symbol rsval

initializes the Symbol with the value of the __RS counter.

1.143 Barfly.guide/SY_SOVAL

Symbol soval

has the same function like rsval.

1.144 Barfly.guide/SY_FOVAL

Symbol foval

initializes the Symbol with the value of the _ _FO counter.

1.145 Barfly.guide/Al_DATA

Data Commands

Align
CNop
Pad
Quad
Even
odd
DC
DB
DW
DL
UB
UW
UL
SB
SW
SL
PB
PW
PL
NB
NW

Barfly

85/144

NL

DS

DSB

DCB

Blk
Ascii
CString
DString
PString
IString
Bitstream
SPrintx

1.146 Barfly.guide/DA_ALIGN

align Value

aligns the program counter to an address that can be devided by the
value. Useful because certain DOS structures have to be aligned on 4
Byte boundaries. For example FileInfoBlock. Furthermore it’s also
useful to align subroutines on longword boundaries that they fit better
into the cache structure.

* Value = Align Mask

1.147 Barfly.guide/DA_CNOP

cnop Offset,Align

aligns the program counter to an address that can be devided by the
Align value and adds the value onto the address. Internally only Align
values < 16 are supported.

1.148 Barfly.guide/DA_PAD

pad.Width Align[,Value]

aligns the program counter to an address that can be devided by the
AlignxWidth and fills the aligned area by the optional mask value.

Barfly 86 / 144

1.149 Barfly.guide/DA_QUAD

quad

aligns the program counter to a 16 Byte address.

1.150 Barfly.guide/DA_EVEN

even

aligns the program counter to an even address. This function is
useful if you define an odd sized data area and you need a word aligned
for OS data structures or assembler instructions.

1.151 Barfly.guide/DA_ODD

odd

aligns the program counter to an odd address.

1.152 Barfly.guide/DA_DC

dec[.width] Value[,Value...]

inserts data of the Width into the code.
* Width

B
1 Byte Valuearea: —-$80 <= x < $100

W
2 Bytes Valuearea: -$8000 <= x < $10000
L
4 Bytes Valuearea: -$80000000 <= x < $10000000
S
4 Bytes (Single IEEE-Float)
D

8 Bytes (Double IEEE-Float)

Barfly 87/144

12 Bytes (Extended IEEE-Float)

12 Bytes (Packed BCD-Float)

1.153 Barfly.guide/DA_DB

db Value[,Value, ...]

inserts a byte with a value in the valuearea -$80 <= x < $100.

1.154 Barfly.guide/DA_DW

dw Valuel[,Value, ...]

inserts a word with a value in the valuearea -$8000 <= x < $10000.

1.155 Barfly.guide/DA_DL

inserts a longword with a value in the valuearea -$80000000 <= x <
$100000000.

1.156 Barfly.guide/DA_UB

ub Valuel[,Value, ...]

inserts a byte with a value in the valuearea -$80 <= x < $80.

1.157 Barfly.guide/DA_UW

Barfly 88 / 144

uw Valuel[,Value, ...]

inserts a word with a value in the valuearea -$8000 <= x < $8000.

1.158 Barfly.guide/DA_UL

ul Valuel[,Value, ...]

inserts a longword with a value in the valuearea -$80000000 <= x <
$80000000.

1.159 Barfly.guide/DA_SB

sb Value[,Value, ...]

inserts a byte with a value in the valuearea -$80 <= x < $100.

1.160 Barfly.guide/DA_SW

sw Value|[,Value, ...]

inserts a word with a value in the valuearea -$8000 <= x < $10000.

1.161 Barfly.guide/DA_SL

inserts a longword with a value in the valuearea -$80000000 <= x <
$100000000.

1.162 Barfly.guide/DA_PB

Barfly 89 / 144

pb Valuel[,Value, ...]

inserts a byte with a value in the valuearea 0 <= x < $80.

1.163 Barfly.guide/DA_PW

pw Valuel[,Value, ...]

inserts a word with a value in the valuearea 0 <= x < $8000.

1.164 Barfly.guide/DA_PL

pl Valuel[,Value,...]

inserts a longword with a value in the valuearea 0 <= x < $80000000.

1.165 Barfly.guide/DA_NB

inserts a byte with a value in the valuearea -$80 <= x < 0.

1.166 Barfly.guide/DA_NW

nw Valuel[,Value, ...]

inserts a word with a value in the valuearea -$8000 <= x < 0.

1.167 Barfly.guide/DA_NL

nl Valuel[,Value,...]

inserts a longword with a value in the valuearea -$80000000 <= x < 0.

Barfly

90/144

1.168 Barfly.guide/DA_DS

ds[.width] Count[,Value]

defines a memory area with the length Count » Width and fills the

area with an optional Value. Default fill wvalue is 0.
a cnop 0,Width is run.

* Width

B
1 Byte Valuearea: —-$80 <= x < $100

W
2 Bytes Valuearea: -$8000 <= x < $10000
L
4 Bytes Valuearea: -$80000000 <= x < $10000000
S
4 Bytes (Single IEEE-Float)
D
8 Bytes (Double IEEE-Float)
X
12 Bytes (Extended IEEE-Float)
P
12 Bytes (Packed BCD-Float)
* Count = Length of the memory area.

* Value = optional Fill Value.

1.169 Barfly.guide/DA_DSB

dsb[.width] Count|[,Value]

has the same function like ds

1.170 Barfly.guide/DA_DCB

dsb[.width] Count|[,Value]

has the same function like ds

Is the Count O

Barfly

91/ 144

1.171 Barfly.guide/DA_BLK

blk[.width] Count[,Value...]

has the same function like ds

1.172 Barfly.guide/DA_ASCII

ascii Stringl[,String2,...]

inserts Strings.

1.173 Barfly.guide/DA_CSTRING

cstring Stringl[,String2,...]

inserts C-Strings.

1.174 Barfly.guide/DA_DSTRING

dstring dtypel, dtype2, dtype3

inserts the current date string.
Datentypen

* "w" WeekDay

* "d" Date

* "t" Time

dc.b " ("
dstring w,d,t
dc'b ") "w

dc.b $a,8$d,0
;=> (Thursday 14-0kt-93 15:32:060)

Barfly 92/144

1.175 Barfly.guide/DA_PSTRING

pstring String[,String,...]

inserts a BCPL string.

1.176 Barfly.guide/DA_ISTRING

istring String[, String,...]

inserts strings that terminate with a char that has Bit 7 set.

1.177 Barfly.guide/DA_BITSTREAM

bitstream Mask

inserts a bitmask for an image object for example. The bits are
aligned to bytes.

* Mask = Mask is a string that is based only of 0 and 1.

bitstream "01001000001"

1.178 Barfly.guide/DA_SPRINTX

sprintx "Formatstring"[,Valuel,...]]

inserts the resulting string into the code. The string isn’t
terminated by a 0 so that you can add other strings rather easy.

* FormatString - is a string in C-Notation so you can
use the known C char types n,t,...
The following options are allowed.
* FormatSyntax - %$[flags] [width][.limit] [length]type

* flags — -’ disactivates left side layout.

* width - Field Length. If the first char is 0’ the field 1is
filled by ’0’ on the left side.

Barfly 93/144

* limit - defines the maximal count of char that can be inserted
from a string. Only legal for %$s and %b.

+ length - The size of the datatype. Default is 16-bit for the
typs %d,%u and %$x. %1 is long (32Bit). Attention! The
Assembler always pushes a longword on the stack so always use
%1 if you don’t know what you’re doing.

*+ type — The following types are supported.

b - BSTR, a 32-bit BPTR Pointer on a bytelength string.
A NULL BPTR is handled like an empty string. d - signed
decimal u - unsigned decimal x - hexadezimal in lower case.
X - hexadecimal in upper case. s - String, a 32-bit Pointer

on a NULL-terminated Byte-String. A NULL BPTR 1is
handled like an empty string. ¢ - Char

* Value - is an argument that has to be resolvable.

1.179 Barfly.guide/Al_LISTING

Listing I/0 Commands

List
Nolist
Printx
Lisfile

1.180 Barfly.guide/LI_LIST

list
activates the listing output. Has no function if the global listing
output wasn’t activated.
Listing Format:

LINE ADDRESS[Flagl] COMMAND-BYTES[Flag2] SOURCE

* + shows that the line was created by a macro.
* > shows that the Assembler searches the closing ENDC.

* < shows that the Assembler searches the closing ENDM.

Barfly

94 /144

* Flag2

* + shows a line overflow and that Bytes are ignored. Can
often happen during data definitions.

1.181 Barfly.guide/LI_NOLIST

disactivates the listing output. Has no function if the global
listing output wasn’t activated.

1.182 Barfly.guide/LI_PRINTX

outputs the string to the current Stdout and works simular as the
known C-Printf function. Look at SPRINTF

errfile Name

defines the filename for the error output.

* Name = Filename

1.183 Barfly.guide/LI_LISFILE

lisfile Name

defines the filename for the listing output. If no error file was
defined the error output is also written into the listing file.

* Name = Filename

1.184 Barfly.guide/Al_STRUCTURE

Structuring

Barfly

95/144

Macro
Endm
MExit
Fail

End

If

Ifd

Ifnd

Ifv

Ifnv
Ifmacrod
Ifmacrond
Ifcmacrod
Ifcmacrond
Ifc

Ifnc
If[cc]
Else
Elseif
Endc
Endif
Repeat
Rept
Procstart
Procend

1.185 Barfly.guide/ST_MACRO

symbol[:] macro

starts a Macro block.

1.186 Barfly.guide/ST_ENDM

endm

ends a macroblock.

1.187 Barfly.guide/ST_MEXIT

ends a macro call.

Barfly 96 / 144

1.188 Barfly.guide/ST_FAIL

fail

creates an error.

1.189 Barfly.guide/ST_END

end

ends the assembling.

1.190 Barfly.guide/ST_IF

if Symbol

checks if the symbol value is not NULL and assembles the block
depending on the success.

1.191 Barfly.guide/ST_IFD

ifd Symbol

checks if the Symbol exists and assembles the block depending on the
success.

1.192 Barfly.guide/ST_IFND

ifnd Symbol

checks if the Symbol doesn’t exist and assembles the block depending
on the success.

Barfly

97 /144

1.193 Barfly.guide/ST_IFV

ifv String

This is a privat command that is used for internal functionality and
subject to change. Touch an burn!

1.194 Barfly.guide/ST_IFNV

ifnv String

This is a privat command that is used for internal functionality and
subject to change. Touch an burn!

1.195 Barfly.guide/ST_IFMACROD

ifmacrod Macro

checks if the Macro exists and assembles the block depending on the
success.

1.196 Barfly.guide/ST_IFMACROND

ifmacrond Macro

checks if the Macro doesn’t exist and assembles the block depending
on the success.

1.197 Barfly.guide/ST_IFCMACROD

ifcmacrod CMacro

checks if the CMacro exists and assembles the block depending on the
success.

Barfly 98 / 144

1.198 Barfly.guide/ST_IFCMACROND

ifcmacrond CMacro

checks if the CMacro doesn’t exist and assembles the block depending
on the success.

1.199 Barfly.guide/ST_IFC

ifc Symbol, Symbol

compares the first string with the second string and if they are
equal the block is assembled.

1.200 Barfly.guide/ST_IFNC

ifnc ’String’,’String’

compares the first string with the second string and if they differ
the block is assembled.

1.201 Barfly.guide/ST_IFCC

if[condition] Symbol=Symbol

compares the first symbol with the second symbol and decides
according to the condition if the block is assembled.

* Condition = Normal Bcc-Condition Syntax

* Symbol = Normal Symbol

1.202 Barfly.guide/ST_ELSE

else

activates the condition block if the block above wasn’t assembled.

Barfly 99 / 144

1.203 Barfly.guide/ST_ELSEIF

activates the condition block if the block above wasn’t assembled.

1.204 Barfly.guide/ST_ENDC

endc

defines the end of a condition block.

1.205 Barfly.guide/ST_ENDIF

defines the end of a condition block.

1.206 Barfly.guide/ST_REPEAT

repeat Count

repeats the blocks that is located between repeat and endr by the
number Count.

1.207 Barfly.guide/ST_REPT

rept Count

has the same function like Repeat

1.208 Barfly.guide/ST_PROCSTART

Barfly 100/ 144

procstart

defines a function in a Dice-C assembler output and is used to
optimize Link and Unlk. This optimize method isn’t working yet.

1.209 Barfly.guide/ST_PROCEND

procend

defines a function in a Dice-C assembler output and is used to
optimize Link and Unlk. This optimize method isn’t working yet.

1.210 Barfly.guide/Al_FILE

File I/0 Commands

Incdir
Incpath
Include
Include?2
Incbin
Incbin2
IBytes
DSBin
Doscmd
Pure

1.211 Barfly.guide/FI_INCDIR

incdir Dir([,Dir[,...1]]

adds directories to the include path list. BASM uses 2 internal
path lists and the current directory to find the include and incbin
files. First BASM checks for a : character in the filename and if it
finds a volume the file is loaded direct instead of searching it
through the pathlists. The first path list contains the paths that
were defined in the commandline or BOPT by the option -i or through
incdir. The second path list contains the paths that were defined in
global configuration file ENV:BASMOption. The entries of the second
list will be removed when the assembler is closed so that the paths are
still correct in the ARexx-Mode. The first list is removed every pass.

Barfly

101/144

* Dir = Name of the Include-Path.

1.212 Barfly.guide/FI_INCPATH

has the same function like incdir.

1.213 Barfly.guide/FI_INCLUDE

include Name

loads the external include file, for example the OS-Includes. If
the file is a precompiled include file it’s detected automaticly.
Includes are loaded from the editor or cachefile.library.

* Name = Filename

1.214 Barfly.guide/FI_INCLUDE2

include2 Name

has the same function like include with the exception that the
cachefile.library isn’t ignored.

* Name = Filename

1.215 Barfly.guide/FI_INCBIN

incbin Name[, size]

inserts the file with the optional length at the current address
into the code. Normally used for sounds and graphics.

Barfly 102/ 144

1.216 Barfly.guide/FI_INCBIN2

incbin2 Name [, size]

has the same function like incbin with the exception that the
cachefile.library isn’t used.

* Name = Name of the data file.

1.217 Barfly.guide/FI_IBYTES

ibytes Name [, Length]

has the same function like incbin

1.218 Barfly.guide/FI_DSBIN

dsbin Name [, Length]

defines a memory area with the length of the file specified by the
file. Optinally you can defined the maximal file length.

* Name = Filename

* Length = maximal file length

1.219 Barfly.guide/FI_DOSCMD

doscmd Name

runs the program Name.

dc.b 0,"S$SVER: Fubar 1.0 by Joe User"
doscmd "c:date >ram:Temp"

incbin ram:Temp

doscmd "c:delete ram:Temp"

Barfly 103/ 144

1.220 Barfly.guide/FI_PURE

pure

sets the Pure Bit while writing a program file.

1.221 Barfly.guide/Al_MISC

Miscellaneous

Trashreg
Super

MC [Type]
Bopt

1.222 Barfly.guide/MI_TRASHREG

trashreg Reglist

defines the registers that are available to the optimizer.

* RegList = A normal Registerlist known by Movem.

1.223 Barfly.guide/MI_SUPER

disactivates Supervisor warnings.

1.224 Barfly.guide/MI_MCXXX

defines the processor type to allow certain commands and
addressmodes.

Processor-Type

Barfly

104 /144

* 68000 Default Mode

* 68010

* 68020

* 68030

* 68040

* 68060

* 68881

* 68882

1.225 Barfly.guide/MI_BOPT

sets the assembler options.

ml [+, -]
activates/disactivates

m2 [+, -]
activates/disactivates

m3 [+I_]
activates/disactivates

mé [+, -]
activates/disactivates

moé6 [+I_]
activates/disactivates

mf [+, -]
activates/disactivates

ue [+, -]
activates/disactivates

uo [+17]
activates/disactivates

ual+,-]
activates/disactivates

un [+I_]

the

the

the

the

the

the

writing an executable file.

Options

68010 mode.

68020 mode.

68030 mode.

68040 mode.

68060 mode.

68881/2 mode.

writing an object file.

writing an absolut file.

Barfly

105/144

activates/disactivates writing file.

the file ENV:BDebugProgram that

of an .info file for each program.

p[+l_]
activates/disactivates writing a preassembled Include file.
g[+r_]
activates/disactivates adding the prefix _ to each exported symbol.
SX[+I_]
activates/disactivates writing all XRef/XDef symbols to a symbol
hunk.
sll+,-]
activates/disactivates writing all normal symbols to a symbol hunk.
sal+,~]
activates/disactivates writing all symbols to a symbol hunk.
sd [+, -]
activates/disactivates writing a BASM custom format Debug Hunk.
Makes only sense as a program file and it needs a lot hd space
because it includes all sources.
sll+,-]
activates/disactivates writing a SAS D1 compatible Debug Hunk.
st[+,-]
activates/disactivates writing the full sourcefile path into the
debug hunk. You should only use this for your own development
system because other users may have different HD layouts. This
option has only a meaning with in a SAS D1 Debug Hunk.
j [+I_]
activates/disactivates setting the PURE Bit for a program file.
The PURE Bit tells the Shell that this program can be loaded
resident.
J[+I_]
activates/disactivates creating
contains the assembled filename for BDebug.
a[+ri]
activates/disactivates creating
Useful if you use the assembler through the WB.
A[+1_]
activates/disactivates the ARexxmode Option. Only allowed in the
commandline.
i<DirName>
defines the include path.
o<FileName>
defines the object filename
P<Priority>

sets the task priority.

Barfly 106/ 144

c [+r_]
activates/disactivates that the assembler interpretes Upper and
Lower case as 2 different chars.
£i+,-]
activates/disactivates a faster mode that resolves all references
in the 2nd pass. Fortunately this mode needs more memory and has
some disadvantages like uncorrect values during the listing. This
option has no effect during optimizing.
M<Bytes>
defines the max macro expansion size. If you get a macromemerror
you should increase the size. Default 1000 Bytes.
Z<Address>
tells the assembler that the source is starts in the memory at the
defined address. Useful for ARexx scripts. Option is only
available in the commandline.
X[+ri]
uses the cachefile.library to load resident Includes/Incbins or
add unknown files to the cachefile.library database.
X[+I_]
erases all files that are controlled by the cachefile.library.
Y[+I_]
shows all files that are controlled by the cachefile.library.
10+,-1
activates/disactivates the listing output.
10 [+, -]
activates/disactivates the listing macro expansion.
L<Listingfile>
defines the Listing filename.
hi+, -]
activates/disactivates the symbol listing output.
H[+I_]
activates/disactivates the unused symbol output.
V[+1_]
outputs a statistic after assembling.
V[+I_]
as little status output as possible
e [+I_]
creates an error list.
es[+,-]

outputs the error list in the Barfly shell. This option has no
meaning in BASM.

Barfly

107 /144

wo [+, -]
activates/disactivates Optimizing warnings.

ws [+17]
activates/disactivates Supervisor warnings.

wm [+, —]

activates/disactivates Movel6 warnings because the use of the

movel6 command is dangerous if you don’t know the problems.

w2 [+I_]
activates/disactivates 68020 Addressmode warnings.

wa [+, -]

activates/disactivates 64k—-Access warnings. It’s useful if you

accidently avoid to forget the address register. Example:
8,d0 instead of move.l 8 (an),d0

move.l

b0
sets the Default Branch Length to 8-Bit. .b
bl
sets the Default Branch Length to 16-Bit. .w
b2
sets the Default Branch Length to 32-Bit. .1
BO
sets the Default BaseDisplacement-Width to 8 Bit. .b
B1
sets the Default BaseDisplacement-Width to 16 Bit. .w
B2
sets the Default BaseDisplacement-Width to 32 Bit. .1
no0
sets the Default OuterDisplacement-Width to 16 Bit. .w
nl
sets the Default OuterDisplacement-Width to 32 Bit. .1
q[+r_]
activates/disactivates align long after each rts, bra or jmp to
align blocks to the cache structure.
O[+ri]
activates/disactivates the Optimizer. Without this option no
optimizing will happen besides the addressmode converting.
OG[+I_]
activates/disactivates Forward Reference Optimizing to use every
possibility. In this mode the source is assembled until no further
optimizing method is found. First the source is assembled
normally. This is shown by the Output Pass 1. Afterwards the
optimize passes are started and continued until no further symbol

Barfly

108 /144

OT [+,

OCO [+

OCl[+

ocz [+,

OC3 [+

oC4 [+

OC5 [+

oCoe [+

OoC7 [+

ODD [+,

ODO [+

OoD1 [+,

OD2 [+

OD3 [+

oD4 [+,

OD5 [+

OD6 [+

changes and length errors occur. This can take a while and
depends on the source size.

-1
activates/disactivates Time Optimizing.

Addressmode Converting

I_]
bdwan

I_]
bdwpc

=]

anxn

I_]

pcxn

17]
bdw

/_]
bdl

I_]

an

I_]
jele

-]

activates Direct Addressmode Optimizing
Direct Optimizing

I_]

move

-]

clr

I_]
add

I_]
sub

-]

lea

’ 7]
cmp

/_]

bcc

Barfly 109/ 144

oD7 [+, -]
jsr

OD8 [+, -]
Jmp
OD9 [+, -]

asl

ODal+, -]
or (This Optimizing is disactivated internal)

ODb [+, —]
eor (This Optimizing is disactivated internal)

ODc [+, -]
and

obd [+, -]
mulu

ODe [+, -]
muls

ODf [+, -]
jsr+rts

ODg [+, —]
Jmptrts

ODh [+, —]
MovemNoRegister

ODi [+, -]
MovemOneRegister

OD] [+1_]
Link

OAP [+, —]
activates PC-Relative Optimizing

OAS [+, -]
activates Smalldata Optimizing

OAL[+, -]
activates long nach word Optimizing

OAX [+, —]
activates x(An) to (An) Optimizing

OAY [+, -]
activates 68020++ An-EA Optimizing

ORAZ [+, -]
activates 68020++ PC-EA Optimizing

Barfly 110/ 144

OAR[+, -]
activates Register Optimizing

You should be careful with the command BOPT when you activate
Global-Optimize. In every parse the default config is set and
therefore you should define all global options in the commandline or in
the configuration file.

1.226 Barfly.guide/Al_META

680xx Meta Commands

mb
mw
ml

mg
XOr
xXori
bhs
blo

1.227 Barfly.guide/ME_MB

mb Operandl, Operand?2

has the same function as move.b.

1.228 Barfly.guide/ME_MW

mw Operandl, Operand?2

has the same function as move.w.

1.229 Barfly.guide/ME_ML

ml Operandl, Operand?2

Barfly 111/ 144

has the same function as move.l.

1.230 Barfly.guide/ME_MQ

mg Operandl, Operand?2

has the same function as moveq.

1.231 Barfly.guide/ME_XOR

xor.? Operandl, Operand?2

has the same function as eor.?.

1.232 Barfly.guide/ME_XORI

xori.? Operandl, Operand?2

has the same function as eori.?.

1.233 Barfly.guide/ME_BHS

bhs.? Label

has the same function as bcc.?.

1.234 Barfly.guide/ME_BLO

blo.? Label

has the same function as bcs.?.

Barfly

112/144

1.235 Barfly.guide/UA_MACROS

Assembler Macros

Macros are meta commands that can be based of many assembler
instructions to achieve an abstracter source layout. In a macro you
can use several different pattern that are replaced by appropriate
parameters when the macro is called. The parameter that are passed
during a macro call are represented by the following patterns:
\NO,...,\9, \a,...,\z, \A,...,\Z. The pattern ids are using the
hexadecimal format. If a pattern is used with no related parameter an
empty string is inserted. Furthermore if a parameter contains
tabulators or spaces it has to be placed between <...>. When a macro
needs relative labels and is should be called more than one time you
should use the special pattern @. This pattern is replaced by a number
that is based of 4 digits and that is increased after each call. The
pattern \# is replaced by the value of the symbol narg that represents
the count of macro parameters. Besides the standard patterns there are
some more advanced pattern functions supported that look like
*Function-Name. These functions don’t belong to the motorola standard
thus they aren’t supported by every assembler. Another important point
is that you can also call macros from from macros but you can’t define
macros in macros.

The standard macro pattern

Label & [. string] & [, string] & [, string] & [,...] & [\O]
& [\1]] & [\2]] & [\3]]...[\nl]

The advanced macro pattern functions

* \ (Argument) inserts the string of the macroparameter with the
number the argument defines.

N (1) = A1
\(1+3+4) = \8
* \+xupper (String) inserts the string in upper case.
* \xlower (String) inserts the string in lower case.
* *valof (Argument) inserts the decimal value of the argument as

a string.

* \xstrlen (Symbol) inserts the length of a symbol as a string.
* \+*right (String,n) inserts n chars of the right side of the
string. If the string contains less than n chars the whole string

is inserted.

* \xleft (String,n) inserts n chars of the left side of the
string. If the string contains less than n chars the whole string
is inserted.

Barfly

113/144

\xmid (String,n, m)

till the end of the

openwind MACRO
move.l
lea.l
jsr
ENDM

start:
openwind

movewind MACRO
move.l
move.l
moveq
move.\0
IFC
ext.w
ENDC
jsr
ENDM

start:
move.b

15:
movewind.b
addqg.b
cmp.b
bne.s

wait MACRO
moveq
wait\
dbra
ENDM

start:
wait
wait
wait

test MACRO
move.
move.
move.

o e

move.
rts

cstring
even

string is inserted.

intbase, ab
\1,a0
OpenWindow (a6)

newwindow

intbase, ab
\1, a0
#0,d0
\2,dl
*\0’, ‘b’
dl

MoveWindow (a6)

#10,d2

newwindow, d2
#1,d2
#100,d2

1s

#-1,d0

do, wait\

#\+rupper (Hello),d0
#\xlower (Hello),dO
#*strlen(1234567890123456),d0
#\xvalof (value), dO

"\xleft (abcdefgh,4)"

inserts chars from position n to m from the
string. If the position is outside of the string length the chars

Barfly 114 /144

cstring "\«xleft (abcdefgh, 10)"
even
cstring "\+«right (abcdefgh, 4)"
even
cstring "\«right (abcdefgh, 10)"
even
cstring "\+mid (abcdefgh,2,4)"
even
cstring "\+mid (abcdefgh,2,8)"
even
ENDM

value = 123456789
hello:
test

value = 123456789

hello:
move.l #HELLO, dO
move.l #hello, dO
move.l #16,d0
move.l #123456789,d0
rts
cstring "abcd"
even
cstring "abcdefgh"
even
cstring "efgh"
even
cstring "abcdefgh"
even
cstring "cdef"
even
cstring "cdefgh"
even
PUTTAG MACRO
IFC m\2m,
PUTTAG_COUNT set O
ENDC
IFNC m\m, nn
move.l \2,-(a7)
PUTTAG_COUNT SET PUTTAG_COUNT+4
ENDC
move.l \1l,-(a7)

PUTTAG_COUNT SET PUTTAG_COUNT+4

IFC "\1", "#TAG_END"
PUTTAG_COUNT SET 4
ENDC

Barfly

115/144

ENDM

CLEARTAG MACRO

lea.l PUTTAG_COUNT (a7) ,a7
ENDM

PUTTAG #TAG_END

PUTTAG #WA_Width, #100

PUTTAG #WA_ScreenTitle, #Title
move.l a7l,al

sub.1l a0, a0

jsr OpenWindowTagList (a6)
CLEARTAG

1.236 Barfly.guide/UA_HMACROS

Highlevel Macros

In highlevel macros the operands are based of legal addressmodes.
Arguments are based of operands and the operators +,-,<<,>>. Conditions
are based of !,=, <,>,<=,>=,<>. By using highlevel macros you can make
the programming of non critical source areas easier and more abstract.
Blame Mike Schwartz for this idea...he forced me to do it:-B

.Reg
.Branch
.For
.Next
LIf
.Else
.Endif
.While
.Endwhile
.Call
.Return
.Def
.Enddef
.Let

1.237 Barfly.guide/HM_REG

.REG

Barfly 116/ 144

sets the accumulator register that is used to calculate arguments.
Default register is DO.

1.238 Barfly.guide/HM_BRANCH

.BRANCH b|w]|1l

sets the length of branch commands that are used in the highlevel
macros. Standard length is .Db.

1.239 Barfly.guide/HM_FOR

.FOR Operand|[.b|w|l] = Operand TO Operand STEP Operand

creates code for a for loop. The optional width you define after
the first operand sets the width for all operations in the for loop.

.FOR dO.w = #1 to STEP #2
addg.w #1,dl
.NEXT

;Compiled Code
move.w #1,d0

_ forl:
addg.w #1,d1
add.w #2,d0

cmp.w ,dO
blt.b _ forl

1.240 Barfly.guide/HM_NEXT

closes the outer .FOR loop.

1.241 Barfly.guide/HM_IF

Barfly 117 /144

.IF [Argument] =,!, <, > , <> Operand

creates code for an IF-Operation. You can remove the first argument
if you wanna test the operand. For example .IF <>

IF (a0) + #0 <> di
moveq #0,d0

.ELSE

moveq #1,d0

.ENDIF

;Compiled Code

move.l (a0),d7
add.l #0,d7
cmp.l dl,d7
beg.b __elsel
moveq #0,d0
bra.b __endifl
__elsel:
moveq #1,d0
__endifl:

1.242 Barfly.guide/HM_ELSE

starts an alternative IF-Block.

1.243 Barfly.guide/HM_ENDIF

closes the outer .IF block.

1.244 Barfly.guide/HM_WHILE

.WHILE [Argument] =,!, < , <> Operand

creates code for a while loop The optional width you define after
the first operand sets the width for all operations in the while loop.

Barfly 118/ 144

.WHILE dO <> #0
addg.w #1,dl
.ENDWHILE

;Compiled Code

__whilel:
cmp.l #0,d0
beg.s __endwhilel
addg.w #1,dl
bra.s _ _whilel

endwhilel:

1.245 Barfly.guide/HM_ENDWHILE

.ENDWHILE

closes the outer while loop.

1.246 Barfly.guide/HM_CALL

.CALL Function [, Argument [, Argument [,...]]]

calls a C-Funktion by parsing the arguments through the stack.
Arguments are calculated in the accumulator register.

.CALL func , test + 0 - #20 , #test
;Compiled Code

move.l test,d7
add.l 0,d7

sub.l #20,d7
move.l d7,-(a7)
move.l #test,—-(a7)

jsr func

ifnc "gm,"o" ;Were there any parameters ?
lea.l _ CALLSize(a7),a’

endc

1.247 Barfly.guide/HM_RETURN

Barfly 119/ 144

.RETURN Argument

returns a result value in the accumulator register.

.return dl + d2 + #$100

;Compiled Code

move.l dl1,d7
add.l d2,d7
add.l #$100,d7

1.248 Barfly.guide/HM_DEF

.DEF func [, Operand [, Operand [,...]]]

defines a C-Stack function and loads the defined parameters into the
operands.

.DEF func , d0.w , dl , (a0)
.ENDDEF

;Compiled Code

XDEF func

link ab,#0

move.w $0a(a5),d0

move.l $0c(ab5),dl

move.l $10(a5), (a0)

unlk ab ; .ENDDEF
rts

=

1.249 Barfly.guide/HM_ENDDEF

.ENDDEF

closes a function that was started by .DEF

1.250 Barfly.guide/HM_LET

Barfly 120/ 144

.LET [Operand =] Argument

calculates an argument in an accumulator or moves the value to a
defined operand.

.LET + 4 — #LN_SIZE << #7
LET d1 = (al) - (a0)

;Compiled Code
add.l 4,d7

sub.1l #LN_SIZE,d7
1s1.1 #7,d7
move.l (al),d7

sub.1l (a0) , a7
move.l d7,dl

1.251 Barfly.guide/UA_SYMBOLS

Predefined Symbols

NARG

represents the macro parameter count in a macro.

BARFLY

represents the assembler version.

represents the CPU processor type.

represents the FPU processor type.

_MOVEMBYTES

represents the byte count the last movem transfer used.

lea _MOVEMBYTES (a7),a7 ;frees the stack

Barfly 121/ 144

_MOVEMREGS

represents the last movem register mask.

movem (a7)+,_MOVEMREGS

RS

represents the RS-Counter.

SO

represents the RS-Counter.

FO

represents the FO-Counter.

1.252 Barfly.guide/UA_OPTIMIZING

Optimizing

Optimize Methods...

Direct Address Optimizing
Address Optimizing

#x Optimizing

Register Optimizing

How it works ?

Problems

1.253 Barfly.guide/OP_DIRECT

Direct Addressmode Optimizing

The assembler can direct optimize certain 68020...60 Addressmodes if
a faster 68000 addressmode exists. This optimizing method should
always be activated because of compatibility reasons.

* (bd.w,an) can be optimized to x(an) that removes 1 word and
some cycles.

Barfly 122 /144
o e e +
| Addressmode | Optimizing | Option |
Fom o fom +
Fom o fomm +
| move. 1 (1000.w,an),dn | move.l 1000(an),dn | -0CO |
e e e +
* (bd.w,pc) can be optimized to x(pc) that removes 1 word and

some cycles.

o et et L R +
| Addressmode | Optimizing | Option |
o ——————— e o +
fom o fom +
| move. 1 (1000.w,pc),dn | move.l 1000(pc),dn | -0OC1 |
o e et e b fomm +

(bd.w) can be optimized to bd.w that removes 1 word and some

cycles.

et Fom Fom——— +
| Addressmode | Optimizing | Option |
- 4+ - +
- - - +
| move. 1 (bd.w),dn | move.l bd.w,dn | -0C4 |
Fom o fom———— +

(bd.1l) can be optimized to bd.l that removes 1 word and some
cycles.
o o fo———— +
| Addressmode | Optimizing | Option |
- - +————— +
- - - +
| move. 1 (bd.l),dn | move.l bd.l,dn | -0C5 |
o o fo— +

(an) can be optimized to (an) that removes 1 word and some
cycles. The addressmode (an) can be interpreted as a subgroup of
(bd,an, xn) . Because (an) is a normal 68000 addressmode you should

never switch off this optimizing method.

o et e L R +
| Addressmode | Optimizing | Option |
o o o +
fom o fom +
| move. 1 (an),dn | move.l (an),dn | -0Cb6 |
et e et e et e +

(pc) can be optimized to (pc) that removes 1 word and some
cycles. The addressmode (pc) can be interpreted as a subgroup of
(bd, pc,xn) . Because (pc) is a normal 68000 addressmode you should
never switch off this optimizing method.

o e o +
| Addressmode | Optimizing | Option |

Barfly

123/144

1.254 Barfly.guide/OP_ADDRESS

Address Optimizing

* Long
- o
| Addressmode | Optimizing
Fom o
e o
| x.1l,EA | x.w,EA
- o
| EA,x.1 | EA,x.1
Fom o
* X (an)
- o
| Addressmode | Optimizing
fom o
Fom o
| X (an) , EA | (an) , EA
- o ——
| EA, x (an) | EA, (an)
fom o
* PC-Relative
t+———— o ——
| Addressmode | Optimizing
fom e o
Fom o
| label, EA | label (pc) ,EA
- o
* A4-Smalldata
fom e o
| Addressmode | Optimizing
t———— o ——
fom o
| x.1,EA | x (a4) ,EA
Fom o
| EA,x.1 | EA, x (a4)
+———— o
* 68020-An
Fomm Fom e

+ =+ — 4+ + — + + =+ — 4+ + — +

+ — + 4+ — +

+ =+ — 4+ + — +

- +
| Option |
fomm +
fo—m +
| |
+ —-OAL |
| |
fomm +
- +
| Option |
fo—m +
fo—m————— +
| |
+ -0OAX |
| |
fomm +
o +
| Option |
fo—m +
fom——— - +
| —-OAP |
+——— +
fo——— +
| Option |
- +
fomm +
| |
+ —OAS |
| |
o +

Barfly

124/ 144

| Addressmode
o
+ _______________
| (x.1,an)
o
| (x.1,an)
o
| (x,an, xn)
+ _______________
| (x,an, xn)
o
| (x,an, xn)
b
| ([21,x%)
|
o
| ([?1,x)
|
+ _______________
| ([?],xn,x)
|
O
| ([?],xn,x)
|
+ _______________
68020-PC
b
| Addressmode
+ _______________
o
| (x.1,pc)
b
| (x.1,pc)
+ _______________
| (x,pcC, xn)
e
| (x,pc, xn)
o
| (x,pcC, xn)
o
| ([?1,x)
|
b
| ([21,x%)
|
o
| ([?],xn,x)
|
b
| ([?],xn,x)
|
o

- — 4+ — — 4+ — — 4+ — — 4+ — + — + — + — + — + +— +

x=0
? is also optimized

SEfff8000<=x<=87fff
? i1s also optimized

x=0
? is also optimized

SEfff8000<=x<=87fff
? i1s also optimized

x=0
? 1s also optimized

SEfff8000<=x<=S7fff
? is also optimized

x=0
? i1s also optimized

SEfff8000<=x<=$7fff
? is also optimized

Option |
———————— +
———————— +

—-0OAY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

———————— +
———————— +

Option |
———————— +
77777777 +

-0AZ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

———————— +

Barfly 125/ 144

1.255 Barfly.guide/OP_OPTIMIZE

#x Optimizing

* Move
e ettt Fom o fo———— - +
| Addressmode | Optimizing | Note | Option |
——— o o - +
o ————— o ————— o +——— +
| move.l #x,dn | moveq #x,dn \ SEfffff80<=$71% | =0DO0 |
Fom Fom e + |
| move.? #0,an | suba.l an,an \ ? =w or 1 |
fom fom o + |
| move.l #x,dn | moveqg #y,dn | $10000<=x<=$7£0000 |
| | swap dn \ | |
Fom fom o + |
| move.l #x,dn | moveqg #y,dn | SEff80ffff<=x<=SfffEffff |
| | swap dn \ | |
o o o + |
| move.l #x,dn | moveqg #y,dn \ $80<=x<=Sff |
| | neg.b dn \ | |
Fom e e + |
| move.l #x,dn | moveqg #y,dn \ Sffff<=x<=$ff81 |
| | neg.w dn | | |
F———————— o o + |
| move.l #x,dn | moveqg #y,dn | SEfff0080<=x<=S$Effff0001 |
| | neg.w dn | |
e e e B e e i e e e + |
| move.? #0,EA | clr.? EA | ? = w or 1l.See Trashreg | |
| | | optimizing. I also check]| |
| | | 1if it accesses the HW | |
Fom fom e + |
| move.b #S$Sff,EA | st EA \ |
fom e fom o + |
| movea.l -4 (an),an | movea.l - (an),an | |
o ————— o —————— o o +
* Clr
o o o B +
| Addressmode | Optimizing | Note | Option |
fom e fom e +
e o Fom e +
| clr.l dn | moveqg #0,dn | | -0D1 |
= o —_———— - +
* Add
Fom e o Fo fo—m +
| Addressmode | Optimizing | Note | Option |
o o o o +
o o o ———————— o +
| add.? #x,EA | addg.? #x,EA | 1<=x<=8 | -0D2 |
e o Fo + |

Barfly 126/ 144
| add.? #x,EA | subg.? #x,EA | —8<=x<=— | |
o o o + |
| add.? #x,an | lea.l x(an),an | SEfff8000<=x<=87fff |
Fomm o fom + |
| add.? #0,EA | tst.? EA | legal EA |
fom Fom e + |
| add.? #0,an | removed | |
o ————— o o ————————— o +

* Sub
o o o +o—————— +
| Addressmode | Optimizing | Note | Option |
Fom e fom fom +
Fom o Fom o +
| sub.? #x,EA | subqg.? #x,EA | 1<=x<=8 | -0D3 |
o o o + |
| sub.? #x,EA | addg.? #x,EA | —8<=x<=— | |
e e fom + |
| sub.? #x,an |lea.l -x(an),an | SEfff8000<=x<=$7fff | |
e ettt o Fm + |
| sub.? #0,EA | tst.? EA | legal EA | |
o o o + |
| sub.? #0,an | removed | | |
e o Fom fom +
* Lea
o o o ———————— +——————— +
| Addressmode | Optimizing | Note | Option |
Fom e o fom e +
e e e o e fo—— +
| lea x(an),an | addg.w #x,an | 1<=x<=8 | |
Fo— o o + -0D4 |
| lea x(an),an | subg.w #x,an | —8<=x<=— | |
fom o fom fom +
* Cmp
o o o ———————— o +
| Addressmode | Optimizing | Note | Option |
Fom e o Fo e +
e et e Fom e e fo—— +
| cmp.? #0,EA | tst.? EA | | —-0D5 |
o o o —————— o +
* Bcc
The assembler tries to optimize the branch on the smallest
possible length so that can win max 2 words and some cycles.
fom e o fom fomm +
| Addressmode | Optimizing | Note | Option |
fom Fom e e R +
o o o +——————— +
| Bcc.l label | Bcc.w label | $8000<=label<=S7fff | -0D6 |
fom fom fom + |

Barfly

127 /144

| Bcc.l label

S

| Bcc.w label

+ ______________

Attention! This

BRANCH-Tables.
this area.

|
+
Bcc.s label |
+

$80<=label<=S$7f

$80<=label<=$7f

optimizing methid is unsafe when you use
You should switch off the optimize method over

_________________________ +

Jsr
o —————— o o ———————— o +
| Addressmode | Optimizing | Note | Option |
Fo———————— o fo————_—_—_—————— Fo————— +
f—————— —————— 4 F————— +
| Jjsr label | bsr.w label | $8000<=0ffset<=ST7fff | |
o ————— o o + -0D7 |
| jsr label | bsr.s label | $80<=0ffset<=$7f | |
Fo——————— o o Fo—————— +
Attention! This optimizing methid is unsafe when you use
JSR-Tables. You should switch off the optimize method over this
area.
Jmp
o —————— o o ———————— +——————— +
| Addressmode | Optimizing | Note | Option |
Fo o —— fo——————————— Fo————— +
e - - - +
| Jmp label | bra.w label |SE£££8000<=0ffset<=S$7fff |
Fo— o o + -0D8 |
| Jmp label | bra.s label |SEfffff80<=0ffset<=$7f |
Fom o o Fo—————— +
Asl
o o o ———————— o +
| Addressmode | Optimizing | Note | Option |
fo——————— t—————————— f———_——————— F—————— +
f—————— - f——— - +
| asl.? #1,dn | add.? dn,dn | | -0D9 |
Fo— o o ———————— o +
Or This optimizing method isn’t safe because of the changed
condition flags.
o o o +—————— +
| Addressmode | Optimizing | Note | Option |
Fom o o Fo—————— +
fm——————— t————————— f———————— F—————— +
| or.? #x,dn | Dbset #y,dn | x=y"2 | -ODba |
Fom o o +——————— +
Eor This optimizing method isn’t safe because of the changed

Barfly 128 /144

condition flags.

fom o fom fom +
| Addressmode | Optimizing | Note | Option |
e ettt o Fm fomm +
o o o o +
| eor.? #x,dn | Dbchg #y,dn | x=y"2 | —-0ODb |
Fo—————— o o ————————— o +

* Mulu
Be very careful with this optimizing.
fom o fom fom +
| Addressmode | Optimizing | Note | Option |
Fom e o e e +
o o o o +
| mulu.w #x,dn | swap dn | x=2"y | -ODc |
| | clr.w dn | y=yl+y?2 | |
| | swap dn | y=1,add.l dn,dn | |
| | 1sl.1 #y1,dn | | |
| | 1sl.1 #y2,dn | | |
o o o + |
| mulu.l #x,dn | 1sl.l #yl,dn | x=2"y | |
| | 1sl.1 #vy2,dn | y=yl+y2 | |
| | | v >= 16 | |
| | | swap dn , y-16 | |
o o o +——————— +

* Muls
Be very careful with this optimizing.

o o o +—————— +
| Addressmode | Optimizing | Note | Option |
fom e o fom fom +
Fom e o Fo o fo—— +
muls.w #x,dn	ext.l dn	x=2"y	-0Dhd
	asl.l #y1,dn	y=yl+y2	
	asl.l #y2,dn	y=1 , add.l dn,dn	
e fom fom +			
muls.l #x,dn	asl.l #yl,dn	x=2"y	

	asl.l #y2,dn	y=yl+y2	
		y >= 16	
		swap dn ,y-16	
fom o fom fom +

* Jsr+Rts
Fm—————— o o e +
| Addressmode | Optimizing | Note |
Option |
Fom o Fm fo—— +
fomm Fom Fom to—————— +
| jsr EA | Jmp EA | No optimizing if there’s| -0De

| | rts \ | a label before RTS |

Barfly 129/ 144

o o o e +
* Bsr+Rts
Fom o Fo fo—— +
| Addressmode | Optimizing | Note
Option |
o e o o +
Fom e R —— fo fom +
| jmp EA | jmp EA | No optimizing if there’s| -ODf
| | rts \ | a label before RTS \
|
o o o +—— +
* MovemNoRegister
o o o B +
| Addressmode | Optimizing | Note | Option |
e R fom e +
Fom e o fom fom +
| movem.l ,EA | Removed | |
fmmm Fom e + -ODh |
| movem.1l EA, | Removed | |
o o o ——————— o +
* MovemOneRegister
o o —_— B +
| Addressmode | Optimizing | Note | Option |
fom e fom e +
Fom e o Fom e +
| movem.l Xn,EA | Move.l Xn,EA | Alter the status flags! |
o o o + -0Dhi |
| movem.l EA,Xn | Move.l EA,Xn | Alter the status flags! |
F——————— o ———— ———————— o +

1.256 Barfly.guide/OP_REGISTER

Register Optimizing

* #xxx 1s switched off.

+ An address register is set free by trashreg.

o —— o o o +

| Addressmode | Optimizing | Note | Option <+
|

o ——— o o o +

Barfly 130/ 144

|move.? EA,label| lea.l label(pc),an | S$Sfff£f8000<=label<=S$7fff | -
| | | move.? EA, (an) | | -0AR —
+777| 777777777777 - - + —
| !st ? label | lea.l label(pc),an | S$ffff8000<=label<=$7fff | <~
| | | tst.? (an) | | PR
+———| ———————————— o e + —
| Jot.? label | lea.l label(pc),an | $ffff8000<=label<=$7fff | <~
| | | not.? (an) | | <
+———| ———————————— f——————— f——————————— + —
| Jeg.? label | lea.l label(pc),an | $ffff8000<=label<=$7fff | D
|
| | neg.? (an) | | -
+———| ———————————— - - + —
| Jegx.? label | lea.l label(pc),an | S$ffff8000<=label<=S$7fff | —
| | | negx.? (an) | | P
+———| ———————————— - - + —
| chd label | lea.l label(pc),an | SEffff8000<=label<=S$7fff | D
| | | nbcd (an) | | =
+———| ———————————— - - + —
| |scc label | lea.l label(pc),an | SEffff8000<=label<=S$7fff | D
| | | scc (an) [| P
+———| ———————————— - - - +
* #x Optimizing on.

+ An address register is set free by trashreg.

ettt e Fo e et fomm +
| Addressmode | Optimizing | Note | Option <«
|

R fom fo fomm +

Fom fom fom R +

| move.l #x,EA | moveqg #x,dn | SEfffff80<=x<=$7f | —
|

Barfly 131/ 144

| | move.l dn,EA | | -OAR <~
+———| ———————————— Fmm Fm + —
| o!i.l #x,EA | moveqg #x,dn | SEfffff80<=x<=$7f | R
| | | or.l dn, EA | | A
+———| ———————————— e Fm + y—
| egri.l #x,EA | moveq #x,dn | SEfffff80<=x<=$7£ | —
| | | eor.1 dn,EA | | ~
+———| ———————————— e T + —
| aJdi.l #x,EA | moveqg #x,dn | SEfffff80<=x<=S7f | —
| | | and.l dn,EA | | <~
+777| 777777777777 pom fom + Y
| a;di.l #x,EA | moveqg #x,dn | SEfffff80<=x<=S7f | —
| | | add.l dn,EA | | «
+———| ———————————— pom fom + -
| sti.l #x,EA | moveqg #x,dn | SEfffff80<=x<=$7f | —
| | | sub.l dn,EA | | ~
+———| ———————————— o e + —
| CJpl 1 #x,EA | moveq #x,dn | SEfffff80<=x<=$7f | —
| | | cmp.l EA,dn [| P
+———| ———————————— o o + —
| m;ve.? #0,EA | moveqg #0,dn | Time optimizing | ~
| | | move.l dn,EA | must be on | <«
+———| ———————————— o o Fo—— +

1.257 Barfly.guide/OP_HOWDOESITWORK

How does Optimizing work ?

In single-pass Optimizing the assembler can only optimize commands
where it can resolve the reference in the first pass. This means the

Barfly

132/144

label or symbol has to be known before. In multi-pass Optimizing it

can optimize every command without bothering where the label is defined.

The Assembler keeps all labels each pass but increases a change counter
if the old contents differs with the new contents. The exception is
that the assembler can’t optimize commands that depend on symbols that
are defined after the command. The reason is that the Assembler has to
remove each pass every symbol to avoid problems with IFD and IFND that
can cause that certain areas aren’t assembled in multi-pass mode. You
probably noticed that i assume that nobody used IFD or IFND with labels
because that would also break multi-pass.

An example for a construct that can’t be optimized.

move.l #1,NULL (a0)
NULL=0

1.258 Barfly.guide/OP_PROBLEMS

Problems. ..

You should always be careful with optimizing because it can cause
bugs in certain source areas. Branch optimizing for example has to be
switched off if you use JMP-Towers.

1sl.w #1,d0
Jjmp Tower (pc,d0.w)

Tower:
bra.w funcl
bra.w func?2
bra.w func3

could be be optimized to
Tower:

bra.w funcl

bra.s func?2

bra.s func3
that leads to program bugs.
Solution:
bopt OD6-
Tower:

bra.w funcl

bra.w func?2

bra.w func3

bopt OD6+

Barfly 133/ 144

1.259 Barfly.guide/UA_PRE

Preassembled Includes

If you wanna assemble a program that needs to load a lot includes
it’s useful to preassemble the includes and load one file because the

real slowdown factor is the need loading time. You can only use
absolut symbols and macros in a preassembled file. All relative and
symbols defined by set aren’t written into a preassembled file. The

created file isn’t compress to avoid any slowdown but if the file size
is critical you can compress the file by xpk and load it through the
xfh filesystem.

basm -p Source.S creates the preassembled file Source.p

An error location could be absolut symbols that are calculated by

relative symbols. You should avoid these symbols.

Symbol=Labell-Label2

Resident includes

BASM can control an Include and Incbin database by the library
cachefile.library to get rid of the loading delays. The files in the
database can be shown and deleted.

1.260 Barfly.guide/UA_CLI

Basm Assembler System

Format:
BASM [-Option] Name
This is the commandline version of the assembler and can be easy
integrated in own development system, for example Make and CED. An
assembler error is indicated by the result 20 and the result 10 1is

used i1f no source file were specified.

* Option

Barfly 134 /144

The same options are accepted that are described in
the assembler command BOPT. The following options
are accepted additionally.

* A[+,-] Turns ARexx mode on/off
* C <Configuration> loads a configuration file
* d <Symbol=Value> defines a symbol

* Standard-Optionen

;All other options are disactivated.

c+,e+,m1000, wo+, ws+, wm+, w2+, wid+

bl+,B0+,nl+
0oCc0+,0C1+,0C2+,0C3+,0C4+,0C5+,0C6+,0CT7+,

obb+, OD0+,0D1+,0D2+,0D3+,0D4+,0D5+,0D6+,0D7+, OD8+,
OD9+, ODc+, ODe+, ODf+, ODg+

OAP+, OAL+, OAX+, OAY+, OAZ+, OAR+

Configuration

You can define the global configuration through the file
ENV:BASMOption. The internal standard configuration is not replaced
but can only be changed.

File ENV:BASMOption

-V

-f
—c—
—1ASM:

If a line starts with - it’s ignored.

WB Tooltypes

Additionally you can also define the above described configuration
options in the tooltypes of the source file icon. Furthermore BASM
allows a special tooltype to define an output window.

o Window= <Window Defintion>

Barfly 135/ 144

1.261 Barfly.guide/UA_AREXX

The BASM ARexx Port Name is BASM rexx and the ARexx Script suffix
.basm. To activate the BASM ARexx mode you have to start BASM with
the option -A.

BASM

BASM [-Option] Name

This ARexx command starts the assembler and coincides with the
CLI-syntax structure.

BEND

BEND

This ARexx command closes the ARexx port and shuts down the
assembler.

BGETERROR

BGETERROR

With this ARexx command you will receive an explanation of the actual
errors. If no errors exist it will return a status code 20.

Error Format String
OFFSET:FILE:<Error Description>

BNEXTERROR

BNEXTERROR

This ARexx command will cause a jump to the next error in the list.
If there are no further errors in the list it will return a status
code 20.

BINITERROR

BINITERROR

This ARexx command will cause a jump to the first entry in the error
list. If no error exists it will return a status code 20.

Barfly

136 /144

1.262 Barfly.guide/UA_COMP

Compatibility

Fortunately BASM can’t be 100% compatible to every assembler on
the amiga market. Thus you can expect problems with different
sources. In general you can expect problems with commands that
don’t belong to a standard like option commands. Furthermore you
should also be careful with sources that directly depend on the
assembler implementation. Because BASM is a l1-Pass Assembler in
the normal mode with an additional backpatch phase you shouldn’t
define symbols that can’t be resolved at once. An ideal example
for this practice is the Xoper2.2 Source that was developed with
the PD Assembler A68k. While assembling with BASM the assembler
detects that a not defined symbols is accessed through the SET
command. Generally this should cause an error at once but
unfortunately A68k doesn’t show anything and uses the last value
cmdnum.

ADDCMD MACRO

cmdnum set cmdnum+1
dc.b \1,0
ENDM

jHere it’s using ‘cmdnum’ although
;the symbol wasn’t defined yet
addqg #1,d2
cmp . w #cmdnum, d2
bne.s 1s

;Here the cmdnum is first defined
cmdnum set 0
commds ADDCMD ’time’

ADDCMD 'taskpri’

ADDCMD ’"info’

ADDCMD ' pri’

ADDCMD ' flush’

of

Because the A68k is a 2-Pass Assembler he can assemble this Source

without problems.

Another Problem is that the assembler argument parser doesn’t

detect Overflow because of speed reasons. I don’t think it’s worth

Barfly 137 /144

it...if you differ tell me your opinion.

The assembler doesn’t support the following motorola syntax bugs
because of the internal structure of the parser it would cause
major problems in the multi-pass mode.

symbol: equ O
symbol: equr dO

C-Compiler Assembler

If you use Basm as a DASM replacement you have to run Basm with the
option -OAS to activate the Smalldata mode. If you wanna emulate the
advanced Link,UnLink, Movem optimizing DASM supports you have to use
the options -0,-0G,-0Dh,-0Di,-0ODj. The option -0OG is needed because
the link stackframe register list symbols are defined after the commands
so the assembler doesn’t know them in the 1 pass mode. Sorry...i had
to disable this mode because 1 later detected that i have to keep track
of the used registers. I’1l try to fix this in a later version

1.263 Barfly.guide/UA_LITERATURE

Literature

KEEKXXKRK KKK
% [Addison Wesley] RKM Libraries 2.04,CATS
* [Addison Wesley] RKM Devices 2.04,CATS
* [Addison Wesley] RKM Autodocs\&Includes 2.04,CATS
* [Addison Wesley] RKM Hardware 2.04,CATS
* [Addison Wesley] RKM Styleguide,CATS
* [Addison Wesley] RKM Libraries 1.1,CATS
* [Addison Wesley] RKM Intuition 1.1,CATS
* [Addison Wesley] RKM Exec 1.1,CATS
* [Addison Wesley] RKM Hardware 1.1,CATS
* [Edotronik] Kommentiertes Rom-Listing 1,Dr. Ruprecht
* [Edotronik] Kommentiertes Rom-Listing 2,Dr. Ruprecht

* [Edotronik] Kommentiertes Rom-Listing 3,Dr. Ruprecht

Barfly 138/ 144

* [Ralph Babel] Guru Book, Selbstvertrieb

1.264 Barfly.guide/UA_SOFTWARE

Software
*kk kK kKKK

For the development of Barfly the following programs were used:
* [CATS] Developer CD V2.0
* [B.Hawes] WShell V2.0

* [M.Sinz] Enforcer

* [C.Scheppner] Mungwall

* [SAS Institute] SAS/C

* [GNU] GCC

* [ASDG] CED

* [Georg Hessmann] PasTex
* [Stefan Stuntz] MFR 2.0d
* [Mathias Scheler] Filer

* [Matthew Dillon] DNet

1.265 Barfly.guide/UA_EA

Assembler Addressmodes

kA khhkhkhkhkhkkhkkhkrkhkrxkhkkkkx

o —————— t————— +
| Notation | Description
o o +
F——————— o +
| EA | Effective Address \
| Dn | DO...D7 \
| An | A0...A7

| Xn | p0...D7, AO...A7 \
| .b | Operand Width 8Bit |
| W | Operand Width 16Bit \
| .1 | Operand Width 32Bit \
| size | w,1

| Size | b,w,1

Barfly

139/144

| Scale | 1,2,4 or 8
| Xn.sizexScale| 68000-10 only Scale 1. |

Data register direct
Syntax: Dn

Address register direct
Syntax: An

Address register indirect
Syntax: (An)

Address register indirect with postincrement
Syntax: (An)+

Address register indirect with predecrement
Syntax: - (An)

Address register indirect with offset
Syntax: bd.w(An)

Address register indirekt with index and offset
Syntax: bd.b(An,Xn{.SizexScale})

Address register indirect with index and offset
Syntax: (bd,An,Xn{.SizexScale})

Address register indirect with index and offset
Syntax: (bd.b,An,Xn{.SizexScale})

Address register indirect with index and base displacement
Syntax: ({bd.size{,An{,Xn{.Size{*Scale}}}}})

Indirekter Memory Addressierung mit postindex
Syntax: ({[{bd.size{,An}}]}{Xn{.Size{xScale}{,od.size}}})

Indirekter Memory Addressierung mit preindex
Syntax: ({[{bd.size{,An}}{,Xn{.Size{*xScale}]}{,od.size}}})

PC Indirect
Syntax: (PC)

PC Indirect with offset
Syntax: bd.w(PC)

PC Indirect with index and offset
Syntax: bd.b(PC,Xn{.Sizex*Scale})

PC Indirect with index and offset
Syntax: bd.b (ZPC,Xn{.SizexScale})

PC Indirect with index and base displacement
Syntax: ({bd.size{,PC{,Xn{.Size{*Scale}}}}})

PC Indirect with index and base displacement
Syntax: ({bd.size{,ZPC{,Xn{.Size{*Scale}}}}})

Barfly

140/ 144

PC Indirect memory Addressing with post-index
Syntax: ({[{bd.size{,PC}}]}{,Xn{.Size{*xScale}{,od.size}}})

PC Indirect memory Addressing with post-index
Syntax: ({[{bd.size{,ZPC}}]1}{,Xn{.Size{*xScale}{,od.size}}})

PC Indirect memory Addressing with pre-index
Syntax: ({[{bd.size{,PC}}{,Xn{.Size{xScale}]}{,od.size}}})

PC Indirect memory addressing with pre-index
Syntax: ({[{bd.size{,ZPC}}{,Xn{.Size{*xScale}]}{,od.size}}})

Absolut short
Syntax: bd.w

Absolut long
Syntax: bd[.1]

Immediate Data
Syntax: #xxx

Addressmode Examples

To avoid some problems here are some small examples how addressmode
have to build up.

x=5$40

y=$400
move.b (x,A0,D2.W),DO
move.b x(A0,D2.W),DO

;Both lines are correct

; (x,a0,d2.w) is optimized internal to (x,a0,d2.w).
;For more information please check the chapter about
;Optimizing Direct Addressmodes.

move.b (y,A0,D2.W),DO
move.b vy (AO,D2.W),DO

;Now you get 2 errors, because y is not an 8bit word.
; These 2 lines shows the correct version.

move.b (y.w,A0,D2.W),DO
move.b (y.w,A0,D2.W),DO

;or

move.b (y.1l,A0,D2.W),DO
move.b (y.1l,A0,D2.wW),DO

141/ 144

Barfly

de/UA_OPCODES

y.gui

1.266 Barfl

680xx Opcode Overview
kkhkAkhkkhkkhkhkkhkkhkhkkhkkhArkhkhhkkxk*k

s St

68000 68010 68020 68030 68040 68060 6888x |

Size

Opcode

N N

X

unsized |

XX XX X X X X X X X X X XX X XX
XX XX X X X X X X X X X XX XX
T C O O T T T O o}
O 000 O0O oo 0]
— L s B e M M M N N N N N N N N N —
[S oA A e eH A A S
2 EAEEE A0 00000004AA903232
[O c I e I o I « i «H « I « I« B GG « G
Q0 Q0 000000000333 33333003020
o4 P 0 n PP £
ko) o' @© A X - o4O XH SO0 ®n P PP A o~
OO0 T T T T T T Y4090 0 0H-A P O 0”0+ N ®n
QT T T TV S SN ®® OO0V OUHHWYWWYWHWWYM®npP OGO
M © © © O C.Q.Q00Q0Q00000000.0000

— — o~
]
Q Q 2 0.0 Q9

© - £ N
I OTRN O TRy o PR o PR O
— £ E € € €
O U 0O U UL O

unsized |

cpushs$~1$

eori/sr$”1$

142/ 144

Barfly

X b
X XX XX X X X X X X X XX X X X X X X X X X X XX X X X X XX XX X X X X X
b b
~N
XXXx2xxx222xx222xxx2222xx22222xxx2x:xxxxxxx2 NX X X N AN AN ANNN X X
b b
XX XX AN X X X AN X X AN X X X XANNNNNNNNNNNX X XA X XX X X X X XA NX X X N NN NNN X X
b
b
— " o
—
||| < - — — — -
vy vy
0] —
— Q, c — "] o < — > (]
< g X © N o O O 0 0 g 0] w 0 3 - 0 +
n 0 n T T & & & < 0 > > X X 0 E 4 S g N O > > 00 — o o + Q Q9 0o+ g O S 0P oYy
Q n QO Q 0TV TV T-A L O,®N” ®NWOU P»>»-H-A 00 PP PPLOOOOOT >0O0P>>—43 30009 E LA 33 P>OCHHC G g Y4 O
P O ©C©COUT @mCM® PP O E O O0QHT T LD OVLOLS & OO0 0000 E EO0O03TEE LS S O0OVOVLLI3I®N”®N®OOLUL OO-H--H-A O 0
X @ W T © @ ®n T oo CcC.Q 000V T NTOLLOLOOHAAAHAAEE®N®TEEE NT S ®NT G Y Y NN ®NDT NN NN NN OO N
00 JR T U T N T e VB U B N B B

143 /144

Barfly

XX X X XX

X AN AN AN XA X X X X X X X X X X X

X AN AN A X XA X X X XX XX X X X

T T O

O 0 0

N N N — o~

— A A <o~ o~

n N n — 2 2 2 A

c o q < SRS

5 3 34 2 Q Q0 Q0 =4

X X

s e} o ® Q,
Y < PO FERNoY] @ O
oc g o P OO0 ~Mp [(ONORNO]
n ©C ©C 0O 494 0 24 O 4o n~A49> > >
TP PPLPPPAENOHQQN OO OO0
HH H Y H HH A A A A A A E E E

movec$”™1$

b,w,1

moves$™1l$

e} o
0] [0)
—~ — N - 4 < N
|
— 2 2 m 2 2 2 m
2 2 Q00030003
O
—
O n 3 0T b LY
>4 <4 0 OO0 QP H O ®©
0339 0 0 O0O0 Y 4 T O
EEE CcCcocgc oo QO

unsized

unsized |
b,w,1

stop$”1$

Barfly 144 /144

subx	b,w,1	X X X X X X
swap	w	X X X X X X
tas	b	X X X X X X
trap	unsized	X X X X X X
trapcc	2 ,w,1	X X X X
trapv	unsized	X X X X X X
tst	b,w,1	X X X X X X
unlk	unsized	X X X X X X
unpk	unsized	X X X X
Fom—— Fo———— o +

$”~1$ Supervisor instruction
2 These are software-supported instructions on the 68040 and 68060

	Barfly
	Barfly.guide
	Barfly.guide/BI_CRIGHT
	Barfly.guide/BI_REG
	Barfly.guide/IN_PURPOSE
	Barfly.guide/IN_SYSR
	Barfly.guide/IN_INST
	Barfly.guide/OT_UPD
	Barfly.guide/OT_SUP
	Barfly.guide/OT_HIST
	Barfly.guide/OT_FUT
	Barfly.guide/OT_ACK
	Barfly.guide/ASoft
	Barfly.guide/BDebugTop
	Barfly.guide/UB_COMW
	Barfly.guide/UB_REGW
	Barfly.guide/REGW_Window
	Barfly.guide/REGW_LocalMenus
	Barfly.guide/REGW_PublicMenus
	Barfly.guide/UB_FPUW
	Barfly.guide/FPUW_Window
	Barfly.guide/FPUW_LocalMenus
	Barfly.guide/UB_DISSW
	Barfly.guide/DISSW_Window
	Barfly.guide/DISSW_LocalMenus
	Barfly.guide/UB_MEMW
	Barfly.guide/MEMW_Window
	Barfly.guide/MEMW_LocalMenus
	Barfly.guide/UB_COPPW
	Barfly.guide/COPPW_Window
	Barfly.guide/COPPW_LocalMenus
	Barfly.guide/UB_STRUCTW
	Barfly.guide/STRUCTW_Window
	Barfly.guide/STRUCTW_Format
	Barfly.guide/STRUCTW_LocalMenus
	Barfly.guide/UB_SOURCEW
	Barfly.guide/SOURCEW_Window
	Barfly.guide/SOURCEW_LocalMenus
	Barfly.guide/UB_SNOOPW
	Barfly.guide/SNOOPW_Window
	Barfly.guide/SNOOPW_LocalMenus
	Barfly.guide/UB_BREAKW
	Barfly.guide/BREAKW_Window
	Barfly.guide/BREAKW_LocalMenus
	Barfly.guide/UB_WATCHW
	Barfly.guide/WATCHW_Window
	Barfly.guide/WATCHW_LocalMenus
	Barfly.guide/UB_CHECKW
	Barfly.guide/CHECKW_Window
	Barfly.guide/CHECKW_LocalMenus
	Barfly.guide/UB_ARGUMENTS
	Barfly.guide/UB_TECHINFOS
	Barfly.guide/UB_CONFIG
	Barfly.guide/CO_TOOLTYPES
	Barfly.guide/CO_BARFLYFD
	Barfly.guide/CO_CONFIGCMDS
	Barfly.guide/CC_REGW
	Barfly.guide/CC_FPUW
	Barfly.guide/CC_DISSW
	Barfly.guide/CC_MEMW
	Barfly.guide/CC_COPPW
	Barfly.guide/CC_STRUCTW
	Barfly.guide/CC_SOURCEW
	Barfly.guide/CC_BREAKW
	Barfly.guide/CC_WATCHW
	Barfly.guide/CC_CHECKW
	Barfly.guide/CC_SNOOPW
	Barfly.guide/CC_INFOW
	Barfly.guide/CC_OTHERW
	Barfly.guide/CM_MISC
	Barfly.guide/CM_TASKSTACK
	Barfly.guide/CM_TASKPRI
	Barfly.guide/CM_SETBREAK
	Barfly.guide/CM_CLICKBREAK
	Barfly.guide/CM_SHOWMEM
	Barfly.guide/CM_DEFCOMMAND
	Barfly.guide/CM_AUTODOCDIR
	Barfly.guide/CM_AUTODOCALIAS
	Barfly.guide/CM_AREXXPATH
	Barfly.guide/CM_AREXXINPUT
	Barfly.guide/CM_AREXXOUTPUT
	Barfly.guide/CM_AREXXCMD
	Barfly.guide/CM_EXECMD
	Barfly.guide/CM_LOADINCLUDE
	Barfly.guide/CM_ADDSTRUCT
	Barfly.guide/CM_CLICK2FRONT
	Barfly.guide/CM_CENTERW
	Barfly.guide/CM_SCREENFRONT
	Barfly.guide/CM_OPENSCREEN
	Barfly.guide/CM_OPENPSCREEN
	Barfly.guide/CM_SCREENFONT
	Barfly.guide/CM_QUIETEX
	Barfly.guide/CM_DISXP
	Barfly.guide/CM_TRACEBREAK
	Barfly.guide/CM_CRASHEDTASK
	Barfly.guide/CM_CATCHHIT
	Barfly.guide/CM_CACHEFILE
	Barfly.guide/CM_POPPATH
	Barfly.guide/CM_AUTOACT
	Barfly.guide/CM_NOBREAKTERRORS
	Barfly.guide/UB_AREXX
	Barfly.guide/UB_HOWTOUSE
	Barfly.guide/BAsmTop
	Barfly.guide/UA_ASSEMBLER
	Barfly.guide/UA_SYNTAX
	Barfly.guide/UA_DATATYPES
	Barfly.guide/UA_OPERATIONS
	Barfly.guide/UA_INST
	Barfly.guide/AI_HUNK
	Barfly.guide/HU_SECTION
	Barfly.guide/HU_CODE
	Barfly.guide/HU_DATA
	Barfly.guide/HU_BSS
	Barfly.guide/HU_CSEG
	Barfly.guide/HU_DSEG
	Barfly.guide/HU_IDNT
	Barfly.guide/HU_IDENTIFY
	Barfly.guide/HU_BDEBUGARG
	Barfly.guide/HU_SMALLDATA
	Barfly.guide/HU_XREF
	Barfly.guide/HU_XDEF
	Barfly.guide/HU_GLOBAL
	Barfly.guide/HU_PUBLIC
	Barfly.guide/HU_OUTPUT
	Barfly.guide/HU_OBJFILE
	Barfly.guide/HU_EXEOBJ
	Barfly.guide/HU_LINKOBJ
	Barfly.guide/HU_ORG
	Barfly.guide/HU_ADDSYM
	Barfly.guide/HU_DEBUG
	Barfly.guide/AI_SYMBOL
	Barfly.guide/SY_CARGS
	Barfly.guide/SY_RS
	Barfly.guide/SY_SO
	Barfly.guide/SY_FO
	Barfly.guide/SY_RSRESET
	Barfly.guide/SY_RSSET
	Barfly.guide/SY_CLRSO
	Barfly.guide/SY_CLRFO
	Barfly.guide/SY_SETSO
	Barfly.guide/SY_SETRS
	Barfly.guide/SY_SETFO
	Barfly.guide/SY_RSVAL
	Barfly.guide/SY_SOVAL
	Barfly.guide/SY_FOVAL
	Barfly.guide/AI_DATA
	Barfly.guide/DA_ALIGN
	Barfly.guide/DA_CNOP
	Barfly.guide/DA_PAD
	Barfly.guide/DA_QUAD
	Barfly.guide/DA_EVEN
	Barfly.guide/DA_ODD
	Barfly.guide/DA_DC
	Barfly.guide/DA_DB
	Barfly.guide/DA_DW
	Barfly.guide/DA_DL
	Barfly.guide/DA_UB
	Barfly.guide/DA_UW
	Barfly.guide/DA_UL
	Barfly.guide/DA_SB
	Barfly.guide/DA_SW
	Barfly.guide/DA_SL
	Barfly.guide/DA_PB
	Barfly.guide/DA_PW
	Barfly.guide/DA_PL
	Barfly.guide/DA_NB
	Barfly.guide/DA_NW
	Barfly.guide/DA_NL
	Barfly.guide/DA_DS
	Barfly.guide/DA_DSB
	Barfly.guide/DA_DCB
	Barfly.guide/DA_BLK
	Barfly.guide/DA_ASCII
	Barfly.guide/DA_CSTRING
	Barfly.guide/DA_DSTRING
	Barfly.guide/DA_PSTRING
	Barfly.guide/DA_ISTRING
	Barfly.guide/DA_BITSTREAM
	Barfly.guide/DA_SPRINTX
	Barfly.guide/AI_LISTING
	Barfly.guide/LI_LIST
	Barfly.guide/LI_NOLIST
	Barfly.guide/LI_PRINTX
	Barfly.guide/LI_LISFILE
	Barfly.guide/AI_STRUCTURE
	Barfly.guide/ST_MACRO
	Barfly.guide/ST_ENDM
	Barfly.guide/ST_MEXIT
	Barfly.guide/ST_FAIL
	Barfly.guide/ST_END
	Barfly.guide/ST_IF
	Barfly.guide/ST_IFD
	Barfly.guide/ST_IFND
	Barfly.guide/ST_IFV
	Barfly.guide/ST_IFNV
	Barfly.guide/ST_IFMACROD
	Barfly.guide/ST_IFMACROND
	Barfly.guide/ST_IFCMACROD
	Barfly.guide/ST_IFCMACROND
	Barfly.guide/ST_IFC
	Barfly.guide/ST_IFNC
	Barfly.guide/ST_IFCC
	Barfly.guide/ST_ELSE
	Barfly.guide/ST_ELSEIF
	Barfly.guide/ST_ENDC
	Barfly.guide/ST_ENDIF
	Barfly.guide/ST_REPEAT
	Barfly.guide/ST_REPT
	Barfly.guide/ST_PROCSTART
	Barfly.guide/ST_PROCEND
	Barfly.guide/AI_FILE
	Barfly.guide/FI_INCDIR
	Barfly.guide/FI_INCPATH
	Barfly.guide/FI_INCLUDE
	Barfly.guide/FI_INCLUDE2
	Barfly.guide/FI_INCBIN
	Barfly.guide/FI_INCBIN2
	Barfly.guide/FI_IBYTES
	Barfly.guide/FI_DSBIN
	Barfly.guide/FI_DOSCMD
	Barfly.guide/FI_PURE
	Barfly.guide/AI_MISC
	Barfly.guide/MI_TRASHREG
	Barfly.guide/MI_SUPER
	Barfly.guide/MI_MCXXX
	Barfly.guide/MI_BOPT
	Barfly.guide/AI_META
	Barfly.guide/ME_MB
	Barfly.guide/ME_MW
	Barfly.guide/ME_ML
	Barfly.guide/ME_MQ
	Barfly.guide/ME_XOR
	Barfly.guide/ME_XORI
	Barfly.guide/ME_BHS
	Barfly.guide/ME_BLO
	Barfly.guide/UA_MACROS
	Barfly.guide/UA_HMACROS
	Barfly.guide/HM_REG
	Barfly.guide/HM_BRANCH
	Barfly.guide/HM_FOR
	Barfly.guide/HM_NEXT
	Barfly.guide/HM_IF
	Barfly.guide/HM_ELSE
	Barfly.guide/HM_ENDIF
	Barfly.guide/HM_WHILE
	Barfly.guide/HM_ENDWHILE
	Barfly.guide/HM_CALL
	Barfly.guide/HM_RETURN
	Barfly.guide/HM_DEF
	Barfly.guide/HM_ENDDEF
	Barfly.guide/HM_LET
	Barfly.guide/UA_SYMBOLS
	Barfly.guide/UA_OPTIMIZING
	Barfly.guide/OP_DIRECT
	Barfly.guide/OP_ADDRESS
	Barfly.guide/OP_OPTIMIZE
	Barfly.guide/OP_REGISTER
	Barfly.guide/OP_HOWDOESITWORK
	Barfly.guide/OP_PROBLEMS
	Barfly.guide/UA_PRE
	Barfly.guide/UA_CLI
	Barfly.guide/UA_AREXX
	Barfly.guide/UA_COMP
	Barfly.guide/UA_LITERATURE
	Barfly.guide/UA_SOFTWARE
	Barfly.guide/UA_EA
	Barfly.guide/UA_OPCODES

