MrC[pp] Specific #Pragmas

The Additional #pragmas added to
MrClpp]

Ira L. Ruben & Fred Forsman November 8, 1998
Apple Computer, Inc. Revision 3.4

Table Of Contents

1.0 New Pragmas FOr MrC[PpP] == OVEIVIEW......ccueieeiieiie e eie e eie e sse st sseessee e snaesnee e 3

1.1 General Syntax for the 'list’ FOrMScceeceeieeece e 4

2.0 Code POSItIONING Pragmas........cccveieeieerieeseeseeseeseeseessasssesesesssssssesssssssesssesssesssesssesssenns 4

2.1 INNNING PragiMascccieiieiieiieseese e esie et sae e sses e s e e sseesaeesseesseesseenseensesnsesnes 5

2.1.1 HpragmMaNOJiNIINe........cccueeieeeee e 5

2.1.2 #pragma[NoJiNliNE SITE.....cccveieeie e 7

2.2 Code Block Placement Pragmascccceeieeiieiieeersie e seesee s see e see s sneesneesneas 8

2.2.1 #pragma seldom | QULOFIINE.........cceeeeiieeie e 9

PG TS =0 .11 = £ o o TS 10

2.3.1 HPragmMa SEOMENToeiiiiieeiiiie et e et e s e st e s s e s b e e s ba e e s sbe e e s naneeesnneens 10

3.0 CFIM PragMaScooueiuiriieuieitesiesieeee sttt e e st bttt sbe st e b sae s e e nbe st e s be e e et e saesreeneenne e 11

3.1 HPragmMEa EXPOITeeiiieie ittt e e b e e r e e e enneeeaa 12

A << =0 0= | 0]] A 13

TG T =< o= 0 0= W 1= = 14

4.0 DireCt-TO-SOM PragmaS.........ccoueiiuriieriieiiesieaieesieesseesssesssesssessseasseessesssessseessesssesssesssenns 15

4.1 #pragma SOMREIEASEOITEScoveieee e nre e 15

4.2 #pragma SOMCIESSV EFSION.....c..eeiueeiiiesiesieseeseeseeseesreesee e sseessessseeeseesseesneesnenans 15

4.3 HpragmMa SOMMELACIESSccuvevieeieeieeie e eieeseee e e see s e e e e sreesneesneesreens 16

4.4 HpragmMa SOMCaAllSLYIEccueeeeeeeeeseee e 16

4.5 #pragma SOMMOAUIENGIME..........ccveiieiie e re e nneen 16

4.6 #pragma SOM CheCKENVIFONMENL.........cccveieeieerieeerseeeieeseeesteesseessessneeeseenseenseens 17

4.7 #Hpragma SOM CallOptimiZationcccveveereerieeseereesee e see e see s e neeens 18

5.0 AlIVEC PragmaS........ccieeiieiieiiesiesieseete e e eseeste e seesseesaeesseessessnessnessssesnseensesnsesnsennsenns 18

5.1 #pragmaaltiveC MOcceeiieiieece e 18

5.2 #pragmaaltiVeC COUEQEN........cccueiieeieeie e e e e te et et e reeneeeeene e 19

5.3 #PragMaalliVEC VISAVE........ccueiieieeiieeiiesieeseesteeseesteesteesseesseesseesseenseenseeseeseensennes 19

6.0 OPLION PragiMascoceeiieieeieesieesieeieeteete e e sseesteesseesaeesseeseenseentesseeaneessessneesseesseenes 20

6.1 H#PragMaoptioNS ligN.......ceieeiieiieeie et este e s e e e e e e et eenre e nr e e e e nnee e 20

6.2 H#Pragma optioNS INIINE.......cccviiieiieieesie e neeee s 20

SRCTIE =20 ="o [0 0F= 0] o) 0] 0 S0 o) BRSSO 21

7.0 MiSCElaN@OUS Pragmascoueiueeiieiiesieesieesieesteesteeteeaeeae e saesnaesneesneesneesseesseenseenseenes 23

8 R = o 0= 10T 23

7.2 HPragmatraCeaCKcccevveiiiii e 23

7.3 HPragMaigNOre 10ccveeieeieeie e eeeeee st e st te e e e e ae e eeereesreesseeeneesreesseensennes 24

< = o 0= 0[S0 | S 25

7.5 #pragma precompile_target, #pragma dumpcccveeeeeeeerieereesee e 26
MrCl[pp] Pragmas i Copyright Apple Computer, Inc. 1995-1998

IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

Revision History

Revision Date Comments
1.0 ? Origina paper listing code positioning pragmas only
2.0 ? CFM pragmas added.
2.1 2/16/96 ‘reset’ option added to CFM pragmas
3.0 4/16/96 Reorganized and made this document a repository for al pragmas added to

MrC[pp]. Therefore, the traceback, unused, and DTSOM pragmas were
incorporated into this document. The document was “formalized” with a TOC and
thisrevision history.

3.1 4/24/96 Added options pragmas and removed the single quotes around all keywords.

32 10/9/96 New SOM pragmas - SOMM oduleName, SOM Call Optimization,

SOM CheckEnvironment.

New pragmas - digjoint, ignore.

3.3 11/15/96 | precompiler target and dump pragmas added.
3.4 11/8/98 AltiVec pragmas added.
MrCl[pp] Pragmas ii Copyright Apple Computer, Inc. 1995-1998

IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

1.0 New Pragmas For MrC[pp] -- Overview

This document describes the new pragmas that have been added to MrC[pp]. They are divided
into the following major categories):

Code Positioning Pragmas
® #pragma [no]inline_func [list] <func_list>
® #pragma [no]inline_site [list] <func_list>
® #pragma sel dom
® #pragma outofline
* #pragma segnent <segname> [[list] <func_list>]

CFM Pragmas
® #pragma export on | off | reset | [list] <name_list>
® #pragma inport on | off | reset | [list] <name_list>
® #pragma internal on | off | reset | [list] <name_list>

Direct-To-SOM Pragmas
* #pragnma SOVRel easeOrder (nethod;, method,, ..., nethod,)
® #pragma SOMCl assVersion (classNane, maj or Versi on, m norVersion)
* #pragnma MetaC ass (cl assNanme, netaC assNane)
® #pragma Call Style [QIDL
* #pragma SOWbdul eNane id;::idy::...::id,
® #pragma SOMCheckEnvironment on | off | reset
® f#pragma SOMCal | Optim zation on | off | reset

AltiVec™ Pragmas
® #pragnma altivec_nmodel on | off | reset
® #pragma altivec_codegen on | off | reset
® #pragma altivec_vrsave on | off | reset | allon

Option Pragmas
® #pragma options align [=] mac68k | power | byte | packed | reset

® #pragnma options inline [=] on | all | none | off | O| 2| 2| 3| 4| 5|

® #pragma options opt [=] off | none | local | size | speed[, <nodifiers>]

Miscellaneous Pragmas
® #pragnma traceback [list] <name_list>
® #pragma unused [list] <name_list>
® #pragma ignore id,...
® #pragma disjoint [list] <disjoint-list>

The code positioning pragmas give the user more control over the positioning of code generated
by the compiler or placed by the linker. The CFM pragmas are the CFM 68K counterparts to

™ AltiVec is aregistered trademark of Motorola, Inc.

MrCl[pp] Pragmas 3 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

reset
reset

allow for more efficient code generation for the Macintosh CFM DLL model. The Direct-To-
SOM are, of course, needed for MacSOM support. The option pragmaallow for overriding
selected command line options. Finally, the miscellaneous category isfor various other pragmas
that don't fall into the other categories.

1.1 General Syntax for the ‘list’ forms
Many of the MrC[pp] pragmas have a“list” form, e.g.,
#pragma [no]linline func [list] <func_|ist>

Thekeyword | i st isaways optional unless no other <f unc_l i st > followsit. The
<func_li st > takes two forms,

<func_list> ::= <nane_list>] (<nane_list>)

In other words, a<f unc_| i st > may optionally be enclosed in parentheses!, where <name_l i st >
isalist of function names of the form,

<nane_list> :: <func> | <name_list>, <func>

<func> [::]<id>| <nmenber> | <ctor> | <dtor> |

<operator> | <tenpl ate> (only <id> for Q
<nmenber > = <id>:: <id>| <nenber> :: <id>
<ctor> = <id>:: <id> (<id>s are the same)
<dt or > = <id>:: ~<id> (<id>'s are the sane)
<oper at or > = operator <op>
<t enpl at e> = <id> < <tenplate_args> > :: <id> |

<id> < <tenplate_args> > :: <nenber>

C++ names can beasimpleid (asin the C case), or amember name. Member names, in turn,
can taketo form of ctors (e.g., A::A), dtors (e.g., A:~A), simple members (e.g., A::foo), operators
(e.g., A::operator<< Or B::operator int*), and template members (e.qg., T<char, 2>::fo0).

If the first member of the <nane_I i st >islist:: <i d>, thenan ambiguity existsin determining
whether toignore‘list’ asa“noise” word. MrC[pp] electsto treat ‘list’ as“noise” in that case. If
l'ist::<id>must be specified, then it cannot be specified as the first member or the optional
parentheses. may be used.

Depending on the specific pragma, there may be further restrictions placed on the syntax and/or
semantics. For example, only simple function names, no C++ member names, or a name cannot
be referenced or defined. Such restrictions where appropriate in the descriptions of the
individual pragmas.

2.0 Code Positioning Pragmas

The code positioning pragmas give the user more control over the positioning of code generated
by the compiler or placed by the linker. They are grouped into three general categories:

¢ Inlining pragmas

1 The SOVRel ease der pragmais shown using the parenthestical form. That's done becauseit is the “standard” syntax for
that pragmain order to be compatible with other diret-to-SOM compilers.

MrCl[pp] Pragmas 4 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

¢ Code block placement pragmas
* Segmentation

2.1 Inlining Pragmas

The [no]inline_func and [no]inline_site pragmas control inlining of function bodies. Y ou have
the choice of inlining all selected bodies or just inlining them for specific calls.

2.1.1 #pragma [no]inline -- Function body inlining of all calls
The inline_func pragma specifies functions that are to be candidates for inlining are all placesin
the source following the pragma. Conversely, the noinline_pragma specifies that its functions
are not to be inlined even if explicitly specified for inlining using the inline keyword in C++.
Syntax #pragnma [no]inline_func [list] <func_list>

See section 1.1 for a description of thelist form.

Semantics

(1) Any function specified on the function list must not be defined or called. Declarations,
however, are permitted.

Example 1:
class T {
publi c:
menber 1() ;
menber 2() {}
menber 3() ;
menber 3(int);
1
void foo(); /1 an explicit declaration

void T::menber1()

bar () ; [l an inplicit declaration and call

}

#pragma inline_func foo, bar, T.:menberl, T:.:menber2, T:.:nenber3

In the example pragma the valid function references are foo and T::member3. None of
these functions are defined, only declared. On the other hand the references to
T::memberl and T::member2 areinvalid since these are defined. The reference to bar is
alsoinvalid sinceit was called.

Note, invalid references and syntax errors are reported as errors (as opposed to warnings).
References to existing function (member) declarations are validated that the reference
truly isafunction.

n Inthe early design of the [no]inline_func pragmas it was decided that al references to any
of the functions were to be considered an error. This requires that the pragma be positioned
even before declarations of functions referenced by the pragma. 1t also means no member
functions could be specified if the class definition existed prior to the pragma. From an

MrCl[pp] Pragmas 5 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

implementation point of view the pragma reports a“reference” error for afunction if the
function or it's class are “seen” in the symbol table.

Thisis considered overly restrictive. Aslong asthere are no definitions (calls are restricted in
either design) to the functions, it is sufficient to alow them to be specified by the pragmas. It
also means that the pragma can be placed with the implementation rather than the (header)
declarations. Further, itis more consistent with the requirement that template definitions
exists (but not their instances) prior to specifying an instance function in the pragma. Thereis
no way to support templates without this requirement. o

(2) Template references require that the template definition exist prior to the pragma. That's
the only way the references to instances can be parsed. However, the specified instances
must not exist.

Example 2:

tenplate <class T, int N> class TEMP {
public:
TEMP(T i) {i = N}
T foo(T x) {return x+i +N;}

int i;
1
tenplate <class T> T TempFunc(T Xx)
{
return x;
}

TEMP<int, 1> g;
#pragma inline_func TEMP<int, 1>::foo, TEMP<int,2>::foo, TenpFunc
voi d pl aceFor Tenpl at es()
TEMP<i nt, 2> x(1);
} char ¢ = TempFunc('x");

The pragmareference to TEMP<int,1> isinvalid since that instance is already defined (Q).
The TEMP<int,2> islegal since the instances are not referred to until the procedure that
follows the pragma. The reference to TempFunc is similarly valid for the same reason. [t
shows atemplate function. These are referred to exactly like any other function.

(3) A vadlid reference to afunction implies that function is a candidate for inlining wherever it
isused.

Example 3:
void foo();
#pragma inline_func foo
voi d bar ()

foo();

MrCl[pp] Pragmas 6 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

(4)

(5)

(6)

(7)

(8)
2.1.2

void foo() {}
voi d main()
foo();

foo() isacandidate for inlining in both bar() and main(). Note the prototype for foo() is
required in C++ and, as discussed in (1) above, may be either before or after the pragma.
A reference to afunction in C++ implies areference to all of itsoverloads, if any. In
example 1, thereferenceto T::member3isareference to both T::member3() and
T::member3(int).

Any valid function specified in the [no]inline_func pragma that has not been defined by
the end of the compilation unit will be reported as “undefined” warning.

Duplicate references to the same functions are reported as awarnings. Referencesto
functions specified for inline_func are reported as an error if an attempt is made to define
them for noinline_func and vice versa.

If there is aresolution conflict between the inline_func pragma and the auto-inliner, then
the pragmawill override the analysis of the auto-inliner.

Turning inlining or optimization off from the command line overrides these pragmas.

#pragma [no]inline_site -- Function body inlining of specific calls

Theinline_site pragma specifies that its specified functions are to be inlined only within the
blocksthat it isplaced. The noinline_site pragma indicates that the specified functions are not to
be inlined in the containing block.

Note the difference between [no]inline_func and [no]inline_siteisthat [no]inline_func basically
refers to function definitions while [no]inline_site refersto specific cal sites.

Syntax #pragna [nolinline_site [list] <func_list>

The syntax for the [no]inline_site pragmaisidentical to inline_func described above.

Semantics

(1

(2)

3

(4)

The [no]inline_site pragma may only be used within a function (brace-enclosed block)
and applies only to that block and all blocks nested withinit.

The [no]inline_site pragma may not be used in template (member) function definitions.
Template definitions can be viewed basically as macro definitions. As such, preprocessor
statements like #pragma are processed as seen. If it occurs within atemplate definition it
isnot in afunction. Thus statement (1) applies.

Inner blocks with their own [no]inline_site pragmas override enclosing block
[no]inline_site pragmas.

Duplicate references to the same functionsis reported as awarning. Referencesto
functions specified for inline_site are reported as an error if an attempt is made to define

MrCl[pp] Pragmas 7 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

them for noinline_site and vice versain the same block.

(5) Referencesto defined or declared functions are validated (e.g., they must actually be
functions). Referencesto yet-to-be-defined functions are also permitted but obviously
these are not validated.

(6) A referenceto afunctionin C++ impliesareferenceto all of its overloads.

(7) If a[no]inline_site pragma appears in the middle of a block, then only functionsin the
block from the point at which the pragma occurs are candidates for [no]inlining. The
pragma has no effect on callsin the block before the pragma.

(8 The[na]inline_site pragmas have precedence over the [no]inline_func pragmas for the
same functions.

(99 Any valid function specified in the [no]inline_site pragmathat has not been called by the
end of the block will be reported as “unreferenced” warning (at the end of the block
containing the pragma).

Example:

#pragma inline_func foo

void bar(int i, int j, int k)
if (i ==1) {
x(); /1 not explicitly inlined
#pragma inline_site x, vy, z
x(); /1 candidate for inlining
it () ==2) {
y(); /1 candidate for inlining
if (k ==3) {
#pragma noinline site y, foo
v(); /1 not inlined
foo(); /1 not inlined
Y} /13
/ 2 /1 unreferenced warning for z

In the above example, the first x() is not a candidate for inlining (assumethisaC
example) since it occurs before the inline_site pragma. They() inthe j==2 block isa
candidate for inlining but not in the k==3 block since amore local noinline_site
pragma overrides the outer one. Similarly, the noinline_site pragma overrides the
inline_func for foo. At the end of the j==2 block awarning will be issued for z since it
was not called.

(9) If thereisaresolution conflict between theinline_site pragma and the auto-inliner, then
the pragmawill override the analysis of the auto-inliner.

(10) Turning inlining or optimization off from the command line overrides these pragmas.

MrCl[pp] Pragmas 8 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

2.2 Code Block Placement Pragmas

The seldom and outofline pragmas control movement of the blocks of code containing these
pragmas.

2.2.1 #pragma seldom | outofline -- Move code locks based on anticipated
use

Seldom specifies that a block (of code) is seldom executed and that the compiler may move the
block to the end of its function (CSect).

Outoflineimplies that ablock is rarely executed and that the compiler may move the block out of
the current function (CSect). The compiler will try to generate code for the block for placement
in a separate unique Csect. The PPC Linker, in turn, can than collect these Csects and place it at
the end of the program.

Syntax #pragna sel dom
#pragma outofline

Semantics

(1) The pragmas may only be used within a function (brace-enclosed block) and applies only
to that block and all blocks nested within it (i.e., these have the same scope rules as
#pragma[no]inline_site).

(2) The seldom and outofline pragmas may not be used in template (member) function
definitions. Template definitions can be viewed basically as macro definitions. As such,
preprocessor statements like #pragma are processed as seen. If it occurs within a
template definition it is not in afunction. Thus statement (1) applies.

(3) The outofline pragma has precedence over seldom. Thus an outofline pragma in an outer
block will override any seldom pragmas in a blocks nested within it.

Example 1:
{
#pragma outofline

{

#pragma sel dom

The seldom pragmain the inner block has no effect. No warning or error is reported for
this situation.

(4) If both a seldom and outofline pragmas appear in the same block, awarning isissued and
the more recent pragma applies to that block.

(5) The pragmas apply to the entire block that contains them even if the pragma does not
appear at the beginning of the block.

MrCl[pp] Pragmas 9 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

(6) Speed optimizations like inlining may be turned off if they do not lead to smaller code
size.

Example 2:

int foo(int i)

switch (i) {
case 1: f(i);
br eak
case 2 #pragma sel dom

war ni ng(1);

{
} _
defaul t:{ #pragma outofline
fatal _error(999);
}

}
}

In the above example, case 1 is“normal” code. Case 2 isawarning condition that is
rare but possible so it isto be placed at the end of the function. The default caseisa
“this cannot happen” case and is placed in a separate Csect at the end of the program.
Note that braces are required to indicate a (nested) block. It isnot sufficient to just
place these pragmas in the switch cases. That would affect the entire switch “block”.
(7) Turning optimization off from the command line overrides these pragmas.
2.3 Segmentation

The segment macro provides for grouping of entire functionsinto “segments’ identified by
segment names.

2.3.1 #pragma segment -- Collect functions into groups

The segment macro provides for grouping of entire functionsinto “segments’ identified by
segment names.

Syntax #pragma segnent <seg_name> [[list] <func_list>]

<seg_name>
<func_list> ::

<identifier> | <string>
see #pragma [no]inline_func for syntax

Segment names may take the form of asingle identifier or a double quoted (possibly
concatenated) character string. Caseis significant.

The syntax for the <f unc_1 i st > isidentical to that described for [no]inline_func.
Semantics
(1) Thispragmamay only appear outside of any function definitions.
(2) Any function on the list must not be defined or called. See #pragma [no]inline_func for

the complete semantics on the functionsin the list since the segment functions have
identical semantics ([no]inline_funct semanticsitems 1 and 2).

MrCl[pp] Pragmas 10 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

(3) A referenceto afunctionin C++ implies areferenceto all of its overloads.

(4) For thelist form, any valid function specified in the segment pragma that has not been
defined by the end of the compilation unit will be reported as * undefined” warning.

(5) Duplicate references to the same functions are reported as a warnings.

(6) The non-list form appliesto the next function in the compilation unit and all following
functions unless changed by another non-list segment pragma.

(7) Thelist form defines the segments for specific functions and takes precedence over the
non-list form.

(8) If thestringisdefined asnull ("), the following functions are not defined for any
segment. Itiserror to specify anull string with the list form of this pragma.

(9) All function defined for a particular segment are collected together at link time to be
placed in a single common segment (should that be a common Csect here?)

Example:

#pragma segnment Segl
void a() {...} /1 ain Segl

#defi ne TWO " 2"
#pragma segnent "Seg" TWO
void b() {...} /1 b in Seg2

#pragma segnment Seg3 x, y, z

void c() {...} /1l ¢ in Seg2

void x() {...} /1l x in Seg3

void d() {...} /1 din Seg2

void y() {...} /1y in Seg3

void e() {...} /1 e in Seg2

void z() {...} /1 z in Set3

#pragma segnment ""

void f() {...} /1 not in any explicit segnent

#pragnma segnent "" u, v /1 error -- null not allowed for lists

3.0 CFM Pragmas

The CFM pragmas allow for proper and efficient code generation for the Macintosh “CFM” DLL
model. There are several goals for these pragmas:

Support the code fragment programming model.
Allow efficient code generation.
Preserve language semantics when the pragmas are not used.

All the CFM pragmas have the same following general syntax and common semantics.

MrCl[pp] Pragmas 11 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

Syntax #pragnma <cfm pragnma> <cfm pragma_opti on>

<cf m pragna> :
<cfm pragna_option> ::
<cf mnane_|ist>

<t he_nanes>

<nane>

export | inport | interna

on | off | [list] <cfmnane list> | reset
[(] <the_names> [)]

<name> | <the_names> , <nane>

<func> | <id>

The are two forms for these pragmas; the on/off modal form and the list form. In other
words,

#pragma <cfm pragma> on

#pragma <cfm pragma> of f

#pragma <cfm pragnma> reset

#pragma <cfm pragme> [list] <nane_|ist>

The list form specifies alist of variable or function names. The syntax for function
names is identical to that described for <f unc>’swhich make up the <f unc_l i st >’s
described for the [no]online_func pragmas. The syntax for a<cf m name_l i st > isthe
same asa<func_| i st > with respect to the treatment of the keyword ‘list’ and
parentheses.

Common CFM Pragma Semantics

D
()
3

(4)

(5)

(6)

(1)

(8)

(9)

This pragma may only appear outside of any function definitions.
Template references require that the template definition exist prior to the pragma.

Thelist form of these pragmas may only specify variables before they are defined or
referenced. Thus only externs are acceptable declared variablesto the list form.

Thelist form of these pragmas may only specify functions before they are defined or
called. Thus functions must be declared (explicitly through an extern or are class
member functions).

A reference to amember function in C++ implies areference to all of its overloads.
Referencesto C++ class variablesis not alowed.

Variables and functions referenced by the list forms must be “known” prior to the
pragma. They can be defined or declared. What specifically islegal dependson the

pragma.

These pragmas are never applied to file scoped symbols, i.e., those using the keyword
“static”. Specifying such asymbol in thelist form will be reported as an error by the

pragma

Subject to the specific semantics of the CFM pragma (described later), an ‘on’ CFM
pragma affects all functions and variables following the pragma up to the matching * of f".

Subject to the specific semantics of the pragmas, “inner” nested ‘on’s override or merge
with “outer” nested ‘on’s.

(10) The ‘reset’ option issimilar to the ‘off’ option except that the state is reset to what it was
at the time of the most recent corresponding ‘on’.
MrCl[pp] Pragmas 12 Copyright Apple Computer, Inc. 1995-1998

IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

3.1 #pragma export - Mark symbols as exported from the compilation unit

Syntax #pragna export on
#pragma export off
#pragnma export reset
#pragma export [list] <name_list>

Semantics

The export pragma has no effect on generated code or data. Its sole purpose isto mark
symbols as exports in the generated object file (and thusin the final executable code
fragment).

Note, if developers wish to have automatic generation of exports by the compiler and linker,
they should use the export pragmain their implementation files.

(1) Theexport pragmais never applied to file scoped symboals, i.e., those using the keyword
“static”. Specifying such asymbol in thelist form will be reported as an error by the

pragma.
(2) The export and import pragmas are orthogonal and may be applied independently.

(3) The export and internal pragmas are orthogonal for variables and may be applied
independently.

(4) Specifying export and internal for functionsis an error since these pragmas conflict with
respect to functions (export says generate a TVector while internal says don't).

3.2 #pragmaimport - Specify symbolsto be imported from another
compilation unit

Syntax #pragna inport on
#pragma i nport off
#pragma i nport reset
#pragma inport [list] <name_list>

Semantics

The import pragma indicates that a symbol isto be treated as though it were imported from
another fragment. This affects code generation for references to both variables and functions.
Imported variables are addressed indirectly. Imported functions are called using cross
fragment “glue”. Thisincludes calls within the same source file (and thus includes recursive
cals).

Developers of shared libraries are expected to use the same header file for both external clients
and their own internal builds. They should use the import pragmain this header. Clients
obviously need to treat these symbols asimports and internal builds need to treat them as
importsif they are to be updatable/patchable. Note that this says the library exports should be
tagged import in the public header. Thisis consistent with the client’s view.

(1) Theimport pragmais never applied to file scoped symbols, i.e., those using the keyword
“static”. Specifying such asymbol in thelist form will be reported as an error by the

pragma.

MrCl[pp] Pragmas 13 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

(2) Theimport and export pragmas are orthogonal and may be applied independently.

(3) Theimport and internal pragmas are mutually exclusive. The import pragmawill disable
theinternal statusif it is set.

3.3 #pragmainternal - Specify symbols specifically private to the
compilation unit

Syntax #pragna internal on
#pragma internal off
#pragma i nternal reset
#pragma internal [list] <nanme_list>

Semantics

Internal variables may be addressed directly off of the RTOC (i.e., they may be allocated
directly “in” the TOC). Internal functions may always use local calling conventions and do
not require a function descriptor (* TVector”).

The internal pragma should be used in private headers to allow optimal code generation for
variables and routines which are referenced from multiple source files and hence cannot use C
static scoping.

The internal pragma could also be conditionally applied to variables in the public header for
internal builds to get optimal code generation. The internal pragma should never be applied to
functionsin a public header.

(1) Theinternal pragmais never applied to file scoped variables, i.e., those using the
keyword “static”. Such variables are implicitly internal. Specifying such a symbol in the
list form will be reported as an error by the pragma.

(2) Internal does affect file scoped (static) functions indicating that their function descriptor
(“TVector”) may be omitted.

() Itisan error to take the address of a*“internal” function.

(4) Theinternal and export pragmas are orthogonal for variables and may be applied
independently.

(5) Specifying internal and export for functionsis an error since these pragmas conflict with
respect to functions (export says generate a TV ector while internal says don't).

(6) Theinternal and import pragmas are mutually exclusive. Theinterna pragmawill
disable the import statusiif it is set.

(7) A command line option (- i max n) is provided to supply the maximum size for which a
internal variable is a candidate for placing directly into the TOC. The default isto not
place any variables larger than 512 bytesin the TOC.

n According to the paper on which these CFM pragmas are based, i.e., “C Compiler Pragmas
for Macintosh CFM Runtime”, by Alan Lillich and Erik Eidt, thereisthe following
recommendation”

All compilers should support referencing internal variables directly off of RTOC/AS, i.e.,
allocation of variables “in the TOC”. This should be implicit for file scoped variables. There

MrCl[pp] Pragmas 14 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

should be a size threshold, with “small” variables using direct references and “large” variables
remaining indirect. This promotes use of direct references and 16 bit offsets aswidely as
possible without bounding the total internal data at 64KB. The size threshold should be settable
as acommand line option.

Thisimpliesthat all internal variables up to acommand line settable size should be placed
directly inthe TOC. A suggested default sizeisaround 1K. We have chosen 512. o

4.0 Direct-To-SOM Pragmas

The Direct-To-SOM pragmas are only valid when the - somcommand line option has been
specified to enable MacSOM in the MrCpp (i.e., C++ only) compiler. These pragma’s are used
to provide MrCpp with information it needs to provide to the MacSOM runtime kernel. Please
refer to the SOM Objects Developers Toolkit documentation, specificaly, the Users Guide, for
more information regarding release order, class version, meta class programming and callstyles.

The syntax for these compatible with other Direct-To-SOM C++ compilers. These pragmas may
only occur within the scope of the class definition for which they are intended. (The pragmas
may occur more than once within the class but only if they specify exactly the same information.
An error isreported if they are inconsistent.)

4.1 #pragma SOM ReleaseOrder - Specify class member function release
order

Syntax #pragma SOVRel easeOrder (nethod,, nethod,, ..., nethod,)
Semantics

Aswith IDL, MacSOM based classes must specify the release order of the member functions
of theclass. Thisis done using the SOMReleaseOrder pragma. The net hod; ’sin the pragma

are simple member function (case independent) method names with no qualification and no
signature.

The SOMReleaseOrder pragma must specify every member introduced (i.e., no overrides) by
the class. Once the release order is specified, and the class made available to clients, that
order must not be changed. If amember is deleted, its name must remain in the release order.
If anew member is added, its name should be added at the end of the release order list. If a
member is migrated up in the ancestry, its name will appear in both the ancestor and also in its

original release order.
If the SOM ReleaseOrder pragma is omitted, the assumed release order will be the lexical
order that the member functions appear in the class. Thisis permitted sinceit can bea
inconvenient to maintain the pragma during initial class development. But the pragma should
be provided when the classisreleased for use by clients. If the pragmais supplied, itis
considered an error

4.2 #pragma SOMClassVersion - Specify a class ‘s version

Syntax #pragna SOVC assVersion (classNane, maj or Versi on, mninor Version)

Semantics

The SOMClassV ersion pragma specifies the version numbers for the MacSOM class. If the

MrCl[pp] Pragmas 15 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

pragmaisn’t provided, zeros are assumed. Version numbers must be non-negative. If the
classis being defined, then its version numbers are passed to the MacSOM kernel in the class
meta-data. When an instance of the class isinstantiated via the new operator, the version
numbers are passed to the runtime kernel which performs a consistency check to make sure
the class implementation is not out of date.

4.3 #pragma SOMMetaClass - Specify a class ‘s metaclass
Syntax #pragnma SOWet ad ass (cl assNane, net aCl assNane)
Semantics

A class that defines the implementation on class objectsis called a metaclass. Just as an
instance of aclassis an object, so an instance of a metaclassis a class object. Moreover, just
as an ordinary class defines methods that its objects respond to, so a metaclass defines
methods that a class object responds to.

SOMClassistheroot classfor al SOM metaclasses. SOMClassitself isadescendent of
SOMObject and therefore inherits all the generic object methods; thisis why instances of a
metaclass are class objects (rather than ssmply classes) in the MacSOM runtime. All
metaclasses must be descendants, directly or indirectly, of SOMClass.

The default metaclass for aMacSOM classis SOMClass. The SOMMetaClass pragma allows
the user to pick another metaclass. It isan error if the specified met ad assNanme does not have
SOMClass as one of its ancestors. Also aclass cannot be defined as its own metaclass. Thus
the className and metaClassName parameters must never specify the same class.

4.4 #pragma SOM CallStyle - Specify a class 's member function call style
Syntax #pragma SOMCal | Styl e O DL
Semantics

MacSOM itself supports two callstyles, an older style that does not support Direct-to-SOM,
called OIDL, and the newer that does, called the IDL callstyle. MrCpp by default assumes
that classes defined using Direct-To-SOM use the newer IDL callstyle. When using this
callstyle, all methods must have an Environment pointer parameter (Envi ronment *) asthe
first parameter. Just as when using MacSOM without the Direct-to-SOM compiler support the
environment parameter is used to communicate exception information following method
invocation. This environment parameter is explicitly required in the (Direct-to-SOM) C++
method specifications. The pragmafor OIDL is supplied and used by the SOM base classes
SOMObject and SOMClass.

Note that when overriding methods declared in SOM Object or SOM Class the override method
declaration should appear exactly the same as the method when originally introduced - that is
for SOMObject and SOM Class introduced methods, no environment parameter is used,
however, for other classes and environment parameter is required.

4.5 #pragma SOMModuleName - Specify a class's module name

Syntax #pragnma SOWMobdul eName idg::idy::...::id,

MrCl[pp] Pragmas 16 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

Semantics

When an instance of a SOM object is created, that class's name is made known to the SOM
runtime since the name is generated as part of the static data associated with any MacSOM
object. Thismeansthat there isthe possibly of name collision between two SOM objects
(usualy provided from two different suppliers). The SOMM oduleName pragma should be
used to avoid this problem. It approximates the module name functionality in IDL.

Thei d,’sin the SOMM oduleName pragma specify simple identifiers. Any number of
identifiers may be specified, each separated by a“: : ’. The sequence of identifiersis used to
qualify all the externally visible names associated with a MacSOM object. In other words, the
token table name and the class name generated as part of the class' s static data so that the class
IS unigue with respect to the SOM runtime environment. For example, for class X, the token
table name, XCl assDat a becomesi d,_i d,_. .. _i d,_XC assDat a. The class name that will
be known to the SOM runtime becomesi dq: :idy::...:id,: X

4.6 #pragma SOMCheckEnvironment - Control SOM Environment
checking

Syntax #pragma SOMCheckEnvironment on | off | reset
Semantics

As discussed previoudly, the compilers assume the IDL call style by default. Thus al
introduced members of al descendants of SOM Object and SOM Class have an Environment
pointer parameter as the first parameter. The Environment is a data structure that contains
environmental information and is also used to return exception datato aclient. After acall to
an IDL introduced member returns, the caller can ook at the _maj or field in the Environment
data. If the value of _maj or isnot equal to NO_EXCEPTI ON (0), there was an exception returned
by the call. The caller can retrieve the exception name and value using the somExceptionid
and somExceptionValue routines.

Assume the analysis of the exception is not done at the call site but rather in aroutine called
__som check_ev(Envi ronnent *). Then atypical member call might look like,

menber (&ev, other args...);
__som check_ev(&ev);

This can get tedious to do on every member call, so the SOM CheckEnvironment pragmais
provided to tell the compiler to automatically insert acall to__som check_ev which should
check _maj or and act accordingly if it isnon-zero. __som check_ev iswritten by the user and
must have the following prototype (which is defined in somdts.h),

extern "C' void __somcheck_ev(Environnment *);

Notethat __som check_ev should clear the error status of the Environment (by calling
sonExcept i onFr ee), otherwise the next SOM call that returns will see the same error again!
In addition to inserting a check after each member call, when SOM CheckEnvironment is on,
the compiler will insert acall to __som check_new after each operator new call.

T *p = new T,
__som check_new(p);

The user aso supplies__som new_new which should check to seeif the allocation succeeded.
It has the prototype (defined in somdts.h),

MrCl[pp] Pragmas 17 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

extern "C'" void __som check_new(SOMbj ect *);

These checks are inserted by the compiler as long as SOM CheckEnvironment ison. If they are
not needed, #pr agma SOMCheckEnvi r onment of f may be specified. Thisis also the default
Setting.

Finally, ar eset option is provided in case nesting of this pragmais needed. It restores the
SOM CheckEnvironment state to what it was at the time of the most recent corresponding on.

4.7 #pragma SOM CallOptimization - Control SOM member call
optimization

Syntax #pragnma SOMCal | Optimization on | off | reset
Semantics

Inserting the additional check code enabled by the SOM CheckEnvironment pragma will
obviously increases code size. Even without the checks, just doing a member call requires
accessing a pointer in the SOM data (generated by the compiler) and indirectly jumping
through that pointer. On the PowerPC, a size optimization is available to minimize the call site
code down to asingle instruction (not counting the parameter setup)! Unfortunately, for
complex reasons related to parameter-passing models, this optimization is not available on the
68K (SCpp). So the following discussion applies only to MrCpp.

The size optimization can be enabled by using #pr agma SOMCal | Opt i i zat i on on. The
optimization involves moving most of the member call code to a small code sequences
referred to as “glue”’ code. The glue code is generated as part of the compilation unit. Thereis
one or two glue code routines for each explicitly called member (one unless the same member
is called with both SOM CheckEnvironment on and off). But al calls to the same member go
through the same glue code associated with that member. The member call becomesasingle
instruction to the glue routine (ignoring parameter setup). The glueis defined asif a#pr agma
i nt er nal was done so there is no NoP following the call.

Each glue routine is responsible for determining the member pointer only. All the calling (and
the requisite NoP following the call) and Environment or NULL checking is constant and
therefore factored out into a small set of library routines. The glue code therefore branches to
these library routines. These routines are located in PPCRuntime.o.

In an experimental implementation of this optimization in OpenDoc 1.1 code size was reduced
by approximately 10%.

5.0 AltiVec Pragmas
These pragmas are used to control the handling of AltiVec.
5.1 #pragma altivec_model - Control acceptance of the AltiVec model
Syntax #pragna altivec_nodel on | off | reset
Semantics
This pragmais used to either temporarily or permanently override accepting the AltiVec

MrCl[pp] Pragmas 18 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

extensions as specified by the command line -vector on or - al ti vec_nodel on. The setting
remainsin effect until the next al ti vec_nodel pragmais encountered.

This pragma may be placed anywhere within the compilation unit. If reset is specified, the
setting is reset to what was specified or implied by the command line.

5.2 #pragma altivec_codegen - Control AltiVec (vectorization)
optimizations

Syntax #pragna altivec_codegen on | off | reset
Semantics

This pragmais used to either temporarily or permanently override vectorization of code as
specified by the command line - opt si ze or speed al ti vec_codegen parameter. When
vectorization is enabled, code generation is allowed to take advantage of the AltiVec
architecture as a possible optimization.

When used outside of afunction, then the pragma overrides the command line until another
#pragnma al ti vec_codegen isencountered outside of any functions. If reset isspecified,
the setting isreset to of f .2

If the pragmalis placed inside afunction body (i.e., anywhere between its enclosing braces),
then the pragma temporarily overrides the current setting for that function only. The setting
appliesto the entire function no matter where within the function the pragmais placed. If
more than one #pr agma al t i vec_codegen is placed within the function, then it’s an error if
they have different settings. Ther eset option is not permitted when the pragmais used
within functions. Following the function, the default setting is reset to what was in effect
prior to that function.

Note: This pragma is recognized but no implicit AltiVec vectorization optimizations are
performed at this time.

5.3 #pragma altivec_vrsave - Control handling of VRsave
Syntax #pragna altivec_vrsave on | off | reset
Semantics

This pragmais used to either temporarily or permanently override maintaining of the VRsave
register as specified by the command line - vect or on, [no] vrsave Or - al ti vec_nodel

on, [no] vrsave. When enabled, function prologs and epilogs have additional code to
properly maintain VRsave to indicate which vector registers are currently in use.

When used outside of afunction, then the pragma overrides the command line until another
#pragma al ti vec_vrsave isencountered outside of any functions. If reset isspecified, the
setting is reset to what was specified or implied by the command line. Theal | on optionis
not permitted when the pragmais used outside of afunction.

2 Eventualy there may be acommand line option, in which case reset will r eset to the setting specified or implied by the
command line.

MrCl[pp] Pragmas 19 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

If the pragma.is placed inside a function body (i.e., anywhere between its enclosing braces),
then the pragma temporarily overrides the current setting for that function only. The setting
applies to the entire function no matter where within the function the pragmais placed. If
more than one #pr agma al ti vec_vr save is placed within the function, then it’s an error if
they have different settings. Ther eset option is not permitted when the pragmais used
within functions. Following the function, the default setting is reset to what was in effect
prior to that function.

It is not recommended that VRsave handling be turned off since interrupt handlers need
VRsavein order to know which vector register need to be preserved across interrupts.
However thereisaprice to be paid in prolog/epilog overhead in maintaining VRsave. Itis
possible to safely turn off VRsave handling if it is known that the VRsave register reflects all
possible vector registersthat can bein use. Usingtheal | on option indicates that the function
containing this option will define VRsave as having the value of all ones thus indicating all
vector registersarein use. All functions called by this function and their descendants can then
be safely set to not maintain VRsave. It isthe user’sresponsibility to ensure VRsaveis
properly controlled in this call chain.

6.0 Option Pragmas

The option pragma allow for overriding selected command line options. The following sections
document the MrC[pp] additions to the standard #pragma options statement.

6.1 #pragma options align - Set data structure alignment
Syntax #pragna options align [=] nac68k | power | byte | packed | reset
The' =" isoptional, macro substitution is performed, and case is significant.
Semantics
This pragmais used to override the default alignment specified by the command line- al i gn
option. The syntax for the pragmafollowing the al i gn keyword isidentical to that of the

command line (except for reset which is specific to this pragma). The parameters have the
same meaning as the command line.

mac68k Use 680x0 alignment.

power Use PowerPC alignment.

byt e Use byte (i.e., no) alignment.
packed Identical to byt e.

reset Return to the previous alignment.

These may be placed anywhere within the compilation unit. Specifyingreset causesthe
default alignment to be reset to what was in effect prior to the most recent previous align
pragma, or what was implied by the command line if there is no previous align pragma.

.See MrC/MrCpp C/C++ Compiler for the Power Macintosh for further details on this pragma.
[That manual should be updated to include the byt e and packed options].

MrCl[pp] Pragmas 20 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

6.2 #pragma optionsinline - Set inlining level

Syntax #pragnma options inline [=] on | all | off | none |
Ol 21| 2| 3| 4| 5| reset

The' =" isoptional and no macro substitution is performed on the parameters. Aswith the
command line, the casing of the parametersisignored

Semantics

This pragmais used to either temporarily or permanently override the level of inlining
specified by the command line - i nl i ne option. The syntax for the pragma following the

i nl i ne keyword isidentical to that of the command line (except for r eset which is specific
to thispragma). The parameters have the same meaning as the command line.

on A function becomes a candidate for inlining when the inlining provides a
speed optimization. Thisincludes C++ functions which are not explicitly
defined as inlined.

al | Identical to on.

of f Do not consider any functions as candidates for inlining except C++
functions explicitly declared asinline.

none Identical to of f .

0...5 Candidates for inlining must be less than the “complexity limit” implied

by the value. Aninlinelevel of 0 hasthe same effect asof f. Specifying
5 means very aggressive inlining at the cost of possibly considerable code

sizeincrease.

reset Reset theinline level to what was specified or implied by the command
line. If no level was specified on the command line, inlining (complexity
limit) isreset to 2.

Asimplied by the above descriptions, functions become “candidates” for inlining. Thereisno
guarantee such functions will actually be inlined. If the compiler determines that there would
be a speed benefit without excessive code expansion (guided by the specified inline option)
then candidates are inlined.

When the pragmais used outside of afunction, then the specified inline level overrides the
command line until another #pr agma opt i ons i nl i ne is encountered outside of any
functions. If reset isspecified, theinline level isreset to what was specified or implied by
the command line.

If the pragma.is placed inside a function body (i.e., anywhere between its enclosing braces),
then theinline level istemporarily set according to the pragmafor that function only. The
specified inlining level applies to the entire function no matter where within the function the
pragmais placed. If morethan one #pr agna opt i ons i nl i ne is placed within the function,
then it's an error to specify different inlining levels. Thereset option isnot permitted when
the pragma s used within functions. Following the function, the default inlining level is reset
to what was in effect prior to that function.

MrCl[pp] Pragmas 21 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

Note, if -share_l i b_export on or - symon was specified on the command line, then
warning will be issued, and the inlining level will remain unchanged.

6.3 #pragma options opt - Set optimization level

Syntax #pragna options opt [=] off | none | local | size |
speed[, <nodifier>...] | reset

<nodifier> ::= unroll | norep | nointer | unswitch | unswitch_notify

The' =" isoptional and no macro substitution is performed on the parameters. Aswith the
command line, the casing of the parametersisignored

Semantics

This pragmais used to either temporarily or permanently override the level of optimization
specified by the command line - opt option. The syntax for the pragma following the opt
keyword isidentical to that of the command line (except for r eset which is specific to this
pragma). The parameters have the same meaning as the command line.

of f Perform no optimization.

none Identical to of f .

| ocal Perform local optimizations and global register allocation.

si ze Perform optimizations for size rather than speed.

speed Perform optimizations for highest performance.

reset Reset optimization level to what was specified or implied by the

command line.

The modifier is used only with the speed parameter and can have the following values:

unrol | Perform speed optimizations and include loop unrolling.

nor ep Perform speed optimizations without repeating global propagation and
redundant store elimination.

noi nt er Perform speed optimizations without interprocedural optimizations.

unswit ch If aloop contains an invariant branch, this option causes two copies of the

loop to be made. One assumes that the condition is true, and the other
assumes that the condition isfalse. The branch is placed before the two
copies, and it jumps to one or the other copy depending on whether the
branch condition is true or false.

unswi t ch_notify Thisisidentical tounswi t ch except that the compiler prints out a
message identifying the routine where unswitching takes place. This
message is output once for every branch that is unswitched.

When the pragma s used outside of afunction, then the specified optimization level overrides
the command line until another #pr agna opt i ons opt isencountered outside of any functions.

MrCl[pp] Pragmas 22 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

If reset isspecified, the optimization level is reset to what was specified or implied by the
command line.

If the pragma.is placed inside a function body (i.e., anywhere between its enclosing braces),
then the optimization level istemporarily set according to the pragmafor that function only.
The specified optimization level applies to the entire function no matter where within the
function the pragmais placed. If more than one #pr agna opt i ons opt is placed within the
function, then it’s an error to specify different optimization levels. The reset option is not
permitted when the pragmais used within functions. Following the function, the default
optimization level isreset to what was in effect prior to that function.

Note, - symon implies no optimization. If anything other than of f (or none) is specified on
the pragma, awarning will be issued, and the optimization level will remain unchanged.

7.0 Miscellaneous Pragmas

The pragmas in this category are generally unrelated to one another. They are a collection of
pragmas based on enhancement requests or “deficiencies’ that cannot be addressed in any other

way.

7.1 #pragma unused - Disable warnings about unused locals and
parameters

Syntax #pragma unused (var_or_param[,var_or_parani ...)
where, var_or_param isalocal variable or function parameter.
Semantics
This pragma suppresses compile-time warnings (warning 29 and 35) that are emitted when the
compiler discovers that one or more local variables or parameters have not been
referenced within the body of afunction definition. The pragmaisonly allowed
within the body of afunction definition.
The warnings may either be suppressed by explicitly including the pragma or specifying
- w29 and/or - w35 on the command line. Number 29 suppresses warnings about unused local
variables while 35 suppresses warnings about unused function parameters.
Note that variables are only checked for reference independent of flow analysis. There
is no validation as to whether such variables are used correctly or skipped over due
to changesin flow control.
7.2 #pragma traceback - Generate traceback table for specific functions
Syntax #pragna traceback [list] <func_list>
The syntax for the <f unc_l i st > isidentical to that described for [no]inline_func.
Semantics

(1) Thispragmaisonly processed if the-t b pr agma option was specified on the command
line.

MrCl[pp] Pragmas 23 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

(2) Thispragmamay only appear outside of any function definitions.

(3) Any function on the list must not be defined or called. See #pragma [no]inline_func for
the compl ete semantics on the functionsin the list since the segment functions have
identical semantics ([no]inline_funct semanticsitems 1 and 2).

(4) A referenceto afunctionin C++ implies areferenceto all of its overloads.

(5) Any valid function specified in the traceback pragmathat has not been defined by the end
of the compilation unit will be reported as “undefined” warning.

(6) Duplicate references to the same functions are reported as a warnings.

The default for the compiler isto never generate traceback tables for functions. However, the
-traceback and-tb command line options give the user control of the generation if
tracebacks are desired. These command line options have the following syntax:

-traceback
-tb <tb_opt _list>

where,

<tb_opt_list> ::
<tb_opt >

<tb _opt> [, <tb_opt>]
on | pragma | export | outofline

When just - t r aceback is specified then atraceback table is generated for every function. A
-t b on isequivalent to the - t r aceback option.

The -t b pragma enables the traceback pragma and causes only the specifically specified
functionsto have a traceback table.

When -t b export isspecified, then functions marked for exporting with #pragma export will
have atraceback table.

A traceback table for afunction is normally placed at the end of that function’s code. These
tables are not necessarily small. For something like a set of C++ member functions, which
may be generally fairly small, the traceback tables could make up a considerable percentage of
the total amount of code space. In a paging environment this could affect performance by
needlessly spreading out an otherwise compact set of related functions. The-t b out of I i ne
option addresses this problem.

When - t b out of | i ne is specified on the command line, all the traceback tables generated as a
result of the other traceback options and pragma are generated in their own private csect
(XCOFF type XMC_TB). One csect is generated for each function to which the pragma or
the option is applicable. In addition, an extrabranch instruction is generated, after the
branch and link instruciton that symbolizes the end of a particular functions c-sect. The offset
to the traceback csect from this branch instruction is encoded in this branch instuction. The
offset also has arelocation entry so that the offset entry is updated if the traceback tableis
relocated by the linker. The linker should coalese csects of type XMC_TB and put them at
the end of the PEF code section.

7.3 #pragmaignoreid - Ignore pragmas

Syntax #pragna ignore id,...

MrCl[pp] Pragmas 24 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

Semantics
This pragma indicates that any pragmain the source specified as “#pragmaid ...” isto be
totally ignored by the compiler. No warning will be given. Note that theid’ s may also be
specified by the -ignorepragma command line option.

7.4 #pragma disjoint - Specify mutually exclusive variables and pointers

Syntax #pragna disjoint (<disjoint-list>)

where, <di sj oi nt -1 i st > isdefined as follows,

disjoint_list> ::= <disjoint-nane> ',"' <disjoint-nanme> |
<disjoint _list>"," <disjoint-nanme>

<disjoint-name> ::= <id> | <disjoint-ptr>

<disjoint-ptr> ::= *<id>| *<disjoint-ptr>

Each identifier must be defined at the point this pragmais specified. For C++, a‘::;’ may be
used to specify aglobal scope reference. Asindicated in the symtax, there must be at |east
two identifers or pointer specified and no duplicates are allowed. There cannot be any uses of
the identifiers prior to the pragma and the indirection level (number of *) of pointer identifiers
cannot be greater than the level indicated at the definition.

Semantics

This pragma informs the compiler that none of the identifiers listed share the same physical
storage. If any identifiers share the same physical storage, the pragma may give incorrect
results. You can use#pr agna i gnor e to turn off #pr agma di sj oi nt to analyze the problem
further. The digoint pragmais applied to the identifiers within the scope of their use.

Theidentifiers cannot refer to a member of a class, structure or union, a class, structure or
union tag, an enumeration constant, alabel, afunction or afunction pointer.

MrCl[pp] Pragmas 25 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

Example:
foo(int p, int g, int r)
int *s,*t;

#pragma disjoint (*s, *t)
#pragma disjoint (*s, p, Q)
#pragma disjoint (*t, r)

S = &;

r=p + q; /1 redundant store tor
if (p==aq

t = &p;
el se

t = &q;

*t p -
*g p -

= /1 2nd store to r naking the 1st redundant
bar (&s, t

e

}

In the above example, s only pointstor,andt may pointtop or q. Thefirst storetor is
redundant, sincer is stored into again through a pointer dereference of s and there are no
usesof r (directly or through s) after thefirst store. The pragmastell the optimizer that s
and t do not point to same storage and s cannot point top or g andt cannot pointtor. This
helps the global optimizer delete the first storeintor as aredundant store.

7.5 #pragma precompile_target, #pragma dump - Specify name of
precompiled header

Syntax #pragma preconpile_target "filename"
#pragnma dunp "fil enane"

Semantics
The “dump” pragmaisidentical to the “precompile _target” pragma. The former isthe style
used by the “old” MPW C compiler while the latter isfor Metrowerks compatibility.

The filename supplied by these pragmas will be the file that will receive the precompiled
header. If the filenameis supplied asanull string, or the pragmais not present in thefile, the
name of the source file is used with the extension removed. If more than one pragma appears
in the source, the one closest to the end of thefileisused. If the filenameisapartial path
name, the directory used is the same as the source file. A full pathname of course specifically
indicates where the precompiled header isto “go”.

MrCl[pp] Pragmas 26 Copyright Apple Computer, Inc. 1995-1998
IraL. Ruben, Fred Forsman 3/4/99 All rights reserved.

