

ð

Developer Press



 Apple Computer, Inc. 1995

ð

MacsBug Reference and
Debugging Guide

For MacsBug 6.2

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.



 1994, 1990 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleShare, A/UX, ImageWriter,
LaserWriter, MPW, Macintosh,
MultiFinder, and SADE are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
Finder, QuickDraw, andResEdit are
trademarks of Apple Computer, Inc.
Adobe Illustrator and Adobe
Photoshop are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
Classic is a registered trademark
licensed to Apple Computer, Inc.
FullWrite Professional is a trademark of
Ashton-Tate.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
MacPaint and MacWrite are registered
trademarks of Claris Corporation.

Microsoft is a registered trademark of
Micorsoft Corporation.
Motorola is a registered trademark of
Motorola Corporation.
NuBus is a trademark of Texas
Instrument.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables xv

Preface

About This Manual

xxi

How to Use This Manual xxi
Other Sources of Information xxii
Notation Conventions xxiii

Chapter 1

MacsBug and Low-Level Debugging

1

Error Handling on the Macintosh 2
Why Low-Level Debugging? 3
Why MacsBug? 4
New Features in MacsBug 6.2 5

Chapter 2

Getting Started

9

Installing MacsBug 10
Installing MacsBug Under A/UX 11
Displaying MacsBug on a Different Monitor 11

System Software Versions 3.2 Through 6.x 11
System Software Version 7.0 12

Updating the Debugger Prefs File 12
The MacsBug Display 13

The Command Line 13
The PC Region 14
The Output Region 15
The Status Region 16

The Stack Area 16
The Status Area 17
The Register Area 18

Invoking MacsBug 18
MacsBug When You Least Expect It 18
Using the Programmer’s Switch to Invoke MacsBug 19
Defining an 'FKEY' Resource to Invoke MacsBug 20
Invoking MacsBug from Your Source Program 21

Inactivating User Breaks 21
Using DebugStr from an Assembly-Language Source Program 22

Invoking MacsBug Under A/UX 22
Getting Out of MacsBug 22

Thi d t t d ith F M k 4 0 4

iv

Saving MacsBug Output 23
Working With the Debugger Prefs File 23
Exercise: Getting Started With MacsBug 25

Getting Information About MacsBug 26
Using the Command Line to Perform Calculations 27
Displaying Memory 28
Where Is an Address? 30
Further Explorations 31

Chapter 3

An Assembly-Language Primer

33

Compilers and Assemblers 34
Reading Assembly-Language Instructions 36

Instruction Syntax 37
Addressing Modes 38

Absolute Addressing 40
Data and Address Register Direct Addressing; 40
 Address Register Indirect Addressing 41
Address Register Indirect With Predecrement Addressing,

and Address Register Indirect With Postincrement Addressing 42
Address Register Indirect With Displacement Addressing 44
Indexed Indirect Addressing With Displacement 45
Program Counter (PC) Relative Addressing Modes 46
Immediate Addressing 46
Implied Addressing 47

Assembly-Language Instructions 47
The Representation of Negative Numbers 48
Integer Arithmetic Instructions 49
Program Control Instructions 50
Inter-Segment Calls and the Jump Table 53
Stack Frame Instructions 55

A Simple Assembly-Language Program 55
Comparing Assembly-Language Code to Source Code 58

Assignment Statements 60
A Procedure Call 61
A Loop 61

MacsBug’s Disassembly Commands 62
Reading the Disassembly Display 63
Determining Where to Start Disassembling 64

v

Chapter 4

Macintosh Memory Organization

65

An Overview of Macintosh Memory Space 66
The Memory Map 67

Memory Units and Their Representation 68
 Using MacsBug Commands to Display and Set Memory 69
Memory Map Regions 71
Using Low-Memory Globals to Draw a Memory Map 74

Memory Management Under System Software Version 7.0 76
32-Bit Addressing 77
Virtual Memory 77

Registers 80
Using Templates to Display Memory 81

Standard Templates 82
Using Basic and Template Types to Define Template Fields 83
Constructing Linked Lists Using the 'mxwt' Resource 85
Exercise: Creating Your Own Template 87

Application Space 90
The Heap 91

Heap Blocks 93
Displaying Information About Heap Blocks 96
Corrupting the Heap 98
Lost in the Heap 99
Heap Management in a Multiple-Application Environment 101

Displaying Heaps in a Multiple-Application Environment 103
Switching Heaps in a Multiple-Application Environment 104

Life on the Stack 105
Looking at the Stack 105
Allocating Space for Global Variables 108
Stack Frames 109

Stepping Out of a Procedure 113
Displaying a Function’s Result 114
Using Stack Frames to Establish a Calling Chain 114

Pascal and C Calling Conventions 116
Application Parameters and the Jump Table 117

Chapter 5

The Macintosh Operating System

119

Exception Processing 120
A-Trap Exceptions 121

How the Operating System Handles an A-Trap 122
Patches and Glue 123

Patching an A-Trap 124
Determining Whether a Trap Has Been Patched 126
Using In-Line Glue to Implement a System Routine 127

vi

Using the Stack to Implement A-Traps 128
Operating System Routines 128
Exercise: Watching an A-Trap Call 129

Interrupts 135
Macintosh Interrupts 136
Code That Runs at Interrupt Time 137
Displaying Information About VBL Tasks 137

MacsBug’s A-Trap Commands 138
The A-Trap Action Table 139
Using A-Trap Commands 140

Specifying an A-Trap Name 140
Setting an A-Trap Action on a Range of Traps 141
Restricting A-Trap Actions to your Application 141
A-Traps in Packages 141

Macintosh Managers 142
The File System 143

Drive Queue 144
Finding and Displaying Information About Mounted Volumes 144
File Control Blocks (FCBs) 145
File I/O Queue 146
Debugging Low-Level File System Calls 147
Synchronous and Asynchronous I/O 147

Drivers 148
Device Control Entry (DCE) 149
The Unit Table 151
Desk Accessories 152
Displaying Information About Installed Drivers 153

Chapter 6

Discipline

155

How Discipline Works 156
Installing Discipline 156

Installing Discipline as an INIT File 157
Installing Discipline as an Application 157

Reading Discipline Output 158
Using Discipline During Application Development 160

Using Discipline to Test Applications 160
Using Discipline to Test INITs and Other Start-up Code 161
Using Discipline to Test DAs and XCMDs 161
Restrictions on Discipline 161

vii

Chapter 7

Debugging Strategies

163

Before the Crash 164
Use the Compiler’s Directives 164
Turn Trap Recording On 164
Check Operating System Errors Whenever Possible 165
Use Signals and Error Handler Routines 166
Use Assertions in Your Source Program 166
Test Code on All Machines 167
Catch NIL Pointers and Handles Instantly 168
Use SetPort Correctly 168

After the Crash 169
Where Am I? 169
Who Done It? 170
Why Did It Happen? 171

Check the Source Code 171
Other Suspects 171

Common Problems 172
The Deep Freeze 172
The Restart Surprise 173
Nasty Pointers 173
No Room to Maneuver 174
Mind-Reading Problems 174

Using MacsBug to Control Program Execution 174
Controlling Program Execution 176
Setting Breakpoints 176
Watching for Memory to Change 178

Make It Easy on Yourself 178

Chapter 8

Introduction to MacsBug Commands

181

The MacsBug Command Line 182
Using the Command Line to Enter Commands 183
Specifying Command Parameters 184
Specifying an Address 184

Using Procedure Names 185
The Dot Address and the Colon Address 185
Using Expressions in MacsBug Commands 186
Resolving Conflicting Name References 187

Extending the Command Line 187
The Command Line as Calculator 187

Base Conversion 188
Command Line Arithmetic 188

Getting Help 189
Command Line Editing Commands 190

The Command Line Buffer 191

viii

Using Macros 192
Macro Commands 192
Using 'mxbm' Resources to Define Permanent Macros 193

Standard Macros 193
Creating Permanent Macros 195
The FirstTime and EveryTime Macros 196

Using dcmds 197
Standard dcmds 197

The printf dcmd 198
Listing Available dcmds 200
Creating Your Own dcmds 200

Passing Information to the dcmd 200
Responding to a dcmdHelp Request 203
Responding to a dcmdDoIt Request 204
Restrictions on dcmds 205
Building a dcmd 205
Debugging dcmds 206

Chapter 9

MacsBug Commands

207

ATB — A-trap Break 209
Considerations 209

Breaking on Related A-traps 210
Breaking on A-traps Called from the Application Heap 210
Breaking on A-traps in a Package 210
Creating a Custom A-trap Trace 211

Examples 211
ATC — A-trap Clear 213

Considerations 213
Examples 214

ATD — A-trap Display 215
Example 215

ATHC — A-trap Heap Check 216
Considerations 216
Example 217

ATP — A-trap Playback 218
Considerations 218
Example 219

ATR — A-trap Record 220
Considerations 220
Example 221

ATSS — A-trap Step Spy 222
Considerations 222
Example 223

ix

ATT — A-trap Trace 224
Considerations 224

Creating a Custom A-trap Trace 225
Examples 225

BR — Breakpoint 226
Considerations; 226

How MacsBug Implements Breakpoints 227
Setting Breakpoints in ROM 227
Setting Breakpoints Within a Procedure 228
Using the BR Command to Display Function Results 228

Examples 228
BRC — Breakpoint Clear 230

Considerations 230
Example 230

BRD — Breakpoint Display 231
Considerations 231
Example 231

BRM — Multiple Breakpoints 233
Considerations 233
Example 233

CS — Checksum 234
Considerations 234
Examples 234

DB – Display Byte 235
Considerations 235
Examples 235

DH — Disassemble Hexadecimal 236
Considerations 236
Examples 236

DL — Display Long 237
Considerations 237
Examples 237

DM — Display Memory 238
Considerations 238
Example 239

DP — Display Page 241
Considerations 241
Example 241

DSC — Discipline 242
Considerations 242
Example 242

DV — Display Version 243
Example 243

DW — Display Word 244
Considerations 244
Example 244

x

DX — Debugger Exchange 245
Considerations 245
Example 245

EA – Exit to Application 246
Considerations 246
Example 246

ES — Exit to Shell 247
Considerations 247
Example 247

F — Find 248
Considerations 248

Using the Find Command to Locate References to a Pointer 249
Macros for the Find Command 249

Examples 250
G — Go 251

Considerations 251
Example 251

GT — Go Till 252
Considerations 252

Using the GT Command Within a Procedure 253
Example 253

HC — Heap Check 254
Considerations 254

HC Error Messages 254
Example 256

HD — Heap Display 257
Considerations 257

Interpreting the Heap Display 258
Example 259

HELP — Help 260
Considerations 260
Examples 260

HOW – Display Break Message 262
Considerations 262
Example 262

HS — Heap Scramble 264
Considerations 264
Example 264

HT — Heap Totals 265
Considerations 265
Example 265

HX — Heap Exchange 266
Considerations 266
Example 266

HZ — Heap Zone 267
Considerations 267
Example 269

xi

ID — Disassemble One Line 270
Considerations 270
Examples 271

IL — Disassemble From Address 272
Considerations 272
Example 273

IP — Disassemble Around Address 274
Considerations 274
Example 275

IR — Disassemble Until End of Procedure 276
Considerations 276
Example 277

LOG — Log to a Printer or File 278
Considerations 278
Examples 279

MC — Macro Create 280
Considerations 280

Using Macros to Save Values 281
Examples 281

MCC — Macro Clear 282
Example 282

MCD — Macro Display 283
Considerations 283
Example 283

MR — Magic Return 284
Considerations 284

Using the MR Command to Display Function Results 285
MR Error Messages 285

Example 285
RAD — Toggle Register Name Syntax 287

Considerations 287
Examples 287

RB — Reboot 288
Considerations 288
Example 288

Registers 289
Considerations 289
Examples 290

RN — Set Reference Number 291
Considerations 291
Examples 291

RS — Restart 292
Considerations 292
Example 292

S — Step 293
Considerations 293
Example 294

xii

SB — Set Byte 295
Considerations 295
Examples 296

SC6 — Stack Crawl (A6) 297
Considerations 297

SC6 Error Messages 298
Example 299

SC7 — Stack Crawl (A7) 300
Considerations 300

SC7 Display 301
SC7 Error Messages 302

SHOW — Show 303
Considerations 303
Example 303

SL — Set Long 304
Considerations 304
Examples 305

SM — Set Memory 306
Considerations 306
Examples 307

SO – Step Over 308
Considerations 308
Example 309

SS — Step Spy 310
Considerations 310
Example 311

SW — Set Word 312
Considerations 312
Examples 313

SWAP — Swap 314
Considerations 314
Example 315

SX — Symbol Exchange 316
Considerations 316
Example 316

TD — Display CPU Registers 318
Considerations 318
Example 318

TF — Total Floating-Point Register Display 319
Considerations 319
Example 319

TM — Total MMU Display 320
Considerations 320
Example 320

TMP — List Templates 321
Considerations 321
Example 321

xiii

WH — Where 322
Considerations 322
Examples 323

Appendix A

Command Summary

325

Appendix B

Error Messages

333

Appendix C

Macintosh Error Codes

337

“Sad Macintosh” Codes 337
Codes for the Macintosh Plus 337
Codes for Other Macintosh Computers 338

System Error Handler Alerts 341
Operating System Errors 345

OS Event Manager Error 345
Serial Driver Errors 345
Slot Manager Errors 345
SCSI Manager Errors 346
Printing Manager Errors 346
General System Errors 347
Color Manager Errors 347
Device Manager Errors 348
Macintosh File System (MFS) Errors 348
Font Manager Errors 350
Low-Level Disk Errors 350
Clock Chip Errors 351
Serial Communications Controller (SCC) Errors 351
AppleTalk Errors 351
Scrap Manager Errors 352
Storage Allocator Errors 352
Hierarchical File System (HFS) Errors 352
Alias Manager Error 353
Menu Manager Errors 353
Color QuickDraw and Color Manager Errors 353
Resource Manager Errors 354
Sound Manager Errors 354
Slot Manager Errors 355
Notification Manager Error 357
Device Manager Errors 357
Edition Manager Errors 358

xiv

Process Manager Errors 358
Event Manager Errors 359
Memory Manager Errors 359
Data Access Manager Errors 359
Help Manager Errors 360
PPC Toolbox Errors 360
File ID Errors 362
AppleTalk Name Binding Protocol (NBP) Errors 362
AppleTalk Session Protocol (ASP) Errors 363
AppleTalk Transaction Protocol (ATP) Errors 363
AppleTalk Filing Protocol (AFP) Errors 364
SysEnvirons Errors 365
Gestalt Manager Errors 366
Picture Utilities Errors 366
Power Manager Errors 366

Appendix D

Procedure Names

367

Procedure Definition 367
Examples of Procedure Definitions 368

Appendix E

MacsBug Internals and Discipline Interface

369

How MacsBug Installs Itself 369
How MacsBug Is Implemented 369

How MacsBug Interfaces With Discipline 371
Jump Table Entries 372
Calling Discipline 372

Glossary

375

Index

379

xv

Figures and Tables

Chapter 1

MacsBug and Low-Level Debugging

1

Table 1-1

Summary of MacsBug 6.2 extensions 6

Chapter 2

Getting Started

9

Figure 2-1

Installation message 10

Figure 2-2

The Monitor display (system software versions 3.2
through 6.x) 12

Figure 2-3

Regions of the MacsBug display 13

Figure 2-4

PC region display 14

Figure 2-5

The status region 16

Figure 2-6

Defining an 'FKEY' resource to invoke MacsBug 20

Figure 2-7

Debugger Prefs file 23

Figure 2-8

Sample memory map 30

Table 2-1

Commands used to get out of MacsBug 22

Table 2-2

Resources in the Debugger Prefs file 24

Table 2-3

Effect of removing resources from Debugger Prefs file 24

Chapter 3

An Assembly-Language Primer

33

Figure 3-1

Compilers and assemblers 36

Figure 3-2

Syntax of an assembly-language instruction 37

Figure 3-3

Absolute addressing 40

Figure 3-4

Indirect addressing 41

Figure 3-5

Predecrement register indirect addressing 43

Figure 3-6

Postincrement register indirect addressing 44

Figure 3-7

Address register indirect with displacement addressing 45

Figure 3-8

Indexed indirect addressing with displacement 45

Figure 3-9

Immediate addressing 47

Figure 3-10

Conditional branching indicator 52

Figure 3-11

The jump table and self-relative branching 54

Figure 3-12

Source code for an assembly-language routine 56

Figure 3-13

Assembly-language program: disassembled code 56

Figure 3-14

Registers and memory for sample program 57

Figure 3-15

Reading the disassembly display 63

Table 3-1

Addressing modes 39

Table 3-2

Arithmetic integer instructions 50

Table 3-3

Branching instructions 52

Table 3-4

MacsBug’s disassembly commands 63

Thi d t t d ith F M k 4 0 4

xvi

Chapter 4

Macintosh Memory Organization

65

Figure 4-1

 Types of Macintosh memory 67

Figure 4-2

High and low memory 68

Figure 4-3

 Storing a long word 69

Figure 4-4

 Graphic representation of DM output 71

Figure 4-5

Address space for the 68000 processor 72

Figure 4-6

 A simple Macintosh memory map 72

Figure 4-7

 Memory regions and low-memory globals 75

Figure 4-8

 Virtual memory in 24-bit mode 78

Figure 4-9

 Virtual memory in 32-bit mode 79

Figure 4-10

 Template fields 84

Figure 4-11

 Linked list field entry in mxwt resource 86

Figure 4-12

 The 'mxwt' template 88

Figure 4-13

 MouseCoords template 89

Figure 4-14

 Application space in a single-application environment 91

Figure 4-15

 Heap zone format 92

Figure 4-16

 The format of a heap block 94

Figure 4-17

 Handles and master pointers 95

Figure 4-18

 Optimal arrangement of blocks in the heap 98

Figure 4-19

Application space in a multiple-application environment 102

Figure 4-20

Fragmenting the Process Manager’s heap 103

Figure 4-21

Representations of the stack 106

Figure 4-22

Stack display and storage in memory 107

Figure 4-23

Allocating space for global variables 108

Figure 4-24

A stack frame 110

Figure 4-25

Part of stack frame built by calling routine 111

Figure 4-26

Part of stack built by called routine 112

Figure 4-27

The stack frame 113

Figure 4-28

Multiple stack frames 115

Figure 4-29

Application parameters and jump table 118

Table 4-1

Units of memory 68

Table 4-2

 Commands that display and set memory 70

Table 4-3

 Memory regions 73

Table 4-4

 Memory regions and low-memory globals 76

Table 4-5

 MacsBug register commands 81

Table 4-6

 Basic types 84

Table 4-7

 Template type names 85

Chapter 5

The Macintosh Operating System

119

Figure 5-1

How the operating system handles an A-trap 122

Figure 5-2

Patching an A-trap 124

Figure 5-3

Pre-patched A-trap 125

Figure 5-4

Using in-line glue to implement an A-trap 127

Figure 5-5

Calling chain for reading from or writing to a disk 144

Figure 5-6

Device control entry 149

Figure 5-7

Flag bits in the dCtlFlags word 150

Figure 5-8

A simplified view of the unit table 151

Figure 5-9

Detailed view of the unit table 152

xvii

Table 5-1

VBL dcmd information 138

Table 5-2

A-trap commands 139

Table 5-3

vol display fields 145

Table 5-4

FILE display fields 146

Table 5-5

High-order dCtlFlags flag bits 150

Table 5-6

Low-order dCtlFlags bits 150

Table 5-7

drvr display fields 153

Chapter 6

Discipline

155

Figure 6-1

Discipline installation message 157

Figure 6-2

Sample Discipline output 159

Chapter 7

Debugging Strategies

163

Table 7-1

Low-memory globals that store operating system errors 165

Table 7-2

Commands that control program execution 175

Chapter 8

Introduction to MacsBug Commands

181

Figure 8-1

 MacsBug command line 183

Figure 8-2

Base conversion using the command line 188

Figure 8-3

Command line editing commands 190

Figure 8-4

Effect of Command–B and Command–V 191

Figure 8-5

New 'mxbm' template 196

Figure 8-6

Skeleton dcmd 201

Figure 8-7

Responding to the dcmdHelp request 204

Figure 8-8

Responding to the dcmd DoIt request 204

Table 8-1

Command syntax conventions 184

Table 8-2

Parameter types for MacsBug commands 184

Table 8-3

tArithmetic operators 188

Table 8-4

Macros defined by the 'mxbm' resource 193

Table 8-5 Standard dcmds 198
Table 8-6 Conversion characters for the printf dcmd 199
Table 8-7 DCMD callback routines 202

Chapter 9 MacsBug Commands 207

Table 9-1 Basic memory display types 239
Table 9-2 Macros for the Find command 249
Table 9-3 Interpreting the HD display 258
Table 9-4 Register names 289

xviii

Appendix A Command Summary 325

Table A-1 MacsBug commands by functional category 325
Table A-2 MacsBug commands in alphabetical order 328

Appendix C Macintosh Error Codes 337

Table C-1 “Sad Macintosh” error codes for the Macintosh Plus 337
Table C-2 “Sad Macintosh” codes for Macintosh computers except

the Mac Plus 338
Table C-3 System Error Handler alerts 342
Table C-4 OS Event Manager error 345
Table C-5 Serial driver errors 345
Table C-6 Slot Manager errors 345
Table C-7 SCSI Manager errors 346
Table C-8 Printing Manager errors 346
Table C-9 General system errors 347
Table C-10 Color Manager errors 347
Table C-11 Device Manager errors 348
Table C-12 MFS errors 348
Table C-13 Font Manager errors 350
Table C-14 Low-level disk errors 350
Table C-15 Clock chip errors 351
Table C-16 SCC errors 351
Table C-17 AppleTalk errors 351
Table C-18 Scrap Manager errors 352
Table C-19 Storage allocator errors 352
Table C-20 HFS errors 352
Table C-21 Alias Manager error 353
Table C-22 Menu Manager errors 353
Table C-23 Color QuickDraw and Color Manager errors 353
Table C-24 Resource Manager errors 354
Table C-25 Sound Manager errors 354
Table C-26 Slot Manager errors 355
Table C-27 Notification Manager error 357
Table C-28 Device Manager errors 357
Table C-29 Edition Manager errors 358
Table C-30 Process Manager errors 358
Table C-31 Event Manager errors 359
Table C-32 Memory Manager errors 359
Table C-33 Data Access Manager errors 359
Table C-34 Help Manager errors 360
Table C-35 PPC Toolbox errors 360
Table C-36 File ID errors 362
Table C-37 NBP errors 362
Table C-38 ASP errors 363
Table C-39 ATP errors 363
Table C-40 AFP errors 364

xix

Table C-41 SysEnvirons errors 365
Table C-42 Gestalt Manager errors 366
Table C-43 Picture utilities errors 366
Table C-44 Power Manager errors 366

Appendix E MacsBug Internals and Discipline Interface 369

Table E-1 Discipline and debugger information 371
Table E-2 Contents of register file 373

xxi

P R E F A C E

About This Manual

This

manual describes MacsBug, Apple’s assembly-language debugger for Macintosh
programmers. This manual is an updated version of the

MacsBug 6.1 Reference,

and has
been expanded to cover

■

Extensions and changes to commands introduced in MacsBug 6.2.

■

Macros, templates, dcmds and other resources provided with MacsBug that you can
use to make debugging easier.

■

Discipline, a tool that tests the validity of parameters passed to and received from
system calls.

■

Macintosh memory management and the operating system as these relate to low-level
debugging.

■

Information for high-level language programmers who want to interpret and steer
through disassembled code.

■

Debugging strategies that you can use to find and cure common bugs.

How to Use This Manual 0

The manual contains the following sections:

■

This preface describes the manual and the conventions used in it.

■

Chapter 1, “MacsBug and Low-Level Debugging,” provides an overview of MacsBug
and error handling, including a summary of new features in MacsBug 6.2.

■

Chapter 2, “Getting Started,” provides installation instructions, including instructions
for installing MacsBug under A/UX. It also describes the MacsBug display and
various ways to invoke MacsBug, and includes a hands-on exercise to get you started.

■

Chapter 3, “An Assembly-Language Primer,” is designed to teach you how to read
enough assembly language to interpret MacsBut output and relate this output to your
source code.

■

Chapter 4 , “Macintosh Memory Organization,” explains how to use MacsBug
commands to examine the heap and the stack, how the stack is used to implement
your routines, how virtual memory affects the memory map, how the heap is orga-
nized in a multiple-application environment, and how you can build templates to get
a more intelligible display of data structures used by your program or by the system.

■

Chapter 5, “The Macintosh Operating System,” explains exception processing: the
implementation of system calls (including packages, patches, and glue) and the
requirements of code that runs at interrupt time. The chapter also explains MacsBug’s
A-trap commands and the standard dcmds: VBL, VOL, FILE, and DRVR.

Thi d t t d ith F M k 4 0 4

xxii

P R E F A C E

■

Chapter 6, “Discipline,” describes how to install and use Discipline, a tool used with
MacsBug to test parameters passed to and returned by system calls.

■

Chapter 7, “Debugging Strategies,” describes how you can use MacsBug commands
to control the execution of your program and to display values at any point during
execution. It also contains tips about how to prevent and also how to find and
cure bugs.

■

Chapter 8, “Introduction to MacsBug Commands,” provides an overview of the use of
MacsBug commands, including macros and dcmds.

■

Chapter 9, “MacsBug Commands,” provides complete descriptions of MacsBug
commands, arranged in alphabetical order.

■

Appendix A, “Command Summary,” provides a summary of MacsBug commands
and their syntax.

■

Appendix B, “Error Messages,” lists MacsBug error messages in alphabetical order
and includes a brief description of the possible causes for each error.

■

Appendix C, “Macintosh Error Codes,” lists error codes returned by the Macintosh
system software.

■

Appendix D, ‘“Procedure Names,” explains how compiler writers should define
procedures so that MacsBug is able to accept and return addresses as procedure
names and offsets.

■

Appendix E, “MacsBug Internals and Discipline Interface,” describes how MacsBug
installs itself and how it interfaces with Discipline.

Hands-on exercises, to make learning easier and more certain, have been included
wherever possible. In some cases, you will need to load the Demo program (from
the MacsBug 6.2 distribution disk) in order to do the exercises.

If you are an expert Macintosh programmer and have been working with MacsBug for a
while, you should check the descriptions of the commands that have changed, which are
listed in the section “New Features in MacsBug 6.2” in Chapter 1. You should also read
Chapter 6, “Discipline,” and the section “Virtual Memory” in Chapter 4.

If you are a seasoned Macintosh programmer, but have stayed away from MacsBug
because you cannot read assembly language, you should read chapters 1, 2, 3,6, 7, 8,
and 9. You should also take a look at the section “Virtual Memory” in Chapter 4.

If you are new to Macintosh programming, you should read the whole book.

Other Sources of Information 0

This manual covers many topics covered in

Inside Macintosh

, but focuses on their
relationship to low-level debugging and the use of MacsBug commands. Although it
covers some topics that are not covered in

Inside Macintosh

, this manual is not a
substitute for that indispensable tome.

You should also get an up-to-date copy of the Macintosh Technical Notes. These notes
document special implementation issues, gotchas, updates, and many other details you

xxiii

P R E F A C E

might need to know in developing an application. They are available through APDA and
from many on-line services, and are mailed out automatically to registered developers.

If you are new to Macintosh programming, you should also read

How to Write Macintosh
Software

 by Scott Knaster (published by Addison-Wesley). There is no finer book to get
you started in Macintosh programming and debugging.

Notation Conventions 0

The following syntax conventions are used to describe MacsBug commands:

literal Plain text indicates a word that must appear in the command
exactly as shown. Special symbols (-, §, &, and so on) must also be
entered exactly as shown.

variable

Italics indicate a parameter that you must replace with specific
information.

[

optional

] Brackets indicate that the enclosed elements are optional. Omit the
brackets when you enter the command.

… Ellipsis (…) indicates that the preceding item can be repeated one or
more times.

| A vertical bar (|) indicates an either/or choice.

Command names and file names are not sensitive to case.

Your input to MacsBug and MacsBug output use two physically separate areas of the
display. Since this separation cannot be conveniently represented in the description of
sample commands and their output, input to MacsBug is represented by bold Courier
text and MacsBug output is represented by plain Courier text. For example, in the
following two lines, BRC is what you enter on the command line, and “All breakpoints
cleared” is what MacsBug displays in the output region of the display.

BRC

 All breakpoints cleared

This convention is used throughout this manual.

In the text of this manual, numbers preceded by a dollar sign are in hexadecimal (like
this: $21E8), and all other numbers are in decimal. In any MacsBug display, all numbers
are in hexadecimal unless they are preceded by a pound sign (like this: #2148).

C H A P T E R 1

MacsBug and Low-Level

Debugging 1

Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

MacsBug and Low-Level Debugging

2

Error Handling on the Macintosh

This chapter introduces MacsBug, a Motorola 68000-family assembly-language debugger
customized for the entire Macintosh



 family of computers. First introduced in 1981,
MacsBug has continued to evolve along with the Macintosh. The section “New
Features in MacsBug 6.2” in this chapter summarizes changes introduced with
version 6.2 of MacsBug.

MacsBug 6.2 runs on all Macintosh computers except for the Macintosh XL and com-
puters with the 64K ROM. It is designed to support future members of the 68000
family. It handles the MC68881 floating-point coprocessor and the MC68851 Memory
Management Unit (MMU). MacsBug supports external displays for Macintosh Classic
computers as well as various screen sizes and bit depths for monitors used with modular
Macintosh computers. There’s no need to customize MacsBug for particular configura-
tions, since it determines the attributes of the machine at system startup.

MacsBug 6.2 works with all versions of Macintosh system software. It is compatible with
MultiFinder



in system software versions 5.0 and 6.0.

Error Handling on the Macintosh 1

Error handling on the Macintosh is initiated by the microprocessor. When the micro-
processor encounters an instruction that it does not recognize or cannot execute, it saves
information about its current state and then transfers control to one of several routines
whose addresses are stored in low memory and that are responsible for responding
to the instruction. The means by which the processor does this is called

exception
processing;

 the routines to which the processor transfers control are called

exception
handlers.

The Macintosh uses exception processing to implement User Interface Toolbox and
operating system routines as well as to handle errors:

■

The routine that is called when the microprocessor encounters a system call (that is
implemented as an A-trap instruction) is the

trap dispatcher.

 Chapter 5, “The
Macintosh Operating System,” describes how A-traps are implemented using the
trap dispatcher.

■

The routine that is called when the microprocessor encounters a fatal error is called an

error handler.

When a fatal error occurs and MacsBug is not installed, the microprocessor transfers
control to the System Error Handler, which puts up the bomb box and, optionally,
executes a routine that allows the user to resume program execution. If MacsBug (or
another resident debugger) is installed, the processor transfers control to it. MacsBug, in
turn, displays the debugging screen.

Using MacsBug commands and the information displayed on the debugging screen, you
can determine which instruction caused the error, how that instruction came to be
executed, and how to change your code to eliminate the error. This process is called

C H A P T E R 1

MacsBug and Low-Level Debugging

Why Low-Level Debugging?

3

low-level debugging because MacsBug shows you the disassembled object code that the
machine is executing, rather than the source-level code (if your source code is written in
a high-level language).

Why Low-Level Debugging? 1

If you were a doctor and someone came to you with a fever, a sore throat, and a runny
nose, you could make a diagnosis on the basis of this external evidence alone; or you
could take a throat culture, look at it through a microscope, and make a diagnosis based
on your examination of the biological evidence. A programmer might call the diagnosis
based on external evidence source-level debugging, and the diagnosis made with the aid
of a microscope low-level debugging.

Obviously, low-level debugging is not necessary in every case. If a man has been run
over by a truck, you won’t need your microscope. But if the diagnosis you have made on
the basis of external evidence hasn’t cured the patient, it’s time to reach for more precise
tools and get a more detailed view.

A low-level debugger is the tool of choice in three situations:

■

You have a bug that cannot be analyzed with a source-level debugger either because
the bug occurs in an INIT that runs before any applications (including your source-
level debugger) are loaded or because the bug crashes the source level debugger.

■

The syntax and logic of your program appear to be perfect, but your program is
crashing or behaving erratically nevertheless. It is now necessary to read between
your source lines, that is, to look at the instructions the processor is executing and
to determine which instruction is causing the problem and what part of your source
code is causing that instruction to be executing.

■

Your program is running fine, but you want to make sure that you’re making efficient
use of memory and system resources, and doubly sure that you have eliminated
potential bugs. You can use MacsBug to check for fragmentation in the application
heap and to force the Memory Manager to move blocks in the heap as often as
possible, thus unearthing any bad pointers that haven’t surfaced yet.

If you’re not familiar with assembly language, a low-level debugger can be rather
forbidding. You must learn how to interpret the information it displays and how that
information relates to your source-level program and the program’s use of system calls
before you can use a low-level debugger to find and fix bugs. If you’re in this situation,
you should read carefully through Chapters 3, 4, and 5 of this manual. These chapters
are designed to familiarize you with assembly language and to give you a better under-
standing of how MacsBug commands relate to debugging a Macintosh program.

C H A P T E R 1

MacsBug and Low-Level Debugging

4

Why MacsBug?

Why MacsBug? 1

When you’re debugging a program, you are interested in the interaction between your
code and the system. Any debugger you use also interacts with the system: it makes
system calls and uses memory. The less interaction that takes place between the
debugger and the system and the less memory the debugger uses, the more certain you
can be that the errors you discover are caused by your code. The main advantage of
MacsBug over other low-level debuggers is that it does not use the Macintosh system
software. The only exceptions to this are the LOG command and whatever system calls
are used by a dcmd. MacsBug also takes up very little space in memory: a minimum of
90K or the more standard 140K. If you are a systems programmer, you can debug your
software without having to worry about the debugger using the code you’re debugging.
If you are an applications programmer, and therefore still concerned about the
interaction between your application and the system, you’ll find MacsBug a powerful
tool for debugging applications.

MacsBug is an assembly-language debugger. If you’re writing programs in a high-level
language like C or Pascal, you’ll more often want to use the Symbolic Application
Debugging Environment (SADE



). SADE lets you debug your program at the
source-code level, which means you don’t need to know assembly language or map
object code back to your program’s source-level instructions. If you need to, SADE lets
you monitor program execution at the machine level as well.

SADE does have its limitations, however, and high-level programmers will find that
MacsBug picks up where SADE leaves off. Specifically:

■

SADE uses the Macintosh system software extensively, and in the case of a severe
crash may not be operable. MacsBug lets you examine the remains to try to determine
what went wrong.

■

If RAM is severely limited, you may not be able to run SADE. MacsBug is lean
and mean.

MacsBug is loaded at system startup and sits quietly in RAM until it’s invoked. Unlike
debuggers that expect a target program to work with, MacsBug lets you look at
practically anything running on the Macintosh—Toolbox and operating system routines,
applications, desk accessories, and so on.

You can suspend program execution and invoke MacsBug at any point, either manually
(by pressing the interrupt switch or a key that you define) or programmatically (by
calling special traps from within your program). And since MacsBug needs so little of
the system to operate, it can be used even in the case of fatal system errors. Whenever
the System Error Handler is called, or when an exception occurs, MacsBug takes control
and lets you look around.

Once MacsBug has been invoked, you can enter commands to

■

Display and set memory and registers.

■

Disassemble memory.

C H A P T E R 1

MacsBug and Low-Level Debugging

New Features in MacsBug 6.2

5

■

Set execution breakpoints.

■

Step and trace through both RAM and ROM.

■

Monitor system traps.

■

Display and check the system and application heaps.

Chapter 2, “Getting Started,” explains how you install MacsBug. It also provides specific
instructions about how to invoke and leave MacsBug, and how to interpret MacsBug’s
display. Chapter 2 ends with a hands-on exercise to get you started. The Preface to
this manual describes the contents of the other chapters and how to use this manual
depending on your experience with programming on the Macintosh and with low-
level debugging.

New Features in MacsBug 6.2 1

One of the major changes to MacsBug since version 6.1 is that it now works reliably with
all Apple monitors and all third-party monitors if their slot ROM and driver software
has been designed according to the guidelines presented in

Designing Cards and Drivers
for the Macintosh II and Macintosh SE.

 In addition to its increased portability, MacsBug 6.2
includes the following new features:

■

A new display that shows you the name of the current application, the memory
management scheme (24-bit/32-bit) currently used, and whether MacsBug can access
virtual memory.

■

New options for the Find command that allow you to specify the width of the pattern
for which MacsBug searches. You can even use one of these options to have MacsBug
look for pointers.

■

A more detailed heap dump display. The HD command can now display all blocks,
even if some block headers are slightly damaged. (Damaged blocks are indicated by a
question mark (?) or an exclamation point (!) prefixed to the master pointer.)

■

 A more detailed heap zones display:. The HZ command now indicates embedded
heaps, and whether a heap is 24-bit or 32-bit. The HZ command also indicates
whether a heap contains a damaged block by displaying an exclamation point (!) after
the heap zone’s ending address.

■

An extension to the GT (Go To) command that allows you to specify one or more
MacsBug commands to be executed once the specified breakpoint is reached.

■

If an address is in a known resource but not in a known procedure, Macsbug will
display information about that resource.

■

The SC and SC7 commands take optional parameters that you can use to specify the
beginning and ending address of a private stack. You can then use either Stack Crawl
command to examine that stack.

■

The BRD command tells you whether the microprocessor will step or trace to find the
specified instruction.

■

A standard printf dcmd (debugger command) that allows you to produce formatted
output.

C H A P T E R 1

MacsBug and Low-Level Debugging

6

New Features in MacsBug 6.2

In addition to these specific changes, you should find MacsBug 6.2 easier to use. When-
ever possible its output has been made more articulate and its displays more intelligible.
Table 1-1 provides a summary of changes and additions introduced with version 6.2.

Table 1-1

Summary of MacsBug 6.2 extensions

Item Syntax Effect/Change

Command-D Command-D Displays a menu of procedure names from
which you can select a name to insert in the
command line. This is not a new command; it
is a way of implementing the Command-:
command on German and Scandinavian
keyboards. See the section “Determining
Where to Start Disassembly” in Chapter 3 for
additional information.

Command-B Command-B Scrolls the command line buffer up. See
Chapter 8, “Introduction to MacsBug
Commands,” for additional information.

Find command F

addr nbytes expr

 | "

string

" Returns the address where it finds the specified
pattern. See the description of the Find com-
mand in Chapter 9 for additional information.

Find command F[B|W|L|P]

addr nbytes expr

Returns the address where it finds the specified
Byte, Word, Long word, or Pointer. See the
description of the Find command in Chapter 9
for additional information.

ATP command ATP If ATR is off, the ATP command plays back infor-
mation from the most recent ATR. See the
description of the ATP command in Chapter 9
for additional information.

BRD BRD Output tells you whether the microprocessor
has to step or trace in order to break on the
specified instruction, and whether the specified
instruction is in a relocatable block.

GT command GT

addr

 [';

cmds

'] Breaks at the specified address and executes one
or more commands. See the description of the
GT command in Chapter 9 for additional
information.

HD HD[

qualifier

] A new qualifier, Q, has been added that causes
MacsBug to display all blocks that might have
damaged headers. See the description of the
HD command in Chapter 9 for additional
information.

HZ HZ [

addr

] Indicates whether a heap zone contains a
damaged block, whether a heap zone is embed-
ded within another heap zone (by levels of
indentation), and whether a heap zone is 24-bit
or 32-bit.

continued

C H A P T E R 1

MacsBug and Low-Level Debugging

New Features in MacsBug 6.2

7

SC6 SC6 [

address

 [

nbytes

]] Provides two new parameters,

address

and

nbytes,

that you can use to specify the beginning
and ending address of a private stack. See the
description of the SC6 command in Chapter 9
for additional information.

SC7 SC7 [

address

 [

nbytes

]] Provides two new parameters,

address

and

nbytes,

that you can use to specify the beginning
and ending address of a private stack. See the
description of the SC7 command in Chapter 9
for additional information.

DebugStr trap DebugStr ("

string

 [;

cmd

]...") Sets a break from within the source program.
When MacsBug is invoked, it displays

string

and executes one or more commands. See
“Invoking MacsBug from Your Source Program”
in Chapter 2 for additional information.

Printf dcmd printf "

format

"

arg

 ... Formatted output command. See “The printf
dcmd” in Chapter 8 for additional information.

UserZone
variable

UserZone Identifies the heap whose address you last
furnished as a parameter to the HX command.
See the description of the HX command in
Chapter 9 for additional information.

TargetZone
variable

TargetZone Specifies the zone currently set with the HX
command. See the description of the HX
command in Chapter 9 for additional
information.

Table 1-1

Summary of MacsBug 6.2 extensions (continued)

Item Syntax Effect/Change

C H A P T E R 2

Getting Started 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Getting Started

10

Installing MacsBug

This chapter explains how to install MacsBug and begin using it, including

■

How to install MacsBug under both the Macintosh Operating System and A/UX



.

■

How to display MacsBug on a different monitor.

■

How to interpret the information displayed in the different regions of the
MacsBug display.

■

The various ways to invoke MacsBug.

■

The various ways to get out of MacsBug.

■

How to log MacsBug output to a file or a printer.

■

The contents of the Debugger Prefs file.

The chapter concludes with a brief exercise designed to get you started using MacsBug.
Chapter 1, “MacsBug and Low-Level Debugging,” provides an overview of MacsBug
and error handling. Make sure you understand these basic concepts before you read
this chapter.

If you have worked with MacsBug before, you only need to read the section “The Status
Region,” which describes new information shown by MacsBug version 6.2.

Installing MacsBug 2

To install MacsBug and the Debugger Prefs file, open your distribution disk and drag the
MacsBug file and the Debugger Prefs file into your System Folder. Then restart your
system. MacsBug is installed at system startup and resides in RAM until shutdown.

After successful installation, the message shown in Figure 2-1 is displayed below the
“Welcome to Macintosh” message. The start-up application is then launched; this is
usually Finder



.

Figure 2-1

Installation message

To prevent MacsBug installation indefinitely, you can rename the MacsBug file, or move
the file from the System Folder. To override MacsBug installation for a single session
only, simply hold down the mouse button during startup.

C H A P T E R 2

Getting Started

Installing MacsBug

11

Once MacsBug is installed, it can be invoked in a number of different ways. For
additional information, see “Invoking MacsBug,” later in this chapter.

Installing MacsBug Under A/UX 2

To install MacsBug, drag the MacsBug document and the Debugger Prefs file into the
System Folder. When you are done, you should have the following two files:

/mac/sys/System Folder/MacsBug

/mac/sys/System Folder/DebuggerPrefs

Then restart your Macintosh.

To invoke MacsBug, press Control-Command-I simultaneously. This will bring up the
MacsBug display, and allow you to start working with MacsBug. See “Invoking
MacsBug Under A/UX,” later in this chapter, for additional information.

In most respects, the version of MacsBug that runs under A/UX behaves identically
to that running under the Macintosh system software. You can therefore use this
documentation for your debugging; however, make sure you read “Invoking MacsBug
Under A/UX,” later in this chapter, for special considerations.

Displaying MacsBug on a Different Monitor 2

If you are working with more than one monitor, MacsBug uses the “Welcome to
Macintosh” screen by default. To run your application on one monitor and MacsBug
on another, use the procedure that is appropriate for the system software on your
Macintosh.working with multiple;

System Software Versions 3.2 Through 6.x 2

Choose Control Panel from the Apple menu and scroll down until you see the Monitor
icon; then press the Option key while clicking on the Monitor icon. You will see a
display like the one shown in Figure 2-2. Press the Option key to display the “happy
Macintosh” icon.

MacsBug displays the debugging screen on the monitor containing the “happy
Macintosh” icon. Figure 2-2 shows two monitors installed. To run your application
on Monitor 1 and display the debugging screen on Monitor 2, drag the “happy
Macintosh” icon to Monitor 2 and restart.

You can use the SWAP command, described in Chapter 9, to keep MacsBug visible at all
times on the second monitor. Otherwise, MacsBug is displayed on the second monitor
only when it is invoked.

C H A P T E R 2

Getting Started

12

Installing MacsBug

Figure 2-2

The Monitor display (system software versions 3.2 through 6.x)

System Software Version 7.0 2

Choose Control Panels from the Apple menu or open the Control Panels folder in the
System Folder. Then, double-click the monitors icon.

MacsBug displays the debugging screen on the monitor containing the “happy
Macintosh” icon. To run your application on Monitor 1 and display the debugging
screen on Monitor 2, hold down the Option key and drag the “happy Macintosh”
icon to Monitor 2 and restart.

You can use the SWAP command, described in Chapter 9, to keep MacsBug visible at all
times on the second monitor. Otherwise, MacsBug is displayed on the second monitor
only when it is invoked.

Updating the Debugger Prefs File 2

If you have used MacsBug before and have created additional macro, template, or dcmd
resources, you can use ResEdit



 to copy these resources into the version of the
Debugger Prefs file that comes with MacsBug 6.2. For more information, see “Working
With the Debugger Prefs File,” later in this chapter.

C H A P T E R 2

Getting Started

The MacsBug Display

13

The MacsBug Display 2

Figure 2-3 shows the different regions of the MacsBug display. Normally, when MacsBug
is invoked, the status region and the PC region contain information about the current
state of the microprocessor. However, these regions are shown blank in Figure 2-3 to
make the different regions easier to see.

The sections that follow describe each of these regions, the information they provide,
and the MacsBug commands or resources you can use to change the default settings that
determine how much information or, in some instances, the kind of information that is
shown in each region.

Figure 2-3

Regions of the MacsBug display

The Command Line 2

The

command line

 is the area in which you enter commands and perform base
conversions and arithmetic calculations. When MacsBug is invoked, the command line
is blank. The insertion point is indicated by a blinking cursor in the first position on
the command line.

You cannot change the size of the command line. MacsBug contains a command line
buffer in which each command that you execute is stored. Command-key combinations
allow you to scroll through the buffer and copy a command you have entered before to
the command line.

Status region

Output region

PC region

Command line

C H A P T E R 2

Getting Started

14

The MacsBug Display

You can use the standard editing keys (Delete, Left Arrow, and Right Arrow) as well as
several special functions to edit commands you have already entered.

To enter a command, type the command and press Return. You can enter several
commands on the command line by separating them with a semicolon (;), but you
cannot continue to a second line.

Please see Chapter 8, “Introduction to MacsBug Commands,” for additional information
about entering commands and working with the command line.

The PC Region 2

The

PC region

 displays the address of the next instruction to be executed as well as the
disassembly of that instruction. It is called the PC region because the address of the next
instruction to be executed is always stored in the program counter or PC register.

By default only one instruction is displayed in this region. However, you can use ResEdit
to change the default setting in the 'mxbi' resource and display several lines. Follow
these steps to change the setting:

1. Open the Debugger Prefs file.

2. Open the 'mxbi' resource.

3. Use the Tab key to move to the field labeled “#of PC lines shown” and enter the
number of lines that you want displayed.

4. Save the changes to the resource. To load the changed resource, you will have to
restart.

Figure 2-4 shows a sample PC region display.

Figure 2-4

PC region display

In the sample display shown in Figure 2-4, the PC region displays three lines: the
asterisk preceding the first instruction indicates the next instruction to be executed.

The only other information displayed in this region concerns the execution of branching
instructions. The branching indicator, shown in the upper-right corner of the PC region,
tells you whether the program will branch after executing the next instruction.

PC
region

Command
line

Branching
indicator

C H A P T E R 2

Getting Started

The MacsBug Display

15

The Output Region 2

The largest area of the screen is the

output region:

this is the area that MacsBug uses
to display information in response to the commands you enter. The size of this area
depends on the number of lines you choose to display in the PC region. The more lines
you display in the PC region, the smaller the output region.

When MacsBug is invoked, the first line of the output region always displays a message
explaining the reason for the break. This could be a microprocessor exception, Macintosh
system error, or a user-specified break.

In general, MacsBug output falls into three categories, indicated by three levels of
indentation:

■

The leftmost line displays the reason for the break.

■

The next level of indentation displays a message for each command you enter, either
confirming execution or explaining a failure.

■

The rightmost level of indentation displays command output.

Information shown in the output region scrolls up (and eventually off) the screen as you
execute new commands. You can use the Up Arrow and Down Arrow keys to examine
text that has scrolled off the top of the display. If you scroll back to examine some text
and then enter another comand, the new output is displayed starting from where you
are (rather than at the end of the buffer). MacsBug does this on the assumption that
you’ll more often want to see the new output along with the output at which you were
just looking.

Scrollable output is enabled by a history buffer whose default size of 2K you can change
using the 'mxbi' resource. You can use ResEdit to change the size of the buffer by
following these steps:

1. Open the Debugger Prefs file.

2. Open the 'mxbi' resource.

3. Use the Tab key to move to the field labeled “Size of the history buffer” and enter the
number of bytes that you want displayed. An 8K buffer will hold about four pages
of output.

4. Save the changes to the resource. To load the changed resource, you will have
to restart.

See the section “Saving MacsBug Output” in this chapter for information on how to log
output to a file or printer.

C H A P T E R 2

Getting Started

16

The MacsBug Display

The Status Region 2

The

status region,

 which is at the left of the MacsBug debugging screen, displays
information about the system at the time that MacsBug is invoked. Figure 2-5 shows
a schematic view of the status region.

Figure 2-5

The status region

As you can see, the status region consists of three areas:

■

At the top of the status region MacsBug displays an area of memory called the stack.

■

In the middle of the status region, MacsBug displays the current application name, the
current memory configuration, a virtual memory marker, the setting of the condition
codes in the status register, and the interrupt level set by the system.

■

At the bottom of the status region, MacsBug displays the contents of the CPU registers.

The following three sections describe the information shown in each area of the status
region in greater detail.

The Stack Area 2

By default, MacsBug uses the stack area of the status region to display first the contents
of the stack pointer (SP) and then memory on the stack starting with the lowest location.
The section “Looking at the Stack,” in Chapter 4, provides a more detailed explanation of
this display.

You can use the MacsBug SHOW command, described in Chapter 9, to display the stack
using different formats or to use this portion of the status region to display an entirely
different area of memory.

Status region

Stack

Status

area

Registers

CurApName

Finder

SR Smxnzvc 0

24-bit RM

Memory configuration

Current application name

Virtual memory marke

Interrupt level

Condition codes

C H A P T E R 2

Getting Started

The MacsBug Display

17

The Status Area 2

As shown in Figure 2-5, the first two lines of this area display the name of the current
application. If your application is running in a multiple-application environment (that is,
under system software version 5.0 or 6.0 with MultiFinder turned on, or under system
software version 7.0), it is possible that one of the background applications has caused
the crash. If this is the case, the name of the current application shown in the MacsBug
display will

not

 be the name of the foreground application.

The third line displays information about the current memory configuration and
virtual memory:

■

The memory configuration marker indicates whether the Memory Manager is in
24-bit mode or 32-bit mode. Being aware of which mode the Memory Manager is in
could save you time and trouble in identifying the cause of some bus errors. (When
you try to access a bad address in MacsBug, the error would be “Unable to access that
address.”). For example, to implement drivers that access a NuBus board, you need to
switch the hardware to 32-bit addressing mode. If you now dereference an address
that uses the high byte to hold data, you will get a bus error because the address does
not refer to a valid location.
It is your responsibility to make sure that your program is not using invalid addresses
either by switching back to 24-bit mode or by using the StripAddress routine to strip
the misleading high byte from the address. The marker tells you what memory
management scheme the Memory Manager is using. It is then up to you to make
sure that your application is behaving appropriately given that state. Please note
that the description of the StripAddress routine in the “Memory Management”
chapter in

Inside Macintosh,

Volume VI, corrects the description of the routine
included in Volume V.
The virtual memory marker displays one of three codes to indicate whether virtual
memory is being used and whether MacsBug can rely on the Memory Manager to
swap pages if the program being debugged makes use of virtual memory. The codes
displayed have the following meaning:

For additional information, see “Virtual Memory” in Chapter 4.

The fourth line displays the setting of the condition codes in the status register. The flags
used depend on the microprocessor used on your machine. In general, if the letter
representing the flag is capitalized, the flag is set; if it’s lowercase, the flag is not set. The
rightmost item on this line is a number from 0 to 7 indicating the interrupt level set by
the system at the time MacsBug was invoked. For more information about interrupt
levels, see “Interrupts” in Chapter 5.

RM Virtual memory is not being used (Real Memory).

VM Memory Manager can swap pages if MacsBug requires it.

vM MacsBug was invoked while the Memory Manager was swapping pages;
now the Memory Manager cannot swap pages for MacsBug.

C H A P T E R 2

Getting Started

18

Invoking MacsBug

The Register Area 2

The area at the bottom of the status region displays the contents of the CPU registers. As
you execute your program, MacsBug updates the register display. If you want to record
register values so that you can compare them with their updated values, you can use the
TD (Total Display) command to have MacsBug write their values to the output region of
the display.

MacsBug provides two additional commands that display the contents of other registers:

■

The TF (Total Floating-Point) command displays the contents of the floating-
point register.

■

The TM (Total MMU) command displays the contents of the MMU register.

For additional information about these commands, see Chapter 9, “MacsBug Commands.”

Invoking MacsBug 2

Once you have installed MacsBug, it takes control of your system and displays the
debugging screen either as the result of a system error or because you invoke it. This
section describes the various ways that you can invoke MacsBug and the circumstances
under which MacsBug will invoke itself.

▲ W A R N I N G

When you invoke MacsBug, you generate a level 7 interrupt, which
means that all interrupts are disabled while MacsBug is running.
AppleShare uses interrupt routines to keep continuous communication
going between a file server and a workstation. If you are logged on to a
file server, and you enter MacsBug for more than 2F(1,2) minutes, the file
server will assume your application has died and you will lose your
server connection.

▲

MacsBug When You Least Expect It 2

Perhaps the most dramatic and frustrating way to find yourself in MacsBug is as the
result of a system error. If you find yourself in this situation, the first thing to do is gather
whatever information you can that helps you determine the cause of the crash. MacsBug
helps you a little by displaying a message describing the reason for the break in the
output region of the display.

You can also get a sense of where your program crashed by looking in the PC region of
the display. The instruction displayed in this region is the next instruction to be executed.
You can disassemble around that address to find out which routine was executing when
you crashed.

Finally, you can use the Tilde (~) or Esc keys to see what the screen looked like right
before the crash. Press any letter key to return to MacsBug.

C H A P T E R 2

Getting Started

Invoking MacsBug

19

MacsBug is also invoked if you have Discipline turned on and one of the values sent to
or returned from a system call does not meet Discipline’s test. MacsBug displays infor-
mation about the offending call. Having Discipline break in and display diagnostic
messages gives you some warning about a situation that might result in a crash. In
addition, Discipline displays sufficient information for you to fix the call that caused
the break. For more information, see Chapter 6, “Discipline.”

If MacsBug is invoked as the result of a system error, you need to be careful about how
you get out of MacsBug. Please see the section “Getting Out of MacsBug” for additional
information.

Chapter 7, “Debugging Strategies,” provides additional information on locating the
cause of the crash.

Using the Programmer’s Switch to Invoke MacsBug 2

The

programmer’s switch

 is a two-pronged plastic gadget that is shipped with every
Macintosh. If you have not already installed it, please consult the documentation that
came with your computer for instructions. The programmer’s switch has two parts:

■

A reset switch. This button is marked with an arrowhead (or the word “Reset” on the
Macintosh Plus). If you are in the Finder, this switch is the preferred way to restart
your Macintosh in the event of a crash so bad that you cannot use commands in the
Special menu and you can’t get into MacsBug.

■

An

interrupt switch.

 This button is marked with a circled V (or the word “Interrupt”
on the Macintosh Plus). Pressing this button generates a level 7, non-maskable
interrupt, which is why it is often called the NMI key. (On the Macintosh Plus/SE, it
can generate a level 4, 5, 6, or 7 interrupt.) The microprocessor handles this interrupt
by invoking MacsBug.

If you use the interrupt switch to invoke MacsBug, there is a possibility that the system
might be in an uncertain state: perhaps the Memory Manager was in the middle of
moving a heap block or perhaps a ROM routine was executing which used register A5
for its own purposes and the interrupt occurred before the routine restored its value. If
this is the case, you might wind up looking at unreliable values. To avoid this possibility
when using the interrupt switch, you might want to enter the following commands
when MacsBug is invoked:

ATB WaitNextEvent; G

and then

ATC WaitNextEvent

This will usually eliminate the problem and you can continue working without worry.
Under earlier systems and applications, use GetNextEvent rather than WaitNextEvent.

C H A P T E R 2

Getting Started

20

Invoking MacsBug

Defining an 'FKEY' Resource to Invoke MacsBug 2

Another way to invoke MacsBug is to define an 'FKEY' resource using ResEdit or
MPWS(



)

.Once you have defined this resource, you can use a Shift-Command-key
combination to invoke MacsBug.

To define an 'FKEY' resource using ResEdit 2.1, follow these steps:

1. Launch ResEdit.

2. Open the 'FKEY' resource in the System File.

3. Choose “Create New Resource” from the Resource menu to create a new 'FKEY'
resource.

4. Type the following numbers into the new resource exactly as shown:

A9FF 4E75

A9FF is machine code for the _Debugger trap; 4E75 is machine code for the RTS
instruction.
Figure 2-6 shows what the resource looks like after you’ve entered the instruction.

Figure 2-6

Defining an 'FKEY' resource to invoke MacsBug

5. Choose Get Resource Info from the Resource menu and set its ID number to a number
greater than 4 and less than or equal to 9. Please remember to use a number that is not
already in use. The numbers 1, 2, 3, and 4 are reserved for system functions.

6. Close and save the System file.

7. To invoke MacsBug, press Command-Shift and the ID number you have assigned the
resource. For example, if you’ve assigned the resource ID 7, press Command-Shift-7 to
invoke MacsBug.

This method of invoking MacsBug will only work when the application is calling
GetNextEvent or WaitNextEvent regularly, which it might not do if it’s hung or frozen.

C H A P T E R 2

Getting Started

Invoking MacsBug

21

Invoking MacsBug from Your Source Program 2

You can call two system routines, Debugger and DebugStr, from your source program to
invoke MacsBug. Calling either of these two routines is also referred to as implementing
user breaks.

The Debugger trap simply invokes MacsBug; the DebugrStr trap invokes MacsBug and
optionally displays a message and executes one or more commands.

If you think that a certain part of your program is causing a crash, you can place the
Debugger call in your source code, just before the suspect statement. MacsBug will be
invoked right before the code in question executes. For example, if your source code
contains the lines

Begin

thisnumber := $666;

Debugger;

newnumber := thisnumber

End

MacsBug is invoked after the instructions for the first assignment statement are executed.

The DebugStr trap pushes a pointer to a Pascal string onto the stack and then invokes
MacsBug. If the string contains text, it is displayed by MacsBug as part of its break
message. If the first character in the string is a semicolon (;), MacsBug assumes that the
string contains MacsBug commands and executes them.

You can include multiple MacsBug commands, separated by semicolons, in the DebugStr
call. MacsBug then executes all the commands when it encounters the call. The DebugStr
call can also contain text followed by a semicolon and one or more commands. For
example:

DebugStr ('Displaying the heap and application name; HD; DM 910');

This line in your source code calls MacsBug and passes the string. MacsBug displays the
message “Displaying the heap and application name”, then it does a heap dump and
displays memory at location 910. You can embed carriage returns in text that you want
to print.

For information on how you can use DebugStr to display variable values when MacsBug
is invoked, see the section “Setting Breakpoints” in Chapter 7.

Inactivating User Breaks 2

If you wish to temporarily inactivate breaks set with Debugger and DebugStr, you can
use the MacsBug DX (Debugger Exchange) command. This command turns user breaks
on or off. When DX is OFF, MacsBug ignores Debugger and DebugStr calls. You can
enter DX again to enable user breaks. Since the FKEY invokes MacsBug by calling the
Debugger trap, disabling breaks with the DX command will also disable the FKEY.

C H A P T E R 2

Getting Started

22

Getting Out of MacsBug

Using DebugStr from an Assembly-Language Source Program 2

You can call both the Debugger trap and the DebugStr trap from an assembly-language
source program. The Debugger trap (_Debugger) is predefined in the file ToolTraps.a. To
use the DebugStr trap (_DebugStr), you need to define it yourself:

_DebugStr OPWORD $ABFF

Before calling the trap, you will also need to include the following instruction

PEA # '

message

 '

to push the address of the message string on the stack.

Invoking MacsBug Under A/UX 2

To invoke MacsBug under A/UX, you must press the Control-Command-I keys
simultaneously. This will bring up the MacsBug display, and you can start working
with MacsBug.

The only limitation you will encounter in working with MacsBug under A/UX is that
you will not be able to use the LOG command to log output to an ImageWriter



.
However, you can still log to a file.

▲ W A R N I N G

Do not press the programmer’s switch to invoke MacsBug under A/UX.
The programmer’s switch is used to break into the A/UX kernel
debugger; it will not get you into MacsBug.

▲

Getting Out of MacsBug 2

How you get out of MacsBug largely depends on how you got there in the first place
and on what you want to do next. Table 2-1 describes the commands you can use to
leave MacsBug.

Table 2-1

Commands used to get out of MacsBug

Command Action

G Resumes program execution.

GT Resumes execution until the program counter reaches
the specified address.

EA Restarts the application from which MacsBug was invoked.

ES Returns you to the current shell, this is usually Finder.

RS Unmounts all mounted volumes and restarts the Macintosh.

RB Restarts the system. It unmounts the startup volume before restarting.

C H A P T E R 2

Getting Started

Saving MacsBug Output

23

If you invoked MacsBug yourself, you can use the G, GT, EA, or ES command,
depending on what you want to do next.

If you dropped into MacsBug as a result of a system error, the system might have been
damaged. Try to exit using the ES command, then select Restart from the Special menu.
If ES fails, use the RB command.

Saving MacsBug Output 2

If you want a permanent record of your MacsBug session, you can use the LOG
command to write MacsBug output to a file or to an ImageWriter. Of course, you
will still see the output on the screen.

The syntax of the LOG command is

LOG [pathname | Printer]

You can specify a full or partial path name as a file name. The Printer option specifies
that you want the output to be sent to an ImageWriter. The LOG command does not
work with the LaserWriter or AppleTalk ImageWriter; however, you can send output to
a file and then print the file on a LaserWriter.

Working With the Debugger Prefs File 2

This section describes the Debugger Prefs file included on the MacsBug 6.2 release disk.
It assumes that you are using version 2.1 (or later) of ResEdit.

When you open the Debugger Prefs file, ResEdit 2.1 displays a list of resources similar to
that shown in Figure 2-7. Note that the display includes information about the number
of resources of a certain type (count) as well as the total size of the resources of that type.

Note that all MacsBug resources, except for the resource used to provide help
information have been placed in the Debugger Prefs file.

Figure 2-7 Debugger Prefs file

C H A P T E R 2

Getting Started

24 Working With the Debugger Prefs File

Table 2-2 describes the contents of the Debugger Prefs file.

If you must save space in memory, you can do so by deleting, moving or altering
resources from the Debugger Prefs file. You should not remove the TMPL resource
because this is the resource that ResEdit uses to display the other MacsBug resources.

The effect of moving or altering the resources is described in Table 2-3.

Table 2-2 Resources in the Debugger Prefs file

Resource Contents

mxbi Specifies the size of the history buffer, the number of traps recorded by
MacsBug, and the number of lines displayed in the PC region of the
display. See the section “The MacsBug Display” in this chapter for
information on how to change the default settings.

mxbc Specifies color display preferences.

mxbm Defines the macros you can use to reference low-memory globals and
macros that define useful command lines. See the section “Using
Macros” in Chapter 8 for additional information.

mxwt Defines the templates you use to obtain a more readable memory
display. See the section “Using Templates to Display Memory” in
Chapter 4 for additional information.

dcmd Defines the dcmds you can use in addition to MacsBug commands. See
the section “Using dcmds” in Chapter 8 for additional information.

C++ Unmangles C++ compiled files so that MacsBug can understand them.

Table 2-3 Effect of removing resources from Debugger Prefs file

Size (K) Resource Effect

5 C++ Needed only by C++ programmers for unmangling CFront
generated code.

-- mxbi MacsBug uses default values. If you reduce the size of the
history buffer, you gain some memory but can save less
information.

-- mxbc Uses default black and white display.

8 mxbm If you remove resources 101 and 102, you will no longer be
able to reference low-memory globals by name. Examine the
contents of the other mxbm resources before you remove or
delete them.

8 mxwt You will lose the use of templates to make sense of
memory display.

1.6 dcmd You will no longer be able to use these commands. You can
remove dcmds individually.

C H A P T E R 2

Getting Started

Exercise: Getting Started With MacsBug 25

Exercise: Getting Started With MacsBug 2

Follow the instructions at the beginning of this chapter to install MacsBug. For the
purposes of this exercise, you need to be working in a single-application environment,
which means you must be using a version of system software earlier than version 7.0,
and you must have Finder selected in the Set Startup dialog box before you start or
restart your Macintosh.

Open the A-Trap Demo application from your MacsBug distribution disk. Choose User
Break from the Debug menu. The User Break item contains a call to the Debugger trap,
which invokes MacsBug.

Take a few minutes to look over the MacsBug display. Go back to the section “The
MacsBug Display” in this chapter and read over the information provided there while
you are actually looking at the display. See if you can answer the following questions by
looking at the display:

1. What is the name of the current application?

2. Is the Memory Manager in 24-bit mode or 32-bit mode?

3. Is the current application running under virtual memory?

4. What is the value stored in register A7? Look at the top of the status area; notice that
the value for SP (the stack pointer) is identical to the value stored in register A7.

5. What is the next instruction to be executed?

6. What caused MacsBug to be invoked? Look at the output region of the MacsBug
display. MacsBug displays a message describing how it was invoked. In this case,
it displays the message

User break at 00192A4A UserBrk+0008

To see the application screen again, press the Esc key. To display the MacsBug display,
press any character key.

The simplest way to leave MacsBug is to use the G (Go) command; this resumes
program execution exactly where you left off. Type G and press the Return key.

Remember that when MacsBug is invoked because of an unexpected error condition, it
might not be possible to resume program execution. See the section “Getting Out of
MacsBug” in this chapter for additional information.

C H A P T E R 2

Getting Started

26 Exercise: Getting Started With MacsBug

Getting Information About MacsBug 2
Choose User Break from the Debug menu to invoke MacsBug again. Type help and then
press Return. MacsBug displays the following information in the output region:

Return shows sections sequentially. "HELP name" shows that section

 Editing

 Selecting procedure names

 Expressions

 Values

 Operators

 Flow control

 Breakpoints

 A-Traps

 Disassembly

 Heaps

 Symbols

 Stack

 Memory

 Registers

 Macros

 Miscellaneous

 dcmds

MacsBug lists all the topics for which you can obtain help. To display information for
any one of these topics, type help and the name of the topic, then press Return.

Try this now. Type help editing and press Return. MacsBug displays information
about entering and editing commands.

Editing

Type a command and then press Return or Enter to execute it.

Typing return without entering a command repeats the last

command. Multiple commands can be executed by separating them

with ';'.

Editing commands

Command-V Restore previous command lines for

editing.

Command-B Command-V the other way.

Option-Left Arrow Move cursor left one word.

Option-Right Arrow Move cursor right one word.

Option-Delete Delete the word to the left of the cursor.

Command-Left Arrow Move cursor to begin of line.

Command-Right Arrow Move cursor to end of line.

Command-Delete Delete the line to the left of the cursor.

C H A P T E R 2

Getting Started

Exercise: Getting Started With MacsBug 27

Press Command-V. As mentioned earlier in this chapter, MacsBug maintains an internal
command-line buffer in which it stores the commands you have already executed.
Pressing Command-V moves backward through the buffer, copying the previous
command to the command line. The command you entered previous to help editing
was help. This command should now be copied to the command line.

Now Press Command-B. This command copies the command you entered after entering
help. The command help editing is now displayed on the command line. Of course,
if you’re entering commands like Help, it’s just as easy to retype them. But in working
with MacsBug, you’ll often be entering commands that use complex expressions and
addresses, which you’ll not want to bother to enter again. Using Command-V and
Command-B moves you backward and forward through the command-line buffer, and
can save you time and eliminate the possibility of error in retyping addresses.

Press Command-Delete to delete the line. The command line should now be blank. Type
DV and press Return. MacsBug displays information about the version of MacsBug you
are currently running:

 MacsBug version 6.2

 Copyright Apple Computer, Inc. 1981-1991

 CODE Leo Baschy, Michael Tibbott, scott douglass

 TEST Leo Baschy, Keith Nemitz

 BOOK Joanna Bujes, Bob Anders

 PMGR Tom Chavez

Using the Command Line to Perform Calculations 2
In addition to using the command line to enter commands, you can also use it to perform
base conversions and arithmetic calculations.

Type 15 and then press Return. MacsBug displays the following information:

15 = $00000015 #21 #21 '••••'

For any value you type, MacsBug displays its hexadecimal value, unsigned decimal
value, signed decimal value, and ASCII value. MacsBug assumes that every number you
type is in hexadecimal. To tell MacsBug you are specifying a decimal number, you must
prefix the number with the # sign. Type #15 and press Return; MacsBug displays the
following:

#15 = $0000000F #15 #15 '••••'

Now type #–15; MacsBug displays the following:

#–15 = $FFFFFFF1 #15 #–15 '••••'

Compare the hexadecimal number MacsBug displays for the positive and for the
negative number. They are different, although both appear to be positive. Your compiler
uses a special scheme for the representation of negative numbers. For more information,
see “The Representation of Negative Numbers” in Chapter 3.

C H A P T E R 2

Getting Started

28 Exercise: Getting Started With MacsBug

You can also use the command line to perform arithmetic calculations. Type

#20 + 40 * 2

and then press Return. MacsBug displays the following in its usual hex, decimal,
unsigned decimal, and ASCII formats:

#20 + 40 * 2 = $000000A8 #168 #168 '••••'

Displaying Memory 2
This section demonstrates some of the commands you use to display memory. For
information on how to display memory using templates and how to create your own
templates to display memory, see “Using Templates to Display Memory” in Chapter 4 of
this manual.

You can display a selected portion of memory in hexadecimal and ASCII format using
the DM (Display Memory) command. Type DM 910 and press Return. MacsBug displays
the following:

Displaying memory from 910

 00000910 0646 696E 6465 7220 2020 2020 2020 2020 •Finder

The first column displays the address of the first byte of memory displayed. To the right
of this address MacsBug displays the first byte of memory, 06 in this case, and then 15
more bytes. The last column of the display shows the 16 bytes of memory in ASCII
format. Address 910 specifies a memory location where the current application name is
stored. If you look at the ASCII portion of the display, you’ll see the name of the current
application, Finder.

Now type DM SysZone and press Return. MacsBug shows you something like this:

Displaying memory from 02A6

 000002A6 0000 1E00 0025 813C 4080 0000 0000 1E00 •••••%•<@•••••••

SysZone is a low-memory global that contains the address of (points to) the beginning of
the system heap. This address (pointer) is always stored at location 02A6, but you can
specify this location using the name SysZone because MacsBug contains a macro
resource that defines the string SysZone as 02A6. If the macro were not installed, you
would have to specify the address.

SysZone is a pointer, that is, it refers to an address where another address is stored. Since
addresses are always 4 bytes long, you need to look at the first 4 bytes displayed to
determine the address where the system zone begins. In the example shown above,
that address is 0000 1E00. This address might be different on your Macintosh, but
the address of the low-memory global where the address is stored is the same on all
Macintosh computers.

C H A P T E R 2

Getting Started

Exercise: Getting Started With MacsBug 29

Now type DM ApplZone and press Return. ApplZone is also a low-memory global; it
points to the starting address for the application zone. Like SysZone and all low-memory
globals, ApplZone is always found at the same address, 02AA:

Displaying memory from 02AA

 000002AA 0002 D528 4080 0000 0000 1E00 0000 A5F4 •••(@•••••••••••

According to MacsBug, the application zone starts at 0002 D528 on the Macintosh used
for this example.

In a single-application environment, the application heap comes immediately after the
system heap, so the beginning of the application heap is also the end of the system heap.
To find the size of the system heap subtract the starting address of SysZone from the
starting address of ApplZone. Type

@ApplZone – @SysZone

and press Return. MacsBug shows something like this:

@02AA - @02A6 = $0002B728 #177960 #177960 '•••('

The system heap is 2B728 bytes long on the Macintosh used for this example. Notice the
indirection operators that we’ve used with the low-memory globals names. These @
operators tell MacsBug to subtract the address stored at location 02A6 from the address
stored at location 02AA. Without the indirection operators, MacsBug would subtract the
address 02A6 from the address 02AA.

Figure 2-8 shows you a standard Macintosh memory map. As you can see, memory in
the Macintosh is divided into separate areas. The starting (and sometimes the ending)
addresses for each area are stored in the low-memory globals shown to the right of the
memory map. Try using the DM command to determine the address of each area of
memory. Then use the command line to calculate the size of each area.

Creating a memory map can be a great help during debugging. For example, by noting
the range of addresses that refer to your application’s heap, you can determine whether
your variable’s addresses make sense.

C H A P T E R 2

Getting Started

30 Exercise: Getting Started With MacsBug

Figure 2-8 Sample memory map

Note that MemTop is only valid in a single-application environment.

See Chapter 4, “Macintosh Memory Organization,” for information about how memory
is organized on the Macintosh and how to use MacsBug commands to examine memory.

Where Is an Address? 2

You can find the name and location of an address by using the WH (Where) command.
Type WH PC. MacsBug shows you the following information:

Address 0002E004 is in the Application heap at USERBRK+0006

It is 000004E8 bytes into this heap block:

Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 • 0002DB1C 00001C52+02 R 0002D634 L P CODE 0002 011C

If the address is in a heap, MacsBug displays the name of the heap and heap block. In
this case, the address is in the application heap. If the address is in a named routine,
MacsBug displays the address as an offset from the start of the routine. If MacsBug does
not know the procedure name, but the address is in a known resource, it displays the

ROM

High memory

Application globals

Stack

Application heap

System heap

RAM

Low-memory globals

ROMBase ($2AE)

MemTop ($108)

BufPtr ($10C)
CurrentA5 ($904)
CurStackBase ($908)

Register A7

(top of stack)
ApplLimit ($130)

ApplZone ($2AA)

SysZone ($2A6)

$00

High memory

Low memory

addr =

addr =

addr =

addr =

addr =

addr =

addr =

addr =

addr =

size =

size =

size =

size =

size =

size =

size =

C H A P T E R 2

Getting Started

Exercise: Getting Started With MacsBug 31

type of the resource, the number of the resource, the file in which the resource is stored,
the name of the resource, and the offset within the resource where the instruction is
found; for example:

'CODE 0007 0294 Init'+0A3C

Now execute the G command to return to the A-Trap Demo application and choose Quit
from the File menu to quit the application.

Further Explorations 2
You should now feel more comfortable working with MacsBug. As you read through the
chapters that follow, try to duplicate the given examples if possible and work through
the hands-on exercises. The first step in learning to use MacsBug is to become familiar
with it. If you have a very simple program that you’ve written, use MacsBug to poke
around in it; you’ll learn more about using MacsBug if you can simplify the object you’re
looking at and eliminate the fear that you will inadvertently destroy a valuable piece
of code.

C H A P T E R 3

An Assembly-Language

Primer 3

Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

An Assembly-Language Primer

34

Compilers and Assemblers

This chapter covers the fundamentals of assembly language. Its aim is not to teach you
how to program in assembly language, but to help you to recognize a program’s control
structures, system calls (or A-traps), and variables when you use MacsBug to examine
your compiled code.

The chapter starts by describing the differences between source code, compiled or
assembled code, and disassembled code. It then provides an overview of assembly-
language syntax, addressing modes, and instructions. Once you can interpret assembly-
language instructions, you can learn to recognize how your program’s control structures,
routines, A-trap calls, and local and global variables are represented in disassembled
code. The chapter concludes with an overview of MacsBug’s disassembly commands.

If you are already familiar with assembly language, you do not need to read all of this
chapter. If you have not used MacsBug before, you should read through the sections
“Inter-Segment Calls and the Jump Table” and “MacsBug’s Disassembly Commands.”

Compilers and Assemblers 3

Microprocessors can only interpret

machine language

—that is, the hexadecimal
numbers that are stored in memory for direct execution by the microprocessor. When
you write a program, you usually write it in a high-level language

,

 such as Pascal
or C, and use a program called a

compiler

 to translate your source code into machine
language. Alternatively, you can write a program in assembly language and use a
program called an

assembler

to translate it into machine language.

Although compilers and assemblers both translate source code into object code,
the kinds of translation they perform are very different, as the remainder of this
section explains.

Every assembly-language instruction corresponds to one instruction in machine
language—that is, to the equivalent hexadecimal code executed by the microprocessor.
For example, the assembly-language instruction

MOVE.L A3,–(A7)

means “push the contents of register A3 onto the stack.” Once you learn to read
assembly language, instructions like this are relatively easy for humans to understand.
But the equivalent machine language for this instruction—the code actually executed by
the microprocessor—looks like this:

2F0B

Terms like MOVE and ADD in assembly-language represent types of machine operations
and are called mnemonics

,

 because they are easier to remember than the equivalent
machine language. Terms like A3 and –A7 are called operands. Operands use addressing
modes that tell the processor what to operate on. The assembler translates the mnemonic
representation of the instruction into machine code. Another program, called a

disassembler,

 reverses the process by converting machine language into a stream of

C H A P T E R 3

An Assembly-Language Primer

Compilers and Assemblers

35

lines; each line contains a mnemonic and, usually, two operands. Since the computer can
easily convert between the two, most low-level programmers prefer to work with
assembly language. The important thing to note is that there is a direct, one-to-one
correspondence between each assembly-language instruction and each instruction in
machine language.

When a compiler translates a Pascal or C program into machine language, there is no
direct correspondence between the source level statements and machine instructions.
In fact, the compiler has to generate many machine instructions in order to implement
a single Pascal or C statement. One way to describe the difference between what
assemblers do and what compilers do is to say that an assembler translates in the way
that one would translate a number expressed in words into its numeric equivalent; for
example, the numeric translation of one hundred twenty-three is 123. What the compiler
does, on the other hand, is more like translating an English sentence into German.

Clearly, in the former case, there is only one way to do it (assuming base ten); in the
latter case, one could come up with many equivalents. The main thing to remember is
that a high-level source statement generates more than one machine instruction.

As Figure 3-1 shows, if you were to use three different compilers to compile your source
code, you would obtain three slightly different machine-language translations. The
differences between compiler translations are not usually significant. The kinds of
disassembled code you’ll learn to interpret in this chapter are unlikely to be affected by
these differences. The important thing to understand is that when you look at a program
using MacsBug, you see the disassembled version of the code generated by the compiler,
not the original Pascal or C in which the program was written. There are cases in which
you might need to know the peculiarities of your compiler’s translations, but these are
rare. Realizing that these differences do exist, however, allows you to appreciate how
complex the compiler translation is and how much greater the distance between high-
level languages and machine language is than the distance between assembly language
and machine language.

C H A P T E R 3

An Assembly-Language Primer

36

Reading Assembly-Language Instructions

Figure 3-1

Compilers and assemblers

Reading Assembly-Language Instructions 3

As described in Chapter 4, “Macintosh Memory Organization,” the 68000 family of
microprocessors can address a large address space that includes RAM and ROM as well
as other more specialized areas of memory. Assembly-language instructions tell the
processor how to modify parts of memory or change the flow of instruction execution.
Each instruction performs a single small task, such as moving data from one place to
another, or adding two values. One statement in a higher-level language like Pascal or C
compiles into several different assembly-language instructions.

In addition to addressable memory space, the microprocessor itself contains some
specialized memory that it can manipulate—a total of 70 bytes in its own registers. These
consist of the address registers A0 to A7, the data registers D0 to D7, the status register
(SR), and the program counter (PC). Each register is 4 bytes long and holds a single value
at a time (with the exception of the status register, which is 2 bytes long).

The sections that follow describe the syntax of assembly-language instructions and how
memory locations and register names are used in instructions to refer to values. There

User writes

Assembly

source

High-level

source

Assembler

Compiler A

Compiler B

Compiler C

Object

Object A

Object B

Object C

Machine executes

Disassembler

Disassembled

code

MacsBug shows

Disassembled

code A

Disassembled

code B

Disassembled

code C

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions

37

are about 60 basic operations in 68000 assembly language, most of which use several of
the 68000’s 12 addressing modes, providing a wide variety of instructions. Fortunately,
you only need to learn a few common operations and addressing modes to use MacsBug.

Instruction Syntax 3

Assembly-language instructions are roughly comparable to high-level language
statements. Instructions are composed of an operator, which performs some action on
one or more operands. Sometimes the operand to be used is implied in the operator, in
which case the instruction takes no operands. Unlike high-level language statements,
each of which requires its own syntax diagram, all assembly-language instructions can
be generally represented by one diagram, as shown in Figure 3-2.

Figure 3-2

Syntax of an assembly-language instruction

The operator indicates to the processor the simple task to be done, such as adding two
operands together, or moving the value of one operand into the memory location
specified by another operand. The processor determines the values of the operands by
the addressing modes used to specify the operand. The value of an operand refers to an
address or the contents of an address in RAM or ROM; it can also refer to the contents of
a register.

For example, the instruction

MOVE $500(A5),$600(A5)

uses the same addressing mode for both the source and destination operands: address
register indirect with displacement. To find the value of the source operand, the address
in register A5 is added to the displacement, $500. This forms the

effective address,

which is where to find the operand. The effective address of the source operand is the
displacement added to the contents of register A5. If A5 contains $10000, then the
effective address is $10000+$500 = $10500. By the same reasoning, the destination
operand would be found at $10600. You will frequently see the "Address Register
Indirect with Displacement" addressing mode because of the architecture of the
Macintosh Operating System.

The operator often includes a suffix that specifies the size of the source operand—that is,
how many bytes are being affected by the operator. Operand sizes can be specified as .B,

Operator[.size] [operand] [,ope

 = byte

 = word

 = long word

.B

.W

.L

source

operand

destination

operand

C H A P T E R 3

An Assembly-Language Primer

38

Reading Assembly-Language Instructions

for byte (8 bits); .W, for word (16 bits); or .L, for long word (32 bits). For example, if
register A5 contains $10000, the instruction

MOVE.B $500(A5),$600(A5)

moves one byte from memory location $10500 to memory location $10600. The
instruction

MOVE.W $500(A5),$600(A5)

moves one word (two bytes); that is, it moves the bytes at locations $10500 and $10501 to
locations $10600 and $10601, respectively. And the instruction

MOVE.L $500(A5),$600(A5)

moves a long word, or 4 bytes, from $10500 to four new consecutive locations beginning
at $10600. Instructions which do not have a suffix default to the size of a word.

The syntax diagram shown in Figure 3-2 presents a simplified view of the format of an
instruction. The representation of operands in actual assembly-language instructions
reflects the various ways that values can be manipulated by an operator, as explained in
the next section, “Addressing Modes.”

Addressing Modes 3

Assembly-language instructions tell the microprocessor how to modify parts of memory.
Instructions calculate the specific addresses or values represented by operands using
different methods, or

addressing modes.

 This section describes the addressing modes
you are likely to see when you are reading your disassembled code. If you happen to run
across an operand that uses a format different from those described in this section, please
consult the Motorola manual for your microprocessor for additional information.

Figure 3-2 shows the syntax of an assembly-language instruction. In that figure, the
operands that make up the instruction are shown simply as placeholders:

[

operand

] [,

operand

]

In fact, the representation of operands requires more detailed syntax diagrams that are
different for every addressing mode. Table 3-1 summarizes the syntax of operands for
different addressing modes.

■

The symbols

n

 and

d

represent any hexadecimal number;

d

can be negative.

■

The symbol A

n

represents an address register; D

n

represents a data register.

■

The symbol X

n

 represents either a data or an address register.

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions

39

The following sections describe the addressing modes listed in Table 3-1 in greater detail.
You should read these sections to familiarize yourself with the way these addressing
modes are used in sample MOVE instructions. You may find Table 3-1 useful when
you’re reading through disassembled code. You can also use it to see patterns in the
addressing modes. For instance, five different addressing modes use “address register
indirect” as all or part of the method for finding the operand. Once you understand
address register indirect, you have an excellent start in understanding the rest of the
addressing modes.

Table 3-1

Addressing modes

Addressing mode name Syntax Meaning

Absolute $

n

The value stored at address $

n.

If the
address can be represented in 2 bytes or
less, the addressing mode is absolute
word, otherwise it is absolute long.

Data Register Direct D

n

The value stored in data register D

n

.

Address Register Direct A

n

The value stored in address register A

n.

Address Register Indirect (A

n

) The value stored at the address in
address register A

n

.

Address Register Indirect
with Postincrement

(A

n

)+ The value at the address in address
register

n.

 After use, the value in
register

n

is incremented by the size
of the operator suffix.

Address Register Indirect
with Predecrement

–(A

n

) Register A

n

is decremented by the size
of the operator suffix. The value at
the address now stored in register A

n

is used.

Address Register Indirect
with Displacement

d

(A

n

) The value is at the address that results
when adding the contents of register A

n

to the 16-bit displacement

d

.

Indexed Address Register
Indirect with Displacement

d

(A

n,

X

n

) The value is at the address which is the
result of the contents of address register
A

n

 added to the 8-bit displacement

d,

then added to the index register X

n

.

PC-Relative with
Displacement

d

(PC) The value is at the address which is
the sum of the address stored in the
program counter and the 16-bit
displacement

d.

PC-Relative with Index
and Displacement

d

(PC,X

n

) The value is at the address which is
the sum of the address stored in the
program counter, the 8-bit displacement

d,

and the index register X

n.

Immediate #

n

The value

n.

C H A P T E R 3

An Assembly-Language Primer

40

Reading Assembly-Language Instructions

Absolute Addressing 3

The absolute addressing mode is one of the simplest addressing modes.

Here’s
an example:

MOVE.L $21F0,$21E4

This instruction copies the long word in memory location $21F0 into memory location
$21E4. The number previously located in memory location $21E4 is overwritten. Note
that this instruction doesn’t change the number at memory location $21F0; it merely
copies that number into location $21E4, as shown in Figure 3-3.

Figure 3-3

Absolute addressing

In this case, both operands use absolute addressing. It is also possible to have one of the
operands use a different addressing mode. For example, the instruction

MOVE.L $21F0,D1

uses the absolute addressing mode and the data direct addressing mode, described next.
The instruction

MOVE.L D1,$21F0

uses the data direct addressing mode and then the absolute addressing mode.

The direct addressing mode is most often used to access low-memory globals, which are
always stored at fixed addresses. Other than that it is not seen very often because of the
architecture of the Macintosh Operating System.

Data and Address Register Direct Addressing; 3

The data register direct or address register direct addressing mode has, as its operand,
the value that is in the data or address register, respectively. The differences between
these two modes are found in mnemonics (MOVEA for address registers, MOVE for data
registers), the type of register (data or address register), the condition codes (bits in the
status register) that are set, and the instructions for which the mode is valid.

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

Before MOVE.L $21F0, $21E4
Address Value

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

After MOVE.L $21F0, $21E
Address Value

1148 42EF

0000 32CD

52DE 4CAB

23A5 5BAD

0000 32CD

1148 42EF

52DE 4CAB

23A5 5BAD

0000 6FAD

0000 32CD

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions

41

Here’s an example:

MOVE.L D0,A0

This instruction copies the long word in register D0 into register A0.

(In Macsbug, you would see Movea.l D0,A0. If the operands were reversed, however, the
mnemonic would only be Move.l A0,D0 because the destination operand uses the data
address direct mode).

Note

Assemblers frequently accept the same mnemonic for the address
register direct mode as for the data register direct; The Motorola manual,
however, uses the data register direct mode mnemonic suffixed with an
“a” for the same instruction when the address register direct is used for
the destination operand; Macsbug follows this convention.

◆

Address Register Indirect Addressing 3

The address register indirect addressing mode is distinguished by a set of parentheses
enclosing an address register. Thus the instruction

MOVE.L (A2),(A4)

takes the long word stored at the address in A2 and moves it to the address stored in
register A4.

In Figure 3-4, register A2 contains the address 0000 21F4, so the microprocessor goes
to that location to find the value, and moves it to the location contained in register A4,
0000 21E8.

Figure 3-4

Indirect addressing

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

Before MOVE.L (A2), (A4)

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

After MOVE.L (A2), (A4)
Address

0000 21E8

52DE 4CAB

23A5 5BAD

0000 21F4

1148 42FE

1148 42FE

0000 21E8

52DE 4CAB

0000 21F4

1148 42FE

A2 0000 21F4

A4 0000 21E8

A2 0000 21F4

A4 0000 21E8

ValueAddress Value

C H A P T E R 3

An Assembly-Language Primer

42

Reading Assembly-Language Instructions

This MOVE.L instruction might be generated from the following C code:

main () {

pLocal1 *longint;

pLocal2 *longint;

*pLocal1 = *pLocal2

}

The address register indirect addressing mode is the base of the next four addressing
modes: address register indirect with predecrement, address register indirect with
postincrement, address register indirect with displacement, and indexed indirect
addressing with displacement.

Address Register Indirect With Predecrement Addressing,
and Address Register Indirect With Postincrement Addressing 3

You will frequently see these two addressing modes (address register indirect with
predecrement, and address register indirect with postincrement) used just before a
routine call, and at the beginning and end of a routine. When a routine is called, the
calling routine passes parameters onto a dynamic data structure known as the stack.
Often, at the beginning of a routine, values in some registers are saved on the stack and
at the end of the routine, the register values are returned to their respective registers. The
first two of these operations use the predecrement form, the last uses the postincrement
form. In addition, the postincrement form is also used to perform repetitive operations
on arrays with elements which are either 1, 2 or 4 bytes.

Like the address register indirect addressing mode, these two addressing modes use the
value in the address register to find the operand. In addition, the value in the address
register is adjusted. If the predecrement form is used, the value is decremented first, and
the resulting value is used to find the operand. If the postincrement form is used, the
value is first used to find the operand, then incremented. The amount by which the value
in the address register is increased or decreased is either 1, 2 or 4, depending upon
whether the size of the instruction is byte, word or long, respectively.

The architecture of the 68000 family of microprocessors has register A7 permanently
assigned as the stack pointer, sometimes called the SP. Stacks grow downward in
memory, from numerically higher addresses to lower addresses. The stack pointer points
to the last item that was stored, or "pushed", onto the stack. When a piece of data is
pushed on the stack, the address in A7 is decremented and the source operand is moved
to the resulting address (the value now stored in A7); for instance:

MOVE.L #$2,-(A7)

pushes the number 2 onto the stack, as shown in Figure 3-5.

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 43

Figure 3-5 Predecrement register indirect addressing

The register indirect with postincrement addressing (shown in Figure 3-6) is used to
retrieve, or "pop" a value off the stack, like this:

MOVE.L (A7)+,D0

Before this instruction is executed register A7 points to the last value pushed on the
stack. The instruction causes the value to be moved into the address stored in register D0
and then shrinks the stack by adding 4 (the size of the instruction) to the value in A7. (If
you push one byte onto the stack, the stack pointer will be decremented by 2 because the
value in the stack pointer must be even.)

For additional information, see the section “Life on the Stack” in Chapter 4.

Address Value

0000 21EC

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

0000 0021

0000 0012

0000 0033

0000 0056

0000 0078

Original

setup A7

0000 21E8

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

0000 0021

0000 0012

0000 0033

0000 0056

0000 0078

Decrement

A7 A7

0000 21E8

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

0000 0021

0000 0012

0000 0033

0000 0078

0000 0002

Move the

value A7

#$2

Stack

MOVE.L #$2, –(A7)

C H A P T E R 3

An Assembly-Language Primer

44 Reading Assembly-Language Instructions

Figure 3-6 Postincrement register indirect addressing

Address Register Indirect With Displacement Addressing 3

When you see an address register in parentheses with a number prefix, you are looking
at the address register indirect with displacement addressing mode. The prefix is a 16-bit
displacement, and, when used, will be sign-extended. To determine where the operand
is, calculate the effective address, that is, the address that results when you take the
value in the address register and add it to the sign-extended displacement. For example,
the instruction

MOVE.L 4(A0),8(A0)

adds $4 to the address stored in register A0, uses the result as the address of the value to
move, and moves that value to the address found by adding $8 to the address stored in
register A0, as shown in Figure 3-7.

Address Value

0000 21E8
Original

setup A7

0000 21E8

Increment

A7

A7

0000 21EC

Move the

value

A7

Stack

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

0000 21E0

0000 0021

0000 0012

0000 0033

0000 0002

0000 0078

0000 0002

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

0000 21E0

0000 0021

0000 0012

0000 0033

0000 0002

0000 0078

0000 0002

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

0000 21E0

0000 0021

0000 0012

0000 0033

0000 0002

0000 0078

0000 0045

MOVE.L (A7)+, $21E0

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 45

Figure 3-7 Address register indirect with displacement addressing

This addressing mode is most commonly used to reference your application’s globals,
which are stored at addresses that are at a fixed distance from the address stored in
register A5, and to reference your routines’ parameters, local variables, return result, and
return address, which are stored at addresses that are at a fixed distance from the
address stored in register A6. For additional information see the sections “Allocating
Space for Global Variables” and “Stack Frames” in Chapter 4.

Indexed Indirect Addressing With Displacement 3

The indexed indirect with displacement addressing mode looks very similar to the
indirect with displacement addressing mode, except that the operand is composed
of two addresses separated by a comma. When the microprocessor encounters the
instruction

MOVE.L $-4(A0,D0.W),$4(A0,D0.W)

it takes the address in register A0, adds the low word in register D0, adds $–4 to that,
and uses the result as the address of the value to move. It moves that value to the
address found by adding register A0 plus the low word in register D0 plus $4, as shown
in Figure 3-8.

Figure 3-8 Indexed indirect addressing with displacement

0000 21F4

0000 21F0

0000 21EC

0000 21E8

Before MOVE.L 4(A0), 8(A0)
Address Value

0000 21F4

0000 21F0

0000 21EC

0000 21E8

After MOVE.L 4(A0), 8(A0)
Address Value

A0 0000 21E8 A0 0000 21E8

1148 42FE

0000 21EA

23A5 5BAD

52DE 4CAB

1148 42FE

52DE 4CAB

23A5 5BAD

52DE 4CAB

0000 21F4

0000 21F0

0000 21EC

0000 21E8

Before MOVE.L $–4(A0,D0.W), $4(A0,D0.W)
Address Value

0000 21F4

0000 21F0

0000 21EC

0000 21E8

After MOVE.L $–4(A0,D0.W), $4(A0,D
Address Value

A0 0000 21E8 A0 0000 21E8

D0 0000 0008 D0 0000 0008

0000 21E8

52DE 4CAB

23A5 5BAD

52DE 4CAB1148 42FE

0000 21E8

23A5 5BAD

52DE 4CAB

C H A P T E R 3

An Assembly-Language Primer

46 Reading Assembly-Language Instructions

This addressing mode is not often used. It comes in handy when the program has a table
of addresses so that given

displacement (An 1, Xn 2)

the microprocessor can compute the effective address by using An 1 + displacement to
compute the starting address of the table and Xn 2 as an index into the table.

Program Counter (PC) Relative Addressing Modes 3

PC-relative addressing modes, which include PC-relative with displacement and PC-
relative with index and displacement, are used to compute addresses relative to the
address currently stored in the program counter. This mode of addressing is especially
useful on the Macintosh because code resides in resources that are loaded as relocatable
blocks. Thus if the code has to use a JSR instruction to jump to a location within the same
segment, it must express the address of that location relative to the address stored in the
program counter. PC-relative with displacement addressing makes this possible.

For example, the instruction

JSR $104(PC)

tells the microprocessor to execute the instruction stored 104 bytes from the address
stored in the program counter.

The PC-relative with index and displacement addressing mode is used to switch control
when the address to jump to must be calculated with reference to a table, as would be
the case with Pascal CASE or C switch statements. Given the instruction

JSR $104(PC,A1.W)

the microprocessor computes the address to jump to by adding 104 to the address stored
in the program counter and then adding the low word stored in register A1 (the index
value) to the result.

The program counter is represented either by the initials PC or by an asterisk in
disassembled code.

These two PC-relative addressing modes are very similar to the address register indirect
with displacement and the indexed address register indirect with displacement
addressing modes. The only difference is that the value in the Program Counter is used
instead of the value in an address register.

Immediate Addressing 3

The immediate addressing mode indicates a constant value rather than the contents of a
memory location. A “#” sign before the first operand distinguishes this mode from the
others. The instruction

MOVE.L #$2,$21E4

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 47

moves the number $2 (not the value at memory address $2) into memory location $21E4,
as shown in Figure 3-9.

Figure 3-9 Immediate addressing

Similarly, the instruction

MOVE.L #$2,A0

moves the number $2 into register A0.

Implied Addressing 3

The effective mode used by some instructions is implied by the instruction itself. For
example, the RTS (Return from Subroutine) instruction takes no operands; it takes the
address stored in A7 (top of the stack), adds 4 bytes to that value, and then moves the
result into the program counter. Program execution resumes at that address. To figure
out the values used by instructions that use one operand or no operands, look up the
description of the instruction in the Motorola manual for your microprocessor.

Assembly-Language Instructions 3
Now that you are familiar with the syntax of assembly-language instructions and
operands, you can begin to look at the instructions you are most likely to encounter
in reading your disassembled code. This section presents some of the most common in-
structions in three categories: integer arithmetic, program control, and stack frame
instructions. If you want more detailed information about these instructions or others
that are not covered in this section, please consult the Motorola manual for your
microprocessor.

Before you begin learning specific instructions, you need to know something about the
way negative numbers are represented in disassembled listings. The section that follows,
“The Representation of Negative Numbers,” provides a summary.

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

Before MOVE.L #$2, $21E4
Address Value

0000 21F4

0000 21F0

0000 21EC

0000 21E8

0000 21E4

After MOVE.L #$2, $21E4
Address Value

0000 6FAD

1148 42FE

0000 32CD

52DE 4CAB

23A5 5BAD

1148 42FE

0000 32CD

52DE 4CAB

23A5 5BAD

0000 0002

C H A P T E R 3

An Assembly-Language Primer

48 Reading Assembly-Language Instructions

The Representation of Negative Numbers 3

 All numbers displayed by MacsBug are shown in hexadecimal notation unless they
are preceded by a pound sign like this: #2110, which indicates a decimal value. It is
important to note that many hexadecimal numbers shown by MacsBug appear to be
positive; in fact they can be either positive or negative.

The microprocessor uses a mathematical scheme called two’s complement arithmetic to
represent negative numbers. Using this method, the microprocessor uses the highest bit
of the value represented to specify its sign: 1 indicates a negative number; 0 indicates a
positive number.

If the value is positive, the lower bits represent the value. If the value is negative, the
remaining bit pattern (after the high-order bit) represents the two’s complement of
the value. The microprocessor must then calculate the two’s complement of this pattern,
or, as we think of it, the negative number. How the microprocessor does this is not
important for debugging purposes. But you do need to remember two points about
the microprocessor’s handling and representation of negative numbers.

First, since all numbers look positive, you need to know which number is supposed to be
negative, so that you can use MacsBug’s command-line arithmetic to display its signed
decimal value. For example, suppose you’re testing register D0 on exit from a trap;
this register normally holds the error number, which is negative, so you’re definitely
interested in what that number is. Second, since it is the highest bit of the number that
determines its sign, it is very important to specify the size of the value you want
converted. So, if you are testing the value of D0 and you enter

D0

MacsBug shows you that value as a hexadecimal number, an unsigned decimal number
and a signed decimal number.

D0 = $4080F2A8 #1082192552 #1082192552 '@•••'

In this case, MacsBug assumes you want the long word stored in D0. But most operating
system errors are defined as integers, which are one word long. If you enter

D0.W

MacsBug shows you the value of the low word stored in D0; for example

D0.W = $FFFFF2A8 #4294963880 #-3416 '••••'

If you enter

D0.B

MacsBug shows you the value of the low byte stored in D0; for example:

DO.B = $FFFFFFA8 #4294967208 #-88 '••••'

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 49

Notice that MacsBug has produced three different signed decimal values for data
stored starting at the same memory location. The size of data you’re converting matters.
In summary:

■ MacsBug displays all numbers as positive hexadecimal numbers, unless they are
prefixed by a # sign, in which case they are decimal numbers. (The most common
exception to this rule is that MacsBug displays negative displacements to an address
register as negative numbers.)

■ To have MacsBug display the signed decimal value of a hexadecimal number, just
type the value you want converted (including its size) on the command line and
press Return.

■ You must know what the assembly-language instructions are doing and how these
correspond to your source code in order to understand which numbers might be
negative; you must also know the size of the data you are converting since this affects
the result of the conversion.

Integer Arithmetic Instructions 3

The compiler produces integer arithmetic instructions whenever your source code
statements perform some kind of integer arithmetic. Here are some examples of
instructions that perform standard arithmetic operations with hexadecimal numbers:

ADD.W D0,D1

adds the low word stored in D0 to the low word stored in D1, and stores the result in D1.
The high word is unchanged.

The following instructions perform signed and unsigned multiplication, respectively, of
the value in D1 by $4:

MULS.W #$4,D1

and

MULU.W #$4,D1

The following instructions perform signed and unsigned division, respectively:

DIVS.W #$4,D1

and

DIVU.W #$4,D1

Table 3-2 provides a summary of integer arithmetic instructions. Remember that the size
of the data being manipulated is represented by a size suffix appended to the operator. If
no size is specified, a word size is used by default.

You might want to review the description of multiply and divide instructions in your
Motorola manual to gain a better understanding of how the destination operand is used.

C H A P T E R 3

An Assembly-Language Primer

50 Reading Assembly-Language Instructions

Program Control Instructions 3

Assembly-language instructions are stored as machine code. To the human eye this
consists of a series of random-looking bytes located somewhere in memory. A special
register called the program counter (PC) informs the microprocessor which bytes of code
to execute and in what order.

The PC always contains the address of the next instruction to execute. After an
instruction finishes executing, the PC automatically increments to point to the
instruction that follows. Program control statements, which are compiled into program
control instructions, allow programmers to direct the flow of a program along many
possible paths. The instructions used to change the order of execution manipulate the
address stored in the PC so that execution can shift to another location.

Nonconditional branching is implemented by JSR, BSR, JMP, and BRA instructions. For
example, the JSR (Jump to Subroutine) instruction

JSR xxx

calls a subroutine, where xxx is the address of the subroutine. Usually this instruction
looks like this:

JSR MYPROC

where MYPROC is the routine you want to call. The assembler replaces MYPROC with
the actual address to jump to.

On the Macintosh, JSR instructions usually use some form of address register indirect
addressing or PC-relative addressing. Generally, if the destination address is in the
same code segment, PC-relative addressing is used. If the destination address is in

Table 3-2 Arithmetic integer instructions

Instruction Action

ADD Add operands and place result in destination operand.

CLR Clear operand bits.

CMP Compare operands and set condition codes.

DIVS Signed: Divide destination by source; place result in destination.

DIVU Unsigned: Divide destination by source; place result in destination.

EXT Convert smaller size value to larger size value: byte to word, word to

MULS Signed: Multiply operands; place result in destination.

MULU Unsigned: Multiply operands; place result in destination.

NEG Negate operand.

SUB Subtract source from destination; place result in destination operand.

TST Compare operand with zero and set condition codes.

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 51

another code segment, the JSR instruction will use the address register indirect with
displacement addressing mode and go through the jump table. See the section “Inter-
Segment Calls and the Jump Table” in this chapter for additional information.

The BSR (Branch to Subroutine) instruction, for example,

BSR xxx

also calls a subroutine, but xxx is a PC-relative address—that is, xxx is added to the
address of the current instruction (BSR) to get the address of the subroutine. Whether
you use the JSR or BSR instruction to call a subroutine, you use the RTS (Return from
Subroutine) instruction to return from the subroutine.

Another instruction that changes the flow of program control is JMP (Jump).
For example;

JMP xxx

jumps to the instruction at address xxx. This is not a subroutine call, and it does not
allow you to return using an RTS instruction. It resembles a GOTO statement in BASIC.
The PC-relative version of the JMP instruction is the BRA (Branch) instruction; this
instruction jumps to the instruction at xxx, where xxx is a PC-relative address.

To implement conditional branching, the compiler uses an instruction that performs a
test, usually a CMP (Compare) or TST (Test) instruction, followed by an instruction that
branches depending on the results of that test. The microprocessor sets bits in the status
register (SR) to reflect the results of the test.

When you execute most instructions, the SR (status register) is modified to reflect certain
aspects of the action that just took place. The SR contains five flag bits for condition
codes, and their state (0 or 1) depends on the result of the last operation that occurred.
For example, if the operation produces a zero, a flag called the zero flag is set to one; or,
if the result is negative, a negative flag is set. When flags are set in the SR, the letters that
represent the respective flags are capitalized. (The contents of the status register are
displayed on the MacsBug screen, in the middle of the status region.)

The instruction

CMP.L D0,D1

compares the values in registers D0 and D1. This command sets some flags in the SR,
which can be checked by the next instruction to determine whether to branch. The
instruction,

BEQ xxx

will branch to xxx if D0 and D1 are equal. xxx is PC-relative. Conversely, the BNE
(Branch if Not Equal) instruction will cause a branch if the values stored in D0 and D1
are not equal.

If you are about to execute a conditional branch instruction, MacsBug will tell you, in the
upper-right corner of the PC region, whether you will branch or not. Figure 3-10 shows

C H A P T E R 3

An Assembly-Language Primer

52 Reading Assembly-Language Instructions

the PC region of the MacsBug display. The next instruction to be executed is the BNE
instruction. Since MacsBug already knows the result of the previous CMP instruction, it
can tell you whether the branch will occur.

Figure 3-10 Conditional branching indicator

Table 3-3 provides a summary of the branch instructions.

Table 3-3 Branching instructions

Instruction Action

BCC Branch if C flag is clear (no carry from previous operation).

BCS Branch if C flag is set.

BEQ Branch if Z flag is set; the operands compared by previous instruction are
equal.

BGE Branch if (in previous instruction) destination operand is greater or equal
to source.

BGT Branch if (in previous instruction) destination operand is greater
than source.

BHI Branch if high (C and Z flags are clear).

BLE Branch if (in previous instruction) destination operand is less than or
equal to source.

BLS Branch if low or same (C or Z flag set).

BLT Branch if (in previous instruction) destination operand is less than source.

BMI Branch if negative (N flag set).

BNE Branch if operands of previous instruction are not equal. (Z flag clear).

BPL Branch if positive (N flag clear).

BVC Branch if overflow is clear (V flag clear).

BVS Branch on overflow (V flag set).

PC
region

Command
line

Branching
indicator

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 53

Note that the Z(ero) flag plays a part in determining whether two values are equal
because, if they are, the difference between them is 0; if they are not, it is not 0.

Inter-Segment Calls and the Jump Table 3

Code for Macintosh applications is stored in resources of type 'CODE'. A 'CODE'
resource is generally limited to 32K. Because applications are usually larger than 32K,
they must be split up into multiple code segments, named 'CODE' 0, 'CODE' 1, 'CODE' 2,
and so forth. Resource 'CODE' 1 usually contains the main entry point of your compiled
program, that is, the first routine run.

When you compile and link a program, the linker places your program’s routines into
code segments, usually in the order in which they are fed into the linker. The Macintosh
uses a table called the jump table to track the location of these multiple resources.
Resource 'CODE' 0 is always the jump table.

The jump table is stored above the stack, next to the application parameters. Like the
application parameters, the jump table is generated and used by the compiler, linker, and
operating system without the programmer’s direct knowledge.

'CODE' resources, like all other resources, are loaded in relocatable, purgeable heap
blocks. These are locked while in use, but unlocked by the UnloadSeg routine that most
applications call from their main event loop. This means that a routine in one segment
can call a routine in another segment that has been unlocked and that the Memory
Manager might have moved or even purged. The jump table keeps track of the location
of each 'CODE' resource and the offset of each routine inside each segment.

If one routine needs to call another routine in a different segment, it must go through the
jump table to determine the address where the other routine starts. If a routine calls
another routine in its own segment, it does not need the jump table. Although 'CODE'
resources move in the heap, their contents are constant, so the routines always keep a
constant distance apart and can be accessed using a self-relative (PC-relative) branch.
The section “Program Counter (PC) Relative Addressing” in this chapter describes how
routines are addressed by an intra-segment call.

Figure 3-11 shows how the jump table and a self-relative branch work. When Proc A calls
Proc B, Proc A must go through the jump table, since the procedures are in different
segments. But Proc C can call Proc B without going through the jump table, since the
procedures are in the same segment.

C H A P T E R 3

An Assembly-Language Primer

54 Reading Assembly-Language Instructions

Figure 3-11 The jump table and self-relative branching

The Segment Loader loads a 'CODE' resource from disk when any routine inside that
resource is called. The Segment Loader also locks the resource after it is loaded so that it
won’t move while it is running. Since the system cannot tell which segments you are
actually using, it never unlocks them. The application itself unlocks the segments with
the UnloadSeg call. This call makes a specific 'CODE' resource unlocked and purgeable
and updates the jump table. You would normally want to include the UnloadSeg call for
your application’s segments in the main event loop.

The next time a routine in the same segment is called, the jump table checks to see
whether the segment is still loaded. If the segment is still in RAM, the jump table locks
it again. But if the segment has been purged, the jump table loads the segment from
disk again.

If you are ever tracing through code and see an instruction like

JSR 60(A5)

you are looking at a call to a routine in another code segment—that is, a call that will go
through the jump table. Remember that A5 points to the application’s global variables
and the jump table. Negative offsets from A5 reference global variables, while positive
offsets (greater than 32) get you into the jump table.

If you step once using the S (Step) command, you will enter the jump table. If the
segment is already loaded, the jump table will contain a single instruction, JMP, which

ROM

Screen buffer

High memory—RAM

Jump table

Procedure A

Low-memory globals

System heap

Stack

Procedure B

Procedure C

Code 1

Code 2

Application globals

Application heap

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 55

will take you into the routine in the correct segment. But if the segment is not loaded,
you will see something like this:

MOVE.W #$0001, -(SP)

_LoadSeg

You can step through the MOVE instruction, but if you try to step over the LoadSeg trap
with the SO command, you will not be successful. The LoadSeg trap does not return in
the standard way, so the SO command never realizes the trap is over. The GS macro is
designed to step over a LoadSeg trap, so you should use it instead. After executing the
GS macro, you will end up at the first instruction of the routine in the code segment that
was loaded.i).jump table;

Stack Frame Instructions 3

The section “Stack Frames” in Chapter 4 explains how the calling program and the
called program work together to set up stack frames. The compiler uses stack frames as a
way of referencing everything your routines need to do their work (parameters, local
variables, return result, return address) relative to one register, usually register A6. The
compiler uses two special instructions, LINK and UNLK to set up and dismantle stack
frames. This section describes these two instructions.

For example, the instruction

LINK A6,#$FFFE

sets up half of a stack frame. This instruction pushes the current value of register A6 onto
the stack, and then sets A6 equal to the stack pointer (A7). It then allocates 2 bytes of
space on the stack by adding –2 to A7 ($FFFE is –2 as determined by two’s complement
arithmetic). The 2 bytes of stack space is all the space the routine needs for its local
variables. The LINK instruction could allocate more space, if required by the number
and size of the routine’s local variables.

When the routine has finished executing, the compiler will have appended one last
instruction, the instruction UNLK, to the instructions that make up the routine; for
example, the instruction

UNLK A6

removes everything that LINK put on the stack and restores register A6 to its
previous value.

A Simple Assembly-Language Program 3
This section uses a simple program to demonstrate the basic building blocks of assembly
language. The program just clears a specified section of memory, setting each byte to
zero. The number of bytes it clears is determined by the value stored in register D1; the
address at which it starts to clear memory is stored in register A0.

C H A P T E R 3

An Assembly-Language Primer

56 Reading Assembly-Language Instructions

Figure 3-12 shows the assembly-language source code for the program; Figure 3-13
shows the disassembled version as you would see it from MacsBug. As you can see, the
instructions are identical in each version, but there are some notable differences
in formats.

Figure 3-12 Source code for an assembly-language routine

MOVE.L #$1000,A0 ; A0 is the address that will be cleared

MOVE.W #$10,D1 ; D1 is the number of bytes to clear

MOVE.W #$0,D0 ; D0 is the loop variable

@1 CLR.L $0(A0,D0.W) ; clear 4 bytes at A0+D0

ADD.W #$4,D0 ; increment loop variable by 4

CMP.W D1,D0 ; is the loop over yet?

BLT @1 ; if not, branch back and continue

The symbol “@1” is a statement label. It lets the programmer write the BLT (Branch if
Less Than) instruction without having to compute how many bytes long the branch is.
That is figured out by the assembler. Anything that appears after a semicolon is
a comment.

Figure 3-13 shows the disassembled version of the program. Each instruction begins at a
specific memory address, shown to the left of the instruction. Notice also that the
assembler has resolved the statement label to a specific address and that the comments
have been removed. MacsBug has inserted a comment of its own, to tell you the actual
address that the branch instruction will go to.

Figure 3-13 Assembly-language program: disassembled code

0001AB00 MOVE.L #$1000, A0

0001AB04 MOVE.W #$10, D1

0001AB08 MOVE.W #$0, D0

0001AB0C CLR.L $0(A0, D0.W)

0001AB10 ADD.W #$4, D0

0001AB14 CMP.W D1, D0

0001AB18 BLT *-$C ;0001AB0C

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 57

If you already understand how the program works, you can skip this next part. If not,
work through the instructions one line at a time and use the charts in Figure 3-14 to
record changes in registers and related changes in memory.

Figure 3-14 Registers and memory for sample program

Begin with the first three instructions.

MOVE.L #$1000,A0 ; A0 is the address that will be cleared

MOVE.W #$10,D1 ; D1 is the number of bytes to clear

MOVE.W #$0,D0 ; D0 is the loop variable

The first instruction puts the value $1000 into register A0. The next instruction puts $10
in register D1. The third instruction moves $0 into D0. After the first three instructions
have been executed, your first row of registers should look like this:

Now that the registers have been set up, you’re at the beginning of the loop. The next
instruction,

CLR.L $0(A0,D0.W) ; clear 4 bytes at A0+D0

clears memory (sets it to zero) at the address A0+D0+$0. Notice that this instruction uses
an indexed indirect addressing with displacement mode. Since it operates on a long

$1000 $1001 $1002 $1003 $1004 $1005 $1

$1008 $1009 $100A $100B $100C $100D $1

Memory

Registers

D0 D1 A0

D0 D1

0 10

C H A P T E R 3

An Assembly-Language Primer

58 Reading Assembly-Language Instructions

word (the operator has an “.L” suffix), it actually clears 4 bytes, starting at A0+D0+$0
and going for 3 more bytes. Compute the value of A0+D0+$0. You should get $1000. In
the Memory portion of Figure 3-14, write zero in the bytes $1000, $1001, $1002, and $1003.

Now you’re ready to increment the loop variable. The next instruction,

ADD.W #$4,D0 ; increment loop variable by 4

adds $4 to register D0. The second row of your registers table now looks like this:

Next, you need to find out whether the loop is over yet. The next instruction

CMP.W D1,D0 ; is the loop over yet?

compares the values in registers D0 and D1 to determine whether the loop is finished.
This causes certain flags in your status register to be set, which are checked by the next
instruction. If D0 is less than D1, the branch instruction executes, taking you back to the
clear instruction. If D0 is not less than D1, you simply fall through to the next instruction.

The next instruction

BLT @1 ; if not, branch back and continue

goes back to the clear instruction.

CLR.L $0(A0,D0) ; clear 4 bytes at A0+D0

Once again, you must clear the memory in the 4 bytes starting at address A0+D0+$0.
A0+D0+$0 should equal $1004. In the Memory portion of Figure 3-14, write zero in the
bytes $1004, $1005, $1006, and $1007.

Now you must increment the loop variable again using the ADD.W instruction:

ADD.W #$4, D0 ; increment loop variable by 4

Write the result in the appropriate place on the Registers chart. Continue through the rest
of the program on your own. Remember that $8+$4 = $C, and $C+$4=$10.

Comparing Assembly-Language Code to Source Code 3
If you are debugging a program that you originally wrote in a high-level language, you
need to learn not only how to navigate through the disassembled code using MacsBug
commands, but also how to map this code back unto your source code.

This mapping is not necessarily straightforward. As explained at the beginning of the
chapter, the compiler uses a great deal of discretion in compiling your code. In addition,
disassembled object code looks very different from the equivalent source code: the
compiler replaces your symbol names with address or register references, and it must

D0 D1

4 10

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 59

often use many instructions to implement one high-level language statement. Compiler
optimization can cloud things further. All these differences make the job of mapping the
disassembled code back unto your source code a bit of a puzzle.

Although there is no set formula for matching your source code to the assembly code,
here are a few hints.

■ Always have a complete, up-to-date printout of your source code next to you as you
debug. This may sound obvious, but people often don’t do it, and it makes debugging
a lot harder. (If you wrote your original program in assembly language, your
comments and variable names will be missing from the disassembled version, so it
is still a good idea to keep an up-to-date hard copy of your source code handy.)

■ If you are using certain control structures over and over, try compiling a dummy
structure, just to see what its bare bones look like in assembly language. Having these
disassembled structure “templates” around can help you locate these same structures
in your real programs.

■ Make sure you start debugging at a known place in your program. The easiest way to
do this is to put a Debugger call in your program right before the statements you want
to debug. The Debugger call drops you into MacsBug immediately after executing the
Debugger trap, thus guaranteeing that you know where you’re starting from. If you
use the DebugStr trap, you can even include a string that MacsBug displays when it
displays the debugging screen; for example:

The IF clause starts here

For more information about the Debugger and DebugStr routines, see “Invoking
MacsBug From Your Source Program” in Chapter 2.

After this, you have to use your wits. Walk through the assembly code, watching what
each line does. When the assembly-language instruction(s) have done everything
described by one line of Pascal or C source code, you know you’re starting the next line
of source. This works well for simple instructions, like assignments or conditional
branches. But some source instructions, like loops and case statements, are scattered
across several other statements when translated into assembly language, and don’t look
anything like what you might expect.

For example, the compiler often moves the condition check in a loop to the bottom of the
loop, regardless of whether the source code had it at the top or the bottom. Also, case
statements are often implemented using a lookup table placed directly in the code. The
disassembler doesn’t realize that the table isn’t code, and disassembles it into
gobbledegook. You must read the code carefully to realize that the table is accessed as
data and is never executed. Finally, some compilers optimize the code, which makes the
assembly code look even less like the original source code.

If you have trouble figuring out what the assembly code is doing, write down each
register and memory location in a chart, as described in the section “A Simple Assembly-
Language Program” earlier in this chapter. If you run into an instruction or addressing
mode that’s unfamiliar, you might have to look it up.

The sections that follow walk you through some Pascal statements and the assembly-
language instructions that might be generated by a compiler to implement them.
Remember that every compiler will generate different assembly code for the same Pascal
code. The assembly-language equivalents presented here are only examples.

C H A P T E R 3

An Assembly-Language Primer

60 Reading Assembly-Language Instructions

Assignment Statements 3

This section describes the way a Pascal compiler might translate assignment statements.
The Pascal code

PROCEDURE David;

VAR

X: integer;

BEGIN

X := 12;

END;

has only one executable line, that is, a line that actually causes assembly language to be
generated by the compiler—the line X := 12;. All the other lines simply set up the context.
The line X := 12; generates the following line of assembly language when compiled:

MOVE.W #$C,-$2(A6)

This instruction simply moves the value 12 ($C) into the memory location where X is
stored. Notice that X is stored at a negative offset from register A6.

If X were a parameter instead of a local variable, it would be stored at a positive offset
from register A6. The Pascal code

PROCEDURE Stephen (X : integer);

BEGIN

X := 12;

END;

would generate this line of assembly code when compiled:

MOVE.W #$C,$8(A6)

If X were a global variable, it would be referenced from register A5. The Pascal code

VAR

X: integer;

PROCEDURE Graham;

BEGIN

X := 12;

END;

would generate this line of assembly code when compiled:

MOVE.W #$C,-$8(A5)

For additional information about how variables are specified in disassembled listings,
see “Life on the Stack” in Chapter 4.

C H A P T E R 3

An Assembly-Language Primer

Reading Assembly-Language Instructions 61

A Procedure Call 3

The Pascal line

MyProc (X, 10);

calls the procedure MyProc with two parameters. It generates this assembly code:

MOVE.W -$4(A6),-(A7)

MOVE.W #$A,-(A7)

JSR MYPROC

The first line pushes the variable X onto the stack. What kind of variable is X in this case?
It has to be a local variable because it’s referenced by a negative offset from register A6.
The next line pushes the number 10 ($A) onto the stack. The third line calls MyProc.
MyProc will remove the parameters from the stack before it returns.

A Loop 3

Here’s the Pascal code for a loop:

VAR

X, J : integer;

FOR J := 1 TO 10 DO

BEGIN

X := J;

END;

Here’s the equivalent assembly code:

0000AB00 MOVEQ #$1,D6

0000AB04 BRA.S *+$C ;0000AB10

0000AB08 MOVE.W D6,-$4(A6)

0000AB0C ADDQ.W #$1,D6

0000AB10 MOVEQ #$A,D0

0000AB14 CMP.W D6,D0

0000AB18 BGE.S *-$10 ;0000AB08

The remainder of this section steps through this code one line at a time.

0000AB00 MOVEQ #$1,D6

The first line puts the value $1 into register D6. It got the $1 from the FOR statement. But
why is it putting it into D6 instead of J? The compiler is doing a little optimization here.
Even though J is a local variable, and thus is normally on the stack, the compiler has put
it in a register, because it makes the code faster and smaller. Accessing registers is faster
than accessing memory, and the machine code to do it is several bytes smaller.

0000AB04 BRA.S *+$C ;0000AB10

C H A P T E R 3

An Assembly-Language Primer

62 MacsBug’s Disassembly Commands

The next instruction is a branch, which jumps down to the second MOVE instruction.
But the FOR statement isn’t finished yet! The test to see whether J is greater than 10 is
located at the bottom of the loop in assembly language. In Pascal or C, you can put the
test to see whether you should exit either at the top or the bottom of the loop. In
compiled code, the test is usually put at the bottom of the loop, no matter where it was in
the source code. If the test was at the top of the loop in the source code, a branch is put in
above the loop contents that branches to the test. If the test was at the bottom of the loop
in the source code, the branch is not put in. This is easier for the compiler to generate,
and semantically the same.

0000AB10 MOVEQ #$A,D0

0000AB14 CMP.W D6,D0

0000AB18 BGE.S *-$10 ;0000AB08

The MOVE instruction puts 10 ($A) into D0, so that the next instruction can compare the
loop variable and check whether it’s greater than 10. The compare instruction compares
the loop variable, which is in register D6, against 10, which is in register D0. Then the
branch instruction goes back to the top of the loop if the loop variable has not hit 10 yet.
Notice that it is doing the compare backwards—that is, it is not checking whether the
loop variable is less than or equal to 10; it is checking whether 10 is greater than the loop
variable. Compilers often do things like this.

The next line,

0000AB08 MOVE.W D6,-$4(A6)

executes the statement inside the loop: X := J.

Finally, the instruction

0000AB0C ADDQ.W #$1,D6

adds 1 to J, the loop variable. You’re back at the test to see whether you should exit
the loop.

MacsBug’s Disassembly Commands 3

MacsBug provides four commands that you can use to display disassembled code
starting at an address you specify. The syntax of the disassembly commands is

command name [address]

You can use a procedure name for the address. If you do not specify an address,
MacsBug uses the address stored in the program counter (PC register).

Table 3-4 provides a summary of the disassembly commands. Each command is
described in detail in Chapter 9 of this manual.

C H A P T E R 3

An Assembly-Language Primer

MacsBug’s Disassembly Commands 63

The address you specify for a disassembly command must actually be the starting
address of an instruction. MacsBug will disassemble code even if you give it an address
that occurs in mid-instruction—but the code will not make much sense. The section
“Determining Where to Start Disassembling” at the end of this chapter provides addi-
tional information about selecting a valid and useful starting address for disassembly

Reading the Disassembly Display 3
The format used to display disassembled code is exactly the same for all the disassembly
commands. Figure 3-15 shows the meaning of each field in the display.

Figure 3-15 Reading the disassembly display

If MacsBug knows the name of the routine that contains the disassembled code, it
displays the name and the offset of the instruction within the routine in the first (left-
most) column. If MacsBug does not know the procedure name, but the address is in a
known resource, it displays the type of the resource, the number of the resource, the file
in which the resource is stored, the name of the resource, and the offset within the
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

Table 3-4 MacsBug’s disassembly commands

Command Action

ID [addr] Disassembles and displays one line starting at addr.

IL [addr [n]] Disassembles and displays n number of lines starting at addr.

IP [addr] Disassembles and displays a half page (64 bytes) centered around addr.

IR [addr] Disassembles and displays code from addr to the end of the procedure
containing the instruction at addr.

Offset from
beginning of
procedure

Absolute
address

Operator Operands Machine
code

Comments

Procedure
name

C H A P T E R 3

An Assembly-Language Primer

64 MacsBug’s Disassembly Commands

The next column specifies the absolute address of the instruction. The next two columns
display the operator and operand(s) that make up the instruction. To the extreme right of
the display, MacsBug shows you the same instruction in machine language.

MacsBug uses several markers to provide additional information about your code:

■ An asterisk preceding the operator indicates the next instruction to be executed
(whose address is currently stored in the PC).

■ A dot preceding the operator indicates that a breakpoint has been set on that
instruction.

■ A semicolon after the instruction indicates a comment, or, in the case of a branch
instruction, it indicates that the object code specifies the address to jump to.

Determining Where to Start Disassembling 3
If you crash into MacsBug, you’ll probably want to disassemble around the program
counter to see where you are and where you came from.

If you want to disassemble code that belongs to a specific routine, you can find the
address of the routine you’re interested in by using the Symbol Display command. You
execute the command by pressing Command-: (or Command-D). MacsBug displays a
pop-up window in which it lists all the routine names in the currently selected heap. You
can then use the Up Arrow and Down Arrow keys to select the routine name you want
to use. When you press Return, the procedure name will be inserted in the command line
at the point you pressed Command-:.

If you want to restrict the names displayed in the pop-up window, type the first few
letters that you want the names to include. If you’ve qualified the list and want to move
back to the previous level of qualification, press the Delete key. To remove the menu
without making a selection, press the Esc key.

Remember that the symbol display (also known as the symbol dump) only shows
routines in the currently selected heap. If the routines you want aren’t appearing in
the symbol dump, stop and think about whether they’re in another heap. (See the
descriptions of the HZ and HX commands in Chapter 9 for more information about
displaying and switching heaps.)

Sometimes the symbol dump won’t display the routine name you want no matter what
you do, but when you disassemble the code, it puts in the correct routine names. This
can happen even when you have the correct heap set. If you know you have the correct
heap set, the missing symbols are a sign that your code is not in a resource that MacsBug
expects to contain code. For example, your resource may have been detached, or you
may have made up your own custom code resource type. In both these cases, MacsBug
will not show the routine names in the symbol dump.

When asked to perform a symbol dump, MacsBug goes through the selected heap and
checks the relocatable blocks that contain resources of types that usually contain code.
These include 'CODE', 'INIT', 'FKEY', 'WDEF', and dozens more. But the list is finite.
When disassembling code, however, MacsBug gets the symbol names from the code
itself, which is why it can sometimes find the correct names during disassembly even
though it can’t find them with a symbol dump.l

C H A P T E R 4

Macintosh Memory

Organization 4

Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Macintosh Memory Organization

66

An Overview of Macintosh Memory Space

When you write a program in a high-level language, you manipulate local variables,
global variables, resources, and files that you refer to by name. By the time this informa-
tion is translated into a language the microprocessor can understand, however, the
names are gone; they are replaced by addresses in memory. Although MacsBug can
display procedure and trap names, you must use addresses to refer to your program’s
variables, and to determine the value of a variable you must understand how these
values are stored in memory.

MacsBug provides commands that allow you to look at every memory location, but
before you can put these commands to effective use, you need to understand where the
information you’re interested in is likely to be stored; that is, you need to understand
how memory on the Macintosh is organized and how the contents of memory change as
your program executes.

This chapter describes the kinds of memory used by the Macintosh, how to examine the
different regions of memory using MacsBug commands, and how to interpret the
information that MacsBug displays about these regions.

Although memory management remains the same across all Macintosh platforms,
memory organization and memory addressing depend on two major factors:

■

Whether you are running an application in a single-application environment (system
software earlier than version 7.0, with MultiFinder turned off) or a
multiple-application environment (system software version 7.0, or system software
version 5.0 or 6.0 with MultiFinder turned on).

■

Whether your code is 32-bit clean.

This chapter also discusses how these factors affect the information displayed
by MacsBug.

An Overview of Macintosh Memory Space 4

In the broadest sense, memory is simply a place where you store information. The
Macintosh uses four different kinds of memory, which are distinguished from each other
according to two criteria: whether memory is volatile or nonvolatile, and whether it is
directly addressable by the microprocessor. As shown in Figure 4-1, the four kinds of
memory are RAM, ROM, registers, and disk. For the purposes of this discussion, “disk”
includes floppy and hard disks, tape drives, CD-ROM, optical disks, and other forms of
mass storage.

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space

67

Figure 4-1

Types of Macintosh memory

The memory in RAM and registers is volatile: the information it contains disappears
every time you turn off your computer’s power supply. The memory in ROM and on
disks is nonvolatile

:

 the information it contains remains intact whether or not the
computer is turned on.

A computer’s

address space

consists of the total amount of memory the microprocessor
is capable of addressing. Every byte of memory in the address space has a unique
address. All of RAM and ROM have addresses, and thus are in the address space.
Registers and disks do not have addresses, and therefore are not in the address space.

Before you can manipulate information stored on disk, the information must first be
loaded into RAM. To manipulate information stored in registers, you simply use the
register name.

How much address space is available to your application depends upon the Macintosh
on which it runs. The Macintosh Classic and the Macintosh SE, which use the 68000
microprocessor, have an address space of 16 megabytes (MB). Of this total space, any-
where up to 4 MB is assigned to RAM. The Macintosh II computers, which use the 68020
or 68030 processor, can address up to 4 gigabytes (GB) of address space. Of this total
space, anywhere up to 128 MB can be assigned to RAM. As you can see, the amount of
memory available varies widely. The

Macintosh Family Hardware Reference

describes the
amount and configuration of memory available on different Macintosh computers in
fine detail.

Fortunately, you do not need to know fine details about the hardware to debug your
program because no matter how large the memory space, it is organized into regions
whose starting addresses are stored in global variables that you can refer to by name and
that are found at the same address in every Macintosh. The next section, “The Memory
Map,” describes the different regions of memory and explains what information is stored
in each. The remainder of this chapter examine these regions in greater detail.

The Memory Map 4

The arrangement of information within the address space is represented by a memory
map. Just as a road map can show you where to find a particular place in a large city,
the memory map shows you where to find individual bytes of memory within your
computer’s address space. Every byte of memory has an address that you can identify
and to which you can refer. In order to read a memory map, you need to understand the
units of memory and how these are arranged in memory.

Not in address space

In address space

Volatile Nonvolatile

RAM ROM

Registers Disk

C H A P T E R 4

Macintosh Memory Organization

68

An Overview of Macintosh Memory Space

The next section, “Memory Units and Their Representation,” discusses the conventions
used to represent memory. The sections that follow explain how address space is used on
the Macintosh by taking an increasingly detailed look at the Macintosh memory map.

Memory Units and Their Representation 4

Whatever the upper limit of addressable memory is, it is referred to as

high memory.

The lowest limit is referred to as

low memory.

 Figure 4-2 shows the typical figure used
to represent memory, a rectangle. The base of the rectangle represents the lowest
memory location and the top of the rectangle represents the highest memory location.

Figure 4-2

High and low memory

Locations on a Macintosh memory map start at 0 and go up to either $00FF FFFF or
$FFFF FFFF, depending on whether the machine is using the 680000 or 68020/30
processor.

The units of memory are the nibble, the byte, the word, and the long word. Table 4-1
describes them.

Table 4-1

Units of memory

Term Size Bits Example

nibble half a byte 4 C

byte 1 byte 8 2C

word 2 bytes 16 E22C

long word 4 bytes 32 002C E22C

High memory

Low memory

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space

69

As mentioned earlier, only one byte of memory is stored at each address. If all the infor-
mation you’re using is cut up in byte-size chunks, then there’s one piece of information
stored at each address; but, if you need to store information in larger size units, you
must use successive addresses to store one chunk of information. For example, suppose
you need to store an address. An address is always a long word, 4 bytes long; for the
sake of this example, assume the address is 1234 5678. Figure 4-3 shows how a long
word is stored at four successive addresses.

Figure 4-3

Storing a long word

MacsBug displays all numbers, including addresses, in hexadecimal notation. As shown
in Figure 4-3, the leftmost byte of a word or long word is referred to as the most
significant byte, and the rightmost byte as the least significant byte. Similarly, when you
translate a byte, word, or long word into bits, you determine the most significant and
least significant bit in the same fashion.

The only additional terms that you need to know are

low-order word,

high-order word,

low-order byte,

 and

high-order byte.

 The definitions are best furnished by examples.

■

In the long word 56E5 12FF, the high-order word is 56E5 and the low-order word
is 12FF.

■

In the word 56E5, the high-order byte is 56 and the low-order byte is E5.

In accordance with the storage convention described in Figure 4-3, the high-order word
or byte is stored at a lower memory location than the low-order word or byte.

 Using MacsBug Commands to Display and Set Memory 4

The preceding section described the way data is stored in memory and the convention
used to represent memory in this manual as well as throughout

Inside Macintosh

. This
section describes how MacsBug displays memory. Table 4-2 summarizes the MacsBug

0104

0103

0102

0101

0100

0099

Address

00

78

56

34

12

00

123456781 8

0001 0010 0011 0100 0101 0110 0111 10000 0

Most significant bit Least significant bit
Bit 31 Bit 0

Memory storage on

the Macintosh:

the most significant

byte is stored at the

lowest address.

Most significant byte Least significant byte

Value

C H A P T E R 4

Macintosh Memory Organization

70

An Overview of Macintosh Memory Space

commands that you can use to display information that is stored in memory and to
change that information if you wish.

Each of these commands is described in greater detail in Chapter 9.

To see an example of the way MacsBug displays memory, enter the command

DM 910

—that is, “display the information stored beginning at address 910.” MacsBug displays
the following information:

Displaying memory from 910

 00000910 0E4D 6963 726F 736F 6674 2057 6F72 6400 •Microsoft Word•

The DM (Display Memory) command displays memory in hexadecimal notation and also
displays, at the extreme right, its ASCII representation. Also, although you specify only
one address, the DM command shows you the byte at that address and 15 more bytes. The
subsequent bytes, in accordance with the memory storage convention described in the
previous section, are stored at increasingly higher memory locations. Figure 4-4 shows a
graphic representation of the output to the DM command shown above.

Of course, not even the hardiest programmer can make much sense out of a string of
hexadecimal numbers. Fortunately, MacsBug allows you to use templates to display
memory so that you can immediately see what the stored values are about. The section
“Using Templates To Display Memory,” in this chapter, explains how you can define
templates that MacsBug can use to display memory intelligibly.

Table 4-2

 Commands that display and set memory

Command Action

DM Displays 16 bytes of memory starting at the specified address.

DP Displays 128 bytes of memory starting from the specified address.

DB Displays the byte at the specified address.

DW Displays the word at the specified address.

DL Displays the long word at the specified address.

SM Assigns a value to memory starting at the specified address.

SB Assigns a value to a byte starting at the specified address.

SW Assigns a value to a word starting at the specified address.

SL Assigns a value to a long word starting at the specified address.

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space

71

Figure 4-4

Graphic representation of DM output

Memory Map Regions 4

The DM command described in the last section displayed memory beginning at address
910. The hex dump didn’t reveal much, but the ASCII representation of the same portion
of memory gave the name of the current application. How would you know to look at
that particular address for that piece of information? The answer to this is that specific
locations in memory have a special and consistent meaning for all Macintosh computers.
Some of these locations hold pointers to other locations where certain information is
stored (low-memory globals); others are entire regions dedicated to some specific
structure in memory that the system or your program uses to do its work (such as the
stack, the heap, or the jump table).

Macintosh computers that use the 68000 microprocessor divide the available address
space into four sections of 4 MB each, as shown in Figure 4-5. (On the 68020 and 68030,
RAM gets 8 MB in 24-bit mode.) The first 4 MB are set aside for RAM, the next 4 for
ROM, and the last 8 MB for memory-mapped I/O, meaning special chips like the disk
drive controller. Chips that control I/O devices can access mass storage outside of the
address space through a special 1-byte “window.” Thus most of the memory-mapped
I/O section is empty, with 1-byte islands here and there.

Although not all of the available address space is used on every machine, every machine
with the same microprocessor divides up the address space the same way.

Address Value

925

924

923
922

921

920

919

918

917
916

915

914

913

912

911
910

00

64

72
6F

57

20

74

66

6F
73

6F

72

63

69

4D
0E

C H A P T E R 4

Macintosh Memory Organization

72

An Overview of Macintosh Memory Space

Figure 4-5

Address space for the 68000 processor

Figure 4-6 shows the area of memory that you’ll be working with most of the time in
debugging. Figure 4-6 assumes that your program is running in a single-application
environment (system software earlier than version 7.0, with MultiFinder turned off). The
principal difference between memory organization in a single-application environment
and in a multiple-application environment concerns the application heap region. (See the
section “Heap Management in a Multiple-Application Environment” for additional
information.) Note that Figure 4-6 is not drawn to scale. Although the order of the
regions is correct, their relative sizes are not. In reality the application heap is much
larger than any of the other regions.

Figure 4-6

A simple Macintosh memory map

16 MB

8 MB

12 MB

4 MB

0 MB

Memory map shown i
Figure 4-6

ROM

RAM

Memory-mapped I/O

 (hardware)

ROM

Screen buffer

High memory

Application globals

Stack

Application heap

System heap

Low-memory globals

RAM

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space

73

As Figure 4-6 shows, most of the regions of memory that are important for debugging
purposes are part of RAM. The size of each region differs on different types of Macintosh
computers, but the regions remain in the same order. If you add RAM to your system,
the size of each region expands, but the order remains the same.

Since the size, and thus the starting point, of each region can change, you need a way to
find each starting point. It is not possible to draw dividing lines in memory as shown in
Figure 4-6, but it is possible to store the address where each region begins at specific
addresses that we can count on not to change. This is accomplished by means of pointers
to each region that are stored in low memory. (The low-memory region always starts at
zero, so that the pointers in low memory are always in the same place on all Macintosh
computers.)

Knowing how the memory you’re working with is organized is important because
debugging requires that you decide whether a piece of data—which might be an
address—makes sense. Table 4-3 describes how each memory region illustrated in
Figure 4-6 is used.

Table 4-3

Memory regions

Region Description

Low-memory globals Single numbers or pointers used mainly by the operating
system, rarely by applications.

System heap Contains system information such as lists of the disks
mounted, open files, and so on. Items in the system heap
are not single numbers but larger data structures used mainly
by the system, and rarely by applications.

Application heap Used by applications to store application code, windows,
dialogs, alert boxes, data, menus, icons, and so on.

Stack Used by an application’s routines to store function results,
local variables, return addresses of calling routines, and to
pass routines’ parameters.

Application globals Used by the application to store its global variables.
QuickDraw and the operating system also place some
information here.

High memory Used by resident programs such as debuggers. Note that the
term high memory is used to refer both to high memory in
RAM as well as to high memory in the total address space.

Screen buffer The Macintosh hardware reads the screen buffer and displays
its contents directly on the screen. This is called memory-
mapped video

.

 If you change the memory in the screen
buffer, you will see the changes on the screen. On Macintosh
computers that make use of the NuBus architecture, such as
the Macintosh IIci, the screen buffer is actually above the
ROM, not below it.

ROM ROM is located above RAM on the memory map, but it is not
necessarily contiguous with RAM. The ROM contains system
code and data (in the form of resources).

C H A P T E R 4

Macintosh Memory Organization

74

An Overview of Macintosh Memory Space

The next section, “Using Low-Memory Globals to Draw a Memory Map,” explains how
you can use the pointers to these regions to produce an exact map for the computer
you’re developing on.

Using Low-Memory Globals to Draw a Memory Map 4

The Macintosh has hundreds of low-memory globals. Most of these contain single values
or pointers to other places in memory.

How to Write Macintosh Software

by Scott Knaster
has the best publicly available list of low-memory globals, although it is not complete or
totally accurate. It is a very bad idea to write to low-memory globals or even to read
them except by using the routines for this purpose that are documented in

Inside
Macintosh,

 but you can make effective use of some low-memory globals in debugging.
This section describes how to use low-memory globals to make a map that accurately
describes the memory configuration of the machine you’re developing on. “Exercise:
Getting Started with MacsBug,” in Chapter 2, provides an exercise that accomplishes the
same thing.

As mentioned earlier in this chapter, the various regions of the memory map start at
different addresses, depending on available RAM and the model of the Macintosh you
have. Some of the most useful low-memory globals are pointers to the beginning of each
region, because they point to the correct location regardless of the characteristics of the
particular machine being used.

To make them easier for people to remember, every low-memory global has a name as
well as an address, both of which MacsBug knows. If you identify a low-memory global
by name, MacsBug automatically computes its address. (See the section “Standard
Macros” in Chapter 8 if you would like to know how MacsBug translates low-memory
global names to addresses.) Figure 4-7 shows the locations pointed to by the following
low-memory globals (and register A7).

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space

75

Figure 4-7

Memory regions and low-memory globals

To find out the exact starting address for each memory region on your machine, you
have only to dereference the low-memory global pointer. For example, if you enter

SysZone^

MacsBug displays the address that is stored at the address 02A6 (SysZone):

02A6^ = $00001E00 #7680 #7680 '••••'

The starting address of the system heap is 1E00.

If you dereference every low-memory global that is used to store the address of a region
in memory, you will obtain output like the following. You can use this data as a memory
reference map for your machine.

02A6^ = $00001E00 #7680 #7680 '••••'

02AA^ = $0019713C #1667388 #1667388 '••q<'

0130^ = $00294752 #2705234 #2705234 '•)GR'

A7 = $0029AE94 #2731668 #2731668 '•)••'

0908^ = $0029AF14 #2731796 #2731796 '•)••'

ROM

Screen buffer

High memory (RAM)

Application globals

Stack

Application heap

System heap

RAM

Low-memory globals

ROMBase ($2AE)

Mem Top ($108)

ScrnBase ($824) *

BufPtr ($10C)
CurrentA5 ($904)
CurStackBase ($908)

Register A7 (Top Of Stack)

ApplLimit ($130)

ApplZone ($2AA)

SysZone ($2A6)

$00

* On Macintosh II computers, the screen buffer is above
the ROM, but ScrnBase still points to the correct location

C H A P T E R 4

Macintosh Memory Organization

76

An Overview of Macintosh Memory Space

0904^ = $0029B114 #2732308 #2732308 '•)••'

010C^ = $003C06F0 #3933936 #3933936 '•<••'

0824^ = $FAA00020 #4204789792 #-90177504 '•†• '

0108^ = $00141350 #1315664 #1315664 '•••P'

02AE^ = $40800000 #1082130432 #1082130432 '@•••'

Table 4-4 describes the memory location to which each low-memory global points.

Memory Management Under System Software Version 7.0 4

System software version 7.0 introduces two features that affect memory management:

■

32-bit addressing, which allows software running on machines with 32-bit clean
ROMs (for example, the Macintosh IIci and the Macintosh IIfx) to access up to 4 GB of
address space.

■

Virtual memory, which allows software running on 608030- and 608020-based
machines (with a 68851 PMMU) to increase the amount of logical address space
available to an application.

This section describes how these features affect your code’s ability to run under system
software version 7.0. For a complete and detailed description of memory management
under system software version 7.0, see the “Memory Management” chapter in

Inside
Macintosh

, Volume VI.

Table 4-4

Memory regions and low-memory globals

Name Address Description

SysZone $2A6 Points to the beginning of the system heap.

ApplZone $2AA Points to the beginning of the application heap.

ApplLimit $130 Points between the application heap and the stack.

Register A7 — Points to the top of the stack.

CurStackBase $908 Points to the base of the stack.

CurrentA5 $904 Points to the application globals.

BuffPtr $10C Points to the bottom of high memory.

ScrnBase $824 Points to the bottom of screen memory.

MemTop $108 Points to the top of RAM. Used to determine the
amount of RAM installed on the machine. Accurate
only in a single-application environment.

ROMBase $2AE Points to the beginning of ROM.

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space 77

32-Bit Addressing 4

The 68000 microprocessor has 24 address lines and has an address space of 224 bytes, or
16 MB. The 68020 and 68030 microprocessors used in the Macintosh II product line have
32 address lines, and thus have a total address space of 232 bytes, or 4 GB (4000 MB).
However, Macintosh computers that use the 68020 and 68030 usually run in 24-bit mode,
and use only the low 24 address lines. The effective total address space for these com-
puters is 16 MB, like that of the 68000-based computers. Starting with system software
version 7.0, Macintosh computers with a 68020 (equipped with a PMMU) or 68030 micro-
processor will be able to run in 32-bit mode, which means that programs can access the
full 4-GB address space. (Note that the 68000 microprocessor has only 24 address lines,
and thus cannot run in 32-bit mode.)

Programs will not work properly in 32-bit mode unless they strictly follow the
Macintosh programming guidelines contained in Inside Macintosh and the Macintosh
Technical Notes. Because the high 8 bits of each 32-bit address have not been used until
now, the Macintosh operating system has stored flags in the high byte. Some program-
mers have manipulated these flags directly instead of using the supplied system calls.
For example, programmers occasionally set the bits that lock and unlock relocatable
blocks directly instead of using the HLock and HUnlock calls. These bits are currently
stored in the high byte of master pointers. Under systems that run in 32-bit mode,
they are stored someplace else. The HLock and HUnlock calls will do the right thing
regardless of which system a program is running under. However, if your program
directly sets a bit in the high byte of a master pointer under a system that runs in 32-bit
mode, you will end up changing the address stored in the master pointer rather than
locking or unlocking the relocatable block.

Programs that follow the Macintosh programming guidelines and do not make use of
this type of shortcut are described as 32-bit clean. If your program is not 32-bit clean,
you need either to change the program or to set a flag in your program’s SIZE resource
that indicates you want to run in 24-bit mode. Programs must be 32-bit clean in order to
run under A/UX.

For more information about keeping your code 32-bit clean and associated issues, see
Macintosh Technical Note #212, The Joy of Being 32-Bit Clean, and “Compatibility
Guidelines” and “Memory Management” in Inside Macintosh, Volume VI.

Virtual Memory 4

Logical address space is the address space that the microprocessor can address. The
amount of logical address space is determined by the number of address lines. If your
processor has 24 address lines, it can address 16 MB of memory; if your processor has 32
address lines, it can address 4 GB of memory.

Physical address space is the address space that actually exists. Physical address space is
limited in principle by the amount of logical memory that your processor can address
and is determined in reality by the amount of memory shipped with your computer and
any memory that you add by installing additional memory.

C H A P T E R 4

Macintosh Memory Organization

78

An Overview of Macintosh Memory Space

Until system software version 7.0, the only way you could increase physical memory
was by installing additional memory. System software version 7.0 includes software that
implements a virtual memory scheme.

Virtual memory

 is a way of expanding available
memory by using software rather than by installing additional hardware.

A program running under virtual memory can access the entire logical memory of the
computer as if it were RAM, except for blocks of memory reserved for the system heap,
ROM, NuBus cards, and a resident debugger. The operating system makes this possible
by writing everything an application does not currently need to disk, and swapping it in
as needed. In sum, expanding the memory available to your application by using virtual
memory is cheaper but slower than buying additional physical memory.

Figure 4-8 illustrates how virtual memory affects memory allocation in 24-bit mode.

Figure 4-8

Virtual memory in 24-bit mode

The use of virtual memory in 24-bit mode creates more than 8 MB of logical memory.
NuBus slots that don’t have cards in them are made available as RAM. If you designate
the Process Manager (MultiFinder) heap as the target heap and use the HD command to
display information about that heap, assigned NuBus slots, the resident debugger (if
any), ROM, and the system heap will be represented as unrelocatable blocks. Thus, even
though virtual memory increases the total amount of RAM available to your application,
this amount does not represent contiguous free space in memory.

Figure 4-9 illustrates how virtual memory affects memory allocation in 32-bit mode.

16 MB

9 MB

12 MB

4 MB

0 MB

8 MB

24-bit mode, virtual memory off

16 MB

12 MB

13 MB

8 MB

0 MB

9 MB

24-bit mode, virtual memory on

4 MB

ROM

RAM

NuBus slot space

ROM

RAM

Used NuBus slot

RAM

RAM

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space

79

Figure 4-9

Virtual memory in 32-bit mode

As you can see, the basic difference between virtual memory in 32-bit mode and virtual
memory in 24-bit mode is that in 24-bit mode, it is possible for RAM locations to be at
higher addresses than ROM. In 32-bit mode, ROM starts at $40800000 rather than at
$800000 (24-bit mode); otherwise the allocation of memory above ROM is the same
whether virtual memory is on or not. In other words, using virtual memory with a 32-bit
configuration increases the amount of memory you can address, but does not affect the
memory map. This is because the 1 GB set aside for RAM currently exceeds the capacity
of any disk. If disks become available that can hold say, 3 GB of information, the memory
map in 32-bit mode with virtual memory on (shown on the right in Figure 4-9) would
have to be altered.

MacsBug provides two markers in the status region of its display to indicate whether the
machine is operating in 24-bit or 32-bit mode, whether virtual memory is installed, and if
so, whether you can access pages that are currently swapped out. For additional
information, see “The Status Region” in Chapter 2.

The operation of virtual memory should be transparent to most applications. You need
to be concerned about the swapping process if

■

Your application calls the SCSI manager directly.

■

You are writing a SCSI driver.

■

You are writing code that runs on a NuBus card and accesses the main memory.

■

You are writing code that runs at interrupt time.

■

 You are writing a debugger that is meant to run under virtual memory.

■ You are writing an application that has critical timing needs.

The operating system provides routines that allow you to hold or lock portions of
memory. Holding memory means that a portion of memory cannot be swapped out but
can be relocated in RAM; locking memory means that a portion of memory can be
neither swapped out nor moved. If you are writing a driver, or a sound or animation
application with critical timing requirements, you might need to hold memory using the

4 GB

1 GB

0 GB

2 GB

32-bit mode, virtual memory off

4 GB

3 GB

1 GB

0 GB

2 GB

32-bit mode, virtual memory o

ROM

RAM

NuBus slot space

ROM

RAM

NuBus slot space3 GB

C H A P T E R 4

Macintosh Memory Organization

80 An Overview of Macintosh Memory Space

HoldMemory function. You should also use the HoldMemory function to prevent
buffers or code used by code that runs at interrupt time from having to be paged in. This
is to prevent a possible double-page fault, which can occur if the code that runs at
interrupt time needs to swap in pages while the operating system is in the process of
swapping pages in or out.HoldMemory routine

You can lock memory using the LockMemory function; this function is used by drivers
and other code when hardware other than the Macintosh CPU is transferring data to or
from user buffers, such as any NuBus master peripheral card or DMA hardware.

For additional information about holding and locking memory and how to avoid
situations that can cause double page faults, see the “Memory Management” chapter
in Inside Macintosh, Volume VI.

Registers 4
In addition to memory that can be addressed and that is external to the microprocessor,
the 68000, 68020, and 68030 microprocessors can also access a total of 70 bytes of
memory in their own registers. These include the address registers A0 to A7, the data
registers D0 to D7, the status register (SR), and the program counter (PC). Each register is
4 bytes long and holds a single value at a time (with the exception of the status register,
which is 2 bytes long).

Registers are not shown on the memory map; when you refer to them using MacsBug
commands you use their names. For example, the command:

DM A7

means “display the value stored in register A7.”

The registers are the microprocessor’s working space. When you cook a meal or work on
a car, you need a working area that can hold the tools and ingredients that you need to
complete the job at hand. You could go fetch each item as you needed it from the store or
from storage, but this would be inefficient. The microprocessor works the same way;
it stores the instructions and data it’s about to use in registers in order to do its work
more quickly.

As their names indicate, registers have specialized functions:

■ The address registers, A0 – A7, hold addresses. Two of these, A6 and A7, are used to
refer to addresses on the stack. See “Life on the Stack” in this chapter for additional
information. Register A5 contains an address relative to which the application’s
globals, parameters, and jump table information can be accessed. See the sections
“Application Globals” and “Application Parameters and the Jump Table” in this
chapter for additional information.

■ The data registers, D0 – D7, hold data. Operating system routines, which are
register-based, use some of these registers to pass data to or receive data from the
calling program.

■ The PC register holds the address of the next instruction to be executed by the
processor. For additional information about this register see Chapter 2.

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space 81

■ The Status or Condition Code register holds information about the operation that
has just taken place. For additional information, see the Motorola manual that
describes your microprocessor.

The 68020 and 68030 microprocessors contain some additional special-purpose registers.
It is not necessary to know about these extra registers for normal debugging purposes.

The values stored in the address registers, data registers, PC register, and status register
are normally shown in the MacsBug display every time MacsBug is invoked. For
information about interpreting MacsBug’s display, see Chapter 2, “Working with
MacsBug.” Table 4-5 lists the MacsBug commands that allow you to display the contents
of other registers or to change the normal MacsBug display of register information. Each
of the commands in Table 4-5 is described in greater detail in Chapter 9, “MacsBug
Commands.”

You can change the value of a register by using a command in this form:

RegisterName := expression or RegisterName = expression

Using Templates to Display Memory 4
This section describes the TMP command, which lists the templates installed in your
system, and explains how to create your own templates. This section also includes a brief
exercise that you can work through to create a template that displays the mouse position.

Templates allow you to control the way MacsBug displays memory. When you use the
DM (Display Memory) command to display memory, you have the option of specifying
a basic type or a template name in order to make the display more intelligible. The
syntax of the command is

DM address template-name

This means “display memory starting at the specified address using the specified
template.”

Table 4-5 MacsBug register commands

Name Action

RAD Allows you to choose between two register-naming conventions.

SHOW Allows you to change the display format used in the status area of the
MacsBug display. Allows you to show the contents of other registers or
other memory regions in the status area.

TD Displays the contents of all CPU registers.

TF Displays the contents of the 68881 floating point registers.

TM Displays the contents of the 68851 MMU registers.

C H A P T E R 4

Macintosh Memory Organization

82 An Overview of Macintosh Memory Space

For example, you know that the mouse position is stored at address 830, so you execute
the command DM 830 and MacsBug displays the following information:

Displaying memory from 0830

 00000830 0009 000F 0000 0000 01E0 0280 0008 0000 •••••••••••••••

You don’t work with screen coordinates in hexadecimal form, however, so you would
like MacsBug to display the same information in decimal notation. You know that the
word at 830 contains the vertical position and that the word at 832 contains the
horizontal position of the mouse. By using the basic type SignedWord as a template (see
Table 4-6), you can get MacsBug to display the same information in a more useful way.
For example, if you type the command

DM 830 signedword; DM 832 signedword

MacsBug displays the following:

Displaying signedword

 00000830 #438

 00000832 #402

You can use basic types to display memory on the run, but if you would also like to
display information about what the values refer to, in this case vertical and horizontal
points, or if you want to display information for larger data structures, you might need a
more customized and permanent template.

You can use the names of templates defined by the 'mxwt' resource to display data
structures created and maintained by User Interface Toolbox or operating system
managers. For example, the 'mxwt' resource provides templates that you can use to
display window records, grafPorts, heap zones, event records, and so forth. You can also
create your own templates to display data structures created by your application or data
structures created by the system that are not defined by the standard 'mxwt' resources.

Standard Templates 4

The Debugger Prefs file contains 'mxwt' resources that define standard templates. To
display the names of templates that are loaded when you install the Debugger Prefs file,
use the TMP command. If you enter TMP without parameters, MacsBug displays a list of
all available templates. You can use these names with the DM command; for example

DM 000234C4 EventRecord

or

DM @WindowList WindowRecord

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space 83

MacsBug will then display memory in new and enlightening ways; for example, in
response to the last command, MacsBug displays the following information:

Displaying WindowRecord at 002BEF10

002BEF20 portRect #0 #0 #429 #506

002BEF28 visRgn 002BF024 -> 002D560C

002BEF2C clipRgn 002BF038 -> 002D8A6C

002BEF7C windowKind 0008

002BEF7E visible TRUE

002BEF7F hilited TRUE

002BEF80 goAwayFlag TRUE

002BEF81 spareFlag TRUE

002BEF82 strucRgn 0025F9D4 -> 002D7ACC

002BEF86 contRgn 0025F9C0 -> 002D7AE0

002BEF8A updateRgn 0025F9C8 -> 002D7760

002BEF8E windowDefProc 080020D4 -> 20832A5C

002BEF92 dataHandle 0025F9A8 -> 002D8150

002BEF96 titleHandle 0025F9CC -> 002D813C Chapter 4

002BEF9A titleWidth 0040

002BEF9C controlList 002BF1DC -> 002D5528

002BEFA0 nextWindow NIL

002BEFA4 windowPic NIL

002BEFA8 refCon 00000003

Try the command without using the template, DM @WindowList, and you’ll notice a
significant difference.

Using Basic and Template Types to Define Template Fields 4

You can create your own templates using ResEdit, or you can build your own resource
using the file Templates.r as a model and then use the Rez tool to add it to the Debugger
Prefs file. The next section provides a hands-on exercise that shows you how to use
ResEdit to create a template. Whichever method you use, you need to give MacsBug
three pieces of information: a field name, type name, and count for each line that you
want it to display.

Figure 4-10 shows how the use of field name, type name, and count determine the
information displayed by MacsBug for the portRect field of a window record.

C H A P T E R 4

Macintosh Memory Organization

84 An Overview of Macintosh Memory Space

Figure 4-10 Template fields

MacsBug uses the string you enter into the Field name field of the resource as a label to
describe the information that follows. It’s up to you to name the field.

MacsBug uses the Type name field of the resource to figure out how many bytes to
display and in what format. The Type name SignedWord, in this example, tells MacsBug
that you want 2 bytes displayed as a signed decimal number. You can use the types
described in Table 4-6 and Table 4-7 to specify a Type name.

MacsBug uses the Count field of the resource to figure out the number of times items of
the specified type should be displayed on one line. In this case, it will display 4 words as
signed decimal numbers.

MacsBug figures out the address of the field by taking the address at which you specify
memory display should start and then adding however many bytes you have specified
for previous fields. This means that you must specify the correct starting address for the
data structure and that you must correctly specify the size of all the fields in the
structure, even the ones for which you do not want information displayed (see Table 4-7).

Table 4-6 lists the basic type names that you can use to specify the size of data you want
MacsBug to display and how to display it.

Table 4-6 Basic types

Type Display

Byte Display byte in hexadecimal.

Word Display word in hexadecimal.

Long Display long word in hexadecimal.

SignedByte Display byte in decimal.

SignedWord Display word in decimal.

SignedLong Display long word in decimal.

UnsignedByte Display byte in decimal.

continued

How you use the

'mxwt' resource to set

up MacsBug’s display

What MacsBug Displays002BEF20 portRect #0 #0 #429 #506

portRectField name

Type name

Count

_ _ _ _

SignedWord

4

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space 85

In addition to these basic types, which can be used individually with the DM command,
you can also use the type names listed in Table 4-7 to describe the display of data. You
can only use these type names in templates.

Constructing Linked Lists Using the 'mxwt' Resource 4

If a template named Temp contains a field type of ^Temp or ^^Temp, MacsBug assumes
the field is a link to another data structure of the same type. Thus MacsBug can display
linked lists if you have specified the appropriate type name in your 'mxwt' resource.

UnsignedWord Display word in decimal.

UnsignedLong Display long word in decimal.

Boolean Display byte as TRUE (nonzero) or FALSE (0).

pString Display a Pascal string. If you specify this for the type name, the
value you specify for count indicates the maximum string size and
is used to compute the next field address. If the string is only as long
as the actual number of characters, specify 0 for count; MacsBug
uses the length byte to determine the end of the string.

cString Display a C string (zero-terminated).

Table 4-7 Template type names

Name Display/Action

Text Displays a text string for the number of bytes you specify in the count
field. For example, you can display resource types with the Text type
and a count of 4.

Skip Do not display the next n bytes. Use the count field to specify n; leave
the field name blank.

Align Aligns to a word boundary. Use this as the type name for the field
following a C or Pascal string. Leave the field name and count
value blank.

Handle Dereferences the next long word twice and displays the address of the
master pointer and then the address that the master pointer points to.
If you want to display what is stored at the address that the master
pointer points to, use the ^^BasicType type name described below.

^BasicType Dereferences the next long word and displays the contents stored at
that address using the specified BasicType.

^^BasicType Dereferences the next long word twice and displays the contents of the
address the master pointer points to using the specified BasicType. For
example, you can display a window title by specifying ^^pString as a
type name for the titleHandle field.

Table 4-6 Basic types (continued)

Type Display

C H A P T E R 4

Macintosh Memory Organization

86 An Overview of Macintosh Memory Space

Figure 4-11 shows the entry for the nextWindow field for the WindowRecord template.

Figure 4-11 Linked list field entry in mxwt resource

If you use the DM (Display Memory) command from MacsBug to show you a window
record; for example:

dm @WindowList WindowRecord

and the application you’re debugging has several windows open, MacsBug displays
information similar to the following:

Displaying WindowRecord at 003E94CC

 003E94DC portRect #0 #0 #429 #516

 003E94E4 visRgn 003E7D0C -> 003E9570

 003E94E8 clipRgn 003E7D08 -> 003E9584

 003E9538 windowKind 0008

 003E953A visible TRUE

 003E953B hilited FALSE

 003E953C goAwayFlag TRUE

 003E953D spareFlag TRUE

 003E953E strucRgn 003E7CB4 -> 003FF734

 003E9542 contRg 03E7CB0 -> 003BCFA0

 003E9546 updateRgn 003E7CAC -> 003EC5E4

 003E954A windowDefPro 080020D4 -> 20832A5C

 003E954E dataHandle 003E7CA0 -> 003EC630

 003E9552 titleHandle 003E7CA8 -> 003FF24C Untitled1

 003E9556 titleWidth 003C

 003E9558 controlList 003E7C94 -> 003FD6DC

 003E955C nextWindow 003E7A50

 003E9560 windowPic NIL

 003E9564 refCon 00000004

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space 87

If you press Return, MacsBug displays information about the next window in
WindowList, whose address (003E7A50) is given in the nextWindow field.

Displaying WindowRecord at 003E7A50

 003E7A60 portRect #0 #0 #429 #506

 003E7A68 visRgn 003884B0 -> 003E7AF4

 003E7A6C clipRgn 003884B4 -> 003F8DEC

 003E7ABC windowKind 0008

 003E7ABE visible TRUE

 003E7ABF hilited FALSE

 003E7AC0 goAwayFlag TRUE

 003E7AC1 spareFlag TRUE

 003E7AC2 strucRgn 003E7B5C -> 003F8D68

 003E7AC6 contRgn 003E7B58 -> 003F8D7C

 003E7ACA updateRgn 003E7B54 -> 003F88E8

 003E7ACE windowDefPro 080020D4 -> 20832A5C

 003E7AD2 dataHandle 003E7B48 -> 003F8938

 003E7AD6 titleHandle 003E7B50 -> 003FD814 ->

mbreleasenotes

 003E7ADA titleWidth 006A

 003E7ADC controlList 003E7B3C -> 003F8B5C

 003E7AE0 nextWindow NIL

 003E7AE4 windowPic NIL

 003E7AE8 refCon 00000003

(The underlined portions of these listings are for your benefit; they are not underlined in
the MacsBug display.)

When the nextWindow field has a value of NIL and you ask MacsBug to show you the
next window record, it displays the message “End of linked list.” Linked lists are
zero-terminated. If a template contains more than one field specifying a link, MacsBug
uses the last field found.

Exercise: Creating Your Own Template 4

This exercise demonstrates how to create a template named MouseCoords, which will
allow you to display the position of the mouse in an intelligible and useful way. The
exercise assumes that you are using ResEdit 2.1.

1. Place the cursor in the upper-left corner of the screen and use the interrupt switch
to invoke MacsBug.

C H A P T E R 4

Macintosh Memory Organization

88 An Overview of Macintosh Memory Space

2. Type DM mouse and press Return.
This command asks MacsBug to display memory at address 830, also known to
MacsBug by the system global name, mouse. MacsBug displays information similar to
the following:

Displaying memory from 0830

 00000830 0009 000F 0000 0000 01E0 0280 0008 0000 •••••••••••••••

3. Type G, press Return, and move the cursor to the lower-right corner of the screen.

4. Press the interrupt switch to invoke MacsBug.

5. Type DM Mouse again and press Return.
MacsBug displays something like the following:

Displaying memory from 0830

 00000830 0017 0228 0000 0000 01E0 0280 0016 0220 •••(•••••••••••

Notice that the coordinates of the mouse have changed. Now you’ll create a template
that you can use to get a more useful display.

6. Type G and press Return.

7. Double-click the Debugger Prefs file in your System Folder to launch ResEdit.

8. Open the 'mxwt' resource.

9. Choose Create New Resource from the Resource Menu.

10. Click on the five asterisks (*****). Choose Insert New Field(s) from the
Resource Menu.
ResEdit displays a template similar to the one shown in Figure 4-12.

Figure 4-12 The 'mxwt' template

C H A P T E R 4

Macintosh Memory Organization

An Overview of Macintosh Memory Space 89

11. Type MouseCoords in the Template name field.

12. Click on the dashed lines and choose Insert New Field(s) from the Resource menu.

13. Type Vertical in the Field name, SignedWord in the Type name, and 1 in the
Count field.

14. Click on the dashed line below the Count field. Choose New Insert New Field(s)
from the Resource menu.

15. Type Horizontal in the Field name, SignedWord in the Type name, and 1 in
theCount field.
Your template should like the one shown in Figure 4-13.

16. Choose Save and then Quit from the File menu, then restart your system.
You must restart because MacsBug only loads the template resources during system
startup. Now you can use the new template.

17. Place the cursor in the upper-left corner of the screen. Press the interrupt switch to
invoke MacsBug. Type DM Mouse MouseCoords and press Return.
MacsBug should display something like the following:

Displaying MouseCoords at 00000830
 00000830 Vertical 0002
 00000832 Horizontal 0001

18. Type TMP to display template names.
You’ll see MouseCoords at the bottom of the list.

19. Type G to leave MacsBug.

Figure 4-13 MouseCoords template

C H A P T E R 4

Macintosh Memory Organization

90 Application Space

Application Space 4

Your application can store information in three places in memory: in local variables, in
global variables, and in the heap.

■ You use global variables to store information (or pointers to information) that needs
to be accessed by different procedures in your program. The section “Application
Globals” in this chapter describes how global variables are stored in this area and how
they are addressed with reference to register A5.

■ Your routines’ local variables, parameters, and return result (if any) are stored on the
stack. The section “Life on the Stack” in this chapter explains how this region of
memory is used both by your application and by the system to execute routines and
A-traps.

■ The resources and data structures created by your application are stored in your
application’s heap. You allocate and deallocate space on the heap for the information
you want to store there through calls to the Memory Manager. The next section, “The
Heap,” describes how this region of memory is organized.

MacsBug provides commands and standard macros that you can use to display informa-
tion stored in these three areas. But in order to use these commands, you must under-
stand the characteristics of each of these regions of memory.

The shaded area of Figure 4-14 shows the region of memory that belongs to your applica-
tion if it’s running in a single-application environment. The section “Heap Management
in a Multiple-Application Environment,” later in this chapter, provides additional
information that you need to know if your application is running in a multiple-
application environment. However, as the basic structure of the heap and the units
(blocks) that make it up is the same in both environments, you need to read about the
heap first before proceeding to that section.

Your application is not normally concerned with the system heap and low-memory
globals. You can use low-memory globals for debugging; otherwise, you should access
information stored in this area only by using system calls. The system heap stores data
structures and resources it needs to do its work; in a multiple-application environment, it
also stores resources that are shared by concurrently running applications. The Memory
Manager uses the same scheme to manage the system heap as it does to manage the
application heap.

C H A P T E R 4

Macintosh Memory Organization

The Heap 91

Figure 4-14 Application space in a single-application environment

The Heap 4

A heap or heap zone is a large piece of memory that is broken up into units called
blocks. The current application heap’s starting address is stored in the low-memory
global ApplZone and ends at the address stored in the low-memory global HeapEnd,
though it is possible to grow the zone up to the address stored in the low-memory global
ApplLimit. The Memory Management chapters in Inside Macintosh, Volumes II, IV, and
VI, describe how you use Memory Manager routines to allocate, resize, and deallocate
blocks in the heap and how to grow the heap if necessary. This section summarizes some
of this information in order to better describe the MacsBug commands that you use to
examine the contents of the heap; however, it is no substitute for the detailed presenta-
tion in Inside Macintosh.

The number of heaps varies depending on whether you are running in a single-
application or multiple-application environment:

■ In a single-application environment, there are two heaps: the system heap and the
application heap, as shown in Figure 4-14. The system heap is used by the operating
system to store system data, while the application heap is used by the application to

ROM

Screen buffer

High memory

Jump table

Application parameters

Stack

Application heap

Low-memory globals

Application globals

System heap

C H A P T E R 4

Macintosh Memory Organization

92 The Heap

store the application’s code, data, resources, and anything else the application keeps
in memory (except its variables).

■ In a multiple-application environment, the number of heaps varies according to the
number of applications that are launched. In addition to the system heap, all appli-
cations are launched within a larger heap managed by the Process Manager (or
MultiFinder in system software versions previous to 7.0.) Each open application has
its own separate heap. For additional information, see the section “Heap Management
in a Multiple-Application Environment,” later in this chapter.

Whether the Memory Manager manages a heap in a single-application or multiple-
application environment, the elements that make up the heap, the format of the heap,
and the strategy used by the Memory Manager to allow your application to use space as
efficiently as possible do not change.

Figure 4-15 shows the format of a heap zone. The important things to note are the zone
header and the zone trailer. The placement of blocks within the heap varies for each
heap, though they always occupy the content area of the heap. The arrangement of
blocks in Figure 4-15 is just an example; the blocks would not have to be allocated in that
order or in those specific locations.

Figure 4-15 Heap zone format

The Memory Manager uses a set number of bytes at the start of a heap zone to store
information that it uses to manage the heap. This includes the address of the first byte of
the contents of the zone, the address of the beginning of the zone trailer, and other data.
“The Memory Manager” chapter of Inside Macintosh, Volume II provides complete
information about the contents of the zone header.

Zone trailer

Nonrelocatable block

Free block

Free block

Relocatable block

Zone header

Relocatable block

Nonrelocatable block

C H A P T E R 4

Macintosh Memory Organization

The Heap 93

The Memory Manager is responsible for creating a heap zone in memory and for
allocating and deallocating space within it. Your application does not manipulate any
part of the heap directly. You need to understand, however, that if you happen to write
over information contained in the zone header, the Memory Manager can no longer
reliably find blocks it has allocated nor allocate new ones, and this may cause your
system to crash. The MacsBug HC (Heap Check) command tells you if the selected heap
zone header or any block headers in that heap have been damaged.

MacsBug provides two commands that return information about heap zones.

The HZ (Heap Zones) command lists all the heaps. In a single-application environment,
if you enter HZ, MacsBug returns the starting address of the current heap zones.
For example:

Heap zones

 00001E00 SysZone

 0002D528 ApplZone TheZone TargetZone

The HX (Heap Exchange) command selects the target heap for other heap commands. In
a single-application environment, entering HX toggles between the system heap zone
and the application heap zone.

The HZ and HX commands are described in greater detail in Chapter 9, “MacsBug
Commands.” For information about how these commands work in a multiple-
application environment, see “Heap Management in a Multiple-Application
Environment,” later in this chapter.

Heap Blocks 4
All heaps are made up of blocks. Your application does not create or delete heap blocks
directly. The Memory Manager provides routines that you use to request the kind of
block you need. You use other routines to give the Memory Manager additional informa-
tion about how to handle these blocks and still others to resize the blocks or to dispose of
the blocks when you no longer need them.

All blocks in the heap have the format shown in Figure 4-16. Blocks have two parts: the
header area and the contents area.

C H A P T E R 4

Macintosh Memory Organization

94 The Heap

Figure 4-16 The format of a heap block

The Memory Manager uses the information kept in the block header to manage the heap.
Although the Memory Manager is responsible for creating and managing blocks, you
need to be aware of three things:

■ The logical size of a block is the amount of space you specified with the size parameter
when you call NewPtr or NewHandle. The physical size of the block includes the
header region as well as whatever padding the Memory Manager adds to the block.
The number of bytes added for padding is stored in the size correction field of the block
header and is displayed in the output for the MacsBug HD (Heap Display command).

■ The starting address of the block, displayed by the MacsBug HD command, is the
starting address of the block’s content area.

■ If you allocate a block that is 100 bytes in size and then write 120 bytes into it, you will
write past the end of your heap block and over the beginning of the next block. Worst
of all, you’ll be writing over the block header of the next block and whatever kind of
block that is, even if it’s free, you will destroy the information stored in that header.
The Memory Manager needs most of the information stored in the block header
to manage the heap. If you write over this information, the next time you call the
Memory Manager, it will crash. Fortunately, MacsBug provides a special command,
HC (Heap Check), that you can use to check the heap and find the cause of
such crashes.

There are three kinds of heap blocks: nonrelocatable, relocatable, and free:

■ Nonrelocatable blocks never move. You request space for these blocks by using a
NewPtr call or by calling another routine that calls NewPtr, such as NewWindow. The
Memory Manager allocates these kinds of blocks as near to the bottom of the heap as
it can. After it has allocated space in the heap for a nonrelocatable block, it returns a
pointer to the block; the pointer contains the address of the start of the block. When
you no longer need the block, you can call the DisposePtr routine to deallocate the
space in the heap.
Using too many nonrelocatable blocks can cause the heap to become fragmented,
because when you deallocate them, you leave gaps in the heap that the Memory
Manager can only fill with nonreloctable or relocatable blocks that are that size
or smaller.

Block contents

Block header

C H A P T E R 4

Macintosh Memory Organization

The Heap 95

■ Relocatable blocks can be moved by the Memory Manager at certain well-defined
times. You request space for these blocks by using a NewHandle routine or by calling
another routine that calls NewHandle. The Memory Manager allocates space for these
blocks right above the nonrelocatable blocks. After it has allocated space in the heap
for a relocatable block, it stores the starting address of the block in a master pointer
and then returns the address of the master pointer to you. Whenever you need to
access the contents of the block, you use that pointer to the master pointer, or handle
for short. When you no longer need the block, you call the DisposHandle routine to
get rid of it.
Figure 4-17 shows the relationship between a relocatable block, the master pointer,
and a handle. Whenever the Memory Manager moves the block, it also updates the
address stored in the master pointer. In the example shown, the master pointer, at
address 00022B40, stores the starting address of the relocatable block, 00091C2C. The
handle, at address 0009BCE6, stores the address of the master pointer, 00022B40.

Figure 4-17 Handles and master pointers

■ Free blocks are chunks of space that have not yet been allocated. Although their name
would suggest that they are bits of blank space, this is not the case. Each free block
has a header that contains information which the Memory Manager uses to keep track
of the contents of the block and of the structure of the heap. Overwriting the header of
a free block has the same dire consequences as overwriting the header of any other
block: a corrupt heap and a nontrivial bug.

Relocatable blocks have three properties not associated with other types of blocks:

■ They can be locked or unlocked. Locking a relocatable block prevents it from being
moved. While locked, a relocatable block acts like a nonrelocatable block and frag-
ments the heap. The HLock and HUnlock calls lock and unlock relocatable blocks.
Unecessarily locking relocatable blocks or neglecting to unlock them as soon as you
can also causes heap fragmentation.

■ They can be purgeable or unpurgeable. Making a block purgeable allows the Memory
Manager to deallocate it, if necessary, to make room for another block. The HPurge
and HNoPurge calls make relocatable blocks purgeable and nonpurgeable.

■ They can contain resources.

If a block is marked as both locked and purgeable, the locked marking takes precedence
over the purgeable marking.

0009BCE6

00091C2C

00022B40

Starting address Contents

00022B40

Relocatable block

00091C2C

Handle

Master pointer

C H A P T E R 4

Macintosh Memory Organization

96 The Heap

Purgeable blocks are useful for data stored on disk that must be read in and used
periodically, because they allow you to take full advantage of the memory available on
any given machine. When you are finished with a block of data for the time being, but
you might need to use it again, you can mark it as purgeable. As long as there’s enough
memory, the Memory Manager will leave a purgeable block sitting around in the heap
after it has been used. This means that the next time your program needs that particular
block, it will be available without having to read it into memory again from disk. But if
memory is tight, the Memory Manager purges the block (deallocates it) to make room for
something else. When you need the original data again, you have to read it in again
from disk.

Using purgeable blocks thus allows your program to run faster on computers with lots
of RAM. Your program doesn’t need to keep track of whether memory is tight or not—
the Memory Manager does that for you, and adjusts your program’s memory usage
accordingly.

Displaying Information About Heap Blocks 4
MacsBug provides two commands that display information about heap blocks: the HT
(Heap Total) command and the HD (Heap Display) command. Before you use either of
these commands, you must use the HX command to select the heap to which the blocks
belong. If you are running in a multiple-application environment, use the HZ (Heap
Zones) command to list the beginning address of all heap zones. You can then select
the heap you’re interested in by specifying its starting address as a parameter to the
HX command.

The HT command displays information about the total number of each kind of block in
the heap. Its output looks like this:

Totaling the Application heap at 00279FB8

Total Blocks Total of Block Sizes

 Free 0D1B #3355 00040954 #264532

 Nonrelocatable 000E #14 00037924 #227620

 Relocatable 000D8 #216 00085368 #545640

 Locked 00003 #3 0006B73C #440124

 Purgeable and not locked 000C #12 00002D24 #11556

 Heap size 00E01 #3585 000FD5E0 #1037792

The HT display can be slightly misleading if you’re trying to figure out how much room
you’ve got left in the heap. The amount it shows you is a total of all free blocks in the
heap; if the heap is fragmented, you have nowhere near that amount of contiguous free
space. To get a more exact picture of the heap, use the HD command. This command
displays information about each block in the heap, including its starting address, its
length, its type, the address of its master pointer and whether it’s purgable (if it’s a
relocatable block), its resource attributes (if it’s a resource), and the file reference number
and name (if it’s a resource block).

C H A P T E R 4

Macintosh Memory Organization

The Heap 97

The output of the HD command is similar to the following:

Displaying the Application heap

Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 • 0031CFE8 00000100+00 N

 • 0031D0F0 00000018+00 R 0031D0E4 L

 • 0031D110 00000032+02 N

 • 0031D14C 0001CD36+02 N

 00339E8C 0000BDFC+00 F

 • 0035232C 00000A60+00 N

 • 00352D94 00029800+00 R 0031D070 L

 • 0037C59C 00000006+02 N

 0037C5AC 0000009C+00 F

 • 0037C650 0000000C+00 N

 0037C664 0000000C+00 F

 0037C678 00000010+00 F

 • 0037C690 00000100+08 N

Each line of the display provides information about one heap block. Heap blocks are
listed in order from the lowest address to the highest address. You can use the HD
command to obtain information about one particular block or about all the blocks in a
heap. (The description of the HD command in Chapter 9 describes the syntax and output
of the command in greater detail.) Because the HD command lists information about
blocks in the order in which blocks are stored in the heap, it literally gives you a picture
of the heap.

If the starting address of a block is preceded by a dot, this indicates that the block cannot
be moved, either because it’s a nonrelocatable block or because it is a locked relocatable
block. A look at the output of the HD command will quickly reveal whether your heap is
fragmented. There’s some serious fragmentation in the example just shown.

Although the Memory Manager is responsible for allocating blocks and letting you know
where they are, it is your responsibility to request space in ways that allow you to make
long term efficient use of memory. The Memory Manager uses two methods to avoid
heap fragmentation: memory reservation and memory compaction. It compacts the heap
to create space for new relocatable blocks and it reserves space on the heap for new
nonrelocatable blocks. Volume I, Issue 2 of Develop magazine contains an excellent article
by Richard Clark, “The Secret Life of the Memory Manager,” that explains exactly how
the Memory Manager manages the heap and what you can do to help it. The optimal
arrangement of blocks on the heap is shown in Figure 4-18.

If the “picture” of your heap provided by the HD command looks very different from
that shown in Figure 4-18, take a look at “The Secret Life of the Memory Manager” in
Develop to find out what you can do about it.

C H A P T E R 4

Macintosh Memory Organization

98 The Heap

Figure 4-18 Optimal arrangement of blocks in the heap

Corrupting the Heap 4
A heap becomes corrupt when the information that is stored in the heap zone header
or the header of any block stored in the heap is overwritten. As with any form of
corruption, the more damage occurs, the more difficult it is to find its source. That’s why
the best cure for heap corruption is to prevent it from occurring in the first place or, if it
does occur, to set things up in such a way that it is easy to find the cause. This section
provides a brief summary of the things that can corrupt the heap and describes two
MacsBug commands that can help you anticipate problems and keep damage to
a minimum.

The one thing you can do that will corrupt the heap every time is to write over the
heap zone header or the header of a block in the heap. There are several ways to
accomplish this:

■ Writing beyond the end of the block you should be writing to and into the beginning
of the next block. Even if the next block is free, the Memory Manager needs the
information in its header to keep track of all the blocks and, if that information is not
valid, it can no longer manage the heap.

■ NIL or dangling pointers and handles. If the address they point to happens to be in a
heap header or block header, the heap will become corrupted the first time you write
to that address. The next section, “Lost in the Heap,” describes the most common
causes of NIL or dangling pointers and handles.

The MacsBug HC (Heap Check) command allows you to check whether the information
in block headers and the heap header is intact. If you suspect that your application is
crashing because of a corrupt heap, you can narrow down the cause of your troubles by
executing the HD (Heap display) command. If a block header, rather than the heap
header is damaged, you’ll get a listing of all the blocks that are OK. You should be able
to extrapolate the beginning address of the block that’s not OK by looking at this listing.

Locked relocatable

Locked relocatable

Relocatable blocks

Locked relocatable

Free blocks

Nonrelocatable blocks

C H A P T E R 4

Macintosh Memory Organization

The Heap 99

If the heap header contains bad information, this won’t work, but then at least you’ll
know that.

To find what instruction is causing the damage, turn A-trap recording on using the ATR
command. Then, start by checking the heap every time you call an A-trap from your
application by rerunning your program using the ATHCA (A-trap Heap Check) com-
mand. Once the ATHCA command returns an error message, you’ll know that either the
previous A-trap call or any instructions following that call (but before the A-trap pointed
to by the PC) have caused the problem. Use the ATP (A-trap Playback) command to
display the last traps executed; from this listing you’ll be able to figure out what the
previous A-trap call was. If the range of instructions that you get using this procedure
is small enough, you can step through the instructions, checking the heap after each
instruction with the HC command to discover the offending instruction. If the range
is too large to do this, you can take some educated guesses and then step through the
smaller range of instructions.

Alternately, you can narrow down the source of heap corruption by using the DebugStr
trap with an argument of ';HC;G'. For example, inserting the following call at key points
in your program will cause MacsBug to be invoked every time the microprocessor
encounters the DebugStr trap:

DebugStr ';HC; G'

The HC; G commands direct MacsBug to check the heap and continue executing if
everything is OK. Otherwise, the HC command displays an error.

Lost in the Heap 4
As mentioned in the last section, NIL or dangling pointers or handles can corrupt your
heap—if you’re lucky. If you’re not lucky, they’ll just corrupt your data and be that much
more difficult to find. The sections “Catch NIL Pointers and Handles Instantly” and
“Nasty Pointers” in Chapter 7 offer detailed suggestions on how to prevent and deal
with these problems.

A NIL pointer or handle is what the Memory Manager returns to you when it can’t
allocate the space you ask for. When this happens, the Memory Manager stores an error
code in the low-memory global MemErr that provides some additional information
about why space could not be allocated. If, before using the pointer or handle, you test
for the possibility of its being NIL, you’ll be OK. Otherwise, if the Memory Manager
can’t find the space you need, your pointer will contain whatever value is stored at
address 0; your handle will contain whatever value is stored at the address pointed to by
the value stored at address 0. When you write to or read from the location your pointer
or handle points to, you’ll be corrupting the heap or the system data. Not checking for
NIL handles and pointers is one of the most common causes of system crashes.

Dangling pointers or handles are pointers and handles that you think refer to the starting
address of a block in memory, but which, for one of the following reasons, do not in fact
refer to the block you’re interested in:

C H A P T E R 4

Macintosh Memory Organization

100 The Heap

■ You deallocate space using a DisposePtr or DisposHandle routine, forget all about it,
and use the pointer or handle to write or read to that block again.

■ For greater run-time efficiency, you sometimes dereference the handle—that is, make
a copy of the block’s master pointer, and then use that pointer to access the block by
single indirection. However, if the Memory Manager moves the relocatable block after
you got the value stored in the master pointer (the address of the block), and you
access the data in the block, you will read or write to the wrong place in memory. That
is, you will write to where the data was, not to where it is now.

If you must make a copy of the master pointer, remember that your copy may be
invalidated when you make a system call, because the Memory Manager may move the
relocatable block to which it points. Appendix B of Inside Macintosh contains a list of
system calls that can cause the Memory Manager to move heap blocks. If you must make
one of the system calls listed, you can do one of two things to make sure that the data the
handle is pointing to remains valid:

■ You can use the MoveHHi call to move the block as high in memory as possible
and then lock the relocatable block so it will not move. Unlock it again as soon as
possible—a locked relocatable block fragments the heap just as a nonrelocatable
block would.

■ You can store the data in a temporary variable and use that variable any time that you
think a block might move.

There are many subtle ways in which your program can crash because of dangling
pointers. For example, suppose you need to make the system call GetNextEvent.
GetNextEvent returns information in an EventRecord—so, being a good programmer
who doesn’t want to fragment the heap, you allocate a relocatable block for an
EventRecord called MyEventHandle. You would call GetNextEvent like this:

result := GetNextEvent (everyEvent, MyEventHandle^^):

When you call GetNextEvent, the address of MyEventHandle is passed to
GetNextEvent. But GetNextEvent can cause heap blocks to move, thus invalidating
the address passed in. However, GetNextEvent has no way of knowing that the
event record was in a relocatable block. It therefore writes to the address that was passed
in and trashes your heap.

There are two easy solutions to this problem. One is to lock the handle before the
GetNextEvent call (remember to unlock it afterwards). Alternatively, don’t use a
relocatable block to store your EventRecord. Store it somewhere else, for example
in a local or global variable.

As previously noted, a dangling pointer or handle, depending what address it’s really
pointing to, can cause you to corrupt the heap (if it points into a block or heap header) or
to corrupt the data in the heap if it points into a block’s contents. The HC (Heap Check)
command, described in the previous section “Corrupting the Heap,” can help you find
the trouble; but if you’re trashing a block’s contents, you’ll get symptoms that are much
harder to pin down.

C H A P T E R 4

Macintosh Memory Organization

The Heap 101

The MacsBug HS (Heap Scramble) command is a very useful tool for finding dangling
pointers and handles. Normally, the Memory Manager only moves blocks around when
it has to; if you’re developing a program and you’ve got lots of RAM to play with, the
Memory Manager might not have to move blocks very often. In this case, you might not
discover that you have a dangling handle because the block it’s pointing to is never
moved. This is where the HS command comes in; it makes the Memory Manager move
relocatable blocks around whenever the move is legitimate—that is, during every A-trap
call that can allocate memory directly or indirectly. This process also simulates running
your program on a Macintosh with very little memory.

The HS command is described in greater detail in Chapter 9. It’s mentioned here to
emphasize the fact that it is a great aid in development and testing. If by moving blocks
around the HS command only causes you to trash the contents of your blocks, you won’t
get any error messages (aside from possible bus errors), you’ll just get some weird and
inconsistent behavior on the part of your application. But chances are that the HS
command will get your application to damage some block headers, in which case you’ll
corrupt the heap and be able to use the HC command to find the trouble.

If you run your program with heap scrambling turned on, you are likely to find a lot
more bugs than if you leave it off. But these bugs are not created by the HS command;
they are created by your program, and the earlier you find them, the easier they’ll be to
fix. A program with no bugs will run perfectly with heap scrambling turned on.

Heap Management in a Multiple-Application Environment 4
The section “Application Space” in this chapter described how application space was
organized in a single-application environment. As shown in Figure 4-19, the memory
map in a multiple-application environment looks different from the memory map in a
single-application environment (see Figure 4-14).

In a multiple-application environment, the Process Manager (MultiFinder in system
software version 5.0 or 6.0) manages a heap within which it allocates a locked relocatable
block, called a partition, for each open application. An open application or process is the
Finder, any application launched by the user, and any application that runs only in the
background. The partition for each open application is structured like the application
space in a single-application environment: it contains the application’s heap, stack, A5
world, and jump table. When you create an application, you specify the amount of
memory you want the Process Manager to allocate for your application’s partition using
the application’s 'SIZE' resource. (The Process Manager allocates a locked-relocatable
block for each open application, because each application can allocate nonrelocatable
blocks in its heap; if the Process Manager moved an application’s partition around
within its heap, the application’s nonrelocatable blocks would also move, which is
not allowed.)

C H A P T E R 4

Macintosh Memory Organization

102 The Heap

Figure 4-19 Application space in a multiple-application environment

When you launch an application, the Process Manager places the application’s partition
as high as possible in its heap. Because the Process Manager cannot move the partition, it
is possible to fragment the Process Manager’s heap, as illustrated in Figure 4-20.

Since the Finder is automatically launched at startup, its heap is always the highest
(unless you have background printing on, in which case that heap is the highest, and
Finder is next). If you launch MacPaint, MacPaint’s heap will be right below Finder’s. If
you then launch MacWrite, MacWrite’s heap will be next. The left half of Figure 4-20
shows the situation at this point, with 500K still available in the Process Manager’s heap.
You want to launch FullWrite Professional, but you need 1000K for FullWrite. So you
quit MacPaint. Can you launch FullWrite now? No—even though you have 1000K free, it
is fragmented, as shown in the right half of Figure 4-20. If you were to quit MacWrite
and relaunch it, it would be launched as high as possible (in MacPaint’s old spot), the
heap would be unfragmented, and you could then launch FullWrite.

ROM

Screen buffer

High memory

Application globals

Low-memory globals

System heap

Application heap

Application

space

Stack

Memory map in a

single-application

environment

ROM

Screen buffer

High memory

Low-memory globals

System heap

Application globals
Application stack

Application heap

Application globals
Application stack

Application heap

Memory map in a

multiple-application

environment

System

zone

System

zone

Application

partition

Application

partition

C H A P T E R 4

Macintosh Memory Organization

The Heap 103

Figure 4-20 Fragmenting the Process Manager’s heap

The Process Manager places application partitions as high as possible for a good reason.
In a single-application environment, when an application needs a system resource, such
as a printer driver, the resource is loaded into the application’s heap. But in a multiple-
application environment, it would be a waste of memory for each application to get its
own copy of every system resource. So these resources are automatically loaded into the
system heap, allowing every application that’s open to share the same copy.

This means the system heap will contain much more in a multiple-application environ-
ment than it would in a single-application environment. Originally, the system heap was
designed to be small, hold a few system resources, and remain pretty much static once it
was loaded. It had just enough space to hold the basics, and very little extra free space.
In a multiple-application environment, the system heap might have to accept all kinds of
system resources dynamically. To allow it to do this, the Process Manager expands the
system heap as needed by shrinking the bottom of its own heap. But it’s important that
the Process Manager’s heap not have any nonrelocatable blocks at its base, or this
strategy won’t work.

For additional information about the Process Manager, see the “Process Management”
chapter in Inside Macintosh, Volume VI.

Displaying Heaps in a Multiple-Application Environment 4

When you drop into MacsBug in a multiple-application environment, MacsBug behaves
as though you were running a single application. MacsBug sees two heaps: the system
heap and the heap of the currently running application, which is usually the frontmost
application. The name of the current application is shown in the status region of the
MacsBug display. It’s a good idea to check this item in case the application that caused
MacsBug to be invoked was a background application that was running at the time of
the crash.

Finder

Process Manager’s heap

before quitting MacPaint

MacPaint

MacWrite

500K

500K

500K free

Finder

MacWrite

500K free

500K

500K free

Process Manager’s heap

after quitting MacPaint

C H A P T E R 4

Macintosh Memory Organization

104 The Heap

If you enter the HZ (Heap Zones) command, MacsBug displays a list of addresses that
indicate the start and end of each heap. The current application has its heap labeled as
ApplZone. The addresses of the Process Manager’s heap and of the other application
heaps are listed but not labeled. The HZ command also tells you, in the leftmost column
of the display, whether the heap is 24-bit or 32-bit. For example,

Heap zones

 24 00001E00 to 0006B41F SysZone^

 24 00001FB8 to 0000248B

 24 0006B420 to 004C40DB

 24 004092C4 to 00482A53 ApplZone^ TheZone^ TargetZone

 24 0048A2CC to 004AEFF3

 24 004B62D4 to 004B7BB7

The HZ display identifies embedded heaps by indenting them. In the output just shown,
the heap zone from 00001FB8 to 0000248B is embedded in the system heap; the heap
zones from 004092C4 to 00482A53, from 0048A2CC to 004AEFF3, and from 004B62D4
to 004B7BB7 are all embedded in the Process Manager’s heap zone, which starts at
0006B420 and ends at 004C40DB. All heap zones in this example are 24-bit.

The HZ command uses three low-memory globals and one MacsBug variable to describe
some of the heaps:

■ ApplZone (low-memory global) points to the start of the current application heap.

■ TheZone (low-memory global) points to the zone currently set by the SetZone routine.

■ TargetZone MacsBug variable) points to the zone currently set by the MacsBug
HX command.

■ SysZone (low-memory global) points to the start of the system heap.

The other heaps are identifiable only by their addresses and by your knowledge of the
fact that the earlier the application was launched, the higher its address. See the
description of the HZ command in Chapter 9, “MacsBug Commands,” for additional
information.

Switching Heaps in a Multiple-Application Environment 4

You can use the HX (Heap Exchange) command to switch among the various heaps that
are currently in RAM. If you simply type HX, MacsBug switches between the system
heap and the current application heap. If you type HX and the address of a heap,
MacsBug will switch to that specific heap. If you do specify an address for the HX
command, MacsBug identifies that heap in the display as “UserZone” just to remind
you that this was the last heap you were specifically interested in.

Remember that all MacsBug heap commands (except for the HS command) work on
the heap you selected with HX. The beginning address of this heap is stored in the
MacsBug variable TargetZone. When you start MacsBug, it defaults to the frontmost
application heap.

C H A P T E R 4

Macintosh Memory Organization

Life on the Stack 105

The HX command does not do anything else except to select a heap as the implied target
for most heap commands. It does not make the selected heap the frontmost application,
for example. This can affect the information that’s displayed about heaps if the selected
application is not frontmost. For example, if you use HX to select a heap belonging to a
background application, MacsBug displays resource blocks in that heap, but identifies
them only as relocatable blocks and displays the message “resource not found” in the
space where it would normally display resource information.

This happens because the Process Manager disconnects the resource chains of applica-
tions when they are not running. This prevents the foreground application from acciden-
tally loading a resource from another application. It also means that when you switch to
another application’s heap in MacsBug, resources in the heap won’t be identified as such
if that application is not running in the foreground. The HD command will only display
resource information for resource blocks in the currently running application.

Life on the Stack 4

As mentioned in the beginning of this chapter, the compiler does not know variable
names, but only their addresses. Since your program can be loaded at different locations
in memory, the compiler needs to use some scheme of relative addressing that allows it
to manipulate variables (addresses) and what’s stored in them independently of where
your program is loaded. The compiler does this by using a data structure called the stack
and three address registers, A5, A6, and A7, that the compiler can use to reference the
global variables, local variables, parameters, and context information that your program
needs to use as it’s running.

This section explains how registers A5, A6, and A7 are used to reference data placed on
the stack. It describes the units of the stack, called stack frames. It also describes the
different conventions used by Pascal and C compilers in implementing routines, and
what C programmers must do when calling A-traps, which use Pascal calling conven-
tions. Finally, it discusses how you can use the MacsBug command MR (Magic Return)
to step out of a procedure, and the commands SC (Stack Crawl) or SC7 (Stack Crawl
Using A7) to obtain information about the current calling chain.

Looking at the Stack 4
It’s unfortunate that Microsoft Word can’t display the title of this section upside down,
just to imprint in your mind the first thing about stacks: they grow down, toward
low memory.

The left side of Figure 4-21 shows a picture of the stack in memory; the right side shows
the picture of the stack that MacsBug shows you by default in the status region of
the display.

C H A P T E R 4

Macintosh Memory Organization

106 Life on the Stack

Figure 4-21 Representations of the stack

As you can see from the picture on the left, the stack grows down. The “top of the stack”
is a euphemism; it is literally at the bottom of the stack. The address of the base of the
stack, which remains fixed, is stored in the low memory global CurStackBase. To display
its location, enter

DM CurStackBase

or

CurStackBase^

The address of the top of the stack is always stored in register A7. Displaying the value
of A7 displays the address; dereferencing A7, by entering A7^, displays what is stored at
that address.

The MacsBug display of the stack, which takes up the upper half of the status region, is
slightly misleading because it turns the stack upside down, so that the top of the stack is
at the top of the display.

The stack display begins with SP (for Stack Pointer) and the address that it points to
right underneath. (If you look in the register area of the status region, you’ll notice that
this same address is stored in register A7.) The next line of the stack display shows the
least significant byte of this address and 4 bytes of memory starting at that address. The
display then shows 4 bytes of memory for every line of the display, preceded by the least

The stack in the memory map

0048BC

The stack as shown by Mac

004B70

Stack

CurStackBase

(A7)
0048BC98

Top of the heap

00000000

C H A P T E R 4

Macintosh Memory Organization

Life on the Stack 107

significant byte of the address. The address is not shown in its entirety to save space and
because, for the range that can be shown in the display, the upper 3 bytes are not likely
to change. You can figure out the upper 3 bytes by looking at the SP address at the top of
the display. Figure 4-22 shows how the top two lines of the MacsBug stack display
(shown in figure 4-21) translate into memory storage at consecutive addresses.

Figure 4-22 Stack display and storage in memory

After you compile your program, the instructions that are generated to allocate space for
your global variables and for implementing routines do their work by allocating space
on the stack, and representing all values as offsets from key addresses on the stack,
which are stored in registers A5, A6, and A7. The following sections explain how.

Before proceeding though, make sure you’re familiar with these three aspects of
the stack:

■ Space on the stack is always allocated and released in last-in, first-out (LIFO) order;
the last item allocated is always the first to be released. In this respect, the stack is like
a pile of papers in a basket: you can put papers on the top or take them off the top, but
you can’t put things into or take things from the middle of the pile without first
dealing with the stuff on top.

■ To push something means to put it on the stack; to pop something means to take it off
the stack. The stack pointer is used in assembly language to push individual items
onto the stack or to pop them off. See “Stack Frame Instructions” in Chapter 3 for
additional information.

■ The size of each item on the stack varies, just as a pile of papers in a basket might
include magazines and reports as well as smaller clipped or stapled groups of papers.
Although MacsBug’s default display of the stack might suggest that all items on the
stack take up exactly 4 bytes, this is a characteristic of the display, not of the stack.
Furthermore, there are no boundaries between items on the stack (as there are block
headers to mark heap units off from each other). Rather, the compiler (or the assembly-
language programmer) allocates the right amount of space on the stack for each item
that is pushed on. The section “Stack Frames,” later in this chapter, explains how.

98

9C

40806544

00036444

Address Contents

As shown

in MacsBug

0048BC9F

0048BC9E

0048BC9D

0048BC9C

0048BC9B

0048BC9A

0048BC99

0048BC98

44

64

03

00

44

65

80

40

As stored

in memory

High

memory

Low

memory

C H A P T E R 4

Macintosh Memory Organization

108 Life on the Stack

Allocating Space for Global Variables 4
Although it can be argued that global variables are not part of the stack at all, learning
how space is allocated for global variables provides a good introduction to the way the
compiler allocates space for your routines’ results, parameters, and local variables, which
is described in the next section.

When your program begins to execute, there is nothing on the stack. The first thing that
the compiler allocates space for on the stack is your global variables. Before it does this,
however, it must record a point of origin, relative to which it can find the beginning
address of every global variable. The way the compiler does this is to take the address
the stack pointer is pointing to and put it in register A5. Then, as it allocates space for
each global variable, it decrements the address in A5 by exactly the number of bytes that
the global variable is going to take up. If the global variable is an integer, it decrements
the address by two bytes; if it’s an address, it decrements the address by four bytes; and
so forth.

Why does it decrement the address stored in A5? Because the stack grows toward low
memory. What happens to the stack pointer (the address stored in A7)? It is also decre-
mented as space is allocated on the stack and the stack grows; it always points to the
address where items can be pushed on or popped off the stack.

Figure 4-23 shows the correspondence between the space allocated for global variables
and your high-level language declarations.

Figure 4-23 Allocating space for global variables

What the compiler does

–2(A5)

–8(A5)

–4(A5)

What the source code does

Program: main
VAR

age

grade

mywindow

: Integer

: Char

: WindowPtr

Global

variables

A5

A5 – 2

A5 – 4

A7

C H A P T E R 4

Macintosh Memory Organization

Life on the Stack 109

Notice how the addresses where the variables are stored are computed in Figure 4-23.
If you want to display the value of one of your global variables, you would use the
command

DM (A5 - 2)

Displaying memory from (A5-2)

 003BFFD6 0000 0027 DDBA 6DB6 DB6D 0000 0000 0000 •••'••m••m••••••

or just

(A5 - 2)^

 (a5 -2)^ = $00000027 #39 #39 '•••''

Also, notice how the compiler has “renamed’” your variables. What is age to you is
-2(A5) to the compiler. The compiler reads -2(A5) as follows: “Take the address stored in
register A5, subtract two from it, and dereference the resulting address.”

All the compiler has done so far is to allocate space on the stack for your variable. The
space that is allocated is not necessarily blank; nor does it magically hold the value that
you want age to be. To put a useful value in the space that the compiler has conscien-
tiously reserved, you have to initialize your variable. To find out whether the variable
contains the correct value, you can display memory at the address you are interested in
by using the DM command as shown in the example just provided.

Finally, after allocating space for your variables, the compiler will forever be referring to
the value of these variables as they are shown on the left side of Figure 4-23. Thus, if you
ever see an expression of the form –X(A5) in the code generated by the compiler, you
will know that it is referring to a global variable.

Stack Frames 4
In addition to storing global variables, the compiler also uses the stack to reserve space
for your routines’ return result, local variables, parameters, and other information
needed to restore the context that was current when your main program called a routine
or one routine called another. Because there are so many kinds of information to allocate
space for and to find, the compiler needs a systematic way to place that information on
the stack so that it is readily identifiable and accessible. The way it accomplishes this is
through the use of stack frames.

The compiler uses a stack frame to allocate the information a routine needs to execute
and to return to the right place after it’s finished. Just as the compiler uses register A5 to
store an address relative to which it can reference all global variables, it uses register A6
to store an address relative to which it can reference everything in the stack frame.
Figure 4-24 shows a complete stack frame.

C H A P T E R 4

Macintosh Memory Organization

110 Life on the Stack

Figure 4-24 A stack frame

This section describes each step involved in building a stack frame. Since system
routines follow Pascal’s conventions for using the stack, the description focuses on those
conventions. If you are a C programmer, you’ll need to consult the documentation for
your own compiler and the section “Pascal and C Calling Conventions” in this chapter
for additional information.

Every routine is called either by the main program or by another routine. Because a stack
frame is partly built by the calling routine and partly by the called routine, it is easiest to
understand its structure by understanding what information the calling routine has and
what information the called routine has.

What does the calling routine (be it the main program or another routine) know about
the called routine when it’s about to call it? At that point the program counter is pointing
either to a BSR or a JSR instruction, so one of the things it knows is that when the routine
is finished executing and control is returned to the calling routine, the calling routine has
to resume execution at the instruction following the JSR or BSR instruction. In short, by
adding 4 bytes to the address stored in the PC register, it knows the return address.

The calling routine also knows whether the called routine is a function or a procedure;
that is, it knows whether the routine will return a result or not. If the called routine
returns a result, the calling routine knows the size of the result. The calling routine also
knows how many parameters (if any) are passed to the called routine, their order, their
size, and their value.

With this information, the calling routine is ready to build the first half of the stack
frame, which it does in a predetermined order: first it makes room for the routine’s
result, then for the routine’s parameters, and then for the return address. Finally, the
compiler knows that after the calling routine has finished building its part of the stack,
the first thing the called routine will do is to save the current value of A6 on the
stack and then set A6 equal to A7. Thus everything that the calling routine puts on
the stack can be referenced relative to the address in A6. Figure 4-25 shows an example
of the part of the stack frame that is built by a calling routine.

A6

A7

Return result

Return address

Saved A6

Local variables

Local copy of

parameters

Parameters

Registers

C H A P T E R 4

Macintosh Memory Organization

Life on the Stack 111

Figure 4-25 Part of stack frame built by calling routine

As you can see, everything the calling routine puts on the stack is referenced as a
positive offset from A6. When the PC points to the JSR instruction, the compiler will
have already allocated space on the stack for the return value (if any) and the param-
eter(s). When the JSR instruction executes, the compiler will have allocated four more
bytes for the return address and stored it. The first instruction of the called routine is a
LINK instruction; this instruction saves the current value in A6 on the stack and stores
the current value of A7 in A6. Every item the called routine now allocates on the stack
will be referenced as a negative offset from A6.

Pascal uses the following conventions when it puts values for your routine’s parameters
on the stack:

■ The compiler pushes a pointer on the stack for any parameter that’s passed by
reference (VAR parameters).

■ The compiler pushes a pointer on the stack for any parameter that is larger than
4 bytes.

■ The compiler pushes a pointer on the stack for any Pascal string, even if it’s smaller
than 4 bytes.

■ The compiler pushes a pointer on the stack for any SANE variable: Real, Single,
Double, Extended, and Comp.

This means that the address of such parameters, not their values, are stored on the stack.

What does the called routine know after it executes the LINK instruction? It knows the
size and order of its local variables, but it does not know their value until the instruc-
tions that assign each value are executed, and these can be anywhere in the procedure. It
also knows the current value of all the registers, and it is required to save the value of
some of these registers on the stack (D3–D7 and A2–A6). The routine might need to save
the value of all registers it expects to use. Then, when the routine has finished executing,
it can restore the original values so that these are available to the calling routine.

Calling routine builds shaded area of stack.

Function Convert (int1: integer);

Result: integer

Return result stored first:

2 bytes allocated for integer.

(A6)

Return address stored next:

4 bytes allocated for an addre

Called routine will store A6 ne
and then set A6 = A7.

Old value of A6; takes up 4 b

A7, A6

10(A6)

4(A6)

8(A6)

Position of stack

pointer before the

function is called

2 bytes allocated for integer

parameter.

C H A P T E R 4

Macintosh Memory Organization

112 Life on the Stack

Depending on the value of the parameters, the called routine might also add a copy of a
parameter that is passed by reference in the first half of the stack frame because it is too
large. Why does it store a copy on the stack now if the parameter was deemed too large
to be placed on the stack in the first place? Because when the rule was made, stacks were
very tiny; when stacks got larger, additional room existed to make an actual copy of the
parameter, though the rule was still observed about what it should look like in the first
half of the stack frame.

Figure 4-26 illustrates the order in which the called routine adds pieces to the
stack frame.

Figure 4-26 Part of stack built by called routine

When the procedure starts to execute—to initialize variables, to compute and store new
values in these variables, or to use values passed to it in parameters—it can access all
these variables as offsets from A6. If you understand how the compiler sets up a stack
frame, you can display memory at various addresses on the stack to see the values of
your variables, parameters, and so forth. Figure 4-27 shows a complete picture of the
stack frame.

Figure assumes that the called routine allocates space for two
variables that take up 2 bytes each, and that the routine save
standard set of registers.

Old value of A6 stored here(A6)

–4(A6)
–2(A6) Local variable

Local variable

Saved registers: D3–D7; A2–A6
Beginning

address = A6 – 46 Local copy of parameter(s) too large

pass on the stack; stack holds its ad

A6

C H A P T E R 4

Macintosh Memory Organization

Life on the Stack 113

Figure 4-27 The stack frame

What happens when the called routine finishes executing? Basically, everyone cleans up
their own mess:

■ The called routine executes an UNLK instruction, which moves the stack pointer back
to the address stored in A6, moves the saved value of A6 into A6, and then increments
the stack pointer by 4 bytes so that it is now pointing at the return address. All that is
left of the stack now is what the calling routine has put there.

■ The calling routine pops the return address off the stack and saves it in register A0,
increments the stack pointer by the amount allocated for the parameters, and then
jumps to the address stored in A0. You’ll notice that if the routine is a function, this
leaves the function result sitting neatly on top of the stack, where the instruction that
has been jumped to conveniently finds it.

MacsBug allows you to do several useful things that depend on stack frames. These are
described in the next two sections.

Stepping Out of a Procedure 4

The MR (Magic Return) command allows you to step out of a procedure that you’ve
accidentally stepped into. That is, the MR command executes the rest of the procedure
and invokes MacsBug when the PC points to the return address. MR lets you do this
by setting up a breakpoint at the return address on the stack, but you have to help the
MR command figure out where that value is stored on the stack. The syntax of the MR
command is

MR [param]

A6

A7

Return result

Return address

Saved A6

Local variables

Local copy of

parameters

Parameters

Registers

C H A P T E R 4

Macintosh Memory Organization

114 Life on the Stack

The value you specify for param gives the MR command the information it needs. The
value you choose depends on how far you’ve stepped into the procedure:

■ If the program counter points to the LINK instruction, enter MR with no parameters.
In this case the return address is assumed to be stored on the top of the stack.

■ If the program counter points after the first instruction, you should specify A6 as the
parameter to the MR command, like this:

MR A6

If you do, the MR command looks for the return address at A6 + 4.

The MR command is described in greater detail in Chapter 9, “MacsBug Commands.”

Displaying a Function’s Result 4

Another useful thing you can do using the MR command and your knowledge of stack
frames is to define a breakpoint so that every time a certain function is called, MacsBug
is invoked and displays the function result. For example, if you enter the following
commands

BR functionname ' ; MR ; DW SP '

Whenever the breakpoint is reached, MacsBug executes the MR command and displays
the top word on the stack (the function result). For functions that return long words, use
the command

BR functionname ' ; MR ; DL SP '

For functions that return pointers, dereference the pointer and display the structure
using a template; for example:

BR functionname ' ; MR ; DM SP^ templatename '

Using Stack Frames to Establish a Calling Chain 4

What does the stack look like when one procedure calls another? Figure 4-28 shows what
the stack looks like in the case of routine A calling routine B, which calls routine C.

C H A P T E R 4

Macintosh Memory Organization

Life on the Stack 115

Figure 4-28 Multiple stack frames

Each stack frame in Figure 4-28 has been stripped of most of its detail to underline the
way in which the frames are linked together through the use of register A6 as a stack
frame pointer.

When procedure C executes, it locates everything it needs to do its work relative to the
value stored in register A6. When it has finished and it executes the UNLK instruction, it
cleans up after itself (as explained earlier) and moves the saved value of A6 from the
stack into register A6. Now procedure B (the calling procedure at this point) can clean up
its part of the stack and resume execution.

Since A6 now points to the right place in B’s stack frame, B can do all its work with
reference to that value. When it is finished, B executes an UNLK instruction, and puts the
value of A6 it has saved in its stack frame into register A6. Procedure A can now clean up
its part of B’s stack frame and resume execution using the current value of A6 as a way
of referencing everything it needs to work with.

As noted earlier in this chapter, the use of stack frames allows the compiler to generate
instructions that reference everything a routine creates and manipulates relative to one
address, stored in register A6. The use of stack frames also allows MacsBug to determine
the calling chain when one procedure calls another. This can be very helpful when you’re
hunting for bugs.

How does MacsBug use stack frames to determine the calling chain? The return address,
which is always an address in the calling procedure, is always stored 4 bytes off A6. The
stack frame makes the address easy to find; once MacsBug has the address, it can figure

C H A P T E R 4

Macintosh Memory Organization

116 Life on the Stack

out what procedure it’s in. To display the calling chain, use the SC (Stack Crawl)
command. MacsBug displays information like the following:

Calling chain using A6 links

 A6 Frame Caller

 0027BB5C 00218DC6 CONVERSI+0016

 0027BB54 00218D2A DOMAINEV+003A

 0027BB0A 00218B72 DOCLICK+0038

 0027BAC4 00218AB6 DOMENUDI+002C

 0027BA98 003B418A

 0027B93C 0080F19E _GetMouse+0070

The first row describes the oldest stack frame (procedure); the last row describes the
newest stack frame (procedure). This listing can be interpreted as follows:

1. At address 00218DC6 the procedure CONVERSI stored an instruction (JSR or BSR)
that called the DOMAINEV procedure.

2. At address 00218D2A the procedure DOMAINEV stored an instruction that called the
DOCLICK procedure.

3. At address 00218AB6 the procedure DOMENUDI stored an instruction that called an
unnamed procedure.

4. At address 003B418A an unnamed procedure stored an instruction that called the
GetMouse trap.

The value of A6 when each of the calling procedures is current is listed in the
first column.

If MacsBug does not know the procedure name, but the address is in a known resource,
it displays the type of the resource, the number of the resource, the file in which the
resource is stored, the name of the resource, and the offset within the resource where the
instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

Pascal and C Calling Conventions 4
The conventions described so far for setting up stack frames are the conventions used by
Pascal compilers. C compilers use different conventions. Since A-trap routines expect to
be called according to Pascal conventions, you have nothing to worry about if you’re
writing a Pascal program. Setting up a stack frame for a system routine is just like setting
one up for a routine you’ve written yourself. The parameters are placed on the stack in
the same order (left to right); large parameters, string parameters, and VAR parameters
are passed by reference. The calling routine sets up and cleans up its part of the stack; the
A-trap sets up and cleans up its part of the stack.

C H A P T E R 4

Macintosh Memory Organization

Application Parameters and the Jump Table 117

If you’re writing a C program and call an A-trap, you need to use the Pascal compiler
directive before the A-trap declarations (this is done in the C include header file); this
directive will take care of most of the differences, but not all. Keep the following points
in mind:

■ In Pascal, return results are passed back onto the stack. In C, they are passed back in
register D0. Using the pascal keyword with a C compiler for the Macintosh will take
care of this.

■ In Pascal, parameters are pushed in left to right order. In C, they are pushed in right to
left order. Using the pascal keyword with a C compiler for the Macintosh will take care
of this.

■ The calling function always puts the parameters on the stack. In Pascal, the called
function removes the parameters from the stack. In C, the calling function removes the
parameters from the stack. Using the pascal keyword with a C compiler for the
Macintosh will take care of this.

■ In Pascal, any parameter that is 4 bytes or smaller is passed by value. In other words,
the value of the parameter is simply pushed onto the stack. Any parameter larger than
4 bytes is passed by reference. This means that the address of the parameter is pushed
onto the stack. VAR parameters are always passed by reference, no matter what their
size. In C, scalar parameters (such as char, int, or long) are passed by value. Structures
(similar to records in Pascal) are passed by value. Arrays are passed by reference.
Using the pascal keyword with a C compiler for the Macintosh will not take care of
this. The programmer must take care of this explicitly

■ In other words, if your C program calls an A-trap routine that requires you to pass a
pointer, you must pass a pointer even though you would not have to if this were a C
routine. This does not involve extra work, it only means that you must pass param-
eters to A-trap calls exactly as described in Inside Macintosh.

Application Parameters and the Jump Table 4

The remaining two regions of memory that belong to the application’s memory space
are reserved for the application parameters and the jump table. Figure 4-29 shows
these regions.

C H A P T E R 4

Macintosh Memory Organization

118 Application Parameters and the Jump Table

Figure 4-29 Application parameters and jump table

The allocation of space for your program’s global variables is discussed in the section
“Global Variables” in this chapter. The chief thing to remember is that anything the
compiler translates into the form –X(A5) is a global variable.

The application parameters reside above the global variables. Register A5 points to the
first byte of the application parameters. The system accesses the application parameters
using positive offsets from A5, while the application accesses the application globals
using negative offsets from A5.

Application parameters contain information about the program. However, the system,
and not the application, sets up and uses this information. The most important applica-
tion parameter is at the address stored at 0(A5); it points to the first QuickDraw global
variable. QuickDraw global variables are stored in your program’s global variables
region, just after the space reserved for your program’s global variables.

The jump table is discussed in greater detail in the section “Inter-Segment Calls and the
Jump Table” in Chapter 3. The main point to remember is that the jump table resides
above the application parameters, and that it contains pointers to the routines in each
code segment. Routines in one code segment use the jump table to find routines in
another code segment.

Since the application parameters are always exactly 32 bytes long, the application gets to
the jump table by adding 32 to the value in A5. The jump table is set up by the linker and
used automatically by your application; you don’t usually need to worry about it.

Operating system or User Interface Toolbox routines sometimes save the value in A5 so
they can use it as another register. When this happens, the routine always restores the
value of A5 before returning. The low-memory global CurrentA5 ($904) contains the
proper A5 value for the currently executing application. This is useful if you find
yourself in a ROM routine in which A5 is used to store other information. CurrentA5 is
not valid during the Process Manager’s context switches.

High memory

Application parameters

Application globals

Stack

Application heap

Jump table
A5 + 32

A5
32 bytes

C H A P T E R 5

The Macintosh

Operating System 5

Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

The Macintosh Operating System

120

Exception Processing

From the point of view of your application, Macintosh system software consists of a set
of external routines grouped under a specific manager according to their functions.
These routines are divided into User Interface Toolbox routines and operating system
routines. This chapter describes how these routines are implemented by means of
exception processing and how they are modified and extended using patches and glue.

Understanding how system routines work allows you to make better use of MacsBug. In
particular, this chapter explains how you can use MacsBug to monitor the execution of
these routines: how to invoke MacsBug when a routine is called, how to record and play
back the sequence in which these routines are executed, and how to perform heap checks
when a routine is called. It includes a hands-on exercise that you can use to watch how a
system routine is implemented.

Many system routines typically operate upon one or more data structures that are
maintained by the managers. Managers use various means of maintaining and keeping
track of these data structures. Although a detailed description of how each manager does
this lies beyond the scope of this manual, this chapter includes descriptions of three
standard dcmds, VOL, FILE, and DRVR, that allow you to look at the information
maintained by the File Manager for mounted volumes and files, and by the Device
Manager for installed drivers and desk accessories. This chapter also describes the VBL
dcmd, which lists all VBL tasks currently scheduled to run.

To understand this chapter, you should be familiar with the way the compiler uses the
stack to implement procedures and functions. If you are not, please read the relevant
sections in Chapter 4, “Macintosh Memory Organization.”

If you are thoroughly familiar with Macintosh programming, you do not need to read
the entire chapter but you might want to review the description of the VBL, VOL, FILE,
and DRVR dcmds.

Exception Processing 5

The microprocessor is always in one of three states: normal, exception, or halted. The
normal state means that the microprocessor can understand and knows how to process
every instruction it encounters. In the halted state, a catastrophic system failure has
occurred; only an external reset can restart a halted processor. Exception processing lies
somewhere between these two extremes: something has happened that the microproces-
sor cannot understand or handle directly, but it knows that there is a routine designed to
take care of the “exceptional” condition; its job is to find that routine and transfer control
to it.

Exception processing

 refers to the means used by the microprocessor to handle unusual
conditions caused by the hardware or by the software that must be addressed before
normal processing resumes.

During exception processing, the microprocessor must save sufficient information about
its current state (PC and register values) to be able to restore that state after the exception
has been processed. As just mentioned, the microprocessor itself does not know the

C H A P T E R 5

The Macintosh Operating System

A-Trap Exceptions

121

details of how to handle the various kinds of exceptions, but it is responsible for figuring
out the address of a routine that does and for transferring control to that routine by
putting the routine’s address into the program counter. Processing then resumes at
that address.

Exception processing can be generated by the hardware, in which case it’s called an

interrupt;

 or, it can be generated by the software, in which case it’s called an

exception.

■

If the exception is generated by the hardware, the routine that handles the exception is
called an

interrupt handler.

The section “Interrupts” in this chapter explains how the
processor handles interrupts and the guidelines you must follow when writing code
that runs at interrupt time.

■

If the exception is generated by the software and is due to an error condition (division
by zero, illegal instruction, bus error, or address error), the routine that handles the
exception is called an

error handler.

Chapter 1 of this manual, “MacsBug and Low-
Level Debugging,” describes error handling and how MacsBug functions as an
error handler.

■

If the exception is generated by the microprocessor as a result of encountering an
unimplemented instruction, the routine that handles the exception is called the

trap
dispatcher.

 To the microprocessor, all A-trap calls in your application are unimple-
mented instructions that cause it to begin exception processing. The first half of this
chapter describes how A-traps are processed.

How does the microprocessor know where to transfer control? Motorola has provided
for the possibility that 256 different kinds of exceptions can occur; a vector table in
low memory assigns a number to every kind of exception. When an exception occurs,
the microprocessor determines the number (also called the vector number) that identi-
fies that particular kind of exception. For an interrupt, the microprocessor obtains the
number from an internal location; for a software-generated exception, internal logic
provides the number. The microprocessor then uses this number to calculate the
address of the routine that can handle the exception. This address is also called an

exception vector.

A-Trap Exceptions 5

When the compiler generates code for any call you make to the User Interface Toolbox or
the operating system, it substitutes a 2-byte instruction, which always begins with the
hexadecimal digit A, for the function or procedure name in your source code. (These
instructions are not implemented in the microprocessor; the microprocessor calls the trap
dispatcher to handle them.) This is why system routines are generically known as
A-traps. For instance, the A-trap A913 is NewWindow, and A92D is CloseWindow.
Appendix C of

Inside Macintosh

 contains a complete list of A-traps sorted both by name
and by number. (Note that each volume of

Inside Macintosh

 has a different Appendix C,
each with a different list.) MacsBug knows the name, number, and address of every
A-trap.

C H A P T E R 5

The Macintosh Operating System

122

A-Trap Exceptions

A-traps are also referred to as ROM calls, but as we shall shortly see this name is
inaccurate, because the code such instructions cause to be run is not always in ROM.
This manual refers to User Interface Toolbox and operating system routines as system
routines, distinguishing between them when necessary.

To the microprocessor, any instruction that causes a system routine to execute is an
unimplemented instruction: that is, an instruction that was not defined by Motorola.
Unimplemented instructions are a kind of exception and the microprocessor has to
determine the address of the routine that knows what to do with them and transfer
control to that routine.

The following section explains what happens when an application calls an A-trap
instruction: how control is transferred to the trap dispatcher, how the trap dispatcher
executes the right routine, and how control is handed back to your program.

How the Operating System Handles an A-Trap 5

Figure 5-1 demonstrates how the operating system handles an A-trap instruction. The
right part of the figure shows the flow of control. The remainder of this section describes
the process in detail.

Figure 5-1

How the operating system handles an A-trap

Application code

A-trap exception

vector

Trap dispatcher

Trap dispatch

table

Trap routine

Screen buffer

System heap

Stack

ROM

Low-memory

globals

Application

heap

High memory

Application globals

Memory map Flow of control within memo

Trap routine

Trap dispatcher

A-trap exception

vector

Trap dispatch table

Application code

C H A P T E R 5

The Macintosh Operating System

Patches and Glue

123

Suppose the microprocessor is running an application and encounters an A-trap.
Because an A-trap is not a defined instruction, it causes an exception. The micro-
processor handles the exception by following these steps

■

The microprocessor fetches the vector number for the exception and calculates the
address of the exception handler.

■

Every A-trap uses the same exception vector, which always points to the same
exception handler, the

trap dispatcher.

 The microprocessor turns control over to the
trap dispatcher.

■

The trap dispatcher looks up the address of the A-trap in the

trap dispatch table

 in
RAM. The trap dispatch table is simply a table listing the address of every A-trap
routine. (The trap dispatcher also sets things up so that the A-trap routine can
terminate with an RTS instruction and return to the instruction following the A-trap
call when the A-trap routine is finished.)

■

The trap dispatcher then jumps to the code at the address it got from the dispatch
table. This code is usually the actual ROM routine (although it could just as easily be
in RAM) that does whatever your application wants done, such as opening a window.

■

When the trap is done executing, it returns control to your application.

Why such a roundabout procedure? Why have the trap dispatcher in ROM and the trap
dispatch table in RAM? The answer has to do with the ongoing evolution of software. If
a routine in ROM needs to be fixed, improved, extended, or if new routines are added, a
trap dispatch table in RAM provides a very easy way to implement such changes: simply
change the address of the routine in the table to the new address of the changed routine,
place the routine in the system file in RAM, replace the old system file with the new
system file, and everything will work just right. The code that changes the address of an
A-trap is called a

patch.

 The next section describes this process in greater detail.

Patches and Glue 5

There are two cases in which a system routine is not located in ROM:

■

In the first case, the code for an existing routine in ROM has been modified and the
trap dispatch table has been patched so that it now points to an address in RAM
where the modified code resides. This process, called patching, is used to modify
existing routines or to add new routines.

■

In the second case, the code that constitutes the system routine is so simple that,
rather than going through the multiple instructions that are needed to process an
exception, the compiler or the linker inserts the code that makes up the routine
directly into your program. This process is called inserting

glue

.

The sections that follow describe these two situations and discuss the consequences
for debugging.

C H A P T E R 5

The Macintosh Operating System

124

Patches and Glue

Patching an A-Trap 5

Installing a patch

changes the address of the A-trap entry in the A-trap dispatch table so
the table points to the patch (in RAM) rather than to the original routine in ROM, as
shown in Figure 5-2. Apple uses patches to fix bugs in system software or to add features
to a system routine.

Figure 5-2

Patching an A-trap

Figure 5-2 shows how control goes from the application to the patched A-trap and back
to the application in the case of an A-trap that is patched so that it entirely replaces the
old trap. Note that in the case where a patch is designed to completely replace a ROM
routine, control returns to the calling application from the patch itself. Only Apple
should install these kinds of patches.

Developers can also use patches to customize A-traps. Figure 5-3 shows how control
should flow in the case of a trap that you are patching yourself.

Application code

A-trap exception

vector

Trap dispatcher

Flow of control within memoPatched call

Screen buffer

Stack

ROM

Low-memory

globals

Application

heap

High memory

Application globals

Trap routine

Trap dispatcher

A-trap exception

vector

Trap dispatch table

Application code

Patch

Patch

Trap dispatch

table

C H A P T E R 5

The Macintosh Operating System

Patches and Glue

125

Figure 5-3

Pre-patched A-trap

In general, it is a bad idea to patch an A-trap unless there is absolutely no other way to
do what you want. If you need to patch an A-trap however, you should follow the
procedure described here. For example, suppose that you are writing a resident program
that needs to install its menu in the menu bar of whatever application is currently
frontmost. One way to achieve this is by pre-patching the DrawMenuBar routine.

The system routine GetTrapAddress returns the address of an A-trap, and the system
routine SetTrap Address puts a new address into the trap dispatch table. To pre-patch the
DrawMenuBar routine, follow these steps:

■

Use the GetTrapAddress routine to obtain the address of the A-trap and save this
value. In this case, you would save the address of the DrawMenuBar routine.

■

Use the SetTrapAddress routine to insert the address of the code you want to execute
into the trap dispatch table. In this case, your code would consist of a call to the
InsertMenu routine to add the menu of your program to the menu bar right before
calling the DrawMenuBar routine.

■

After your patch does its stuff, it must use a JMP instruction to the saved address of
the original A-trap. Note that if at this point the patch simply makes an A-trap call, it
will wind up at its own address again. Because you must use a JMP instruction, you
must write your patch in assembly language, not C or Pascal.

Prepatched A-trap

Application code

A-trap exception

vector

Trap dispatcher

Trap dispatch

table

Trap routine

Screen buffer

Stack

ROM

Low-memory

globals

Application

heap

High memory

Application globals

Flow of control within memo

Trap routine

Trap dispatcher

A-trap exception

vector

Trap dispatch table

Application code

Patch
Patch

C H A P T E R 5

The Macintosh Operating System

126

Patches and Glue

■

When your application exits, you must use SetTrapAddress again to restore the old
A-trap in the trap dispatch table. If a trap dispatch table entry still points to an old
patch that has been cleared, the next application will crash when it calls that A-trap.

■

INITs cannot remove their own patches because someone might have patched
behind them.

In general, you can install multiple layers of patches as long as each patch, when
complete, calls the original A-trap. Finally, if there is any chance that your patch can be
called from an interrupt, you must observe the guidelines for any code that runs at
interrupt time. These are described in the section “Interrupt Handlers” in this chapter. In
general, you should assume that your trap will be called at interrupt time and take the
proper precautions

It is illegal for a patch to

■

Modify the stack or register values and not restore them when it is finished.

■

Call the original A-trap as a subroutine, and then perform its function after the
original A-trap runs. It must call the original A-trap as described above.

■

Perform its function and return control to the program, ignoring the original A-trap.

Determining Whether a Trap Has Been Patched 5

There are two ways of determining whether a trap has been patched.

From MacsBug, you can use the WH (Where) command to find out whether a trap is
patched. Given a trap name, this command returns information about the location of the
trap. For example, the command

WH menuselect

tells you that the MenuSelect routine is in RAM:

Trap number A93D (_MenuSelect) starts at 003C02A2 in RAM

It is 0019F732 bytes into this heap block:

Start Length Tag Mstr Ptr Lock Prg Type ID File Name

00220B70 00054FF0+00 F

If you need to find out whether a trap is patched from within your application program,
you can use the GetTrapAddress routine to find out its address and than compare that
value to the value stored in the low-memory global ROMBase. If the address is greater
than ROMBase, the routine is not patched. (Note that if your program runs under virtual
memory, some portion of RAM could be above the ROM in the memory map, so that
a patch could be stored at an address that is higher than ROMBase; however this is
highly unlikely.)

C H A P T E R 5

The Macintosh Operating System

Patches and Glue

127

Using In-Line Glue to Implement a System Routine 5

Some system routines are so simple that the compiler or linker puts the code, called

glue,

needed to perform the routine directly into your program. For example, when you
execute the function GetDateTime, the glue simply loads the value from a low-memory
global, because the load takes only one instruction. If you run through the A-trap
dispatcher, more than ten instructions are required. Figure 5-4 shows how glue is
inserted into your application’s code. Compare this figure with Figure 5-1.

Figure 5-4

Using in-line glue to implement an A-trap

Obviously, the glue can load a single value faster than you can call an A-trap. However,
using glue presents a problem. If the glue contains an error, that error remains in the
program until the program is recompiled with new glue. But if an A-trap contains an
error, Apple can fix the error with a patch in the next release of system software. The
patch allows Apple to fix the error without altering any applications.

Glue routines do not have A-trap numbers and are not known to MacsBug. As a result,
you cannot use the MacsBug A-trap commands to define any action for an A-trap that is
implemented in this way. In addition, if you are looking at disassembled code using
MacsBug, you will see one or more assembly-language instructions instead of the usual

_trap name

entry. If you are stepping through your code in MacsBug and find yourself
looking at code you’re sure you didn’t write, you may be looking at glue.

Screen buffer

System heap

Stack

ROM

Low-memory

globals

Application

heap

High memory

Application globals

Trap routine

Trap dispatcher

A-trap exception

vector

Trap dispatch table

Application code

Glue code
.
.
.

.
.
.

C H A P T E R 5

The Macintosh Operating System

128

Using the Stack to Implement A-Traps

Operating system routines can also use glue code that is stored in libraries. For addi-
tional information see “Operating System Routines” in this chapter.

Using the Stack to Implement A-Traps 5

The previous section described the method by which the microprocessor transfers
control to a User Interface Toolbox or operating system routine—that is, how the
micro-processor actually finds the first instruction of the routine. But when the routine
begins to execute, like any routine that you have written yourself, it expects to find the
parameters it needs on the stack and, if the routine is a function, it expects to find space
on the stack for the return result. The compiler generates instructions that allocate the
necessary amount of space on the stack with the help of interface files that are included
with your development system. These files contain public declarations of every A-trap
routine. In MPW Pascal, the declaration takes the following form:

PROCEDURE

trapname

 (

param1

:

type

; [

param2

:

type

]...); Inline $

trapword

When the compiler encounters an A-trap, it allocates space on the stack for the specified
parameters and then inserts the word specified by

trapword

 directly in the code. For
example, let’s suppose that your code includes the following function call:

WPtr:=GetNewWindow(WindowID,WRec,WindowPtr(-1));

The compiler needs to make space on the stack for the function result and also allocate
space for three parameters. The code generated looks something like this:

CLR.L -(A7) ;make space on stack for result

MOVE.W #$012C,-(A7) ;push WindowID

PEA -$01E8(A5) ;push WRec address

PEA $FFFF ;push -1

_GetNewWindow ;call GetNewWindow

MOVEA.L (A7)+,A0 ;pop return result from stack

MOVE.L A0,-$01EC(A5) ;save it in a variable

Although setting all this up is the compiler’s business, it is important to understand how
this work is reflected in the disassembled code. You can use this information if you need
to check that you are passing the right values to the function or if you need to check the
function’s return result. To watch an A-trap being called from inside a Pascal program,
work through “Exercise: Watching an A-trap Call,” later in this chapter.

Operating System Routines 5

The use of the stack to implement A-trap routines becomes slightly more complicated in
the case of operating system routines. If you are writing a program in a high-level
language, the compiler generates code that resolves the problem for you, but again, it’s
useful to understand what the compiler is doing when you’re reading through
disassembled code.

C H A P T E R 5

The Macintosh Operating System

Using the Stack to Implement A-Traps

129

User Interface Toolbox routines pass their parameters and return the result on the stack
as described in the previous section. Parameters are always passed in Pascal sequence,
whether the application is written in Pascal or not. (Some managers introduced in
system software version 7.0 pass parameters in C format.) Operating system A-traps
pass their parameters and return the result in registers. Register A0 often holds the
input parameter or the pointer to the parameter. Register D0 usually holds the return
result, which is often an operating system error code (a code of zero means that no
error resulted).

The previous section described how the compiler allocates space on the stack for
a routine’s return result (if any) and parameters. In the case of an operating system
routine, two extra steps are needed. In the first step, the parameters must be moved from
the stack, where the compiler puts them, into the registers where the routine expects
them. In the second step, after the routine returns, the return result must be moved from
the register where the routine has left it back onto the stack where the compiler expects it.

The extra code that does this work for you is also called glue and can be implemented as
in-line glue, in which case you’ll see the actual instructions in your disassembled code,
or as library glue, in which case you’ll see a JSR instruction to the procedure that moves
the values from the stack into the registers, calls the trap, and, when the trap is finished,
moves the values from the registers back onto the stack.

There are two complications that can arise, from a debugging standpoint, if the glue
resides in a library.

■

If you crash in the ROM while an operating system trap is executing and you need to
find your way back to the point in your program where you called the trap, you’ll
need to do a stack crawl to find out where the library routine that called the trap was
called from.

■

If you set an A-trap break on an operating system call when MacsBug is invoked,
you’ll find yourself in the library routine right before the trap call is made. In this case
you’ll need to disassemble around the PC to find out the return address. Usually, the
first instruction in the glue is something like MOVE.L (A7)+, A1; that is, save the
return address in register A1. The address stored in register A1 should tell you where
in your program you’ve made the A-trap call.

Exercise: Watching an A-Trap Call 5

This exercise uses disassembly and step commands to walk through a program. It uses a
User Interface Toolbox function as an example of how the stack is used to implement a
system routine.

This is the Pascal code for this example:

CONST
WindowID=300;

VAR
WPtr: WindowPtr;
WRec: WindowRecord;

BEGIN
WPtr:=GetNewWindow (WindowID, WRec, WindowPtr(-1));

END;

C H A P T E R 5

The Macintosh Operating System

130

Using the Stack to Implement A-Traps

Note that there is only one line of executable code, that is, a line for which the compiler
generates machine code:

WPtr:=GetNewWindow (WindowID, WRec, WindowPtr(-1));

The other lines simply set up the variables and the constant required to execute this one
line. The function GetNewWindow is an A-trap routine and is listed in

Inside Macintosh

.
As you might guess, it creates a new window and returns its address in WPtr.

This is the assembly code generated from the Pascal code:

CLR.L -(A7) ;make space on stack for result

MOVE.W #$012C,-(A7) ;push WindowID

PEA -$01E8(A5) ;push WRec address

PEA $FFFF ;push -1

_GetNewWindow ;call GetNewWindow

MOVEA.L (A7)+,A0 ;pop return result from stack

MOVE.L A0,-$01EC(A5) ;save it in a variable

Throughout this exercise, “entering” a command means to type the specified command
and then to press Return.

1. Launch the “A-Trap Demo” application on the MacsBug disk and choose the Watch
GetNewWindow A-trap item from the Debug menu.

This invokes MacsBug. The figure that follows shows the bottom of the MacsBug
display. The commands you enter will be displayed in the command line area. The PC
region shows the next command to be executed. Depending on how you have
configured MacsBug, the PC region might display more than one line. If it does, the
line preceded by an asterisk (*) is the next instruction to be executed.

2. Enter

IR PC

The MacsBug IR command disassembles code from the address you specify until the
end of the procedure containing the instruction at the specified address. MacsBug
displays the following information:

 Disassembling from pc

 ShowATrap

+0006 00216DCE *CLR.L -(A7) | 42A7

+0008 00216DD0 MOVE.W #$012C,-(A7) | 3F3C 012C

+000C 00216DD4 PEA -$01E8(A5) | 486D FE18

+0010 00216DD8 PEA $FFFF | 4878 FFFF

+0014 00216DDC _GetNewWindow ;A9BD | A9BD

PC region

Command line

C H A P T E R 5

The Macintosh Operating System

Using the Stack to Implement A-Traps

131

+0016 00216DDE MOVEA.L (A7)+,A0 | 205F

+0018 00216DE0 MOVE.L A0,-$01EC(A5) | 2B48 FE14

+001C 00216DE4 UNLK A6 | 4E5E

+001E 00216DE6 RTS

The call to GetNewWindow is implemented by the seven instructions starting with

CLR.L -(A7)

 and ending with

MOVE.L A0,-$01EC(A5)

. These are the instruc-
tions you’ll be stepping through in this exercise. The asterisk shows the next
instruction to be executed. Note that this instruction is the same as that shown in
the PC region.
MacsBug does not update the disassembled code shown in the output area of the
display. To see an updated display, you would need to enter an IL command each
time you step through an instruction. But it is more convenient to look at the PC
region, which is updated, to see the next instruction to be executed.

In the remainder of this exercise, you’ll be stepping through the first four lines of the
assembly code, which set up the first part of the stack frame for the routine. Then you’ll
step over the code that makes up the routine itself. Finally, you’ll step through the last
two instructions, which retrieve the return result and save it in a variable.

3. Look at the stack at the top of the status region in the MacsBug display.

The top of the stack is at the top of the display, and the stack pointer’s value is shown
right above that. The stack pointer’s value is also stored in register A7. Look at the
value of register A7; the two values are identical.

For the remainder of the exercise, you will be concerned only with what gets put on the
stack, not what’s already on it. Because the stack is updated, you’ll be using the DM
command to display memory starting with the top of the stack so that you can compare
the old values with the updated values.

4. Enter

DM A7

MacsBug displays memory starting with the address stored in A7, which always
holds the address of the stack pointer. MacsBug displays something like the following:

Displaying memory from a7

 0048BA16 0048 BB2A 0046 8ADC 4080 6544 0046 8130 •H•*•F••@•eD•F•0

This display shows you 16 bytes starting at the address in A7. In this case the address
is

0048BA16.
The first assembly-language instruction makes space on the stack to hold the return
result from the GetNewWindow routine. The S (Step) command executes one
instruction and then invokes MacsBug.

C H A P T E R 5

The Macintosh Operating System

132 Using the Stack to Implement A-Traps

5. Enter S
The screen flashes, as MacsBug allows the application to run for one instruction, and
then returns. Notice that the PC region now displays the next instruction to be
executed, MOVE.W:

6. Enter DM A7 to display memory starting with the top of the stack.
MacsBug displays two lines similar to the following:

Displaying memory from A7

 0048BA12 0000 0000 0048 BB2A 0046 8ADC 4080 6544 •••••H•*•F••@•eD

Compare the output of this command with that of the DM A7 command you entered
in step 5. The address of the stack pointer has been decreased by 4 bytes (remember
the stack grows toward low memory) and a long word of zero has been pushed onto
it. This is not the value of the return result; it simply holds the place where the return
result will be placed later.

Now that space for the return result has been reserved, you can execute the next three
instructions, which push the three parameters onto the stack. In Pascal, the parameters
are pushed from left to right. So WindowID will be first, then WRec, and finally –1.

The first parameter, WindowID, is a word equal to 300 ($12C).

7. Enter S to execute the next instruction.
Again, the PC region is updated:

8. Enter DM A7 to look at the stack again.
MacsBug displays something like this:

Displaying memory from A7

 0048BA10 012C 0000 0000 0048 BB2A 0046 8ADC 4080 •,•••••H•*•F••@•

Compare the memory display with that of the DM A7 command you entered in
step 7. The stack pointer address has been decreased by 2 byes and the first parameter,
12C, has been pushed onto the stack.

C H A P T E R 5

The Macintosh Operating System

Using the Stack to Implement A-Traps 133

The next parameter you’ll be pushing on the stack is WRec, which is a pointer to a
window record. A Window Record is a pretty big data structure. But the assembly code
simply pushes its address. This is because Pascal has a rule that any data structure larger
than 4 bytes has its address pushed, instead of the data structure itself.

The PEA (Push Effective Address) instruction simply pushes the address it’s given. The
operand is the address of the window record, and that address is pushed onto the stack.
Addresses are always 4 bytes. Note that in this example the address of the window
record is stored in a global variable. You can tell it’s a global variable, not a local variable
or parameter, because it’s expressed as a negative offset from register A5.

9. Enter S to execute the first PEA instruction.
MacsBug executes the instruction and updates the PC region:

10. Enter DM A7 to look at the stack.
MacsBug displays something like this:

Displaying memory from a7

 0048BA0C 0048 BD90 012C 0000 0000 0048 BB2A 0046 •H•••,•••••H•*•F

Compare this output with the output of the DM A7 command you entered in step 9.
The stack pointer has been decreased by 4 bytes, and the address of the window
record is now on top of the stack.

Next you’ll push the last parameter, which is –1. In two’s complement arithmetic, –1 is
$FFFFFFFF. The last parameter is a also a pointer, so it’s 4 bytes. The instruction PEA
$FFFF is a fancy way of pushing –1 onto the stack. Even though $FFFF is only a word, it
is automatically expanded to be a long word, because PEA deals with addresses, and
addresses are always long words.

11. Enter S to execute the instruction.
MacsBug displays the following information:

C H A P T E R 5

The Macintosh Operating System

134 Using the Stack to Implement A-Traps

12. Enter DM A7 to look at the values on the stack.

MacsBug displays something like this:

Displaying memory from a7

 0048BA08 FFFF FFFF 0048 BD90 012C 0000 0000 0048 •••••H•••,•••••H

You have now pushed all the parameters onto the stack, which is just what the calling
routine should have accomplished. The next instruction is the call to GetNewWindow.
When the routine begins to execute it will expect to find all the information you’ve put
on the stack. The called routine takes the parameters off the stack and fills in the return
result. When GetNew Window returns you’ll take another look at the stack.

If you executed another S command, you would be executing the first instruction of the
GetNewWindow routine. It will be more useful at this point to use the SO (Step Over)
command to execute all the instructions in the A-trap call; this will bring you to the next
instruction in the code, MOVEA.L (A7)+, A0.

13. Enter SO
MacsBug executes the A-trap and updates the PC region as shown:

14. Enter DM A7 to look at the stack again.
MacsBug shows you something like this:

Displaying memory from a7

 0048BA12 0048 BD90 0048 BB2A 0046 8ADC 4080 6544 •H•••H•*•F••@•eD

The stack has shrunk back. The return result, 0048 BD90—the address of the nonrelo-
catable block where the window has been stored—is stored at the top of the stack.

Now you’re ready to step through the code that takes the return result off the stack and
puts it in the variable WPtr. First you need to take the return result off the stack.

15. Enter S to execute the next instruction.
MacsBug updates the PC region as shown:

C H A P T E R 5

The Macintosh Operating System

Interrupts 135

16. Enter DM A7 to look at the stack.
MacsBug displays information like the following:

Displaying memory from a7

 0048BA16 0048 BB2A 0046 8ADC 4080 6544 0046 8130 •H•*•F••@•eD•F•0

The return result was popped from the stack, and placed in A0. The stack is now the
same as it was before you put anything on it. The next instruction moves the return
result from A0 into the variable WPtr.

17. Enter S to step through the next instruction.
The return result was placed into the variable WPtr. Is the window up?

18. Press the Tilde (~) key to look at the A-Trap Demo application.
The screen is empty. The GetNewWindow routine simply allocates a block of memory
for the window and adds the window to the window list. To position the window and
make it visible, you would also need to execute the ShowWindow routine.

19. Press the Tilde (~) key again to return to MacsBug.
Now you’ve executed one line of Pascal code. As you can tell, stepping through code
can be a slow process. It can also be hard to tell which disassembled lines correspond
to a particular line of Pascal, but it gets easier with practice.

20. Enter G to return to the A-Trap Demo application.
The window is now visible, because the G command has executed the rest of the code,
which includes the A-trap call that positions the window and makes it visible.

Interrupts 5

As mentioned in the beginning of this chapter, exception processing can also be
generated by the hardware, in which case it is called an interrupt. The hardware sends
the microprocessor a signal that tells it to stop what it’s doing and do something else.

The microprocessor uses exception processing to handle an interrupt: it saves the current
context, determines the address of the routine or interrupt handler that knows what to
do in response to that interrupt, and sets the PC equal to the address of the first instruc-
tion in the interrupt handler. When the interrupt handler returns, the microprocessor
restores the context that was current when the interrupt occurred using the information
it has saved. The interrupted program should not be aware that it has been interrupted.
This places some restriction on the code that runs at interrupt time.

C H A P T E R 5

The Macintosh Operating System

136 Interrupts

The procedure used by the microprocessor to handle interrupts is similar to that used to
handle A-traps. A clean context switch is needed in both situations. However, in the case
of interrupt handling, the microprocessor recognizes seven interrupt priority levels,
numbered from 1 to 7. The system prioritizes the handling of interrupts by defining an
interrupt mask, which it can set (or which your application can set) at a level from 0 to 7.
The incoming interrupt must have a level higher than the current interrupt mask, or the
interrupt is ignored. A program cannot mask out the highest interrupt, level 7. The
level 7 interrupt is processed without regard to the interrupt mask setting. The highest-
level interrupt is called a non-maskable interrupt (NMI).

When you invoke MacsBug, you generate a level 7 interrupt, which means that all
interrupts are disabled while MacsBug is running. The interrupt mask set by the operat-
ing system before you entered MacsBug is shown just to the right of the status register.
In the following example of the status register display, the interrupt mask is set to 0.

SR Smxnzvc 0

AppleShare uses interrupt routines to keep continuous communication going between a
fileserver and a workstation. If you are logged on to a file server, and you enter MacsBug
for more than 2F(1,2) minutes, the file server will assume your application has died and
you will lose your server connection.

Macintosh Interrupts 5
Interrupts are used for several purposes on the Macintosh. Here are some examples:

■ The interrupt switch. The interrupt switch generates a level 7 interrupt. MacsBug is
the interrupt handler for level 7. This level of interrupt cannot be masked out. (On a
Macintosh Plus, the interrupt switch generates a level 4 interrupt.)

■ Mouse movement. Every time you move the mouse on a Macintosh Plus, you
generate an interrupt. The interrupt handler for this interrupt updates the
mouse’s location.

■ The disk driver. Floppy disk drives generate interrupts to permit asynchronous access
to information on the disk.

■ Serial ports. The serial ports can generate interrupts for incoming data such as
AppleTalk packets.

■ Programmable timer, implemented by the Time Manager. Applications can use a
millisecond timer that generates an interrupt when it goes off and runs a specified
interrupt task.

■ Screen refresh. This is also referred to as Vertical Blanking, or VBL. A VBL interrupt
occurs every time the CRT electron beam (not the software) redraws the screen; that is,
about 60 times per second.

The VBL Manager maintains a list of interrupt tasks that it performs at each VBL
interrupt. For example, during each VBL interrupt, the system runs the stack sniffer to
check whether the stack has overflowed into the heap, checks for inserted disks, and
looks for mouse clicks. Your application can add its own routines to the VBL Manager’s

C H A P T E R 5

The Macintosh Operating System

Interrupts 137

list. The VBL dcmd, which is shipped with MacsBug, lists all the VBL tasks currently
installed. The next two sections provide information about writing code that runs at
interrupt time and using the VBL dcmd.

Code That Runs at Interrupt Time 5
The code that recognizes an interrupt and gives control to the appropriate routine
is called the interrupt handler. If you are writing code designed to run at interrupt
time, you must take account of certain restrictions: you can’t use any handles to
unlocked relocatable blocks, and you can’t make any system calls that might move
or allocate memory.

Because interrupts can occur at any time, an interrupt routine might be running while
the heap is being compacted. As a result, a handle might be invalid, because the data it
points to might have been moved and the Memory Manager might not yet have updated
the master pointer. So using a handle at interrupt time is taboo unless the relocatable
block to which the handle points is locked before the interrupt routine starts to run.

It’s also possible that the current application may be calling the Memory Manager when
the interrupt occurs. The Memory Manager is not reentrant—that is, it cannot accept a
call while one or more previous calls to it are pending. So you can’t use the Memory
Manager during an interrupt. But lots of A-traps call the Memory Manager indirectly, so
you can’t call any of those either. A-traps that move memory are listed in Appendix B of
Inside Macintosh. (Note that each volume of Inside Macintosh contains a different
Appendix B, each with a different list of calls.)

In addition to these two restrictions, if your code uses global variables, you need to
set up register A5 before using them and to restore it when you’re finished. You need to
make sure A5 points to the right globals for the following reasons:

■ In an environment where multiple applications are running at once, any one of these
applications might be using A5 when your code is called.

■ An interrupt can occur right after the application has called a ROM routine. ROM
routines sometimes save register A5 (the global pointer) and use it as just another
register in which to store data. Before the ROM exits, it restores A5, so the application
is not messed up. However, if an interrupt routine were to run after a ROM routine
had changed A5 but before it had restored it, the interrupt routine would not be able
to access the application’s global variables, since they are addressed relative to the
address stored in register A5.

For additional information see the section “Using Application Global Variables in Tasks”
in the “Time Manager” chapter of Inside Macintosh, Volume VI.

Displaying Information About VBL Tasks 5
A VBL task, which always runs at interrupt time, is described by a VBLTask record that
the Vertical Retrace Manager maintains in a linked queue. The VBL dcmd uses the
information in this queue to display information about all currently installed VBL tasks.
If you are writing interrupt routines that are handled by the Vertical Retrace Manager,

C H A P T E R 5

The Macintosh Operating System

138 MacsBug’s A-Trap Commands

you can use the VBL dcmd to list information about all currently installed VBL tasks.
For example:

vbl

Displaying VBL tasks

 Addr Count Phase VBL at

 82e23e 0006 0000 002e98

 82f3fe 0011 0009 003008

 004b7c 003f 0000 005518

 00317e 0001 0000 003170

 3cbbb6 7f95 0000 3b5852

 #5 VBL tasks

Table 5-1 describes the meaning of the information displayed by the VBL dcmd.

MacsBug’s A-Trap Commands 5

MacsBug includes eight commands that are entirely concerned with the execution
of A-traps. Table 5-2 provides a brief summary of these commands. Note that only the
A-trap command name is listed in the table; the complete syntax of each command is
shown under the description of that command in Chapter 9, “MacsBug Commands.”

Table 5-1 VBL dcmd information

Field Description

Addr Address where code for VBL task starts.

Count Ticks between successive invocations of task.

Phase Integer (smaller than Count), used to stagger execution times slightly for
VBL tasks that are started at the same time and have equal count values.

VBL at The address of the VBLTask record; the address is a queue element.

C H A P T E R 5

The Macintosh Operating System

MacsBug’s A-Trap Commands 139

These eight MacsBug commands are specifically dedicated to monitoring the execution
of A-traps in your program. They are necessary because of the different kind of
processing that is involved in executing system routines. The main difference between
these commands and other MacsBug commands that perform similar functions can be
illustrated by the difference between the BR command and the ATB command. The BR
command invokes MacsBug when the program counter reaches an address you specify;
the ATB command invokes MacsBug every time a specified A-trap is encountered.

You can take advantage of A-trap processing to focus in on bugs. For example, you can
use the ATSS command to checksum a range of memory before the execution of every
A-trap. When the ATSS command invokes MacsBug, you know that the A-trap that is
about to execute is not responsible for the change in value. You also know that the
instruction you are looking for is either the previous A-trap or any instruction executed
between the previous A-trap and the current call. You can now use the SS command
within the suspect range to find that instruction. Having trap recording turned on while
using the ATSS command allows you to determine the previous A-trap call. You can also
disassemble backward from the current PC until you find the previous A-trap.

The A-Trap Action Table 5
When MacsBug is installed and an A-trap exception occurs, MacsBug pre-patches the
trap dispatcher. That is, MacsBug becomes the all-purpose exception handler and the
microprocessor hands the trap word to MacsBug

MacsBug keeps an internal table in which it records the A-trap actions you have defined
using one of the commands in Table 5-2. When the PC points to an A-trap, the micro-
processor starts exception processing. The microprocessor passes control to MacsBug.

Table 5-2 A-trap commands

Command Action

ATB Invokes MacsBug whenever the microprocessor encounters the specified
A-trap. You can display the state of the microprocessor and memory just
before the A-trap is executed.

ATC Clears actions set using the ATB, ATT, ATHC, and ATSS commands.

ATD Displays information about all actions currently set with the ATB, ATT,
ATHC, and ATSS commands.

ATHC Checks the heap before executing the specified A-trap.

ATP Displays information saved while trap recording is on.

ATR Turns trap recording on and off.

ATSS Invokes MacsBug if the value for a memory location or range has
changed before an A-trap is executed.

ATT Writes information to the MacsBug output buffer without stopping the
current program whenever the microprocessor encounters the specified
A-trap.

C H A P T E R 5

The Macintosh Operating System

140 MacsBug’s A-Trap Commands

MacsBug first checks the internal table to see whether there’s any action that has been
associated with that A-trap. Next, because the A-trap commands allow you to specify
further conditions that have to be met before any action is taken, MacsBug checks to see
whether these conditions are satisfied. If an action for that A-trap has been entered in the
table and the conditions are satisfied, MacsBug displays the debugging screen and halts
the program when the PC points to the A-trap call. If there is no entry for the A-trap in
the internal table or if the other conditions you specified are not satisfied, then MacsBug
passes the information to the trap dispatcher, which in turn locates the routine and
jumps to the first instruction of that routine.

You use the ATD command to display the contents of the A-trap table. For example:

ATD

 A-Trap actions from System or Application

Trap Range Action Cur/Max or Expression Commands

_MenuSelect Check 00000000 / 00000003

_WaitNextEvent Break every time

_WaitNextEvent Break every time ;hc

_GetPort Break D0 = 6

_Pack0 Break SP^.W=#68

You use the ATC command to remove one or more entries from the table.

Using A-Trap Commands 5
This section presents information that applies to using any of MacsBug’s A-trap
commands.

Specifying an A-Trap Name 5

Every A-trap has both a number and a name. You use the name in your source code. The
trap dispatch table is organized by number. MacsBug knows both the name and the
number of every A-trap. Thus, you can use either the name or the number of a trap in a
MacsBug command.

When you look through your disassembled code, the A-trap call is usually listed
as follows:

_A-TrapName

for example:

_WaitNextEvent

C H A P T E R 5

The Macintosh Operating System

MacsBug’s A-Trap Commands 141

There are two situations in which the name listed in the disassembled listing or in the
A-trap action table will not match the name you specified in your source program:

■ If the trap belongs to a package, the package name and number will be displayed
rather than the A-trap name. See the section “A-traps in Packages” for additional
information.

■ Because assembler names must be unique to eight characters, special macro names
must be used for Pascal routines whose names aren’t unique to seven characters
(the underscore counts as one character.) In the case where the first seven characters
of a trap macro name would duplicate another name, the spelling of the macro
name will differ from the name of the Pascal routine itself. This is noted in the
documentation for the particular routine in Inside Macintosh.

There are about 700 A-traps defined, and they are listed in Appendix C of Inside Macintosh.
(Note that each volume of Inside Macintosh has a different Appendix C, each with a
different list.)

Setting an A-Trap Action on a Range of Traps 5

All A-trap commands that take a trap name as a parameter also allow you to specify a
range of traps. Basically, this allows you to set some action on all traps belonging to a
particular manager. The numerical listing of A-traps in Appendix C of Inside Macintosh
should help you determine the range for the manager you’re interested in.

Restricting A-Trap Actions to your Application 5

Most A-trap commands give you the option of setting an action on an A-trap only if that
A-trap is being called from your application. A-traps often call other A-traps. If you want
to focus on the calls that are made from your application’s heap rather than from ROM
or the system heap, you should use this option.

You tell MacsBug to take action only on traps called from your application’s heap by
appending the letter A to the A-trap command. For example, the command

ATBA GetNewWindow

tells MacsBug to break on all calls to GetNewWindow that are made from the application
heap. Note that there is no space between the command name and the “A” option.

A-Traps in Packages 5

Some A-trap routines are stored in packages; these are stored either as resources of type
'PACK' in the system file or they are stored in ROM. There are two reasons for placing
routines in packages. The first reason is that at one time there were more routines than
there was room in ROM, so that some nonessential routines were moved into the system
file from where they could be loaded in as needed. The second reason is that as the
number of routines exceeded the number of A-traps available, it was necessary to find a

C H A P T E R 5

The Macintosh Operating System

142 Macintosh Managers

way to access several routines using one A-trap number. The solution to the space
problem was to include all traps belonging to one manager in a package and to put the
package in a resource that could be loaded as needed from the system file. When ROM
got bigger, this problem was eliminated, but the second problem (too few numbers for
A-traps) remained and the package solution was used, though packages could now
reside in ROM.

A package is simply a group of related calls. Each package contains the code for several
related routines, which are listed separately in Inside Macintosh. There is only one A-trap
number for all the routines in a given package. Packages are transparent to the high-level
programmer. Glue automatically calls the correct routine. But you must understand how
the system uses packages to debug them with MacsBug.

Because each package includes multiple routines, each routine has an index number that
locates it within the package. When a program calls a routine in the package, the
routine’s parameters are pushed onto the stack first, and then the routine’s index
number. This index number is called a routine selector. The Package Manager reads the
index number and jumps to the correct routine inside of the package.

Thus, the same package A-trap can be called with different parameters, depending on
the routine for which the A-trap is indexed. Since MacsBug does not know which routine
in the package is being called, it just disassembles it as a 'PACK' A-trap. You can see
which routine the A-trap is destined for by looking at the routine selector on the stack.
(Some routine selectors are put in registers.)

Because all of the routines in a package are implemented by one A-trap number, you
can’t place an A-trap break on a single routine as you normally would using the ATB
command. What you must do instead is break on the package and then test for the
routine selector on top of the stack or in a register to make sure that the routine you’re
interested in is executing.

MacsBug is shipped with several sets of macros that allow you to place A-trap breaks on
individual routines inside a package. The macros actually place an A-trap break on the
whole package, with a condition that checks the index selector to see if it’s the routine
you wanted. The description of the ATB command, in Chapter 9, includes a detailed
description of how to place a break on a routine inside a package.

Macintosh Managers 5

As mentioned at the beginning of this chapter, each system manager is responsible for
creating and maintaining data structures that you manipulate using system routines. For
example, the Event Manger creates and tracks event records, the Window Manager
maintains window records, and so forth. The following two sections provide an over-

C H A P T E R 5

The Macintosh Operating System

Macintosh Managers 143

view of how the File Manger and the Device Manager keep track of the data structures
and tasks they are responsible for. These sections also explain how you can use low-
memory globals to locate these structures in memory and how you can use standard
dcmds to display information about open files, mounted volumes, and installed drivers.

Although detailed descriptions of every Macintosh manager lie outside the scope of this
manual, these two sections will give you an idea of the “pieces” you need to simplify the
debugging of routines belonging to a particular manager:

■ Learn what data structures are characteristic of that manager and how the manager
maintains and tracks these structures. Does it queue records in a linked list? Does it
put the information in a buffer?

■ How does the manager use low-memory globals to locate the items it needs?

■ Using this information, you can write your own dcmds to locate the information you
need, and you can create your own templates to display that information. This takes a
bit of work, but makes debugging a lot easier. See Chapter 4, “Macintosh Memory
Organization,” for information on creating templates for system and private data
structures, and Chapter 8, “Introduction to MacsBug Commands,” for information on
writing your own dcmds.

The File System 5
This section gives an overview of the lower levels of the Macintosh file system. It does
not discuss the normal way to read or write a file from an application.

To read from a file, an application calls the File Manager (HFS), which knows where each
file resides on the disk volume. The File Manager, in turn, calls the Device Manager,
which knows which device driver runs that disk. Then the Device Manager calls the
appropriate driver for the device:

■ If it’s a floppy disk, the driver talks directly to the floppy disk drive hardware.

■ If it’s a SCSI disk, the SCSI driver calls the SCSI Manager, which talks to the hardware
(the SCSI chip).

■ If it’s a file server, the AppleShares driver calls the serial driver, which talks to the
serial port hardware.

Figure 5-5 shows the calling chain for these three types of drivers.

C H A P T E R 5

The Macintosh Operating System

144 Macintosh Managers

Figure 5-5 Calling chain for reading from or writing to a disk

The File Manager stores internal information about its current state in queues in the
system heap. The Queue Manager (an operating system utility) manages these queues.
The following sections describe these queues and how you can use low-memory globals
to access the first element in a list.

Drive Queue 5

The drive queue is a linked list of all drives connected to a Macintosh. The list includes
one entry, or queue element, for each connected drive.

The low-memory global DrvQHdr contains a pointer to the first element in the list. This
global is useful when you are looking at the drive queue from MacsBug. You can use the
system call GetDrvQHdr from a program to get the pointer to the first element in the list.

Finding and Displaying Information About Mounted Volumes 5

The volume queue is a linked list of all volumes mounted on a Macintosh. The list
includes one entry, or queue element, for each volume, SCSI driver, and file server. Not
every entry in the drive queue has a corresponding entry in the volume queue: a floppy
drive without a disk is in the drive queue but not the volume queue. A floppy disk that
has been ejected and appears dimmed on the desktop is in the volume queue but not the
drive queue.

Application

Device Manager

SCSI driverFloppy driver AppleShare driver

SCSI ManagerHardware Serial driver

Hardware Hardware

File Manager (HFS)

C H A P T E R 5

The Macintosh Operating System

Macintosh Managers 145

The low-memory global VCBQHdr contains a pointer to the first element in the list. This
global is useful when you are looking at the volume queue from MacsBug. The system
call GetVCBQHdr can be called from a program to get the pointer to the first element in
the list. You can use the MacsBug template VCB to look at volume queue entries.

You can also use the standard dcmd VOL to display information about mounted
volumes. For example:

vol

Displaying Volume Control Blocks

 vRef Vol Flg dRef Drive FSID #Blk BlkSiz #Files #Dirs Blsd Dir VCB at

 ffff Neuromanc… Dsh ffdf 0008 0000 a46a 000400 0003ac 0000d3 000018 00bf24

 fffe Descartes dsh ffdb 0009 0000 cb72 000600 000a13 00016a 000000 003fbc

 fffd Backpack dsh fffb 0001 0000 063a 000200 000011 000001 000000 01fce8

 #3 VCBs

Table 5-3 describes the fields of the VOL display.

File Control Blocks (FCBs) 5

A buffer in the system heap contains space for a number of file control blocks or FCBs.
Each FCB contains information on one currently open file. This buffer is not a queue.
When the buffer is full, you must close a file to obtain room to open another. The
low-memory global FCBSPtr points to the buffer. The system call PBGetFCBInfo can be
called from a program to get the FCB for any open file.

Table 5-3 vol display fields

Field Description

vRef Volume reference number.

Vol The name of the volume.

Flg D/d:Uppercase = Dirty; S/s:Uppercase = Software locked;

H/h:Uppercase = Hardware locked.

dRef Driver reference number.

Drive Drive number.

FSID File System ID. 0 means Macintosh file system.

#Blk Number of allocation blocks on volume.

BlkSiz Size in bytes of an allocation block.

#Files Number of files on the volume.

#Dirs Number of directories on the volume.

Blsd Dir Directory ID of the system folder.

VCB at Address of the Volume Control Block.

C H A P T E R 5

The Macintosh Operating System

146 Macintosh Managers

The standard FILE dcmd displays information about all open files. For example:

file

Displaying File Control Blocks

 fRef File Vol Type Fl Fork LEof Mark FlNum Parent FCB at

 0002 System Neuroma… ZSYS dW rsrc#393111 #70829 001b86 000018 005aa6

 0060 Neuroma… •••• dw data#336896 #0 000003 000000 005b04

 00be Neuroma… •••• dw data#673792 #0 000004 000000 005b62

 011c OnBase Neuroma… POP2 dw data#255833 #534 001245 000018 005bc0

 017a Suitcase• IINeuroma… INIT dW rsrc#39954 #28649 002433 000018 005c1e

 01d8 Apple Fonts Neuroma… FFIL dW rsrc#103077 #64716 002441 00243a 005c7c

 0236 Laser Fonts Neuroma… FFIL dW rsrc#302184 #7590 002442 00243a 005cda

 0294 Debugger Fk…Neuroma… FKEY dW rsrc#351 #351 00243e 002439 005d38

Note that some files don’t have names. In the listing above there are two files without
names. These are the two B*tree files stored on each HFS volume, which contain the
directory information.

Table 5-4 describes the fields of the FILE display.

File I/O Queue 5

The file I/O queue is a linked list of all pending asynchronous I/O requests. The list
includes one entry, or queue element, for each request.

The low-memory global FSQHdr contains a pointer to the first element in the list. This
global is useful when you are looking at the file I/O queue from MacsBug. You can call
GetFSQHdr from a program to get the pointer to the first element in the list.

Table 5-4 FILE display fields

Field Description

fRef The file’s reference number

File The name of the file.

Vol The volume the file is on.

Type The file’s type.

Fl D/d:Uppercase = Dirty; W/w:Uppercase = Writeable.

Fork Which fork is open, resource or data.

LEOF Logical end-of-file in bytes.

Mark Current file mark position in bytes.

FlNum File number.

Parent File’s parent directory ID.

FCB at Address of the file’s File Control Block.

C H A P T E R 5

The Macintosh Operating System

Macintosh Managers 147

Debugging Low-Level File System Calls 5

The low-level file system calls are easy to debug in MacsBug. (The high-level calls are all
implemented with glue, which ends up calling the low-level calls.) The low-level HFS
calls all pass a pointer to their parameter block in register A0.

Some HFS calls use packaged traps, which means they are dispatched by means of a
single A-trap number. Macros shipped with MacsBug allow you to set A-trap breaks on
the particular A-trap you want.

First use the ATBA command to set a break on the HFS call you are interested in. (If
you wrote the program in C or Pascal, the HFS call will be in glue. The glue takes the
parameter block pointer off the stack, where the compiler put it, and puts it in A0.)
Then type

DM A0 IOPB

and MacsBug will display the parameter block using the IOPB template, which is the
most common parameter block template. All the information for a File Manager call is
in this parameter block.

You can step over (using the SO command) the HFS trap, and then enter DM A0 I0PB
again to examine what the trap returned. You can easily make your own templates
for the more esoteric parameter blocks; see Chapter 4 for information about making
templates.

The Device Manager works just like the File Manager; it passes a pointer to a parameter
block in A0, and the parameter block contains all the relevant information for the call.
Use DM A0 IOPB, as described above to examine the parameter block.i).file system;

Synchronous and Asynchronous I/O 5

Synchronous I/O refers to an I/O operation in which the calling process does not
resume until the operation is finished. Asynchronous I/O refers to an I/O operation in
which the calling process can continue to run at the same time that the I/O operation is
being performed.

With synchronous I/O, your program tells the File Manager to read from a file. The File
Manager in turn makes calls all the way down the line to the driver. The driver then
makes the call to read the file. It retains control until the call has been processed and then
returns control to the application. While the call is in progress, no other actions occur.

With asynchronous I/O, your program tells the File Manager to read from a file. The File
Manager in turn makes a call to the Device Manager and returns control to the applica-
tion while the call is being processed. This allows the application to keep running while
the I/O operation is still being performed.

The driver gets slices of time to process the call periodically through an interrupt. When
the driver completes the call, it sets a variable in the parameter block. The application
needs to check the variable periodically to determine when the call has been processed.
The driver also calls a completion routine that the application designates to be run when
the call is complete.

C H A P T E R 5

The Macintosh Operating System

148 Macintosh Managers

Asynchronous I/O improves program speed by allowing the application to process
during disk access. This time is otherwise wasted waiting for a disk drive head to get
into position.

Currently, the only driver that can execute asynchronously is the floppy disk driver. If
you call a driver asynchronously that can’t support that mode, it simply runs
synchronously.

For additional information about the File Manager, see “The File Manager,” in
Inside Macintosh, Volumes IV and VI. (Note that the File Manager chapter in Volume II
is obsolete.)

Drivers 5
Drivers are programs that connect applications to hardware devices. (A Desk accessory
is a special kind of a driver.) The driver’s job is to present a uniform software interface to
an application no matter which of several similar hardware devices the application is
using. For example, the ImageWriter and LaserWriter drivers present the same interface
to the application, so the application doesn’t need to take account of which printer the
user chooses. The application simply sends data to the current print driver. The two
drivers are responsible for dealing with the very different ImageWriter and LaserWriter
hardware. Drivers can run at the same time that an application is running.

A driver does not contain a main entry point as does a normal application, but consists
of a set of five independent routines:

■ Open: Opens a driver.

■ Close: Closes a driver.

■ Prime: Handles read and write operations.

■ Status: Returns the status of the driver.

■ Control: Handles all other driver operations, such as ejecting a disk from a floppy
disk drive.

Only the Open and Close routines are required for a driver.

Most drivers are stored in resources of type 'DRVR'. The Resource Manager auto-
matically loads them into memory when they are needed and disposes of them when
they are closed. Every driver includes a header that lists its name, critical information,
and the location of all its routines. The routines follow the header.

Applications use system calls to call the Device Manager rather than calling drivers
directly. The Device Manager then directs the request to the proper driver. Applications
can request either synchronous or asynchronous driver service. See “The File System,” in
this chapter, for more information about synchronous and asynchronous I/O.

C H A P T E R 5

The Macintosh Operating System

Macintosh Managers 149

Device Control Entry (DCE) 5

The first time a driver is opened, information about it is read into a relocatable block in
memory (usually in the system heap) called a device control entry, or DCE. The DCE
includes a handle or pointer to the driver and other information that it copies from the
driver (see the detailed view of the DCE in Figure 5-6). The block allocated for the DCE
is locked when the driver it points to is open and unlocked when the driver is closed.
Figure 5-6 shows the relationship of the DCE to the driver. (If the driver serves a device
that is plugged into a NuBus slot, five additional entries are appended to the DCE
shown in Figure 5-6. The “Device Manager” chapter in Inside Macintosh, Volume 5,
describes the fields added to the DCE for such drivers.)

If the driver is in ROM, the DCE has a pointer to it. If the driver is in RAM, the DCE has
a handle to it. The DCE also contains a flag that tells you whether the driver is RAM-
based or ROM-based. SCSI drivers are the only exception to this scheme. Although they
are always in RAM, the flag can be set either way, and the DCE usually contains a
pointer to the appropriate driver. The flag should therefore be ignored for SCSI drivers.

Figure 5-6 Device control entry

Device control entry (DCE)

Pointer

Offset

Flags

0

4

6

16

20

24

26

30

34

36

38

Type

Ptr (or Hdl)

integer

QHdr

longint

Handle

integer

longint

WindowPtr

integer

integer

integer

Name

dCtlDriver

dCtlFlags

dCtlQhdr

dCtlPosition

dCtlStorage

dCtlRefNum

dCtlCurTicks

dCtlWindow

dCtlDelay

dCtlEMask

dCtlMenu

Other

information

The driver header

Offset

0

2

4

6

8

10

12

14

16

18

19

Size

2

2

2

2

2

2

2

2

2

1

Name

drvrFlags

drvrDelay

drvrEMask

drvrMenu

drvrOpen

drvrPrime

drvrCtl

drvrStatus

drvrClose

drvrName (length)

drvrName (chars)X

C H A P T E R 5

The Macintosh Operating System

150 Macintosh Managers

Figure 5-7 shows the word labeled dCtlFlags (see Figure 5-6). The high-order byte of this
word is copied from the driver into the DCE; the low-order byte is only set up in the
DCE. The bits of the low-order byte are subsequently changed as necessary by the
operating system.

Figure 5-7 Flag bits in the dCtlFlags word

Table 5-5 describes the meanings of the high-order dCtlFlags flag bits in both the driver
and the DCE.

Table 5-6 describes the meanings of the low-order dCtlFlags flag bits (in the DCE only).

Table 5-5 High-order dCtlFlags flag bits

Bit Name Meaning

0 dReadEnable Driver can respond to Read calls.

1 dWritEnable Driver can respond to Write calls.

2 dCtlEnable Driver can respond to Control calls.

3 dStatEnable Driver can respond to Status calls.

4 dNeedGoodBye Tell driver before application quits.

5 dNeedTime Driver needs to be called periodically.

6 dNeedLock Driver needs to be locked in memory.

Table 5-6 Low-order dCtlFlags bits

Bit Meaning

5 Driver is open

6 Driver is RAM based

7 Driver is currently executing

7

High-order byte

6 5 4 3 2 1 0

Low-order byte

7 6 5 4 3 2 1 0

C H A P T E R 5

The Macintosh Operating System

Macintosh Managers 151

The Unit Table 5

The location of each device control entry is maintained in a list called the unit table. The
unit table is an array of handles and is located in the system heap. It is divided into
sections, as shown in Figure 5-8. Each section of the unit table is devoted to one type of
driver and is divided into units with one unit per driver. In some sections, such as those
for system drivers and SCSI drivers, each unit is reserved for one particular driver. In the
other sections, any unit can be grabbed by any driver, as long as the driver belongs to the
group of drivers assigned to that section. The reserved section mostly contains various
network drivers.

Each unit contains a handle to the device control entry for that driver, or contains the
value zero if no driver is installed. The unit table has from 32 to 128 units, depending
upon what type of Macintosh you have. The low-memory global UTableBase ($11C)
contains a pointer to the unit table. Figure 5-8 shows a simplified view of the Unit Table
and the way it relates to the DCE.

Figure 5-8 A simplified view of the unit table

Unit numbers 0–12

System drivers

Unit numbers 13–31

Desk accessories

Unit numbers 32–39

SCSI drivers

Unit numbers 40–48

Reserved

Unit numbers 49–127

NuBus slot drivers

Pointer to unit table

UTableBase ($11C)

Unit

table

(See Figure 5-6 for

a detailed view.)

Handle

to DCE

Master

pointer DCE Driver

C H A P T E R 5

The Macintosh Operating System

152 Macintosh Managers

Figure 5-9 shows a more detailed view of the unit table.

Figure 5-9 Detailed view of the unit table

Desk Accessories 5

Desk accessories (DAs) are a special type of Macintosh driver. Hardware drivers don’t
have user interfaces or interact with the user directly at all. Desk accessories can
have menus and/or windows. Each desk accessory contains fields in its DCE to store
pointers to a menu and a window that the DA uses. These fields are left blank by
hardware drivers.

Since hardware drivers and desk accessories are both resources of type 'DRVR' and all
'DRVR' resources are required to have names, the system has a simple way to tell them
apart. Hardware driver names begin with a period, like “.Sony” or “.Sound”. Desk
accessory driver names begin with a null character (a zero that is a non-printing ASCII
character), like “Calculator” or “Alarm Clock.” Nonprinting characters are displayed as
boxes in some fonts. The system looks through all the 'DRVR' resources in the system file
at startup time and lists the ones that don’t start with a period under the Apple menu.

Desk accessories usually implement different calls than hardware drivers. In addition to
Open and Close routines, desk accessories are required to implement the Control call.
They usually don’t implement the Prime or Status calls used by many hardware drivers.

0

1

2

3

4

5

6

7

8

9

10

11

12–26

27–31

32–39

40–48

49–100

Reserved

HD20 driver

.Print driver

.Sound driver

.Sony driver

Serial A in

Serial A out

Serial B in

Serial B out

AppleTalk .MPP

AppleTalk .ATP

Reserved

DAs in sys file

DAs in app file

SCSI drivers 0–7

Reserved

NuBus drivers

UTableBase ($11C)

Unit

table

Master

pointer

DCE Driver

Unit no. Name
–1

–2

–3

–4

–5

–6

–7

–8

–9

–10

–11

–12

–13 – –27

–28 – –32

–33 – –40

–41 – –48

–50 – –128

RefNum

Pointer to unit table

Handle

to DCE

C H A P T E R 5

The Macintosh Operating System

Macintosh Managers 153

Applications interact with desk accessories through the Desk Manager, which makes all
of the appropriate Device Manager calls. The drvr dcmd, described in the next section,
displays information about desk accessories as well as hardware drivers.

Displaying Information About Installed Drivers 5

The standard drvr dcmd lists all the drivers currently installed, along with information
about each driver and its device control entry. For example:

drvr

 Displaying Driver Control Entries

dRef dNum Driver Flg Ver qHead Storage Window Dely Drvr at DCE at

 fffd 0002 .Print bHO #27 000000 000000 000000 0000 a0026838 8001b82c

 fffc 0003 .Sound bPO #0 000000 000000 000000 0000 82f010 80002fcc

 fffb 0004 .Sony bPO #1 000000 000000 000000 0000 82d72c 80002e58

 fffa 0005 .AIn bPC #3 000000 000000 000000 0000 a082ab92 8000322c

 fff9 0006 .AOut bPC #3 000000 000000 000000 0000 a082abaa 80003268

 fff8 0007 .BIn bPC #3 000000 000000 000000 0000 a082abc2 800032ac

 fff7 0008 .BOut bPC #3 000000 000000 000000 0000 a082abda 800032e8

 ffdf 0020 .SCSI00 bPO #0 000000 0058bc 000000 0000 0041a6 800054bc

 ffdb 0024 .SCSI00 bPO #0 000000 0058bc 000000 0000 0041a6 8001ba04

 ffcf 0030 .Display_V…bHO #0 000000 001f28 000000 0000 c001bb5c 80003020

 #64 Unit Table entries, #12 in use, #52 free

Table 5-7 describes the fields of the drvr display.

Table 5-7 drvr display fields

Field Description

dRef The driver reference number, in two’s complement arithmetic.

dNum The driver’s unit number.

Driver The name of the driver.

Flg B/b:Uppercase = Busy; H/P:driver is stored in a Handle or a Pointer;
O/C:Open/Closed.

Ver The driver’s version number.

qHead The head of the driver’s request queue.

Storage Pointer or handle to the driver’s private storage.

Window Pointer to a window that belongs to the driver.

Dely How often the driver would like to be called, in ticks.

Drvr at The address of the driver itself.

DCE at The address of the driver's Device Control Entry.

C H A P T E R 6

Discipline 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Discipline

156

How Discipline Works

Discipline is a set of routines that a debugger calls to test the validity of parameters
passed to a User Interface Toolbox or operating system routine and to test the validity of
parameters passed back to your application by that routine. This chapter describes how
you install Discipline, how you determine which tests Discipline should use to test
parameters, and how you work with Discipline during application development.

Discipline is not a stand-alone tool; it must always be used with a resident debugger.
This chapter assumes that the debugger is MacsBug.

For additional information about the way Discipline interfaces with MacsBug, see
Appendix E, “MacsBug Internals and Discipline Interface.”

How Discipline Works 6

If Discipline is installed and your application makes a system call, MacsBug passes
the call to Discipline instead of passing the call to the trap dispatcher. Discipline is
responsible for performing two series of tests: it runs the first series before the call
executes and the second series after the call executes.

Discipline selects the tests it’s going to use depending on the call being tested and on the
configuration file you selected when you installed Discipline. Thus Discipline might test
the order in which you have specified the parameters for a call, test the validity of
pointers, or check valid ranges for some or all of the parameters.

If the system call fails its initial (pre-execution) test, MacsBug saves the results in a
history buffer and drops into MacsBug where you can examine the information it
returns. If the call passes its initial test and you have set no actions on that trap (ATB,
ATHC, ATSS), MacsBug hands it off to the trap dispatcher, which finds the location of
the call in ROM or RAM and executes the call.

After the call executes, Discipline again tests the values returned by the call. If it finds
that the values are invalid or less than optimal, it drops into MacsBug and displays a
diagnostic message. If the returned values pass Discipline’s tests, the next instruction
is executed.

Installing Discipline 6

You can install Discipline either as an INIT file or as an application, depending on your
memory requirements and on whether you plan to run it in a single-application envi-
ronment (system software version earlier than 7.0 with MultiFinder turned off) or a
multiple-application environment (system software version 7.0, or system software
version 5.0 or 6.0 with MultiFinder turned on).

C H A P T E R 6

Discipline

Installing Discipline

157

Installing Discipline as an INIT File 6

If you are working in a single-application environment, you should install Discipline as
an INIT file. In this case, Discipline remains installed until you shut down your
Macintosh. To install Discipline, follow these steps:

1. Insert and open the Discipline disk.

2. Move the Discipline file into your System Folder.

3. Open the Configuration folder on the Discipline disk.

4. Open either the Lenient or the Strict configuration folder. Select the Discipline Startup
file and move it into your System Folder.
You indicate which tests you want Discipline to apply by selecting one of two
configuration files: Lenient or Strict. Each of these files contains different tests that
Discipline uses to test the parameters of each system call. The difference between
these configurations is implied by their names: it will be easier for the parameters you
supply to satisfy the lenient tests than to satisfy the strict tests.

5. Restart your Macintosh.

The message shown in Figure 6-1 is displayed to let you know that the installation
was successful.

Figure 6-1

Discipline installation message

You can prevent Discipline from loading when you start up your machine either by
taking Discipline out of your System Folder and restarting, or by holding the Option
key down while your Macintosh is starting up.

Discipline is turned off initially. It does not check trap calls until you turn it on. The
command syntax you use to turn Discipline on and off and to select Discipline options
depends on the debugger with which Discipline is running. The section “Using Discipline
During Application Development” in this chapter describes how you use Discipline
from MacsBug.

Installing Discipline as an Application 6

If you are working in a multiple-application environment, you will probably want to
install Discipline as an application. In this case, Discipline remains installed until you
turn it off from the debugger or press Command-Q to quit the Discipline application.

To install Discipline as an application, follow these steps:

1. Insert and open the Discipline disk.

2. Move the Discipline file into any folder you wish. It does not have to be the
System Folder.

C H A P T E R 6

Discipline

158

Reading Discipline Output

3. Open the Configuration folder on the Discipline disk.

4. Open either the Lenient or Strict configuration folder and move the Discipline Startup
file into the folder containing Discipline.
You indicate which tests you want Discipline to apply by selecting one of two
configuration files: Lenient or Strict. Each of these files contains different tests that
Discipline uses to test the parameters of each system call. The difference between
these configurations is implied by their names: it will be easier for the parameters you
supply to satisfy the lenient tests than to satisfy the strict tests.

5. To install and launch Discipline, hold the Option and Command keys down while
double-clicking the Discipline file.

When Discipline is installed, the message shown in Figure 6-1 is displayed. When
Discipline is launched, its icon will be displayed in the space where the active
application’s icon is normally displayed, and the rest of the menu bar will be completely
blank; even the Apple menu will be gone. This is just as it should be. You can get back to
Finder by clicking on the Discipline icon or on the desktop.

At this point you can see Discipline listed as an active application in the Apple menu.
Also, Discipline is turned on and you are very likely to find yourself in MacsBug or the
resident debugger because Discipline seldom approves of the way in which Finder
accesses system calls. This would be a good time either to turn Discipline off or to leave
it on only for applications.

If MacsBug is the resident debugger, you can turn Discipline off by entering

DSC OFF

on the command line or by typing Command-Q. When you are ready to use Discipline to
test an application, you can turn it back on.

To leave Discipline on but arrange things so Discipline doesn’t have to worry about the
Finder’s manners, enter

DSCA

from MacsBug.

If you are working in a multiple-application environment, you can install Discipline
either as an INIT file or as an application. In this case, it is your need for memory that
might dictate which way you install it. If you install it as an INIT file, Discipline will take
up space in the system heap until you shut down your computer. If you install it as an
application, Discipline will only take up space in the system heap when it is turned on.

Reading Discipline Output 6

Reading Discipline’s output is fairly straightforward. Figure 6-2 shows two messages
from Discipline in the output region of the MacsBug display. Each message was created
by Discipline when a system routine failed one of Discipline’s tests.

C H A P T E R 6

Discipline

Reading Discipline Output

159

Figure 6-2

Sample Discipline output

The first three entries in the Discipline output tell you when Discipline performed the
test, the address of the instruction being tested, and the value of the program counter.
Discipline performed this test before executing the BeginUpdate call. It tells you this in
the beginning of its message:

Before: BeginUpdate

But you can also tell because the value of the program counter (PC) and the address of
the instruction being tested are the same.

The next field, Parameters, lists the parameters to the call. The BeginUpdate call takes
one parameter, a window pointer.

The next field, Test, lists the test(s) used to evaluate the parameter.

The next field, Failure, further narrows the cause for the break. In this case, it pinpoints
one of the fields of the window record, structRgn. The display gives you all the
information you need to check the value of this field. The following MacsBug command
displays memory starting at 004B6B9A using the template windowRecord to make sense
of the bits:

dm 004B6B9A windowRecord

C H A P T E R 6

Discipline

160

Using Discipline During Application Development

Using Discipline During Application Development 6

This section describes how you call Discipline from MacsBug. It also suggests ways you
can use Discipline during various stages of application development and explains how
to use Discipline to test system routines made from code that runs during system startup
and from code that executes within another application’s partition.

This is the syntax of the DSC command:

DSC[A][X] [ON | OFF]

A specifies that Discipline only checks toolbox calls made from your
application.

ON turns Discipline on.

OFF turns Discipline off.

X directs MacsBug to keep the Discipline error report internally and
continue execution rather than stopping before and after every A-trap
call to display Discipline messages.

Using Discipline to Test Applications 6

The way you use Discipline depends largely on how confident you are in your code. You
might want to define three stages: module development, initial application testing, and
final application testing.

Whenever you add a piece of new code, use the strict Discipline configuration. Use the
DSCA command to turn Discipline on at the start of the new module. You can use the
DebugStr command in the source code to do this. You could include the following
command at the beginning of the piece of code you are adding:

DebugStr "Activating Discipline; DSCA ON; G"

Turn Discipline off at the end of the module in the same way:

DebugStr "Turning Discipline off; DSCA OFF; G"

You should also turn Discipline on (DSCA ON) using the lenient configuration every
time you run your application during development. Using the DSCA option will speed
up Discipline’s performance, but you should use the DSC command—to test for every
system call—during final testing.

The DSCX option, which allows Discipline to log test results internally while continuing
to execute your program, is something to save for last, when you’re sure that your code
won’t crash. Although the DSCX option keeps Discipline from complaining, it might also
prevent you from seeing a message that would have warned you of an impending crash.
If the Macintosh crashes, the log file that Discipline has used to record test results will
be useless.

C H A P T E R 6

Discipline

Using Discipline During Application Development

161

Using Discipline to Test INITs and Other Start-up Code 6

If you want to use Discipline to test INITs or other code resources that run during the
start up sequence, you must make sure that Discipline is loaded before your INIT. You
can do this by placing a Debugger call at the start of your INIT to drop into MacsBug
and then turn Discipline on yourself. Or you can use the DebugStr command to turn
Discipline on and continue execution. For example:

DebugStr "Turn Discipline ON; DSCA ON; G"

When the INIT completes, turn Discipline off. It is recommended that you use the strict
configuration every time to test an INIT.

Using Discipline to Test DAs and XCMDs 6

If you are writing desk accessories, XCMDs, or other code resources that execute within
an application’s partition (in a multiple-application environment, desk accessories have
their own partitions), you need to be careful when you are using the DSCA command.
DSCA simply looks at the local HeapZone where the PC points, whether it be a nested
zone or the application zone. It confines Discipline’s actions to that zone. You must
therefore make sure that you are in the right application partition.

This is relatively easy to do with MacsBug 6.2, since it displays the name of the current
application in the status region of its display. Check the name of the current application
before you enter DSCA.

Restrictions on Discipline 6

You must observe the following restrictions when using Discipline.

If you are using MacsBug,

■

A command line containing a DSC command cannot contain macros.

■

You cannot log MacsBug output if DSC is on.

■

If Discipline crashes, you must turn it off using the DSC OFF or DSCA OFF command
before you use the ES (Exit to Shell) command.

If you are using any debugger (including MacsBug) and Finder is the current applica-
tion, do not turn Discipline on or you will be inundated with complaints. This does not
mean that there is anything wrong with Finder, and it does not mean that there is
anything wrong with Discipline. It just means that you should keep Finder away
from Discipline.

C H A P T E R 7

Debugging Strategies 7Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

Debugging Strategies

164

Before the Crash

If there were a formula for writing programs, there would also be a formula for
debugging them. Unfortunately, there are no formulas; only experience, patience, and
intelligence can help you in either case. Error handling on the Macintosh is especially
tricky because of the extensive interplay between your code and the system code. You
have to understand what your code is doing, how the disassembled code that MacsBug
shows you relates to your source code, and how the system implements User Interface
Toolbox and operating system routines and manages memory in order to find and
fix bugs.

■

This chapter describes some strategies that can make your work in developing,
testing, and debugging programs easier:

■

It describes how you can take advantage of compiler options and
system-error-handling routines to catch bugs before they happen.

■

It describes common bugs, their causes and cures.

■

It explains how you can use MacsBug commands to focus on potential sources of bugs
and to test your program.

For additional information about Macintosh debugging, see Scott Knaster’s

How To Write
Macintosh Software

. The information presented in this chapter relies heavily on his work.

Before the Crash 7

The best way to cure bugs is not to let them happen in the first place. The next best way
is to observe them when they happen rather than hunting for them after your program
has crashed. This section describes some of the things you can do during development
that can prevent bugs from happening or make them easy to find when they do happen.

Use the Compiler’s Directives 7

Most compilers include directives that can help you catch errors resulting from range
violations, integer overflow, uninitialized variables, and unsafe use of handles. You can
selectively turn these options on and off in your source program to catch potential bugs
while keeping compilation times to a minimum.

If you anticipate having to do some low-level debugging, use the compiler directive that
allows debugging symbols to be placed in object code. If this directive is not turned on,
MacsBug will not be able to display routine names in its disassembly commands. This will
make it difficult for you to determine where you are in your program when it crashes and
equally difficult to find your way around when you're working with MacsBug.

Turn Trap Recording On 7

The MacsBug ATR (A-trap Record) command copies information about each system call
that executes into an internal buffer. If your program crashes or behaves erratically, you
can use the ATP (A-trap Playback) command to display information stored in that buffer.

C H A P T E R 7

Debugging Strategies

Before the Crash

165

(By default, the buffer contains information about the last 24 traps encountered.) The
information includes the value of the program counter at the time the trap was executed
as well as the contents of any registers on entry (for an operating system routine) or the
12 bytes on top of the stack (for a User Interface Toolbox routine).

You can use this information to get a quick history of what code was executing right
before the crash; you can also check the information saved about the stack or the
registers to see if there were any suspect values recently passed to a system routine.

Trap recording slows execution down just a little bit, but can give you valuable infor-
mation when you need it most. For additional information about the information
returned and the number of traps saved, see the description of the ATR and ATP
commands in Chapter 9.

Check Operating System Errors Whenever Possible 7

Operating system (OS) errors are available for the program to inspect but should never
be shown to the user. Some managers, such as the File Manager, provide a return result
from every call. Others, such as the Memory Manager, return zero to indicate than an
error occurred, and you must call a special function (MemError for the Memory
Manager) to get the actual error number.

There are hundreds of OS error codes. They are very specific, and often tell you exactly
what went wrong. OS errors are usually (but not always) negative numbers. Zero always
means that there was no error. (For more information about the way the microprocessor
stores negative numbers, see “The Representation of Negative Numbers” in Chapter 3.

Make sure you validate every system return value when you’re programming. Most
programmers don’t check them all, yet this is the easiest way to avoid a crash, since the
operating system is telling you that something is wrong before the problem becomes
serious and hard to track down.

OS errors are listed in Appendix C of this manual, as well as in Appendix A of each
volume of

Inside Macintosh.

(Note that each volume of

Inside Macintosh

 contains a
different list of errors.) The System Errors desk accessory provides an online list of user
alerts and system errors.

The OS error returned by the last call to certain managers is stored in some low-memory
globals. From a high-level language, you should call the routine that returns the error
(see Table 7-1). If the Macintosh crashes, you can look at the low-memory globals listed
in Table 7-1 to try to determine the reason for the crash.

Table 7-1

Low-memory globals that store operating system errors

Name Address Format Description Routine to get error

DSErrCode $AF0 word Current user alert error

MemErr $220 word Error from last call MemError

ResErr $A60 word Error from last call ResError

C H A P T E R 7

Debugging Strategies

166

Before the Crash

Results from calls to the Resource Manager are not reported by individual calls but are
stored in the low-memory global ResErr. The best way to check for resource errors is to
use the ResErrProc low-memory global, which is a pointer to a resource error-handling
procedure. You can use the error-handling procedure to invoke MacsBug. When
MacsBug displays the debugging screen, use the DM command to display the contents
of ResErr. Register A7 should contain the return address of the routine that called the
Resource Manager. (If your error-handling procedure is set up using a stack frame, you’ll
find the return address at A6 + 4.) Using ResErrProc rather than testing ResError every
time you make a Resource Manager call is more efficient and also allows you to
catch resource errors that result from routines that make unanticipated calls to the
Resource Manager.

The other low-memory global that is worthwhile testing in the debugging version
of your code is MemErr. You can do this by setting a conditional breakpoint in your
program from MacsBug; for example:

ATB memerr <> 0;G

To check the value stored in MemErr when MacsBug is invoked, enter

DW MemErr

MacsBug displays something like the following:

word at 00000220 = $FF94 #65428 #-108 '..'

The signed decimal value identifies the memory error.

Use Signals and Error Handler Routines 7

Signals are a form of intra-program interrupt that allow you to do elegant (memory-
inexpensive) error trapping in stack-frame intensive languages or when you are
implementing deeply nested procedures. Using signals, your program can call the Signal
procedure and immediately return to the last invocation of the CatchSignal function,
which cleans up the stack frame up to the point where it is called. For complete details,
see Macintosh Technical Note #88,

Signals.

Use Assertions in Your Source Program 7

An assertion is a procedure that tests a condition and invokes MacsBug if the condition
fails the test. You can use a compile-time variable to conditionally compile assertions for
the debugging version of your program.

C H A P T E R 7

Debugging Strategies

Before the Crash

167

Here is an example of an assertion:

PROCEDURE Assert(condition:Boolean);

BEGIN

IF condition = FALSE then

DebugStr (‘assertion failed’);

END;

You can then call the Assert routine from anywhere in your source program where you
want to check a value. Notice that this gives you the flexibility of testing for any
condition; for example:

X = GetNumber (0,1)

.

.

.
Y = 10 * x

Assert (Y > 0 AND Y < 10)

If you’re mixing assembly and high-level languages, you can use assertions to check
stack balance after executing assembly code. One common problem arises when your
assembly language routine fails to return the stack pointer to its original location. This
results in an unbalanced stack and bugs. The cure is to save the value of A7 (the stack
pointer) when your assembly-language routine starts and then to compare its final value
to the saved value. If the values don’t match, it’s time to drop into MacsBug and find out
why.Note that assertions are normally used only in beta versions of the software. In
release versions, the Assert routine is replaced with a null routine. In C, Assert is usually
a macro, and the macro is replaced with null, so the release application doesn't even
have the call stubs to Assert. In Pascal, conditional compiles are used to remove
assertions in the final version. The standard C library includes an assert routine.

Test Code on All Machines 7

There are many reasons for doing this; this section lists just a few.

The 68000, 68020, and 68030 microprocessors use slightly different instruction sets. If
your compiler is translating your source code using an instruction that the 68030
recognizes but the 68000 does not, your program will crash when run on the 68000 with
an illegal instruction error.

The 68000 microprocessor will generate an address error if you attempt to move a word
or long word to an odd address; the 68020/30 microprocessors will not generate an error
but will run more slowly. Testing your code on a 68000 allows you to find out if you’re
doing this and thereby allows you to get better performance on the 68020/30 when
you’ve fixed the bug.

Because the 68000 does not allow you to write words or long words to an odd address, it
also gives you a good chance to catch invalid pointers or handles. For example, if you’ve
failed to initialize a handle or pointer, when you dereference it, the microprocessor will

C H A P T E R 7

Debugging Strategies

168

Before the Crash

use whatever value is stored at that location as the address to write to; if the value is
odd, you’ll get an instant crash. Thus testing code on the 68000 allows you to find invalid
handles and pointers at the time they happen rather than after they’ve done a lot of
damage and you have to track down the cause.

The 68020 and 68030 processors report invalid addresses (addresses not in ROM, RAM,
or memory-mapped I/O) as bus errors. The Macintosh Plus hardware does not generate
this error but puts in a bogus value. So, if your program crashes on the 68020 or 68030
with a bus error, but not on a 68000, you’re trying to access an invalid address.

Catch NIL Pointers and Handles Instantly 7

A NIL pointer or handle is what the Memory Manager returns when it can’t allocate the
space you ask for. If you fail to test for this, you’ll wind up either writing to memory
location 0 or to the address equal to the value stored there. Writing to $0 can have dire
consequences because all the system’s low-memory globals are stored in that vicinity, as
well as the exception vectors that send the microprocessor to the right address when an
error happens or a system call is made. This means you might not be able to get into
MacsBug except by pressing the interrupt switch.

To catch a NIL pointer, you need to test the value returned by the Memory Manager
when you allocate space for a nonrelocatable block.

To catch a NIL handle, you need to declare a procedure that sets memory location $0 to
$50FFC003 and to call the procedure from your main event loop. You should only use
this procedure in the debugging version of your program.

■

If you’re working in Pascal, you can declare the following procedure in the main
segment of your program:

PROCEDURE SetZero(); INLINE $21FC, $50FF, $C003, $0000;

and then call SetZero from your main event loop.

■

If you’re working in C, you can declare the following procedure in the main segment
of your program:

pascal void SetZero(void) = {0x21FC, 0x50FF, 0xC003, 0x0000};

and then call SetZero from your main event loop.

Once you do this, any attempt to use a NIL handle will result in an instant crash that
won’t hurt anything and that will allow you to find the cause quickly. For additional
information, see “Nasty Pointers” in this chapter.

Use SetPort Correctly 7

Any drawing done by QuickDraw, directly or indirectly, is done to the current GrafPort.
There is only one current GrafPort, and its address is stored in the global variable
thePort; register A5 contains the address of a pointer to thePort. The function GetPort
returns the current value of thePort; the function SetPort changes the value. It’s
obviously important to write to the right current port. One technique that used to
be recommended for making sure of the right GrafPort was the use of GetPort to find

C H A P T E R 7

Debugging Strategies

After the Crash

169

the current port and then the use of SetPort to change it if it was not the port you
wanted. Unfortunately, this did not prove to be a good solution because system calls
intervening between SetPort and the first use of the port sometimes resulted in the port
being changed.

A better solution is to call SetPort as close as possible to writing to the current port, and
not to rely on the GetPort/SetPort technique as a guarantee that you are writing to the
right port.

After the Crash 7

Finding the cause and cure for a bug that catches you by surprise is, of course, much
more difficult than fixing one that you’ve forced in order to catch it before it has covered
its trail.

When your program crashes, what MacsBug or the bomb box tells you is not the cause of
the bug but the symptom. For example, an illegal instruction error can be caused by an
instruction your processor does not recognize (see “Test Your Code on All Machines” in
this chapter) or by your having inadvertently written to the location on the stack where
the return address of an instruction was stored. Once the symptom manifests itself,
through a crash or through your program’s erratic behavior, debugging is the process of
finding the cause. The symptom is only the last clue on the bug’s trail.

The same bug might give rise to different symptoms. For example, an invalid pointer
that results in your writing to the wrong address might produce a crash if you wind up
writing over a block header in the heap; it might produce odd sounds if you wind up
writing to the sound buffer; it might put blotches on your screen if you wind up writing
to the screen buffer; it might simply corrupt data and never let you know anything is
wrong if you wind up writing to the contents of a heap block. For this reason, you
should not assume that you can make the same bug happen again by rerunning your
application. When a crash occurs, gather as much information as you can. If you can
force the same bug, the information won’t hurt you; if you can’t, it will be very helpful.

The sections that follow describe a few ways you can gather information after your
program crashes. These methods by no means exhaust the possible ways of finding
and curing bugs.

Where Am I? 7

Debugging begins with gathering information, and the first piece of information you’ll
need is what part of your code was executing when the crash occurred. First, get visual
information. Use the ~ or Esc key to take a look at what the screen looked like just before
the crash. Next, use the MacsBug WH (Where) command. The command takes an
address as a parameter; a good address to use is that stored in the current program
counter. Since the WH command uses that address by default, entering

WH

C H A P T E R 7

Debugging Strategies

170

After the Crash

will display information about the location of the instruction pointed to by the PC
register. If the instruction is in ROM, the WH command will display the address of the
instruction as an offset from the start of the trap. If the instruction is in RAM, the WH
command will tell you which heap block the instruction is stored in, the name of the
routine containing the instruction, and the offset of the instruction from the start of
the routine.

Remember, the instruction pointed to by the PC is not likely to be the one that caused the
crash. The next step is finding that instruction.

Who Done It? 7

If the microprocessor executed only one instruction at a time, finding the instruction that
caused the crash would be easy; it would always be the instruction just preceding the
instruction stored in the program counter. Unfortunately, the microprocessor is doing
several things at once (pipelining), and it is often the case that the instruction you’re
looking for is a few bytes ahead of or behind the PC. Where the instruction is depends
on the kind of error that caused the crash:

■

For an illegal instruction error it is very likely that the instruction currently pointed to
by the PC did cause the error.

■

For a bus error, the PC might point one or two instructions ahead of or behind the
bad instruction.

■

For an illegal address, the PC might point one or two instructions ahead of or behind
the bad instruction.

These are the most common errors you are likely to get. The situation is often similar for
other errors. Don’t just examine the instruction pointed to by the PC. Look around. The
MacsBug command that lets you do this is the IP (Disassemble Around Address)
command. This command takes an address as a parameter; if you don’t specify one, it
uses the address stored in the program counter by default. If you enter

IP

MacsBug displays 64 bytes centered around the PC. Use the information displayed by
the break message to figure out which instruction caused the error. For example, if
you get a division by zero error, you’ll want to look for a DIVS or DIVU instruction;
if you get an address error, look for a MOVE.W or MOVE.L instruction with an odd
operand or for the PC to have an odd address; if you get a bus error, look for an instruc-
tion with an operand that refers to an invalid address.

After you have found the instruction that caused the crash, the next step is to figure out
how that instruction came to be executed.

C H A P T E R 7

Debugging Strategies

After the Crash

171

Why Did It Happen? 7

You’ve found the offending instruction, but you trust that the compiler has been
faithfully and accurately translating your source code. Where, then, did it get the bad
value? This is the point where it is important to be able to relate the disassembled code
to your source code and to check the values that you think are being referenced against
the values that are actually being referenced.

Check the Source Code 7

Most crashes are the direct result of a bad line in the source code.

To locate the offending source-code statement, use this procedure following a crash:

■

Execute an SC (Stack Crawl) command. If the output to the SC command looks
reasonable—that is, you can recognize routine names—look at the last address on the
stack (most recent call) by disassembling around the last address shown. Use the
command
IP

xxxxxxxx

where

xxxxxxxx

is the last address shown.

■

If you can see a routine name in the disassembled output, you need to figure out
which source-statement line was executing. (Major clues include JSR instructions,
which are subroutine calls, and A-traps.)

■

If you can’t recognize the subroutine indicated by the last address on the stack, try
disassembling around the next-to-last address. Keep going until you’re either on
familiar territory or until you run out of addresses. (For additional information about
using Stack Crawl commands and interpreting the information they display, see the
descriptions of the SC and SC7 commands in Chapter 9 and the section “Life on the
Stack” in Chapter 4.)

■

If you run out of addresses, switch tactics. Place SysBeep or DebugStr commands
throughout the code, and count or watch the number of times they are executed.

■

When the program crashes, go to the approximate area indicated by the number of
beeps or debugger breaks. Remove the old SysBeep or DebugStr calls and place new
ones only within the suspect portion of code. Keep running and refining until you
discover the offending line.DebugStr routine;

Other Suspects 7

If looking at the source code does not help you find the cause of the bug, you need to
check for more subtle causes. The usual suspects include uninitialized variables, invalid
pointers or handles, or fragmented memory.

If you are working with MPW Pascal, use the –u option, which sets all variables to a
special uninitialized pattern when they are allocated. This helps catch subtle bugs
that might have slipped by otherwise, and makes spotting an unintialized variable
much easier.

To check for bad pointers and handles, use the MacsBug HC (Heap Check) command.
This command tells you if the information in the heap zone header or any of the block
headers in the current heap has been corrupted. There are two ways that this informa-

C H A P T E R 7

Debugging Strategies

172

Common Problems

tion becomes corrupted. If you are writing to an address pointed to by a dangling
pointer or handle, you are likely to be writing anywhere in memory, including a heap
block or heap zone header. In the second case, you might be writing to a valid address,
but writing more data than you think, thus writing over the header of the next block.
Note that it is possible that a bad pointer or handle can cause you to write to the contents
of a block, in which case the HC command will not return an error message. You can
however force bad pointers to show themselves by using the HS (Heap Scramble)
command to turn heap scrambling on when you run your program. This command
forces the Memory Manager to move relocatable or unlocked blocks during every A-trap
call that can allocate memory directly or indirectly. This vastly increases the chance that a
bad pointer will write over a block or zone header and corrupt the heap. If the heap
becomes corrupted, MacsBug is invoked and displays an error message.

To check for fragmented memory, which can prevent the Resource Manager from
loading the resources your program needs to execute, use the HD (Heap Dump)
command. The HD command displays information about all the blocks in the current
heap, listed from the lowest address to the highest address. A dot in the first column
of the display indicates that the block cannot move. Ideally, blocks that cannot move
should be located either at the bottom and at the top of the heap. If the HD command
shows that nonrelocatable and locked blocks (neither of which can be moved) are
interspersed throughout your heap, this means that memory is fragmented.

Common Problems 7

This section describes the symptoms and possible causes of common problems caused
by bugs.

The Deep Freeze 7

Some crashes don’t give you a chance to use MacsBug. If you’ve been programming the
Macintosh long, you’ve probably had this experience: your program locks up. You hit
the interrupt switch, but nothing happens.

Pointers in low memory called exception vectors point to MacsBug. These vectors allow
the system to transfer control to MacsBug when a crash happens. If your program wipes
out low memory, you can’t get into MacsBug.

Unfortunately, there is a fairly common error that can cause low memory to be wiped
out. When you ask the Memory Manager for a block of memory, it gives you a pointer to
that block. If it can’t allocate the memory you asked for (perhaps memory is full), it
returns zero. If you neglect to check the result, your program might start writing to the
address the Memory Manager apparently returned—which is zero. All the important
MacsBug vectors are in the first 256 bytes of memory, so they tend to get wiped out
quickly. Nothing but the reset button on the programmer’s switch will get you out of this
one. Moral:

always

 check what the Memory Manager returns to see if it’s zero.

C H A P T E R 7

Debugging Strategies

Common Problems

173

The Restart Surprise 7

In this situation, the Macintosh simply up and restarts somewhere in the middle of
your program.

This is usually caused by two bus errors in a row. Bus errors are handled by a bus error
handler. If, in the course of crashing, your program damages the bus error handler and
then generates a bus error, and the damaged bus error handler generates a second bus
error before the microprocessor can finish processing the first bus error, you’ve got a
problem. Whenever the microprocessor gets a bus error before it’s finished processing
another bus error, it gives up and restarts. This is called a double bus fault.

Nasty Pointers 7

Invalid pointers or handles are a common cause of any number of symptoms, depending
on where the pointer or handle actually points to. Symptoms include bus errors, address
errors, illegal instruction errors, corrupted heap, corrupted data, trashed stack, odd
sounds and flashing screen, and many others.

To win the battle against nasty pointers, you need to do one or more of the following:

■

Become familiar with the situations in which the Memory Manager will move
memory and use a temporary local or global variable to store a duplicate of the
relocatable block. The article “The Secret Life of the Memory Manager,” in Volume I,
Issue 2 of

Develop,

contains invaluable information about memory management on
the Macintosh and gotchas not previously documented that can result in bad pointers.
The first thing to read, however, is the “Memory Manager” chapter in

Inside
Macintosh,

Volume II.

■

Set memory location 0 to $50FFC003. This will produce an instant crash when you
access a NIL handle.

■

If you suspect that a relocatable block is being moved out from under you, use the
MacsBug ATSS (A-trap Step Spy) command to checksum memory at the location of
the block’s master pointer. The ATSS command will invoke MacsBug when memory
changes at that location—that is, right after a system call that causes your block to
be moved. This is a less expensive way of guarding yourself against unanticipated
moves than to lock every handle in your program. Handles only need to be locked if
they are going to be dereferenced and if a call will be made that can cause relocation.

■

Use the HS (Heap Scramble) command to force invalid pointers and handles to show
themselves. This command moves all relocatable blocks whenever they might
be moved; in other words, whenever the NewPtr, NewHandle, ReallocHandle,
SetPtrSize, or SetHandleSize trap is called, or any trap that calls these traps. (With
SetPtrSize and SetHandleSize, the heap is scrambled only if the block size is
being increased.)

C H A P T E R 7

Debugging Strategies

174

Using MacsBug to Control Program Execution

No Room to Maneuver 7

You can run out of space in the heap even if you check for memory allocation. For
example, when you call MenuSelect, the Menu Manager temporarily saves the part of
the screen that’s going to be covered up by the menu; if there’s no space available, the
program crashes. Use the HD command to check for heap fragmentation. Try to preserve
as much continguous free space in the heap as possible.

Another common cause of an out of memory condition is when an instruction writes
over the start of another’s block’s header. If you’re allocating blocks of different sizes,
you need to be especially careful about writing only within the confines of that block.
(Arrays in C are especially bad this way.)

You can also run out of space on the stack. If your program uses the MaxApplZone
routine to expand its heap, it has 8K of stack space left (24K on 68020/68030). If you are
using large local variables, passing large variables by value, or nesting procedures too
deeply (especially recursive procedures), you can get a stack overflow error or, if the
stack sniffer fails to catch the overflow, a corrupted heap. (The stack sniffer is a routine
that checks to see that the stack pointer does not point into the space allocated for the
heap; it does not check after every instruction, so that it is possible to corrupt the heap
without being caught.)

Mind-Reading Problems 7

Crashes in the ROM are common. This does not mean the ROM has bugs in it, but that
you probably passed bad parameters to the system routine.

If you make a system call specifying a parameter that refers to an object that exists and
whose type matches that of the formal parameter required by the routine, the system
will do exactly what you ask. For example, if you ask the Window Manager to dispose of
a window and pass it a window pointer, whatever the window pointer points to will be
disposed of. It’s your responsibility to make sure that you are referring to the right
objects. The system can’t read your mind.

Using MacsBug to Control Program Execution 7

Certain MacsBug commands allow you to control the execution of your program; these
include breakpoint commands and flow control commands. Table 7-2 provides a
summary of these commands.

The syntax and effect of each of these commands is described in detail in Chapter 9,
“MacsBug Commands.”

C H A P T E R 7

Debugging Strategies

Using MacsBug to Control Program Execution

175

As you can see from Table 7-2, in some cases MacsBug provides two sets of program
control commands: one set depends upon the execution of the instructions that make up
your source code, and the other set depends upon the execution of A-traps. The way
A-traps are implemented makes this distinction necessary even though the effect of the
two sets of related commands is similar. This distinction can be used to advantage in
debugging.

Every Macintosh application consists of A-trap calls interspersed with implemented
instructions (the object code into which the compiler translates your source code). There
are normally many more implemented instructions than A-trap calls, especially if you
restrict the examination of A-traps to those being called from the application heap. This
situation creates two levels of granularity in your program: the level on which A-traps
are called, which is the coarser, and the level on which implemented instructions are
executed, which is the finer. You can take advantage of this situation to focus in on bugs
in two steps: in the first step, you use an A-trap command to invoke MacsBug when a
certain condition is met; in the second step, you focus on the range of instructions that lie
between the A-trap that is about to execute and the last A-trap executed to determine
which specific instruction is causing the trouble. You can use the following pairs of
commands in this way: ATB/BR; ATHC/HC; ATSS/SS. See the section “MacsBug’s
A-trap Commands” in Chapter 5 as well as the description of the ATB, BR, ATHC, HC,
ATSS, and SS commands in Chapter 9 for additional information.

Table 7-2

Commands that control program execution

Command
A-trap
command Effect

BR ATB BR sets a breakpoint at a specified address. ATB sets a
breakpoint before the specified A-trap(s) execute.

BRC ATC Clears specified breakpoints.

BRD ATD Displays current breakpoints or other actions (set with
A-trap commands).

BRM Sets breakpoints using partial name matching.

S Executes the specified instruction(s) or executes
instructions until a specified condition has been met.

SO Like the S command except that SO steps over A-traps,
JSRs and BSRs, treating them like single instructions.

SS ATSS Both SS and ATSS check a specified range of memory
as they step through code.

G Resumes program execution beginning with the
instruction stored in the PC.

GT Resumes execution (like G), but breaks at the
specified address.

C H A P T E R 7

Debugging Strategies

176

Using MacsBug to Control Program Execution

Controlling Program Execution 7

Two commands let you execute instructions one at a time. The S (Step) command
executes a single instruction, stops at the next instruction, and returns to MacsBug.
The contents of the program counter—in other words, the next instruction to be
executed—are disassembled and displayed. You can also step through a specified
number of instructions, or until a condition is met (for instance, until a register contains
a particular value).

When the S command reaches a subroutine or an A-trap call, it steps right in. Particularly
with ROM routines, which are often very long and typically not of interest, you’ll
probably want to use the SO (Step Over) command instead. The SO command works
exactly like the S command except that it treats A-trap calls and subroutines as a single
instruction, stopping at the first instruction after the A-trap or subroutine returns. (With
traps that have the auto-pop bit set, MacsBug returns to the address on the top of the
stack at the time of the trap call.)

While stepping through code, MacsBug decodes conditional statements (DBcc, Bcc, and
Scc instructions) to determine whether branches will be taken or will fall through. This
information is shown to the right of the PC information.

If you’ve stepped into a procedure with the S command and want to get out, you can use
the MR (Magic Return) command; to move to the end of the procedure. The MR
command; needs to know where the return address is; for this reason, it’s a good idea to
use the LINK A6 prolog for your procedures.

If you’re stepping through your program and find you want to move past some code,
you can use the GT (Go Till) command to resume execution until a specified address
is reached.

Setting Breakpoints 7

Once you’ve narrowed down the location of a bug, you might want to invoke MacsBug
when a particular point in your program is reached. There are several ways of doing this.

The ATB (A-Trap Break) command lets you specify a break when A-traps are encoun-
tered. You can specify individual traps or a range of traps, as well as conditions that
must be met. For instance, you could specify a break when the HFSDispatch trap is
encountered and the value of register D0 is 6 (which is the routine selector for the
DirCreate routine). You can also specify commands to be executed once MacsBug has
been invoked.

Another way to stop program execution is to set a breakpoint at a specified address
using the BR command. You can specify the address as an actual address or as an offset
from a procedure name. This information will have been found by disassembling or
stepping through your code. The BR command also lets you specify commands to be
executed when the breakpoint is reached. You can specify multiple breakpoints;
MacsBug stores this information in a table, which you can see at any time with the BRD
command;. Breakpoints remain set until you clear them with the BRC command.

C H A P T E R 7

Debugging Strategies

Using MacsBug to Control Program Execution

177

You can also set breakpoints by using partial name matching with the BRM command.
You pass BRM a sequence of characters; it sets breakpoints on all names that contain
those characters. The BRM command is especially useful with C++ and object Pascal
debugging; you might, for instance, wish to break on all methods of a given class.

The BR command can be useful in working with A-traps as well as with your own code.
With some ROM routines, the actual trap is often preceded by glue code that sets up the
parameters. Whereas the ATB command stops right before the trap is made, the BR
command can be used to stop at the point where your program calls the routine, letting
you examine what goes on with the glue code.

An advantage of using breakpoints is that they don’t require changes to your source
code and can be used after the application has been built. However, breakpoints cannot
be set in a procedure until the segment containing that procedure is loaded and the
address determined. One way around this problem is to specify a break from within
your procedure by using the traps Debugger ($A9FF) and DebugStr ($ABFF). Debugger
is a system trap that invokes MacsBug and displays the message “User break at

address

.”
DebugStr also lets you supply a custom message for display, as well as MacsBug
commands for execution. The section “Invoking MacsBug from Your Source Program” in
Chapter 2 provides additional information.

The DebugStr trap pushes a pointer to a Pascal string onto the stack and then invokes
MacsBug. You can take advantage of the fact that DebugStr takes a string parameter to
display the value of a variable at a specific point in your program. You do this by calling
the NumToString trap, which converts an integer into a string that represents its decimal
value, and then calling DebugStr to display the string. For example:

Begin

thisnumber := 666;

NumToString (thisnumber; mynumber);

DebugStr (mynumber);

newnumber := thisnumber

End

If the value of the number is negative, the string is preceded by a minus sign.

To display the value of a non-integer variable, convert its address to a string and send
the string to MacsBug. For example:

Begin

thisnumber := 666.66;

NumToString (@thisnumber; mynumber);

DebugStr (mynumber);

newnumber := thisnumber

End

When MacsBug is invoked, it will display the variable’s address. Remember however
that the address is expressed in base ten. When you use the DM command to display the
value stored at that address, remember to prefix the address with a pound (#) sign.

C H A P T E R 7

Debugging Strategies

178

Make It Easy on Yourself

DebugStr only accepts Pascal strings. If you are writing in C, be sure to pass a
Pascal string.

The DX (Debugger Exchange) command lets you disable breaks from the Debugger and
DebugStr traps without having to go in and remove them from your program.

Watching for Memory to Change 7

Several commands let you determine when and where a particular area of memory is
being changed. One common problem occurs when a program inadvertently changes the
contents of a memory location. You can detect when a range of memory changes by
using the SS (Step Spy) command. This command checksums a given range and then
executes instructions one at a time until the checksum changes. The SS command can
slow down a program considerably, so MacsBug treats a long word as a special case and
optimizes for speed. If you suspect a certain range of memory is being altered, you
usually don’t need to check the whole range but can check just a long word within the
range. If you must check a long range, you’ll probably want to use a hardware emulator.

You can also use the SS command as a way of slowing down certain routines—those that
draw to the screen, for instance—so you can actually watch how they work. The best
way to do this is to use the command

SS @Rombase

This command simply slows your program down, since ROM never changes.

A variation on the SS command, the ATSS (A-Trap Step Spy), command lets you
checksum a memory range before specified A-traps are executed. ATSS is much faster
than SS.

The CS (Checksum) command lets you monitor whether a range of memory has
changed. The first time you execute the CS command, you specify a range and MacsBug

computes a checksum. Subsequent CS commands compute the checksum and compare it
with the previous value.

Make It Easy on Yourself 7

If you associate low-level debugging with excessive grinding of teeth, please remember
that MacsBug provides several tools that can make your work easier. These include

■ Templates, which allow you to display memory in intelligible names and values
rather than bits and bytes. The section “Using Templates to Display Memory” in
Chapter 4 describes the standard templates defined by the 'mxwt' resource to
display data structures used by the system and explains how you can use ResEdit
to create additional 'mxwt' resources to display data structures that are specific to
your program.

C H A P T E R 7

Make It Easy on Yourself 179

■ Macros, which allow you to use names instead of addresses or command sequences
that you need to enter often. The section “Using Macros” in Chapter 8 explains how to
create temporary and permanent macros.

■ dcmds, which allow you to extend MacsBug’s command set. The section “Using
DCMDs” in Chapter 8 describes the standard dcmds shipped with MacsBug and
provides detailed instructions on how to write your own dcmds.

In addition, several desk accessories provide instant references to system calls and
system errors. Find the ones you like and use them.

7

C H A P T E R 8

Introduction to

MacsBug Commands 8

Figure 8-0
Listing 8-0
Table 8-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 8

Introduction to MacsBug Commands

182

The MacsBug Command Line

This chapter and Chapter 9, “MacsBug Commands,” provide a complete reference to
MacsBug commands and the rules for their use. While Chapter 9 explains the syntax and
use of each MacsBug command, this chapter describes methods that work with any of
the commands you can use in MacsBug. It explains how to:

■

Use the command line to enter commands.

■

Use the command line to perform calculations.

■

Specify command parameters.

■

Use expressions to define conditions or addresses.

■

Edit the command line and use the command line buffer to simplify your work.

■

Get help while you’re working with MacsBug.

This chapter also describes two other kinds of commands you can use in MacsBug:
macros and dcmds.

Macros

 are names that you can substitute for addresses, expressions, or groups of
commands that you are likely to use many times. The section “Using Macros” in this
chapter explains how you define temporary and permanent macros and describes the
standard macros that are shipped with MacsBug.

dcmds

 allow you to add commands to MacsBug. The section “Using dcmds” in this
chapter describes the dcmds that are shipped with MacsBug and explains how you write
'dcmd' resources to define your own dcmds.

The MacsBug Command Line 8

When you invoke MacsBug, you can’t use the mouse or the menus, the normal channels
of communication provided by the human interface. You communicate with MacsBug
using the MacsBug command line, the line at the bottom of the MacsBug display.

Figure 8-1 shows the position of the MacsBug command line relative to the PC region
and the MacsBug output region. For additional information about the MacsBug display,
see Chapter 2, “Getting Started.” Although you can reconfigure other areas of the
MacsBug display using the 'mxbi' resource and the SHOW command, you cannot change
the size or capacity of the command line.

C H A P T E R 8

Introduction to MacsBug Commands

The MacsBug Command Line

183

Figure 8-1

 MacsBug command line

You can use the command line to communicate with MacsBug by entering commands or
you can use the command line as a calculator to perform base conversions or to evaluate
arithmetic expressions.

As you can see from Figure 8-1, your input to MacsBug and MacsBug output use two
physically separate areas of the display. Since this separation cannot be conveniently
represented in the description of sample commands and their output, input to MacsBug
is represented by bold Courier text and MacsBug output is represented by normal
Courier text. For example, in the following two lines, BRC is what you enter on the
command line, and “All breakpoints cleared” is what MacsBug displays in the output
region of the display.

BRC

 All breakpoints cleared

This convention is used throughout this manual.

Using the Command Line to Enter Commands 8

You can use the command line to enter one or more MacsBug commands. The blinking
cursor shows you the current insertion point. To enter a command, type the command
and its parameters on the command line. When you press the Return key, MacsBug
executes the command or commands on the command line. If you press Return without
entering a command, MacsBug executes the last command you entered.

Some MacsBug commands, such as HD (Heap Display), generate a lot of output. While
such commands are executing, you can press the Return key or the Space bar to pause
and resume execution. To cancel execution of a command, press any other key. For
information about editing the command line, see the section “Command Line Editing
Commands” in this chapter.

The basic format of command line entries is

command

 [

parameters

] [

;

command

 [

parameters

]]...

command

 specifies the name of a MacsBug command, macro, or dcmd. The

parameters

 of
a command, macro, or dcmd are defined in the description of the command, macro, or

MacsBug command line

Insertion point – blinking cursor

C H A P T E R 8

Introduction to MacsBug Commands

184

The MacsBug Command Line

dcmd. For additional information about command parameters, see “Specifying
Command Parameters” in this chapter.

Table 8-1 describes the conventions used to describe the syntax of MacsBug commands.
Developers who write help messages for dcmds should use these conventions.

Specifying Command Parameters 8

MacsBug assumes that any number you specify is hexadecimal. To indicate a decimal
number, prefix the number with a pound (#) sign. For example, #256.

MacsBug commands use a limited set of parameters. The basic types are described in
Table 8-2.

Specifying an Address 8

Most MacsBug operations—setting breakpoints, displaying memory, disassembling
code—need an actual address to work with. An address can be a hexadecimal or decimal
number, a trap name or number, a register name, or the name of a procedure.

Table 8-1

Command syntax conventions

Convention Meaning

italics Italics indicate a parameter that you must replace with specific infor-
mation. Possible parameter types are described in the next section,
“Specifying Command Parameters.”

[] Brackets indicate that the enclosed elements are optional. Omit the
brackets when you enter the command.

... Ellipses (...) indicate that you can repeat the preceding item as needed.

| A vertical bar indicates a choice. For example,

 n

|

expr

means that you
can specify either a number

n

 or an expression

expr

 as a parameter.

Table 8-2

Parameter types for MacsBug commands

Type Description

addr

An expression that resolves to an address.

cmd

A MacsBug command or dcmd.

expr

A numeric, boolean, or string expression.

n

A number. All numbers are assumed to be hexadecimal.

str

A string expression.

trap

A trap number in the range A000 to ABFF, or trap name.

C H A P T E R 8

Introduction to MacsBug Commands

The MacsBug Command Line

185

The following command uses a hexadecimal number to specify an address:

DM 002191C8

The following command uses a trap name to specify an address:

BR FindWindow

The following command uses a register to specify an address:

DM A7

Using Procedure Names 8

Whenever possible, MacsBug accepts and returns symbols in place of addresses.
Procedure names are the most common example of this. Most compilers for the
Macintosh have the option of embedding character names after the code generated
for each procedure or function. (If you are writing a compiler, consult Appendix D,
“Procedure Names,” for details on procedure name definition.) If your compiler uses this
option, you can specify a procedure name and offset to specify an address. Conversely,
MacsBug returns addresses as offsets from procedures whenever it can. For instance,
if the instruction shown in the PC region is part of a valid procedure, the name and offset
of that instruction is displayed in the PC region. This command uses an offset within
a procedure to specify an address.

BR MouseDwn + 18

If you enter Command–:, MacsBug displays a menu that lists all the procedure names
in the current application. Typing the first few letters in the name restricts the list to
procedures that begin with the letters you type. You can use the arrow keys to move
up and down the list. When the name of the procedure you want is highlighted, press
Return to insert the selected name into the command line at the insertion point. If you’ve
qualified the list and want to move back to the previous level of qualification, press the
Delete key. To remove the menu without making a selection, press the Esc key.

If your keyboard does not allow you to type Command–:, Command–D is an alias for
Command–:.

The Dot Address and the Colon Address 8

Because entering addresses is the most tedious and fault-prone part of entering MacsBug
commands, MacsBug defines two additional variables that you can use to specify
addresses: the dot address and the colon address.

■

The

dot address

 is a MacsBug variable that contains the last address used by certain
commands. The period character (.) refers to this address; you can use it in any
command that expects an address. For example:

DM .

C H A P T E R 8

Introduction to MacsBug Commands

186

The MacsBug Command Line

The dot address is set by MacsBug commands in anticipation of your next move. For
example, if you use the WH command to find a trap address, the WH command
stores the address it returns in the dot address, since the next thing you might want
to do is to disassemble around or starting from that address. The description of
each MacsBug command in Chapter 9 indicates whether that command sets the
dot address. To display the current value of the dot address, type a period and
press Return.

■

The

colon address

is a MacsBug variable that contains the starting address of the
procedure shown in the PC. The colon character (:) refers to this address; you can
use it in any command that expects an address. In the following example, the IP
command disassembles a half page around the instruction beginning 18 bytes into
the current procedure.

IP : + 18

To display the current value of the colon address, type a colon and press Return. If
the current procedure does not have a name, the colon address does not contain a
valid value.

You can also use an expression to specify an address.

Using Expressions in MacsBug Commands 8

The general form of an expression is:

value1 [operator value2].

value

is a hexadecimal number, the name of a register, a trap name or number,
or a procedure name. MMU 64 bit registers and floating-point registers
are not allowed in expressions.

operator

is one of the following:

You can use parentheses to control the order of evaluation. Otherwise, the expression is
evaluated from left to right.

Expressions always evaluate to a 32-bit value unless you append one of the following
prefixes to

value

 to specify otherwise: .W specifies a 16-bit value; .B specifies an
8-bit value.

Expressions evaluate to either a numeric or a Boolean value depending on the operators
used. The action of some commands change based on this result. For instance,

BR

addr expr

breaks at the specified address after

n

times if

expr

 evaluates to a numeric value or
it breaks when

expr

is true if

expr

 evaluates to a Boolean value.

Arithmetic + - * / MOD

Boolean AND or & OR or | NOT or ! XOR

Equality = or == <> or != < > <= >=

Indirection @ (prefix) or ^ (postfix)

C H A P T E R 8

Introduction to MacsBug Commands

The MacsBug Command Line

187

You can use an expression to tell MacsBug to take some action when a certain value is
stored on the stack. For example, the following command specifies that MacsBug should
be invoked when the GetResource routine is about to get a 'DLOG' resource:

ATB GetResource (A7 + 2)^ = 'DLOG'

This command specifies that MacsBug should be invoked when the LNew routine is
about to be executed; the LNew routine is implemented as a package and the expression
checks to see whether its index number (#68) is stored at the top of the stack.

ATB Pack0 SP^.W = #68

Resolving Conflicting Name References 8

There are two situations in which name references might be ambiguous: a trap that has
the same name as a procedure or a numeric value that is identical to a register name.

If a trap name conflicts with a procedure name, attach the symbol † to the trap name to
distinguish it from the name of the procedure. For example, †GetMouse. (To obtain the
† symbol, press Option–T.)

If a numeric value conflicts with a reference to a register, you have three choices. Either
use the $ prefix with the number; for example:

DM D0 + $D0

Or use the RAD command to change the register naming convention and specify

DM RDO + D0

Or use a zero prefix in front of the number; for example:

DM D0 + 0D0

For additional information, see the description of the RAD command in Chapter 9.

Extending the Command Line 8

MacsBug provides no continuation character or any other way to extend the command
line. If you find that a command or commands you want to enter exceeds the capacity of
the command line, you can define one or more macros that will expand to the desired
command or commands and fit within the existing boundaries.

The Command Line as Calculator 8

By stripping you of menus, MacsBug makes it impossible for you to get to desk
accessories. But MacsBug does provide some of the functions you need while you’re
in MacsBug: you can use the command line to convert numbers from one base to
another and to perform arithmetic calculations.

C H A P T E R 8

Introduction to MacsBug Commands

188

The MacsBug Command Line

Base Conversion 8

To convert from hexadecimal to decimal values while you are running MacsBug, type
the hexadecimal number and press Return. MacsBug displays the value you entered in
hexadecimal, signed and unsigned decimal, and ASCII formats, as shown in Figure 8-2.
It’s up to you to determine which formats are relevant and which are not.

Figure 8-2

Base conversion using the command line

The dots in the ASCII section indicate there is no equivalent ASCII character for
the value typed in.

To convert from decimal to hexadecimal values, type a “#” followed by the
decimal number.

In the text of this manual, numbers preceded by a dollar sign are in hexadecimal (like
this: $21E8), and all other numbers are in decimal. In any MacsBug display, all numbers
are in hexadecimal unless they are preceded by a pound sign (like this: #2148).

Command Line Arithmetic 8

You can do simple arithmetic on the command line in hexadecimal and decimal format.
MacsBug recognizes the arithmetic operators shown in Table 8-3.

You can use @ (prefix) or ^ (postfix) to cause

indirection

 (also called

dereferencing

), which
gives you the value a pointer points to rather than the value of the pointer itself.
Wherever you can enter a number in a calculation, you can also enter a register or an
expression made up of numbers and registers.

Table 8-3

tArithmetic operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

MOD Modulus

FFFFFFFB = $FFFFFFFB #4294967291 # - 5 ' '

Value typed in Hexadecimal

value

Unsigned

decimal

value

Signed

decimal

value

ASCII

value

C H A P T E R 8

Introduction to MacsBug Commands

Getting Help

189

If you enter

A0+20

MacsBug adds $20 to register A0 and displays the result. If you enter

A0+#20

MacsBug adds 20 (decimal) to register A0 and displays the result. If you enter

$A0+20

MacsBug adds twenty to the number $A0 (not register A0) and displays the result.

Finally, if you enter

20^

or

 @20

MacsBug treats $20 as a pointer and displays the value it points to. This method of
indicating indirection is valid even in more complex expressions; for example, the
expression

((D0*4)+(A2/#42))/@A4

is valid.

Getting Help 8

The Help command displays help about MacsBug commands, macros, dcmds, and other
likely topics that you might need help with when you’re working with MacsBug.

To display a list of topics that Help knows about, simply type Help and press Return.
MacsBug displays the following information:

Editing

Selecting procedure names

Expressions

Values

Operators

Flow control

Breakpoints

A-Traps

Disassembly

Heaps

Symbols

Stack

Memory

C H A P T E R 8

Introduction to MacsBug Commands

190 Command Line Editing Commands

Registers

Macros

Miscellaneous

dcmds

To display information about any of these topics, enter Help followed by the topic
name. To display information about an individual command, enter Help and the
command name; for example:

HELP BR

BR addr [n | expr] [';cmds']

 Break at addr after n times or when expr is true and optionally

execute one or more commands. If no n or expr then break

always. The addr can be in ROM but will be much slower.

For additional information, see the description of the Help command in Chapter 9.

Command Line Editing Commands 8

Using MacsBug often involves having to type complicated expressions on the command
line. MacsBug provides a set of editing commands that allow you move the cursor
left and right across the command line. Figure 8-3 shows the command line editing
commands.

Figure 8-3 Command line editing commands

Note
If you have worked with previous versions of MacsBug, please note that
the command line editing commands have been redefined in version 6.2
to work as described above. This was done to make command line
editing in MacsBug more like command line editing in MPW. ◆

Option-

Option-

Option-Delete

 -

 -

 -Delete

Move cursor left one word.

Move cursor right one word.

Delete word to the left of the cursor.

Move cursor to the beginning of the line

Move cursor to the end of the line.

Delete the line to the left of the cursor.

C H A P T E R 8

Introduction to MacsBug Commands

Command Line Editing Commands 191

The Command Line Buffer 8

In addition to providing commands that edit the current command line, MacsBug also
provides commands that you can use to copy command lines that you have previously
entered to the current command line; you can then edit these lines and press Return to
execute them or you can execute them as they are.

MacsBug places each command you execute in a circular buffer. Typing Command–V
scrolls the buffer down, copying the previous command to the current command line.
Typing Command–B scrolls the buffer up. Figure 8-4 shows the effect of Command–V
and Command–B. (In this example, the greater the command line number, the more
recent the command.)

Figure 8-4 Effect of Command–B and Command–V

For example, suppose you have just entered the following commands:

vol

ip main

hd code

? sc

ip pc

After executing the last command, the command line is blank. If you now press
Command–V, MacsBug would copy the command ip pc from its internal buffer to the
command line. If you press Command–V again, MacsBug would copy the command ?
sc to the command line. If you press Command-B, MacsBug would copy the command
ip pc to the command line. You can scroll through the buffer using these two

Command line 1

Command line 2

Command line 3

Command line 4

Co
m

m
an

d
V

Co
m

an
d

B
m

-

-

C H A P T E R 8

Introduction to MacsBug Commands

192 Using Macros

command-key combinations. When you have copied the command you’re interested in,
you can press Return to execute the command or you can edit the command and then
execute it.

Using Macros 8

Using macros simplifies your work in MacsBug. A macro allows you to substitute one
string for another. If you anticipate having to type in the same command, expression, or
address over and over again, you can use the MC (Macro Create) command to assign it a
macro name, which you can then use instead of the more complicated entry.

For example, the command

DM @windowlist windowrecord

displays data about the frontmost window. But it takes a while to type and it’s likely
you’ll have to type it repeatedly. A word like “Topwind” is easier to remember and type.
To make “Topwind” a macro for the above command, use the MC command to specify
first the macro name and then its expanded form, the form in which you would have to
type it in for MacsBug to understand it.

MC Topwind 'DM @windowlist windowrecord'

From this point on (until you restart), whenever you type Topwind, MacsBug executes
the command DM @windowlist windowrecord.

Macro Commands 8
MacsBug contains three commands that help you work with macros:

■ MC: The Macro Create command defines macros that you can use until you restart.

■ MCD: The Macro Display command displays currently installed macros; this includes
macros defined with the MC command as well as macros defined using the 'mxbm'
resource. The MCD command displays the name of the macro in the first column and
its expanded form in the second column; for example:

RTS PC = SP^;SP = SP + 4

This standard macro demonstrates how you can use a macro to emulate an instruction.

■ MCC: The Macro Clear command clears all macros from memory. Macros defined in
the Debugger Prefs file are always available. You load them into memory when
MacsBug loads at startup time.

These commands are described in greater detail in Chapter 9, “MacsBug Commands.”

C H A P T E R 8

Introduction to MacsBug Commands

Using Macros 193

▲ W A R N I N G

Be careful not to use the name of an existing MacsBug command as a
macro name. If you do, you will no longer be able to use the name to
execute the command. If you want to make sure a name isn’t already
assigned, execute the Help command followed by the name. If MacsBug
displays the message “Unable to find help for this topic,” the name is
available for use. Note that the macro names FirstTime and EveryTime
are also reserved. ▲

Using 'mxbm' Resources to Define Permanent Macros 8
When you use the MC command to create a macro, you can use the macro until you
shut down the Macintosh. When you restart, you have to recreate that macro if you want
to use it again. To make a macro permanent, you must define it using a resource of
type 'mxbm'.

This section explains how you use MacsBug macro resources to define and store macros
permanently, and describes most of the predefined macros that ship with MacsBug.

Standard Macros 8

MacsBug includes 'mxbm' resources that define standard macros that are generally
helpful in debugging: some are used to define useful command lines or expressions and
others to provide a means of translating low-memory global names (macro name) into
the appropriate address (macro expansion), giving you the convenience of using names
rather than addresses. These 'mxbm' resources are part of the Debugger Prefs file and are
loaded when you start the system.

Table 8-4 describes the macros defined by the 'mxbm' resource.

Table 8-4 Macros defined by the 'mxbm' resource

Macro Expansion and purpose

GG BRC;ATC;G
The GG macro clears all breakpoints and A-trap breaks and
resumes execution.

GS SB 12D 1;G;T 2;SB 12D 0
The GS macro allows you to step over the LoadSeg trap. After you
execute the GS macro, the PC will point to the first instruction of
the routine in the code segment that was loaded. See the section
“Inter-Segment Calls and the Jump Table” in Chapter 3 for
additional information.

RTS PC = SP^;SP = SP + 4
After executing a JSR or BSR, but before the LINK instruction is
executed, the RTS macro allows you to abort the current procedure
and return to the return address. In order for the RTS macro to do
the right thing, the return address must be at the top of the stack.
The RTS macro is an example of how you can use a macro to
emulate an instruction.

continued

C H A P T E R 8

Introduction to MacsBug Commands

194 Using Macros

GTO GT :+
The GTO macro allows you to specify an address as an offset from
the start of the current procedure. Thus GTO 12 means Go till the
instruction stored at the twelfth byte from the start of the current
procedure. For additional information, see the description of the
GT command in Chapter 9.

BRO BR :+
The BRO macro allows you to set a breakpoint and specify the
breakpoint address as an offset within the current procedure. Thus
BRO 12 means set a breakpoint at the instruction stored at the
twelfth byte from the start of the current procedure. For additional
information, see the description of the BR command in Chapter 9.

thePort DM RA5^^ GrafPort
The macro thePort displays the data defining the current GrafPort.

theWindow DM RA5^^ WindowRecord
The macro theWindow displays the data defining the front-
most window.

theCPort DM RA5^^ CGrafPort
The macro theCPort displays the data defining the current
color GrafPort.

IJ IL (.+2)^
If you’re tracing into a jump table entry that contains a JMP
to an absolute address instruction, the IJ macro allows you to
disassemble as many lines as you like starting with the instruction
that is being jumped to. Thus IJ 12 disassembles 12 lines.

DevList DM @@DeviceList GDevice
The DevList macro displays the GDevice record for each currently
installed video device. If you press Return, MacsBug displays the
record for the next device. MacsBug displays the message “End of
Linked List” when it has displayed information about the last
device in the list.

VcbList DM @(VCBQHdr+2) VCB
The VcbList macro displays a volume control block record for each
mounted volume. If you press Return, the volume control block
record for the next volume is displayed. See Chapter 5, “The
Macintosh Operating System,” for additional information.

WindList DM @WindowList WindowRecord
The WindList macro displays the window record for the frontmost
window of the current application. If you press Return, MacsBug
displays the window record for the next window. MacsBug
displays the message “End of linked list” when it has shown you
information about all the windows that are open in the current
application.

AP DM CurApName pString
The AP macro displays the name of the current application.

continued

Table 8-4 Macros defined by the 'mxbm' resource (continued)

Macro Expansion and purpose

C H A P T E R 8

Introduction to MacsBug Commands

Using Macros 195

Creating Permanent Macros 8

You can create your own 'mxbm' resources in two ways. First, you can use ResEdit; the
Debugger Prefs file contains templates for creating and editing 'mxbm' resources. Or,
you can use the file Macros.r (included on the MacsBug disk) as a model for building
your own resource. Be sure to give your resource a unique ID, and then use the Rez tool
to add it to the Debugger Prefs file.

This section includes step-by-step instructions that you can follow to create your own
'mxbm' resource using ResEdit version 2.0 and later.

Follow these steps to create a permanent macro called Topwind for the command

DM @WindowList WindowRecord

1. Open the System Folder and double click on the Debugger Prefs file.
 This launches ResEdit.

2. From ResEdit, open the Debugger Prefs file in the System Folder of your
startup volume.

3. Open the 'mxbm' file.

4. Choose Create New Resource from the Resource menu.
ResEdit opens a new 'mxbm' resource.

5. Click on the * * * * *

VBLTasks DM @(VBLQueue+2) VBLTask
The VBLTasks macro displays information about each VBL task
that is currently installed. To display information about the next
VBL task, press Return. MacsBug displays the message “End of
linked list” when it has shown you information about all currently
installed VBL tasks.

RamF – RamFP You use these macros to define RAM as the range for the Find
command. See the Find command in Chapter 9 for additional
information.

SysF – SysFP You use these macros to define the System heap as the range for
the Find command. See the Find command in Chapter 9 for
additional information.

ApF – APFP You use these macros to define the current application heap as the
range for the Find command. See the Find command in Chapter 9
for additional information.

ZF – ZFP You use these macros to define the current TargetZone (heap zone
set with the HX command) as the range of the Find command. See
the description of the Find command in Chapter 9 for additional
information.

Table 8-4 Macros defined by the 'mxbm' resource (continued)

Macro Expansion and purpose

C H A P T E R 8

Introduction to MacsBug Commands

196 Using Macros

6. Choose Insert New Field(s) from the Resource menu.
ResEdit displays a template like the one shown in Figure 8-5.

Figure 8-5 New 'mxbm' template

7. Use the Tab key to position the insertion point in the Macro name field.
This field contains the name of the macro.

8. Type Topwind

9. Use the Tab key to position the insertion point in the Expansion field.
This field contains the command or commands you want MacsBug to execute when
you enter the macro name.

10. Type DM @WindowList WindowRecord
At this point, if you wanted to use this resource to define more macros, you would
click on the bottom row of * * * * * and repeat steps 6 through 8.

11. Choose Save and then Quit from the File Menu. Restart your Macintosh to load
the macro.

12. Invoke MacsBug and type Topwind
MacsBug should display the window record that describes the frontmost window.

The FirstTime and EveryTime Macros 8

Two macro names have been predefined by MacsBug to allow you to customize your
debugging environment:

■ FirstTime is a special initialization macro that loads and executes automatically when
MacsBug loads during system startup. You can use the FirstTime macro to set up
certain options, specify default values, or execute certain commands every time you
start or restart your Macintosh. For example, you can use the FirstTime macro to turn
on A-trap recording.
To have the startup process continue automatically, end the FirstTime macro with the
G command. Be aware that on a Macintosh Plus, the G command is required. Because
the keyboard is initialized after MacsBug, you won’t be able to type G to continue.
You need to use the 'mxbm' resource to define a FirstTime macro.

C H A P T E R 8

Introduction to MacsBug Commands

Using dcmds 197

■ EveryTime is a macro that is executed every time but not the first time MacsBug is
invoked. For example you could define HC as an EveryTime macro. If you create an
EveryTime macro, be aware that the last command executed by that macro is set as
the default command; this command will be repeated if you press Return.
Do not end an EveryTime macro with the G command or you will never be able to
invoke MacsBug.
You can use either an 'mxbm' resource or the MC command to define this macro.

Using dcmds 8

No matter how many features and commands are build into new versions of MacsBug,
developers who use it keep thinking of refinements that would make their own work
easier. If you need to extend or modify MacsBug’s command set, you can use dcmds. A
dcmd is a piece of code that you write and compile to provide the additional functions
you need in your work.

Dcmds are code resources of type 'dcmd'. MacsBug is shipped with standard dcmds
that are loaded into the system heap when you install the Debugger Prefs file. You
can use ResEdit to install the dcmds you write yourself in the Debugger Prefs file.
MacsBug loads all the dcmds from this file during system startup; so after adding a
dcmd, you must restart your Macintosh in order to use it. Each dcmd is a separate
resource; you can assign it any resource number that has not been used before for a
'dcmd' resource. MacsBug identifies dcmds by their resource names.

Because dcmds reside in a separate file, there’s no complicated installation process to
follow when MacsBug is updated. You just move the dcmd resources from the old
Debugger Prefs file to the new Debugger Prefs file, renumbering them if necessary.
Because they are not tied to MacsBug, dcmds can potentially be shared with other
debuggers.

The section “Standard dcmds” describes the standard dcmds that are included in the
DebugPrefs file.

The section “Creating Your Own dcmds” describes in detail how to write code defining a
dcmd and how to link and build the dcmd.

Standard dcmds 8
Table 8-5 lists the dcmds included in the Debugger Prefs file 'dcmd' resource.

C H A P T E R 8

Introduction to MacsBug Commands

198 Using dcmds

The printf dcmd 8

The printf dcmd is a formatted output command that behaves very much like the C
programming language printf command. This section describes how you use the printf
command if you are unfamiliar with C, and gives several examples of how you can use it
in debugging. To avoid confusion, please interpret any reference to the printf command
in this section as a reference to the MacsBug printf dcmd, not the C printf command.

The syntax of the printf command is

printf "string" arg [arg] ...

"string" is a combination of literals and conversion specifications.

arg is an expression that is evaluated and converted according to the
conversion specification to which it corresponds.

A conversion specification consists of the percent symbol (%), which introduces the
specification; an optional digit specifying the field width of the converted argument;
and a conversion character specifying how the argument is to be represented.

Table 8-6 shows how MacsBug interprets the conversion characters you use in the
printf dcmd.

Table 8-5 Standard dcmds

dcmd Description

drvr [refnum|num] Lists all the currently installed drivers or lists informa-
tion for the specified driver. See Chapter 5 for an
explanation of this display.

file [fRefNum|"filename"] Lists all open files or information about the specified
file. See Chapter 5 for an explanation of this display.

vol [vRefNum | drvNum
| "volumeName"]

Lists all the volumes on line or displays volume informa-
tion for the specified volume. See Chapter 5 for an
explanation of this display.

vbl Lists all the VBL tasks currently installed. See Chapter 5
for an explanation of this display.

printf "format" arg... Displays the arguments according to the format. See the
description of this command in the next section.

C H A P T E R 8

Introduction to MacsBug Commands

Using dcmds 199

In the sample printf command below, %d and %s are the conversion specifications, and
1990 and Wednesday are the arguments.

printf "Data for %d will be available on %s" 1990, Wednesday

The command produces the following output:

Data for 1990 will be available on Wednesday

If you’re logging the output of a MacsBug session, you can use the printf dcmd to make
MacsBug output more intelligible. The command,

printf "this application is %s" curapname

produces this output:

this application is Finder

If you are using the DebugStr inline call to invoke MacsBug from within your source
program, you can use the printf command to have MacsBug output key values during
program execution.

This printf command

printf "Register A7 (%8x) points to word %x (= #%d)." RA7 RA7^.W RA7^.W

produces this output

Register A7 (4b7026) points to word 4080 (= #16512).

Note the use of 8 in the first specification (%8x) to specify the field width of the
converted argument.

Table 8-6 Conversion characters for the printf dcmd

Conversion
character Meaning Example

d decimal integer 93

o octal integer 77

x hexadecimal integer 2F

u unsigned decimal integer 99

c single character q

s string application

C H A P T E R 8

Introduction to MacsBug Commands

200 Using dcmds

Listing Available dcmds 8
To find out what dcmds are installed, drop into MacsBug and enter

HELP dcmd

MacsBug will list all the dcmds that are available, along with a brief description of what
each one does and its parameters, if any. To get help on a specific dcmd, type HELP and
the name of a specific dcmd; for example:

HELP vbl

MacsBug displays the same help message in both circumstances; using the more specific
help request just saves space in the output region of the MacsBug display.

Creating Your Own dcmds 8
The MacsBug distribution disk includes a dcmd folder that contains sample dcmds,
written in both C and Pascal, interface files, and a glue file to be linked with the
compiled dcmd when you build the dcmd. The dcmd folder also includes an application
you can use to debug your dcmd, TestDcmd, and an MPW tool, BuildDcmd, that
translates an application into a 'dcmd' resource and copies it into the Debugger Prefs file.
This section explains how you use all these pieces to write your own dcmd.

Writing dcmds is very similar to writing HyperCard 'XCMD' resources. A 'dcmd'
resource begins with a 4-byte segment header, followed immediately by the program
code. Since dcmds are limited to a single segment, the segment header is used to specify
a dcmd version number and the amount of space MacsBug needs to allocate for the
dcmd’s global variables. The segment header is written by the BuildDcmd tool; you
don’t need to be concerned with it.

All calls to a dcmd are made through the entry point defined as the fifth byte of the
resource. MacsBug calls a dcmd as a Pascal procedure taking a single parameter, a
pointer to a parameter block. The procedure declaration is

PROCEDURE CommandEntry (paramPtr: dcmdBlockPtr);

This is a public declaration for the dcmdGlue file and must be included in every dcmd.
You cannot change the procedure name. See Figure 8-6 for a skeleton dcmd.

Passing Information to the dcmd 8

The parameter block passed to the CommandEntry procedure is a record that is used to
store information the procedure needs. It is defined as follows:

TYPE dcmdBlockPtr = ^dcmdBlock

dcmdBlock = RECORD

registerFile: RegFilePtr;

request: INTEGER;

aborted: BOOLEAN;

END;

C H A P T E R 8

Introduction to MacsBug Commands

Using dcmds 201

The registerFile field is a pointer to an array containing the contents of the registers.
MacsBug copies the contents of the registers into this array when you execute the dcmd.
This allows you to use constant names for identifying the registers in your dcmd; for
example:

The request field contains one of the following request numbers, which the debugger
passes to the dcmd:

dcmdInit = 0;

dcmdDoIt = 1;

dcmdHelp = 2;

The first call MacsBug makes to a dcmd is an initialize request (dcmdInit). This happens
when MacsBug is installed and requires no user action. In response to this request, the
dcmd can do nothing or it can initialize global variables or gather system information.

The two other calls MacsBug can make to a dcmd are either the dcmdHelp call, if the
user asks for help for a dcmd, or the dcmdDoIt call, if the user executes a dcmd.

The aborted field is used to inform the dcmd when the user has terminated the
command; it’s set to True when the user presses a key (other than Return or the
Space bar) while scrolling.

Figure 8-6 shows the format of the source code for a dcmd. A dcmd can contain more
than one procedure; however, the main procedure must be called CommandEntry.

Figure 8-6 Skeleton dcmd

UNIT dcmdname;

{$R-}

INTERFACE

USES MemTypes, dcmd;

PROCEDURE CommandEntry (paramPtr: dcmdBlockPtr);

VAR {declare global variables if any}

IMPLEMENTATION

PROCEDURE CommandEntry (paramPtr: DCmdBlockPtr);

VAR {declare local variables if any}

Data Registers: DORegister – D7Register

Address Registers: A0Register – A7Register

Program Counter: PCRegister

Status Register: SRRegister (value stored in high word)

C H A P T E R 8

Introduction to MacsBug Commands

202 Using dcmds

BEGIN

 IF paramPtr^.request = dcmdInit THEN

BEGIN { The dcmd gets called once when loaded to init itself }

END {this can be an empty statement}

 ELSE

 IF paramPtr^.request = dcmdDoIt THEN

BEGIN { Do the command's normal function }

END

 ELSE

 IF paramPtr^.request = dcmdHelp THEN

 BEGIN { Display the command's help information }

dcmdDrawLine ('dcmdname syntax');

dcmdDrawLine (' helpmessage');

dcmdDrawLine (' helpmessage--continued');

 END;

 END;

END

You can write source code for a dcmd using Pascal, C, or assembly language. You can
also use callback routines to parse the MacsBug command line, display information, and
so on. These routines are defined in the interface files. It is not a good idea to include
system calls in your dcmd. For additional information see the section “Restrictions on
dcmds,” in this chapter.

If you are using assembly language to write the source code, please be aware that
a dcmd uses Pascal calling conventions: the dcmd is responsible for popping the
parameters off the stack. The dcmd must also preserve registers D3 through D7 and
A2 through A6.

Table 8-7 provides a summary of the callback routines that you can use in writing
dcmds. In addition to the routines listed in Table 8-7, MacsBug also includes a
dcmdSwapWorlds routine and a dcmdForAllHeapBlocks routine. For information about
these two routines and for more detailed information about the rest of the routines,
please refer to the interface file.

Table 8-7 DCMD callback routines

Name Description

dcmdDrawLine(mystr) Draws the text in mystr as one or more lines
separated by CRs.

dcmdDrawString(mystr) Draws the text in mystr as a continuation of
current line.

dcmdDrawText(strptr, n) Draws n characters starting from strptr, as a
continuation of current line.

continued

C H A P T E R 8

Introduction to MacsBug Commands

Using dcmds 203

Responding to a dcmdHelp Request 8

When the user enters help and the dcmd name, MacsBug will call the appropriate dcmd
with a dcmdHelp request. In response, your dcmd code can use one of the callback
routines that display text to display the help message for the dcmd. Figure 8-7 shows
how the Where dcmd responds to the dcmdHelp request:

dcmdScroll Scrolls the output region up one line; leaves a
blank line at the bottom.

dcmdDrawPrompt(mystr) Displays mystr in the command line area and waits
for key to be pressed. Returns True if user presses
CR; returns False for other keys.

dcmdGetPosition Returns an integer for the current command
line position.

dcmdSetPosition(pos) Sets pos, which should be a value returned by
dcmdGetPosition.

dcmdGetNextChar Returns the next character or CR if entire line has
been scanned.

dcmdPeekAtNextChar Returns next character or CR if entire line has
been scanned; does not change current command
line position.

dcmdGetNextParameter(mystr) Copies all characters from the command line to
mystr until a delimiter or CR is reached. Strings
with matching quotes are allowed.

dcmdGetNextExpression(value, ok)
Parses command line for next expression;
evaluates expression and returns in value. ok is
True if line was parsed successfully. Returns
delimiter.

dcmdGetBreakMessage(mystr) Copies break message last displayed by MacsBug
into mystr.

dcmdGetNameAndOffset(addr, mystr)
Returns offset within procedure for addr, in mystr.

dcmdGetTrapName(number, name)
Returns the trap name in name for the trap number.

dcmdGetMacroName(value) Returns pointer to macro name for value.

dcmdSwapScreens Toggle between user and debugger displays.

Table 8-7 DCMD callback routines (continued)

Name Description

C H A P T E R 8

Introduction to MacsBug Commands

204 Using dcmds

Figure 8-7 Responding to the dcmdHelp request

IF paramPtr^.request = dcmdHelp THEN

BEGIN { Display the command's help information }

dcmdDrawLine ('WHERE [addr | trap]');

dcmdDrawLine (' Display information about address or trap');

dcmdDrawLine (' If no parameter then use PC as the address');

END;

If at all possible, your dcmd help messages should use the same format as that used to
provide help for MacsBug commands: the command syntax should be displayed first,
followed by an explanatory message. The syntax conventions used to describe MacsBug
commands are described near the beginning of this chapter.

Responding to a dcmdDoIt Request 8

When the user executes a dcmd, MacsBug calls the dcmd with a dcmdDoIt request.
Figure 8-8 shows how the Where dcmd responds to the dcmdDoIt request.

The code uses the dcmdPeekAtNextChar routine and the dcmdGetNextExpression
routine to parse the command line. If the user presses Return following the dcmd
name, the routine returns the value of the program counter. If the user specifies a trap
address, the routine returns the name of the trap using the dcmdGetTrapName routine.
If the user specifies an address that’s an offset in a procedure, the routine uses the
dcmdGetNameAndOffset routine to return the name of the procedure and the offset of
the instruction within the procedure.

Figure 8-8 Responding to the dcmd DoIt request

IF paramPtr^.request = dcmdDoIt THEN

BEGIN { Do the command's normal function }

IF dcmdPeekAtNextChar = CHR(CR) THEN

 address := paramPtr^.registerFile^[PCRegister]

ELSE

 BEGIN

 ch := dcmdGetNextExpression (address, ok);

IF NOT ok THEN

 BEGIN

 dcmdDrawLine ('Syntax error');

 Exit (CommandEntry);

 END;

 END;

C H A P T E R 8

Introduction to MacsBug Commands

Using dcmds 205

IF (address >= $0000A000) AND (address <= $0000ABFF) THEN

 BEGIN

 dcmdGetTrapName (address, name);

 dcmdDrawLine (name);

 END

ELSE

 BEGIN

dcmdGetNameAndOffset (address, name);

IF Length (name) > 0

 THEN dcmdDrawLine (name)

 ELSE dcmdDrawLine ('No procedure name found');

 END;

END

Restrictions on dcmds 8

The restrictions that you should observe in writing a dcmdare a result of the
circumstances under which you are likely to use the command: debugging code
following a system crash.

■ Because the system might be in an unstable state, making a system call is generally a
bad idea.

■ Never allocate memory on a heap nor make a system call that allocates memory;
remember, you could have entered MacsBug at interrupt time.

■ A dcmd has about a 1K stack available to it; if you need more memory than this,
allocate it in global variables.

■ Although you can write dcmds that override existing MacsBug commands, it is
recommended that you do not override flow control commands like G, S, ATB,
and so on;

Building a dcmd 8

To build a dcmd in MPW 3.1, enter the following commands. (You need to specify your
own information for the italicized fields.)

Pascal dcmdname.p
Link dcmdGlue.a.o dcmdname.p.o {Libraries}Runtime.o -o dcmdname
BuildDcmd dcmdname resource_number

It is important that the dcmdGlue.a.o file be the first file you link with. The BuildDcmd
builds a 'dcmd' resource with the name and number you specify.

The source code provided for dcmds requires MPW 3.1 to build the dcmds. It does not
currently build with MPW 3.2. This does not affect the execution of the dcmds included
in the file Debugger Prefs.

C H A P T E R 8

Introduction to MacsBug Commands

206 Using dcmds

Debugging dcmds 8

Debugging dcmds can be difficult, since they function within MacsBug. A special
application called TestDCMD, which ships with MacsBug, is designed to help you debug
your own dcmds. TestDCMD is a shell that calls the dcmd and provides the normal
support the dcmd expects from MacsBug. But since it is running within the TestDCMD
application, you can debug it using MacsBug.

You do not have to load the dcmd by restarting your system to test it. The TestDCMD
tool will execute the dcmd as if it had already been loaded and display information to let
you know if it’s not working.

C H A P T E R 9

MacsBug Commands 9Figure 9-0
Listing 9-0
Table 9-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 9

MacsBug Commands

208

This chapter describes most MacsBug commands except for dcmds and macros, which
are described in Chapter 8, “Introduction to MacsBug Commands.” The commands in
this chapter are listed in alphabetical order. In addition to these commands, MacsBug
provides two others that are not included in this chapter:

■

The dot command

 displays the current value of the dot address.

■

The procedure display command,

 Command-D or Command-:, displays a menu of
procedure names for the current application.

For additional information about these commands, please see “The Dot Address and the
Colon Address” in Chapter 8.

Chapter 8 provides a complete introduction to the use of MacsBug commands. This
chapter assumes that you are familiar with the material covered in Chapter 8.

C H A P T E R 9

MacsBug Commands

ATB — A-trap Break

209

ATB — A-trap Break 9

DESCRIPTION

The A-trap Break command invokes MacsBug whenever the microprocessor encounters
the specified A-trap.

SYNTAX

ATB[A] [

trap

 [

trap

]] [

n

 |

expr

] [';

cmd

 [;

cmd

]...']

A specifies that MacsBug should only be invoked when the A-trap is called
from the application heap.

trap

is a trap name or number specifying the trap. Specifying two traps
indicates a range of traps. If you omit this parameter, MacsBug is invoked
every time an A-trap is called.

n

is a hexadecimal number specifying that MacsBug should be invoked
every

n

th time that the trap is encountered.

expr

specifies that MacsBug should be invoked when the trap is encountered
and

expr

 is true.

cmd

specifies a command for MacsBug to execute after it is invoked.

SEE ALSO

ATC, ATD

Considerations 9

A-trap breaks are not associated with a specific instance of an A-trap call. Rather,
MacsBug is invoked any time the specified A-trap is called and the other conditions
you specified using the ATB command are met.

When you set one or more breakpoints using the ATB command, MacsBug records the
number in a table. Whenever the microprocessor encounters an A-trap, MacsBug
compares the A-trap with the entries in the table. If it finds a match (and whatever other
conditions you have specified using the ATB command are met), MacsBug displays the
debugging screen and shows you the state of the microprocessor and memory just before
the A-trap is executed. The program counter is set to the address of the instruction that
invoked the A-trap.

Use the ATD command to display current trap actions; use the ATC command to clear
A-trap breaks.

C H A P T E R 9

MacsBug Commands

210

ATB — A-trap Break

Breaking on Related A-traps 9

Because A-traps belonging to the same manager are grouped together by number,
specifying a range is another way of telling MacsBug to break on every A-trap belonging
to a particular manager. If you want to exclude some A-traps belonging to a particular
manager, you can use the ATC (A Trap Clear) command. For additional information, see
the ATC command.

Breaking on A-traps Called from the Application Heap 9

The A option restricts MacsBug to breaking only when the specified A-trap is called from
the application heap. MacsBug does this by checking that the value of the program
counter lies within the application heap range. Note that if you set a breakpoint in one
application and you do not clear it, the breakpoint remains valid so that if you quit the
application and run another application, the same A-trap call will invoke MacsBug.

Breaking on A-traps in a Package 9

If the A-trap that you want to break on is part of a package, you need to follow a slightly
different procedure. All of the routines in a package are implemented by one A-trap
number. Each routine within a package is identified by an index number. When a
program calls a routine in the package, the routine’s parameters are pushed onto the
stack first, and then the routine’s index number. This index number is called a routine
selector. Sometimes the routine selector is placed in a register. To determine where the
routine selector is placed, consult the description of the package to which it belongs in

Inside Macintosh

.

This means that in order to break on an individual routine in a package you need to
supply the package number as the routine name and then check the value on the stack to
see if it matches the index value for the routine you’re interested in. For example, to
place a break on the routine LNew, a List Manager routine, you would use the ATB
command

ATB Pack0 SP^.W = #68

That is, break whenever the A-trap Pack0 is called and the word stored on top of the
stack equals 68. Note that your specification of the routine selector is just part of the
normal ATB syntax; the specification is the

expr

that is an option for the command. This
means that if you want to impose additional conditions, you would have to use AND to
connect them with the condition that looks for the routine selector; for example:

ATB Pack0 SP^.W = #68 AND PC < ApplZone

MacsBug is shipped with several sets of macros that allow you to place A-trap breaks on
individual routines inside a package. The macros actually place an A-trap break on the
whole package, with a condition that checks the index selector to see if it’s the routine
you wanted––just as in the previous example. This saves you the work of looking up an

C H A P T E R 9

MacsBug Commands

ATB — A-trap Break

211

individual routine and finding out what its index selector is and whether it is placed on
top of the stack or in a register. For example, you can just enter

ATB LNew

and MacsBug expands the macro to

ATB Pack0 SP^W = #68

You need to remember however that the macro name includes an expression. This means
that you can’t use the

n

 option and that if you want to impose an additional condition,
you have to put an AND in front of it; for example

ATB LNew AND PC < ApplZone

Creating a Custom A-trap Trace 9

You can create a custom A-trap trace by executing the ATB command with an associated
action. For example, if you enter

ATBA ';TD;G'

MacsBug displays all registers when the breakpoint is reached. The ATT command only
shows information for selected registers. If you do this, you might want to log the output
in case you exhaust the limits of MacsBug’s output buffer.

For additional information about A-traps, see Chapter 5, “The Macintosh Operating
System.”

Examples 9

The following examples show some uses of the ATB command:

Break on every A-trap.

ATB

A-Trap Break at A000 (_Open) thru ABFF (_DebugStr) every time

Break on every call to MenuSelect.

ATB MenuSelect

A-Trap Break at A93D (_MenuSelect) every time

Break on every call to MenuSelect made from within the application heap.

ATBA MenuSelect

A-Trap Break at A93D (_MenuSelect) every time

C H A P T E R 9

MacsBug Commands

212

ATB — A-trap Break

Break on every A-trap between A010 and A020, inclusive.

ATB a010 a020

A-Trap Break at A010 (_Allocate) thru A020 (_SetPtrSize) every time

Break on MenuSelect calls when register D0 equals $6.

ATB menuselect d0 = 6

A-Trap Break at A93D (_MenuSelect) when d0 = 6

Break on every third MenuSelect call.

ATB MenuSelect 3

A-Trap Break at A93D (_MenuSelect) every #3 times

Break on every MenuSelect call, and execute the commands HC and DM910.

ATB MenuSelect ';HC;DM 910'

A-Trap Break at A93D (_MenuSelect) every time and execute ;hc;dm 910

C H A P T E R 9

MacsBug Commands

ATC — A-trap Clear

213

ATC — A-trap Clear 9

DESCRIPTION

The A-trap Clear command clears actions set on all the specified A-traps with the ATB,
ATT, ATHC, and ATSS commands.

SYNTAX

ATC [

trap

 [

trap

]]

trap

is a trap name or number specifying the trap. Specifying two traps
indicates a range of traps. If you omit this parameter, MacsBug clears
all A-trap actions.

SEE ALSO

ATB, ATD, ATHC, ATSS, ATT

Considerations 9

You can use the ATC command following an ATB, ATT, ATHC, or ATSS command to
exclude A-traps from the range specified for these commands. For example, if you set the
range for the ATHC command to be all A-traps,

ATHC

MacsBug displays the message

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) every time

If you then use the ATC command to exclude the StripAddress command

ATC StripAddress

MacsBug displays the message

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) split into two ranges

Since the ATC command does not execute conditionally, it is not possible to clear an
A-trap belonging to a package. However, if you don’t mind excluding all the A-traps in a
package, you can clear the package as a whole.

When you use the ATC command to exclude an A-trap from the action you define for a
range, what you are actually doing is setting two ranges. The ATC command saves you
the trouble of setting two ranges by doing the work itself. This means that, even though
you are ostensibly clearing a trap action, you are actually creating an additional entry in
the A-trap table and could receive the error message “Entry will not fit in the table.”

C H A P T E R 9

MacsBug Commands

214

ATC — A-trap Clear

Examples 9

Clear all A-trap actions:

ATC

All A-Traps actions cleared

Clear actions on WaitNextEvent; leave actions on other A-traps unchanged:

ATC WaitNextEvent

A-trap Break at A860 (_WaitNextEvent) cleared

C H A P T E R 9

MacsBug Commands

ATD — A-trap Display

215

ATD — A-trap Display 9

DESCRIPTION

The A-trap Display command displays information about all actions currently set with
the ATB, ATT, ATHC, and ATSS commands.

SYNTAX

ATD

SEE ALSO

ATB, ATC, ATHC, ATSS, ATT, WH

Example 9

Assume you have entered the following commands:

ATHC MenuSelect 3
ATB WaitNextEvent ';hc'
ATB GetPort D0=6
ATB LNew

If you then enter the ATD command, MacsBug displays the following information:

A-Trap actions from System or Application
Trap Range Action Cur/Max or Expression Commands
_MenuSelect Check 00000000 / 00000003
_WaitNextEvent Break every time
_WaitNextEvent Break every time ;hc
_GetPort Break D0 = 6
_Pack0 Break SP^.W=#68

MacsBug lists the name of the trap or the trap range in the first column. It lists the action
set on the trap in the second column.

The value displayed in the third column depends on whether you used the

n

or

expr

option with the ATB command. If you specified that the trap action should occur every

n

th time the trap executes, MacsBug displays the current value (Cur) and the value you
have specified (Max) at which the action should occur. If you specified that the trap
action should occur when

expr

 is true, MacsBug displays the expression it is evaluating
in the third column.

If the A-trap belongs to a package and you use a macro to specify the individual trap,
MacsBug expands the macro and displays the expression that tests for the routine’s
index value in the third column. See the description of the ATB command for additional
information.

MacsBug uses the fourth column to display any commands that you specified should be
executed when the action on the A-trap takes place.

C H A P T E R 9

MacsBug Commands

216

ATHC — A-trap Heap Check

ATHC — A-trap Heap Check 9

DESCRIPTION

The A-trap Heap Check command checks the heap before executing the specified A-trap.
If the heap is bad, MacsBug displays the debugging screen and an error message. See the
HC command in this chapter for a list of possible errors.

SYNTAX

ATHC[A] [

trap

 [

trap

]] [

n

|

expr

]

A specifies that MacsBug should only check the heap when the A-trap is
called from the application heap.

trap is a name or number specifying the trap. Specifying two traps indicates a
range of traps. If you omit this parameter, MacsBug checks the heap every
time an A-trap is called.

n is a hexadecimal number specifying that MacsBug should check the heap
every nth time that the trap is encountered.

expr specifies that MacsBug should check the heap only when trap is
encountered and expr is true.

SEE ALSO

ATC, ATD, HC

Considerations 9
Because the ATHC command checks the heap before executing an A-trap, it is not the
A-trap that the PC is currently pointing to that has corrupted the heap, but either the
previous A-trap or an instruction belonging to your application. The ATHC command
therefore allows you to narrow the range of statements that might be causing your
problem.

The most common way to use the ATHC command is without parameters, thus checking
the heap before every A-trap. If you use it in this way you need to note that the Memory
Manager makes trap calls while moving heap blocks around. In such cases, the ATHC
command will return an error because the heap is inconsistent, albeit temporarily. You
can eliminate these error messages by using the ATHCA command to check the heap
only when traps are called by your application.

You can specify an A-trap belonging to a package for the trap parameter to the ATHC
command; see “Breaking on A-traps in a Package,” under the ATB command, for
additional details.

C H A P T E R 9

MacsBug Commands

ATHC — A-trap Heap Check 217

For additional information about A-traps, see Chapter 5, “The Macintosh Operating
System”; for additional information about heaps, see Chapter 4, “Macintosh Memory
Organization.”

Example 9
The following commands direct MacsBug to check the heap before executing every
A-trap except for StripAddress:

ATHC

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) every time

ATC StripAddress

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) split into two ranges

The following ATHC command checks the heap before every LNew routine. The LNew
routine is a List Manager (Pack0) routine. In this example LNew is a macro; LNew
expands to Pack0 SP^.W = #68.

ATHC LNew
A-Trap Check at A9E7 (_Pack0) when SP^.W=#68

C H A P T E R 9

MacsBug Commands

218 ATP — A-trap Playback

ATP — A-trap Playback 9

DESCRIPTION

The A-trap Playback command displays the information saved while trap recording is
on. If trap recording is turned off, the ATP command displays information from the most
recent ATR.

SYNTAX

ATP

SEE ALSO

ATR

Considerations 9
The ATP command returns the following information about each trap call:

■ The trap number and trap name.

■ The address from which the call was made; this is the PC value. If your compiler
embeds procedure names, MacsBug also shows you the address of the PC as an offset
from the beginning of the procedure from which the A-trap is called.

■ If the trap is an operating system trap, the values of registers A0 and D0 and the 8
bytes stored at the address in A0.

Operating system traps pass their parameters and return the result in registers.
Register A0 often holds the input parameter or the pointer to the parameter. The ATP
command displays information about these registers to allow you to check parameter
values on entry to the routine.

■ If the trap is a Toolbox trap, the value of register A7 and the 12 bytes stored beginning
at that address.

Toolbox traps normally pass their parameters and return the result on the stack.
Parameters are always passed in Pascal format. The ATP command shows you
information about the top of the stack so that you can check parameter values and
return results.

If you suspect that the call is getting bad parameters, you can set a breakpoint at the
address specified by the PC and watch it more closely the next time you run the program.

For additional information about trap recording, see the description of the ATR
command in this chapter.

C H A P T E R 9

MacsBug Commands

ATP — A-trap Playback 219

Example 9
The following command displays information recorded after A-trap recording was
turned on with the ATR command:

ATP
Trap calls in the order in which they occurred
 A031 _GetOSEvent
 PC = 4080F21A _GetMouse+00EC
 A0 = 004B67C4 0000 0000 0000 0003 D0 = 0000FFFF
 A9A0 _GetResource
 PC = 4080F278 _GetMouse+014A
 A7 = 004B65BC 0007 464B 4559 4080 F224 DB6D
 A03C _CmpString
 PC = 0002F69E
 A0 = 00000911 4669 6E64 6572 2020 D0 = 00060006
 A025 _GetHandleSize
 PC = 0002E5C8
 A0 = 00036050 2000 3CA4 0003 6060 D0 = 00000000
 A029 _HLock
 PC = 4080F29C _GetMouse+016E
 A0 = 00036050 2000 3CA4 0003 6060 D0 = 20003CA4

C H A P T E R 9

MacsBug Commands

220 ATR — A-trap Record

ATR — A-trap Record 9

DESCRIPTION

The A-trap Record command turns trap recording on and off.

SYNTAX

ATR[A] [ON | OFF]

A specifies that MacsBug should only record A-traps that are called from
the application heap. If you don’t specify ON or OFF, the ATR command
toggles between modes.

SEE ALSO

ATP

Considerations 9
You use the ATP command to display the information recorded by the ATR command.

The number of lines saved by the ATR command depends on whether the 'mxbi'
resource is installed and whether it has been modified.

■ If the 'mxbi' resource is not installed, the ATR command records the last 16 A-traps
encountered by the microprocessor.

■ If the 'mxbi' resource is installed, the ATR command records the last 24 A-traps
encountered by the microprocessor by default. You can change this value by opening
the 'mxbi' resource from ResEdit and entering a new number for “# of traps recorded.”

The information saved by the ATR command includes the trap name and the contents of
the program counter. For operating system traps, the ATR command saves the values of
registers A0 and D0 as well as the 8 bytes pointed to by register A0. For Toolbox traps,
the ATR command saves the value of register A7 and the 12 bytes to which it points.
See the ATP command for additional information about how you use these values
in debugging.

The ATT command outputs the same information as the ATR command. However, the
ATT command causes your program to execute much more slowly because MacsBug
needs to copy information about each A-trap, convert it to text, and write it to the screen.
The ATR command simply copies information about each A-trap to an internal buffer; in
this case, it’s the ATP command that converts the information from the internal buffer to
text displayed on the screen.

If ATR is off, the ATP command will play back information from the most recent ATR.

C H A P T E R 9

MacsBug Commands

ATR — A-trap Record 221

Example 9
The following command turns trap recording on for A-trap calls made from the
application heap:

ATRA

C H A P T E R 9

MacsBug Commands

222 ATSS — A-trap Step Spy

ATSS — A-trap Step Spy 9

DESCRIPTION

The A-trap Step Spy command calculates a checksum for a specified memory range or
for a word at a specified address before executing the specified traps. If the checksum
value changes, the ATSS command invokes MacsBug and does not execute the A-traps.

SYNTAX

ATSS[A] [trap [trap]] [n | expr], addr1 [addr2]

A Specifies that MacsBug should calculate a checksum only before
executing A-traps that are called from the application heap.

trap is a trap name or number that specifies the trap to be executed. Specifying
two traps indicates a range. If you omit this parameter, MacsBug
calculates a checksum before executing every A-trap.

n is a hexadecimal integer specifying that MacsBug should calculate a
checksum after every nth time the specified A-trap(s) executes.

expr specifies that MacsBug should calculate a checksum before the specified
A-trap executes and expr is true.

addr1 specifies that MacsBug should calculate a checksum for the long word at
addr1. If you specify addr2, MacsBug calculates a checksum for the range
of memory defined by addr1 and addr2.

SEE ALSO

ATC, ATD, SS

Considerations 9
Checksumming is a technique used by the debugger to determine whether the contents
of memory have changed. The debugger adds all the values in the specified memory
range and saves the result. After one or more instructions are executed (depending
on whether checksumming is implemented by the ATSS, CS, or SS commands), the
debugger recalculates a sum for the same memory range and compares the new result
to the saved result. If the values differ, MacsBug is invoked.

The ATSS command works fastest when you are calculating a checksum for addr1.

The ATSS command is much faster than the SS (Step Spy) command because it only
checks memory before executing A-traps, whereas the SS command checks after each
68000 instruction. You can use the ATSS command to zero in on a range of instructions
containing the instruction that is affecting the value that concerns you. When the ATSS
command invokes MacsBug, you know that the A-trap that is about to execute is not
responsible for the change in value. You also know that the instruction that you are

C H A P T E R 9

MacsBug Commands

ATSS — A-trap Step Spy 223

looking for is either the previous A-trap or any instruction executed between the
previous A-trap and the instruction pointed to by the PC. You can now use the SS
command within the suspect range to find that instruction.

Having trap recording turned on while using the ATSS command allows you to
determine the previous A-trap call. You can also disassemble backward from the current
PC until you find the previous A-trap.

Use the ATC command to clear actions set with the ATSS command. Use the ATD
command to display actions set with the ATSS command.

Example 9
The following command checksums the long word at $100 on every A-trap call:

ATSS 100
Checksumming from 00000100 to 00000103
 A-Trap Spy at A000 (_Open) thru ABFF (_DebugStr) every time

C H A P T E R 9

MacsBug Commands

224 ATT — A-trap Trace

ATT — A-trap Trace 9

DESCRIPTION

The A-trap Trace command writes information to the MacsBug output buffer when-
ever the microprocessor encounters the specified A-trap, without stopping the
current program.

SYNTAX

ATT[A] [trap [trap]] [n | expr]

A specifies that only information about A-traps called from the application
heap should be written to the output buffer.

trap is a name or number specifying the trap. Specifying two traps indicates a
range of traps. If you omit this parameter, MacsBug writes information
about every A-trap called.

n is a hexadecimal number specifying that MacsBug should write
information every nth time the trap is encountered.

expr specifies that MacsBug should write information when the trap is
encountered and expr is true.

SEE ALSO

ATC, ATD

Considerations 9
The ATT command outputs the same information as the ATR command, only in more
compact form.

The information saved by the ATT command includes the trap name and the contents of
the program counter.

■ For operating system traps, the ATT command saves the values of registers A0 and D0
as well as the 8 bytes pointed to by register A0.

Operating system traps pass their parameters and return the result in registers.
Register A0 often holds the input parameter or the pointer to the parameter. The ATP
command displays information about this register to allow you to check parameter
values on entry to the routine.

■ For Toolbox traps, the ATT command saves the value of register A7 and the 12 bytes
to which it points.

Toolbox traps normally pass their parameters and return the result on the stack.
Parameters are always passed in Pascal format. The ATP command shows you
information about the top of the stack so that you can check parameter values and
return results.

C H A P T E R 9

MacsBug Commands

ATT — A-trap Trace 225

If you suspect that the call is getting bad parameters, you can set a breakpoint at the
address specified by the PC and watch it more closely the next time you run the program.

The ATT command allows you to record information about the state of the
microprocessor right before an A-trap executes. Unlike the ATR command, it allows you
to record information only when the conditions you have specified for the command
are met.

The ATT command outputs the same information as the ATR command. However, the
ATT command causes your program to execute much more slowly because MacsBug
needs to copy information about each A-trap, convert it to text, and write it to the screen.
The ATR command simply copies information about each A-trap to an internal buffer;
in this case, it’s the ATP command that converts the information from the internal buffer
to text displayed on the screen.

Use the ATC command to clear the ATT command; use the ATD command to display
actions set with the ATT command.

▲ W A R N I N G

Using the ATT command when you’re working with a single monitor
and you have swapping turned on can create problems. See the SWAP
command for additional information. ▲

Creating a Custom A-trap Trace 9

You can create a custom A-trap trace by executing the ATB command with an associated
action. For example, if you enter

ATBA ';TD;G'

MacsBug displays all registers when the breakpoint is reached. The ATT command only
shows information for selected registers. If you do this, you might want to log the output
in case you exhaust the limits of MacsBug’s output buffer.

Examples 9
The following command records information about all A-traps:

ATT

A-Trap Trace at A000 (_Open) thru ABFF (_DebugStr) every time

 A02A _HUnlock PC=4080F2A6 D0=00000000 A0=00020960 A1=0027DE84

 A972 _GetMouse PC=4080F2E4 A7=0037FEA0 A7^=0000 09FA 0000 0001

 A871 _GlobalToLocal PC=4080F13E A7=0037FE98 A7^=0000 09FA 4080 F2E6

 A8E2 _EmptyRgn PC=003AF0EE A7=0037FE80 A7^=0038 5D00 EDA6 0000

 A8E2 _EmptyRgn PC=003AF0EE A7=0037FE80 A7^=0038 5BA0 01A6 0000

 A8E2 _EmptyRgn PC=003AF0EE A7=0037FE80 A7^=0038 5C54 01A6 0000

 A8E2 _EmptyRgn PC=003AF672 A7=0037FEA0 A7^=003B 8B34 EDA6 0000

 A924 _FrontWindow PC=003AF33E A7=0037FE6A A7^=4080 60AC 0000 0000

C H A P T E R 9

MacsBug Commands

226 BR — Breakpoint

BR — Breakpoint 9

DESCRIPTION

The Breakpoint command sets a breakpoint at the specified address. When the program
counter is equal to the specified address, MacsBug displays the debugging screen and
you can examine the state of the microprocessor right before the instruction executes.

SYNTAX

BR addr [n | expr] [' ;cmd [;cmd] ...']

addr specifies the address of the instruction where you want to set the
break point.

n specifies that MacsBug break after reaching the instruction n times.

expr specifies that MacsBug break when addr is reached and expr is true.

cmd specifies a command that you want MacsBug to execute after displaying
the debugging screen.

SEE ALSO

BRC, BRD, BRM

Considerations; 9
Entering BR without any parameters is the same as using the BRD (Breakpoint Display)
command; MacsBug displays the breakpoint table.

After you set a breakpoint, type G. The microprocessor executes until it reaches the
specified breakpoint.

Breakpoints remain in effect until you restart. When you no longer need the breakpoints,
remove them with the BRC (Breakpoint Clear) command.

MacsBug stores information for breakpoints, step commands, and A-trap command
actions in a single table. It adds new entries at the end of the table. If MacsBug displays
the message “Entry will not fit in the table,” you need to clear some of the other actions
before you can add the breakpoints.

If you set a breakpoint in a relocatable block, MacsBug stores the breakpoint as a handle
to the breakpoint address. This means that if the block moves, the Memory Manager
automatically updates the breakpoint address.

C H A P T E R 9

MacsBug Commands

BR — Breakpoint 227

Breakpoints are shown in disassembly displays by means of dots placed to the left of the
instruction mnemonic. The disassembled code shown below shows two breakpoints: one
set at the LINK instruction and one at the FindWindow routine.

MouseDwn

+0000 373818 •*LINK A6,#$FFF0 | 4E56 FFF0

+0004 37381C MOVEA.L $0008(A6),A0 | 206E 0008

+0008 373820 MOVE.L $000A(A0),-$0008(A6) | 2D68 000A FFF8

+000E 373826 CLR.W -(A7) | 4267

+0010 373828 MOVE.L -$0008(A6),-(A7) | 2F2E FFF8

+0014 37382C PEA -$0004(A6) | 486E FFFC

+0018 373830 • _FindWindow ; A92C | A92C

+001A 373832 MOVE.W (A7)+,D0 | 301F

+001C 373834 CMPI.W #$0001,D0 | 0C40 0001

How MacsBug Implements Breakpoints 9

When you use the BR command to break on an instruction, MacsBug replaces the
instruction with a TRAP instruction and stores the instruction. When the microprocessor
encounters the TRAP instruction, it generates a trap exception, which invokes MacsBug.
MacsBug puts the original instruction back in its place and displays the debugging
screen. You can use the S (Step) command to execute the instruction.

The only way you can go wrong in using the BR command is if you specify an address
that points to the middle of an instruction. In this case, MacsBug follows its usual
procedure of replacing the instruction with a TRAP instruction. However, because the
TRAP instruction now begins in the middle of an instruction, the microprocessor might
regard it as part of the instruction, which will probably cause an error.

Setting Breakpoints in ROM 9

When you set a breakpoint at a ROM address, the debugger cannot substitute a TRAP
instruction for your instruction because that would require that it write to ROM, which
is impossible. Instead MacsBug zeroes in on the instruction by executing a loop in trace
mode: it executes one instruction and checks the value of the PC. If the PC is equal to
the specified address, it displays the debugger screen and shows the state of the micro-
processor just before the instruction executes. If the PC is not equal to the specified
address, MacsBug allows the instruction to execute and checks the next PC value.

This tracing process is excruciatingly slow, so you might want to use GT (Go Till) to get
to the address of the instruction calling the A-trap, then set the breakpoint, and then use
G (Go) until the microprocessor reaches the breakpoint. The output from the BRD
(Breakpoint Display) command indicates whether the breakpoint implemented in trace
(T) or step (S) mode.

C H A P T E R 9

MacsBug Commands

228 BR — Breakpoint

Setting Breakpoints Within a Procedure 9

If you are working within a procedure, the BRO standard macro allows you to specify
the address of an instruction in that procedure as an offset from the beginning of the
procedure. Thus the command

BRO 18

would set a breakpoint 18 bytes from the beginning of the current procedure and save
you the trouble of entering an address. The BRO macro expands to BR :+.

Using the BR Command to Display Function Results 9

You can display the result of a function every time it’s called by entering the command

BR functionname ' ; MR ; DW SP '

Whenever the breakpoint is reached, MacsBug executes the MR (Magic Return)
command and displays the top word on the stack (the function result). Functions that
return long words should use the command

BR functionname ' ; MR ; DL SP '

Functions that return pointers could dereference the pointer and display the structure
using a template; for example:

BR functionname ' ; MR ; DM SP^ templatename '

Examples 9
The following command sets a breakpoint at the address where the first instruction of
the MouseDwn procedure is stored:

BR MouseDwn
Break at (00373818 MouseDwn) every time

The next command macro, which expands to BR :+, sets a breakpoint 18 bytes into the
current procedure. In this case the current procedure is MouseDwn.

BRO 18
Break at (00373830 MouseDwn+0018) every time

C H A P T E R 9

MacsBug Commands

BR — Breakpoint 229

After you reach the first breakpoint, disassembling from the PC shows the following:

Disassembling from pc

MouseDwn

+0000 373818 •*LINK A6,#$FFF0 | 4E56 FFF0

+0004 37381C MOVEA.L $0008(A6),A0 | 206E 0008

+0008 373820 MOVE.L $000A(A0),-$0008(A6) | 2D68 000A FFF8

+000 73826 CLR.W -(A7) | 4267

+001 73828 MOVE.L -$0008(A6),-(A7) | 2F2E FFF8

+0014 37382C PEA -$0004(A6) | 486E FFFC

+0018 373830 • _FindWindow ; A92C | A92C

+001A 373832 MOVE.W (A7)+,D0 | 301F

+001C 373834 CMPI.W #$0001,D0 | 0C40 0001

C H A P T E R 9

MacsBug Commands

230 BRC — Breakpoint Clear

BRC — Breakpoint Clear 9

DESCRIPTION

The Breakpoint Clear command clears the breakpoint at the specified address. If you do
not specify an address, the command clears all breakpoints.

SYNTAX

BRC [addr]

addr specifies the address where you want to clear the breakpoint. If you omit
this parameter, MacsBug clears all breakpoints.

SEE ALSO

BR, BRD, BRM

Considerations 9
Use the BR command to set breakpoints. Use the BRD (Breakpoint Display) command to
display current breakpoint settings.

If you don’t use the BRC command to clear breakpoints, they remain in effect until
you restart.

Example 9
The following command clears all breakpoints:

BRC
All breakpoints cleared

C H A P T E R 9

MacsBug Commands

BRD — Breakpoint Display 231

BRD — Breakpoint Display 9

DESCRIPTION

The Breakpoint Display command displays addresses where breakpoints are
currently set.

SYNTAX

BRD

SEE ALSO

BR, BRC, BRM

Considerations 9
MacsBug implements the GT (Go Till) command by setting a temporary breakpoint. If
you enter MacsBug by some other means and execute the BRD command, this
breakpoint remains set and you’ll see an entry for it in the breakpoint table.

Use the BR command to set breakpoints; use the BRC command to clear breakpoints.

See the following example for an explanation of BRD output.

Example 9
MacsBug displays the information like the following in response to the BRD command:

BRD
 Breakpoint table

 Address Module name Cur/Max or Expression Commands
t 0040E794 R AbleMenu every time
t 0040E778 R UseAppRes every time
t 0040E7D4 R ABSPoint every time
t 0040E800 R BubbleUp every time

■ The first column contains a marker that indicates whether the breakpoint is reached in
Trace (T) or Step (S) mode.

■ The Address column shows the address of the instruction where the breakpoint has
been set. The column preceding the Module Name column contains the letter R if the
instruction is in a relocatable block.

■ If you leave MacsBug, run your program, and then go back to examine the breakpoint
table, do not be surprised if the addresses of instructions belonging to relocatable
blocks have changed.

C H A P T E R 9

MacsBug Commands

232 BRD — Breakpoint Display

■ The Module Name column displays the name of the procedure in which the
instruction belongs. (MacsBug cannot supply the name of the procedure if your
compiler does not embed procedure names.)

■ If you specified that MacsBug should be invoked every nth time the instruction
executes, the Cur/Max or Expression column shows you the current value of the
counter (Cur) and the value you specified for n (Max). If you specified that MacsBug
implement the breakpoint when some condition is met, this column shows what that
condition is.

■ The Commands column lists the commands you specified should be executed
following the breakpoint.

C H A P T E R 9

MacsBug Commands

BRM — Multiple Breakpoints 233

BRM — Multiple Breakpoints 9

DESCRIPTION

The Multiple Breakpoints command allows you to set breakpoints using partial
name matching.

SYNTAX

BRM name

name is a string. MacsBug sets a breakpoint at the beginning of all routines
whose names contain name.

SEE ALSO

BR, BRC, BRD

Considerations 9
You can use this command for setting breakpoints on groups of related routines. This is
useful for programs written in object-oriented languages, because you can use the name
of an object to set breakpoints on all the object’s methods.

Use the BRC command to clear breakpoints set with the BRM command; use the BRD
command to display information about breakpoints set with the BRM command.

If you are debugging a C++ program and need to break on a name that is qualified using
double colons, you must enclose the string in quotation marks, since the colon has
another meaning in MacsBug. The following command breaks on all classes that contain
a Draw method:

BRM '::Draw'

This command breaks on all methods in the class TParseNode:

BRM 'TParseNode::'

Example 9
The following listing shows the output to the BRM command:

BRM
 Break at 00411A14 (strcpy) every time
 Break at 00411A48 (strncpy) every time
 Break at 00411A86 (_SA_DeletePtr) every time
 Break at 00411AAE (operator new(unsigned int)) every time
 Break at 00411AF8 (operator delete(void *)) every time
 Break at 00411D04 (ostream::operator <<(const char *)) every time
 Break at 00412314 (ostream::operator <<(long)) every time

C H A P T E R 9

MacsBug Commands

234 CS — Checksum

CS — Checksum 9

DESCRIPTION

The Checksum command allows you to determine whether the contents at the specified
address or within the specified memory range have changed.

SYNTAX

CS [addr [addr]]

addr If you specify a single address, MacsBug checksums the long word at that
address; if you specify two addresses, MacsBug checksums the range of
memory defined by the addresses.

SEE ALSO

SS, ATSS

Considerations 9
Checksumming is a technique used by the debugger to determine whether the contents
of memory have changed. The debugger adds all the values in the specified memory
range and saves the result. After one or more instructions are executed (depending
on whether checksumming is implemented by the ATSS, CS, or SS commands), the
debugger recalculates a sum for the same memory range and compares the new result to
the saved result. If the values differ, MacsBug is invoked.

The Checksum command checksums a range of memory and stores the value. If you
enter CS again without an address parameter, it checksums the same range of memory
and compares the new value to the stored value. It then displays a message letting you
know whether the value has changed.

Examples 9
The following examples checksum the long word at address 9D:.

CS 9d6
Checksumming from 000009D6 to 000009D9

CS
Checksum is the same

C H A P T E R 9

MacsBug Commands

DB – Display Byte 235

DB – Display Byte 9

DESCRIPTION

The Display Byte command displays the byte at the specified address.

SYNTAX

DB [addr]

addr specifies the address containing the byte to be displayed. If you omit
this parameter, the DB command displays the byte at the dot address.

SEE ALSO

DL, DM, DP, DW

Considerations 9
If you press Return following a DB command, MacsBug displays the next byte. MacsBug
then sets the dot address to the address of the byte displayed.

The DB command displays four values for the specified memory location. The first
column shows the hexadecimal value; the second column shows the unsigned decimal
value, the third column shows the signed decimal value; and the fourth column shows
the ASCII value, as shown in the example that follows.

Examples 9
The following example, shows the output from the command DB 910, followed by the
output from pressing Return seven times:

DB 910
 Byte at 00000910 = $07 #7 #7 '•'
 Byte at 00000911 = $63 #99 #99 'c'
 Byte at 00000912 = $69 #105 #105 'i'
 Byte at 00000913 = $72 #114 #114 'r'
 Byte at 00000914 = $63 #99 #99 'c'
 Byte at 00000915 = $6C #108 #108 'l'
 Byte at 00000916 = $65 #101 #101 'e'
 Byte at 00000917 = $73 #115 #115 's'

C H A P T E R 9

MacsBug Commands

236 DH — Disassemble Hexadecimal

DH — Disassemble Hexadecimal 9

DESCRIPTION

The Disassemble Hexadecimal command converts one or more hexadecimal values to
assembler mnemonics.

SYNTAX

DH expr ...

expr is an expression that evaluates to a hexadecimal value.

Considerations 9
For information about assembled and disassembled code, please see Chapter 3, “An
Assembly-Language Primer.”

Examples 9
The DH command displays the address of the internal buffer it uses to disassemble code
in the first column—you need not be concerned about this value—then displays the
disassembled opcode:

DH 0B30 0000
Disassembling hex value
 3DD494 BTST D5,$00(A0,D0.W) | 0B30 0000
DH 7E1E
Disassembling hex value
 3DD494 MOVEQ #$1E,D7 | 7E1E

C H A P T E R 9

MacsBug Commands

DL — Display Long 237

DL — Display Long 9

DESCRIPTION

The Display Long command displays the long word at the specified address.

SYNTAX

DL [addr]

addr specifies the address containing the long word to be displayed. If you
omit this parameter, the DL command displays the long word at the
dot address.

SEE ALSO

DB, DM, DP, DW

Considerations 9
If you press Return following a DL command, MacsBug displays the next long word.
MacsBug then sets the dot address to the address of the (last) long word displayed.

The first column of the display shows the hexadecimal value of the long word; the
second column shows the unsigned decimal value; the third column shows the signed
decimal value; and the fourth column shows the ASCII value, as shown in the example
that follows.

Examples 9
The following example shows the output from the command DL 970, followed by the
output from pressing Return three times. After the last Return, the dot address is set
at 97C.

DL 970
{Return}
{Return}
{Return}
Long at 00000970 = $0E436C69 #239299689 #239299689 '•Cli'
Long at 00000974 = $70626F61 #1885499233 #1885499233 'pboa'
Long at 00000978 = $72642046 #1919164486 #1919164486 'rd F'
Long at 0000097C = $696C6520 #1768711456 #1768711456 'ile '

C H A P T E R 9

MacsBug Commands

238 DM — Display Memory

DM — Display Memory 9

DESCRIPTION

The Display Memory command displays memory starting from the specified address.

SYNTAX

DM [addr [nbytes| template | basic type]]

addr specifies the address from which to start displaying memory. If you omit
this parameter, the DM command starts the display at the dot address.

nbytes is a hexadecimal integer specifying the number of bytes to display. If you
omit this parameter, the DM command displays 16 bytes.

template specifies the name of a template to use in formatting the display.

basic type specifies the name of a basic type to use in formatting the display.

SEE ALSO

DB, DL, DP, DW

Considerations 9
If you are displaying a low-memory global, you can type its name and MacsBug will
expand the macro the address. For example:

DM SysResName
Displaying memory from 0AD8
 00000AD8 0653 7973 7465 6D20 2020 2020 2020 2020 •System

The DM command displays the address at the left, followed by 16 bytes starting at that
address. It displays the same 16 bytes in ASCII at the extreme right of the display.

Most people find it difficult to make heads or tails of straight hexadecimal code.
Although ASCII helps, a lot of data isn’t in ASCII code. To help you through the
hexadecimal maze, MacsBug lets you display memory using predefined templates or
basic types. Which you use depends on what you are displaying. The basic types are
defined in Table 9-1.

C H A P T E R 9

MacsBug Commands

DM — Display Memory 239

Templates are composed of fields defined using the types shown above and other types
that cannot be used with the DM command but are useful for building templates. You
can use the basic types to display small chunks or memory or you can use predefined
templates to display larger structures.

The TMP command, described in this chapter, lists the names of all the templates that are
currently defined. For information about creating your own templates, see “Using
Templates to Display Memory” in Chapter 4.

Example 9
The following example uses the DM command to display information about a window
record whose address is stored in the WindowList global. WindowRecord is the name of
the template that formats the display of memory starting at @WindowList.

DM @WindowList WindowRecord

 Displaying WindowRecord at 002191C8
002191D8 portRect #0 #0 #300 #350
002191E0 visRgn 002190EC -> 00222A20
002191E4 clipRgn 002190B4 -> 00222A34
00219234 windowKind 0008
00219236 visible TRUE
00219237 hilited TRUE
00219238 goAwayFlag TRUE
00219239 spareFlag TRUE
0021923A strucRgn 002190B0 -> 00222A48

Table 9-1 Basic memory display types

Type Display

Byte Display in hexadecimal

Word Display in hexadecimal

Long Display in hexadecimal

SignedByte Display in decimal

SignedWord Display in decimal

SignedLong Display in decimal

UnsignedByte Display in decimal

UnsignedWord Display in decimal

UnsignedLong Display in decimal

Boolean Display byte as TRUE (nonzero) or FALSE (0)

pString Display a Pascal string

cString Display a C string (zero-terminated)

C H A P T E R 9

MacsBug Commands

240 DM — Display Memory

0021923E contRgn 002190AC -> 002192A8
00219242 updateRgn 002190A8 -> 002192BC
00219246 windowDefProc 080020D4 -> 20832A5C
0021924A dataHandle 0021909C -> 002192F4
0021924E titleHandle 02190A4 -> 002192D0 -> circles
00219252 titleWidth 002B
00219254 controlList 00219090 -> 00220B28
00219258 nextWindow 00219124 ->
0021925C windowPic NIL
00219260 refCon 00219088

C H A P T E R 9

MacsBug Commands

DP — Display Page 241

DP — Display Page 9

DESCRIPTION

The Display Page command displays a page (128 bytes) of memory starting from the
specified address.

SYNTAX

DP [addr]

addr specifies the address containing the lowest four bytes of memory
displayed. If you omit this parameter, the DP command displays
memory starting at the dot address.

SEE ALSO

DB, DL, DM, DW

Considerations 9
After you execute the DP command, MacsBug sets the dot address to the address of the
first byte displayed. If you press Return, the DP command displays the next 128 bytes
and sets the dot address to the address of the first byte of the new range.

Example 9
The following example displays memory from address 100:

DP 100

 Displaying memory from 100

 00000100 FFFF 0048 0048 0080 0013 A878 003C 06F0 •••H•H•••••x•<••

 00000110 0037 9B10 0037 9758 0027 C144 0000 2CDC •7•••7•X•'•D••,•

 00000120 F03E C45A FFFF FFFF FFFF FFFF 0000 0003 •>•Z••••••••••••

 00000130 0037 975A 0000 2F20 FFFF FFFF FFFF 0000 •7•Z••/ ••••••••

 00000140 0000 0000 FFEF 0000 3964 0000 0000 0000 ••••••••9d••••••

 00000150 0000 0000 0013 0003 0BAC 0604 FFFF FFFF •••••••••••••••

 00000160 0000 0000 2F24 003A AF46 0003 3C0A 0003 ••••/$•:•F••<•••

 00000170 0BAD 80FF 0000 0000 0000 0000 0000 0000 •••••••••••••••

C H A P T E R 9

MacsBug Commands

242 DSC — Discipline

DSC — Discipline 9

DESCRIPTION

The Discipline command turns the Discipline utility on and off. You use Discipline to
check the validity of the parameters you pass to A-traps and the values returned to your
applications by the A-traps.

SYNTAX

DSC[A][X] [ON | OFF]

A specifies that Discipline only checks A-trap calls made from your
application.

ON turns Discipline on.

OFF turns Discipline off.

X directs MacsBug to keep the Discipline error report internally and
continue execution rather than stopping before and after every trap call
and display Discipline messages.

Considerations 9
You must install Discipline before you can use the DSC command.

Discipline is an invaluable aid to debugging. The fact that it can report errors before they
can affect other parts of your program and become difficult to find can save you time
and energy. For information about how to install and use Discipline during program
development, please see Chapter 6, “Discipline.”

Example 9
The following command turns Discipline on and specifies that Discipline only check
A-trap calls made from your application:

DSCA ON

C H A P T E R 9

MacsBug Commands

DV — Display Version 243

DV — Display Version 9

DESCRIPTION

The Display Version command displays the version of MacsBug currently in use.

SYNTAX

DV

Example 9
DV
 MacsBug version 6.2
 Copyright Apple Computer, Inc. 1981-1991
 CODE Leo Baschy, Michael Tibbott, scott douglass
 TEST Leo Baschy, Keith Nemitz
 BOOK Joanna Bujes, Bob Anders
 PMGR Tom Chavez

C H A P T E R 9

MacsBug Commands

244 DW — Display Word

DW — Display Word 9

DESCRIPTION

The Display Word command displays the word at the specified address.

SYNTAX

DW [addr]

addr specifies the address of the word you want to display. If you omit this
parameter, the DW command displays the word at the dot address.

SEE ALSO

DB, DL, DM, DP

Considerations 9
If you press Return, the DW command displays the next word.

The DW command displays the hexadecimal value at the specified address in the first
column; it displays the unsigned decimal value in the second column, the signed
decimal value in the third column, and the ASCII value in the fourth column.

The DW command sets the dot address to the address of the last word shown.

Example 9
The following example shows the output from the DW command, followed by the
output from pressing Return twice. After the last Return, the dot address is set to 104.

DW
{Return}
{Return}
Word at 00000100 = $FFFF #65535 #-1 '••'
Word at 00000102 = $0048 #72 #72 '•H'
Word at 00000104 = $0048 #72 #72 '•H'

C H A P T E R 9

MacsBug Commands

DX — Debugger Exchange 245

DX — Debugger Exchange 9

DESCRIPTION

The Debugger Exchange command allows you to disable user breaks.

SYNTAX

DX [ON | OFF]

If you do not specify ON or OFF, the DX command toggles between the two modes

Considerations 9
MacsBug defines two traps, Debugger ($A9FF) and DebugStr ($ABFF), that allow you
to invoke MacsBug from within your program. The Debugger trap simply invokes
MacsBug; the DebugStr trap invokes MacsBug, displays a message, and executes any
commands you have specified. The DX command allows you to disable these user
breaks. It saves you the work of having to remove the trap calls from your program and
it allows you to restore them easily whenever you need to.

This command is useful when you have so many user breaks in your program that you
are continuously dropping into MacsBug. For example, if you have placed a user break
in a loop and you wish you hadn’t, you can disable it with the DX command without
having to change and recompile your source program.

Even when user breaks are disabled, messages specified by DebugStr will still be
displayed; however, MacsBug will ignore commands associated with DebugStr. The DX
command does not affect breakpoints, exceptions, or other A-traps.

See “Invoking MacsBug From Your Source Program” in Chapter 2 for additional
information about how to include user breaks in your program.

Example 9
The following command enables user breaks:

DX ON
 User breaks enabled

C H A P T E R 9

MacsBug Commands

246 EA – Exit to Application

EA – Exit to Application 9

DESCRIPTION

The Exit to Application command restarts the application from which MacsBug
was invoked.

SYNTAX

EA

SEE ALSO

ES

Considerations 9
The EA command has the same effect as returning to the Finder and relaunching the
application. If you want to return to the application at the point where you left it when
MacsBug was invoked, use the G (Go) command.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES,
RS, and RB. For additional information about how to select the appropriate command,
see Chapter 2, “Getting Started.”

Example 9
EA

C H A P T E R 9

MacsBug Commands

ES — Exit to Shell 247

ES — Exit to Shell 9

DESCRIPTION

The Exit to Shell command returns you to the Finder.

SYNTAX

ES

SEE ALSO

EA

Considerations 9
Use the ES command when you are in MacsBug because your application crashed, but
you don’t think the system as a whole is dead. If you use this command after a crash,
you should restart soon after because the system might have been damaged.

The ES command might not work with applications that override system traps. The ES
command executes the ExitToShell trap, which initializes the application heap, usually
destroying any system patches located there.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES,
RS, and RB. For additional information about how to select the appropriate command,
see Chapter 2, “Getting Started.”

Example 9
ES

C H A P T E R 9

MacsBug Commands

248 F — Find

F — Find 9

DESCRIPTION

The Find command searches for a specified pattern of bytes.

SYNTAX

F[B | W | L | P] addr nbytes expr

or

F addr nbytes expr | "string"

B specifies that the Find command should search for the byte
value specified by expr.

W specifies that the Find command should search for the word
value specified by expr.

L specifies that the Find command should search for the long word
value specified by expr.

P specifies that the Find command should search for the lower 3 bytes
of expr.

addr specifies the starting point of the range where MacsBug should begin the
search. MacsBug uses the value of addr + nbytes –1 to determine the end
point of the range. MacsBug provides a number of standard macros that
make it easier to specify address ranges.

expr specifies the value to search for.

"string" specifies the string to search for.

Considerations 9
If you use the F command without indicating the length you are looking for (B, W, L, or
P), MacsBug looks for the smallest unit (Byte, Word, or Long word) that will contain the
value specified by expr.

When it has found the pattern you specify, the Find command displays the address
of the pattern’s first byte, 16 bytes starting at that address, and the same bytes in
ASCII format.

To search for the next occurrence of expr or "string", press Return. Once the Find
command finds the specified pattern, it adds the size of the pattern to the address
where the pattern begins and sets the dot address to that address.

C H A P T E R 9

MacsBug Commands

F — Find 249

Using the Find Command to Locate References to a Pointer 9

A specific Find command that looks for pointers (FP) is useful because in software
releases prior to system software version 7.0, applications (and managers) sometimes
used the high byte of the long word containing an address to pass data. For example, the
Memory Manager used the high byte of the long word containing the address of a
relocatable lock to specify whether the block was purgeable, locked, or a resource. This
means that you cannot use the FL command to find every reference to an address
because the high byte of the address can change, though the same address is being
referenced. The FP command allows you to work around this problem by looking only
for the lower 3 bytes and returning a 4-byte address.

Macros for the Find Command 9

MacsBug provides a number of standard macros that you can use to specify common
address ranges for the Find command. Table 9-2 describes these macros.

The variable TargetZone used in the Z Find commands described in Table 9-2 is defined
as the zone currently selected by the HX command. You can use it with other MacsBug
commands to indicate a range.

Table 9-2 Macros for the Find command

Macro Description Macro Expansion

RamF
RamFW
RamFL
RamFP

Defines RAM as the address range of
the Find command.

Example: RamF 'Main'

F 0 BufPtr^
FW 0 BufPtr^
FL 0 BufPtr^
FP 0 BufPtr^

SysF
SysFW
SysFL
SysFP

Defines the System zone as the
address range of the Find command.

Example: RamFW 1234

F SysZone^ (SysZone^^-SysZone^)
FW SysZone^ (SysZone^^-SysZone^)
FL SysZone^ (SysZone^^-SysZone^)
FP SysZone^ (SysZone^^-SysZone^)

ApF
ApFW
ApFL
ApFP

Defines the application zone as the
address range of the Find command.

Example: ApFP 0032e232

F ApplZone^ (ApplZone^^-ApplZone^)
FW ApplZone^ (ApplZone^^-ApplZone^)
FL ApplZone^ (ApplZone^^-ApplZone^)
FP ApplZone^ (ApplZone^^-ApplZone^)

ZF
ZFW
ZFL
ZFP

Defines the zone selected by the last
HX command as the address range
of the Find command.
Example: ZFL 000A232B0

F TargetZone (TargetZone^-TargetZone)
FW TargetZone (TargetZone^-TargetZone)
FL TargetZone (TargetZone^-TargetZone)
FP TargetZone (TargetZone^-TargetZone)

C H A P T E R 9

MacsBug Commands

250 F — Find

Examples 9
This example uses the FP command to search for references to the pointer 022B40 in
RAM. Note that you could also enter RamFP 022B40.

FP 0 BufPtr^ 022B40

{Return}

{Return}

Searching for xx022B40 from 00000000 to 003C06EF

 0017D14E 7002 2B40 F442 7008 C06B 0012 670E 2F2B p•+@•Bp••k••g•/+

Searching for xx022B40 from 0017D152 to 003C06EF

 0018081E 0202 2B40 E48A 70FF 2B40 E48E 558F 486D ••+@••p•+@••U•Hm

This example uses the F command to search for the string "Chapter 9/Commands" in the
application heap. Note that you could enter ApF "Chapter 9/Commands" instead.

F ApplZone^ (ApplZone^^-ApplZone^) "Chapter 9/Commands"

Searching for "Chapter 9/Commands" from 0027C144 to 00379757

 0027C295 4368 6170 7465 7220 392F 436F 6D6D 616E Chapter 9/Comman

C H A P T E R 9

MacsBug Commands

G — Go 251

G — Go 9

DESCRIPTION

The Go command allows you to leave MacsBug and resume program execution.

SYNTAX

G [addr]

addr specifies the address where you want to resume execution of your
program. If you omit this parameter, MacsBug resumes execution
at the current program counter.

SEE ALSO

GT, MR

Considerations 9
If you have used any commands to execute your program after invoking MacsBug, the
Go command (without an address specification) will resume execution of your program
at the next instruction. If the value of the program counter has not changed since you
invoked MacsBug, executing the Go command resumes execution at the exact point
where MacsBug was invoked.

You can use Command-G as an alternate way of entering G. In this case, MacsBug
ignores any commands in the current command line.

Example 9
G

C H A P T E R 9

MacsBug Commands

252 GT — Go Till

GT — Go Till 9

DESCRIPTION

The Go Till command executes your program until the program counter reaches the
specified address.

SYNTAX

GT addr [';cmd [;cmd] ...']

addr specifies an address. When the program counter is equal to this address,
the GT command invokes MacsBug.

cmd specifies a command that MacsBug should execute when the break-
point specified by addr has been reached.

SEE ALSO

G, MR, BRD

Considerations 9
The GT command sets a temporary breakpoint at the specified address and resumes
execution of your program until the program counter reaches that address.

The breakpoint specified with the GT command has an entry in the breakpoint table. If
you enter MacsBug by some other means, this breakpoint remains set and you can see an
entry for it in the table. For example, if you use the command GT 00A602, invoke
MacsBug before the instruction at that address is reached, and the use the BRD
command to display information about break actions, MacsBug would show you the
following information about the break set with the GT command:

Breakpoint table
 Address Module name Cur/Max or Expression Commands
 t 0000A602 R NEWPROC once

See the description of the BRD command for an explanation of the display.

When the GT command invokes MacsBug, it also clears the entry in the table. You can
use the BRC command if you want to remove the breakpoint before reaching the address.

Specifying an address in ROM will cause execution to be slow because MacsBug must
trace through each instruction until it reaches the breakpoint address. See the BR
command for additional information.

C H A P T E R 9

MacsBug Commands

GT — Go Till 253

Using the GT Command Within a Procedure 9

If you want to use the GT command to Go till an instruction in the current procedure,
you can use the GTO standard macro to save yourself some work. The GTO macro
allows you to specify the address of an instruction in the current procedure as an offset
from the beginning of the procedure. Thus the command

GTO 18

executes the current procedure until the program counter reaches the instruction that is
18 bytes from the current procedure and saves you the trouble of entering an address.
The GTO macro expands to GT :+.

Example 9
The following command invokes MacsBug when the program counter reaches A602 and
displays the long word to which A7 points:

GT A602 ';DL A7^'

C H A P T E R 9

MacsBug Commands

254 HC — Heap Check

HC — Heap Check 9

DESCRIPTION

The Heap Check command tells you whether the information in the heap zone header or
in any of the block headers in the current heap has been corrupted. If it has, your
application will crash.

SYNTAX

HC

SEE ALSO

ATHC, HD

Considerations 9
A common cause of damaged block headers is writing past the end of a heap block and
over the beginning of the next one. HC is a good command to try after any crash, before
proceeding with more commands.

The HC command checks the consistency of the current heap—that is, the heap set with
the HX command. You can use the HZ command to determine the current heap: the HZ
command displays the starting address of all the heaps and labels the current heap as
TargetZone. See the HZ command for additional information.

If the HC command returns an error message, you should run your program with ATHC
on the next time to narrow down the range of calls that might be corrupting your heap.
See the ATHC command for additional information.

An alternate way of narrowing down the source of heap corruption is to use the
DebugStr trap with an argument of ';HC;G'.Sprinkle the DebugStr ';HC;G' throughout
your program. Each time the microprocessor encounters the DebugStr routine, MacsBug
will do a heap check. If the heap is bad, it will break and report the error. If the heap is
OK, your program will continue to execute.

HC Error Messages 9

The HC command performs consistency checks by comparing information stored in the
heap zone header with information stored in the header of each relocatable and
nonrelocatable block in the heap. The “Memory Manager” chapter in Inside Macintosh,
Volume II, provides specific detail about the information that is stored in the zone and
block headers.

The information in the heap zone header and the block header is created and maintained
by the Memory Manager. But the Memory Manager has no way to prevent your writing
over information maintained in the zone header or block header. This might happen

C H A P T E R 9

MacsBug Commands

HC — Heap Check 255

either because of dangling pointers or handles that cause you to write to the wrong
location or because you are writing beyond a block’s boundary and into the next block.
For example, if a block contains an array of n elements and you write to the n+1 element,
you might be writing into the next block’s header. Thus, although the HC command can
return fairly specific information in its error messages about what header fields have
been corrupted, the two most common causes for the inconsistencies it finds are the ones
described above: bad handles/pointers or writing beyond a block’s boundary and into
the header of the next block.

Note that all the heap commands check the heap as they execute; if a heap error is
detected, they cancel the operation and return one of the error messages shown below.
For additional information about heap zones and heap blocks, see Chapter 4, “Macintosh
Memory Organization.”

The following list describes the HC error messages and the consistency checks that
produce them:

■ BkLim does not agree with heap length
Walking through the heap block by block must terminate at the start of the trailer
block, as defined by the bkLim field of the zone header.

■ Block length is bad
The block header address plus the block length must be less than or equal to the
trailer block address. Also, the trailer block must be a fixed length.

■ Free bytes in heap do not match zone header
The cbFree field in the zone header must match the total size of all the free blocks in
the heap.

■ Free master pointer list is bad
Free master pointers in the heap are chained together, starting with the hFstFree field
in the zone header and terminated by a NIL pointer

■ Master pointer does not point at a block
The master pointer for a relocatable block must point at a block in the heap.

■ Nonrelocatable block: Pointer to zone is bad
Block headers of nonrelocatable blocks must contain a pointer to the zone header.

■ Relative handle is bad
The relative handle in the header of a relocatable block must point to a master pointer.

■ Zone pointer is bad
The zone pointer for the current heap (SysZone, ApplZone, or user address) must be
even and in RAM. In addition, the bkLim field of the header must be even and in
RAM, and must point after the header.

C H A P T E R 9

MacsBug Commands

256 HC — Heap Check

To display the information maintained in the heap zone header, enter the command

DM ApplZone ^zone
Displaying Zone at 003879E0
 003879E0 bkLim 00484FF4 ->
 003879E4 purgePtr 00387A14 ->
 003879E8 hFstFree 003EC5F8 ->
 003879EC zcbFree 0003A2C4
 003879F0 gzProc 004CD0DA ->
 003879F4 moreMast 0040
 003879F6 flags 0000
 003879FE heapType 00
 00387A08 purgeProc NIL
 00387A0C sparePtr 4080EE4E ->
 00387A10 allocPtr 003BC418 ->

Example 9
HC
 The Application heap is ok

C H A P T E R 9

MacsBug Commands

HD — Heap Display 257

HD — Heap Display 9

DESCRIPTION

The Heap Display command displays information about the blocks in the current heap.

SYNTAX

HD [qualifier]

qualifier specifies the kind of block that you want information to be displayed for.
You can specify one of the following for qualifier:

F Free blocks

N Nonrelocatable blocks

R Relocatable blocks

L Locked blocks

P Purgeable blocks

Q Questionable blocks

RS Resource blocks

type Resource blocks of this type only

If you omit to specify a qualifier, the HD command displays information
about all blocks in the current heap.

SEE ALSO

HC

Considerations 9
To stop and restart a heap display listing, press Return. To cancel the listing, press the
Backspace or Delete key.

Before displaying information about the heap blocks, the HD command tells you the
name of the current heap. At the end of the heap display, the HD command displays a
message that tells you the number of blocks listed, the total number of bytes used, how
many of these bytes store data, and how many free or purgeable bytes are left in the
current heap zone. Free bytes do not necessarily represent memory that can be allocated
to any one block, since this free space is probably fragmented.

C H A P T E R 9

MacsBug Commands

258 HD — Heap Display

It is now possible to obtain a full heap dump display even if there is some partial
damage to block headers. The HD display includes the following special symbols to
indicate the problem:

■ An exclamation point (!) is placed in the Mastr Ptr column for a non relocatable block
if the part of the block header containing the pointer to the heap zone has been
damaged.

■ An exclamation point (!) is placed in front of a relocatable block’s master pointer if the
address of the master pointer is not in the heap.

■ A question mark (?) is placed in front of a relocatable block’s master pointer if the
master pointer does not in fact point to the start of the block.

The HD command with Q as a parameter, lists all blocks with partially damaged headers
as just described. The error messages displayed by the HC command provide the same
information.

If you request information about resource blocks of a particular resource type, it is not
necessary to place quotes around the name unless you want MacsBug to distinguish
between uppercase and lowercase characters.

If the HD command does not find the specified blocks, it displays the message “No
blocks of this type found.”

Interpreting the Heap Display 9

Each line of the heap display gives information about one heap block. Heap blocks are
listed in order from the lowest address to the highest address. Table 9-3 describes the
information provided by the columns of the display.

Table 9-3 Interpreting the HD display

Column Description

1 A dot specifies that the block cannot move. The block is either
nonrelocatable or it is a locked relocatable block.

Start Specifies the address of the first byte of the block’s contents.

Length Shows as the addition of two operands. The first operand is the block’s
logical size; the second operand is the padding added by the Memory
Manager to meet other requirements. The sum of the operands is the
block’s physical size.

Tag Indicates whether the block is free (F), nonrelocatable (N), or
relocatable (R).

Mstr Ptr Specifies the address of the master pointer if the block is relocatable.

Lock Specifies L for locked blocks.

Prg Specifies P for purgeable blocks.

Type Specifies the resource type name for a resource block.

continued

C H A P T E R 9

MacsBug Commands

HD — Heap Display 259

If the block for which information is being displayed is in a resource, but MacsBug does
not know the name of the resource, it displays the message “Resource not found.” This
might happen because the resource is detached or because the block for which you are
displaying information is not in the current TargetZone. For additional information
about heaps and blocks, see Chapter 4, “Macintosh Memory Organization.”

Example 9
In the following example, the HX command sets the System heap as the current
heap and the HD command displays information for FOND resource blocks in the
System heap:

HX

The target heap is the System heap

HD FOND

 Displaying the System heap at 00001E00

 Start Length Tag Mstr Ptr Lock Prg Type ID File Name

00025C54 0000003C+00 R 00001E70 FOND 0000 0002 Chicago

 0002C630 00000924+00 R 00020AD4 FOND 009C 0002 Garamond

 00043944 00000060+00 R 00020AE0 P FOND 0003 0002 Geneva

 00052848 00000902+02 R 00020A84 P FOND 0016 0002 Courier

 #4 blocks listed, which use #4836 bytes, storing #4802 bytes

 There are #220624 free or purgeable bytes in this heap

ID Specifies the resource id number for a resource block.

File Specifies the resource file reference number for a resource block.

Name Specifies the resource name for a resource block if a name has
been assigned.

Table 9-3 Interpreting the HD display (continued)

Column Description

C H A P T E R 9

MacsBug Commands

260 HELP — Help

HELP — Help 9

DESCRIPTION

The Help command displays information about the given command or section.

SYNTAX

HELP [cmd | topic]

cmd is the name of a MacsBug command or dcmd

topic is one of the topics displayed when you just enter HELP.

Considerations 9
If you do not specify a command or a topic, the Help command displays a list of topics
for which it can provide help. If you then press Return, the Help command displays
information for each topic.

Help information is contained in the 'mxbh' resource, which is approximately 10K in
size. If you need to conserve space, you can use ResEdit to remove this resource from the
Debugger Prefs file. This, of course, means that you can no longer access on-line help. Do
not ever modify this resource, because the Help command expects the information in a
particular format.

Examples 9
HELP SC
SC6 [addr [nbytes]]
 Show the calling chain based on A6 links. If no addr then the
 chain starts with A6. If addr then the chain starts at addr. If
 no nbytes then the stack base is CurStackBase. If nbytes then
 the stack base is addr+nbytes.

HELP LOG
LOG [pathname | Printer]
 Log all MacsBug output to a file or to an ImageWriter printer.
 LOG without parameters turns logging off.

HELP
Return shows sections sequentially. "HELP name" shows that
section.
 Editing
 Selecting procedure names
 Expressions
 Values

C H A P T E R 9

MacsBug Commands

HELP — Help 261

 Operators
 Flow control
 Breakpoints
 A-Traps
 Disassembly
 Heaps
 Symbols
 Stack
 Memory
 Registers
 Macros
 Miscellaneous
 dcmds

C H A P T E R 9

MacsBug Commands

262 HOW – Display Break Message

HOW – Display Break Message 9

 DESCRIPTION

The Display Break Message command redisplays the break message that was displayed
when you initially entered MacsBug.

SYNTAX

HOW

Considerations 9
The HOW command is handy if the original text has scrolled out of sight or if you want
to record the information to a log file.

If you want to log essential information following the break message, you might want to
define the following macro and execute it right after MacsBug is invoked:

MC totalhow 'LOG breakinfo; HOW; TD; TF; DM SP 100'

Of course, you can specify your own name for the log file. This might even be a good
EveryTime macro; for additional information, see “Using Macros” in Chapter 8.

The macro logs the user break message, the contents of all registers, and the first 100
bytes on the stack when MacsBug was invoked; the listing on the next page shows the
information MacsBug displays or logs in response to this macro

Example 9
LOG breakinfo; HOW; TD; TF; DM SP 100

User break at A000A5E6

 68030 Registers

 D0 = 00000000 A0 = A000A5E4 USP = CD3F9E97

 D1 = 00000007 A1 = 0027DE84 MSP = E149F8FD

 D2 = FFFF457A A2 = 0027DE84 ISP = 0037FE74

 D3 = 00000000 A3 = 0027DE84 VBR = 00000000

 D4 = 0027FFFF A4 = 0027DA30 CACR = 00002101 SFC = 7

 D5 = 00280000 A5 = 003BFFD8 CAAR = EF9FDFF2 DFC = 7

 D6 = 003BFFD8 A6 = 0037FE84 PC = A000A5E6

 D7 = 0027C2EC A7 = 0037FE74 SR = SmXnzvc Int = 0

 68881/68882 FPU Registers

 FP0 = 4011 A1F74CA2 339C0EBF 3.31706394800000000e+5

 FP1 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

 FP2 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

 FP3 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

C H A P T E R 9

MacsBug Commands

HOW – Display Break Message 263

 FP4 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

 FP5 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

 FP6 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

 FP7 = 7FFF FFFFFFFF FFFFFFFF NAN(255)

 EE MC CC QT ES AE

 FPCR = 00 00 FPSR = 00 00 02 08 FPIAR = 00000000

 Displaying memory from sp

 0037FE74 4080 F2A4 0002 0944 0000 0001 4080 F18E @••••••D••••@•••

 0037FE84 0028 3FE0 4080 F1A0 0027 DE84 FFFF 0100 •(?•@••†•'••••••

 0037FE94 0027 DE84 003B 4584 457A 0000 000F 0000 •'•••;E•Ez••••••

.

. {display slightly abbreviated here to save space}

.

 0037FF04 43EF FFFC 2509 250E 4DEA FFFA 94FC 0010 C•••%•%•M•••••••

 0037FF14 4E90 A9F4 003C 0622 DB6D B6DB 6DB6 DB6D N••••<•"•m••m••m

 0037FF24 B6DB 6DB6 DB6D B6DB 6DB6 DB6D B6DB 6DB6 ••m••m••m••m••m•

 0037FF34 DB6D B6DB 6DB6 DB6D B6DB 6DB6 DB6D B6DB •m••m••m••m••m••

 0037FF44 6DB6 DB6D B6DB 6DB6 DB6D B6DB 6DB6 DB6D m••m••m••m••m••m

 0037FF54 B6DB 6DB6 DB6D B6DB 6DB6 DB6D B6DB 6DB6 ••m••m••m••m••m•

 0037FF64 DB6D B6DB 6DB6 DB6D B6DB 6DB6 DB6D B6DB •m••m••m••m••m••

 SP = $0037FE74 #3669620 #3669620 '•7•t'

C H A P T E R 9

MacsBug Commands

264 HS — Heap Scramble

HS — Heap Scramble 9

DESCRIPTION

The Heap Scramble command turns heap scrambling on and off. When heap scrambling
is on, the Memory Manager moves all unlocked relocatable blocks whenever the move
is legitimate—that is, during every A-trap call that can allocate memory directly
or indirectly.

SYNTAX

HS [addr]

addr specifies the starting address of the heap you want scrambled. If you omit
this parameter, the HS command scrambles the application heap.

SEE ALSO

HC

Considerations 9
The HS command is very useful in allowing you to determine whether you have any
dereferenced handles or to find problems that might occur when your program is
running in very limited memory and the Memory Manager has to move blocks around a
lot. It’s simple to use; you turn HS on and run your program.

The Memory Manager will move unlocked relocatable blocks when it encounters one of
the following calls: NewPtr, NewHandle, ReallocHandle, SetPtrSize, or SetHandleSize.
With the latter two, the heap is scrambled only if the block size is being increased. The
HS command checks the heap before scrambling. If it is corrupted, MacsBug breaks and
reports the error. See the HC command for a list of possible errors. MacsBug
automatically turns heap scrambling off when it detects a bad heap.

Unlike the other heap commands, which take the zone currently set by the HX command
as the target zone by default, the HS command works on the application heap by default.
You can scramble the system heap if you specify SysZone for addr.

Example 9
HS
Scrambling heap at 0027C144

C H A P T E R 9

MacsBug Commands

HT — Heap Totals 265

HT — Heap Totals 9

DESCRIPTION

The Heap Totals command displays information about the current heap.

SYNTAX

HT

SEE ALSO

HD

Considerations 9
The HT command displays the following information for the current heap:

■ The total number and size for each type of block (free, relocatable, and nonrelocatable)

■ The number of locked, unlocked, and purgeable blocks

■ Totals for the heap

The HT command displays hexadecimal as well as decimal values for all totals.

The total free space listed by the HT command does not represent all the continguous
free space available because the heap is probably fragmented. Most heaps are at least a
bit fragmented. Use the HD command to determine the size of the largest available
free block.

You can use the HT command to get an overall sense of the contents of your heap. Too
many locked blocks and too few purgeable blocks might indicate that you need to put
some time into managing your heap.

Example 9
HT
Totaling the Application heap at 00279FB8
 Total Blocks Total of Block Sizes
 Free 0D1B #3355 00040954 #264532
 Nonrelocatable 000E #14 00037924 #227620
 Relocatable 00D8 #216 00085368 #545640
 Locked 0003 #3 0006B73C #440124
 Purgeable and not locked000C #12 00002D24 #11556
 Heap size 0E01 #3585 000FD5E0 #1037792

C H A P T E R 9

MacsBug Commands

266 HX — Heap Exchange

HX — Heap Exchange 9

DESCRIPTION

The Heap Exchange command selects the current heap.

SYNTAX

HX [addr]

addr specifies the address of a heap zone. If you omit this parameter, the HX
command switches from the application heap to the system heap (in a
single-application environment) or cycles through the heaps (in a
multiple-application environment.)

SEE ALSO

HC, HD, HT, HZ

Considerations 9
All the heap commands (except Heap Scramble) work on the heap selected by the HX
command. When you start MacsBug, the HX command sets the application heap as the
current heap.

If you are running in a multiple-application environment, use the HZ command to
determine the addresses of the other heaps. See the section “Heap Management in a
Multiple-Application Environment” in Chapter 4 for additional information.

Example 9
The following HX command selects the system heap as the current heap. The subsequent
HZ command labels the system heap as the TargetZone because it has been selected with
the HX command.

HX
The target heap is the System heap
HZ
 Heap zones
 24 00001E00 to 0006B41F SysZone^ TargetZone
 24 00001FB8 to 0000248B
 24 0006B420 to 004C40DB
 24 004092C4 to 00482A53 ApplZone^ TheZone^
 24 0048A2CC to 004AEFF3
 24 004B62D4 to 004B7BB7

C H A P T E R 9

MacsBug Commands

HZ — Heap Zone 267

HZ — Heap Zone 9

DESCRIPTION

The Heap Zone command lists all known heap zones.

SYNTAX

HZ [addr]

addr is the starting address of a heap containing embedded heaps.

SEE ALSO

HC, HD, HT, HX

Considerations 9
The Heap Zone command lists the addresses that indicate the starting and ending
address of each heap. Note that the starting address is the address of the first byte in the
heap zone header and the ending address is the address of the last byte of the heap zone
trailer. The HZ command also indicates whether each heap is a 24-bit or 32-bit heap in
the leftmost column of its display.

The heap zone display differs depending on whether you are running in a
single-application or multiple-application environment:

■ If you are running in a single-application environment, the list includes the system
heap and the application heap.

■ If you are running in a multiple-application environment, the list displayed by the HZ
command includes the system heap, a private heap within the system heap, the
Process Manager heap, the current application heap, the Finder heap, and the heap of
any application running in the background. This order can change with future
software releases.

(The Process Manager allocates a locked relocatable block in its heap for each application
that you launch. The HZ command identifies application heaps by doing a heap check
on each block in the Process Manager’s heap. If the block passes, it’s assumed to be
a heap.)

The HZ display identifies embedded heaps by indenting them. For example, in the
following output,

Heap zones
 24 00001E00 to 0006B41F SysZone^
 24 00001FB8 to 0000248B
 24 0006B420 to 004C40DB

C H A P T E R 9

MacsBug Commands

268 HZ — Heap Zone

 24 004092C4 to 00482A53 ApplZone^ TheZone^ TargetZone
 24 0048A2CC to 004AEFF3
 24 004B62D4 to 004B7BB7

the heap zone from 00001FB8 to 0000248B is embedded in the system heap; the heap
zones from 004092C4 to 00482A53, from 0048A2CC to 004AEFF3, and from 004B62D4 to
004B7BB7 are all embedded in the Process Manager’s heap zone, which starts at
0006B420 and ends at 004C40DB. All heap zones in this example are 24-bit.

You can use the addr parameter to the HZ command to display the heaps embedded in
the heap starting at addr. For example:

HZ 000573B0
 Heap zone 000573B0 and embedded heap zones
 24 000573B0 to 003B69C7
 24 00279FB8 to 003775D7 ApplZone^ TheZone^ TargetZone
 24 0037DFC0 to 003A2CAB
 24 003A9FC8 to 003AB8AF

The HZ command cannot display heap zones stored on the stack, nor does it list heap
zones that don’t start at the beginning of a heap block.

The HZ command uses two-low memory globals and one MacsBug variable to describe
the heaps:

■ ApplZone (low-memory global) points to the beginning of the current
application heap.

■ TheZone (low-memory global) points to the zone currently set by the SetZone routine.

■ TargetZone (MacsBug variable) points to the zone currently set by the MacsBug
HX command

The HZ command uses one additional MacsBug variable, UserZone, to indicate the heap
whose address you have last specified as a parameter to the HX command.

For example, given the zones

Heap zones
 24 00001E00 to 0006B41F SysZone^ TargetZone
 24 00001FB8 to 0000248B
 24 0006B420 to 004C40DB
 24 004092C4 to 00482A53 ApplZone^ TheZone^
 24 0048A2CC to 004AEFF3
 24 004B62D4 to 004B7BB7

If you enter the command

HX 0048A2CC

MacsBug displays this message:

The target heap is the heap at 0048A2CC

C H A P T E R 9

MacsBug Commands

HZ — Heap Zone 269

If you now enter the HZ command once more, MacsBug displays the following
information:

Heap zones
 24 00001E00 to 0006B41F SysZone^
 24 00001FB8 to 0000248B
 24 0006B420 to 004C40DB
 24 004092C4 to 00482A53 ApplZone^ TheZone^
 24 0048A2CC to 004AEFF3 TargetZone UserZone
 24 004B62D4 to 004B7BB7

The zone whose address you specified for the HX command is now also identified as
UserZone. If you were to use the HX command without parameters to cycle through the
heaps, the heap starting at 0048A2CC would still be identified as the UserZone, simply
to remind you that this was the heap you were specifically interested in.

For additional information about heaps, see Chapter 4, “Macintosh Memory
Organization.”

Example 9
The following example shows the output of the HZ command in a single-application
environment:

HZ
Heap zones
 24 00001E00 SysZone
 24 0002D528 ApplZone TheZone TargetZone

C H A P T E R 9

MacsBug Commands

270 ID — Disassemble One Line

ID — Disassemble One Line 9

DESCRIPTION

The Disassemble One Line command disassembles one line, starting at the
specified address.

SYNTAX

ID [addr]

addr specifies the address containing the first byte to be disassembled. If you
do not specify addr, the ID command uses the program counter for addr.

SEE ALSO

IL, IP, IR

Considerations 9
If you press Return after executing an ID command, the next line is disassembled. The
dot address is set to the last address used.

The ID command displays the procedure name (if any) and offset in the first column,
followed by an address. If MacsBug does not know the procedure name, but the address
is in a known resource, it displays the type of the resource, the number of the resource,
the file in which the resource is stored, the name of the resource, and the offset within the
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

The next two fields of the display contain the opcode and operand(s) that make up the
instruction. An asterisk character (*) before the opcode indicates the instruction pointed
to by the current program counter. A dot character (.) before the opcode indicates that a
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR,
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The
last field shows the actual hexadecimal words of the instruction. If the instruction
contains too many words, an ellipsis (...) is displayed. Note that you can only see this last
field on larger screens. You can, however, always see the field by sending the output to a
file or printer with the LOG command.

The IL, IP, and IR commands allow you to disassemble larger chunks of code.

For additional information about reading disassembled code, see Chapter 3, “An
Assembly-Language Primer.”

C H A P T E R 9

MacsBug Commands

ID — Disassemble One Line 271

Examples 9
ID PC
Disassembling from pc
 DOSCROLL

+0000 2187F8 *LINK A6,#$FFE4 | 4E56 FFE4

ID DOSCROLL + 6
Disassembling from doscroll + 6
 DOSCROLL

+0006 2187FE MOVEA.L $000A(A6),A0 | 206E 000A

C H A P T E R 9

MacsBug Commands

272 IL — Disassemble From Address

IL — Disassemble From Address 9

DESCRIPTION

The Disassemble From Address command disassembles as many lines as you like
starting from an address you specify.

SYNTAX

IL [addr [n]]

addr specifies the address containing the first byte you want disassembled.
If you do not specify addr, the IL command uses the value of the
program counter.

n is a hexadecimal integer specifying the number of lines you want
disassembled. If you omit this parameter, the IL command disassembles
a half-page (64 bytes) of code.

SEE ALSO

ID, IP, IR

Considerations 9
Pressing Return disassembles the next n lines if you specified n. If you did not, the IL
command disassembles the next half page (64 bytes) of code. The IL command sets the
dot address to the last address used.

The IL command is the same as the IP command, except the disassembly starts at the
address you enter, rather than being centered around that address.

The IL command displays the procedure name (if any) and offset in the first column,
followed by an address. If MacsBug does not know the procedure name, but the address
is in a known resource, it displays the type of the resource, the number of the resource,
the file in which the resource is stored, the name of the resource, and the offset within the
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

The next two fields of the display contain the opcode and operand(s) that make up the
instruction. An asterisk character (*) before the opcode indicates the instruction pointed
to by the current program counter. A dot character (.) before the opcode indicates that a
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR,
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The
last field shows the actual hexadecimal words of the instruction. If the instruction

C H A P T E R 9

MacsBug Commands

IL — Disassemble From Address 273

contains too many words, an ellipsis (...) is displayed. Note that you can only see this last
field on larger screens. You can, however, always see the field by sending the output to a
file or printer with the LOG command.

For additional information about reading disassembled code, see Chapter 3, “An
Assembly-Language Primer.”

Example 9
The following IL command disassembles 10 lines starting at the starting address of the
DOSCROLL procedure:

IL DOSCROLL 10

Disassembling from doscroll

 DOSCROLL

 +0000 2187F8 *LINK A6,#$FFE4 | 4E56 FFE4

 +0004 2187FC MOVE.L A4,-(A7) | 2F0C

 +0006 2187FE MOVEA.L $000A(A6),A0 | 206E 000A

 +000A 218802 MOVE.L A0,D0 | 2008

 +000C 218804 BNE.S DOSCROLL+0010 ; 00218808| 6602

 +000E 218806 TRAP #$0 | 4E40

 +0010 218808 LEA $0010(A0),A0 | 41E8 0010

 +0014 21880C LEA -$001C(A6),A1 | 43EE FFE4

 +0018 218810 MOVE.L (A0)+,(A1)+ | 22D8

 +001A 218812 MOVE.L (A0)+,(A1)+ | 22D8

 +001C 218814 MOVE.W -$0016(A6),D0 | 302E FFEA

 +0020 218818 ADDI.W #$FFF1,D0 | 0640 FFF1

 +0024 21881C TRAPV |4E76

 +0026 21881E MOVE.W D0,-$0016(A6) | 3D40 FFEA

 +002A 218822 MOVE.W -$0018(A6),D0 | 302E FFE8

C H A P T E R 9

MacsBug Commands

274 IP — Disassemble Around Address

IP — Disassemble Around Address 9

DESCRIPTION

The Disassemble Around Address command disassembles a half page (64 bytes)
centered around the specified address.

SYNTAX

IP [addr]

addr specifies the address around which instructions should be disassembled.
If you omit this parameter, the IP command uses the value of the
program counter.

SEE ALSO

ID, IL, IR

Considerations 9
Pressing Return disassembles the next half page (64 bytes) of code. The dot address is set
to the first address displayed.

The IP command displays the procedure name (if any) and offset in the first column,
followed by an address. If MacsBug does not know the procedure name, but the address
is in a known resource, it displays the type of the resource, the number of the resource,
the file in which the resource is stored, the name of the resource, and the offset within the
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

The next two fields of the display contain the opcode and operand(s) that make up the
instruction. An asterisk character (*) before the opcode indicates the instruction pointed
to by the current program counter. A dot character (.) before the opcode indicates that a
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR,
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The
last field shows the actual hexadecimal words of the instruction. If the instruction
contains too many words, an ellipsis (...) is displayed. Note that you can only see this last
field on larger screens. You can, however, always see the field by sending the output to a
file or printer with the LOG command.

For additional information about reading disassembled code, see Chapter 3, “An
Assembly-Language Primer.”

C H A P T E R 9

MacsBug Commands

IP — Disassemble Around Address 275

Example 9

In this example, the disassembly takes place around the instruction pointed to by the
program counter: LINK A6, #$FFE4.

IP PC

DOCIRCLE

+00CA 2187DE _StillDown ; A973 | A973

+00CC 2187E0 TST.B (A7)+ | 4A1F

+00CE 2187E2 BNE DOCIRCLE+0014 ; 00218728 | 6600 FF44

+00D2 2187E6 MOVEA.L (A7)+,A4 | 285F

+00D4 2187E8 UNLK A6 | 4E5E

+00D6 2187EA MOVEA.L (A7)+,A0 | 205F

+00D8 2187EC ADDQ.W #$8,A7 | 504F

+00DA 2187EE JMP (A0) | 4ED0

DOSCROLL

+0000 2187F8 *LINK A6,#$FFE4 | 4E56 FFE4

+0004 2187FC MOVE.L A4,-(A7) | 2F0C

+0006 2187FE MOVEA.L $000A(A6),A0 | 206E 000A

+000A 218802 MOVE.L A0,D0 | 2008

+000C 218804 BNE.S DOSCROLL+0010 ; 00218808 | 6602

+000E 218806 TRAP #$0 | 4E40

+0010 218808 LEA $0010(A0),A0 | 41E8 0010

+0014 21880C LEA -$001C(A6),A1 | 43EE FFE4

+0018 218810 MOVE.L A0)+,(A1)+ | 22D8

+001A 218812 MOVE.L A0)+,(A1)+ | 22D8

+001C 218814 MOVE.W $0016(A6),D0 | 302E FFEA

C H A P T E R 9

MacsBug Commands

276 IR — Disassemble Until End of Procedure

IR — Disassemble Until End of Procedure 9

DESCRIPTION

The Disassemble Until End of Procedure command disassembles code from the
address you specify until the end of the procedure containing the instruction at the
specified address.

SYNTAX

IR [addr]

addr specifies the address when you wand disassembly to begin. If you omit
this parameter, the IR command uses the value of the program counter.

SEE ALSO

ID, IL, IP

Considerations 9
The IR command assumes that the instruction beginning at the specified address is part
of a procedure. The dot address is set to the specified address.

If the routine is longer than a full screen, MacsBug prompts you to press Return to
display the next screen. The IR command is similar to the IL command, except that the
IR command stops at the end of the routine.

The IR command displays the procedure name (if any) and offset in the first column,
followed by an address. If MacsBug does not know the procedure name, but the address
is in a known resource, it displays the type of the resource, the number of the resource,
the file in which the resource is stored, the name of the resource, and the offset within the
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

The next two fields of the display contain the opcode and operand(s) that make up the
instruction. An asterisk character (*) before the opcode indicates the instruction pointed
to by the current program counter. A dot character (.) before the opcode indicates that a
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR,
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The
last field shows the actual hexadecimal words of the instruction. If the instruction
contains too many words, an ellipsis (...) is displayed. Note that you can only see this last
field on larger screens. You can, however, always see the field by sending the output to a
file or printer with the LOG command.

C H A P T E R 9

MacsBug Commands

IR — Disassemble Until End of Procedure 277

For additional information about reading disassembled code, see Chapter 3, “An
Assembly-Language Primer.”

Example 9

In the following example, the IR command is used to disassemble a routine that sets
up menus.

IR DOSETUPMENUS

DOSETUPM

+0000 2186B2 LINK A6,#$FFE0 | 4E56 FFE0

+0004 2186B6 SUBQ.W #$4,A7 | 594F

+0006 2186B8 MOVE.W #$1389,-(A7) | 3F3C 1389

+000A 2186BC _GetRMenu ; A9BF | A9BF

+000C 2186BE MOVE.L (A7)+,-$0020(A6) | 2D5F FFE0

+0010 2186C2 SUBQ.W #$4,A7 | 594F

+0012 2186C4 MOVE.W #$138A,-(A7) | 3F3C 138A

.

. {part of output deleted to save space}

.

+002E 2186E0 _GetRMenu ; A9BF | A9BF

+0030 2186E2 MOVE.L (A7)+,-$0014(A6) | 2D5F FFEC

+0034 2186E MOVE.L -$0020(A6),-(A7) | 2F2E FFE0

+0038 2186EA CLR.W -(A7) | 4267

+003A 2186EC _InsertMenu ; A935 | A935

+003C 2186EE MOVE. -$001C(A6),-(A7) | 2F2E FFE4

+0040 2186F2 CLR.W -(A7) | 4267

+0042 2186F4 _InsertMenu ; A935 | A935

+0044 2186F6 MOVE.L -$0018(A6),-(A7) | 2F2E FFE8

+0048 2186FA CLR.W -(A7) | 4267

+004A 2186FC _InsertMenu ; A935 | A935

+004C 2186FE MOVE.L -$0014(A6),-(A7) | 2F2E FFEC

+0050 218702 CLR.W -(A7) | 4267

+0052 218704 _InsertMenu ; A935 | A935

+0054 218706 _DrawMenuBar ; A937 | A937

+0056 218708 UNLK A6 | 4E5E

+0058 21870A RTS | 4E75

C H A P T E R 9

MacsBug Commands

278 LOG — Log to a Printer or File

LOG — Log to a Printer or File 9

DESCRIPTION

The Log to a Printer or File command sends MacsBug output to the specified text file or
to an ImageWriter via the serial port.

SYNTAX

LOG [pathname | Printer]

pathname specifies a partial pathname: filename, diskname:filename, or a full
pathname: diskname:foldername:filename. If you specify filename, MacsBug
opens the file in the current directory.

Printer specifies that you want output to be sent to an ImageWriter. The LOG
command does not work with the LaserWriter driver, so you can’t send
MacsBug output directly to a LaserWriter. Instead, you can send it to a file
and then print it on a LaserWriter.

Considerations 9
You do not have to enclose pathname in quotes even though it includes colons, which
normally specify the beginning of the current procedure in MacsBug. However, if you
use the MC (Macro Create) command to use a macro name for a path name, you must
enclose the pathname in quotes. See the MC command for additional information.

If the file you specify does not already exist, MacsBug creates the file as an MPW text
file, which you can open from word-processing applications as well as from MPW.
If the specified file already exists and is of type TEXT, the LOG command appends
MacsBug output to the existing file.

If you log to a file while MPW Pascal is running, or while an application is running in a
multiple-application environment, be aware that the log file will be closed when you
leave MPW or quit the application. However, if you have not quit the application, you
must close the file from MacsBug using the LOG command before you can open it and
examine its contents.

You cannot log to more than one file. To turn logging off, enter LOG with no parameters.

MacsBug, by design, uses as little of the system as possible; the LOG command violates
this design criterion. Logging may not work, depending on the state of the file system
during your debugging session. In general, you should observe the following restrictions:

■ Do not log to file server volumes.

■ Because logging enables interrupts briefly while executing its low-level calls, if your
program depends on interrupts being completely disabled, you should not use the
LOG command.

You cannot log output to an ImageWriter if you are working with MacsBug under A/UX.
However, you can still log to a file and then print the file.

C H A P T E R 9

MacsBug Commands

LOG — Log to a Printer or File 279

Examples 9
LOG ATHENA:MACSBUG:FIRSTLOG

Logging to ATHENA:MACSBUG:FIRSTLOG

LOG

Closing log

C H A P T E R 9

MacsBug Commands

280 MC — Macro Create

MC — Macro Create 9

DESCRIPTION

The Macro Create command creates a new macro with the given name that expands to
the expression you specify.

SYNTAX

MC name 'expr' | expr

name specifies the name of the macro. The names FirstTime and EveryTime are
reserved as are the names of MacsBug commands and the standard macro
names defined by the 'mxbm' resources 100, 101, and 102.

expr specifies the expression that the macro expands to. If you specify expr, it is
evaluated when you create the macro and that value is substituted for
name every time you use the macro. If you specify 'expr', it is evaluated
every time you use the macro.

SEE ALSO

MCC, MCD

Considerations 9
A macro can contain anything you can type in a command line. You can use macros to
contain command name aliases, reference global variables, and name common
expressions.

This MC command defines a command name alias:

MC SelectHeap HX

This MC command names an expression:

MC ReturnAdrs A6 + 4

If you use the MC command to define an alias for a pathname, you must enclose the
pathname in quotes when you define the macro because MacsBug is confused by the
colons in the pathname. For example:

MC mylog 'Athena:MacsBug:Newlog'

If you now use the command LOG mylog, MacsBug creates the file Newlog in the
MacsBug folder on the disk Athena and logs MacsBug output to it.

MacsBug expands all macros before it executes the command line. This means that you
cannot define a macro and reference it on the same line, because the reference will be

C H A P T E R 9

MacsBug Commands

MC — Macro Create 281

undefined at the time the macro is expanded. For this reason the following command
line will generate an error; MacsBug tries to expand Save before executing the MC
command that defines it.

MC Save CurrentA5; SL CurrentA5 Save

Using Macros to Save Values 9

Macros give you a quick way to save values. For instance, you can enter

MC save PC

to save the contents of the program counter; then, you can enter

PC = save

to restore the contents. Note that this technique does not work with floating-
point registers.

The macros you create using the MC command are only good until you shut down your
Macintosh. You can create permanent macros using the 'mxbm' resource. The 'mxbm'
resource also defines the macro FirstTime, which allows you to execute the commands
you specify immediately after loading MacsBug, and the macro EveryTime, which
allows you to define other commands that execute each time except the first time
MacsBug is invoked. For additional information about how to create these macros using
the 'mxbm' resource, see “Using Macros” in Chapter 8.

Use the MCC command to clear a macro. Use the MCD command to display all macros
that match the current name. This command is handy if you want to know whether
you’re redefining an existing macro.

Examples 9
MacsBug recalculates the value for this macro each time you use it:

MC quick 'D0+D1*3'
Macro quick will expand to 'D0+D1*3'

MacsBug calculates the value for this macro when it is defined:

MC quicker D0 + D1 * 3
Macro quicker will expand to '00000015'

C H A P T E R 9

MacsBug Commands

282 MCC — Macro Clear

MCC — Macro Clear 9

DESCRIPTION

The Macro Clear command clears the specified macro or all macros.

SYNTAX

MCC [name]

name specifies the name of the macro to be cleared. If you omit this parameter,
the MCC command clears all macros.

SEE ALSO

MC, MCD

Example 9
The following command clears the macro named “quick”:

MCC quick
quick cleared

C H A P T E R 9

MacsBug Commands

MCD — Macro Display 283

MCD — Macro Display 9

DESCRIPTION

The Macro Display command displays the specified macro or all macros whose names
begin with the specified characters.

SYNTAX

MCD [name]

name specifies part of or a complete macro name. If you omit this parameter,
the MCD command displays all currently defined macros.

SEE ALSO

MC, MCC

Considerations 9
The MCD command displays all macros, whether they were defined using the 'mxbm'
resource or the MC command.

The MCD command displays two columns: the first column lists the macro name; the
second column contains the macro expansion (expr).

If you specify a series of characters for name, the MCD command lists all macros
beginning with those characters. Thus, the MCD command is useful in telling you
whether a macro name is already defined.

Use the MCC command to clear a macro. For additional information about macros, see
“Using Macros” in Chapter 8.

Example 9
MCD apf
Macro table
 Name Expansion
 ApF F ApplZone^ (ApplZone^^-ApplZone^)
 ApFW FW ApplZone^ (ApplZone^^-ApplZone^)
 ApFL FL ApplZone^ (ApplZone^^-ApplZone^)
 ApFP FP ApplZone^ (ApplZone^^-ApplZone^)
 ApFontID 0984

C H A P T E R 9

MacsBug Commands

284 MR — Magic Return

MR — Magic Return 9

DESCRIPTION

If you have accidentally stepped into a JSR, BSR, or trap call that you meant to step over,
executing the Magic Return command before executing any of the subroutine or trap
code will execute the equivalent of a GT (Go Till) command to the instruction
immediately after the subroutine or A-trap call.

SYNTAX

MR [param]

param is an integer used by the MR command to find the address where the
return address is stored.

SEE ALSO

G, GT

Considerations 9
The MR command sets a temporary breakpoint at the first instruction after the call to the
current procedure. It does this by replacing the return address on the stack with a
MacsBug address. When the procedure returns, MacsBug gets control. It then performs
an RTS in trace mode, breaking at the instruction after the call. The param value that
you specify helps the MR command figure out where the return address is stored on
the stack.

The param value you specify to the MR command depends on how far you’ve
stepped into the procedure and whether your compiler uses the A6 register as a
stack frame pointer:

■ If the program counter points to the LINK instruction or what is otherwise the first
instruction of the subroutine, enter MR with no parameters. In this case the return
address is assumed to be stored on the top of the stack.

■ If the program counter points after the first instruction and your compiler uses A6 as
the stack frame pointer, you should specify A6 as the parameter to the MR command.
For example

MR A6

If you do, the MR command looks for the return address at A6 + 4.

■ If the program counter points after the first instruction and you are not using A6 as
the stack frame pointer, then presumably you know where you’re storing the return
address and you can specify this address as an offset from A7. Thus, if you enter

MR 8

the MR command will look for the return address at A7 + 8.

C H A P T E R 9

MacsBug Commands

MR — Magic Return 285

■ If the program counter points after the first instruction of a nested procedure, entering
MR A6^ will set a breakpoint at the first instruction following the procedure that
called your procedure.

Using the MR Command to Display Function Results 9

You can display the result of a function every time it’s called by entering the command

BR functionname ' ; MR ; DW SP '

Whenever the breakpoint is reached, MacsBug executes the MR command and displays
the top word on the stack (the function result). For functions that return long words, you
should use the command

BR functionname ' ; MR ; DL SP '

For functions that return pointers, you could dereference the pointer and display the
structure using a template; for example:

BR functionname ' ; MR ; DM SP^ templatename '

MR Error Messages 9

MacsBug checks to see that the address determined from the specified param value is a
valid stack address and that it is a valid return address.

If the address is not in the range between A7 and CurStackBase^, MacsBug displays the
message “This address is not a stack address.”

If the address does not immediately follow a JSR, BSR, or A-trap instruction, MacsBug
returns the message “The address on the stack is not a return address.”

Example 9
In the following example, the USERBRK procedure is disassembled to show you that the
program counter points after the first LINK instruction. That is, you’ve already stepped
into the procedure.

USERBRK
+0000 0041ADCA LINK A6,#$FFF8 | 4E56 FFF8
+0004 0041ADCE _Debugger ; A9FF | A9FF
+0006 0041ADD0 *NOP | 4E71
+0008 0041ADD2 PEA -$0008(A6) | 486E FFF8
+000C 0041ADD6 _GetPort ; A874 | A874
+000E 0041ADD8 CLR.L -(A7) | 42A7
+0010 0041ADDA JSR *+$0408 ; 0041B1E2 | 4EBA 0406
+0014 0041ADDE MOVE.L (A7)+,D0 | 201F
+0016 0041ADE0 MOVE.L D0,-$0004(A6) | 2D40 FFFC
+001A 0041ADE4 UNLK A6 | 4E5E
+001C 0041ADE6 RTS | 4E75

C H A P T E R 9

MacsBug Commands

286 MR — Magic Return

If you now enter the command MR A6, MacsBug displays a message that tells you where
it set the temporary breakpoint:

Breakpoint at DOCMD+0114

After disassembling the DOCMD procedure, you’ll find that the program counter points
to the first instruction after the call to the USERBREAK procedure—just what you expect
the MR command to accomplish.

Disassembling from 0041AD70

 DOCMD

 +00F6 0041AD70 DC.W $FFFC ; ???? | FFFC

 +00F8 0041AD72 JSR $003A(A5) | 4EAD 003A

 +00FC 0041AD76 ORI.B #$07,D1 | 0001 0007

 +0100 0041AD7A ORI.W #$000E,D0 | 0040 000E

 +0104 0041AD7E ORI.B #$10,CCR | 003C 0010

 +0108 0041AD82 ORI.B #$18,(A4) | 0014 0018

 +010C 0041AD86 ORI.B #$2E,(A4)+ ; '.' | 001C 002E

 +0110 0041AD8A JSR USERBRK ; 0041ADCA | 4EBA 003E

 +0114 0041AD8E *BRA.S DOCMD+0140 ; 0041ADBA | 602A

 +0116 0041AD90 JSR SHOWATRA ; 0041ADF0 | 4EBA 005E

 +011A 0041AD94 BRA.S DOCMD+0140 ; 0041ADBA | 6024

C H A P T E R 9

MacsBug Commands

RAD — Toggle Register Name Syntax 287

RAD — Toggle Register Name Syntax 9

DESCRIPTION

The Toggle Register Name Syntax command allows you to specify the address and data
registers in two different ways.

SYNTAX

RAD

SEE ALSO

Registers

Considerations 9
By default, MacsBug expects the actual Motorola names for the address and data
registers. So, if you want to enter a register on the command line, for example

DM D0

you just type the name of the register. But D0 is also a valid hexadecimal number; if you
want to enter the hex number, you must put a dollar sign in front of it; for example:

DM D0 + $D0

The RAD command allows you to select a naming convention that interprets D0 as a
hexadecimal number. When this convention is in effect, you must put R in front of the
register name to let MacsBug know you mean the register; for example:

DM RDO + D0

Examples 9
RAD
An and Dn numbers enabled

RAD
An and Dn numbers disabled

C H A P T E R 9

MacsBug Commands

288 RB — Reboot

RB — Reboot 9

DESCRIPTION

The Reboot command restarts the system. It unmounts the startup volume
before restarting.

SYNTAX

RB

SEE ALSO

RS

Considerations 9
For additional information about what unmounting does, see the description of the
UnmountVol routine in “The File Manager” chapter of Inside Macintosh, Volumes II
and IV.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES,
RS, and RB. For additional information about how to select the appropriate command,
see Chapter 2, “Getting Started.”

Example 9
RB

C H A P T E R 9

MacsBug Commands

Registers 289

Registers 9

DESCRIPTION

The Registers command allows you to display the value of a register or assign a value to
a register.

SYNTAX

registerName [= expr | := expr]

registerName specifies the name of a 68000, 68020, 68030/68851, or 68881 register. By
default, MacsBug uses the Motorola names for all registers. However, you
might prefer to use an alternate syntax. See the description of the RAD
command for additional information.

expr is an expression whose value is assigned to the specified register. If you
omit this parameter, the Registers command displays the current value of
the specified register.

SEE ALSO

RAD

Considerations 9
Table 9-4 lists all registers and their names.

Table 9-4 Register names

Microprocessor Name Function

68000 Dn
An
PC
SR
SP
SSP

Data register n
Address register n
Program counter
Status register
Stack pointer
Supervisor stack pointer

68020 ISP
MSP
VBR
SFC
DFC
CACR
CAAR

Interrupt stack pointer
Master stack pointer
Vector base register
Source function code register
Destination function code register
Cache control register
Cache address register

continued

C H A P T E R 9

MacsBug Commands

290 Registers

Examples 9
The following examples show the information MacsBug displays when you enter
various register names:

D7
D7 = $0027C2EC #2605804 #2605804 '•'••'

FPSR
FPSR = $00000000 #0 #0 '••••'

SP
SP = $0037FE9C #3669660 #3669660 '•7••'

SSP
SSP = $E149F8FD #3779721469 #-515245827 '•I••'

MSP
MSP = $E149F8FD #3779721469 #-515245827 '•I••'

CACR
CACR = $00002101 #8449 #8449 '••!•'

68030/68851 CRP
SRP
TC
PSR

CPU root pointer
Supervisor root pointer
Translation control register
PMMU status register

68881 FPn
FPCR
FPSR
FPIAR

Floating-point data register n
Floating-point control register
Floating-point status register
Floating-point instruction address register

Table 9-4 Register names (continued)

Microprocessor Name Function

C H A P T E R 9

MacsBug Commands

RN — Set Reference Number 291

RN — Set Reference Number 9

DESCRIPTION

The Set Reference Number command restricts symbol references to the specified file.

SYNTAX

RN [expr]

expr evaluates to a hexadecimal integer that specifies the file’s reference
number. If you omit this parameter, the RN command uses the reference
number of the current file, contained in the global variable CurMap.

SEE ALSO

SX

Considerations 9
You can use the HD command to find out the reference number of a file. Once you’ve
specified a reference number with the RN command, subsequent symbol references are
restricted to the file with the specified reference number.

Specifying 0 for expr restores the default situation where all symbols match.

The RN command is useful when you’re dealing with multiple files that contain the
same symbol names. When you’re working with MPW tools, for instance, there might be
multiple code segments with the same name.

Examples 9
In the following two examples, the RN command first restricts symbol references to file
0294 and then restores the default condition:

RN 0294
Only symbols with a file ref num of 0294 will be shown

RN 0
All symbols will be shown

C H A P T E R 9

MacsBug Commands

292 RS — Restart

RS — Restart 9

DESCRIPTION

The Restart command unmounts all volumes and restarts the Macintosh.

SYNTAX

RS

SEE ALSO

RB

Considerations 9
See the description of the UnmountVol routine in “The File Manager” chapter of Inside
Macintosh, Volumes II and IV, for additional information about unmounting.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES,
RS, and RB. For additional information about how to select the appropriate command,
see Chapter 2, “Getting Started.”

Example 9
RS

C H A P T E R 9

MacsBug Commands

S — Step 293

S — Step 9

DESCRIPTION

The Step command either steps through the specified number of instructions, or traces
through your program until the specified condition is met.

SYNTAX

S [n | expr]

n is a hexadecimal integer specifying the number of instructions that you
want to step through.

expr specifies that the microprocessor step through instructions until the
condition specified by expr is met.

SEE ALSO

SO

Considerations 9
If you do not specify a parameter, the S command simply steps through the next
instruction. In this case, you can also use Command-S to specify the S command. If
you use Command-S, MacsBug ignores any commands in the command line.

The S command traces into subroutine or A-trap calls when these are encountered. If you
want to step over subroutine or A-trap calls, use the SO command. If you have
unwittingly stepped into a subroutine or A-trap and want to get out, use the MR
command. See the description of the MR command for additional information.

If you find you have entered a parameter to the S command that cannot be satisfied, use
the ES command to terminate the tracing.

If the S command encounters a breakpoint while it is tracing through instructions, the
break into MacsBug terminates the S command.

Note

Stepping through certain MMU instructions can cause MacsBug to hang.
If you’re doing MMU programming, be aware that MacsBug executes
many instructions while executing an S command and expects a valid
memory map. ◆

For additional information about tracing, see “Using MacsBug to Control Program
Execution” in Chapter 7.

C H A P T E R 9

MacsBug Commands

294 S — Step

Example 9
The following example uses the S command to trace through five instructions:

S 5
Step (into)

_SubPt
+001C 81E74A RTS | 4E75

_GetMouse
+0012 80F140 MOVE.L (A7)+,(A7) | 2E9F
+0014 80F142 RTS | 4E75
+01B8 80F2E6 MOVEM.L (A7)+,D3/A3 | 4CDF 0808
+01BC 80F2EA UNLK A6 | 4E5E

C H A P T E R 9

MacsBug Commands

SB — Set Byte 295

SB — Set Byte 9

DESCRIPTION

The Set Byte command assigns a value to bytes, starting at the specified address.

SYNTAX

SB addr value [value] ...

addr specifies the address where the SB command starts assigning the specified
value to bytes.

value specifies either an expression or a string. The string must be enclosed in
single quotes.

SEE ALSO

SL, SW

Considerations 9
If you specify an expression for value, the low-order byte of its value is used.

If you specify a string for value, the characters are placed in successive bytes. The string
length is limited only by the length of the command line.

The SB command sets the dot command to the first byte set. If you press Return after
executing an SB command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or
SM) without causing damage, use the HD command to find out the starting address of a
free block in the heap and then use that address as the addr parameter to the command.
Be careful not to write beyond the boundary of the block. Even if the next block is free,
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified
the wrong address after executing a command that sets memory, it
might be safest to use the RS or RB command and start over. ▲

C H A P T E R 9

MacsBug Commands

296 SB — Set Byte

Examples 9
In the following examples, the SB command sets memory at the specified address, then
pressing the Return key displays memory at that address:

SB 002B04F8 'new memory'

{Return}

Memory set starting at 002B04F8

 002B04F8 6E65 7720 6D65 6D6F 7279 0000 0000 000C new memory••••••

SB 002B04F8 1 222 3333

{Return}

Memory set starting at 002B04F8

 002B04F8 0122 3333 6D65 6D6F 7279 0000 0000 000C •"33memory••••••

C H A P T E R 9

MacsBug Commands

SC6 — Stack Crawl (A6) 297

SC6 — Stack Crawl (A6) 9

DESCRIPTION

The Stack Crawl (A6) command lists stack frame information from the oldest to the most
current stack frame on the stack. You can use SC as an alias for SC6.

SYNTAX

SC6 [addr [nbytes]]

addr specifies the current frame address. If you omit this parameter, the SC6
command uses A6 for addr.

nbytes addr + nbytes specifies the upper limit of the range. If you omit this
parameter, SC6 uses CurStackBase^ for the upper limit.

SEE ALSO

SC7

Considerations 9
Information on the stack is normally arranged in units called stack frames. The use of
stack frames allows the compiler to generate instructions that reference everything a
routine creates and manipulates relative to one address, stored in register A6. The use of
stack frames also allows MacsBug to determine the calling chain when one procedure
calls another. Knowing what the calling chain is can be very useful when you’re tracking
down a bug.

By using the optional parameters, you can display the calling chain for a private
stack where the top of the stack is specified by addr and the stack base is specified by
addr + nbytes.

Although most C and Pascal compilers use register A6 as the frame pointer, register A6
is not often used as the frame pointer in assembly language or in ROM. Thus, it is not
uncommon for SC6 to fail. But you should always try SC6 after a crash; it’s an enormous
help if it works. If SC6 fails, try the SC7 command.

The following listing shows sample output for the SC6 command:

SC6
Calling chain using A6 links

A6 Frame Caller
0027BB5C 00218DC6 CONVERSI+0016
0027BB54 00218D2A DOMAINEV+003A
0027BB0A 00218B72 DOCLICK+0038
0027BAC4 00218AB6 DOMENUDI+002C
0027BA98 003B418A
0027B93C 0080F19E _GetMouse+0070

C H A P T E R 9

MacsBug Commands

298 SC6 — Stack Crawl (A6)

The first row describes the oldest stack frame (procedure); the last row describes the
newest stack frame (procedure). You can interpret the information in this listing
as follows:

1. At address 00218DC6 the procedure CONVERSI stored an instruction (JSR or BSR)
that called the DOMAINEV procedure.

2. At address 00218D2A the procedure DOMAINEV stored an instruction that called the
DOCLICK procedure.

3. At address 00218AB6 the procedure DOMENUDI stored an instruction that called an
unnamed procedure.

4. At address 003B418A an unnamed procedure stored an instruction that called the
GetMouse trap.

The value of A6 when each of the calling procedures is current is listed in the
first column.

If MacsBug does not know the procedure name, but the address is in a known resource,
it displays the type of the resource, the number of the resource, the file in which the
resource is stored, the name of the resource, and the offset within the resource where the
instruction is found; for example:

 Calling chain using A6 links
 A6 Frame Caller
 top level 0040C910 'CODE 0001 0294 Main'+34FC
 00488A40 0040B588 'CODE 0001 0294 Main'+2174
 004889E0 0040A5C6 'CODE 0001 0294 Main'+11B2
 004888A6 0041CEB4 'CODE 0007 0294 Init'+0A3C
 00488866 004BD190
 00488832 00813C68 _DialogSelect+007C
 00488788 004BF22A
 00488770 004BF422
 00488736 0003FF5C
 004886F2 0080F19E _GetMouse+0070

For additional information on stack frames, please see “Stack Frames” in Chapter 4.

SC6 Error Messages 9

The following conditions have to be met for the SC6 command to work:

■ Register A6 or the specified addr is the address of a frame on the stack and it points
within the range defined by register A7 and CurStackBase^. If this is not the case, the
SC6 command returns the message “A6 does not point to a stack frame.”

■ The SC6 command makes similar assumptions about the optional parameters you
supply. If this is not the case, MacsBug displays the message “Bad stack: stack pointer
must be even and <= stack base.”

■ Register A7 must be even and point to the top of the stack; it must also be smaller
than or equal to CurStackBase^. If either of these conditions is not met, the SC6
command displays the message “Damaged stack: A7 must be even and <=
CurStackBase.”

C H A P T E R 9

MacsBug Commands

SC6 — Stack Crawl (A6) 299

Example 9
SC6
Calling chain using A6 links

A6 Frame Caller
0027BB5C 00218DC6 CONVERSI+0016
0027BB54 00218D2A DOMAINEV+003A
0027BB0A 00218B72 DOCLICK+0038
0027BAC4 00218AB6 DOMENUDI+002C
0027BA98 003B418A
0027B93C 0080F19E _GetMouse+0070

The partial disassemblies on the next page show how calls are actually made, starting
with the DOCLICK procedure.

Disassembling from 218b72
 DOCLICK

+0024 218B5E MOVE.W (A7)+,D6 | 3C1F
+0026 218B60 MOVE.W D6,D0 | 3006
+0028 218B62 BRA DOCLICK+00B4 ; 00218BEE | 6000 008A
+002C 218B66 SUBQ.W #$4,A7 | 594F
+002E 218B68 MOVE.L -$0016(A6),-(A7) | 2F2E FFEA
+0032 218B6C _MenuSelec ; A93D | A93D
+0034 218B6E MOVE.L (A7)+,D7 | 2E1F
+0036 218B70 MOVE.L D7,-(A7) | 2F07
+0038 218B72 JSR DOMENUD ; 00218A8A | 4EBA FF16

Disassembling from 218ab6
 DOMENUDI

+0018 218AA2 SUBQ.W #$4,A7 | 594F
+001A 218AA4 MOVE.W #$1770,-(A7) | 3F3C 1770
+001E 218AA8 _GetMHandle ; A949 | A949
+0020 218AAA MOVEA.L (A7)+,A4 | 285F
+0022 218AAC MOVE.W D6,D0 | 3006
+0024 218AAE BRA DOMENUDI+007C ; 00218B06 | 6000 0056
+0028 218AB2 MOVE.W D7,D0 | 3007
+002A 218AB4 BRA.S DOMENUDI+0034 ; 00218ABE | 6008
+002C 218AB6 JSR DOABOUTD ; 00218A1C | 4EBA FF64

Disassembling from 003b418a
 No procedure name

3B4172 BEQ.S *+$0008 ; 003B417A | 6706
3B4174 ORI.B #$80,$0071(A0) | 0028 0080 0071
3B417A MOVE.L CurrentA5,-(A7) | 2F38 0904
3B417E JSR *+$39FA ; 003B7B78| 4EBA 39F8
3B4182 MOVE.L D0,D5 | 2A00
3B4184 MOVE.L D4,-(A7) | 2F04
3B4186 MOVE.L D3,-(A7) | 2F03
3B4188 MOVEA.L A2,A0 | 204A
3B418A JSR (A0) | 4E90

C H A P T E R 9

MacsBug Commands

300 SC7 — Stack Crawl (A7)

SC7 — Stack Crawl (A7) 9

DESCRIPTION

The Stack Crawl (A7) command displays a possible calling chain by listing the stack
addresses where each caller’s return address is stored.

SYNTAX

SC7 [addr [nbytes]]

addr specifies the current frame address. If you omit this parameter, the SC7
command uses A7 for addr.

nbytes addr + nbytes specifies the upper limit of the range. If you omit this
parameter, SC7 uses CurStackBase^ for the upper limit.

SEE ALSO

SC6

Considerations 9
If information on the stack is set up using stack frames, the SC6 command gives you
much more reliable information about the calling chain than the SC7 command. If
information is not set up using stack frames, use the SC7 command to display a possible
calling chain.

By using the optional parameters, you can display the calling chain for a private
stack where the top of the stack is specified by addr and the stack base is specified by
addr + nbytes.

Not all values displayed by the SC7 command are necessarily valid, and you will want
to do some additional checking to make sure that the locations listed by the SC7
command do indeed contain return addresses. For example, SC7 can return an invalid
value if you execute an SC7 command just at the point where a procedure has allocated
space for its local variables, but not initialized those variables. If an old return address is
stored in the space allocated for one of the local variables, the SC7 command will report
it to you as a return address, even though it is just leftover information from a procedure
that has already finished executing.

When a JSR instruction executes, it saves the address of the following instruction on the
stack before jumping to the new location. In the following example, before jumping to
the DOCLICK procedure, the JSR instruction would save the address of the next
instruction, BRA DOMAINEV+00A0, on the stack.

+0036 218D26 PEA -$0020(A6) | 486E FFE0

+003A 218D2A JSR DOCLICK ; 00218B3A | 4EBA FE0E

+003E 218D2E BRA DOMAINEV+00A0 ; 00218D90 | 6000 0060

C H A P T E R 9

MacsBug Commands

SC7 — Stack Crawl (A7) 301

When the DOCLICK routine returns with an RTS instruction, it returns to the saved
address; in this case, it returns to the instruction at 218D2E.

The SC7 command checks the stack from A7 to CurStackBase^ for possible return
addresses: it checks that the value is even, that it is a valid ROM or RAM address,
and that it is the address of an instruction immediately following a JSR, BSR, or
A-trap instruction.

SC7 Display 9

The SC7 command displays a calling chain in the same order as the SC6 command: from
the oldest to the newest procedure called. Here is sample output from the SC7 command:

SC7
Return addresses on the stack
 Stack Addr Frame Addr Caller

0027BB58 0027BB54 00218DC6 CONVERSI+0016
0027BB50 002182C2 DOINITRO+0032
0027BB30 0027BB2C 00218706 DOSETUPM+0054
0027BB0E 0027BB0A 00218D2A DOMAINEV+003A
0027BAFA 003B441E
0027BAC8 0027BAC4 00218B72 DOCLICK+0038
0027BAB4 003B51CA
0027BAB0 003B51C2
0027BA9C 0027BA98 00218AB6 DOMENUDI+002C
0027BA90 008119DA _NewMenu+01EC
0027BA8C 00810DA4 _DisableItem+0014
0027BA78 003B1F40

■ The first column contains the address on the stack where the return address (or what
the SC7 command considers to be a likely candidate) is stored.

■ The second column contains the value of A6 when the procedure that is being called is
current. With respect to the listing above, the value 27BB0A turns out to be the value
of A6 when the DOCLICK procedure is current.

■ The last column contains the address of a JSR or BSR instruction and, if that
instruction is part of a procedure or A-trap, the name of the procedure or A-trap and
the offset of the instruction within the routine. If MacsBug does not know the
procedure name, but the address is in a known resource, it displays the type of the
resource, the number of the resource, the file in which the resource is stored, the name
of the resource, and the offset within the resource where the instruction is found;
for example:

'CODE 0007 0294 Init'+0A3C

If the SC7 command lists a frame address alongside the address of a return value, it is
nearly certain that the address contains a genuine return value. You need only test the
ones for which no frame address is listed.

C H A P T E R 9

MacsBug Commands

302 SC7 — Stack Crawl (A7)

SC7 Error Messages 9

The SC7 command assumes that register A7 is even and points to the top of the stack
and that it is smaller than or equal to CurStackBase^. If this is not the case, MacsBug
displays the message “Damaged stack: A7 must be even and <= CurStackBase.”

The SC7 command makes similar assumptions about the optional parameters you
supply. If this is not the case, MacsBug displays the message “Bad stack: stack pointer
must be even and <= stack base.”

C H A P T E R 9

MacsBug Commands

SHOW — Show 303

SHOW — Show 9

DESCRIPTION

The Show command allows you to display any region of memory in the stack area of the
status region, using one of several formats. By default the Show command displays the
stack starting at the address stored in register A7 and shows any changes to the value
of A7.

SYNTAX

SHOW [addr | 'addr'] [L | W | A | LA]

addr specifies the address from which memory is shown. If you specify 'addr',
the specified address is evaluated each time the display is updated. If you
specify addr, the specified address is evaluated when you execute the
Show command and the resulting value is shown until you change
the Show options by executing another Show command.

L specifies that memory be shown in long word format.

W specifies that memory be shown in word format.

A specifies that memory be shown in ASCII format.

LA specifies that memory be shown in combined long word and
ASCII format.

Considerations 9
The way you specify addr (quoted or unquoted) affects only the display of the address; if
values in the memory range displayed change, MacsBug updates the display whether or
not addr is quoted.

Entering SHOW without parameters cycles between the four display formats. The Show
command assumes you want information displayed starting at the last specified addr.

To restore the default display, enter

SHOW 'SP' L

The Show command is very useful, although it is undervalued and not well known. It
puts the stack area of the MacsBug display at your disposal to display whatever value or
values you need to keep track of as you’re debugging or testing code.

Example 9
The following command shows routine parameters for routines using LINK instructions
to set up the stack frame:

SHOW 'A6 + 8'

C H A P T E R 9

MacsBug Commands

304 SL — Set Long

SL — Set Long 9

DESCRIPTION

The Set Long command assigns a value to long words, starting at the specified address.

SYNTAX

SL addr value [value] ...

addr specifies the address where the SL command starts assigning the specified
value to bytes.

value specifies either an expression or a string. The string must be enclosed in
single quotes.

SEE ALSO

SB, SW

Considerations 9
If you specify an expression for value, it is evaluated to a 32-bit value.

If you specify a string for value, the characters are placed in successive bytes. The string
length is limited only by the length of the command line.

The SL command sets the dot command to the address of the first long word set. If you
press Return after executing an SB command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or
SM) without causing damage, use the HD command to find out the starting address of a
free block in the heap and then use that address as the addr parameter to the command.
Be careful not to write beyond the boundary of the block. Even if the next block is free,
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified
the wrong address after executing a command that sets memory, it
might be safest to use the RS or RB command and start over. ▲

C H A P T E R 9

MacsBug Commands

SL — Set Long 305

Examples 9
In the following examples, the SL command sets memory at the specified address, then
pressing the Return key displays memory at that address:

SL 002B04F8 'new set long memory'

{Return}

Memory set starting at 002B04F8

 002B04F8 6E65 7720 7365 746C 6F6E 6720 6D65 6D6F new setlong memo

SL 002B04F8 1 222 3333

{Return}

Memory set starting at 002B04F8

 002B04F8 0000 0001 0000 0222 0000 3333 6D65 6D6F •••••••"••33memo

C H A P T E R 9

MacsBug Commands

306 SM — Set Memory

SM — Set Memory 9

DESCRIPTION

The Set Memory command assigns a value to long words, starting at the
specified address.

SYNTAX

SM addr value [value] ...

addr specifies the address where the SM command starts assigning
the specified value to bytes.

value specifies either an expression or a string. The string must be enclosed in
single quotes.

SEE ALSO

SB, SL, SW

Considerations 9
If you specify an expression for value, the size of the assignment made is determined
by the size of value. You can set specific assignment sizes by using the SB, SL, or SL
commands.

If you specify a string for value, the characters are placed in successive bytes. The string
length is limited only by the length of the command line.

The SM command sets the dot command to the address of the first long word set. If you
press Return after executing an SM command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or
SM) without causing damage, use the HD command to find out the starting address of a
free block in the heap and then use that address as the addr parameter to the command.
Be careful not to write beyond the boundary of the block. Even if the next block is free,
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified
the wrong address after executing a command that sets memory, it
might be safest to use the RS or RB command and start over. ▲

C H A P T E R 9

MacsBug Commands

SM — Set Memory 307

Examples 9
In the following examples, the SM command sets memory at the specified address, then
pressing the Return key displays memory at that address:

SM 003E8BF4 'set memory'

{Return}

Memory set starting at 003E8BF4

 003E8BF4 7365 7420 6D65 6D6F 7279 019D 0000 0014 set memory••••••

SM 003E8BF4 1000 222 3333

{Return}

Memory set starting at 003E8BF4

Displaying memory from 003E8BF4

 003E8BF4 1000 0222 3333 6D6F 7279 019D 0000 0014 •••"33mory••••••

Note that if you specify the expressions used with the SB, SW, or SL commands with the
SM command:

SM 003E8BF4 1 222 3333

MacsBug returns the error message shown below. MacsBug 6.2 implements the SM
command differently than MacsBug 6.1.

Attempt to write the value 0222 to the odd address 003E8BF5

Warning: The command completed without using all parameters

C H A P T E R 9

MacsBug Commands

308 SO – Step Over

SO – Step Over 9

DESCRIPTION

The Step Over command steps through the specified number of instructions or until the
specified expression is true.

SYNTAX

SO | T [n | expr]

n is a hexadecimal integer specifying the number of instructions to
step through.

expr specifies that the microprocessor step through instructions until the
condition specified by expr is met.

SEE ALSO

S

Considerations 9
If you do not specify any parameters for the SO command, it simply steps through the
next instruction. In that case, it might be easier to use the Command-T option, which
accomplishes the same thing. Any commands sitting in the command line when you
enter Command-T are ignored.

As you can see from the syntax diagram, you can use T as an alias for SO.

In general the SO command behaves exactly like the S command except that it steps over
traps, JSRs, and BSRs, treating them like a single instruction.

If you have entered a number that cannot be reached or an expression that cannot be
satisfied, use the ES command to terminate stepping.

When stepping over a Toolbox trap with the auto-pop bit set, MacsBug correctly returns
to the address on the top of the stack at the time of the trap call (instead of to the address
immediately after the trap).

If you step over a LoadSeg trap, MacsBug will stop at the first instruction of the
loaded segment.

Note

Stepping through certain MMU instructions can cause MacsBug to hang.
If you’re doing MMU programming, be aware that MacsBug executes
many instructions while executing an S command and expects a valid
memory map. ◆

C H A P T E R 9

MacsBug Commands

SO – Step Over 309

Example 9
The following command steps through five instructions:

SO 5
Step (over)
 No procedure name
 00A346 RTS | 4E75
 _GetMouse

+0176 80F2A4 MOVEA. (A7)+,A0 | 205F
+0178 80F2A6 _HUnlock ; A02A | A02A
+017A 80F2A8 CLR.W (A3) | 4253
+017C 80F2AA BRA.S _GetMouse+018 ; 4080F2BC | 6010

C H A P T E R 9

MacsBug Commands

310 SS — Step Spy

SS — Step Spy 9

DESCRIPTION

The Step Spy command calculates a checksum for a specified memory range or for a
word at a specified address before executing an instruction. If the checksum value
changes, the SS command invokes MacsBug.

SYNTAX

SS addr1 [addr2]

addr1 specifies that MacsBug should calculate a checksum for the long word at
addr1. If you specify addr2, MacsBug calculates a checksum for the range
of memory defined by addr1 and addr2.

SEE ALSO

CS, ATSS

Considerations 9
Checksumming is a technique used by the debugger to determine whether the contents
of memory have changed. The debugger adds all the values in the specified memory
range and saves the result. After one or more instructions are executed (depending on
whether checksumming is implemented by the ATSS, CS, or SS commands), the
debugger recalculates a sum for the same memory range and compares the new result to
the saved result. If the values differ, MacsBug is invoked.

The SS command works fastest when you are calculating a checksum for addr1.

When you enter the SS command, the application begins to execute immediately. When
the long word or memory range changes and MacsBug displays the debugging screen
and clears the action set with the SS command. At this point, you know that the
instruction that caused memory to change is the instruction preceding the instruction
pointed to by the PC.

The SS command is very slow. The ATSS (A-trap Step Spy) command is much faster
because it only checks memory before executing A-traps, whereas the SS command
checks after each instruction. You can use the ATSS command to zero in on a range of
instructions containing the instruction that is affecting the value that concerns you.
When the ATSS command invokes MacsBug, you know that the A-trap that is about to
execute is not responsible for the change in value. You also know that the instruction that
you are looking for is either the previous A-trap or any instruction executed between the
previous A-trap and the instruction pointed to by the PC. You can now use the SS
command to find that instruction.

The SS command might also be useful to slow down certain routines—such as those that
draw to the screen—so you can see how they work.

C H A P T E R 9

MacsBug Commands

SS — Step Spy 311

Example 9
The following example sets SS to checksum the long word at $9D6:

SS 09D6
Checksumming from 000009D6 to 000009D9
Step Spy checksum was changed at 4080EF38 _BlockMove+0096
 Step Spy cleared

C H A P T E R 9

MacsBug Commands

312 SW — Set Word

SW — Set Word 9

DESCRIPTION

The Set Word command assigns a value to words, starting at the specified address.

SYNTAX

SW addr value [value] ...

addr specifies the address where the SW command starts assigning
the specified value to words.

value specifies either an expression or a string. The string must be enclosed in
single quotes.

SEE ALSO

SB, SL, SM

Considerations 9
If you specify an expression for value, the low-order word of its value is used.

If you specify a string for value, MacsBug places the characters in successive bytes. The
string length is limited only by the length of the command line.

The SW command sets the dot command to the first byte set. If you press Return after
executing an SB command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or
SM) without causing damage, use the HD command to find out the starting address of a
free block in the heap and then use that address as the addr parameter to the command.
Be careful not to write beyond the boundary of the block. Even if the next block is free,
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified
the wrong address after executing a command that sets memory, it
might be safest to use the RS or RB command and start over. ▲

C H A P T E R 9

MacsBug Commands

SW — Set Word 313

Examples 9
In the following examples, the SW command sets memory at the specified address, then
pressing the Return key displays memory at that address:

SW 002B04F8 'new sw memory '

{Return}

Memory set starting at 002B04F8

 002B04F8 6E65 7720 7377 206D 656D 6F72 7920 2020 new sw memory

SW 002B04F8 1 222 3333

{Return}

Memory set starting at 002B04F8

 002B04F8 0001 0222 3333 6E67 206D 656D 6F72 790C •••"33ng memory•

C H A P T E R 9

MacsBug Commands

314 SWAP — Swap

SWAP — Swap 9

DESCRIPTION

The Swap command controls the frequency of screen swapping between MacsBug and
the application. The way swapping takes place depends on whether you use the same
screen for both your application and MacsBug or one screen for MacsBug and a different
screen for your application.

SYNTAX

SWAP

Considerations 9
If you are using the same screen for both MacsBug and your application, the SWAP
command toggles between the following two modes:

■ It traces through the specified instructions or A-traps, displaying the MacsBug screen
after each instruction or A-trap has finished executing.

■ It traces through the specified instructions or A-traps without displaying the
MacsBug screen.

If you are using only one screen, you can get stuck if you choose the swapping mode and
enter a step or trace command that includes no breakpoint. For example, if you toggle
SWAP on and enter ATT, you will find yourself staring helplessly at a flickering screen,
as MacsBug loops rapidly ever onward. You can stop it by pressing the NMI switch, or
you can prevent the situation from arising in the first place by specifying a break at an
instruction you know will execute or that you can cause to execute. For example, if
you enter

ATT; ATB MenuKey

and then enter a command key combination that has some meaning to your application,
you can invoke MacsBug and stop the tracing.

If you are using one screen for your application and a different screen for the MacsBug
display, the SWAP command toggles between the following two modes:

■ It traces through the specified instructions or A-traps, displaying MacsBug output on
the other screen after each instruction or A-trap has finished executing.

■ It traces through the specified instructions or A-traps while keeping the MacsBug
display always visible on the other screen.

See Chapter 2, “Getting Started,” for additional information about displaying MacsBug
on a different screen.

C H A P T E R 9

MacsBug Commands

SWAP — Swap 315

Example 9
If you use a single screen, the SWAP command displays the following messages:

SWAP
Display will only be swapped at a break

SWAP
Display will be swapped after each trace or step

If you use two screens, the SWAP command displays the following messages:

SWAP
MacsBug will remain visible always

SWAP
MacsBug will only be swapped at a break

C H A P T E R 9

MacsBug Commands

316 SX — Symbol Exchange

SX — Symbol Exchange 9

DESCRIPTION

The Symbol Exchange command toggles between allowing and not allowing symbol
names in place of addresses.

SYNTAX

SX [ON | OFF]

If you omit the parameter, the SX command toggles between the two modes. The default
setting is ON.

SEE ALSO

IL, RN

Considerations 9
By default you can use a symbol name in place of an address in specifying a command
parameter. MacsBug also displays the addresses of disassembled instructions as offsets
from the beginning of the procedure to which they belong. To do this, MacsBug must
translate symbol names into addresses in the first case, or addresses into offsets from
symbol names in the second case. Since this process can be slow, MacsBug provides a
way to disable it. Disabling it, of course, can slow you down, since you must then specify
all addresses as absolute addresses.

Example 9
In the following example, the IR command disassembles the DOCLICK procedure. Then
the SX command is used to turn symbols off, and the same code is disassembled once
again. (Only part of the procedure is shown.)

IR doclick

Disassembling from doclick

DOCLICK

 +0000 218B3A LINK A6,#$FFCE | 4E56 FFCE

 +0004 218B3E MOVEM.L D6/D7,-(A7) | 48E7 0300

 +0008 218B42 MOVEA.L $0008(A6),A0 | 206E 0008

 +000C 218B46 LEA -$0020(A6),A1 | 43EE FFE0

 +0010 218B4A MOVE.L (A0)+,(A1)+ | 22D8

 +0012 218B4C MOVE.L (A0)+,(A1)+ | 22D8

 +0014 218B4E MOVE.L (A0)+,(A1)+ | 22D8

 +0016 218B50 MOVE.L (A0)+,(A1)+ | 22D8

C H A P T E R 9

MacsBug Commands

SX — Symbol Exchange 317

 +0018 218B52 SUBQ.W #$2,A7 | 554F

 +001A 218B54 MOVE.L -$0016(A6),-(A7) | 2F2E FFEA

 +001E 218B58 PEA -$0026(A6) | 486E FFDA

SX

Symbols disabled

IR 218b3a

Disassembling from 218b3a

No procedure name

 218B3A LINK A6,#$FFCE | 4E56 FFCE

 218B3E MOVEM.L D6/D7,-(A7) | 48E7 0300

 218B42 MOVEA.L $0008(A6),A0 | 206E 0008

 218B46 LEA -$0020(A6),A1 | 43EE FFE0

 218B4A MOVE.L (A0)+,(A1)+ | 22D8

 218B4C MOVE.L (A0)+,(A1)+ | 22D8

 218B4E MOVE.L (A0)+,(A1)+ | 22D8

 218B50 MOVE.L (A0)+,(A1)+ | 22D8

 218B52 SUBQ.W #$2,A7 | 554F

 218B54 MOVE.L -$0016(A6),-(A7) | 2F2E FFEA

 218B58 PEA -$0026(A6) | 486E FFDA

C H A P T E R 9

MacsBug Commands

318 TD — Display CPU Registers

TD — Display CPU Registers 9

DESCRIPTION

The Display CPU Registers command displays all CPU registers in the output region of
the MacsBug display.

SYNTAX

TD

SEE ALSO

TF, TM

Considerations 9
Since most of the registers displayed in the status region of the MacsBug screen are
continuously updated, you can use the TD command to record values between
commands. You can also use the TD command to display the values of special registers
in the 68020 and 68030 that are not shown in the status region of the MacsBug display.

Use the TM command to display the contents of the 68030 MMU registers; use the TF
command to display the contents of the 68881 registers.

For additional information about the 68020 and 68030 registers display, consult the
appropriate Motorola manual.

Example 9
TD
68030 Registers
 D0 = 00000000 A0 = A003E9D8 USP = C93F9E97
 D1 = 00000007 A1 = 0027DE84 MSP = E149F8FD
 D2 = FFFF0001 A2 = 0027DE84 ISP = 0037FE9C
 D3 = 00000000 A3 = 0027DE84 VBR = 00000000
 D4 = 0028FFFF A4 = 0027DA30 CACR = 00002101 SFC = 7
 D5 = 00280000 A5 = 003BFFD8 CAAR = EF9FCFF2 DFC = 7
 D6 = 0038011C A6 = 0037FEAC PC = A003E9DA
 D7 = 0027C2EC A7 = 0037FE9C SR = SmXnzvc Int = 0

C H A P T E R 9

MacsBug Commands

TF — Total Floating-Point Register Display 319

TF — Total Floating-Point Register Display 9

DESCRIPTION

The Total Floating-Point Register Display command displays all 68881 registers.

SYNTAX

TF

SEE ALSO

TD, TM

Considerations 9
The 68881 registers are not shown in the status region of the MacsBug display.

To display the 68000, 68020, or 68030 registers, use the TD command. To display the
68030 MMU registers, use the TM command.

For additional information about the 68881 registers, consult the Motorola manual.

Example 9
TF
68881/68882 FPU Registers
 FP0 = 4011 A1F74CA2 339C0EBF 3.31706394800000000e+5
 FP1 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 FP2 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 FP3 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 FP4 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 FP5 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 FP6 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 FP7 = 7FFF FFFFFFFF FFFFFFFF NAN(255)
 EE MC CC QT ES AE
 FPCR = 00 00 FPSR = 00 00 02 08 FPIAR = 00000000

C H A P T E R 9

MacsBug Commands

320 TM — Total MMU Display

TM — Total MMU Display 9

DESCRIPTION

The Total MMU Display command displays the MMU registers common to the 68551
and 68030 microprocessors.

SYNTAX

TM

SEE ALSO

TD, TF

Considerations 9
The MMU registers are not shown in the status region of the MacsBug display.

You can use the TM command to determine whether a Macintosh II has a PMMU chip
installed without opening the cover.

To display the 68000, 68020, or 68030 registers, use the TD command. To display the
68881 registers, use the TF command.

Example 9
The following command displays the MMU registers for a Macintosh with a 68030
microprocessor:

TM
68030 MMU Registers
 CRP = 7FFF000240800050 TC = 80F84500
 SRP = 02480814FFFFEFC4 PSR = EE47

C H A P T E R 9

MacsBug Commands

TMP — List Templates 321

TMP — List Templates 9

DESCRIPTION

The List Templates command lists all templates that match or partially match the
specified name.

SYNTAX

TMP [name]

name is a string of characters. The TMP command displays the names of all
templates that begin with name. If you omit name, the TMP command lists
all template names.

Considerations 9
You use templates to control the way MacsBug displays data in memory.

You can use the names of templates defined by the 'mxwt' resource 100 to display data
structures created and maintained by Toolbox or operating system managers. You can
also create your own templates to display data structures created by your application.
For additional information about the 'mxwt' resource and creating your own templates,
see “Using Templates To Display Memory” in Chapter 4.

Example 9
The following command displays all currently loaded templates whose names begin
with C:

TMP C
 ControlRecord
 ColorSpec
 ColorTable
 CGrafPort
 CntrlParamBlockRec

C H A P T E R 9

MacsBug Commands

322 WH — Where

WH — Where 9

DESCRIPTION

The Where command returns information about the location of the specified trap,
symbol, or address.

SYNTAX

WH [addr | trap]

addr specifies that you want information about the location of the instruction
at addr.

trap specifies the trap name or number whose location you want.

Considerations 9
Use the Where command after a crash to determine the procedure that's currently
executing.

If you do not specify a parameter, the Where command uses the program counter
for addr.

If you specify an address in ROM, the Where command looks for the preceding trap and
displays the address of the instruction as an offset from the start of the trap. (Sometimes
it returns the wrong trap name for ROM addresses.)

If you specify an address in RAM, the Where command tells you if the instruction is in a
heap block and if so, which heap block. The Where command also tells you the name of
the routine containing the instruction at the specified address and the offset of the
instruction from the start of the routine.

If you specify a trap name or number, the Where command tells you the corresponding
number or name. The where command also tells you whether the code for the trap is in
ROM or in RAM. If the code is in RAM, the trap is patched.

If the specified address is in a block header, the Where command displays that
information. For example:

WH 0027A0F4

 Address 0027A0F4 is in the Application heap at 00279FB8

 It is FFFFFFF8 bytes into this heap block (in the block header):

 Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 • 0027A0FC 00000016+02 R 0027A0F0 L

Note that in this case the number of bytes specified in the output represents a negative
number. In this example FFFFFFF8 is –8. A negative number is used because the heap
block begins with the first byte of the contents region, so the header region is at a
negative offset from the beginning of the contents region.

C H A P T E R 9

MacsBug Commands

WH — Where 323

Examples 9
WH 00218B3A

Address 00218B3A is in the Application heap at DOCLICK

It is 000008AE bytes into this heap block:

 Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 • 0021828C 00000B50+04 R 00218268 L P CODE 0002 0526

WH menuselect

Trap number A93D (_MenuSelect) starts at 003C02A2 in RAM

It is 0019F732 bytes into this heap block:

 Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 00220B70 00054FF0+00 F

WH getmouse

Trap number A972 (_GetMouse) starts at 4080F12E in ROM

A P P E N D I X A

325

Command Summary A

This appendix provides two listings of MacsBug commands: Table A-1 lists MacsBug
commands by functional category; Table A-2 lists MacsBug commands in alphabetical
order. The alphabetical listing also includes a description and syntax for each command.

The following conventions are used to describe MacsBug commands:

literal Plain text indicates a word that must appear in the command exactly
as shown. Special symbols (-, §, &, and so on) must also be entered
exactly as shown.

variable

Italics indicate a parameter that you must replace with specific
information.

[

optional

] Brackets indicate that the enclosed elements are optional. Omit the
brackets when you enter the command.

… An ellipsis (…) indicates that the preceding item can be repeated one or
more times.

| A vertical bar (|) indicates an either/or choice.

Command names and file names are not sensitive to case.

For more information about each command, see Chapter 9, “MacsBug Commands.”

Table A-1

MacsBug commands by functional category

Function Commands

Flow control G—Go

GT—Go Till

S—Step

SO—Step Over

SS—Step Spy

MR—Magic Return

Breakpoints Br—Breakpoint

BRC—Breakpoint Clear

BRD—Breakpoint Display

BRM—Multiple Breakpoints

A-traps ATB—A-trap Break

ATT—A-trap trace

ATHC—A-trap Heap Check

continued

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X A

Command Summary

326

A-traps

(cont.)

ATSS—A-trap Step Spy

ATC—A-trap Clear

ATD—A-trap Display

ATR—A-trap Record

ATP—A-trap Playback

DSC—Discipline

Disassembly IL—Disassemble From Address

IP—Disassemble Around Address

ID—Disassemble One Line

IR—Disassemble Until End of Procedure

DH—Disassemble Hexadecimal

Stack SC6—Stack Crawl (A6)

SC7—Stack Crawl (A7)

Heap HX — Heap Exchange

HZ — Heap Zone

HD — Heap Display

HT — Heap Totals

HC — Heap Check

HS — Heap Scramble

Symbol RN — Reference Number

SX — Symbol Exchange

Memory DM — Display Memory

TMP — Display loaded templates

DP — Display Page

DB — Display Byte

DW — Display Word

DL — Display Long

SM — Set Memory

SB — Set Byte

SW — Set Word

SL — Set LongA-traps

continued

Table A-1

MacsBug commands by functional category (continued)

Function Commands

A P P E N D I X A

Command Summary

327

Register TD — Total Display

TF — Total Floating Point

TM — Total MMU

Macro MC — Macro Create

MCC — Macro Clear

MCD — Macro Display

Exit MacsBug RB — Reboot

RS — Restart

ES — Exit to Shell

EA — Exit to Application

MacsBug
information

HELP — Display list of MacsBug commands

DV — Display Version

MacsBug output LOG — LOG (output to file or printer)

SHOW — Show (memory in status region)

SWAP — Swap (screen display)

Miscellaneous WH — Where

F — Find

CS — Checksum

HOW — Display break message

DX — Debugger Exchange

RAD — Toggle Register Name Syntaxcommands:summary of by
function

Table A-1

MacsBug commands by functional category (continued)

Function Commands

A P P E N D I X A

Command Summary

328

Table A-2

MacsBug commands in alphabetical order

Command Syntax and description

ATB ATB[A] [

trap

 [

trap

]] [

n

 |

expr

] [';

cmd

 [;

cmd

]...']
The A-trap Break command invokes MacsBug whenever the micro-
processor encounters the specified A-trap.

ATC ATC [

trap

 [

trap

]]
The A-trap Clear command clears actions set on all the specified A-traps
with the ATB, ATT, ATHC, and ATSS commands.

ATD ATD
The A-trap Display command displays information about all actions
currently set with the ATB, ATT, ATHC, and ATSS commands.

ATHC ATHC[A] [

trap

 [

trap

]] [

n

|

expr

]
The A-trap Heap Check command checks the heap before executing the
specified A-trap. If the heap is bad, MacsBug displays the debugging
screen and an error message.

ATP ATP
The A-trap Playback command displays the information saved while
trap recording is on. If trap recording is turned off, the ATP command
displays information from the most recent ATR.

ATR ATR[A] [ON | OFF]
The A-trap Record command turns trap recording on and off.

ATSS ATSS[A] [

trap

 [

trap

]] [

n

 |

expr

],

addr1

 [

addr

2]
The A-trap Step Spy command calculates a checksum for a specified
memory range or for a word at a specified address before executing the
specified traps. If the checksum value changes, the ATSS command
invokes MacsBug and does not execute the A-traps.

ATT ATT[A] [

trap

 [

trap

]] [

n

|

expr

]
The A-trap Trace command writes information to the MacsBug output
buffer whenever the mciroprocessor encounters the specified A-trap,
without stopping the current program.

BR BR

addr

 [

n

 |

expr

] [' ;

cmd

 [;

cmd

] ...']
The Breakpoint command sets a breakpoint at the specified address.

BRC BRC [

 addr

]
The Breakpoint Clear command clears the breakpoint at the
specified address.

BRD BRD
The Breakpoint Display command displays addresses where breakpoints
are currently set.

BRM BRM

name

The Multiple Breakpoints command allows you to set breakpoints using
partial name matching.

CS CS [

addr

[

addr

]]
The Checksum command allows you to determine whether the
contents at the specified address or within the specified memory
range have changed.

continued

A P P E N D I X A

Command Summary

329

DB DB [

addr

]
The Display Byte command displays the byte at the specified address.

DH DH

expr

...
The Disassemble Hexadecimal command converts one or more
hexadecimal values to assembler mnemonics.

DL DL [

addr

]
The Display Long command displays the long word at the
specified address.

DM DM [

addr

[

nbytes

|

template

 |

basic type

]]
The Display Memory command displays memory starting from the
specified address.

DP DP [

addr

]
The Display Page command displays a page (128 bytes) of memory
starting from the specified address.

DSC DSC[A][X] [ON | OFF]
The Discipline command turns the Discipline utility on and off. You use
Discipline to check the validity of the parameters you pass to A-traps
and the values returned to your applications by the A-traps.

DV DV
The Display Version command displays the version of MacsBug
currently in use.

DW DW [

addr

]
The Display Word command displays the word at the specified address.

DX DX [ON | OFF]
The Debugger Exchange command disables user breaks.

EA EA
The Exit to Application command restarts the application from which
MacsBug was invoked.

ES ES
The Exit to Shell command returns you to the current shell.

F F

addr nbytes expr

| "

string

"
F[B | W | L | P]

addr nbytes expr

The Find command searches for a specified pattern of bytes.

G G [

addr

]
The Go command allows you to leave MacsBug and resume
program execution.

GT GT

addr

 [';

cmd

 [;

cmd

] ...']
The Go Till command executes your program until the program counter
reaches the specified address.

continued

Table A-2

MacsBug commands in alphabetical order (continued)

Command Syntax and description

A P P E N D I X A

Command Summary

330

HC HC
The Heap Check command tells you whether the information in the
heap zone header or in any of the block headers in the current heap
has been corrupted.

HD HD [

qualifier

]
The Heap Display command displays information about the blocks in
the current heap.

HELP HELP [

cmd

 |

topic

]
The Help command displays information about the given command
or section.

HOW HOW
The Display Break Message command redisplays the break message that
was displayed when you initially entered MacsBug.

HS HS [

addr

]
The Heap Scramble command turns heap scrambling on and off. When
heap scrambling is on, the Memory Manager moves all unlocked
relocatable blocks whenever the move is legitimate—that is, during
every A-trap call that can allocate memory directly or indirectly.

HT HT
The Heap Totals command displays information about the current heap.

HX HX [

addr

]
The Heap Exchange command selects the current heap.

HZ HZ [

addr

]
The Heap Zone command lists all heap zones starting at

addr

.

ID ID [

addr

]
The Disassemble One Line command disassembles one line, starting at
the specified address.

IL IL [

addr

 [

n

]]
The Disassemble From Address command disassembles

n

 lines starting
from an address you specify.

IP IP [

addr

]
The Disassemble Around Address command disassembles a half page
(64 bytes) centered around the specified address.

IR IR [

addr

]
The Disassemble Until End of Procedure command disassembles code
from the address you specify until the end of the procedure containing
the instruction at the specified address.

LOG LOG [

pathname

 | Printer]
The LOG command sends MacsBug output to the specified text file or to
an ImageWriter via the serial port.

MC MC

name

 '

expr

' |

expr

The Macro Create command creates a new macro with the given name
that expands to the expression you specify.

continued

Table A-2

MacsBug commands in alphabetical order (continued)

Command Syntax and description

A P P E N D I X A

Command Summary

331

MCC MCC [

name

]
The Macro Clear command clears the specified macro or all macros.

MCD MCD [

name

]
The Macro Display command displays the specified macro or all macros
whose names begin with the specified characters.

MR MR [

param

]
If you accidentally stepped into a JSR, BSR, or trap call that you meant to
step over, executing the Magic Return command before executing any of
the the subroutine or trap code will execute the equivalent of a GT (Go
Till) to the instruction immediately after the subroutine or A-trap call.

RAD RAD
The Toggle Register Name Syntax command allows you to specify the
address and data registers in two different ways.

RB RB
The Reboot command restarts the system. It unmounts the startup
volume before restarting.

Registers

registerName

 [=

expr

 | :=

expr

]
The Registers command allows you to display the value of a register or
assign a value to a register.

RN RN [

expr

]
The Set Reference Number command restricts symbol references to the
specified file.

RS RS
The Restart command unmounts all volumes and restarts the Macintosh.

S S [

n

|

expr

]
The Step command either steps through the specified number of
instructions or traces through your program until the specified
condition is met.

SB SB

addr value

[

value

]
The Set Byte command assigns a value to bytes, starting at the specified
address.

SC6 SC6 [

address

 [

nbytes

]]
The Stack Crawl (A6)command lists stack frame information from the
oldest to the most current stack frame on the stack. You can use SC as an
alias for SC6.

SC7 SC7 SC7 [

address

 [

nbytes

]]
The Stack Crawl (A7) command displays a possible calling chain by
listing the stack addresses where each caller’s return address is stored.

SHOW SHOW [

addr

 | '

addr

'] [L | W | A | LA]
The Show command allows you to display any region in memory using
one of several formats. By default the Show command displays the stack
starting at the address stored in register A7 and shows any changes to
the value of A7.

continued

Table A-2

MacsBug commands in alphabetical order (continued)

Command Syntax and description

A P P E N D I X A

Command Summary

332

SL SL

addr value

[

value] ...
The Set Long command assigns a value to long words, starting at the
specified address.

SM SM addr value [value] ...
The Set Memory command assigns a value to long words, starting at the
specified address.

SO SO | T [n | expr]
The Step Over command steps through the specified number of
instructions or until the specified expression is true.

SS SS addr1 [addr2]
The Step Spy command calculates a checksum for a specified memory
range or for a word at a specified address before executing an
instruction. If the checksum value changes, the SS command invokes
MacsBug.

SW SW addr value [value] ...
The Set Word command assigns a value to words, starting at the
specified address.

SWAP SWAP
The Swap command controls the frequency of screen swapping between
MacsBug and the application. The way swapping takes place depends
on whether you use the same screen for both your application and
MacsBug or use one screen for MacsBug and a separate screen for your
application.

SX SX [ON | OFF]
The Symbol Exchange command toggles between allowing and not
allowing symbol names in place of addresses.

TD TD
The Display CPU Registers command displays all CPU registers in the
output region of the MacsBug display.

TF TF
The Total Floating-Point Register Display command displays all
68881 registers.

TM TM
The Total MMU Display command displays the MMU registers common
to the 68551 and 68030 processors.

TMP TMP [name]
The List Templates command lists all templates that match or partially
match the specified name.

WH WH [addr | trap]
The Where command returns information about the location of the
specified trap, symbol, or address.

Table A-2 MacsBug commands in alphabetical order (continued)

Command Syntax and description

A P P E N D I X B

333

Error Messages B

This appendix lists MacsBug error messages in alphabetical order.

64-bit registers not allowed in expressions

All expressions are evaluated as unsigned 32-bit values; floating-point registers and
some MMU registers cannot be evaluated in this context.

68881 not installed

The TF command functions only if the system has a 68881 installed. This error also
occurs if you try to display or set an individual floating-point register.

A6 does not point to a stack frame

The SC6 command assumes that register A6, or the parameter if specified, is the address
of the first frame on the stack. It must point within the range specified by register A7 and
CurStackBase.

Address range must be entered before comparisons

The CS command remembers a range of memory to checksum; subsequent CS
commands compute the checksum and compare it against the previous value. If no
address range has been previously specified, entering CS without parameters will
return this message.

Addresses must be even

Any command that takes an address parameter can get one of these errors. The first is a
68000 bus error exception, and the second is an address error exception.

All step points cleared

Bad stack: stack pointer must be even and <= stack base

This message is returned by the SC or SC7 when the stack pointer is bad.

BlkLim does not agree with heap length

Walking through the heap block by block must terminate at the start of the trailer block,
as defined by the blkLim field of the zone header.

Block length is bad

The block header address plus the block length must be less than or equal to the trailer
block address. Also, the trailer block must be a fixed length.

Count must be greater than zero

Any command that takes a count (such as BR or ATB) requires it to be greater than 0.

Damaged stack: A7 must be even and <= CurStackBase

The stack commands (SC6 and SC7) must have a memory range to constrain the search
for frames or return addresses. They assume that register A7 is even and points to the
top of the stack, and that the global variable CurStackBase points to the bottom of
the stack.

Divide by zero error

This error is returned when an expression attempts to divide a number by zero.

Figure B-0
Listing B-0
Table B-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X B

Error Messages

334

Entry will not fit in the table

MacsBug stores information about breakpoints, step commands, and A-trap commands
in a single table. Note that it’s possible to receive this message while entering one type of
action for the first time (a breakpoint for instance), since other types of actions may have
already filled this table.

Expression evaluation caused data read fault

Floating-point not allowed in expressions

Free bytes in heap do not match zone header

The zcbFree field in the zone header must match the total size of all the free blocks in
the heap.

Free master pointer list is bad

Free master pointers in the heap are chained together, starting with the hFstFree field in
the zone header and terminated by a NIL pointer.

Low address must be less than or equal to high address

The CS command requires an ordered address range.

Macro expansion exceeds maximum command line length

Macros are expanded in the command line buffer. This is a fixed-length buffer
determined by the width of the command line on the current display.

MacsBug code has been changed

The MacsBug code has been corrupted. Reinstall MacsBug.

MacsBug stack overflowed

Master pointer does not point at a block

The master pointer for a relocatable block must point at a block in the heap.

MMU not installed

The TM command functions only if the system has a 68851 or 68030 installed. This error
also occurs if you try to display or set an individual MMU register.

No blocks of this type found

The HD command was instructed to display only blocks of a specific kind and none
were found.

Nonrelocatable block: Pointer to zone is bad

Block headers of nonrelocatable blocks must contain a pointer to the zone header.

PC is not inside a procedure

The “:” character can be used to represent the address of the start of the procedure
displayed in the program counter window. If you enter “:” and no symbol information
can be found for the program counter, this error message will be displayed.

Relative handle is bad

The relative handle in the header of a relocatable block must point to a master pointer.

Start of link chain does not point to a stack frame.

A P P E N D I X B

Error Messages

335

Syntax error

This is a catch-all error message; it’s used in cases where the error is obvious given the
context of the command. Possibilities include:

■

An expression contains a value, an operator, but no second value.

■

A nested expression does not have matching parentheses.

■

An address qualifier other than .B, .W, or .L has been given.

■

An illegal character is in the command line.

■

The ATSS command does not include an address range.

■

The format parameter for the SHOW command is other than L, W, A, or LA.

■

The F command does not have the correct number of parameters.

■

The value being assigned to a floating-point register is illegal.

■

A toggle command has been passed a parameter other than ON and OFF.

■

The HD command qualifier is not valid.

Templates cannot expand more than 8 levels

Template definitions can themselves contain template definitions, and so on. Expansion
is limited to eight levels. Since it’s unlikely that a structure would contain this many
levels, this message may indicate a template definition that contains a recursive path.

The address on the stack is not a return address

The MR command must know where the return address for the current procedure is
located on the stack, since it replaces this address with an internal MacsBug address.
MacsBug checks that the address it replaces is in fact a return address. A return address
is defined as an address immediately following a JSR, BSR, or A-trap instruction. (All
forms of JSR and BSR are recognized.)

The string passed to DebugStr is paged to disk

The template contains an unrecognized basic type

The field of the template currently being displayed is not a valid basic type; see the
description of the TMP command for a list of all possible types.

There is no current procedure

This address is not a stack address

The MR command can optionally take a parameter specifying where on the stack the
return address for the current procedure is located. This address must be even and
within the range specified by register A7 and CurStackBase.

Unable to access that address

Unrecognized symbol

Any command that takes a symbol as parameter can receive this error if a valid symbol
name could not be found in the heap and the name is not a valid trap name.

A P P E N D I X B

Error Messages

336

Value expected

Some commands will supply default parameters when no parameter is specified. This
error can be returned by commands that require certain parameters.

Zone pointer is bad

The zone pointer for the current heap (SysZone, ApplZone, or user address) must be
even and in RAM. In addition, the bkLim field of the header must be even and in RAM,
and must point after the header.

A P P E N D I X C

“Sad Macintosh” Codes

337

Macintosh Error Codes C

This appendix lists error codes returned by the Macintosh system software. There are
three groups of codes:

■

“Sad Macintosh” codes are displayed if the system detects a hardware failure
during startup.

■

System Error Handler alerts result from a fatal error and are displayed in the Bomb
box or, if MacsBug is installed, as the first message displayed by MacsBug in the
output region.

■

Operating system errors are returned by the system to the program; it is up to the
program to respond to these.

“Sad Macintosh” Codes C

“Sad Macintosh” errors are presented in two groups: one for the Macintosh Plus,
which also includes the Macintosh 128K, 512K, and 512KE, and one for all other
Macintosh computers.

Codes for the Macintosh Plus C

Table C-1

“Sad Macintosh” error codes for the Macintosh Plus

ID Description

01

xxxx

ROM test failed

02

xxxx

RAM test (bug subtest) failed

03

xxxx

RAM test (byte write) failed

04

xxxx

RAM test (mod3 test) failed

05

xxxx

RAM test (add uniqueness) failed

0F0001 Bus error

0F0002 Address error

0F0003 Illegal instruction

0F0004 Zero divide

0F0005 Check instruction

0F0006 Trap instruction

continued

Figure C-0
Listing C-0
Table C-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X C

Macintosh Error Codes

338

“Sad Macintosh” Codes

Codes for Other Macintosh Computers C

Unlike those for the Macintosh Plus, “sad Macintosh” codes for other Macintosh
computers consist of two eight-digit hexadecimal numbers, displayed one above
the other.

0F0007 Privilege violation

0F0008 Trace mode error

0F0009 Line 1010 error

0F000A Line 1111 error

0F000B Other exceptions

0F000C Nothing

0F000D NMI (interrupt button)

0F0064 Couldn’t read system file

Table C-2

“Sad Macintosh” codes for Macintosh computers except the Mac Plus

ID Description

xxxx0001 ROM test failed

xxxxxxxx

xxxx0002 RAM test failed

xxxxxxxx

xxxx0003 RAM test failed

xxxxxxxx

xxxx0004 RAM test failed

xxxxxxxx

xxxx0005 RAM test failed

xxxxxxxx

xxxx0006 VIA1 chip failed

xxxxxxxx

xxxx0007 VIA2 chip failed

xxxxxxxx

xxxx0008 ADB failed

xxxxxxxx

continued

Table C-1

“Sad Macintosh” error codes for the Macintosh Plus (continued)

ID Description

A P P E N D I X C

Macintosh Error Codes

“Sad Macintosh” Codes

339

xxxx0009 MMU failed

xxxxxxxx

xxxx000A Nubus failed

xxxxxxxx

xxxx000B SCSI chip failed

xxxxxxxx

xxxx000C IWM chip failed

xxxxxxxx

xxxx000D SCC chip failed

xxxxxxxx

xxxx000E Data bus test failed

xxxxxxxx

xxxx000F Bus error

00000001

xxxx000F Address error

00000002

xxxx000F Illegal instruction error

00000003

xxxx000F Divide by zero error

00000004

xxxx000F Check instruction error

00000005

xxxx000F cpTrapCC, TrapCC, or TrapV error

00000006

xxxx000F Privilige violation

00000007

xxxx000F Trace

00000008

xxxx000F Line A error

00000009

continued

Table C-2

“Sad Macintosh” codes for Macintosh computers except the Mac Plus (continued)

ID Description

A P P E N D I X C

Macintosh Error Codes

340

“Sad Macintosh” Codes

xxxx000F Line F error

0000000A

xxxx000F Unassigned error

0000000B

xxxx000F Coprocessor protocol violation error

0000000C

xxxx000F Format exception

0000000D

xxxx000F Spurious interrupt

0000000E

xxxx000F Trap 0-15 exception

0000000F

xxxx000F Interrupt level 1

00000010

xxxx000F Interrupt level 2

00000011

xxxx000F Interrupt level 3

00000012

xxxx000F Interrupt level 4

00000013

xxxx000F Interrupt level 5

000000014

xxxx000F Interrupt level 6

00000015

xxxx000F Interrupt level 7

00000016

xxxx000F Coprocessor BRA or SET on unordered condition

00000017

xxxx000F Coprocessor inexact result

00000018

continued

Table C-2

“Sad Macintosh” codes for Macintosh computers except the Mac Plus (continued)

ID Description

A P P E N D I X C

Macintosh Error Codes

System Error Handler Alerts

341

System Error Handler Alerts C

If these errors are reported by the “bomb box,” they are identified by an ID number in
the lower-right corner of the box; if they are reported by MacsBug as a break message,
they are identified by their ID number as well as an error string. This section describes
some of the possible causes for these errors.

xxxx000F Coprocessor divide by zero

00000019

xxxx000F Coprocessor underflow

0000001A

xxxx000F Coprocessor operand error

0000001B

xxxx000F Coprocessor operand error

0000001C

xxxx000F Coprocessor NAN

0000001D

xxxx000F MMU configuration

0000001E

xxxx000F MMU illegal operation

0000001F

xxxx000F MMU access level violation

00000020

Table C-2

“Sad Macintosh” codes for Macintosh computers except the Mac Plus (continued)

ID Description

A P P E N D I X C

Macintosh Error Codes

342

System Error Handler Alerts

Table C-3

System Error Handler alerts

ID String Description

1 dsBusErr Bus error: an attempt to read from or write to an address that
doesn’t exist. For instance, if you have 2 MB of RAM in your
Macintosh, and you try to read the byte at 3 MB, you may get a
bus error. You may not stop at the exact instruction that contained
the error—you could stop one or two instructions away from it.
Because of their hardware design, the Macintosh Plus and
Macintosh SE almost never get bus errors; instead, the nonexistent
address is “wrapped around” to an address that does exist. What
address that will turn out to be is difficult to predict.

2 dsAddressErr Address error: a word or long word reference to an odd address. An
address error can be caused by two things. All machine instructions
are an even number of bytes long, and must start on an even-
numbered address. If the PC ever gets set to an odd address, you
will get an address error. On 68000 processors only, all word and
long word accesses must be to even addresses (this is not true of
single byte accesses); otherwise, your program will crash. On 68020
and 68030 processors, word and long word accesses can be at any
address, but they are faster if they are on even addresses.

3 dsIllInstErr Illegal instruction: the 68000 received an instruction it didn’t
recognize. Not all hexadecimal numbers are valid machine code
instructions. If the processor hits a value that is not a valid machine
code instruction, you will get an illegal instruction error. The most
likely cause of this error is that you jumped from the program code
into a random memory location that contains garbage. A less
common cause of this error is related to the hardware you’re using.
Some instructions are valid on a 68020 or 68030 but not on a 68000.
If you hit such an instruction on a Macintosh Plus or Macintosh SE,
you will get an illegal instruction error.

4 dsZeroDivErr Zero divide: signed divide (DIVS) or unsigned divide (DIVU) with
0 divisor was executed

5 dsChkErr Check error: check register against bounds error was executed and
failed. Pascal compilers put in code to make sure that array indexes
are not larger than the array itself, to prevent you from running off
the end of the array. (Strings are just arrays, so they are checked this
way too.) If the code the compiler puts in finds an error, it generates
a check error. C compilers don’t do this.

6 dsOvFlowErr TrapV exception (also known as an overflow error): TRAPV
instruction was executed and failed. Usually (but not always) this
indicates an overflow on an operation. It is a very rare error.

7 dsPrivErr Privilege violation: the application tried to get into restricted OS
memory. Also a very rare error.

8 dsTraceErr Trace exception: the trace bit in the status register was set
accidentally. Another rare error.

9 dsLineAErr Line 1010 exception: the A-trap dispatcher is not working. Another
rare error.

continued

A P P E N D I X C

Macintosh Error Codes

System Error Handler Alerts

343

10 dsLineFEr Line 1111 exception: a floating-point instruction tried to execute on
a machine without a floating-point processor.

11 dsMiscErr Miscellaneous exception: all other 68000 hardware exceptions.
Cosmic rays. If it happens repeatedly, have your hardware checked.

12 dsCoreErr Unimplemented core routine. This just means that you’ve hit an
unimplemented A-trap—that is, an A-trap number that’s not used,
so no code exists for it.

13 dsIrqErr Spurious interrupt: the interrupt vector table entry for a particular
level of interrupt (usually level 4, 5, 6, or 7) was NIL. Cosmic rays. If
it happens repeatedly, have your hardware checked.

14 dsIOCoreErr I/O system error: File Manager dequeue failed.

15 dsLoadErr Segment Loader error: A GetResource call to read a segment into
memory failed. This is caused either by a bad file or by running out
of memory.

16 dsFPErr Floating-point error: error in the floating calculations.

17 dsNoPackErr Can’t load package 0: package 0 not present (List Manager); a
GetResource call to load a 'PACK' resource failed. Your System file
may be trashed, or you may be out of memory.

18 dsNoPk1 Can’t load package 1: package 1 not present. Your System file may
be trashed, or you may be out of memory.

19 dsNoPk2 Can’t load package 2: package 2 not present (Disk Init); a
GetResource call to load a 'PACK' resource failed. Your System
file may be trashed, or you may be out of memory.

20 dsNoPd3 Can’t load package 3: package 3 not present (Standard File); a
GetResource call to load a 'PACK' resource failed. Your System
file may be trashed, or you may be out of memory.

21 dsNoPk4 Can’t load package 4: package 4 not present (SANE floating point);
a GetResource call to load a 'PACK' resource failed. Your System file
may be trashed, or you may be out of memory.

22 dsNoPk5 Can’t load package 5: package 5 not present (SANE transcen-
dentals); a GetResource call to load a 'PACK' resource failed. Your
System file may be trashed, or you may be out of memory.

23 dsNoPk6 Can’t load package 6: package 6 not present (International Utilities);
a GetResource call to load a 'PACK' resource failed. Your System file
may be trashed, or you may be out of memory.

24 dsNoPk7 Can’t load package 7: package 7 not present (Binary-Decimal
Conversion); a GetResource call to load a 'PACK' resource failed.
Your System file may be trashed, or you may be out of memory.

25 dsMemFullErr Can’t allocate requested block: out of memory. This is the error the
ROM returns when it runs out of memory deep inside itself, in
places that are impossible to back out of

continued

Table C-3

System Error Handler alerts (continued)

ID String Description

A P P E N D I X C

Macintosh Error Codes

344

System Error Handler Alerts

26 dsBadLaunch Segment Loader error: a GetResource call to read code segment 0
failed. Probably the file you double-clicked on isn’t an application
or has been trashed.

27 dsFSErr File system map destroyed: someone attempted to access an invalid
block. Hope you remembered to back up your disk!

28 dsStknHeap Stack overflow error: the stack grew so large that it intruded into
the heap, thus corrupting the heap. This situation was detected by
the stack sniffer

.

 Not all stack overflows are caught by the stack
sniffer.

 You

can trash the heap without getting this error, but you’ll
crash sooner or later. One possible cause of this error is recursion
that goes much deeper than you expect or whose stack frames are
very large.

30 dsReinsert “Please insert the disk:” File Manager alert; request to reinsert
off-line volume. Not an error.

31 dsNotThe1 Not the requested disk.

32 memTrbBase Memory Manager failed.

33 negZcbFreeErr ZcbFree is negative: you trashed the heap zone header.

34-53 Memory Manager errors.

40 dsGreeting “Welcome to Macintosh” greeting. Not an error.

41 dsFinderErr File named Finder couldn’t be found on the disk.

42 shutDownAlert “You may now switch off your Macintosh safely” dialog box. Not
an error.

51 dsBadSlotInt Unserviceable slot interrupt.

81 dsBadSANEopcode Bad SANE opcode: floating-point package was given bad
instructions.

84 menuPrgErr Menu purge error: a menu resource currently in use was purged.

85 dsMBarNFind Menu Manager error.

86 dsHMenuFindErr Menu Manager error.

87 wDEFnFnd WDEF not found: system couldn’t load the default window
definition procedure resource.

88 cDEFnFnd CDEF not found: system couldn’t load the default control definition
procedure resource.

98 dsNoPatch Can’t patch for particular model Macintosh: System file does not
contain ROM patch resources for your Macintosh model. You may
be using a system that’s older than your computer.

99 dsBadPatch Can’t load patch resource: error generated while loading the ROM
patch resource. System file may be corrupted.

32767 dsSysErr General system error. A fatal error occurred, but the system doesn’t
know which one.

Table C-3

System Error Handler alerts (continued)

ID String Description

A P P E N D I X C

Macintosh Error Codes

Operating System Errors

345

Operating System Errors C

Operating system errors are presented in roughly ascending ID order and grouped
according to manager.

Note that the following tables include operating system errors introduced with system
software version 7.0. These are denoted by an asterisk. It is possible that some of these
might change with the final release of system 7.0.

OS Event Manager Error C

Serial Driver Errors C

Slot Manager Errors C

Table C-4

OS Event Manager error

ID Name Description

1 evtNotEnb Event not enabled at PostEvent.

Table C-5

Serial driver errors

ID Name Description

1 swOverrunErr Serial driver overrun error

16 parityErr Serial parity error

32 hwOverrunErr Serial hardware overrun

64 framingErr Serial framing error

Table C-6

Slot Manager errors

ID Name Description

1 siInitSDTblErr Slot init dispatch table couldn’t be initialized

2 siInitVBLQsErr VBL queues for all slots couldn’t be initialized

3 siInitSPTblErr Slot priority table couldn’t be initialized

10 sdmJTInitErr SDM jump table couldn’t be initialized

11 sdmInitErr SDM couldn’t be initialized

continued

A P P E N D I X C

Macintosh Error Codes

346

Operating System Errors

SCSI Manager Errors C

Printing Manager Errors C

12 sdmSRTInitErr Slot Resource Table couldn’t be initialized

13 sdmPRAMInitErr Slot PRAM couldn’t be initialized

14 sdmPriInitErr Cards couldn’t be initialized

*–32768 svTempDisable Temporarily disable card but run primary init

*–32640 svDisabled Reserve range –32640 to –32768 for Apple
temp disables

Table C-7

SCSI Manager errors

ID Name Description

2 scCommErr Communications error (operations timeout).

3 scArbNBErr Arbitration failed during SCSIGet; bus busy.

4 scBadparmsErr Bad parameter or TIB opcode.

5 scPhaseErr SCSI bus not in correct phase for attempted operation.

6 scCompareErr SCSI Manager busy with another operation when
SCSIGet was called.

7 scMgrBusyErr SCSI Manager busy with another operation when
SCSIGet was called.

8 scSequenceErr Attempted operation is out of sequence, such as calling
SCSISelect before doing SCSIGet.

9 scBusTOErr Bus timeout before data ready on SCSIRBlind and
SCSIWBlind.

10 scComplPhaseErr SCSIComplete failed; bus not in Status phase.

Table C-8

Printing Manager errors

ID Name Description

128 iPrAbort Application or user requested abort.

–1 iPrSavPFil Saved a spool file.

Table C-6

Slot Manager errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

Operating System Errors

347

General System Errors C

Color Manager Errors C

Table C-9

General system errors

ID Name Description

0 noErr Success.

–1 qErr Queue element not found during deletion.

–2 vTypErr Invalid queue element.

–3 corErr Core routine number out of range.

–4 unimpErr Unimplemented core routine.

–8 seNoDB No debugger installed to handle debugger command.

Table C-10

Color Manager errors

ID Name Description

–9 iTabPurgErr From Color2Index/ITabMatch

–10 noColMatch From Color2Index/ITabMatch

–11 qAllocErr from MakeITable

–12 tblAllocErr from MakeITable

–13 overRun from MakeITable

–14 noRoomErr from MakeITable

–15 seOutOfRange from SetEntry

–16 seProtErr from SetEntry

–17 i2CRangeErr from SetEntry

–18 gdBadDev from SetEntry

–19 reRangeErr from SetEntry

–20 seInvRequest from SetEntry

–21 seNoMemErr from SetEntry

A P P E N D I X C

Macintosh Error Codes

348

Operating System Errors

Device Manager Errors C

Macintosh File System (MFS) Errors C

Table C-11

Device Manager errors

ID Name Description

–17 controlErr Driver couldn’t respond to this Control call.

–18 statusErr Driver couldn’t respond to this Status call.

–19 readErr Driver couldn’t respond to Read calls.

–20 writErr Driver couldn’t respond to Write calls.

–21 badUnitErr Driver reference number didn’t match unit table.

–22 unitEmptyErr Driver reference number specified NIL handle in unit table.

–23 openErr Requested read/write permission didn’t match driver’s
open permission; attempt to open RAM Serial Driver failed.

–24 closErr Permission to close .MPP driver was denied.

–25 dRemovErr Tried to remove an open driver.

–26 dInstErr Drvinstall couldn’t find driver in resource file.

–27 abortErr I/O call aborted by KillIO.
Publisher has written a new edition. (Edition Mgr.)

–28 notOpenErr Can’t read, write, control, or status; driver was not opened.

–29 unitTblFullErr Unit table has no more entries.

–30 dceExtErr DCE extension error.

128 iIOAbort I/O abort error (Printing Manager).

Table C-12

MFS errors

ID Name Description

–33 dirFulErr File directory full.

–34 dskFulErr All allocation blocks on the volume are full.

–35 nsvErr Volume not found.

–36 ioErr I/O error.

–37 bdNamErr Bad filename or volume name (perhaps zero-length).

–38 fnOpnErr File not open.

–39 eofErr Logical end of file reached during read operation.

continued

A P P E N D I X C

Macintosh Error Codes

Operating System Errors

349

–40 posErr Tried to position the file pointer before the start of the
file (read or write).

–41 mFulErr Memory full (open), or file wouldn’t fit (load).

–42 tmfoErr Too many files open.

–43 fnfErr File not found; Folder not found; Edition container not
found; Target not found.

–44 wPrErr Volume is locked by a hardware setting.

–45 fLckdErr File is locked.

–46 vLckdErr Volume is locked by a software flag.

–47 fBsyErr File is busy; Section doing I/O.

–48 dupFNErr Duplicate filename (rename).

–49 opWrErr File already open with write permission.

–50 paramErr Error in user parameter list:

Parameters didn’t specify an existing volume (File Manager).

Bad positioning information (Disk Driver).

Bad drive number (Disk Initialization Package).

–51 rfNumErr Path reference number specifies nonexistent access path.

–52 gfpErr Error during GetFPos.

–53 volOffLinErr Volume not on-line (was ejected).

–54 permErr Not a subscriber; Software lock on file.

–55 volOnLinErr Drive volume already on-line at MountVol.

–56 nsDrvErr No such drive; specified drive number didn’t match any
number in the drive queue.

–57 noMacDskErr Not a Macintosh disk; significant bytes are wrong.

–58 extFSErr Volume in question belongs to an external file system;
file-system identifier is nonzero, or path reference number is
greater than 1024.

–59 fsRnErr Problem during rename.

–60 badMDBErr Bad master directory block; must reinitialize volume.

–61 wrPermErr Write permissions error; Not a publisher.

Table C-12

MFS errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

350

Operating System Errors

Font Manager Errors C

Low-Level Disk Errors C

Table C-13

Font Manager errors

ID Name Description

–64 fontDecError Error during font declaration.

–65 fontNotDeclared Font not declared.

–66 fontSubErr Font substitution occurred.

Table C-14

Low-level disk errors

ID Name Description

–84 firstDskErr First of the range of low-level disk errors.

–64 lastDskErr Last of the range of low-level disk errors.

–64 noDriveErr Drive not installed.

–65 offLinErr Read/write requested for an off-line drive.

–66 noNybErr Couldn’t find 5 nibbles in 200 tries.

–67 noAdrMkErr Couldn’t find valid address mark.

–68 dataVerErr Read verify compare failed.

–69 badCksmErr Address mark checksum did not check.

–70 badBtSlpErr Bad address mark bit slip nibbles.

–71 noDtaMkErr Couldn’t find a data mark header.

–72 badDCksum Bad data mark checksum.

–73 badDBtSlp Bad data mark bit slip nibbles.

–74 wrUnderrun Write underrun occurred.

–75 cantStepErr Step handshake failed.

–76 tk0BadErr Track 0 detect does not change.

–77 initIWMErr Unable to initialize IWM.

–78 twoSideErr Tried to read second side on a one-sided drive.

–79 spdAdjErr Unable to correctly adjust disk speed.

–80 seekErr Track number wrong on address mark.

–81 sectNFErr Sector number never found on a track.

–82 fmt1Err Couldn’t find sector 0 after track format.

–83 fmt2Err Couldn’t get enough sync.

–84 verErr Track failed to verify.

A P P E N D I X C

Macintosh Error Codes

Operating System Errors

351

Clock Chip Errors C

Serial Communications Controller (SCC) Errors C

AppleTalk Errors C

Table C-15

Clock chip errors

ID Name Description

–85 clkRdErr Unable to read same clock value twice.

–86 clkWrErr Time written didn’t verify.

–87 prWrErr Parameter RAM written didn’t read-verify.

–88 prInitErr InitUtil found the parameter RAM uninitialized.

Table C-16

SCC errors

ID Name Description

–89 rcvrErr SCC receiver error (framing, parity, OR).

–90 breakRecd Break received (SCC).

Table C-17

AppleTalk errors

ID Name Description

*–91 eMultiErr Invalid address of table is full

–91 ddpSktErr DDP error in socket number: socket already active, not a
well-known socket, socket table full, or all dynamic
socket numbers in use.

–92 ddpLenErr DDP datagram or ALAP data length too big.

*–92 elenErr Packet too large or first entry of the write-data structure
did not contain the full 14-byte header.

–93 noBridgeErr No network bridge for nonlocal send.

–94 LAPProtErr Error in attaching/detaching protocol: attach error when
ALAP protocol type is negative, not in range, or already
in table, or when table is full; detach error when ALAP
protocol type isn’t in table.

–95 excessCollsns Excessive collisions on write.

–97 portInUse Driver open error; port already in use.

–98 portNotCf Driver open error; parameter RAM not configured for
this connection.

–99 memROZErr Hard error in ROZ.

–99 memROZWarn Soft error in ROZ.

A P P E N D I X C

Macintosh Error Codes

352

Operating System Errors

Scrap Manager Errors C

Storage Allocator Errors C

Hierarchical File System (HFS) Errors C

Table C-18

Scrap Manager errors

ID Name Description

–100 noScrapErr Desk scrap not initialized.

–102 noTypeErr No object of that type in scrap.

Table C-19

Storage allocator errors

ID Name Description

–108 memFullErr Not enough room in heap zone.

–109 nilHandleErr Handle was NIL in HandleZone; GetHandleSize fails on
baseText or substitution Text.

–110 memAdrErr Address was odd or out of range.

–111 memWZErr WhichZone failed (applied to free block); GetHandleSize
fails on baseText or substitution Text.

–112 memPurErr Tried to purge a locked or nonpurgeable block.

–113 memAZErr Address in zone check failed.

–114 memPCErr Pointer check failed.

–115 memBCErr Block check failed.

–116 memSCErr Size check failed.

–117 memLockedErr Tried to move a locked block (MoveHHi).

Table C-20

HFS errors

ID Name Description

–120 dirNFErr Directory not found.

–121 tmwdoErr No free WDCB available.

–122 badMovErr Moved into offspring error.

–123 wrgVolTypErr Wrong volume type (operation not supported for MFS).

–124 volGoneErr Server volume disconnected.

–127 fsDsIntErr Internal file system error.

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 353

Alias Manager Error C

Menu Manager Errors C

Color QuickDraw and Color Manager Errors C

Table C-21 Alias Manager error

ID Name Description

*–128 userCanceledErr User canceled out of an operation status.

Table C-22 Menu Manager errors

ID Name Description

–126 mBarNFnd System error code for MBDF not found.

–127 hMenuFindErr Couldn’t find HMenu’s parent in MenuKey.

Table C-23 Color QuickDraw and Color Manager errors

ID Name Description

*–125 updPixMemErr Insufficient memory to update a pixmap.

*–145 noMemForPictPlaybackErr

*–147 rgnTooBigError Region too big or complex.

*–148 pixMapTooDeepErr PixMap record is deeper than 1 bit per pixel.

*–149 mfStackErr Insufficient stack.

–150 cMatchErr Color2Index failed to find an index.

–151 cTempMemErr Failed to allocate memory for
temporary structures.

–152 cNoMemErr Failed to allocate memory for structure.

–153 cRangeErr Range error on colorTable request.

–154 cProtectErr colorTable entry protection violation.

–155 cDevErr Invalid type of graphics device.

–156 cResErr Invalid resolution for MakeITable

–157 cDepthErr Invalid pixel depth.

A P P E N D I X C

Macintosh Error Codes

354 Operating System Errors

Resource Manager Errors C

Sound Manager Errors C

Table C-24 Resource Manager errors

ID Name Description

*–188 resourceInMemory Resource already in memory.

*–189 writingpastEnd Writing past end of file

*–190 inputOutOfBounds Offset or count out of bounds

–192 resNotFound Resource not found.

–193 resFNotFound Resource file not found.

–194 addResFailed AddResource failed.

–195 addRefFailed AddReference failed.

–196 rmvResFailed RmveResource failed.

–197 rmvRefFailed RmveReference failed.

–198 resAttrErr Attribute inconsistent with operation.

–199 mapReadErr Map inconsistent with operation.

Table C-25 Sound Manager errors

ID Name Description

–200 noHardware No hardware support for the
specified synthesizer.

–201 notEnoughHardware No more channels for the specified synthesizer.

–203 queueFull No room in the queue.

–204 resProblem Problem loading resource.

–205 badChannel Invalid channel queue length.

–206 badFormat Handle to 'snd' resource was invalid.

*–207 NotEnoughBufferSpace Insufficient memory available.

*–208 badFileFormat File is corrupt or unusable, or not AIFF
or AIFF-C.

*–209 ChannelBusy Channel is busy.

*–210 buffersTooSmall Buffer is too small.

*–211 channelNotBusy Channel not currently used.

*–212 noMoreRealTime Not enough CPU time available

continued

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 355

Slot Manager Errors C
Errors –290 to –320 might be generated during system initialization; if they are, they will
be logged into the sInfo array and returned each time a call to the Slot Manager is made
for the card that generated the error.

Errors –330 to –351 might be generated at any time after system initialization and will
not be logged into the sInfo array.

*–213 badParam A parameter is incorrect.

*–220 siNoSoundInHardware No sound input hardware available.

*–221 siBadSoundInDevice Invalid sound input device.

*–222 siNoBufferSpecified No buffer specified.

*–223 siNoCompletionRoutine No completion routine specified.

*–224 siHardDiskTooSlow Hard drive too slow to record.

*–225 siInvalidSampleRate Invalid sample rate.

*–226 siInvalidSampleSize Invalid sample size.

*–227 siDeviceBusyErr Sound input device is busy.

*–228 siBadDeviceName Invalid device name.

*–229 siBadRefNum Invalid reference number.

*–230 siInputDeviceErr Input device hardware failure.

*–231 siUnknownInfoType Unknown type information.

*–232 siUnknownQuality Unknown quality.

Table C-26 Slot Manager errors

ID Name Description

–290 smSDMInitErr SDM couldn’t be initialized.

–291 smSRTInitErr Slot Resource Table couldn’t be initialized.

–292 smPRAMInitErr Slot Resource Table couldn’t be initialized.

–293 smPriInitErr Cards couldn’t be initialized.

*–299 nmTypeErr Invalid qType—must be ORD(nmType).

–300 smEmptySlot No card in this slot.

–301 smCRCFail CRC check failed for declaration data.

continued

Table C-25 Sound Manager errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

356 Operating System Errors

–302 smFormatErr Format of the declaration ROM is wrong.

–303 smRevisionErr Revision level of the declaration ROM is wrong.

–304 smNoDir Directory offset is NIL.

–305 smLWTsBad Long word test failed.

–306 smNosInfoArray SDM was unable to allocate memory for the
sInfo array.

–307 smResrvErr A reserved field of the declaration ROM was used.

–308 smUnExBusErr Unexpected bus error.

–309 smBLFieldBad A valid ByteLanes field was not found.

–310 smFHBlockRdErr F-Header block could not be read.

–311 smFHBlkDispErr F-Header block could not be disposed of.

–312 smDisposePErr An error occurred during execution
of _DisposPointer.

–313 smNoBoardsRsrc No board sResource.

–314 smGetPRErr An error occurred during execution
of _sGetPRAMRec.

–315 smNoBoardId No board ID.

–316 smInitStatVErr InitStatus_V field was negative after Primary Init.

–317 smInitTblErr An error occurred while trying to initialize the Slot
Resource Table.

–318 smNoJmpTbl Slot Manager jump table could not be created.

–319 smBadBoardID Board ID was wrong; reinitialize the PRAM record.

–320 smBusErrTO Bus error timeout.

–330 smBadRefID Reference ID was not found in the given list.

–331 smBadsList IDs in the given sList are not in ascending order.

–332 smReservedErr A reserved field was not zero.

–333 smCodeRevErr Revision of the code to be executed by sExec
was wrong.

–334 smCPUErr CPU field of the code to be executed by sExec
was wrong.

–335 smsPointerNil sPointer is NIL; no list is specified.

–336 smNilsBlockErr Physical block size of an sBlock was zero.

–337 smSlotOOBErr Given slot is out of bounds or does not exist.

continued

Table C-26 Slot Manager errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 357

Notification Manager Error C

Device Manager Errors C

–338 smSelOOBErr Selector is out of bounds.

–339 smNewPErr An error occurred during execution of _NewPointer.

*–340 smBlkMoveErr _BlockMove error.

–341 smCkStatusErr Status of slot is bad (InitStatus_A, V).

–342 smGetDrvrNamErr An error occurred during execution
of _sGetDrvrName.

*–343 smDisDrvrNamErr Error occured during _sDisDrvrName.

–344 smNoMoresRsrcs No more sResources.

–345 smGetDrvrErr An error occurred during execution of _sGetDrvr.

–346 smBadsPtrErr A bad sPointer was presented to a SDM call.

–347 smByteLanesErr Bad ByteLanes value was passed to an SDM call.

*–348 smOffsetErr Offset was too big (temporary error).

–349 smNoGoodOpens No opens were successful in the loop.

–350 smSRTOvrFlErr Slot Resource Table overflow.

–351 smRecNotFnd Record not found in the Slot Resource Table.

Table C-27 Notification Manager error

ID Name Description

–299 nmTypErr Wrong queue type.

Table C-28 Device Manager errors

ID Name Description

–360 slotNumErr Invalid slot number.

–400 gcrOnMFMErr gcr format on high-density media error.

–500 rgnTooBigErr Region too big error.

–501 teScrapSozeErr Scrap item too big for text edit record.

–502 hwParamrErr bad selector for _HWPriv.

Table C-26 Slot Manager errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

358 Operating System Errors

Edition Manager Errors C

Process Manager Errors C

Table C-29 Edition Manager errors

ID Name Description

*–450 editionMgrInitErr Edition Manager not inited by
this application.

*–451 badSectionErr Not a valid SectionRecord.

*–452 notRegisteredSectionErr Not a registered SectionRecord.

*–453 badEditionFileErr Edition file is corrupt.

*–454 badSubPartErr Can not use sub parts in this release.

*–460 multiplePublisherWrn A publisher is already registered for
that container.

*–461 containerNotFoundWrn Could not find editionContainer at this time.

*–462 containerAlreadyOpenWrn Container already opened by this section.

*–463 notThePublisherWrn Not the first registered publisher for
that container.

Table C-30 Process Manager errors

ID Name Description

*–600 procNotFound No eligible process with specified process
serial number.

*–601 memFragErr Not enough room to launch application with
special requirements.

*–602 appModeErr Memory mode is 32-bit, but application is not
32-bit clean.

*–603 protocolErr Application made module calls in improper order.

*–604 hardwareConfigErr Hardware configuration is not correct for call.

*–605 appMemFullErr Partition size specified in 'SIZE' resource is not big
enough for launch.

*–606 appIsDaemon Application is background only.

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 359

Event Manager Errors C

Memory Manager Errors C

Data Access Manager Errors C

Table C-31 Event Manager errors

ID Name Description

*–607 bufferIsSmall Buffer is too small.

*–608 noOutstandingHLE No outstanding high-level event.

*–609 connectionInValid Connection is invalid.

Table C-32 Memory Manager errors

ID Name Description

*–620 notEnoughMemoryErr Insufficient physical memory.

*–621 notHeldErr Specified range of memory is not held.

*–622 cannotMakeContinguousErr Cannot make specified range contiguous.

*–623 notLockedErr Specified range of memory is not locked.

*–624 interruptsMaskedErr Called with interrupts masked.

*–625 cannotDeferErr Unable to defer additional user functions.

Table C-33 Data Access Manager errors

ID Name Description

*–800 rcDBNull The data item was NULL.

*–801 rcDBValue Data abailable or successfully retrieved.

*–802 rcDBError Error executing function.

*–803 rcDBBadType Next data item not of requested data type.

*–804 rcDBBreak Function timed out.

*–805 rcDBExec Query currently executing.

*–806 rcDBBadSessId Session ID is invalid.

*–807 rcDBBadSessNum Invalid session number.

*–808 rcDBBadDDev Couldn't find the specified database extension, or
error occurred in opening database extension.

continued

A P P E N D I X C

Macintosh Error Codes

360 Operating System Errors

Help Manager Errors C

PPC Toolbox Errors C

*–809 rcDBAsyncNotSupp The database extension does not support
asynchronous calls.

*–810 rcDBBadAsynchPB Invalid parameter block specified.

*–811 rcDBNoHandler There is no handler for this data type installed for
the current application.

*–812 rcDBWrongVersion Wrong version number.

*–813 rcDBPackNotInited The InitDBPack function has not yet been called.

Table C-34 Help Manager errors

ID Name Description

*–850 hmHelpDisabled Help is not enabled.

*–853 hmBalloonAborted Mouse was moving or not in rectangle.

*–854 hmSameAsLastBalloon Menu and item are same as previous menu
and item.

*–855 hmHelpManagerNotInited Help menu not set up.

*–857 hmSkippedBalloon Help message record specified a skip balloon.

*–859 hmUnknownHelpType Help message record contained a bad type.

*–861 hmOperationUnsupported Bad method parameter.

*–862 hmNoBalloonUp No balloon showing.

*–863 hmCloseViewActive User using Close View won’t let you
remove balloon.

Table C-35 PPC Toolbox errors

ID Name Description

*–900 notInitErr PPCToolBox not initialized.

*–902 nameTypeErr Invalid or inappropriate locationKindSelector
in locationName.

*–903 noPortErr Unable to open port or bad portRefNum.

*–904 noGlobalsErr The system is hosed, better restart.

continued

Table C-33 Data Access Manager errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 361

*–905 localOnlyErr Network activity is currently disabled.

*–906 destPortErr Port does not exist at destination.

*–907 sessTableErr Out of session tables, try again later.

*–908 noSessionErr Invalid session reference number.

*–909 badReqErr Bad parameter or invalid state for operation.

*–910 portNameExistsErr Port is already open, perhaps in another
application.

*–911 noPortTableErr User name unknown on destination machine.

*–912 userRejectErr Destination rejected the session request.

*–915 noResponseErr Unable to contact application.

*–916 portClosedErr The port was closed.

*–917 sessClosedErrr The session has closed.

*–919 badPortNameErr PPC port record is invalid.

*–922 noDefaultUserErr No owner’s name in Network Setup Control Panel.

*–923 notLoggedInErr The default userRefNum does not yet exist.

*–924 noUserRefErr Unable to create a new userRefNum.

*–925 networkErr An error has occured in the network; a very
rare error.

*–926 noInformErr PPCStart failed because destination did not have
inform pending.

*–927 authFailErr Unable to authenticate user at destination.

*–928 noUserRecErr Invalid user reference number.

*–930 badServiceMethodErr Illegal service type, or not supported.

*–931 badLocNameErr Location name malformed.

*–932 guestNotAllowedErr Destination port requires authentication.

Table C-35 PPC Toolbox errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

362 Operating System Errors

File ID Errors C

AppleTalk Name Binding Protocol (NBP) Errors C

Table C-36 File ID errors

ID Name Description

*–1300 fidNotFound File ID not found.

*–1301 fidExists File ID already exists.

*–1302 NotAFileErr Specified file is a directory.

*–1303 DiffVolErr Files on different volumes.

*–1304 catChangedErr Catalog has changed and CatPosition might be
invalid.

*–1305 desktopDamagedErr Desktop database files are corrupted. The Finder
will fix this, but if your application is not running
with the Finder, use DTReset or DTDelete.

*–1306 sameFileErr Can’t exchange a file with itself.

*–1307 badFidErr File ID is dangling or doesn’t match with file
number.

Table C-37 NBP errors

ID Name Description

–1024 nbpBuffOvr Buffer overflow in LookupName.

–1025 nbpNoConfirm Name not confirmed on ConfirmName.

–1026 nbpConfDiff Name confirmed for different socket.

*–1027 nbpDuplicate Duplicate name already exists.

–1028 nbpNotFound Name not found on remove.

–1029 nbpNISErr Error trying to open the NIS.

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 363

AppleTalk Session Protocol (ASP) Errors C

AppleTalk Transaction Protocol (ATP) Errors C

Table C-38 ASP errors

ID Name Description

–1066 aspBadVersNum Server couldn’t support this ASP version.

–1067 aspBufTooSmall Buffer too small.

–1068 aspNoMoreSess No more sessions on server.

–1069 aspNoServers No servers at that address.

–1070 aspParamErr Parameter error.

–1071 aspServerBusy Server couldn’t open another session.

–1072 aspSessClosed Session closed.

–1073 aspSizeErr Command block is too big.

–1074 aspTooMany Too many clients.

–1075 aspNoAck No ack on attention request.

Table C-39 ATP errors

ID Name Description

*–1096 reqFailed SendRequest failed; retry count exceeded.

–1097 tooManyReqs Too many concurrent requests.

–1098 tooManySkts Too many responding sockets.

–1099 badATPSkt Bad responding socket.

–1100 badBuffNum Bad response buffer number specified.

–1101 noRelErr No release received.

*–1102 cbNotFound Control block not found.

–1103 noSendResp AddResponse issued before SendResponse.

–1104 noDataArea Too many outstanding ATP calls.

*–1105 reqAborted Request aborted.

*–1273 errOpenDenied Open request denied by recipient.

*–1274 errDSPQueueSize Send or receive queue is too small

*–1275 errFwdReset Read terminated by forward reset.

*–1276 errAttention Attention message too long.

continued

A P P E N D I X C

Macintosh Error Codes

364 Operating System Errors

AppleTalk Filing Protocol (AFP) Errors C

*–1277 errOpening Attempt to open connection failed.

*–1278 errState Bad connection state for this operation.

*–1279 errAborted Request aborted by dspRemove or
dspClose function.

*–1280 errRefNum Bad connection reference number.

*–3101 buf2SmallErr ALAP frame too large for buffer; DDP datagram too
large for buffer.

–3102 noMPPError MPP driver not installed.

–3103 ckSumErr DDP bad checksum.

–3104 extractErr NBP couldn’t find tuple in buffer.

–3105 readQErr Socket or protocol type invalid or not found in table.

–3106 atpLenErr ATP response message too large.

–3107 atpBadRsp Bad response from ATPRequest.

–3108 recNotFnd ABRecord not found.

–3109 sktClosedErr Asynchronous call aborted because socket was
closed before call was completed.

Table C-40 AFP errors

ID Name Description

–5000 afpAccessDenied AFP access denied.

–5001 afpAuthContinue AFP authorization continue.

–5002 afpBadUAM AFP bad VAM.

–5003 afpBadVersNum AFP bad version number.

–5004 afpBitmapErr AFP bit map error.

–5005 afpCantMove AFP can’t move error.

–5006 afpDenyConflict AFP deny conflict.

–5007 afpDirNotEmpty AFP directory not empty.

–5008 afpDiskFull AFP disk full.

–5009 afpEofError AFP End-0f-File error.

–5010 afpFileBusy AFP file busy.

continued

Table C-39 ATP errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

Operating System Errors 365

SysEnvirons Errors C

–5011 afpFlatVol AFP flat volume.

•–5012 afpItemNotFound AFP item not found.

–5013 afpLockErr AFP lock error.

–5014 afpMiscErr AFP misc error.

–5015 afpNoMoreLocks AFP no more locks.

–5016 afpNoServer AFP no server.

–5017 afpObjectExists AFP object already exists.

–5018 afpObjectNotFound AFP object no found.

–5019 afpParmErr AFP parm error.

–5020 afpRangeNotLocked AFP range not locked.

–5021 afpRangeOverlap AFP range overlap.

–5022 afpSessClosed AFP session closed.

–5023 afpUserNotAuth AFP user not authorized.

–5024 afpCallNotSupported AFP call not supported.

–5025 afpObjectTypeErr AFP object type error.

–5026 afpTooManyFilesOpen AFP too many files open.

–5027 afpServerGoingDown AFP server going down.

–5028 afpCantRename AFP can’t rename.

–5029 afpDirNotFound AFP directory not found.

–5030 afpIconTypeError AFP icon type error.

–5031 afpVolLocked Volume is Read-Only.

–5302 afpObjectLocked Object is M/R/D/W inhibited.

Table C-41 SysEnvirons errors

ID Name Description

–5500 envNotPresent SysEnvirons trap not present (System file earlier than
version 4.1); glue returns values for all fields except
systemVersion.

–5501 envBadVers A nonpositive version number was passed—no
information returned.

–5502 envVersTooBig Requested version of SysEnvirons call was not available.

Table C-40 AFP errors (continued)

ID Name Description

A P P E N D I X C

Macintosh Error Codes

366 Operating System Errors

Gestalt Manager Errors C

Picture Utilities Errors C

Power Manager Errors C

Table C-42 Gestalt Manager errors

ID Name Description

*–5550 gestaltUnknownErr Could not obtain the response.

*–5551 gestaltUndefSelectorErr Undefined selector.

*–5552 gestaltDupSelectorErr Selector already exists.

*–5553 gestaltLocationErr Function not in system heap.

Table C-43 Picture utilities errors

ID Name Description

*–11000 pictInfoVersionErr Wrong version of the PictInfo structure

*–11001 pictInfoIDErr Internal consistency check for PictInfoID
is wrong

*–11002 pictInfoVerbErr The passed verb is invalid

*–11003 cantLoadPickMethodErr Unable to load the custom pick procedure

*–11004 colorsRequestedErr The number of colors requested was illegal

*–11005 pictureDataErr The picture data was invalid

Table C-44 Power Manager errors

ID Name Description

*–13000 pmBusyErr Power Manager IC stuck busy.

*–13001 pmReplyTOErr Timed out waiting to begin reply handshake.

*–13002 pmSendStartErr Power Manager IC did not start handshake.

*–13003 pmSendEndErr During send, Power Mgr did not finish handshake.

*–13004 pmRecvStartErr During receive, Power Mgr did not start handshake.

*–13005 pmRecvEndErr During receive, Power Mgr did not finish handshake.

A P P E N D I X D

Procedure Definition

367

Procedure Names D

This appendix describes how a procedure must be defined in order for MacsBug to
recognize it.

Procedure Definition D

Whenever possible, MacsBug accepts and returns addresses as procedure names and
offsets. MacsBug finds names by scanning relocatable heap blocks for valid procedure
definitions. A procedure definition, in the simplest case, consists of a return instruction
followed by the procedure’s name.

A procedure is defined as follows:

■

LINK A6—This instruction is optional; if it is missing, the start of the procedure
is assumed to be immediately after the preceding procedure, or at the start of the
heap block.

■

Procedure code

■

RTS or JMP(A0) or RTD

■

Procedure name

■

Procedure constants

The procedure name can be a fixed length of 8 or 16 bytes, or of variable length. Valid
characters for procedure names are a–z, A–Z, 0–9, underscore (_), percent (%), period (.),
and space. The space character is allowed only to pad fixed-length names to the
maximum length.

With fixed-length format, the first byte is in the range $20 through $7F. The high-order
bit may or may not be set. The high-order bit of the second byte is set for 16-character
names, clear for 8-character names. Fixed-length 16-character names are used in object
Pascal to show class.method names instead of procedure names. The method name is
contained in the first 8 bytes and the class name is in the second 8 bytes. MacsBug swaps
the order and inserts the period before displaying the name.

With variable-length format, the first byte is in the range $80 to $9F. Stripping the
high-order bit produces a length in the range $00 through $1F. If the length is 0, the next
byte contains the actual length, in the range $01 through $FF. Data after the name starts
on a word boundary. Compilers can place a procedure’s constant data immediately after
the procedure in memory. The first word after the name specifies how many bytes of
constant data are present. If there are no constants, a length of 0 must be given.

Figure D-0
Listing D-0
Table D-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X D

Procedure Names

368

Examples of Procedure Definitions

Examples of Procedure Definitions D

Here are some examples of valid assembly-language procedure definitions:

; Variable-length name with no constant data.

Proc1 PROC

LINK A6, #0

UNLK A6

RTS

DC.B $8C, 'VariableName'

DC.W $0000

ENDP

; Fixed 8-character name.

Proc2 PROC

LINK A6, #0

UNLK A6

RTS

DC.B $80 + 'F', 'ixed '

ENDP

; Fixed 16-character name.

Proc3 PROC

LINK A6, #0

UNLK A6

RTS

DC.B $80 + 'M', $80 + 'e', 'thod Class '

ENDP

A P P E N D I X E

How MacsBug Installs Itself

369

MacsBug Internals and

Discipline Interface E

This appendix describes how MacsBug installs itself, how it forces exceptions, and how
it interfaces with Discipline or—by extension—with any other program.

How MacsBug Installs Itself E

Support for debeuggers is provided beginning with the 128K ROM. When a system error
or 68000 exception occurs, the ROM code examines the global variable MacJmp to obtain
the address of the debugger’s entry point. MacJmp might contain additional informa-
tion, depending on whether you are running under a 24-bit or 32-bit Memory Manager.

If you are running under a 24-bit Memory Manager, the high-order byte of MacJmp is a
flags byte that contains the following information:

The lower 3 bytes of MacJmp are used to store the address of the debugger’s entry point.

If you are running under a 32-bit Memory Manager, the flags byte is moved to address
$BFF and the long word at MacJmp becomes a full 32-bit address that points to the
debugger’s entry point.

When a debugger installs itself, it should set bit 5 in the flags byte to indicate it is
installed and, if it supports Discipline, it should set bit 4 as well. It must do this under
either a 24-bit or 32-bit Memory Manager, although, as mentioned above, this informa-
tion will be stored in different locations.

How MacsBug Is Implemented E

If a debugger is installed and an exception occurs, the register set is saved in the global
variable SEVars, and a call is made to the address in MacJmp. When the debugger
returns, the register set is restored and execution resumes at the address in the
program counter.

Bit Meaning

7 Set if debugger is running

6 Set if debugger can handle system errors

5 Set if debugger is installed

4 Set if debugger can support the Discipline utility

Figure E-0
Listing E-0
Table E-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X E

MacsBug Internals and Discipline Interface

370

How MacsBug Installs Itself

While active, MacsBug installs a bus error handler to catch any illegal memory
references. MacsBug does not install an address error handler since it can check
whether addresses are even before accessing them.

MacsBug itself forces two kinds of exceptions. The first is used to set breakpoints.
MacsBug replaces the first word in an instruction with a TRAP instruction; when the
program reaches this point, an exception is generated. The second is used in tracing
instruction execution while single-stepping. MacsBug forces an exception by setting the
Trace bit of the status register before executing an instruction.

MacsBug installs its own trace exception handler when any of these conditions are true:

■

At least one ROM breakpoint is set.

■

A breakpoint was set at the PC when execution resumed. The instruction must be
executed before the breakpoint can be reinstalled.

■

A Step command is in progress.

■

A Step Spy command is in progress.

The SO (Step Over) command steps over JSR and BSR instructions by executing the call
with the Trace bit set, replacing the return address with an address inside MacsBug, and
then proceeding normally. The SO command steps over a trap call by copying the trap
instruction into MacsBug and proceeding from that point.

MacsBug installs its own A-trap exception handler when any of these conditions are true:

■

An A-trap command is active.

■

The Extended Discipline utility is enabled.

■

Heap scrambling is enabled.

■

MacsBug steps into a trap call.

The Debug and DebugStr traps do not preserve the status register (SR). These traps are
directed to MacsBug by the dispatcher, which tosses the contents of the SR immediately
upon entry.

Since interrupts are turned off, MacsBug gets keystrokes by polling for a keyboard
interrupt and then calling the interrupt routine at Lvl1DT+8. MacsBug fields the event
by temporarily installing its own PostEvent handler.

MacsBug assumes the screen buffer on a Macintosh Plus or Macintosh SE is at address
$3FA700, accommodating external monitors that change ScrnBase. MacsBug always
appears on the internal display.

On all Macintosh II computers, MacsBug uses the first item in the gDevList as its
display. The device must support 1-bit mode, and the display is limited to 640 by 480
to conserve memory.

While swapping the user and MacsBug displays on multi-bit displays, MacsBug calls
SetMode and SetEntries (using the Control trap) to set a bit depth of 1, and a black-
and-white color table.

A P P E N D I X E

MacsBug Internals and Discipline Interface

How MacsBug Interfaces With Discipline

371

How MacsBug Interfaces With Discipline E

Discipline is a set of routines that the debugger calls to get information before or after a
trap call. If the parameters are bad, Discipline returns a text string. The debugger halts
program execution and displays the message.

The address of the debugger’s entry point is stored in MacJmp. The long word preceding
the entry point, points to a structure allocated by the debugger and filled in by both the
debugger and Discipline. The structure contains version information, a jump table of
Dsicipline function addresses, and a pointer to Discipline’s global data. All jump table
addresses are 32-bit addresses. Table E-1 describes the fields of this structure.

Table E-1

Discipline and debugger information

Field Offset Description

Version
information

+0 Debugger signature: filled in by debugger. MacsBug sets
this to MT.

+2 Debugger version: filled in by debugger. MacsBug sets
this to 1.

+3 Discipline interface version supported by debugger: filled in
by debugger. MacsBug sets this to 1.

+4 Discipline signature: Discipline sets this to LB.’

+5 Discipline version: Discipline sets this to 1.

+6 Discipline interface version provided by Discipline:
Discipline sets this to 1.

Jump table The debugger initializes jump table entries to zero;
Discipline fills in the addresses when it is installed. If
the CheckBeforeCall entry is set to a non-nil value, the
debugger assumes Discipline is installed.

+8 CheckBeforeCall

+12 CheckAfterCall

+16 Configuration

Data
pointer

+20 Discipline global data pointer: filled in by Discipline. This
storage location is provided by the debugger so that if
Discipline is implemented as an INIT, it can access its data
through this hook.

A P P E N D I X E

MacsBug Internals and Discipline Interface

372

How MacsBug Interfaces With Discipline

Jump Table Entries E

Each entry in the jump table is the address of a procedure the debugger can call. All calls
must use Pascal calling conventions. This means the Discipline routines should pop the
parameters from the stack. Discipline must also preserve registers D3 – D7 and A2 – A6.

Discipline should set up its own A5 and A7 world. Discipline can use a small amount of
the debugger stack (never more than 1K) to do this.

Calling Discipline E

The debugger should provide a command to turn Discipline on or off or to configure
Discipline. For example

DSC [ON | OFF |

text

]

Typing DSC without parameters would toggle Discipline on and off. DSC with ON or
OFF as parameters would do just that. The debugger uses the Configuration routine to
pass a pointer to a null terminated string containing “ON,” “OFF,” or the remainder of
the command line whenever the user enters DSC.

The Pascal definition for the configuration routine is

FUNCTION Configuration (

parameters

: CStringPtr): CStringPtr;

The Configuration routine returns a pointer to a null terminated text string. If the result
is not Nil, the debugger displays the text. The text can have embedded carriage returns
to display multiple lines.

Once the user has turned Discipline on, all A-traps are routed through the debugger
before the dispatcher is called. Before dispatching a trap, the debugger calls the
CheckBeforeTrap function. The definition for CheckBeforeTrap is

FUNCTION CheckBeforeTrap (

trapNumber

: INTEGER;

registers

:

Pointer; VAR

resultCode

: INTEGER; VAR

checkAfter

:

BOOLEAN): CStringPtr;

The CheckBeforeTrap function returns a pointer to a null terminated text string. If the
result is not Nil, the debugger halts the program and displays the text. The text can have
embedded carriage returns to display multiple lines. Discipline uses the

resultCode

parameter to indicate what it thinks is wrong with the call. A result code of zero is the
same as a Nil result string. All other result codes are defined by Discipline.

The

trapNumber

passed to Discipline by the debugger should be masked with $A0FF for
operating system traps and $ABFF for toolbox traps. The PC in the register file points to
the trap word that was encountered.

Discipline can examine the registers by looking at the register file pointed to by the

registers

 parameter. The register file is made up of 18 long words, with information
ordered as shown in Table E-2.

A P P E N D I X E

MacsBug Internals and Discipline Interface

How MacsBug Interfaces With Discipline

373

If the debugger can break after the trap call, it sets the

checkAfter

 parameter to TRUE. The
debugger should not break after the trap call if the call is made from ROM to RAM since
this won’t work with patched traps. The debugger should also ignore the LoadSeg trap.
If Discipline wants to check after the trap and the debugger can break, then

checkAfter

 is
left unchanged. If Discipline does not want to check after the trap, it must set the

checkAfter

 parameter to FALSE.

The definition for the CheckAfterTrap function is

FUNCTION CheckAfterTrap (

trapNumber

: INTEGER;

registers

: Pointer;

 VAR

resultCode

: INTEGER): CStringPtr;

The parameters to this routine are the same as those to the CheckBeforeTrap function.

Table E-2

Contents of register file

Offset Contents Offset Contents

0 D0 32 A0

4 D1 36 A1

8 D2 40 A2

12 D3 44 A3

16 D4 48 A4

20 D5 52 A5

24 D6 56 A6

28 D7 60 A7

64 PC

68 SR (high-order word)

375

24-bit addressing:

A memory management
scheme under which the microprocessor can
access up to 24 MB of address space.

32-bit addressing:

A memory management
scheme under which the microprocessor can
access up to 4 GB of address space.

32-bit clean:

A program that does not use the
high byte of an address to store data.

addressing mode:

A method used by the
microprocessor to compute the value of
an operand.

address register

: One of eight locations within
the microprocessor normally used to store
addresses. Some of these registers are used for
specific purposes: A7 designates the top of the
stack, A6 is used to reference items in a stack
frame, and A5 is used to reference application
globals and the jump table.

address space:

A range of accessible memory.

assembler:

A language translator that converts
a program written in assembly language (source
code) into an equivalent program in machine
language (object code). The opposite of a

disassembler.

Compare

compiler.

assembly language:

A low-level programming
language in which individual machine-language
instructions are written in a symbolic form that’s
easier to understand than machine language.
Each assembly-language instruction produces
one machine-language instruction. Because
assembly-language programs require very little
translation, they can be very fast. See also

machine language.

asynchronous

I/O:

The capability to perform
an I/O operation while its calling process
continues to run. With synchronous I/O, the
calling process “sleeps” until the I/O operation
is finished.

block:

A contiguous, page-aligned region of
computer memory of arbitrary size, allocated by
the Memory Manager. Also called a memory
block. See also

free block, nonrelocatable block,
relocatable block.

colon address:

A MacsBug variable that
contains the starting address of the current
procedure.

command line:

The area of the MacsBug
display used to enter commands and perform
base conversions and arithmetic calculations.

compiler:

A language translator that converts a
program written in a high-level programming
language (source code) into an equivalent
program in some lower-level language such
as machine language (object code) for later
execution. Compare

assembler.

data register:

One of eight locations within the
microprocessor normally used to store data.

dcmd:

A code resource type that you can use to
extend or modify the MacsBug command set.
You can use standard dcmds, shipped with
MacsBug, or you can write your own.

disassembler:

(1) A language translator that
converts a machine-language program into an
equivalent program in assembly language, which
is easier for programmers to understand. The
opposite of an

assembler.

(2) A program that
examines data in memory and interprets it as a
set of assembly-language instructions. Assuming
that the data is object code, a disassembler gives
the user the source code that could have
generated that object code.

dot address:

A MacsBug variable that contains
the last address used by certain commands.

driver:

A program, usually in a System Folder,
that lets a peripheral device and a computer send
and receive files. Printer drivers control printers;
a hard disk driver controls exchanges between a
hard disk and a computer.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

376

effective address:

The address where the value
of the operand is stored. The way to find the
effective address depends on the addressing
mode used.

error handler:

Code to which the
microprocessor transfers control in the event of
a fatal error. This could be the System Error
Handler or a resident debugger like MacsBug if
one is installed

EveryTime macro:

A macro that is executed
every time but not the first time MacsBug is
invoked. Compare

FirstTime macro.

exception:

An error or abnormal condition
detected by the processor in the course of
program execution; includes interrupts and traps.

exception handler:

A routine that gains
control whenever an exception to normal
processing occurs.

exception processing:

The means used by the
microprocessor to handle unusual conditions
caused by the hardware or by the software that
must be addressed before normal processing
resumes.

exception

vector:

The first 256 bytes of RAM
($00 0000 through $00 00FF) as used by the 68000
processor. These locations contain the addresses
of routines that gain control whenever an
exception to normal processing occurs. Excep-
tions include such events as a reset, an interrupt,
or a trap.

FirstTime macro:

A special initialization macro
that loads and executes automatically when
MacsBug loads during system startup. Compare

EveryTime macro.

free block:

A contiguous region in the
application or system heap that has not yet
been allocated.

glue:

Inline glue is code inserted at compile or
link time to implement very simple system
routines without going through the trap
dispatcher. Library glue, which resides in
interface libraries, is used to pass values to and
receive values from register-based routines.

handle:

A pointer to a master pointer; it
designates a relocatable block in the heap by
double indirection.

heap:

The area of memory in which space is
dynamically allocated and released on demand,
using the Memory Manager.

heap

zone:

An area of memory initialized by
the Memory Manager for heap allocation.

high memory:

(1) The upper limit of
addressable memory. (2) A region in memory
near the upper limit of addressable space. (3) A
region near the top of RAM.

high-order:

(adj.)

Describes the most significant
part of a numerical quantity. In normal
representation, the high-order bit of a binary
value is in the leftmost position; likewise, the
high-order byte of a binary word or longword
quantity consists of the leftmost eight bits.
Compare

low-order.

high-order byte:

The more significant half of a
two-byte quantity. In the 68000 microprocessors
used in the Macintosh family, the high-order byte
is stored first. Compare

low-order byte.

high-order word:

The more significant half of a
long word. In normal representation, the

high-order word

of a long word is in the leftmost
position. Compare

low-order word

.

interrupt:

(1) An electronic attention-getter; a
signal sent to the microprocessor that is intended
to force the microprocessor to stop its current
activity and accept input from the device that
sent the interrupt. (2) A temporary suspension in
the execution of a program that allows the
computer to perform some other task, typically
in response to a signal from a peripheral device
or other source external to the computer. (3) An
exception that’s signaled to the microprocessor
by a device to notify the microprocessor of a
change in condition of the device, such as the
completion of an I/O request.

interrupt handler:

A routine that services
interrupts. A program, associated with a
particular external device, that executes
whenever that device sends an interrupt signal to
the computer. The interrupt handler performs its
tasks during the interrupt, then returns control to
the computer so it may resume program
execution.

G L O S S A R Y

377

interrupt

priority

level:

A number identifying
the importance of the interrupt. It indicates
which device is interrupting and which interrupt
handler should be executed.

interrupt switch:

A button marked with a
circled V (or the word “Interrupt” on the
Macintosh Plus). Pressing this button generates a
level 7, non-maskable interrupt, which is why it
is often called the NMI key. (On the Macintosh
Plus or Macintosh SE, it can generate a level 4, 5,
6, or 7 interrupt.) The microprocessor handles
this interrupt by invoking MacsBug. See also

interrupt.

interrupt

vector:

A pointer to an interrupt
handler.

jump table:

A table constructed in memory by
the System Loader from all Jump Table segments
encountered during a load. The Jump Table
contains all references to dynamic segments that
may be called during execution of the program.

low memory:

(1) The lowest limit of address-
able memory. (2) A region in memory near 0.

low-order:

(adj.)

Describes the least significant
part of a numerical quantity. In normal represen-
tation, the low-order bit of a binary number is in
the rightmost position; likewise, the low-order
byte of a binary word or longword quantity
consists of the rightmost eight bits. Compare

high-order.

low-order byte:

The less significant half of a
two-byte quantity. For Macintosh computers the
high-order byte is stored first and the low-order
byte second. Compare

high-order byte.

low-order word:

The less significant half of a
long word. In normal representation, the

low-order word

of a long word is in the rightmost
position. Compare

high-order word

.

machine language:

The form in which
instructions to a computer are stored in memory
for direct execution by the computer’s micro-
processor. Each model of microprocessor (such as
the 6502 or the 68000) has its own form of
machine language. See also

assembly language.

macro:

A name that you can substitute for an
address, expression, or series of commands on
the MacsBug command line.

NIL:

(adj.) Pointing to a value of 0. A memory
handle is NIL if the address it points to is filled
with zeros. Handles to purged memory blocks
are NIL.

nonrelocatable

block:

A block whose location
in the heap is fixed and can’t be moved during
heap compaction.

output region:

The area of the MacsBug display
used to display information in response to the
commands you enter.

package:

A set of routines and data types that
forms a part of the Toolbox or operating system
and is stored as a resource. On the original
Macintosh, all packages were disk-based and
brought into memory only when needed; some
packages are now in ROM.

partition:

A locked relocatable block allocated
for a

process.

 The partition for an open
application contains the application’s heap, stack,
A5 world, and jump table.

patch:

(v.) (1) To replace one or more bytes in
memory or in a file with other values. The
address to which the program must jump to
execute a subroutine is patched into memory at
load time when a file is

relocated.

 (2)

To replace a
piece of ROM code with other, RAM-based
system code by means of a new entry into the
trap dispatch table. (n.) A resource of type

'PTCH'

containing the patched code.

PC region:

The area of the MacsBug display in
which the address of the next instruction to be
executed and the disassembly of that instruction
are shown.

PC register:

A location within the
microprocessor used to store the address of the
next instruction to be executed.

pointer:

An item of information consisting of
the memory address of some other item. For
example, Applesoft BASIC maintains internal
pointers to the most recently stored variable, the
most recently typed program line, and the most
recently read data item, among other things.

process:

An open application; for example, the
Finder, an application launched by the user, or an
application running in the background only.

G L O S S A R Y

378

programmer’s switch:

A two-pronged switch
consisting of an interrupt switch, used to invoke
MacsBug, and a reset switch, used to restart the
Macintosh. See also

interrupt switch.

relocatable

block:

A block that can be moved
within the heap during compaction.

stack:

A portion of memory that is used for
temporary storage of operating data during
operation of a program. The data on the stack are
added (pushed) and removed (pulled or popped)
in last-in, first-out (LIFO) order.

stack-based

routine:

A Toolbox or operating
system routine that receives its parameters and
returns its results, if any, on the stack.

stack

frame:

The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

status region:

The area of the MacsBug display
used to display information about the system at
the time that MacsBug is invoked.

status register:

A location within the
microprocessor used to store information about
the operation that has just been executed. (Also
called the condition code register.)

synchronous I/O:

The calling process “sleeps”
until the I/O operation is finished. Compare

asynchronous I/O

.

trap

dispatcher:

The part of the operating
system that examines a trap word to determine
what operation it stands for, looks up the address
of the corresponding routine in the

trap dispatch
table,

 and jumps to the routine.

trap

dispatch

table:

A table in RAM containing
the addresses of all Toolbox and operating
system routines in encoded form.

trap

number:

The identifying number of a
Toolbox or operating system routine; an index
into the trap dispatch table.

trap

word:

An unimplemented instruction
representing a call to a Toolbox or operating
system routine.

virtual memory:

A method of expanding
available memory through the use of software
rather than by installing additional hardware. A
program running under virtual memory can
access the entire logical memory of the computer
as if it were RAM, except for blocks of memory
reserved for the System heap, ROM, NuBus
cards, and a resident debugger.

379

Index

Symbols

* (asterisk) character 14
in disassembly display 64

: (colon) character 186
$ (dollar sign) 187
; (semicolon)

in disassembly display 64
use as command separator; 183

~ (tilde) 18

Numerals

24-bit addressing 77
32-bit addressing 77

A

absolute addressing 40
addresses

colon 186
dot address 185
exercise locating 30
expressed as offsets 185
invalid 168
return 111
specifying 184
starting of current procedure 186
storage in memory 69

addressing modes
absolute 40
address register direct 40
address register indirect 41
address register indirect with

displacement 44
address register indirect with

postincrement 42–43
address register indirect with

predecrement 42–43
data register direct 40
immediate 46
implied 47
indexed indirect addressing with

displacement 45
PC-relative 46
summary 38

address register direct
addressing 40

address register indirect
addressing 41

address register indirect with
displacement addressing 44

address register indirect with
postincrement
addressing 42–43

address register indirect with
predecrement
addressing 42–43

address space 67
division of 71

AP macro 194
AppleShare 18
application partition 101
ApplLimit low-memory global 30,

76
ApplZone low-memory global 29,

76
arithmetic operators 186
assemblers 34
assembly-language code

reading 34
sample program 55–58
vs. source code 58

assembly-language instructions
branching 53
integer arithmetic 49
program control 50
stack frame 55
syntax 37
unimplemented 121, 122
without operands 47

assertions 166
asterisk (*) character 14

in disassembly display 64
ATB (A-trap Break)

command 209–212
ATC (A-trap Clear)

command 213–214
ATD (A-trap Display)

command 215
ATHC (A-trap Heap Check)

command 216–217
ATP (A-trap Playback)

command 218–219

ATR (A-trap Record)
command 220–221

A-traps.

See also

 operating system
routines

action table 139
breaking on, in a package 210
called by application 141
changing address of 124, 125
commands, dedicated to 138
displaying actions set on 215
excluding from range 213
glue.

See

 glue
name and number of 121
name conflicting with procedure

name 187
numbers 127
numbers and names of 140
in packages 142
patches. See patches
processing of 121–135
in a range 141
recording 220–221

ATSS (A-trap Step Spy)
command 222–223

ATT (A-trap Trace)
command 224–225

auto-pop bit 176
A/UX

installing MacsBug under 11
invoking Macsbug under 22

B

base conversion 27
bomb box 2
Boolean operators 186
BR (Breakpoint) command 226, 229
BRA instructions 50
branching 50
branching indicator 14, 52
BRC (Breakpoint Clear)

command 230
BRD (Breakpoint Display)

command 231–232
break message 15

example 25

Thi d t t d ith F M k 4 0 4

I N D E X

380

breakpoints
clearing 230
displaying 231
how MacsBug implements 227
inactivating user breaks 21
marker in disassembly display 64
setting 174–178

in C++ program 233
in ROM 227
from source program 21

BRM (Multiple Breakpoints)
command 233

BR macro 194
BSR instructioncs 50
BuffPtr low-memory global 76
BufPtr low-memory global 30

C

'C++' resource' 24
calling chain 114–116
case, upper and lower iii
checksumming 234
'CODE' resource' 53
code segment 54
colon (:) character 186
Command-B command 191
Command-D 185
command line 183

buffer 13, 191
exercise using 27

editing 14, 190
entering commands 183
exercise using 28
extending 187
features of 13
insertion point 183
use for base conversion 188
use for calculations 27, 187, 188

commands
A-trap, summary of 138
cancel execution of 183
command-line editing 190
dcmd.

See

 dcmds
disassembly, summary of 62–63
display of output of 15
entering 14, 183
expressions in 186
formatted output 198
heap, summary of 93
heap blocks 96
last address used by 185
macro.

See

 macros

memory, summary of 70
overview 183–206
parameter types 184
pause execution of 183
program control,

summary 174–178
referring to registers in 80
register, summary of 81
saving output of 23
specifying an address in 184
specifying parameters to 184
summary of by function 325–327
summary of macro 192
syntax conventions 184
syntax summary 327, 330–332
use of names in 187

Command-S command 293
command syntax.

See

 notation
conventions

Command-T command 308
Command-V command 191
compilers 34

procedure definitions 367
Condition Code register.

See

 Status
register

CS (Checksum) command 234
CurrentA5 low-memory global 30,

76, 118
current GrafPort 169
CurStackBase low-memory

global 30, 76, 106

D

data register direct addressing 40
DB (Display Byte) command 235
'dcmd' resources

DRVR 153
FILE 146
VBL 137, 138
VOL 145

dcmds
building 205
creating 200–205
debugging 206
defined 197
introduced 24
listing installed 200
restrictions on 205
standard 197
using 197

Debugger Prefs file
installing 10
updating 12
working with 23–24

Debugger routine 20, 21, 59, 245
debuggers

Discipline interface 371–373
interaction with operating

system 4
source-level vs low-level 4
support for 369

debugging screen 13–18
output region 15
PC region 14
status region 16–18

debugging strategies 164–179.

See
also

 Discipline; errors
check code on all machines 167
check source code 171
creating a memory map 29
finding invalid pointers 173
symptom vs cause of crash 169
using assertions 166
using signals 166

DebugStr routine 21, 59, 245
to call Discipline 160
to display variables 177

desk accessories 152
testing with Discipline 161

device control entry (DCE) 149–150
unit table 151

Device Manager 143, 148
DevList macro 194
DH (Disassemble Hexadecimal)

command 236, 236
disassemblers 34
disassembling

object code 236
where to start 64

disassembly display 63
Discipline 19, 156–161

configurations 160
how it works 156
installing as an application 157
installing as an INIT 157
interface 369–373
interpreting output 158
restrictions on using 161
to test start-up code 161
using from MacsBug 160

DL (Display Long) command 237
DM (Display Memory)

command 82, 238–239
exercise using 28

dollar ($) sign 187

I N D E X

381

dot address 185
double page fault 80
Down Arrow key 15
DP (Display Page) command 241
drive queue 144
drivers 143, 148–153

device control entry 149–150
that execute asynchronously 148
information about 153
SCSI 149
unit table 151

DrvQHdr low-memory global 144
DRVR 'dcmd' 153
drvr dcmd 197
'DRVR' resources' 148
DSC (Discipline) command 242
DSErrCode low-memory global 165
DV (Display Version)

command 243
DW (Display Word) command 244
DX (Debugger Exchange)

command 21, 245

E

EA (Exit to Application)
command 246

effective address 37
equality operators 186
error codes

Sad Macintosh 337–341
System Error Handler 341

error handler 121
defined 2

error handler routines 166
error handling, overview 2
error messages

to HC Command 255
MacsBug 333–336
to the MR (Magic Return)

command 285
operating system 345–366
to SC6 command 298
to SC7 command 302

errors
address 167
bus 170, 173
checking operating system 165
fragmented memory 171
illegal address 170
illegal instruction 170
invalid pointers 171

returned by Memory
Manager 166

returned by Resource
Manager 166

stack overflow 174
uninitialized variables 171

error trapping 166
ES (Exit to Shell) command 247
Esc key 18
EveryTime macro 197
exception, A-trap.

See

 A-traps
exception handler 2
exception processing 120–123

handling interrupts 135
introduced 2

exception vector 121
exception vectors 172
expressions

in MacsBug commands 186
order of evaluation 186

F

F (Find) command 248, 250
fatal error 2
FCB (File Control Block) 145
FCBSPtr low-memory global 145
file control blocks (FCBs) 145
FILE 'dcmd' 146
file dcmd 197
File Manager 143, 147
file system 143–147

B*tree files 146
I/O queue 146
routines 147

FirstTime macro 196
'FKEY' resource 20
floating-point register 18
FSQHdr low-memory global 146
functions, displaying the results

of 114, 228

G

G (Go) command 251
GetDrvQHdr routine 144
GetPort routine 169
GetTrapAddress routine 125
GetVCBQHdr routine 145
GG macro 193

global variables, allocating space
for 108

glue
in-line vs. library 129
replacing A-trap 127

GS macro 55, 193
GT (Go Till) command 252–253
GTO macro 194

H

handles 95
dangling 99
finding invalid 168
NIL 99

HC (Heap Check)
command 254–256

HD (Heap Display)
command 257–259

HD (Heap Dump) command
interpreting the display of 96

heap blocks 93–101
format 93
free 95
header 94
kinds of 94
logical size vs physical size of 94
nonrelocatable 94
pointers and handles to 95
relocatable 95

properties of 95
purgeable 96

resource blocks 105
starting address 94
that cannot be moved 97

heaps.

See also

heap blocks
24-bit vs. 32-bit 104
corruption, cause of 98, 99
displaying partially

damaged 258
embedded 104
format of 92
fragmentation 97
header 92
identifying embedded 267
in multiple-application

environment 92, 101–105
in single-application

enviornment 91
system 103
trailer 92

help, displaying help topics 189
HELP (Help) command 260

exercise using 26

I N D E X

382

high-order byte 69
high-order word 69
history buffer 15
HOW (Display Break Message)

command 262
HS (Heap Scramble)

command 101, 264
HT (Heap Total) Command

interpreting the display 96
HT (Heap Totals) command 265
HX (Heap Exchange) command 266
HZ (Heap Zones) Command

in a multiple-application
environement 104

HZ (Heap Zones)
command 267–269

I

ID (Disassemble One Line)
command 270

IJ macro 194
IL (Disassemble from Address)

command 272–273
immediate addressing 46
indexed indirect addressing with

displacement addressing
mode 45

indirection operators 186, 188
INITs

debugging 3
testing with Disicipline 161

installing MacsBug 10
installation message 10
overriding for one session 10
preventing 10
under A/UX 11

instructions, stepping through
MMU 308

instructions.

See

 assembly-
language instructions

interrupt handler 137
interrupt mask 136
interrupts 135–138

display of interrupt level 17
interrupt handler 121
mask 136
priority levels 136
types of 136
VBL 136

interrupt switch 19
interrupt time

restrictions on code 137

VBL tasks 138
inter-segment calls 53–55
intra-segment calls 53
invoking MacsBug 18–22

from source program 21
using an 'FKEY' resource 20
using the programmer’s

switch 19
invoking Macsbug

under A/UX 22
I/O, synchronous vs.

asynchronous 147
IOPB template 147
IP (Disassemble Around Address)

command 274–275
IR (Disassemble Until End of

Procedure) command 276

J, K

JMP instructions 50
JSR instructions 50
jump table 53

location of 118

L

least significant byte 69
leaving MacsBug, summary of

commands 22
LINK instruction 55, 111
LoadSeg routine 55
LockMemory routine 80
LOG (Log to Printer or File)

command 4, 23, 278
use of under A/UX 22

logical address space 77
low-level debugging

defined 2
overview 2–5
reasons for 3

low-memory globals 74, 76
restrictions in using 90

low-order byte 69
low-order word 69

M

machine language 34
Macintosh file system.

See

 file
system

Macintosh system software, use of
by debuggers 4

Macintosh XL 2
MacJmp low-memory global 369
macros

creating permanent 195–196
EveryTime 197
FirstTime 196
introduced 192
standard 193–195
using to save values 281

MacsBug
can’t access 172
displaying on different

monitor 11
getting out of 22
getting started exercise 25–31
how it’s implemented 370
installing.

See

 installing MacsBug
invoking.

See

 invoking MacsBug
machine dependencies 2, 5
memory use by 4
new features introduced in 6.2 5
software dependencies 2

MacsBug error messages 333–336
display of 15

master pointers 95
MaxApplZone routine 174
MC (Macro Create)

command 280–281
MC6881 floating-point

coprocessor 2
MC68851 Memory Management

Unit (MMU) 2
MCC (Macro Clear) command 282
MCD (Macro Display)

command 283
MemErr low-memory global 99,

166
memory

application’s use of 90
checksumming 178
commands that set and

display 70
compaction and reservation 97
exercise for displaying 28
fragmentation 97, 174
high 68
holding 80
kinds of 66

I N D E X

383

memory

(continued)

locking 80
low 68
maps.

See

 memory maps
overview 66
regions of 71, 76
storage convention 69
templates.

See

 templates
units 68
use of by MacsBug 4
virtual 77–80

memory configuration marker 17
memory management

in a multiple-application
environment 101–105

24-bit vs. 32-bit mode 17, 77
under system 7.0 76–80
virtual memory 77–80

Memory Manager
results from calls 166
use of at interrupt time 137

memory maps 71–76
exercise creating 29
using low-memory globals to

create 74, 76
MemTop low-memory global 30, 76
microprocessors

piplining 170
processing states 120
summary of registers 289–290
supported by MacsBug 2

MMU instructions, stepping
through 293

MMU register 18
mnemonics 35
monitors, 11
most significant byte 69
Motorola 68000 2
MR (Magic Return)

command 113–114, 284–285
'mxbc' resource 24
'mxbi' resource

changing size of history buffer 15
changing size of PC region 14

'mxbi' resource 24
'mxbm' resource 24
'mxbm' resources 193
'mxwt' resource 24

N

names, conflicting references 187
NIL handles 99
NIL pointers 99

NMI key 19
non-maskable interrupt 19
notation conventions iii
numbers

base conversion 188
conflicting references 187
convention for display xxiii, 188
conventions about entering 184
converting 27
hexadecimal representation 69
negative 27, 48
representation of 27

O

object code
disassembling 236
vs. source code 34

operands 37.

See also

 addressing
modes

operating system errors 345–366
operating system routines vs.

Toolbox routines 129
operators

in assembly language
instructions 37

in MacsBug commands 186
optimization 3
output region 15

P, Q

packages 142
'PACK' resources 142
parameters

application 117
Pascal storage convention 111
Pascal vs. C conventions 116
VAR 117

partitions 101
Pascal compiler directive 117
patches

by INITs 126
custom 125
installing 124
multiple layers of 126
restrictions on 126
that replace old trap 124

PBGetFCBInfo low-memory
global 145

PC register 80.

See

also

program
counter

PC-relative addressing modes 46
physical address space 77
pipelining 170
pointers

dangling 99
dereferencing 188
finding invalid 168
finding references to 249
indirection operator 186
in low memory 28
NIL 99

pound (#) sign
pre-patching 125
printf dcmd 197, 198
procedures

listing names of 185
stepping out of 113

process 101
Process Manager 101

fragmenting its heap 103
program counter, display of

contents 14
programmer’s switch 19

use of under A/UX 22

R

RAD (Toggle Register Name
Syntax) command 187, 287

RB (Reboot) command 288
Register Command 289–290
registers 80–81

A0 register 113, 147
A5 register 108, 118

at interrupt time 137
points to current GrafPort 169
use of by ROM 19

A6 register 115.

See

 stack frames
A7 register.

See

 stack pointer
address 80
commands that display 18
conflicting name references 187
data 80
displaying and setting values

of 289–290
display of 18
PC 80
status 81
use of by operating system

routines 129
ResErr low-memory global 166

I N D E X

384

ResErrProc low-memory global 166
resource chain 105
Resource Manager 148

results from calls to 166
return address 111
RN (Set Reference Number)

command 291
ROMBase low-memory global 30,

76
ROM calls.

See

 A-traps
routine names, in disassembly

display 63
routines, implementing.

See

 stack
frames

routine selector 142
RS (Restart) command 292
RTS macro 193

S

S (Step) command 293
SADE (Symbolic Application

Debugging Environment) 4
SB (Set Byte) command 295
SC (Stack Crawl) Command 171
SC6 (Stack Crawl (A6))

command 297–298
SC7 (Stack Crawl (A7))

command 300–302
ScrnBase low-memory global 76
SCSI Manager 143
Segment Loader 54
semicolon (;) character

in disassembly display 64
use as command separator 183

SetPort routine 169
SetTrapAddress routine 125
SHOW (Show) command 16, 303
signals 166
'SIZE' resource 101
SL (Set Long) command 304
SM (Set Memory) command 306
SO (Step Over) command 308

using to step over LoadSeg
trap 55

source code
vs. assebmly language code 58
vs. object code 34

SS (Step Spy) command 310–311
stack

balance 167
display 107
management 105–117

overflow 174
pushing and popping items 107
use of in implementing

A-traps 128–135
stack frames 55, 109–116

calling chain 114–116
defined 105

stack pointer 106.

See also

stack
contents of 16
display 107

stack sniffer 174
Status register, display of 17
status register 81
Strip Address routine 17
SW (Set Word) command 312
SWAP (Swap) command 314
SWAP (Swap Frequency)

command 11, 12
SX (Symbol Exchange)

command 316
symbol display 64
symbol dump 64
symbols

disabling display of 316
display symbols command 185
MacsBug display of 185
procedure definitions 367
restricting references to 291

SysBeep routine 171
System Error Handler 2, 4

alerts 341
System files, file control blocks 145
system routines, testing parameters

to.

See

Discipline
system routines.

See

 A-traps
system software version 7.0 76–80
SysZone low-memory global 28,

76, 104

T

T (Step Over) command 308
TargetZone MacsBug variable 104
TD (Display CPU Registers)

command 318
TD (Total Display) command 18
templates 81–89

with DM (Display Memory)
command 81

exercise creating custom 87–89
IOPB 147
linked lists in 85
predefined 82

template types to define 85
use of basic types to define 84
ways to create 83

TF (Total Floating Point)
command 18

TF (Total Floating-Point Register
Display) command 319

theCPort macro 194
thePort macro 194
theWindow macro 194
TheZone low-memory global 104
tilde (~) character key 18
TM (Total MMU) command 18
TM (Total MMU Display)

command 320
TMP (List Templates)

command 82, 321
'TMPL' resource 24
tracing, custom A-trap trace 211
trap dispatcher 121, 123

defined 2
trap dispatch table 123, 140
trap recording 165

U

UNLK instruction 55, 113
UnloadSeg routine 54
unti table 151
Up Arrow key 15
user breaks, disabling 245
UserZone MacsBug variable 268

V

variables, displaying value of 177
VAR parameters 117
VBL 'dcmd' 137, 138
vbl dcmd 197
VBL Manager 137
VBLTask Record 138
VBL tasks 138
VBLTasks macro 195
VcbList macro 194
VCBQHdr low-memory global 145
vector number 121, 123
vector table 121
Vertical Blanking.

See

 interrupts
Vertical Retrace Manager 138
virtual memory 77–80
virtual memory marker 17

I N D E X

385

VOL 'dcmd' 145
vol dcmd 197
volume queue 144
volumes, information about 144

W, X, Y, Z

WH (Where) command 30, 126, 322
WindList macro 194

	MacsBug Reference and Debugging Guide
	Contents
	Figures and Tables
	About This Manual
	How to Use This Manual
	Other Sources of Information
	Notation Conventions

	MacsBug and Low- Level Debugging
	Error Handling on the Macintosh
	Why Low- Level Debugging?
	Why MacsBug?
	New Features in MacsBug 6.2

	Getting Started
	Installing MacsBug
	Installing MacsBug Under A/ UX
	Displaying MacsBug on a Different Monitor
	System Software Versions 3.2 Through 6. x
	System Software Version 7.0

	Updating the Debugger Prefs File

	The MacsBug Display
	The Command Line
	The PC Region
	The Output Region
	The Status Region
	The Stack Area
	The Status Area
	The Register Area

	Invoking MacsBug
	MacsBug When You Least Expect It
	Using the Programmer’s Switch to Invoke MacsBug
	Defining an 'FKEY' Resource to Invoke MacsBug
	Invoking MacsBug from Your Source Program
	Inactivating User Breaks
	Using DebugStr from an Assembly- Language Source Program

	Invoking MacsBug Under A/ UX

	Getting Out of MacsBug
	Saving MacsBug Output
	Working With the Debugger Prefs File
	Exercise: Getting Started With MacsBug
	Getting Information About MacsBug
	Using the Command Line to Perform Calculations
	Displaying Memory
	Where Is an Address?
	Further Explorations

	An Assembly- Language Primer
	Compilers and Assemblers
	Reading Assembly- Language Instructions
	Instruction Syntax
	Addressing Modes
	Absolute Addressing
	Data and Address Register Direct Addressing;
	Address Register Indirect Addressing
	Address Register Indirect With Predecrement Addressing, and Address Register Indirect With Postincrement Addressing
	Address Register Indirect With Displacement Addressing
	Indexed Indirect Addressing With Displacement
	Program Counter (PC) Relative Addressing Modes
	Immediate Addressing
	Implied Addressing

	Assembly- Language Instructions
	The Representation of Negative Numbers
	Integer Arithmetic Instructions
	Program Control Instructions
	Inter- Segment Calls and the Jump Table
	Stack Frame Instructions

	A Simple Assembly- Language Program
	Comparing Assembly- Language Code to Source Code
	Assignment Statements
	A Procedure Call
	A Loop

	MacsBug’s Disassembly Commands
	Reading the Disassembly Display
	Determining Where to Start Disassembling

	Macintosh Memory Organization
	An Overview of Macintosh Memory Space
	The Memory Map
	Memory Units and Their Representation
	Using MacsBug Commands to Display and Set Memory
	Memory Map Regions
	Using Low- Memory Globals to Draw a Memory Map

	Memory Management Under System Software Version 7.0
	32- Bit Addressing
	Virtual Memory

	Registers
	Using Templates to Display Memory
	Standard Templates
	Using Basic and Template Types to Define Template Fields
	Constructing Linked Lists Using the 'mxwt' Resource
	Exercise: Creating Your Own Template

	Application Space
	The Heap
	Heap Blocks
	Displaying Information About Heap Blocks
	Corrupting the Heap
	Lost in the Heap
	Heap Management in a Multiple- Application Environment
	Displaying Heaps in a Multiple- Application Environment
	Switching Heaps in a Multiple- Application Environment

	Life on the Stack
	Looking at the Stack
	Allocating Space for Global Variables
	Stack Frames
	Stepping Out of a Procedure
	Displaying a Function's Result
	Using Stack Frames to Establish a Calling Chain

	Pascal and C Calling Conventions

	Application Parameters and the Jump Table

	The Macintosh Operating System
	Exception Processing
	A- Trap Exceptions
	How the Operating System Handles an A- Trap

	Patches and Glue
	Patching an A- Trap
	Determining Whether a Trap Has Been Patched
	Using In- Line Glue to Implement a System Routine

	Using the Stack to Implement A- Traps
	Operating System Routines
	Exercise: Watching an A- Trap Call

	Interrupts
	Macintosh Interrupts
	Code That Runs at Interrupt Time
	Displaying Information About VBL Tasks
	MacsBug’s A-Trap Commands
	The A-Trap Action Table
	Using A-Trap Commands
	Specifying an A-Trap Name
	Setting an A-Trap Action on a Range of Traps
	Restricting A-Trap Actions to your Application
	A-Traps in Packages

	Macintosh Managers
	The File System
	Drive Queue
	Finding and Displaying Information About Mounted Volumes
	File Control Blocks (FCBs)
	File I/ O Queue
	Debugging Low- Level File System Calls
	Synchronous and Asynchronous I/ O

	Drivers
	Device Control Entry (DCE)
	The Unit Table
	Desk Accessories
	Displaying Information About Installed Drivers

	Discipline
	How Discipline Works
	Installing Discipline
	Installing Discipline as an INIT File
	Installing Discipline as an Application

	Reading Discipline Output
	Using Discipline During Application Development
	Using Discipline to Test Applications
	Using Discipline to Test INITs and Other Start- up Code
	Using Discipline to Test DAs and XCMDs
	Restrictions on Discipline

	Debugging Strategies
	Before the Crash
	Use the Compiler's Directives
	Turn Trap Recording On
	Check Operating System Errors Whenever Possible
	Use Signals and Error Handler Routines
	Use Assertions in Your Source Program
	Test Code on All Machines
	Catch NIL Pointers and Handles Instantly
	Use SetPort Correctly

	After the Crash
	Where Am I?
	Who Done It?
	Why Did It Happen?
	Check the Source Code
	Other Suspects

	Common Problems
	The Deep Freeze
	The Restart Surprise
	Nasty Pointers
	No Room to Maneuver
	Mind- Reading Problems

	Using MacsBug to Control Program Execution
	Controlling Program Execution
	Setting Breakpoints
	Watching for Memory to Change

	Make It Easy on Yourself

	Introduction to MacsBug Commands
	The MacsBug Command Line
	Using the Command Line to Enter Commands
	Specifying Command Parameters
	Specifying an Address
	Using Procedure Names
	The Dot Address and the Colon Address
	Using Expressions in MacsBug Commands
	Resolving Conflicting Name References

	Extending the Command Line
	The Command Line as Calculator
	Base Conversion
	Command Line Arithmetic

	Getting Help
	Command Line Editing Commands
	The Command Line Buffer

	Using Macros
	Macro Commands
	Using 'mxbm' Resources to Define Permanent Macros
	Standard Macros
	Creating Permanent Macros
	The FirstTime and EveryTime Macros

	Using dcmds
	Standard dcmds
	The printf dcmd

	Listing Available dcmds
	Creating Your Own dcmds
	Passing Information to the dcmd
	Responding to a dcmdHelp Request
	Responding to a dcmdDoIt Request
	Restrictions on dcmds
	Building a dcmd
	Debugging dcmds

	MacsBug Commands
	ATB — A-trap Break
	Considerations
	Breaking on Related A- traps
	Breaking on A- traps Called from the Application Heap
	Breaking on A- traps in a Package
	Creating a Custom A- trap Trace

	Examples

	ATC — A-trap Clear
	Considerations
	Examples

	ATD — A-trap Display
	Example

	ATHC — A-trap Heap Check
	Considerations
	Example

	ATP — A-trap Playback
	Considerations
	Example

	ATR — A-trap Record
	Considerations
	Example

	ATSS — A-trap Step Spy
	Considerations
	Example

	ATT — A-trap Trace
	Considerations
	Creating a Custom A-trap Trace

	Examples

	BR — Breakpoint
	Considerations;
	How MacsBug Implements Breakpoints
	Setting Breakpoints in ROM
	Setting Breakpoints Within a Procedure
	Using the BR Command to Display Function Results

	Examples

	BRC — Breakpoint Clear
	Considerations
	Example

	 Breakpoint Display
	Considerations
	Example

	BRM — Multiple Breakpoints
	Considerations
	Example

	CS — Checksum
	Considerations
	Examples

	DB – Display Byte
	Considerations
	Examples

	DH — Disassemble Hexadecimal
	Considerations
	Examples

	DL — Display Long
	Considerations
	Examples

	DM — Display Memory
	Considerations
	Example

	DP — Display Page
	Considerations
	Example

	DSC — Discipline
	Considerations
	Example

	DV — Display Version
	Example

	DW — Display Word
	Considerations
	Example

	DX — Debugger Exchange
	Considerations
	Example

	EA – Exit to Application
	Considerations
	Example

	ES — Exit to Shell
	Considerations
	Example
	F — Find
	Considerations
	Using the Find Command to Locate References to a Pointer
	Macros for the Find Command
	Examples

	G — Go
	Considerations
	Example

	GT — Go Till
	Considerations
	Using the GT Command Within a Procedure
	Example

	HC — Heap Check
	Considerations
	HC Error Messages
	Example

	HD — Heap Display
	Considerations
	Interpreting the Heap Display
	Example

	HELP — Help
	Considerations
	Examples

	HOW – Display Break Message
	Considerations
	Example

	HS — Heap Scramble
	Considerations
	Example

	HT — Heap Totals
	Considerations
	Example

	HX — Heap Exchange
	Considerations
	Example

	HZ — Heap Zone
	Considerations
	Example

	ID — Disassemble One Line
	Considerations
	Examples

	IL — Disassemble From Address
	Considerations
	Example

	IP — Disassemble Around Address
	Considerations
	Example

	IR — Disassemble Until End of Procedure
	Considerations
	Example

	LOG — Log to a Printer or File
	Considerations
	Examples

	MC — Macro Create
	Considerations
	Using Macros to Save Values

	Examples

	MCC — Macro Clear
	Example

	MCD — Macro Display
	Considerations
	Example

	MR — Magic Return
	Considerations
	Using the MR Command to Display Function Results
	MR Error Messages
	Example

	RAD — Toggle Register Name Syntax
	Considerations
	Examples

	RB — Reboot
	Considerations
	Example

	Registers
	Considerations
	Examples

	RN — Set Reference Number
	Considerations
	Examples

	RS — Restart
	Considerations
	Example

	S — Step
	Considerations
	Example

	SB — Set Byte
	Considerations
	Examples

	SC6 — Stack Crawl (A6)
	Considerations
	SC6 Error Messages

	Example
	SC7 — Stack Crawl (A7)
	Considerations
	SC7 Display
	SC7 Error Messages

	SHOW — Show
	Considerations
	Example

	SL — Set Long
	Considerations
	Examples

	SM — Set Memory
	Considerations
	Examples

	SO – Step Over
	Considerations
	Example

	SS — Step Spy
	Considerations
	Example

	SW — Set Word
	Considerations
	Examples

	SWAP — Swap
	Considerations
	Example

	SX — Symbol Exchange
	Considerations
	Example

	TD — Display CPU Registers
	Considerations
	Example

	TF — Total Floating-Point Register Display
	Considerations
	Example

	TM — Total MMU Display
	Considerations
	Example

	TMP — List Templates
	Considerations
	Example

	WH — Where
	Considerations
	Examples

	Command Summary
	Error Messages
	Macintosh Error Codes
	“Sad Macintosh” Codes
	Codes for the Macintosh Plus
	Codes for Other Macintosh Computers

	System Error Handler Alerts
	Operating System Errors
	Procedure Definition
	Examples of Procedure Definitions
	OS Event Manager Error
	Serial Driver Errors
	Slot Manager Errors
	SCSI Manager Errors
	Printing Manager Errors
	General System Errors
	Color Manager Errors
	Device Manager Errors
	Macintosh File System (MFS) Errors
	Font Manager Errors
	Low- Level Disk Errors
	Clock Chip Errors
	Serial Communications Controller (SCC) Errors
	AppleTalk Errors
	Scrap Manager Errors
	Storage Allocator Errors
	Hierarchical File System (HFS) Errors
	Alias Manager Error
	Menu Manager Errors
	Color QuickDraw and Color Manager Errors
	Resource Manager Errors
	Sound Manager Errors
	Slot Manager Errors
	Notification Manager Error
	Device Manager Errors
	Edition Manager Errors
	Process Manager Errors
	Event Manager Errors
	Memory Manager Errors
	Data Access Manager Errors
	Help Manager Errors
	PPC Toolbox Errors
	File ID Errors
	AppleTalk Name Binding Protocol (NBP) Errors
	AppleTalk Session Protocol (ASP) Errors
	AppleTalk Transaction Protocol (ATP) Errors
	AppleTalk Filing Protocol (AFP) Errors
	SysEnvirons Errors
	Gestalt Manager Errors
	Picture Utilities Errors
	Power Manager Errors

	Procedure Names
	Procedure Definition
	Examples of Procedure Definitions

	MacsBug Internals and Discipline Interface
	How MacsBug Installs Itself
	How MacsBug Is Implemented

	How MacsBug Interfaces With Discipline
	Jump Table Entries
	Calling Discipline

	Glossary
	Index

