Macintosh C/C++ ABI

Standard Specification

Revision 1.3
Dec. 5, 1996

Authors:
Fred Forsman
Doug Landauer

Fred Forsman
Apple Computer, Inc.
(408) 974-2520
forsman@apple.com

Macintosh C/C++ ABI Standard Specification December 5, 1996

Table Of Contents

1. Introduction

The Macintosh C/CH+ ABI ... e 1
1.1 What iISan ABI? ... 1
1.2 The Scope of thiSDOCUMENTvvieiiiie e 1
1.3 The Evolution of this Specification..............coooviiiiiiiiii e, 2
1.4 When it is Permitted to Deviatefromthe ABl..........ccooviiiiiiiinnnn, 3
2. PowerPC RUNEIME ABl ... 3
2.1 POWEIPC ABI OVEIVIEW ...t e 3
2.2 Specid Caling CONVENMTIONS.ot e 3
221 Passing and Returning LONg LONGS.c.viviiiiiiiiiiieiieeeae 3
222 Passing and Returning Long Doubles.........cccccooviiiiin. 4
2.3 Openlssues- Caling CoNVENLIONSuuiueieiieree e 4
3. Macintosh PowerPC Compiler ABIl.......coooiiiiiiiiiiiii e 4
3.1 ObJeCt MOAUIE FOMMELS. et e 4
3.11 PowerPC Macintosh Object Module Format - XCOFF...................... 4
3.1.1.1 XCOFF Extension to Identify Imports and EXpOrts..........cccccueeernnee. 5
3.2 Compiler SUPPOIt LIibraries.o.vieii e 5
3.21 Runtime Routines with Special Calling Conventions........................ 6
3.2.2 Names for Compiler Runtime-support ROULINES.............ccceeeeeriunnen. 6
3.3 CCOMPIHEN ABI .. 6
3.3.1 Alignmentand Bit Field LayOutccouiiieii e 6
3.3.1.1 Natural AHGNMENE e 7
3.3.1.2 Embedding Alignment and Alignment Mode..............coooiiiiiiiiinnns 8
3.3.1.3 Bit FIEOS ..o 9
3.3.14 Open Issues - AlIgNMENT.........oooviiiiiiiiiie e 10
ih Gt Al e 10
3.4 1 NamMe ManGliNg....c.oeuiuiiiii e 10
3411 Name Mangling and Interoperabilityccooviiiiiiiiiiiins 10
3.4.1.2 The Rules of Mangling........ccoouoiiiiiiiiiiiiiii e 11
3.4.1.3 The Grammar for Mangled Names...........ccooiiiiiiiiiiiee, 16
3414 Open Issues- NameMangling........o.evevuiieiiiiieiieiieeeeeen 17
3.4.2 Class Object and V-Table LayOut..........ccccuuuiiiiiiiiiiiiiiiiiiiiiie e 18
3421 SIMPIE CIASSES. ... 18
3.4.2.2 SingleInheritance Classes. ..o 18
3.4.2.3 Multiple Inheritance ClasSes.........coooeieviiiiiiiiiiiiiieeeeie e 19
3424 Virtual INheritanCe ClasseSvve i 19
3.4.2.5 Virtual Base Class Offset Tables (vbtables) ...t 20
3.4.2.6 Virtual Function Table (vtable) Pointers...........ccvovivviiiiiiiiienns 21
3.4.2.7 POINTErSTO MEMDEIS ... e 22

Fred Forsman [Copyright Apple Computer, Inc. 1996

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.4.2.7.1 Pointersto DalaMembers...........cooiiiiiiii 22
3.4.2.7.2 Pointersto Member FUNCHIONS.........ovieiiiiiiii e, 23
3.4.2.8 Virtual Function Tables (vtables)coovvviiiii i 23
3.4.2.9 Open Issues - Class Object and Vtable Layout.............cccoeevinnnnn.n. 25
3.4.3 Constructors and DESIIUCTONSttt 25
3.43.1 (O070] 8 1511 AU (o] {0] PR 25
3.4.3.2 DESITUCIONS 26
3.4.3.3 Static Constructors and DESITUCTOrS.........vvvviviiiiiiiece e 26
3.4.3.4 Open Issues - Constructors and Destructorso.vvevevvieeeennennnn. 27
3.4.4 Runtime TypelInformation (RTTI).........coooiiiiiiiiiii 27
3.4.4.1 R T IN G e 27
3.44.1.1 RTTlandExceptionHandling...........ccoviiiiiiiiiii e 27
3.4.4.1.2 RTTI FEAIUIES. ...cuitie e 27
3.4.4.1.3 Related Non-RTTI Features (the Other "new-style" Casts) 28
3.4.4.2 RTTI Data StrUCLUIES.........ovviiiieeeeeeee e 28
3.4.4.2.1 High-level — typeinfO SErUCIUre. ... 29
3.4.4.2.2 Low-level — pdata........ccooiiiiii 29
3.4.4.2.2.1 Simple Types and EnNumMeErations............ccccceeeeevveriinieeeeinnnneennnns 29
3.4.4.2.2.2 Pointer and ReEfErenCe TYPES. .. .ovvivi i eaeaes 30
3.4.4.2.2.3 Struct/Class/UNiON TYPESvueieee et et e e e e e e eeeeaaes 30
3.4.4.3 OPEN ISSUES - RTTH Lot 31
3.4.5 EXCeption Handlingovine i 31
3.45.1 Roles of Compilers, Linkers, and Runtime Libraries...................... 31
3.45.2 Exception TablesS.....cc.ooviiiiiiii 32
3.4.5.2.1 FUNCON TaDIES. ...cueie i 32
3.4.5.2.2 CodeBIock TaDIESoviiii 33
3.45.2.3 Third Level Tables......cccoooiiiiiiiiiiii 34
3.4.5.2.3.1 UNWINd DESCIIPLOIS. ... uuveeiteee e aae e 35
3.4.5.2.3.2 Destructor (TVector) DeSCrPtOrS......ovveee e veieiaeiaanans 35
3.4.5.2.3.3 Destructor (Imported) DeSCIiPtOrS. ...o.vveee e ieieeaenens 35
3.4.5.2.3.4 Déelete (TVECLOr) DESCIPIOrS.uviue ettt e eeeaanaenaas 36
3.4.5.2.3.5 Déelete (Imported) DeSCrPtOrS. ... vvve i ve e 36
3.4.5.2.3.6 TrY DESCIPIOrS . v vttt e e e 37
3.4.5.2.3.7 CatCh DeSCIIPIONS. . vt e et et e 37
3.4.5.2.3.8 EXCEPtion SPECIfiCatioNS.vviee e 37
3.4.5.2.3.9 Cleanup DeSCIIPIOrS. ... vt ettt e e 38
3.45.3 AlQOrITNMS. . 39
34531 eh throw....ooi 39
3.4.5.3.2 FINACEAICHENvieei e 40
3.4.5.3.3 TaDIEIOCAONSttt 41
3.4.5.3.4 Other SUPPOrt ROULINES.cvieeie e 42
3.4.5.4 FULUIE DIFECHIONS ...t 42
3.455 Open I1SSUES - EXCEPLIONS.veeeeeeeeee e e e eenens 42
3.4.6 Specia C++ Calling CoNVENLIONS.uvieeieie et aeaaanans 43
3.4.6.1 Passing ObjectsBy Valuec.coviiiiiii e 43
3.4.6.2 Order of "this" and "Hidden" Parameters............cccccvveeeiiiiuinennnn. 43
3.4.6.3 THUNKS. ... 44
3.4.6.4 Proposal - C++ Virtual Function Dispatchcccoeviviiiiieinnnne. 44
3.4.6.5 Open Issues- C++ Calling Conventions..........cocvveviiiiiiieiieennannns 46

Fred Forsman i Copyright Apple Computer, Inc. 1996

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.4.7 Miscellaneous CH+ ABI ISSUES.......cccuuiiiiiiiiiieiiiiiiee et 46
3.4.7.1 The TYPeOf SIZE t. .o e 46
3.4.7.2 Trigger Membersfor Vtable Generation.............cccovviiiiiiinnnnnn.. 46

3.4.8 OpenIssues- CH+ ABI ... 46

4. RETBIBNCES. ... 47

Nt A oo 1= 110 G 47
Al.l Alignment Mode Pragmal.........ovvviiiiiie e 47
Al2 CEM Pragmas.......ccooiuiiiiiiiie e 438
Al1.3 Open Issues - Compiler Pragmas Affectingthe ABI 48

Fred Forsman i Copyright Apple Computer, Inc. 1996

Macintosh C/C++ ABI Standard Specification December 5, 1996

Revision History

Revision Date Comments
1.0 11/16/95 Initial release of document.
1.1 5/2/96 "Natural” alignment mode; static constructors

and destructors; passing objects by value; order
of "this" and "hidden" parameters.

1.2 8/1/9 Long long data type; introduced 3 levels of
ABI compliance; thunks; type of size_t;
layout of class objects and vtables; constructors
and destructors; RTTL exception handling;
trigger functions for vtable generation;
XCOFF extensions for imports and exports.

1.3 12/5/96 Rewrite of alignment section; proposal for
new C++ virtual function dispatch
mechanism.

Fred Forsman iv Copyright Apple Computer, Inc. 1996

Macintosh C/C++ ABI Standard Specification December 5, 1996

Acknowledgments

We would like to thank the following people who have provided valuable input to this document:
Russ Daniels, Erik Eidt, Scott Fraser, Sassan Hazeghi, Andreas Hommel (Metrowerks), Doug
Landauer, Alan Lillich, Colin McMaster, Ira Ruben, and Mark Williams.

The mention of anyone's name here does not imply their approval of this document, in fact, much

of the best input has come from our critics. Asusual, the errorsin content and organization are our
own.

Fred Forsman % Copyright Apple Computer, Inc. 1996

Macintosh C/C++ ABI Standard Specification December 5, 1996

Cover Letter and Notes on this Revision of the Specification

This document is adraft proposal and your comments are welcome. Please let us know about any
ABI issues that we have missed. Please note the various "Open Issues' sections and fedl free to
comment on any of these or any other ABI issues.

If you are planning on writing up your comments please refer to sections by name rather than by
number since the document is still changing and the names are more likely to remain meaningful.

While this version of this document isrelatively completein that it describes al of what we know
to berelevant to the C++ ABI, it is still just adraft proposal and many of the sections should be
considered to be "straw man" proposals which will serve as a starting point for discussion. Given
that the point of a Macintosh C++ ABI isto work toward having C++ compilers for the Macintosh
conform to a common set of conventions, this document makes reference to strategies used by
various compilers (particularly Apple's MrCpp and Metrowerks CodeWarrior compiler). Inthe
various "Open Issues' sections in this document we have tried to enumerate ABI-related issues and
problems that have been uncovered but not yet resolved. Please fed free to provide pros and cons
on these and any other issuesin the ABI. We have not had the time to investigate all of the issues
that have been raised, so amore detailed analysis of these or any new issues would be greatly
appreciated.

The sections on Virtual Base Classes, Virtual Base Class Tables, and Pointersto Members are
provisional and have areasonably high likelihood of changing. The run-time type information
(RTTI) mechanismis being investigated and compared with other RTTI implementations. The
exception handling mechanism will be redesigned to address the issues which are listed in the
"Open Issues - Exceptions’ section. The new exception mechanism will be documented in afuture
revision of this document.

Thisrevision of the ABI aso includes a proposal for anew C++ virtual function dispatch
convention. Your comments are welcome. Preliminary discussions of this mechanism have
already indicated areas for optimization of the current mechanism if the new one is not adopted.

Thisrevision of the ABI document includes arewrite of the section on aignment. The alignment
rules have not changed, however, we hope that the specification of these rules has become much
Clearer.

The current version of this document is known to have an application-centric perspective.
Subsequent revisions will attempt to provide more information on how DLLs affect ABI issues.

Fred Forsman vi Copyright Apple Computer, Inc. 1996

Macintosh C/C++ ABI Standard Specification December 5, 1996

1. Introduction: The Macintosh C/C++ ABI

This section outlines the purpose and scope of this document.

1.1 What is an ABI?

An ABI isan “application binary interface” and describes conventions at the binary level which
apply to applications targeted to the same system. An ABI establishes conventions for such things
asregister usage, parameter passing, and layout of data. Typically, these conventions are effected
in development tools, particularly compilers. Assembly-level programmers must be aware
explicitly of these conventions, especialy if they wish to interface their assembly code with code
produced by a compiler.

The primary goals of an ABI are:
1. to establish machine-level runtime conventions for a processor family
2. toensureobject file compatibility between compilers

Whileit is possible for programsto depart from the conventions of an ABI, particularly within
isolated sections of a program (such as sections of hand-crafted assembly code), conformance to
the ABI is often required to make use of system-level code and code produced by other compilers.
To the extent that a program is monolithic and is built with the same set of tools conformance to the
ABI isonly an issue when the program interfaces with the system. To the extent that a program is
made up of (or accesses) components which may have been built with other tools conformance to
the ABI ismore critical.

For some, the issue of binary compatibility resolves to whether the output of two compilers can be
made to be link compatible. But for others, binary compatibility can be seen as the issue of
whether two compilers will produce objects with the same link characteristics given the same
source. Thislatter, more constraining definition of binary compatibility isthe one we will address
in this document since it ensures a greater degree of source portability between conforming
compilers.

1.2 The Scope of this Document

The foundation level of the Macintosh ABI is documented in the book Macintosh Runtime
Architectures (to be available in fall '96) which covers various basic conventions such as register
usage and parameter passing conventions. This document covers what we are calling the
"Macintosh C/C++ ABI" which includes some special cases of low-level conventions needed for C
and C++, conventions for C such as alignment rules (which also apply to C++), and conventions
for C++ specific constructs which get exposed at the ABI level.

The C++ language poses specia ABI problems. While the C language relies on afew well-
established ABI conventions, the object-oriented features of C++ require anew runtime
architecture and conventions, such as v-tables and name-mangling. While some of these
conventions have acommon precedent in their implementation in AT& T’ s CFront, the evolution of
the language and the proliferation of compilers has resulted in the availability of many compilers
whose binaries are not compatible. The purpose of this document is to address that problem by
establishing a set of ABI conventions for C++ on the Macintosh.

This document limitsitself to issues directly related to the support of the C and C++ languages
with the expectation that this restricted focus will facilitate adoption of a standard set of runtime

Fred Forsman 1 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

conventions by Macintosh C++ compiler providers. Other issues such as standards for SOM and
Direct-to-SOM are l€eft to other documents. This document currently limitsitself to describing
these conventions for the PowerPC Macintosh since many of the conventions for the 68K
Macintosh have been in place for many years and since significant changesin compilers targeting
the 68K are not anticipated.

Severa source compatibility issues are mentioned in this document due to their close connection to
ABI issues (for example, the use of types other than "int" for bit fields). While not strictly ABI
issues, they can affect source portability between compilers.

The ABI attempts to address i ssues spanning various levels of interoperability--procedural DLL
interoperability, C++ DLL interoperability, compiler and linker interoperability, and source
interoperability. We have chosen the tack of organizing the ABI by functional areas since any one
given functional areamay include issues at severa levels of interoperability. Y our suggestions for
other organizations are welcome.

One important issue which is not addressed in this document is the process of transforming a
compiler to conform to the ABI and what to do at the inevitable stages where the compiler only
conforms partialy to the ABI. Theissueis made more complicated by the fact that achangein
ABI will often require that both an old and new ABI be supported during the transition. A
succession of steps towards ABI conformance can present avariety of difficult packaging issues
since the different ABIswill often require different libraries.

1.3 The Evolution of this Specification

This specification will continue to evolve for some time for the following reasons:

1. ThisABI specification is aworking draft.
The Macintosh C/C++ ABI isawork in progress--progress toward identifying all of the
potential ABI issues raised by the C++ language, documenting conventions to address these
Issues, and then coming to an agreement with Macintosh C/C++ compiler providers about the
ABI conventions.
Given the open nature of this process, we encourage discussion of the conventions
documented here. If there are potential problem areas that have yet to be identified please let
us know.

2. TheC++languageis till evolving.
While the C++ language is nearing standardization, some areas, such as templates, have
continued to change. Some of these changes affect ABI issues (such as name mangling of
templates).

3. TheABI specification identifies issues which have not been resolved.
Many sections of the ABI specification contain a sub-section of open issues. Many of these
are questions and suggestions that have not yet been investigated. Please fedl free to discuss
these issues with us and to identify any other potential problem areas in the specification.

4. The ABI should not be immutable.

Fred Forsman 2 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

If there is something wrong or sub-optimal about the current ABI specification please let us
know. Even once the standard is complete and has been widely adopted, potential
improvements should be discussed and weighed against the cost of change.

1.4 When it is Permitted to Deviate from the ABI

The ABI may be violated in generating code for and calls to functions which are known to be local
to acompilation unit or internal toaDLL. When afunction and al callstoit areloca to the
compilation unit the compiler may choose to relax the rules of the ABI in order to generate more
optimal code. Similarly, when afunction isknown to beinternal to aDLL, the compiler may
deviate from the ABI as it chooses as long as the same compiler is used to build al of the pieces of
the DLL. The compiler may identify these cases by observing which functions are static and which
are specified asinternal using the CFM pragmas.

Going a step further, the ABI may be freely violated between DLL s that are constrained to be used
together.

2. Power PC Runtime ABI
This section provides an overview of the conventions of the Macintosh runtime ABI; additionaly it

describes some specia case calling conventions needed to support larger data types as parameters
and return values.

2.1 PowerPC ABI Overview

The processor-level Macintosh PowerPC ABI is based on the PowerOpen ABI. The details of the
Macintosh PowerPC ABI are given in Macintosh Runtime Architectures ([2]).

2.2 Special Calling Conventions

This section describes calling conventions which are not covered explicitly in Macintosh Runtime
Architectures ([2]). See Macintosh Runtime Architectures for details on the Macintosh PowerPC
parameter passing conventions.

2.2.1 Passing and Returning Long Longs

Long longs are a 64-hit integral datatype. They are represented in memory by two adjacent longs,
the first containing the high-order 32 bits and the second containing the low-order 32 bits.

Long long parameters occupy two words in the parameter areaand will be passing in registers if
they fall in the first eight words of the parameter area.

Long long function return values are returned in the R3/R4 register pair.

Fred Forsman 3 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

2.2.2 Passing and Returning Long Doubles

Long doubles are a 128-bit floating point datatype. They are represented in memory by two
adjacent doubles, the first containing the high-order 64 bits and the second containing the low-
order 64 hits.

Long double parameters occupy four words in the parameter areawill be passing in floating point
registersif they fall in thefirst eight words of the parameter area.

Long double function return values are returned in the FPRL/FPR2 floating point register pair.

2.3 Open lIssues - Calling Conventions

1. When charsor shortsare passed in aregister are the upper bytes of the register undefined?
Or do we expect the caller or the callee to sign extend the value if appropriate? Macintosh
Runtime Architectures indicates that the high order bits are undefined.

2. Congder returning small structures by value. Currently structures are returned by reference
viaa hidden temporary passed to the function, regardless of the size of the structure.

3. Macintosh PowerPC Compiler ABI

The Macintosh compiler ABI covers conventions which apply to compilers targeting the Macintosh
architecture. Conventions such as object module formats apply to compilersindependent of their
target language. Other conventions are language dependent, such as alignment and bit field rules
which apply to C and C++ compilers. The C++ language requires quite afew conventionsto
support its set of language features. A common set of conventions must be followed in order for
compilersto produce code that will be link compatible and will interoperate with code produced by
other compilers. These conventions are discussed in the following sections.

3.1 Object Module Formats

Object module formats specify the format of the output of compilerswhich, in turn, isinput for
linkers and, sometimes, debuggers. An object file includes code, data descriptions and
initializations, fixup information for relocating code, and information to support symbolic
debugging.

Integrated development environments (IDES) may have their own internal conventions for object
formats, but should have provisions for importing and exporting object files for use with other
systems. This section identifies the standard object formats for the Macintosh.

3.1.1 PowerPC Macintosh Object Module Format - XCOFF

The object module format for PowerPC Macintosh architecture is XCOFF. The XCOFF format is
documented in "AIX XCOFF Object and Load Module Format for IBM RISC System/6000" [5].

The X COFF format has been extended for use on the PowerPC Macintosh as indicated in the
following section.

Fred Forsman 4 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.1.1.1 XCOFF Extension to Identify Imports and Exports
Motivation

The goal of this extension to X COFF isto allow trandators such as compilers and assemblers to
provide linkers/binders with more information about the imports and exports of DLLsin order to
simplify the build process for such libraries and to enable more efficient code generation. It isalso
agoal to minimize the impact of such an extension to the X COFF format so that tools processing
XCOFF fileswill require modification only if they wish to process the new information.

The document "C Compiler Pragmas for Macintosh “CFM” Runtime" [4] describes the pragmas
used to identify exports and importsin C and C++ programs. In this section we describe how this
information can be passed from the compiler to the linker viathe generated X COFF file.

XCOFF Change

Import and export information will appear in two new X COFF sections, named “.import” and
“.export”. Thetype (s flags) of these new sectionswill be STYP_INFO identifying them as
comment sections. As such, they should be ignored by any well-written X COFF tool which does
not know or care about them.

The format of the contents of these sectionswill be namesin STAB string format. The section
begins with afour byte length, which is the length of the comment section, not including the 4
length bytes. The contents of the section will then consist of a sequence of strings with two-byte
lengths and NULL terminators, where the length is the length of the string including the NULL
terminator but not including the two length bytes.

The section headers for these new sections should specify the following fields: s name (“.import”
or “.export”), s size(sizein bytes of the section), s_scnptr (offset from the beginning of the
XCOFF fileto thefirst byte of the section data), and s flags (STYP_INFO). Theremaining
section header fields should be zero.

When processing the new sections when creating a statically linked library alinker should
concatenate the contents of any “.export” sectionsto create the “.export” section for the library, and
similarly for “.import” sections.

3.2 Compiler Support Libraries

This section coversissues pertaining to language support libraries.

Fred Forsman 5 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.2.1 Runtime Routines with Special Calling Conventions

The ABI would benefit from defining a common set of compiler runtime-support routines with
gpecial calling conventions which the compiler can call with less overhead than a normal routine.
For example, the compiler could know which volatile registers remain unchanged when calling
such routines.

<Candidates for such routines need to be identified.>

3.2.2 Names for Compiler Runtime-support Routines

Even if acompiler conforms to the ABI, there may still be the potential for conflicts when linking
with the output of other compilersif the compilers make use of runtime-support routines whose
names may collide with those provided by other vendors which may not follow the same calling
conventions.

Mangling the names of runtime-support routines provides only a partial solution, limiting collisions
to routines with the same names and signatures which is still not a guarantee that they implement
the same function.

To ensure that there are no collisions, runtime-support routines should have names which contain
some unigue (vendor-specific) tag tying the routine to the corresponding compiler. In addition, the

ABI could specify the names and functions of standard runtime-support routines to be made
availableto al compilers on the platform.

3.3 C Compiler ABI

This section defines the conventions which apply to compilers supporting the C language.

3.3.1 Alignment and Bit Field Layout

This section defines the rules for alignment of data objects and the layout of bit fields.1 The
compiler's alignment mode can typically be controlled by command line options, environment
settings or pragmas. The pragmas controlling alignment modes are described in Appendix 1.

Alignment isinvolved in five areas of memory allocation: local and globals (free standing
variables), parameters, heap variables, and members of structures.

This section defines the alignment rules for members of structures and array elements, aswell as
for alocation of local and global variables.

The aignment for parametersis set by the calling conventions of this ABI, not by these rules.
Snce alignment of local variablesisrelative to the stack pointer, and there is no hardware or OS

enforcement 16 byte alignment of the stack pointer, physical alignment of localsis not assured.
Today's compiled code generally insure 8 byte alignment of the stack pointer.

1 Theseruleswere derived early in Apple's PowerPC program from alignment rules supported by IBM’s xlc
compiler and from alignment rules supported by Apple’s Macintosh 68K C compiler.

Fred Forsman 6 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

This ABI does not specify the actions of memory allocators for heap variables. It isexpected that a
general purpose allocator return memory aligned relative to the size of allocation.

Many environments (ABIs) on other platforms support only one alignment mode, a natural
alignment mode, sometimes made from a compromise between performance and space
requirements. By contrast, this ABI defines and condones multiple alignment strategies. The
presence of multiple alignment modes causes situations that single mode environments never have
to deal with. This specification attempts to clarify the interactions of the different alignment modes
by separating aspects of alignment that most other ABIs don't attempt to and don't need to. For
example, alocating a"short" variable is addressed separately from embedding a"short” in a struct.

Each data type has two alignments. a natural alignment, which is fixed, and an embedding
alignment, whose interpretation can change. Embedding alignment is controlled by the
alignment mode.

The alignments of an enumeration data type and the int data type are the same as the alignments of
the basic type (char, short, long) of the same size.

Alignment of elements in aggregates can result in pad bytes. Pad bytes in static objects should be
initialized with zero.
3.3.1.1 Natural Alignment

The natural alignment of the type of is used whenever an instance of that type, alocal or global,
is alocated to memory or assigned a memory address.

A natural alignment for each basic typeis set by this ABI and is defined with processor
performance in mind.

[Data Type [Natural Alignment]

char
short
long
pointer
float
double
long long
long double

5l o] oo | & & ol -

The natura alignment for an aggregate type is the maximum of the natural alignments of its
members.

NOTE: It isrecommended that compilers use the following formula to choose the alignment for
local and global aggregate variablesinstead of using the natural alignment :

size of 1 byte-> alignment of 1 byte

size of 2-3 bytes -> alignment of 2 bytes

size of 4-7 bytes -> alignment of 4 bytes

size of 8-15 bytes-> alignment of 8 bytes

size of 16 byte or more -> larger of 8 and the embedding alignment of the variable's type

Fred Forsman 7 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Thiswill result in more alignment than the mandatory minimum natural alignment for variables of
certain types, but there are good reasons why thisis recommended. First, consider a variable of
type struct or array consisting of 256 characters. Though none of the embedding membersrequire
alignment greater than 1 byte, an operation such as copying the entire array will almost certainly
benefit greatly from 8 byte alignment of the overall variable. Cache performance will probably
improve with the additional alignment. The second reason is more practical, that compilers need
not maintain an internal value for the natural alignment for each aggregate type (computed fromits
members), but rather may simply compute it from the total size whenever it is needed.

3.3.1.2 Embedding Alignment and Alignment Mode

The embedding alignment of atype is combined with the current alignment mode and used
when computing the offset for an instance of that type (a member) within a struct.

The embedding alignment of atype is determined when the type is declared. For basic typesthe
embedding alignments under various modesis given in the table below.

The alignment of an array element or structure member is the lesser of the embedding aignment of
the type of the element or field and the "aggregate" alignment below, determined by the current
alignment mode.

The embedding alignment of an aggregate type is the largest of the resulting alignments of its
congtituents**. The total size of a struct or union isrounded up to amultiple of its embedding
alignment**.

This ABI defines 4 aignment modes: “ power”, “mac68k”, “packed” and “natural”.

[Data Type | power mac68k** | packed natural
char 1 1 1 1
short 2 2 1 2
long 4 2 1 4

pointer 4 2 1 4
float 4 2 1 4
double 4(8)* 2 1 8
Tong Tong 4 2 1 8
Tong double 4 2 1 16
aggregate 4(8)* 2 1 16

* When in power alignment mode, a specia exception is made when the first embedding element
of astruct or any element of aunion has the data type of double -- in this case, the embedding
alignment for al (directly included/top level) double membersin the aggregate is 8. By the rules of
computing the embedding alignment for the struct being declared, thiswill also cause the
embedding alignment of the entire struct or union to be at least 8 aswell. The aggregate table entry
for power is 8 for such structs.

** |n mac68k alignment mode, all struct and union types have a size which is rounded up to an
even byte count. The embedded alignment for al struct and union typesis 2.

Example

Fred Forsman 8 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

The alignment mode is set to "power”, and a struct, X, containing two longsis declared. It hasa
size of 8 and an embedding alignment of 4. If the alignment mode is then switched to "packed"
and astruct Y is declared as one char followed by an X, the member of type X begins at an offset
of 1 and the embedding alignment of Y is 1. If the aignment modeisthen set to "natura™, and a
struct Z is declared as a short followed by a char followed by a Y, the member of type Y begins at
an offset of 3 and the embedding alignment of Z is 2.

3.3.1.3 Bit Fields

There are two methods for laying out bit fields--"mac68k" and "power"--depending on the
alignment mode. The differences are mainly historical, however the mac68k method can result in
fewer bytes allocated for a series of bit field definitions. The "mac68k” bit field rules are in effect
in the "mac68k™ and "packed" alignment modes, while the "power” bit field rulesare in effect in
the "power" and "natural” alignment modes.

The mac68k bit field rules are as follows:

1. A bitfield may be declared with any integral type, including an enumeration type, or
“char”, “short”, or “int”, either “plain”, “signed”, or “unsigned”, just asin C++. This
type has no effect on how space for thefield isalocated. For example, abit field may
be declared with type “char”, yet the given width of the field may be more than the
number of bitsin abyte. Thetypeisignored, and the specified number of bitsis
allocated for thefield.

The type determines whether the field issigned or unsigned. A bit field declared as

plain“int” shall be asigned field.

A bit field may be named or unnamed. No reference can be made to an unnamed bit

field. Unnamed bit fields of static objects areinitialized to zero.

A single bit field may have awidth of no more than 32-bits. A named bit field may

have awidth of no lessthat 1-bit. An unnamed bit field may have awidth of 0 bits.

A single bit field may not span a 4-byte boundary. Bit padding will be added to cause a

field that would otherwise span a 4-byte boundary to start at the next 4-byte boundary.

A zero-width bit field takes no space and resultsin no padding.

One or more sequential bit fields are packed into asingle unit. Thiswill be referred to

here as a bit field group.

A bit field group will be allocated starting at the next byte boundary, or the current byte

boundary if the previous e ement ended on a byte boundary, except asin rules#5 and

#6. A bit field group is allocated in the minimum number of bytes needed to contain all

the fields of the group, either 1, 2, 3, or 4 bytes, regardless of the declared type(s) of

the bit field(s). Another way to say thisisthat bit fields are packed into the current 4-

byte unit, in the minimum amount of space, immediately following (if possible)

whatever element started at the previous 4-byte boundary.

9. A bit field group ends at the next 4-byte boundary, because of rule #5. Thusabit field
group is no more than 4-byteswide. A single bit field that would otherwise span a 4-
byte boundary will start the next bit field group at the next 4-byte boundary.

10. Thefieldsof abit field group will be packed into the group from high-order to low-
order.

11. The preferred alignment of abit field group is 1-byte.

12. 1tisNOT lega to perform the “sizeof” operator on a bit field.

13. Itisnot legal to take the address of abit field.

© No g k~ w N

The power bit field rules are the same as those for the mac68k, except for the following rules:

Fred Forsman 9 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

1. Inthestrict ANSI mode, abit field may be declared with only the types “int”, “signed
int”, or “unsigned int”. Inthe relaxed ANSI mode, a bit field may be declared with any
integral type, except an enumeration.

2. Thetype determines whether the field issigned or unsigned. A bit field declared as
plain “int” shall be an unsigned field.

4. Thegiven width of abit field may be no larger than can be contained in the declared
type. Thus, a“char” bit field may have awidth of no more than 8-bits.

6. A zero-width bit field forces alignment of the next structure element (either bit field or
other member) on the next 4-byte boundary, or the current 4-byte boundary if the
previous field ended on a4-byte boundary. Thus, a zero-width bit field may not force
padding in all instances.

11. Thepreferred alignment of abit field isthe same asits declared type.

3.3.1.4 Open lIssues - Alignment

1. Alternate schemesfor how bit fields should work in the new “packed” alignment mode will
be considered. The current proposal is obviously based on the “mac68k” mode treatment of
bit fields.

2. There may beinterest some day in 64 bit wide bit fields based on long longs.

3.4 C++ ABI

This section describes ABI conventions for C++ compilers for the Macintosh which should be
followed in order to produce objects which are link compatible with other Macintosh compilers.

3.4.1 Name Mangling

This section describes how C++ compilers for the Macintosh should implement name mangling in
order to be link compatible with other Macintosh compilers.

Name mangling was originally developed to distinguish overloaded functionsin C++ by encoding
the type signature of functionsin their names. Over time name mangling has developed into a
means for providing type-safe linking. The presumption of this approach to type-safe linking is
that linkers are typically not “smart” or easy to change, so virtually al of the work is donein the
compiler.

While the C++ ARM [1] presents “one scheme” for name mangling, which was partially
institutionalized in CFront, various compilers have chosen to depart from the original scheme,
occasionaly in mgjor (e.g., templates) and often in minor ways. Because the ARM’s description
of name mangling is*“commentary” it is not an officia part of the language standard. However, a
consistent mangling scheme is necessary for binary interoperability of code produced by different
compilers, so astandard for C++ name mangling on the Macintosh is needed.

3.4.1.1 Name Mangling and Interoperability
Interoperability of code produced by different compilersis often undermined by the compilers use
of different mangling schemes. One may encounter thisissue when using alibrary produced by a

different compiler. Problems may occur with both statically-linked and dynamically-linked shared
libraries.

Fred Forsman 10 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

There are two categories of name mangling interoperability problems: (1) functionswhich are
compatible but which are given different mangled names by different compilers, and (2) functions
which are not link compatible but which are given the same mangled name by different compilers.
Thefirst problem can be addressed by encouraging all compilers to support the same name
mangling standard. The second problem can come about from compilers using different calling
conventions for the same function (such as how to pass an object by value), in which case the
mangling conventions should provide mechanisms to distinguish the use of different calling
conventions.

The C++ ARM hasthe following to say on this second type of incompatibility:

If two C++ implementations for the same system use different calling sequences or in other
ways are not link compatible it would be unwise to use identical encodings of type
signatures. Such implementations might agree on using encodings that differ by asingle
character where incompatibilities exist (only). [1, 8§7.2.1c]

Thiswould indicate that compilers should be required to generate incompatible mangled names
until they conform to the platform’s standard calling conventions.

3.4.1.2 The Rules of Mangling

The names of all externally-known C++ entities -- methods, functions, v-tables, etc. -- should be
mangled except for those that are declared to be ‘extern “C"’ 2

<nmangl ed_nane> ;o= <entity name>"__" [<class_name>] <type>

When a name is mangled, the function nameisfollowed by " " and the encoded type signature.
Thetwo underscores (" ") arethe signal indicating that the nameis mangled. If thefunctionisa
member of aclass, the class qualification is encoded before the type signature.

<entity_ name> <id> | <special _nane>

<speci al _nane> "ot | " dt" |
“_vtbl" | "_rttivtbl" | "_vbtbl" |
AU 0 O O D R o E S & B |
ll_Opll <t ype>| ll_ll <Op>

Entity names can be either an <i d> (anormal identifier or name as permitted by the language) or a
specia namein the case of congtructors (“ __ct ”), destructors (“ __dt "), vtables (“ _vt bl ” or

“ rttivthbl™),virtua baseclasstables (“ _vbt bl "), run-timetypeinformation (“ _rtti”, or
“_ti”, or “___ ti")oroperator functions. Constructorsand destructors are identified by their
<cl ass_nane> and type signature. The" __ op" form of <speci al _nanme> isused for typesas
conversion operators. Operator functions are encoded using specia operator names (<op>) from
the table below.

oper ator <op>
n newl n nwl
n ne\A{] n n r1\/\6"
n del et eII n dI n

2 A compiler may choose to mangle static function names in order to deal with the overloading of such functions,
but thisis not an ABI issue or requirement.

Fred Forsman 11 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification

"deletef]" ["dl a"
n +II n pl n
n - n n m n
"y n n m n
a " dv"
n O/d n n'd"
YD er
"= "adv"
"&' "ad"
n | n n Or n
T Co"
s "nt"
T "as"”
n <II n | t n
N Tt
n +:|| n apl n
n - :ll n am n
T O~
" 0" "amd"
A= "aer"
" &=" "aad"
"= "aor"
n <<II II| SII
o> s
' >>=" "ars"
" <=" "al s"
T— Teq"
"= "ne"
n <:II II| eII
oo Tge"
" &&" "aa"
ik "o0"
o op"
0N "ol
s "ve”
n - >|| n rf n
I I
I T

December 5, 1996

If the entity isamember of aclass, the<cl ass_nane> isencoded immediately following the" "
and before the type signature.

<cl ass_nhane>
<qual i fi ed_nane>

<qual i fi ed_nane>
"Q <count> <qual _nane_|ist>

<count > <term nated_i nt >

<termnated_ int> <int>"'_'

<int> <digit>]| <int> <digit>

<digit> O| 1| 2| 3| 4| 5| 6] 7] 8] 9

<qual _name_Iist>
<qual _nane>

<qual _name> |
<lI _name> |
<par anet eri zed_t ype>
<int> <id>

<qual _nane_I i st > <qual _nane>

<l _name>

Fred Forsman 12 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

If the entity isamember of aclass, the classinformation is encoded asa<qual i fi ed_nane>
which isalist of names (more than oneif there are nested classes). A <qual i fi ed_name>is
introduced by a' Q followed by the <count > of the number of namesin the following

<qual _nane_li st >.

The<count > isa<t er mi nat ed_i nt >whichisan <i nt > followed by an underbar (" _') to
separate the integer from what follows (which may begin with adigit). An<i nt >isabase 10
representation of avalue using decimal digits with no leading zeros.

The<qual _nane_l| i st >isalist of <qual _nane>'swhich may be either an <I _nane> (consisting
of alength and the characters making up the name) or a<par anet eri zed_t ype> (discussed
further below). If thereis more than one name in the qualified name list, the names appear from
left to right in outer-to-inner order.

The type of anamed entity is represented in one of several different ways depending on whether
the entity is an instance of abasic type, aclass, an array, or afunction.

<t ype> .= <basic_type> |
<qual i fied_type> |
<cl ass_nane> |
<array_type> |
<function_type>

The syntax for basic typesis asfollows:

<int_type> |
<ot her _base_t ype>

<basi c_t ype>

<int_type> = [<sign_nod>] <int_base type>

<si gn_nod> ='S "U

<int_base_type> ='b | "¢ | 's"] ittt x| TwW
<ot her _base_t ype> ='f] 'd |t] v e

A <basi c_t ype> can be either an <i nt _t ype> which can be modified by a<si gn_nod> to
indicate whether it issigned (' S') or unsigned (' U). Otherwisea<basi c_t ype> canbean
<ot her _base_t ype> which includes the floating point types, void, and ellipsis.

Even though <basi c_t ype>swhich are declared without an explicit <si gn_nod> attribute are
considered to be signed, they should be encoded to reflect whether the <si gn_nod> attribute was
present or not since this distinction is significant for function overloading. Thus something
declaredasan"i nt" should beencodedas"i",an"unsigned int" as"U ",anda"si gned
int" as"Si".

The encodings for basic types are given in the following table:

type encoding
bool ‘b’

char ‘c’
doubl e

f1 oat

i nt

| ong

| ong doubl e

c
d

o

T
[
I
r

Fred Forsman 13 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

| ong | ong CX
short ‘s’
voi d ‘v
wchar t ‘w

Note that a conformant compiler must support all of the above types as basic typesin order to
produce correct mangled names for entities containing these typesin their type signatures. Thus,
for example, acompiler in which " bool " isa predefined type will produce a different mangled
namefor"voi d f(bool)" than would acompiler for which " bool " must be provided by a
typedef.

A type can be qualified using the following syntax:

<qual i fied_type>
<type_qualifier_list>

[<cv>] [<type_qualifier_list>] <type>
<type_qualifier> |

<type qualifier list> <type qualifier>
'R | '"P | 'M <type>

'‘C | 'V | ‘o

<type qualifier>
<Ccv>

The optional <cv> allows for the specification of whether the typeisaconst or volatiletype. The
optional <t ype_qual i fier_li st>alowsfor the specification of avariety of type modifiers.
When morethan one <t ype_qual i fi er > ispresent they areinterpreted from right to left. The
meaning of the various qualifiersis given in the following table:

type syntax |encodi ng
poi nt er ok ‘P
ref erence ‘& ‘R
poi nter to nenber YooY ‘M <t ype>’

The syntax for encoding types which represent arraysis as follows:

<di mensi on_I i st> <type>
<di mensi on> | <di nensi on_I i st> <di nensi on>
"A <termnated_ int>

<array_type>
<di mension_|ist>
<di nensi on>

An array typeisencoded asa<di nensi on_I i st >and a<t ype> representing the base type of the
array. Each <di nensi on>isencoded withan' A’ followed by a<t er ni nat ed_i nt > representing
the array dimension in decimal.

The syntax for encoding types which represent functionsis as follows:

<function_type> "F' <paramlist> ['_' <return_type>]

<param| i st > <par an® |

<param | i st > <par an»
<par an® = <type>
<return_type> = <type>

An' F isused to encode afunction type. The signature of the function is given by its
<param | i st >. The parameter list consists of one or more parameters (<par an»). A parameter is

specified by its<t ype>.3

3 Two conventions exist for amore concise encoding of repeated parameters, using the following syntax:
<par an» 1= <type> |
'T <ndex> |

Fred Forsman 14 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Note: A function with no parameters should be encoded as having a“void” parameter, e.g.,
“foo_ Fv”.

Note: A function with no explicit parameters other than ellipsis should be encoded as having a
“... parameter, e.g., “foo__Fe".

When the entity whose name is being mangled is afunction, no <r et ur n_t ype> is specified at the
end of its<f unct i on_t ype> signature.# On the other hand, if a<f uncti on_t ype> isbeing used
to specify afunction typed parameter in the <par am | i st > of another <f uncti on_t ype>a

<r et ur n_t ype> must be specified, evenif void.

When the name being mangled represents a class or parameterized typeit is encoded using the
<cl ass_name> syntax discussed above. The syntax for encoding parameterized typesis as
follows:

<paraneterized type> .= <int> <pt>
Parameterized types are encoded by an <i nt > representing the length of the parameterized type
encoding followed by <pt > which represents the template name and instance parameters.
Parameterized types are encoded according to the following syntax:

<pt > ci="__PT" <tenpl ate_nanme> <pt_param|i st >
<t enpl at e_name> : <l _name>

A parameterized typeisintroduced by " PT" and isfollowed by the <t enpl at e_name> (an
<| _nane>) and thenthe <pt _par am | i st >, the parameter list of the parameterized type. The
parameters are encoded according to the following syntax:

<pt _paramlist>
<pt _par an»

<pt _paran» | <pt_paramlist> <pt_paranp
<type> | <expr>

A <pt _param | i st >consstsof alist of one or more parameters, each of which may be either a
<t ype> or an <expr >. Expressionsin the parameter lists of parameterized types are encoded
according to the following syntax:

"V <val ue>
<ref erence> |
<num val ue>

<expr >
<val ue>

"N <rep_count> < ndex>

<rep_count> ::=<digit>

< ndex> =<digt>
Using this scheme, a parameter may either be specified by its <t ype> or, if itstype has already appeared in the
parameter list, by a special form indicating that it has the same type as a previous parameter. The' T' form
indicates that the current parameter has the same type as the parameter indicated by <i ndex> (using 1-based
indices). The' N form indicatesthat the next <count > parameters have the same type as the parameter indicated
by <i ndex>. We choose not to use these conventions because either there must be explicit rules for when they
areto be used or else they introduce incompatible names for link compatible functions.

4 Therationale for omitting the function’s return type signature given in pages 126-7 of The Annotated C++

Reference Manual ([1]) isthat this allows linkers to identify when there are two functions with the same name
and arguments lists but different return types, something which is not allowed in C++.

Fred Forsman 15 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

An<expr>ina<pt_param|ist>isencodedusinga' v followed by a<val ue>. A vaue may
be encoded in a number of ways depending on its type, according to the following syntax:

'R <count> <characters>

"N <count> <charact er s>

<any_char> | <characters> <any_char >
any ASCl| char

<r ef er ence>
<num val ue>
<char act er s>
<any_char >

Vaues may be expressed by addresses or numeric values. A reference value (representing
something beginning with ‘&) isencoded with an' R followed by a <count > and a string of
characters. Numeric values (<num val ue>) are encoded withan' N followed by a<count > and a

string of characters representing the value after it has been reduced to an integer value.

3.4.1.3

The Grammar for Mangled Names

The following is the complete grammar for mangled names.

<mangl ed_nane>
<entity_name>
<speci al _nane>

<op>

<cl ass_nhane>
<qual i fi ed_name>
<count >

<int>

<digit>

<term nated_int>
<qual _name_list>
<qual _nane>

<l _name>
<par anet eri zed_type>

<t ype>

<basi c_t ype>

<i nt_type>

<si gn_nod>
<int_base type>
<ot her base_type>

<qual i fied_type>
<type qualifier_list>

<type_qualifier>
<Ccv>

Fred Forsman

<entity name> " " [<class_nane>] <type>
<id> | <special nane>
Il_Ct n | mn _dt n |
" vtbl" | "_rttivtbl" | " _vbthl" |
n _rtt i n | n _t i n | mn _t i n |
n _Op" <t ype> | n mn <Op>
see table

<qual i fi ed_nane>

"Q <count> <qual _nane_|ist>

<term nated_i nt >

<digit>] <int> <digit>

O] 1] 2| 3] 4| 5] 6] 7] 8] 29
<int>"'_'
<qual _name> | <qual _nane_list> <qual _name>
<lI _name> |

<par aret eri zed_t ype>

<int> <id>

<int> <pt>

<basi c_type> |
<qual i fied_type>
<cl ass_nane> |
<array_type>
<function_type>

<int_type> |
<ot her _base_t ype>
[<sign_nod>] <int_base type>

'S | 'U

1 bl | 1 CI I 1 SI | 1 i L} | 1 I 1 I 1 XI | 1 W
L} fl | 1 dl | L} rl | 1 V| I 1 eI

[<cv>] [<type_qualifier_list>] <type>

<type_qualifier>

<type qualifier_list> <type qualifier>
'R | '"P | "M <type>

'C | 'V | 'ev

16 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification

<array_type>

<di mensi on_|ist>

<di nmensi on>

<function_type>
<paramlist>
<par anp
<return_type>

<pt >

<t enpl at e_nane>
<pt _paramlist>
<pt _par an»
<expr >

<val ue>

<r ef erence>
<num val ue>
<char act er s>
<any_char >

<di mensi on_Il i st> <type>

<di mensi on> | <di mensi on_I i st> <di nensi on>
"A <termnated_int>

'"F' <paramlist> ['_' <return_type>]
<parame | <paramlist> <parane
<t ype>

<t ype>

" __PT" <tenpl ate_nane> <pt_param|i st>
<| _nane>

<pt _paran» | <pt_paramlist> <pt_paranp
<type> | <expr>

"V <val ue>

<ref erence> |

<num val ue>

'R <count> <charact er s>

"N <count> <charact er s>

<any_char> | <characters> <any_ char>
any ASC | char

December 5, 1996

3.4.1.4
1.

Open Issues - Name Mangling

Should the places mangling syntax uses an <i nt > to indicate a number be modified to use a

<t er mi nat ed_i nt >, an integer terminated by an underscore, asis aready used el sawherein
the grammar? In these cases an int without an underscore is unambiguous,; however, there may
be too many forms of encoding counts without any clear tradeoffs motivating the different
forms.

. Numeric values in parameterized types need to be represented by canonical strings. Floating

point valuesin particular are problematic due to the need for a standardized, normalized
representation.

. Isthere any need to impose limits on lengths of names?

. Assignment-expressions are now allowed in template definitions to express default values. A

mechanism is needed to express thisin a mangled name for atemplate.

. Name mangling should distinguish between classes that are declared locally in functions since

two such classes may generate names (e.g., for v-tables) which conflict at link time.

. The name mangling rules need to cover how namespaces impact mangling. One ssmple scheme

is let the namespace act like an enclosing class, making use of the existing mechanism for
mangling the names of enclosing classes.

. Categorizing wchar_t as abasic type isaproblem since it can change from one implementation

to another and can range in size from achar to an unsigned long. Either wchar_t must have a
fixed size in the Macintosh API or the mangling must distinguish the possible sizes.

Resolved [ssues

1.

Fred Forsman 17

Should the Pascal attribute on a function be considered to be part of the mangling signature?
The Pascd attribute doesn’t make any difference in the PowerPC calling conventions,
however, it issignificant for 68K calling conventions. One suggestion is that functions with

Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

the Pascal attribute should not have their names mangled, but instead the name should be
converted to upper case.

Resolution:

The Pascal attribute should be ignored in the mangling of function names for the PowerPC.

3.4.2 Class Object and V-Table Layout

In this section the layout of class objects and vtables are described using a C-like struct syntax.
There are avariety of cases of class object layout depending on whether the classis smple,

whether it inherits from one or more other classes, whether it has virtual base classes, and whether
it has virtual functions.

3.4.2.1 Simple Classes

class X {
<nenber s>
b

struct {
<nmenber s>
b

Memberswithin a class are aligned according to the same rules that govern structure aignment.
The alignment will be done according to the alignment mode in effect at the declaration of the class.
Consider the following example:

#pragnma options al i gn=rac68k

class cO {
short s;
long |;
}; _ _
#pragma options al i gn=power
class cl {
short s;
long |;

Given the different alignment modes in effect for each of the declarations, the long in class cO will
be aligned at offset 2, while the long in class c1 will be aligned at offset 4.

3.4.2.2 Single Inheritance Classes

class X <base> {
<menber s>

struct {
<base>
<nmenber s>

H

Fred Forsman 18 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

A baseclassislaid out in aderived class asif the first member of the derived classisthe struct
representing the base class. Subsequent members are laid out following the general rules
governing structure alignment with the exception of the case where the base class has no explicit or
implicit (e.g., compiler generated table pointers) data members (i.e., it isempty). Inthiscasethe
subsequent members are aligned where the empty base class begins, rather than following the
bytes (depending on the alignment mode in effect) usually alocated for empty structs which are
normally not permitted to have zero size.

If the base class or the derived class has virtual functions then the class will begin with a4-byte
entry for avirtual function table pointer, which is discussed in the section on "Virtual Function
Table (vtable) Pointers’ below.

3.4.2.3 Multiple Inheritance Classes

class X <basel> ..., <baseN> {
<menber s>

1

struct {
<basel> /1 non-virtual direct base classes in |exical order
o /1 except that base classes with virtual functions
<baseN> [/l go first
<menber s>

1

The base classes are laid out in lexical order, however, all non-virtual bases classes which have
virtual functions are moved "to the front" so that sub-objects for them will precede sub-objects for
base classes without any virtual functions. Thisfacilitates sharing of the vtable pointer dot. (See
section 3.2.6 below.)

3.4.2.4 Virtual Inheritance Classes
class X <basel> ..., <baseN>, virtual <vbasel>, ..., <vbaseM> {
<nmenber s>
H
struct {
<vbtabl e ptr> [/ pointer to table of virtual base class offsets
<wor d> I/l currently unused
<basel> /1 non-virtual direct base classes in | exical order
o /] except that base classes with virtual functions
<baseN> [/l go first
<menber s> /1 This class’ menbers
<vbasel> /] all direct and indirect virtual base class
o /1 sub-objects in canonical order
<vbaseM>

H

A derived class with virtual base classes will contain a pointer to atable of virtual base class
offsets. Thus, instead of having a pointer for each virtual base classin the object, thereisasingle

Fred Forsman 19 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

pointer for the virtual base classtable.> In simple cases, this vbtable pointer will be the first
member (i.e., its offset will be zero).

The vbtable pointer can have an offset greater than zero if:
* thereisavirtua function table, in which case the virtual function table pointer dot will
precede that of the virtual base table pointer, or
« any of the non-virtual direct base classes has a vbtable, in which case the first such base
class sub-object's vbtable pointer slot will be used for the derived class's vbtable pointer.

3.4.2.5 Virtual Base Class Offset Tables (vbtables)

Every class with one or more virtual base classes will have a single vbtable object named
" vbtbl _<cl ass_nane>", where <cl ass_nane> isthe mangled name of the owning class.

Every vbtable entry isfour byteslong. Thefirst entry isaways zero, representing the offset of the
derived classin itself, and is followed by one entry for each direct or indirect virtual base,
containing the virtual base's offset. Each offset isthe address of the virtual base object within the
most-derived object, relative to the address of the vbtable pointer itself.

Example:
Here we have asimple virtual base class, inherited by a derived class which has a virtual function:

struct B{ int bm };

struct D: virtual B {
virtual void f();
int dm

1

Thiswill give usab object like this

0 vi-table-ptr
4 vb-tabl e-ptr
8 dm

12 bm

and avb-t abl e that lookslikethis;

vb-tabl e 0
8

The 8 means that D's virtual base sub-object B is 8 bytes beyond the D' s vbtable pointer, or 12
bytes from the start of aD.

Another Example:

In this case, we have avirtual base class which isinherited indirectly. This allows the derived
classto share its vbtable pointer with one of its base classes.

struct B{ int bm };

5 The Metrowerks compiler has a pointer for every virtual base class in the object.

Fred Forsman 20 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

struct V{ int vm };
struct C: virtual V{ int cm };
struct D: B, C{
int dm
b

This D object will be laid out asfollows:

0 bm

4 XXXXX

8 vb-tabl e-ptr
12 cm
16 dm
20 vm

Thevb- t abl e for this D object will look like this:

vb-tabl e 0
12

The 12 means that D's virtual base sub-object V is 12 bytes beyond the D' s vbtable pointer, or 20
bytes from the start of aD.

3.4.2.6 Virtual Function Table (vtable) Pointers

Every class with any virtual functionswill have avirtual function table ("vtable") which is used for
indirect dispatch of the virtual functions. Each object of aclass with virtual functionswill have a
virtual function table pointer slot. When present, the vtable pointer slot is allocated at offset zero.

If the first non-virtual base class also has a vtable pointer, the derived class will "share" it by
allocating the first base class at offset zero so that its vtable pointer slot will coincide with that of
the derived class. If some of the base classes have vtables and others don't, the base classes will
be reordered so that the base classes with vtables are first, in order to facilitate the sharing of the
vtable pointer. If the derived class hasits own vbtable pointer the vtable pointer slot will not be
shared. Note that the base classes will be reordered regardless of whether the vtable pointer is
actually shared.

The following examples illustrate the various cases of sharing and not sharing vtable pointer dots.

Simple case:
class X {
<nenber s> /! includes one or nore virtual functions
H
struct {
void * <vtblptr>; // pointer to virtual function table
<nmenber s>
H

Fred Forsman 21 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Note that elements that are added implicitly to classes by the compiler (such as vtable pointers)
affect the preferred alignment of the class to which they are added. Thus, in the power alignment
mode, a class with virtual functions and containing a single char will have a preferred alignment of
4 and a size of 8 (due to the vtable pointer), as opposed to a preferred alignment of 1 and a size of
1 (aswould be the case if the class had no virtual functions and no vtable pointer).

Sharing, non-virtual base:

class X <base> {

<nenber s> /! includes one or nore virtual functions
H
struct {
<base>; /] reuse base's vtable ptr slot
<nenber s>
H
Sharing, reordering of multiple non-virtual bases:
class Y {
<nenber s> /! includes no virtual functions
H
class Z {
<nenber s> /! includes one or nore virtual functions
H
class X Y, Z{
<nmenber s> /! includes one or nmore virtual functions
H
struct {
<Z>; [/ reordered to reuse Z s vtable ptr slot
<Y>:
<nenber s>
b

Note that if X had virtual base classes, then the vtable pointer should be followed by the vbtable
pointer. Inthiscase, X would not share Z's vtable pointer slot because X's vbtable pointer could
not immediately follow the vtable pointer since, in order to share Z's vtable pointer, al of Z hasto
appear at offset zero, conflicting with the required location for X's vbtable pointer.

3.4.2.7 Pointers to Members

Pointers to data members and pointers to member functions require different treatment.

3.4.2.7.1 Pointers to Data Members

Pointers to data members have 3 fields: (1) the data member offset "initsclass’, (2) the offset to
the vbptr, and (3) the virtual base index (always greater than O if thisisapointer in avirtua base).
Here "inits class" means the offset in the most derived class unless the member comes from a
virtual base, in which case the offset is the offset in the virtual base.

struct ptdm {
unsi gned i nt dnoff; /'l data menber offset "in its class"

Fred Forsman 22 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

unsi gned int vbi x; [/ index of vbase in vbtbl (or O if no vb)
unsigned int vbptroff; // offset to relevant vbtbl ptr, if any

};
The agorithm for dereferencing a ptdm is as follows:

Der ef ((hj ect Address oa, PtrTobDataMenber ptdm ==>

if ptdmvbix ==
[/l the ptdmis not froma virtual base
resul t Addr = &oa[ptdm dnoff];
el se
/] the ptdmconmes froma virtual base
vbtpio = oa + ptdmvbptroff;
vbt = *vbt pi o;
vbo = vbt[ptdm vhix];
vbi o = vbtpio + vbho;
resul t Addr = &vbi o[pt dm dnof f];
fi

3.4.2.7.2 Pointers to Member Functions

Pointers to member functions have 4 fields: (1) the address of the function or thunk, (2) the this-
ptr-delta, (3) the offset to the vbptr, and (4) the virtual base index (always greater than O if thisisa
pointer in avirtual base).

struct ptnf {

H

void * address_of func;

int this ptr_delta; [/ adjustrment to "this" pointer

unsi gned i nt vbi x; [/ index of vbase in vbtbl (or O if no vb)
unsigned int vbptroff; // offset to relevant vbtbl ptr, if any

The agorithm for calling a ptmf isasfollows:

Cal | Vi aPTM~((bj ect Address oa, PtrToMenber Function ptnf, QGherArg...) ==>

if ptnf .vbix ==
[/ the ptnf is not froma vitual base
pth = oa;
el se
/] the ptnf comes froma virtual base
vbtpio = oa + ptnf.vbptroff;
vbt = *vbt pi o;
vbo = vbt[ptnf.vhix];
vbi o = vbtpio + vbho;
pth = &vbi o[pt nf. dnoff];
fi
pth += ptnf.this_ptr_delta;
CALL(ptnf.address_of _func, pth, QG herArgs...);

3.4.2.8 Virtual Function Tables (vtables)

Every polymorphic classwill have asingle virtual function table named "_vtbl__<cl ass_nanme>"
where <cl ass_name> isthe mangled name of the owning class, for example, the vtable for class
XXX is"_vthl__3XXX".

Fred Forsman 23 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

If RTTI isenabled then name of the vtableis" _rttivtbl _<cl ass_nane>", and the table has an
additional pointer at its start which pointsto atype_info object. The object's constructor will
initialize the vtable pointer by adding 4 to the _rttivtbl__<cl ass_nane> symbol, so asto skip the
RTTI pointer. This makesthe rest of the vtable similar to the non-RTTI case. (For more details
see section 3.5 on Runtime Type Information.)

Therest of the vtable (the whole vtable when RTTI is disabled) contains pointers to member
functions (or thunks which in turn dispatch to member functions).

A classsvtableisalexical-order concatenation of the vtables of its direct base classes (not
including the RTTI information), followed by the virtual function pointers unique to the class. The
virtual function pointers are allocated in lexical order. New virtual function pointers are appended
at the end of the vtable. Virtual function pointers for overridden functions reuse the corresponding
dot in the area representing the base class vtable.6 Base classes that have no virtual functions have
no vtables and therefore do not have any effect on the vtable of the derived class.

Multiple non-virtual inherited vtables:

class X <basel>, ..., <baseN> {
<nmenber s> /! includes Mvirtual functions

H

struct {
<vt abl e basel>; /! vtables frominherited base cl asses
<..>
<vt abl e baseN>;
<vfptrl>; [/ X s virtual function pointers
<...>
<vf ptr M;

H

Virtual inherited vtables:

class X <basel> ..., <baseN>, virtual <vbasel> ..., <vbaseM> {
<nmenber s> /! includes L virtual functions

H

struct {
<vt abl e basel>; /! vtables fromdirect base cl asses
<..>
<vt abl e baseN>;
<vfptrl>; [/ X s virtual function pointers
<...>
<vfptrL>;
<vtabl e vbasel> [/ all direct & indirect vbtables
< >

<Viéble vbaseM;

6 The Metrowerks compiler only reuses the slot for an overriden virtual function if it isin a base class with a zero
offset. Inall other cases anew virtual function pointer is appended to the end of the derived class's vtable.

Fred Forsman 24 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.4.2.9 Open Issues - Class Object and Vtable Layout

1. Should aclass with nothing in it occupy any space when it is a base case of some other derived
class? The base class by itself typically will be assigned anon-zero size. The pertinent rulesin
the language standard are as follows: (1) two different entities cannot have the same address;
(2) however, the first data member of a class/struct can have the same address as the class; and
(3) abase class can have the same starting address as the derived class (but perhaps only one
base class may do so in the case of multiple inheritance).

2. Isthe space savings of having a vbtable worth the additional time overhead of the added

indirection to access virtual bases? Do virtual bases occur frequently enough to make the space
issue dominate?

3.4.3 Constructors and Destructors

The following sections describe conventions for constructor and destructor functions.

3.4.3.1 Constructors

Constructors take an implicit first argument which isthe "this' pointer. They have an implicit
return value which is also the "this" pointer. Constructorsfor classes with virtual base classes
have a second implicit argument ("vbasearg") which will be 1 in the most derived constructor call.
Base constructor calls (from inside another constructor) will always passa0. Thisalows virtual
base classes to be constructed only once.

Compilersimplicitly generate constructor calls for base classes and members which are classes.
The constructor also sets up the vtable pointersin the object being constructed.

The following examples illustrate the two basic forms of constructors.
Constructor for class with no virtual bases:
C:(<args>) { <user witten body> }

C- _ct__<class_name> (C* const this, <args>)

{
[/ construct direct bases
// construct nenbers (as needed)
[/l set up vtable pointers (if any)
<user witten body>
return this;

¥

Constructor for class with virtual bases:
C:(<args>) { <user witten body> }
C- __ct__<class_name> (C* const this, int vbasearg, <args>)

if (vbasearg !'= 0) {

Fred Forsman 25 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

[/ set up virtual base pointers
/! construct all direct &indirect virtual bases

/] construct direct non-virtual bases
[/ construct nmenbers (as needed)

/] set up vtable pointers (if any)
<user witten body>

return this;

b

3.4.3.2 Destructors

Destructors take an implicit first argument which is the "this" pointer. They have an implicit return
vaue which is also the "this' pointer.”

Compilersimplicitly generate destructor calls for base classes and members which are classes.
The following examplesillustrate the basic form of destructors.

C:~Q) { <user witten body> }

C- _dt__ <class_name> (C* const this)

{
if (this I'= NULL) {
/] set up vtable pointers (if any)
<user witten body>
[/ destroy menbers in reverse order
// destroy direct base classes in reverse order
}
return this;
1

3.4.3.3 Static Constructors and Destructors

Static objects (those declared at the file level) require a special mechanism to enable their
construction and destruction. This mechanism is based on a set of conventions recognized and
supported by compilers and linkers.

By convention, compilerswill create routineswith names prefixed by " sinit_ "and"__sterm__ "
to identify code that provides for static construction and destruction. Linkerswill recognize these
names and create an array called " _cdtors'. The"_cdtors' array is used by the application’'s or

shared library's startup and termination routines to call the appropriate static ctor and dtor routines.

The"_cdtors' array ismade up of pairs of 4-byte pointers. Thefirst element of each pair isthe
" __gnit_ " function pointer for the compilation unit or zero if an initialization function does not

7 The Metrowerks compiler passes an extra argument to the destructor which tells the destructor to destroy and

delete, to destroy without deleting, or to destroy without also destroying the virtual bases.

Fred Forsman 26 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

exist, and the second element of the pair isthe” __sterm__" function pointer or zero if atermination

function does not exist. The array of pairsisterminated by a pair of 4-byte zeros,

3.4.3.4 Open Issues - Constructors and Destructors

1. The Metrowerks compiler declaresthe vbasear g argument for constructor for classes with
virtual basesto be asigned short for compatibility with their 4-byte and 2-byte int models for
the 68K. Thissmall change could remove an obstacle to compatibility.

2. The Metrowerks compiler adds an additional signed short argument to destructors which gets
interpreted as follows:

0 destroy non-virtual bases
-1 destroy al bases
1 destroy al bases and delete object

So if the value of thisadditional argument is 1, the destructor will call del et e of t hi s . This
results in space savingsin PowerPlant and MacApp applications. Thisaso simplified
Metrowerks exception handling model because all destructors are called in the same way and
the exception handler does not have to distinguish between classes with and without virtual
bases.

3.4.4 Runtime Type Information (RTTI)

This section describes the representation of Run-Time Type Information (RTTI).

The C++ language definition requires auser-visible form of RTTI. The Macintosh C++ ABI uses
the same underlying mechanism for both the user-visble RTTI and the implied RTTI whichis
required in order to support exception handling.

3.4.4.1 RTTI in C++

The user-visible RTTI functionality consists of t ypei nf o, typei d, and dynani c_cast .
Implementors usually implement the three other “new-style” casts along with RTTI, because they

share the odd syntax that dynani ¢c_cast uses. Theseareconst _cast, static_cast, and
reinterpret_cast.

3.4.4.1.1 RTTI and Exception Handling

When an exception is thrown, the runtime must be able to determine whether agiven handler is
capable of handling that exception’stype. Since the normal C++ assignment-compatibility rules
arefollowed, the runtime must be able to tell whether the handler’ stype is an ancestor of the
thrown exception’stype. Thisisdone by comparing RTTI entries for the two.

There aretwo levels of RTTI — the low-level RTTI used for exception matching and the user-
visible RTTI, i.e, the classtype_i nf o, defined int ypei nf o. h.

3.4.4.1.2 RTTI Features

Fred Forsman 27 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

This section contains a brief description of the user-visible aspects of C++ RTTI features.

RTTI isavailable for any polymorphic type (i.e., any class which has avirtual function table) and
for any other typewhichisused in at ypei d expression or dynam c_cast expression.

t ypei d(typenane)

t ypei d(expr essi on)
These expressions yield avalue of typeconst type_info & Thetype_info classis
defined in typei nf 0. h.

dynami c_cast <newt ype>(expression)
This expression casts the expression (usually a pointer to a base class) to the new type
(typicaly apointer to aderived class) if the object “redlly is’ of the desired type. If not, the
expression returns zero. RTTI isused to determine this.

class type_info
T)Hi)s isthetype returned by t ypei d expressions. The only operations allowed on thistype
are comparison (==, =), and the member functions bef or e and nane. In particular, the
copy constructor and assignment operators are declared to be pri vat e, SO objects of this
type cannot be copied or passed to other functions.

3.4.4.1.3 Related Non-RTTI Features (the Other "new-style" Casts)

Following are very brief descriptions of the other new kinds of castsin C++. For more details,
see sections 5.2.8, 5.2.9, and 5.2.10 of the C++ committee’ s draft working papers [3].

static_cast <newt ype>(expression)
This cast is used to render implicit conversions explicit, and is aso used for afew other
kinds of conversions— to voi d, i nt toenum et a.

reinterpret_cast <new t ype>(expression)
Thisisthe least restrictive cast — in most cases, on most implementations, it will produce a
representation unchanged from the representation of the original value. However, thisis
not mandated: the mapping isimplementation-defined.

const _cast <new t ype>(expression)
This cast is most often used to “ cast away” const ; it can also add aconst , or add or
removeavol atil e.

3.4.4.2 RTTI Data Structures

RTTI isimplemented at two levels. The compiler generates alow-level kind of RTTI (sometimes
called "pdata’) for any type seeninat hrowor cat ch. For typesseenintypei d expressions, the
compiler will also generate the (user-visible) t ype_i nf o structure, which contains only a pointer to
the low-level RTTI for that type.

In addition to the RTTI structures themselves, there are changes in the virtual function tables

(vtables) generated for polymorphic types. If the-rtti flagison when the compiler generatesthe
vtable, then that vtable will contain a pointer to thet ypei nf o for that type, and the vtableisgiven a

Fred Forsman 28 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

name of theform"_rttivtbl _ <cl ass>".8 (Normally, the vtable'snameis

"_vtbl __<cl ass>".) Thisisdone to ensurethat anormal, non-RTTI vtable will not link with
code expecting to find that RTTI pointer in the vtable. An RTTI-aware constructor will adjust the
class'st hi s pointer to point just past that RTTI pointer.

3.4.4.2.1 High-level — typeinfo structure

The high-level datafor thet ype_i nf o structure consists of a simple pointer which points to the
low-level typeinformation for the type in question. The structure is generated as afile-level static
variable whose name consistsof *__rtti " followed by the mangled name of the type which this
structure describes.

3.4.4.2.2 Low-level — pdata

Thelow-level data (pdat a) isalso generated asfile-level static variables whose names consist of
"_ti" followed by the mangled name of the type described.

The pdat a consists of a pointer, atag character, and then other items depending on which tag
character isthere. Every kind of pdat a ends with a string containing the human-readable (non-
mangled) name of the described type. The human-readable form of the name should be as it
appeared in the declaration of the type with all sequences of "white space” replaced with asingle
blank.

The pointer points to an unused "common" data byte (i.e., aunique address, of asingle byte, used
only by the runtime type-matching routine, to compare addresses). That “common” data byteis
given aname beginning with three underscores: " ti <t ype>". Following that pointer will be a
tag character, which then tellswhat elseisin the pdat a:

Tag characters
0 simpletype (int, char, float, ...), enumerations, and function types
1 pointer or reference
2 class, struct, or union type

The data representations for each of these categories are described in the following sections.

3.4.4.2.2.1 Simple Types and Enumerations

The pdat a for asimple type consists of the “common” pointer and the zero tag character, followed
immediately by the name of the type. Thus, for instance, the pdat a for the unsi gned short type
will beavariablenamed __ti Us, and will contain

[pointer to compbn __ tiUs], [O tag byte], [“unsigned short\0”]

8 Thelatest versions of MrCpp generate only the"_rttivtbl" form of vtable, so there is always a slot in the vtable
for rtti information. The™_rttivtbl" name is used to prevent inadverntent problems with older code not compiled
with new versions of the compiler.

Fred Forsman 29 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Enumerations are treated asif they were simple types, and the name string that they end with
includes the underlying representation type (since the size of an enum type may depend on how
many enumerators it contains). So:

enum anEnuner ati onType { anE, anotherE, yaE, lastE };
will yield apdat a likethis:

[ptr-to-__ til7anEnunerationType], [O tag byte],
[“unsigned char anEnunerati onType\0”]

Function types are d so treated asif they were simple types. Example:
int func(int, float);
yields
[ptr-to-___tiFif], [Otag], [“int \"C++\"(int ,float)\0"]

Note that the “C++" in the function type name indicates C++ linkage.

3.4.4.2.2.2 Pointer and Reference Types

The pdat a for pointer types consists of the pointer-to-common, atag byte (1), aflags byte, a copy
of the “pointer-to-common” for the target type, and finally the string describing the pointer type.
The flags byte was intended originally to give const/volatile info, but changesin the language
definition have made that information irrelevant here, so the flags are currently set to OxOF
aways.9 Example:

int *xp;
yields

[ptr-to-__ tiPi], [tag byte 1], [OxOF flags byte],
[ptr-to-__ tii], [“int *\0"]

3.4.4.2.2.3 Struct/Class/Union Types

The pdat a for structured types (classes, structs, and unions) consists of the pointer-to-common, a
tag byte (2), an alignment byte (currently unused, always zero), and a short containing the number
of base classes. That isfollowed by apair of four-byte words per base class. an offset-from-this
(32 bits), and a pointer to the pdat a for the base class. (Note: the pointer isto the pdat a, i.e., the
data with the name with two underscores, not the pointer-to-common for it, which is the pointer
RTTI pdat asuse.) After al of the base classes, the name of the current classis given, asanull-
terminated string.

Thelist of base classeslists all of the direct base classes (both virtual and non-virtual), in lexical
order, followed by the virtual-base sub-objects. Thereisno easy way to tell exactly how many

9 Theflags byte appears to be a candidate for elision.

Fred Forsman 30 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification

December 5, 1996

itemstherearein thelist. The“short containing the number of base classes’ is actually the number
of direct bases plus the number of indirect virtual bases. This could probably be improved.

Example:

struct A{ int al, a2; };
struct B { int bl, b2; };
struct V { int vl, v2; };
struct W{ int wi, w2; };
struct D: A B, virtual
struct X : virtual

struct E: A B, X virtual

V, virtual

V{ int x1, x2; };

W{ int el, ez

yields the following pdat asfor D and E:

_ti 1l

4

8,
16,
0,
0,
32,
40,

ti 1E:

3.4.4.3

5

0,
8,
16,
0,
40,
48,

[ptr-
bases
ptr-
ptr-
ptr-
ptr-
ptr-
ptr-

[ptr-
bases
ptr-
ptr-
ptr-
ptr-
ptr-
ptr-

Open

t o- tilD],
]l

to-_ tilA],
to-_ tilB],
to-__tilv],
to-__tilw],
to-__tilv],
to-__tilw],
t o- tilE],
]1

to-__tilA],
to-__tilB],
to-__tilX],
to-_ tilw],
to-_tilv],
to-__tilw],
Issues - RTTI

[

[

[tag byte 2],

“D\0\0\ 0"]

[tag byte 2],

“E\0\0\0”]

W{ int di, d2; };

b

[unused O byte],

[unused 0 byte],

1. Doesthe RTTI mechanism described address cross-DLL issues? How do you throw and "int"
exception and catch it asan "int" in adifferent DLL?

2. How do multiple type info structure actually share acommon byte? Isthis mechanism
necessary or can the address of the low-level data be used?

3. The name strings should be in aread-only section.

3.4.5

Exception Handling

The following sections document the ABI for C++ exception handling.

3.4.5.1

Roles of Compilers, Linkers, and Runtime Libraries

The compiler identifies the life spans of t ry and cat ch blocks, of new calls, and of any relevant
local variables. These potentially nested ranges are converted into aflattened, digoint set of code
ranges, which are represented in an exception table for each function. Some code ranges have no

Fred Forsman

31

Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

actions associated with them and become simple “ skip” entriesin the range’ stable entry. Each
“actionable” code range entry getsalist of trys, catches, and destructors associated with it. The
tables are generated into separate code sections called “DB csect s”.

The Linker combines the exception sections and strips the original copies, and sorts the resulting
tablesin PC address order.

The runtime library contains routines which actually perform the t hr ow and the subsequent type-
matching, destructor invocation, and stack unwinding.

3.4.5.2 Exception Tables

There are three levels of tablesinvolved: Function tables, Code Block tables, and various kinds of
third-level tables. The Function and Code Block tables are language independent; most of the
types of third-level tables are C++-specific. All of the tableslivein the exception (“. except)
section of the PEF container which contains the relevant code. The exception section starts with
thefirst-level table. Thereis onerestriction on the ordering of the other table levels: thefirst
function table entry with a non-zero second-level pointer must point to the second-level entry
which appearsimmediately following the function table. Thisallows the runtimeto find out how
many function table entriesthere are.

Hereisan overview of the table layout:

Function Table Entry —f1

Function Table Entry —f2

Code Block Table for f1 (all CBDs)

Action Lists for f1

CBT for 2

Action Lists for f2/

3.4.5.2.1 Function Tables

Thefirst-level tables are called the EH Function Tables. Thereis one entry per function. The
number of entries (i.e., the number of functions) is not specified directly. Instead, the runtime
relies on the restriction mentioned above — that the first non-zero CBT address points to the
physically first CBT entry, and that CBT entry follows the function table immediately. The
runtime can then use that address to determine the number of function table entries.

Fred Forsman 32 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

The linker will ensure that every function in a code fragment has a corresponding entry. Each
entry has two 32-bit words:

Function Address (Code-Section Relative)

Code Block Table Address (Exception Sec. Rel.)

struct EH functionTabl eEntry {
address functionStart;
address CBT_addr;

1
The function’s address is relative to the beginning of the code section which containsit.

The Code Block Tableis the second-level table; the address given here isrelative to the beginning
of the exception section. If afunction hasno CBT information, thisfield is set to zero.

3.4.5.2.2 Code Block Tables

The second-level tables are the Code Block Tables. Entriesin the CBTs are called Code Block
Descriptors (CBDs), and are 64 bitslong. The entries span the function — i.e., they “flatten” the
nested scopes of the variablesand tr y blocks which they describe. They are in PC order and must
be processed linearly by the exception handling runtime support code. Theformat of aCBD is:

Type Code Nr Bytes to Skip | Block Length

End Flag Block Info or Line Number

The one-byte Type Code combines with a possible 3rd-level type code, to describe the nature of
the third-level table (if any).

The Number of Bytesto Skip isa12-bit field telling how many “unactionable” bytes precede the
coderange. Thisalowsfor acompact table representation of code for which the runtime does not
need to perform any actions.

The Block Length is a 12-bit field containing the length in bytes of this code range. The start of
each code range must be calculated by starting with the function’sfirst CBT entry.

The End Flag isaone-bytefield; itisset to 5 (kSt op) or 6 (kCont i nue) to indicate whether thisis
the last code block in the function.

The 24-bit Block Info is atable-relative offset (i.e., offset from the start of the CBT for this

function) which usualy pointsto athird level of table entry. Thethird level table entry formats
differ, depending on the values of both the second-level type code and the third- level type code.

Fred Forsman 33 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Currently, four type codes are defined in the CBD:

0 kEpi | og A function epilog — the block info
isan unwind descriptor.

1 kPr ol og The function prolog. Block Infois
an unwind descriptor.

3 kQt her Other — these kinds of entries have
amore complex descriptor.

A function has one prolog, and may have many epilogs. All of the prolog and epilog entriesfor a
given function point to asingle unwind descriptor.

The other kinds of entries (for t ry blocks, variables to be destroyed, memory to be reclaimed, and
exception specifications) are differentiated by their own type codes within the third-level table
entries. These are kept distinct from the second-level type code in order to protect the sanity of the
implementors. For reference, those third-level type codes are listed here:

4 kSi npl e An unwind descriptor

8 kDest r uct A destructor whose addressis
locally known

9 kDestr ! nd An imported destructor

10 kKTry A “try” descriptor

11 kCat ch A “catch” descriptor

12 kDel et e A delete function, localy known

13 kDel | nd An imported delete function

14 kExcSpec An exception specification

16 kd ean Cleanup, with function to call

17 kd nl nd Cleanup, indirect

3.4.5.2.3 Third Level Tables

Thethird level tables include unwind descriptors which could be language-independent, and a
variety of C++-specific tables.

Thethird-level entriesfor t ry blocks, for destructor calls, and for new del et e calls are collected
asAction Lists. Thereisone Action List per code block; it listsall of the actions which are
necessary at this particular code range, and all of thet ry blocks enclosing this code range. The
ordering of actions on the Action List reflects the nesting of the try blocks and of the scopes of the
variables being destroyed. Once the unwinder knows which range applies, it can ssimply go down

Fred Forsman 34 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

the Action List, performing the relevant destructor and/or delete calls, and then transfer control to
therelevant cat ch block. The Action List endswith akTry entry with azero catch-list offset.

3.4.5.2.3.1 Unwind Descriptors

The Unwind Descriptorstell which registers are saved by this function. Thisallowsfor the
possibility of recovery in the case of asynchronous exceptions. A single type of unwind descriptor
is currently defined; itstype code iskSi npl e; it is32 bitslong. (Future compiler versions might
choose more aggressive optimization of prologs and epilogs, which may require more complex
unwind descriptors.)

Type Code Junused] CR| LR] SP § Number of FP Nr General
kSi npl e Registers Registers

The Type Code isksSi npl e (4). Thisfield isone byte wide.

There are 5 unused bits, and then one bit each to tell whether each of the condition register (CR),
the link register (LR), and the stack pointer (SP) is saved in this frame.

Thefina two bytes of the unwind descriptor tell how many floating point and genera registers are
saved in the frame. In each case, PowerPC conventions determine which registers are saved first,
so the simple count of them should be sufficient.

3.4.5.2.3.2 Destructor (TVector) Descriptors
Thethird-level entriesfor “norma” destructor calls are 64-bit entries:

Type Code Sack offset of variable to destroy
kDest ruct

TVector for Destructor or Delete

The Type CodeiskDest ruct (8) for alocally-known destructor. (That is, a destructor for which
we know the address of itstransfer vector.) If the destructor isimported from aDLL, it will have
typekDest r | nd (see the following section).

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.

The function to be called isindicated by the TVector field, which contains the data section offset
for the transfer vector for the destructor.

3.4.5.2.3.3 Destructor (Imported) Descriptors

Fred Forsman 35 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Thethird-level entriesfor destructor calls for destructors imported from other DLLs are 64-bit
entries similar to those described in the previous section :

Type Code Sack offset of variable to destruct
kDestr | nd

Pointer to TVector for Destructor or Delete

The Type CodeiskDest r I nd (10) for a destructor function we are importing.
The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.

The function to be called isindicated by the Pointer to TVector field, which contains the data
section offset for a pointer to the transfer vector for the destructor.

3.4.5.2.3.4 Delete (TVector) Descriptors

Thethird-level entriesfor del et e calls are 64-bit entries, very similar to the corresponding
kDest ruct and kDest r | nd descriptors.

Type Code Sack offset of variable to destruct
kDel et e

TVector for Destructor or Delete

The Type Code iskDel et e (12) for alocally-known delete function. (That is, an oper at or
del et e() function for which we know the address of itstransfer vector.) If the delete functionis
imported fromaDLL, it will have typekDel I nd (see the following section).

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed. (Note
that even if the newly-allocated pointer is ultimately assigned only to aglobal variable, the compiler
will also have created a stack-local variable to hold it.)

The delete function is indicated by the TVector field, which contains the data section offset for the
transfer vector for the oper at or del et e to be caled.

3.4.5.2.3.5 Delete (Imported) Descriptors

Thethird-level entriesfor del et e functions imported from other DLLs are 64-bit entriessimilar to
those described in the previous section :

Type Code Sack offset of variable to destruct
kDel I nd

Pointer to TVector for Destructor or Delete

The Type CodeiskDel | nd (13) for a delete function we are importing.

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.

Fred Forsman 36 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

The delete function isindicated by the Pointer to TVector field, which contains the data section
offset for a pointer to the transfer vector for the oper at or del et e to be called.

3.4.5.2.3.6 Try Descriptors

Thethird-level entriesfor t ry blocks are simple 32-bit entries:

Type Code Catch list offset (CBT-relative)
KTry

The Type CodeiskTry (10).

The 24-bit catch-list offset isa CBT-relative offset, pointing to the list of cat ch blocks associated
with thistry block. Thetry descriptors, aong with some Destructor/Del ete descriptors and

cat ch descriptors, will comprise the Action List for a code block.

A try descriptor with a catch-list offset of zero indicates the end of the Action List for a code
block.

3.4.5.2.3.7 Catch Descriptors

Thethird-level entriesfor cat ch blocks are 96-bit (3 “word”) entries:

Type Code Function-relative PC
kCat ch

Run-Time Type Info (RTTI) for type caught

End Flag l Catch Variable (stack offset)

The Type CodeiskCat ch (11).

The 24-bit Function-relative PC isapointer to the start of the cat ch block — thisis where we
jump to after we' ve unwound the stack and initialized the catch variable.

The RTTI is adata-section offset to thet ypei nf o structure describing the type that thiscat ch
block isinterested in catching.

The End Flag tellswhether thist ry block has more catches to check (kCont i nue) or whether this
isthelast cat ch for thist ry block (ksSt op).
The Catch Variable isthe stack offset of the variable which we will initialize with the thrown

3.4.5.2.3.8 Exception Specifications

Fred Forsman 37 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Thethird-level entry for an exception specification is avariable-length entry. It isconsidered to be
apart of an action list.

Type Code number of RTTI types
kExcSpec

Run-Time Type Info (RTTI) for first type
RTTI for 2nd type

The Type Code iskExcSpec (14).
The number of RTTI types tells how many types are in the exception spec for this function.
The RTTI for nth type is a data section offset of the low-level RTTI structure for this type.

The special case of a*“throw nothing” exception specification (i.e., afunction which is not
permitted to throw any exception, asinvoid f() throw() {...})isencoded with acount of
1, and an RTTI pointer of zero.

Currently, the exception specification entry happens to be associated with the first code block for a
function, but there is no requirement that this remain the case. Sinceit’s considered to be part of
an action list, the exception spec entry is usualy followed by the end-of-action-list indicator (atry
descriptor with a catch-list offset of zero).

3.4.5.2.3.9 Cleanup Descriptors

The purpose of a cleanup descriptor isto handle the situation where an exception occurs during the
construction of a derived-class object, after some of its base classes are aready fully constructed.
The bases which have been constructed must be destroyed. Thiskind of descriptor is more
complex than the normal Destructor Descriptor because the address of the base class sub-object
might not be at the start of the variable, and might be virtually inherited. These descriptors are
actually abit more general than they currently need to be — basically, they simply tell the exception
runtime to call agiven function, with agiven parameter, with some possible offsets and
indirections. The general design should make it possible to keep the same table definitions and
library functions, even if our virtual base class strategy changes.

Type Code Offset 1
kd ean or
kd nlnd

[Pointer to] TVector for Destructor
modetbase offset2

The Type Codeiskd ean (16) or kd nl nd (17) depending on whether the function to be called is
known locally. (Thisisparallel to the difference between kDest ruct andkDestr1nd entries.)

The offsetl entry is used in conjunction with the mode+ base entry; think of it as the main stack-
offset of the parameter to the function which will be called.

Fred Forsman 38 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

The function to be called isindicated by the TVector field, which contains the data section offset
for the transfer vector for the destructor. (For kd nl nd descriptors, this field contains the data
section offset for a pointer to that TV ector.)

The modet+base field is 3 bits of addressing-mode information and 5 bits indicating the base
register. (Currently, the base register is always the stack pointer.) The possible addressing modes
arelisted in the following table:

amBD 0 |Base + unsigned Displacement

anBS 2 | Base + sgned Displacement
anBDID__| 4 |Base + unsigned Disp. Indirect, + unsigned Disp.
anBDl S 5 |Base+ unsigned Disp. Indirect, + signed Dlsp
anBSI D 6 |Base + sgned Dlsp Indirect, + unsigned Disp.
anBS| S 7 | Base + signed Disp. Indirect, + signed Disp.

The first two addressing modes make no use of the offset2 field. In order to form the argument
with which to call the given function, they’ll take the base register, and add the offsetl field, as
either asigned or an unsigned value, to the base. The other four will do that, then load aword
from the resulting address, and add the offset2 field (either signed or unsigned) to it.

3.4.5.3 Algorithms

In thisinitial implementation, we handle only synchronous exceptions. For this case, theinitial
point of entry into the exception handling mechanism isawaysat hr ow expression. The compiler
implements thisasacall to an assembly-language routine called __eh_t hr ow (the full signatureis
“ _eh_throw(const char*, int (*)(), unsigned int, ...)"). Thisroutine savesall of
theregistersand then calls__eh_t hrow. A re-throw expression (“t hr ow;) is converted by the
compilerintoacall to__eh_ret hrow__Fv, which sets the size of the thrown object toa- 1, and
then shares the rest of itsimplementation with the assembly-languaget hr ow mentioned above.
__eh_t hrowand its support functions are written in C and are defined in the filenr c_except . c.

Here' salist of the major routines involved:
__eh_throw
__eh_new
Fi ndCat cher
(the table locator functions)

ehDebugger Hook
Cal | Destructors

In the algorithm outlines given below, the type “addr ” is used to indicate addresses upon which
we might have to do address arithmetic, and “f unc” indicates function address.

3.4.5.3.1 __eh_throw

Calling sequence:

void _eh throw rtti_t *rtti, func destructor, int tsize,
void *tobject, gen_regs, fp_regs, frane, sp);

Fred Forsman 39 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Arguments:
reti address of the low-level runtime type information string for the type of the
object being thrown.
destruct or address of the destructor for the object being thrown.

tsize size of the object being thrown (or zero if small object).

t obj ect pointer to the thrown object (object itself if t si ze IS zero).
gen_regs pointer to the 32 saved general registers

fp_regs pointer to the 32 saved floating-point registers

frame pointer to the frame

sp stack pointer at throw time

Here' s a pseudocode summary of what __eh_t hr ow does:

void _eh throw (...)

{

peh = eh_new(allocate new EH stack entry);

if it’s a rethrow {
if there is no current exception
termnate();
set up peh as copy of current exception

el se {
set up peh with newy thrown exception
}

Find the TOC at throw point.
Call FindCatcher to figure out who will catch this exception.
if no catcher,

term nate();

Cal | Destructors (for each franme between the throw and the catch).

Fi ndOmer (ask CFMto |locate the container associated with the
t hrow point’s PC).

/1 This |oop perforns the unw nd:

| oop t hrough each frame between thrower and catcher {
Fi ndCodeBl ockTabl e for that frane
Fi ndUnwi ndl nfo for the frane

reload the registers saved in this franme

find caller
Fi ndOmer
if the caller’s TOC is different, reset the TCC

}

reset sp and |inkage register, so that return fromthis
function will actually “return” to the catcher.

3.4.5.3.2 FindCatcher

Calling sequence:

voi d FindCat cher(struct frameMarker *catcher,

Fred Forsman 40 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

PCOmer | nfo *owner Text, *ownerData,
void *rttiPtr);

Arguments:
cat cher address of a stack-frame structure, initialy set to indicate the frame of the
routine that containsthe t hr ow.
owner Text aCFM structure which Fi ndCat cher will set to the container which
“owns’ the text segment
owner Data who owns the data segment
retiPtr pointer to the RTTI for the thrown object

Returns;
Fi ndCat cher setsthecat cher structureto the frameinfo for the routine which will catch
this exception. cat cher - >r eser ved1 will be the stack offset of the catch
variable; it will be zero if no handler isfound.

voi d FindCatcher (catcher, ownerText, ownerData, rttiPtr)

Fi ndOwner (PC, owner Text);
Fi ndOwner (TOC, ownerData);

loop until we find a frane with no unwind info {
cbbase = Fi ndCodeBl ockTabl e(owner Text, PC, &funcPC);
actionList = GetActionList(cbbase, PC - funcPC);

| oop through this action list {
if this is a TRY, and its PCis within range,
| oop through its catches {
if this catch matches {
set up the catcher struct
return;

}
}
nove up to next frane

set catcher->reservedl = 0; (couldn’t find a catcher)

3.4.5.3.3 Table locators

These functions (Fi ndOaner , Get Funct i onTabl e, Fi ndCodeBl ockTabl e, Fi ndUnwi ndl nf o,

Fi ndDest r | nf o, and Get Act i onLi st) locate the tables which are relevant to the current exception
and program state.

Fi ndomner — given an address, call the CFM routine Fr agFi ndOaner O PC to locate the CFM
container associated with that code (or data) fragment.

Get Funct i onTabl e — look through the sections of a CFM container, to locate its (unique)
exception-tables section.

Fi ndCodeBl ockTabl e — search the function table for a given code section, looking for the code
block table associated with agiven PC. (Currently, thisisalinear search.)

Fred Forsman 41 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Fi ndUnwi ndl nf o — given a code block table pointer, find akPr ol og entry, which will give usthe
“how-to-unwind” info for the function.

Fi ndDest r I nf o — given an action list, return the next destructor entry in thelist. Update the
given action list pointer.

Get Acti onLi st — given a PC offset and a code block table, search for an action list that’s
relevant to the given PC. Return zero if thereis no such action list.

3.4.5.3.4 Other Support Routines

ehDebugger Hook— at certain points during exception handling, the library will call this routine,
passing it areason code. The debugger can set a breakpoint in this routine, and can
sometimes examine the extra parameters (two frame pointers and an RTTI pointer) in order
to implement debugger commands like “stop on throw” and “who will catch?’.

Cal | Dest r uct or s— this function walks the stack between the t hr ow and the relevant catcher-
frame, and calls the destructors for each relevant action list in each frame between the two
endpoints.

3.4.5.4 Future Directions

These table formats are not yet fully stabilized. We hope to support exceptions in other languages,
and some limited forms of asynchronous exceptions. More details on these areas will bein a
future revision of this document.

3.4.5.5 Open Issues - Exceptions

1. Istheexception handling model flexible enough to handle other languages? Istherea
provision for handling machine exceptions? If RTTI structures are used in the location of
handlers, what isthe RTTI description of an access fault?

2. Isthe exception handling model thread-safe? Is__eh_newamemory allocation function and
does this present a problem?

3. Istheexception handling model really a zero-overhead model? All exception action
descriptors seem to expect variables in memory, so thet hi s pointer in a constructor cannot
be aregister variable (or it will have to be copied into memory) if it has base classes so that a
partially constructed object can be destroyed.

4. Isthereaprovision for exception actions for conditional temporary destructions? For
exampl e, the temporaries that have to be constructed in the right part of an"a&& b"

expression are only constructed and destroyed if "a" istrue.

5. Theexception tables need to be redesigned with scalability issuesin mind, so that very large
programs/DLLs may be handled while providing space-efficient representations for smaller
code fragments.

6. Thetopmost table needs a header containing version information, overall sizes, etc.

7. The exception mechanism has no support for multiple code and data sectionswithinaDLL.

Fred Forsman 42 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.4.6 Special C++ Calling Conventions

There are severa constructs which require specia calling conventionsin the Macintosh C++ ABI.
In particular, these are cases where there are implicit parameters or parameters that must treated
specially.

3.4.6.1 Passing Objects By Value

In the simplest cases, parameters which are objects (class instances) are passed by value asif they
were simple structures. However, if the object is an instance of a class for which thereisan
explicit copy constructor or a destructor then atemporary copy of the object must be made and
passed by reference. If thereisacopy constructor it will be used to construct the temporary, and if
thereis adestructor it will be used to destruct the temporary after the evaluation of the expression
containing the call is complete.

The requirements above are dictated by the C++ Standard, Section 12.2, which indicates:

When an implementation introduces a temporary object of a class that has a non-trivia
constructor, it shall ensure that a constructor is called for the temporary object. Similarly,
the destructor shall be called for atemporary object with anon-trivial destructor.
Temporary objects are destroyed as the last step in evauating the full expression that
(lexically) contains the point where they were created. Thisistrue even if that evaluation
endsin throwing an exception.

... A temporary bound to areference parameter in afunction call persists until the
completion of the full expression containing the call.

The name of the called routine will be mangled as usud, evenif it requires that atemporary be
created and passed by reference.

3.4.6.2 Order of "this' and "Hidden" Parameters

Functions which return structures require a "hidden" parameter which is a pointer to the temporary
memory into which the function return value will be placed. Such hidden parameters are aways
passed as thefirst parameter to the function. A hidden parameter is aways used when the function
return value is a structure, regardless of its size.10

C++ member functions require an implicit parameter for the value of the object's "this’ variable.
Theimplicit "this’ parameter is passed as the first parameter unlessthereisa"hidden" parameter
for astructured return value in which case the "this" parameter is passed as the second parameter.

10 A possible optimization of the ABI would be to pass back structured return values in registers when the
structure is small enough to fit in aregister. Such optimizations are not allowed because they violate the ABI;
the ABI must change to permit them, in which case they would be required.

Fred Forsman 43 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

3.4.6.3 Thunks

In virtual function dispatch, a vtable entry may be a pointer to a thunk rather than to a virtual
member function. A thunk isasmall piece of code which performsaminor adjustment (such as
modification of the "this" pointer value or saving of the current TOC) and then branchesto the
"real" intended function.

There must be agreement between compilers about the circumstances under which thunks are
generated and what function(s) they perform in order for C++ object files produced by different
compilersto be link compatible.

The naming convention for thunks should not be a problem since they should be emitted at the time
that the vtable is generated. The vtable will have pointers to the thunks which in turn will have
branches to the appropriate routines. Since the vtable and thunks for a class are generated in a
simple compilation the names will be consistent regardless of the convention used.

Modification of the "this" pointer takes place when a base class pointer is used for avirtual
function call that does not correspond to the address of the derived class (in other words, the base
classis not thefirst base classin the derived class). On the PowerPC such athunk might look like
the following code:

subi r3, r3, <delta> [/ change the "this" pointer argument
b <vfunc> /1 branch to the intended function

3.4.6.4 Proposal - C++ Virtual Function Dispatch

Thisisaproposal to change the calling conventions for C++ virtua functions. The C++ virtual
function calling conventions are open to change because they can be distinguished from normal

calls by the compiler, and because such calls depend on other compiler-dependent conventions

such as vtable layouts. We are soliciting input on the merits of this proposal and hope to gather
some data on its effects on some large code samples.

In this scheme R2 becomes a nonvolatile register, saved and restored on the callee side. The callee
accesses its R2 viathe R12 pointer to its TVector. Thisisfine for virtual functions since they
always use indirect calls (see local monomorphic optimization below).

Proposed model

The code below summarizes the R2 switching today and as proposed.

Today Proposal
cal l er (TVPtr in R12) cal l er (TVPtr in R12)
bl ProcPtrd ue bl VirtPtrd ue
| wz R2, 20(SP)
ProcPtrd ue VirtPtrd ue
| wz RO, O(R12) | wz RO, O(R12)
stw R2, 20(SP) ntctr RO
ntctr RO bctr
| wz R2, 4(R12)
bctr

Fred Forsman 44 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

callee with gl obals callee with gl obals
<not hi ng extra> stw R2, 20(SP)
| wz R2, 4(R12)
| wz R2, 20(SP)
cal l ee wi thout gl obals cal ee wi thout gl obals
<not hi ng extra> <not hi ng extra>

Note that direct callsto virtual functions (e.g., cases where the base class is expressed explicitly in
the call) will haveto either make an indirect call or perform the equivalent operations.

Possible optimizations

The save of the old R2 and load of the new R2 can be freely scheduled, aslong as an exception
dispatcher and debugger know enough to unwind the stack properly. The same holds for the
restore of the old R2.

Recognizing whether the callee uses R2 or not is an obvious optimization opportunity. This may
very well apply to alarge fraction of virtual functions. Note that thisreally iswhether or not this
one routine uses globals. In particular, it may very well make calls to other virtual functions
without having to load its own R2.

The shorter virtual function glueis more amenableto inlining. For this purpose the TV ector
contents should be viewed as nonvolatile, at least within the current function.

A possible, but unlikely optimization can be made for monomorphic methods that are known to be
inthesame DLL. Instead of doing the "bl VirtPtrGlue" you do "bl .LocalMonomorph™.

Effect on space

The proposed model saves 4 bytes per call site. It costs 12 bytes per virtual function that uses
globals. The glue savings of 8 bytes per DLL are not worth counting.

If every virtual function uses globals the break-even point is at an average of 3 calls per function.
l.e. if you make 3 outgoing calls you've paid for your accessto globals. If you make 5 outgoing
callsyou've paid for your global access and that of another function that only makes 1 call.

If no virtual functions use globals then we are ahead by 4 times the number of call sites.

If 1/3 of the virtual functions use globals the break-even point is at an average of 1 call per
function.

Effect on time

The space savingsis probably the most important time savings too, since spaceistime. The R2
switching code in the ProcPtrGlue fallsinto delay dots, so essentially has no cost other than cache
effects. The same can also be said of properly scheduled switching code in the callee. Saving

the R2 reload on return is constant, but probably not significant overall. Note though that awell
scheduled reload in the callee will significantly mitigate cache misses compared to the caller side
rel oad.

Fred Forsman 45 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

Another significant opportunity to save time can come from use of inlined glue for inner loops.

3.4.6.5 Open lIssues - C++ Calling Conventions

1. Consider defining vtable formats and thunks for various special cases, just as SOM does.
Anyone want to provide some specific proposal s?

2. Cananything be gained by adding extrafields to the TV ector, such as data for thunks?

3.4.7 Miscellaneous C++ ABI Issues

There are a some implementation-dependent language featuresin C++ which will affect whether
the outputs of different C++ compilers are link compatible.

3.4.7.1 The Type of size t

There must be agreement between compilers about the type of size t (i.e., isit an unsigned int or
an unsigned long) in order for C++ object files produced by different compilersto be link
compatible. Currently MrC expectsit to be an unsigned int while the Metrowerks compiler expects
it to be an unsigned long. Given that "int" may represent something smaller than 4 bytesin some
compilers, it may be preferable to have size t be an unsigned long.

3.4.7.2 Trigger Members for Vtable Generation

Most compilers have a strategy based on "trigger members' or "trigger functions' for when to
generate the data definition of the vtable for a class so that vtable definitions are not generated in
every compilation unit that uses the class. One data member or function in the classisidentified as
the trigger member, and, when the definition of that member is encountered in a compilation unit
the compiler will emit the definition for the vtable. This (usually) ensuresthat only one definition
of the vtable is emitted.

The Macintosh C++ ABI identifies the first declared function which is not inlined in the class to be
the trigger function.11

3.4.8 Open Issues - C++ ABI

1. Enumsizes.
2. Static constructor/destructor ordering--are DLLs a problem case?

11 The Metrowerks compiler uses different rules to trigger the generation of vtables. The situation in the
Metrowerks environment is somewhat different in that the Metrowerks linker knows to merge multiple vtable
definitions within an application; thus their rules for the generation of vtables are more "libera;" and emit
vtablesin more cases. The Metrowerks compiler identifies the "trigger member" to be the lexically first static
data or function member not defined within the class, or the lexically first virtual function member not defined
within the class. If there are no static or virtual members, vtables are generated if the vtableisreferenced. Also
if avirtual or static trigger function is defined as inline outside of the class definition a vtable definition will be
emitted.

Fred Forsman 46 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

4 . References

[1] M.A. Ellisand B. Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley,
Reading, Massachusetts, 1990.

[2] Macintosh Runtime Architectures, Apple Computer. Inc., 1996 (forthcoming).

[3] "Working Paper for Draft Proposed International Standard for Information Systems--
Programming Language C++", American National Standards Institute (ANSI), Oct. 1996.

[4] Erik Eidt, Alan Lillich, "C Compiler Pragmas for Macintosh “CFM” Runtime", Apple
Computer, 1994.

[5] "AIX XCOFF Object and Load Module Format for IBM RISC System/6000", IBM, 1992.
Al. Appendix 1. Compiler Pragmas Affecting the ABI

The pragmas identified in this appendix affect generated code at the ABI level.

For the purpose of compatibility at the language (or API) level, it is desirable to have all compilers
to be consistent in their implementation of these pragmas.

Al.1 Alignment Mode Pragma

The alignment mode is changed by a compiler command line option or by the use of the following
pragma

#pragna options align=<alignment_specifier>
where

<al i gnnent _specifier>12 ::= power | nac68k | packed | natural | reset

The “power” aignment specifier establishes the “powerpc” aignment mode. The "mac68k”
specifier establishes the 68000 Macintosh alignment conventions used by much of the original
Macintosh Toolbox. The "packed" specifier establishes an alignment mode in which no padding is
used and fields are packed into the minimum space possible. The "natural” specifier establishesa
variant of the "powerpc" alignment mode in which al data types including doubles and long
doubles are aligned according to their "natural™ alignment.

The “reset” specifier changes the alignment mode back to the alignment mode in effect when the
current alignment mode was s&t, or to the default mode if no other was specified. Thus, “reset”
doesa“pop” of the alignment mode, while the other options do a*“push”. An arbitrary nesting of
modes is allowed.

The alignment mode used for an aggregate type definition is the mode that is in effect at the
beginning of the defining declaration of thetype. If thereis adifferent alignment mode in effect for
an incomplete declaration, then that mode has no effect on the eventual mode used to complete the

12 Atonetimea“native’ <al i gnment _speci f i er > was supported asasynonym for “powerpc”; however, sincethe
term is ambiguous for different host and target machine configurations, its use has been deprecated and
discontinued.

Fred Forsman 47 Copyright Apple Computer, Inc. 1995-6

Macintosh C/C++ ABI Standard Specification December 5, 1996

aggregate definition. Changing the alignment mode in the middle of atype definition does not
change the alignment mode to be used for the type.13

Al.2 CFM Pragmas

The CFM pragmas are documented in "C Compiler Pragmas for Macintosh “CFM” Runtime” [4].

A 1.3 Open Issues - Compiler Pragmas Affecting the ABI
1. It may bedesirableto have an additiona alignment pragma of the following form:
#pragma alignment <alignment_specifier>

This pragmawould have restrictions on its placement within source code, so that it could not
appear inside a definition.

13 Changing alignment modes in the middle of atype definition is not a recommended programming practice. This
is an area where compilers are known to have problems conforming to the alignment rules.

Fred Forsman 48 Copyright Apple Computer, Inc. 1995-6

