Release Notes
MrC and MrCpp v. 3.0.1

C and C++ Compilersfor Power Macintosh

Contents
Maor ChangeSTrom V. 2.0coocuie et e e e 2
Language ChangES.........ueoiiieiiie et 2
1O o 1 0] T 2
NEW DEFAUITS.......eoeiiiieieee e 3
PragIMaS........ciiii e 3
INEFINSIC FUNCHIONS......ciiiieiceeeee et 4
A B oSSR 4
General INFOIrMELION........c.eiiiii et 4
INCOMPALTDIHTTTIES. ... e e e ree e 5
Precompiled Header File Incompatibilities............ccccoeviiiiiieiiie e 5
MrCPlusLib IncompatiDilitiES..........ccceevieiiieccece e 5
Command LiNE OPLIONS......ccuueiiieeiie e erieeerteeestes st e e e e e re e e e sneesneesnneesnneennns 6
L0 0= 1o TSR (o 17 A = S 10
Structure Passing DY ValUEooovieiiiece ettt 10
Virtual Function Tablesand RTT1.......cooiviiiiiiieeeee e 11
NEeW Language FEALUIES..........c.uuii ittt e e snae e nnee s 11
C++ EXception HandliNgcoevvieeiieicece et 11
RTTI (Run Time Type INformation).........cccccceviiieciie i 12
bool Predefined Data TYPE ...cccveeiiieceeciee et 12
long long Predefined Dala TYPEcccvevvieeiiiee e 13
alloca() Stack AHOCALION..........ceviiieeieece s 13
DITECE 10 SOM ...ttt ettt e e 14
Pragmas (GENEIal)........ccveiiiiiiie e 21
INEFNSIC FUNCLIONS ...t 31
L@ o111 1111742 (o] o FHS SRS 33
Other IMPIrOVEMENESoocvieiiecciee e et e et e b e e b e s b e e e r e e snneennes 34
Compatibility and USAgE ISSUES.........cciuiiiiieiiee ettt 35
KNown OUEStANAING BUGJSveiiieciie ettt eennee e 36

BUG FIXESTN V. 3.0.1 ..ottt et st e e s rae e sraeennee e 36

Major Changesfromv. 2.0

Warning: Incompatible changesin MrCpp’s ABI (Application Binary Interface)
mean that most people should recompile all projects that use MrCpp.
This also means that you cannot mix C++ objects produced by MrCpp
v. 3.0.1 with object files compiled from earlier versions of MrCpp.
This restriction specifically appliesto the use of objects produced by
MrCpp compilers before version 3.0.0d1, including v. 2.0.1f (which
was made available on ETO #22). Note that this only affects C++.

L anguage Changes

» A new C++ vtable layout and an ABI that isincompatible with previous versions of
this compiler.

» Support for C++ Exception Handling

» Support for 64-bit integers: |1 ong | ong predefined type.
 support for C++ Run Time Type Information (RTTI).

* bool predefined C++ datatype.

* Function-try-block syntax is now supported.

» Exception-specifications (throw clauses) are now supported on function pointer
declarations.

Options

» Command line options: -alloca, -ansifor, -bool on|off, -EH, -ER, -exceptions on|off,
-inline all,-opt speed, warn_uninit, -opt speed, warn_maybe_uninit, -opt
size,warn_uninit, -opt size, warn_maybe_uninit and -rtti on|off, -abi [old | newest,
-aslm, -ir pathnamey,...], -target 704.

* The built-in boolean function __option(<keyword>) is used, for a defined set of
keywords, to test whether acommand line option or pragmaisin effect.

The following keywords have been added:

New __ option keywords Condition tested

__option(RTTI) -rtti on

__option(fp_contract) -fp_contract on

__option(maf) Sane as __option(fp_contract)

__option(direct_to_SOM -som

__option(SOMCal | Opti m zation) #pragma SOMCal | Optim zation on in
ef fect

__option(SOMCheckEnvi ronnent) #pragma SOMCheckEnvi ronnment on in
ef f ect

__option(ldsizel28) -1 dsize 128

__option(ANSI _strict) -ansi strict in effect

__option(bool) -bool on

New Defaults

» The access of template functions instantiations has been reversed. The default
template accessis now “public’. It was previoudly “static” and required a#pr agna
t enpl at e_access public in order to get the templates instantiated

* RTTI ison by default. Therefore, you must either link with MrCPlusLib.o or
explicitly turn RTTI off by using theoption-rtti of f. (NOTE: This might be
needed even if your program previously did not require MrCPlusLib.o at al.) If you
used the default setting for RTTI, your C++ code MUST be linked with the
MrCPlusLib.o, 3.4.4b1 (or greater version number), library. The implicit option,
-rtti on, isthe default behavior of the releases of MrCpp version 3.0.0d1 or greater
. Therefore, the link to the MrCPlusLib.o is needed to avoid unresolved references
by the PPCLink tool to the RTTI t ype_i nf o() functionsthat arein code generated
for Class objects. Another alternative isto explicitly turn off RTTI by the use of the
option-rtti off.

The symptoms you'll seeif you either have the wrong library or omit the library are
PPCLink errorslike this: “Reference to unresolved symbol
__Type_info::_rttivtbl”. NOTE: If you had a program that formerly did not
require MrCPlusLib.o but did define polymorphic types, then it will now require the
current MrCPlusLib.o (or the-rtti of f workaround).

Pragmas

* New MacSOM pragmas:

#pragma SOWWbdul eName idq::idpi:...i1idp
#pragma SOMCheckEnvironment on | off | reset,and

#pragma SOMCal | Optinmization on | off | reset
#pragnma SOMCMbdul eNane idq::idyi:...:1idp,

» Other new pragmas:

#pragma ignore <id> ...
#pragma disjoint (<disjoint-list>)

Intrinsic Functions

e Support for al | oca() built-inintrinsic function.

* Intrinsic functions were added for machine instructions MTFSBO and MTFSB1.:
extern void _ mfsb0 (unsigned int crbD); /* MIFSBO crbD */
extern void _ _ntfsbl (unsigned int crbD); /* MIFSBl crbD */

Misc.

* DOS, Unix, and Macintosh formatted files are accepted.

Source files from all three of these platforms are accepted. The compiler assumes a
“line” in afile can be terminated by a newline (0x0D, asin MPW), linefeed (0x0A, as
in Unix), or the sequence newline/linefeed (0x0D0OA, asin DOS).

General | nformation

MrC and MrCpp are C and C++ compilers which generate PowerPC X COFF object
filesfor Power Macintosh systems. Elsewhere in this document we often refer to both
compilers by the single name MrC since the compilers are essentially the same other
than the language dialect they support.

This release of MrC includes:
 support for C++ exception handling
 support for C++ Run Time Type Information (RTTI)

* alloca() builtin function for dynamic stack allocation

» pragmas for changing options in afile

» pragmas for generating inline/ out-of-line traceback tables
* optimization improvements

* loop unswitching

» warning for use of undefined variables

 bug fixes

» pragmas for Direct to SOM

» pragmas for code placement, segmentation, inlining, and CFM
 support for PowerPC 604, X704

* intrinsic functions to generate special PowerPC instructions.
* intrinsic functions header file Intrinsics.h

* bool predefined data

* long | ong predefined datatype

| ncompatibilities

Precompiled Header File Incompatibilities

Precompiled headers created by MrC are not compatible with precompiled headers
created by MrCpp, and vice versa.

MrCPlusLib Incompatibilities

This version of MrCpp introduces an incompatible change in the layout of the virtual
function tables (vtables) in order to support the new Run Time Type Information
(RTTI) feature. In cases where it matters (libraries which contain any polymorphic
classes), the incompatibility is detected at link time. See the “Changes to ABI/Virtual

Function Tablesand RTTI” section for details. The MrCPlusLib library provided with
the compiler is also incompatible with the versions of the library prior to version
3.4.4b1 and must be used only with this compiler.

Command Line Options

This release has severa new command line options.

Note: Defaults are underlined.

-abi newest
generate code which conforms to newest Macintosh C++ ABI standard
-abi old
generate code which conformsto old Macintosh C++ ABI standard
-alloca
Recognize al | oca asahbuilt in function. The - al | oca and - except i ons
on options may not be used together. See the section on new language
features for afurther description of al | oca.
-ansifor
Limit for-statement declared initializer to the for-body.
-asim
For ASLM compatibility, revertsto old vtable format. Thisoptionis
incompatible with exceptions and RTTI.
-bool on
Enable C++ bool , true, and f al se as standard keywords.
-bool off
bool , true, f al se are normal identifiers.
-EH
Sameas- exceptions on.
-ER

Sameas-rtti on.

-exceptionson | off

Generate the static tables needed in order to support exception handling.
Also, dlow try,t hrow, and cat ch in C++ source code.

Note: C code should aso be compiled with - excepti ons on if itis
likely to call C++ code which might throw an exception.

-ignorepragmacid,...

-inline all

Ignore #pragmas with the specified #pragmaid's.

Functions are inlined wherever possible, regardless of cost; this was
formerly -1 2.

-ir pathname [,pathname...]

-load

-nomfmem

Recursively search for include filesin directory specified by pathname.

A change to this option removes a restriction and now a-load ph file can
be used to create another -dump ph file. In other words you can have
both -load and -dump on the command line.

The default behavior of the compiler is that the front end uses
Multifinder memory and the back end uses MPW memory. In some
cases, this results in more overall memory usage due to the fact that
there is no overlap in memory usage between the front end and the back
end. This can also constrain other applications which require Multifinder
memory.

The - nonf mem option enforces the use of MPW memory by the front
end. A caution hereis that when using precompiled headers (load dump
files), the memory requirement by the front end may be exceedingly
large, in which case the option is either to use alarger MPW partition or
to revert back to using Multifinder memory.

-opt speed,unrall

The default for speed compile has been changed fromunrol | to
nounrol | . To enable unrolling use speed, unrol | .

-opt speed,unswitch

This option enables the “unswitching” optimization within loops. If a
loop has a conditional statement (if B then C el se D) andthe
condition isloop invariant, then the optimization is as follows: Two

copies of the loop are made, one containing C and all statements other
than the conditional statement; the other similarly containsD. The
condition, B, is removed from the loops and is used to determine which
copy of the loop to execute. The case of conditionals without an el se
clauseis handled similarly.

-opt speed,unroll,unswitch

Thisis an example to show that unroll and unbswitch may be used
together, that is, these options may be combined.

-opt speed,warn_uninit
-opt size,warn_uninit

Thewar n_uni ni t suboption of - opt speed oOr - opt si ze reports when
avariable is definitely being used before it has been assigned a value.
Usually, such asituationisalogic error.

Because of the effects of global optimization, the source position
reported for the reference in question is not always precise. By using the
variable name and approximate line number, it should be straightforward
to locate the reference.

-opt speed,warn_maybe_uninit
-opt size,warn_maybe_uninit

Thewar n_maybe_uni ni t suboption of - opt speed or - opt si ze
reports when avariable is possibly used before having been set.
Occasionally, correct programs may be flagged by this option. For
example, the use of x in the second if-statement below is flagged by
war n_maybe_uni ni t even when conditionl and condition2 are
equivalent:

int x;

if (conditionl)
x = 1;

if (condition2)
return x;

Because of the effects of global optimization, the source position
reported for the reference in question is not always precise. Using the
variable name and approximate line number it should be straightforward
to locate the reference.

-prefix pathname [,pathname...]

Include the specified file(s) prior to reading the first sourcefile.

-rtti on | off

-target 604

-target 704

(@). A -prefix file can be a precompiled header file so that -load need not
be used.

(b). Thefirst #include can be on a precompiled header as long as only
comments preceded it.

Enable/partially disable run-time type information. The “off” value
causes a partial disabling of the Run-Time Type Information). See
“Changes to ABI/Virtual Function Tablesand RTTI” below for details.

This option enables Direct to Som support in MrC. When thisflagis
specified, classes which are derived (directly or indirectly) from the
specia class named SOMObject will be processed differently than
ordinary C++ classes. For these classes, MrCpp will generate MacSOM
enabling class meta-data instead of standard C++ vtables.

Generate code for PowerPC 604.

This option isto tell the compiler to schedule instructions and optimize
for the yet-to-be-released Exponential X704™ processor..

-tb on,pragma,export,outofline

This pragma gives the user control over the generation of traceback
tables. By default the compiler does not generate traceback tables. The
-tb onisakintothe-t raceback option. It generates traceback tables
for all functions defined in thefile. The - t b pragma generates traceback
tablesfor all the functions specified by #pr agma t r aceback (see
“pragma’ in the section below). When -t b export is specified, then
functions marked for exporting with #pr agna export will have a
traceback table. When -t b out of | i ne is specified on the command
line, all the traceback tables generated as aresult of the other traceback
options and pragma are generated in their own private csect (X COFF
type XMC_TB). One csect is generated for each function to which the
pragmaor he option isapplicable. In addition, an extra branch
instruction is generated after the branch and link instruction
symbolizing the end of a particular function’s c-sect. The offset to the
traceback csect from this branch instruction is encoded in this branch
instruction. The offset also has arelocation entry so that the offset entry
isupdated if the traceback table is relocated by the linker. PPCLink
should coal esce csects of type XMC_TB and put them at the end of the
PEF code section.

-unique_strings

Force all string constants to be unique. The default for the compilation
has been changed from generating unique strings to sharing strings.

Note: In some previous documentation for MrC the - cur di r option was misspelled as
-currdir. Thecorrect formis-curdir.

Changesto ABI

Two changes were made in this release of MrCpp as to how the compiler passes
arguments to certain functions, and how the virtual function tables are laid out. These
are changesin MrCpp’s ABI (Application Binary Interface) and means that most
people should recompile al of their projects that use MrCpp. Note that this only affects
C++ programs.

Structure Passing by Value

MrCpp now generates code using different calling conventions when there is afunction
which is passed an object by value. In simple cases the object is simply passed by value
as happens with structures. However, if the object is an instance of a classwhich hasa
copy constructor or a destructor, then atemporary copy of the object is created and is
passed by reference.

Previously the criteriafor creating the temporary and passing it by reference was just
the existence of acopy constructor; now thiswill also happen if there is a destructor.
Previoudly if there was a destructor but no copy constructor the object would be passed
by value and destructed at the end of the called routine. Now all destructors for such
objects are called in the calling routine after returning from the called routine.

The only case that is actually handled differently is the case where an object passed by
value has a destructor and no copy constructor. However, since code produced by
previous versions of MrCpp passed the object by value and current versions of MrCpp
pass the object by reference, there is the possibility of serious runtime problemsif code
calling such aroutine is compiled with one version of MrCpp and if the routineitself is
compiled with an incompatible version of MrCpp. Thusis it recommended that people
recompile everything when they switch to this new version of MrCpp.

There were good reasons for making this ABI change. First, the language standard
requires that the destructor for such an object be called after the full expressionin
which it appears has been evaluated, so our previous handling of such casesin which
we called the destructor inside of the called routine was incorrect. Secondly, our
previous strategy created problems for our implementation of exceptions. And lastly,
thisisasmall step toward a standard for acommon ABI for all Macintosh compilers.

Virtual Function Tablesand RTTI

For each class which contains virtual functions, the compiler will generate a Virtual
Function Table (vtable). In this release of MrCpp, the format of the vtable has changed
in an incompatible way. When an attempt to link together incompatible object filesis
made, the incompatibility is detected at link time, because the new vtables will have a
different kind of name. A linker error message which mentions an undefined symbol
with aname that startswith _vt bl or _rttivtbl indicatesan attempt to link together
incompatible object files.

The-rtti off optionalowsapartia disabling of the RTTI (Run Time Type
Information). The virtual function table entry which normally (-rtti on) containsa
pointer to the low-level RTTI string is replaced with a- 1. This does not make the
vtable compatible with older versions of MrC, but it can save some data space.

Vtables generated by former versions of MrCpp did not contain space for this pointer.

New L anguage Features

MrC 3.0.1 supports a number of new language-level features, including new pragmas
and intrinsic functions.

C++ Exception Handling

When the - except i ons flag is given, exception handling is enabled. This permits the
useof try, t hrow, and cat ch blocksin C++ source, and it generates some small static
tablesfor either C or C++ code. In order for exceptions-enabled code to work, it must
be linked with exceptions-enabled libraries, and must also be able to find the new
shared library, M CExcept i onsLi b. This release supports only standard C++
exceptions—an exception can be thrown only synchronously, and only from C++ code,
viaat hr ow statement.

The C++ language support library (M CPI usLi b. o) contains memory allocation
routines which will work with both - except i ons and non-exception-aware code. (The
default versions of the new operator, and the array new operator are both changed, but
the calling sequences also changed in such away that both versions can coexist as
overloaded functionsin one library.)

The new shared library M CExcept i onsLi b should be placed somewhere where it can
be found by any exceptions-enabled application. The standard location isin the
Extensions folder within the System Folder.

In order for exceptions to be handled correctly, exceptions-enabled libraries must be
used. Thisis especially important for “call-back routines’, called from libraries.

The default behavior of the new operator has changed in this release. When the new
operator fails because no memory is available, it will throw an exception. In previous
releases, it would return aNULL (zero) pointer.

Limitations

As stated above, code compiled with - except i ons must be linked with the new
versions of the libraries M CPI usLi b, M Cl GSt reans. o (if it isused), and

M CExcept i onsLi b. In addition, PCCLink 1.5 (or a higher version number) must be
used to link exceptions-aware code.

The library currently makes little use of exceptions— the various forms of the new
operator are the only library routines which will currently throw any exceptions.

All instances of #pr agma opt i ons(except i ons) inasource file will beignored.
Exceptions can only be turned on from the command line.

RTTI (Run Time Type Information)

MrCpp's implementation of RTTI adds five new keywords: t ypei d, const _cast ,
dynami c_cast,reinterpret _cast,andstatic_cast.Inordertousetypeid, the
header <t ypei nf 0. h> must be #i ncl uded.

bool Predefined Data Type

MrCpp now supportsbool as a predefined datatype. When - bool on is specified on
the command line, the identifiersbool , t rue, and f al se all become reserved keywords

of the C++ language. See latest C++ Standard documentation for the semantics on how
to usethebool datatype.

Note, with this feature enabled, older versions of types.h will cause errorssincet r ue
and f al se are defined there asenumvalues. Y ou must use the latest version of types.h.

In order to test for the presence of this feature you can use __opti on(bool) or
__option(nobool).

long long Predefined Data Type

Support has been added for 64-bit arithmetic. Y ou indicate this by declaring avariable
astypel ong | ong. When using this data type you do not need to use the Math64
header or library. Where possible, the compiler generates all 64-bit operations directly.
Anything that cannot be done directly is done by routines provided as part of
PPCRuntime.o.

Thel ong | ong datatypeis accepted in most every place al ong datatype would be
accepted except for the following:

* When-ansi strict isspecified on the command line.
» Asaswitch statement control expression or case label.
» Asaconstant in a preprocessor statement.

« Bit-field widths,

* Asanenum value.

* Asanarray dimension.

» Asatemplate value argument.

Support for the long long data type has been added to the C library. See the MPW
Libraries & Interfaces Release Notes for details.

alloca() Stack Allocation

al | oca provides away to dynamically allocate stack space. When the - al | oca option
is specified on the command line, the compiler recognizesal | oca() asabuilt-in
function having the prototype:

void * alloca (size_t numbytes);

Cdlingal | oca() dynamically allocates the requested amount of memory from the
stack and returns a pointer to this doubleword-aligned area. The areais freed upon
return from the function, or by any other mechanism that resets the stack pointer to a
parent’s call frame.

al | oca() hasthe advantage over mal | oc() of being much more efficient, but the user
is cautioned that al | oca() performs no checking of stack bounds and the return value
of al | oca() does not indicate whether stack space has been exhausted. The user must
ensure an adequate stack region for the program (by appropriately setting the
application size resource, or for MPW tools by specifying a stack size with the
“setshellsize” MPW command).

A function that callsal | oca() isnot eligible for inlining since removal of the function
call boundary by inlining might greatly increase the program’ s runtime stack
requirement.

Direct to SOM

General Description

MrCpp supports Direct-To-SOM programming in C++. Y ou can write MacSOM based
classes directly using C++, that is, without using the IDL language or the IDL compiler.

To use the compiler’s Direct-To-SOM feature, combine the replacement SOM Objects
headers (described below) from Clncludes with an MPW installation that already has
SOM 2.0.8 (or greater) installed. Look in the SOM Examples folder for build scripts
called DTS.build.script .

The - somcommand line option enables Direct-To-SOM support. When thisflag is
specified, classes which are derived (directly or indirectly) from the special class named
SOMObject will be processed differently than ordinary C++ classes—for these classes,
the compiler will generate the MacSOM enabling class meta-data instead of standard
C++ vtables. Also when - somis specified on the command line, the preprocessor
symbol _SoM ENABLED _ isdefined as 1.

MrCpp ships with new, replacement MacSOM header files. The header files have been
upgraded to support Direct-To-SOM. Two new header files are of specia interest:

Header Requirements

MrCpp ships with new, replacement MacSOM header files. The header files have been
upgraded to support Direct-To-SOM. Two new header files are of special interest:

 somobj.hh

» somcls.hh

Defines the root MacSOM class SOMObject. It should be included
when subclassing from SOMObject. If you are converting from IDL
with C++ to Direct-To-SOM C++, then thisfile can be thought of asa
replacement for both somobj.idl and somobj.xh .

Defines the root MacSOM meta-class SOMClass. It should be
included when subclassing from SOMClass. If you are converting
from IDL with C++ to Direct-To-SOM C++, then thisfile can be
thought of as a replacement for both somcls.idl and somcls.xh .

Several other header files are worth documenting in relation to their usage with Direct-

To-SOM.

* som.xh

» somdts.h

 somobj.xh

* somcls.xh

This standard MacSOM header file defines the procedural interface to
SOMObjects™ for MacOS runtime kernel. It is not needed for basic
Direct-To-SOM use with the compilers; however, it can be included
should you wish to invoke procedural kernel interfaces.

New for Direct-To-SOM support. Do not include directly from your
source. This header fileisincluded internally by the MacSOM header
files as needed.

Use somobj.hh instead.

Use somcls.hh instead.

A new version of all the SOMObjects™ for MacOS header filesis provided for use with
Direct-To-SOM. These header files replace the older versions, and still alow non-
Direct-To-SOM IDL, C and C++ MacSOM class library development.

Note, as part of the norma SOM installation you should also have “somlib” in the
MPW {SharedLibraries} and “SOMobjects™ for Mac OS’ in your Extensions folder.

L anguage Restrictions

Direct-To-SOM supports the development and use of MacSOM classes as well
as DSOM and CORBA compatible classes. MrCpp handles both SOM and
DSOM classes uniformly.

SOM Objects and the CORBA model of programming requires a higher degree
of encapsulation than is allowed in standard C++. These requirements result in
the following language restrictions which apply to elther instance objects of or
classes derived from SOMObject.

With one exception, the C++ language restrictions listed below apply only to
operations on SOM classes or to operations on their instance objects. The
exception is that enums must be int (full) sized in the entire compilation unit.

Standard C++ (non-MacSOM based) classes can still be declared and used when
the - somflag ison, and, of course, these restrictions do not apply to them.

(8 When subclassing, the compiler uses the class derivation to determine if
the new class should be aMacSOM class. If it finds SOMObject as the
base class then the new sub-class becomes a MacSOM class, otherwise
not. When subclassing with more than one directly specified parent (i.e.,
multiple inheritance), all parents must either be MacSOM classes, or none
must be MacSOM classes — a class may not inherit from both a MacSOM
and non-MacSOM class.

(b) Struct and union MacSOM-based classes are not allowed.
(c) All classinheritance must be virtual.
(d) All data members must be private.

(e) Non-inlined member functions must be unique independent of casing and
signature. Thus, in general, function and operator overloading and
overriding are not allowed even if the function name has different casing.
Because the CORBA standard requires case insensitivity, it is allowed to
override avirtua function with the same (case independent) name and
signature.

(f) There must be at least one introduced, overridden, or virtual inline member func-

tion inthe class. The lexically first such function in the classis treated as the
“key” member function used to detect whether the classisimplemented in the
compilation unit.

(@) Inlined member functions have their access restricted to the attributes of
the section in which they are defined. Thus public inlines can access only
public members, protected inlines can access protected and public
members, and private inlines have full access.

(h) No static members (data or functions) are permitted.
(i) Only parameterless constructors (ctors) are allowed.

() No copy constructors are allowed. Thus passing MacSOM objects by
value and other direct copy assignments are not allowed.

(k) No global MacSOM objects are permitted.

() Sizeof() expressions involving SOMObjects and their classes are not
allowed.

(m) All enums are int-sized. Specifying - somon the command line will imply
- enum max Which will cause all enumsto beint sized. This affects the

entire compilation unit. (The compiler does not allow multiple sizes of
enums in SOM environments.)

(n) Method invocation with explicitly scoped by classname are treated with
protected access and the specific classname must be a direct parent of the
implementation class. “ Scoped” here means that the access specifies the
scope explicitly, e.g., A : menber . Thus, method invocation syntax using
classname qualification is used in MacSOM method implementations to
perform MacSOM parent call through.

(o) Templatesthat expand to MacSOM classes are not allowed.
(p) MacSOM-based classes may not have nested class definitions.
(9 Long double member function parameters and return type are not allowed.

() Adggregate parameters cannot be passed by value.

() Memberswith avariable number of argument (i.e., “...”) are not allowed.

(t) Only the basic forms of operator new and delete are allowed (e.g., new(T),
del ete p). In other words the placement and array forms of new (e.g.,
new (address) T,new T[n]) and array form of delete (e.qg., del ete []
p) are not allowed.

(u) Arraysof MacSOM objects are not allowed.

(v) Embedded MacSOM objects are not alowed, i.e., MacSOM objects
declared within other classes.

(w) MacSOM classes are always defined asif they were surrounded by an
#pragma align=power and #pragma align=reset. In other words, all
MacSOM classes are power aligned.

MacSOM Pragmas

MrCpp supports seven MacSOM -specific pragmas:

#pragma SOVRel easeOrder (nethod,, nethod,, ..., nethod,)
#pragma SOMCl assVersi on (cl assNane, mmj or Versi on, m norVersion)
#pragma SOVMet aCl ass (cl assNane, met aCd assNane)

#pragma SOMCal | Style [| DL

#pragma SOWMbdul eName idq::idy:::id,

#pragma SOMCheckEnvironment on | off | reset

#pragma SOMCal | Optinization on | off | reset

These pragmas supply the compiler with information it needsto provide to the
MacSOM runtime kernel or for the compilation itself. Please refer to the

SOM Objects Developers Tool kit documentation, specifically, the Users Guide,
for more information regarding release order, class version, meta class
programming and call styles. The SOM CheckEnvironment and

SOM CallOptimization pragmas are specific to MrCpp and are fully described
here.

The syntax for these is compatible with other Direct-To-SOM C++ compilers.
All these pragmas except for SOM CheckEnvironment and

SOM CallOptimization may only occur within the scope of the class definition
for which they are intended. The pragmas may occur more than once within the
class but only if they specify exactly the same information. An error is reported
if they areinconsistent.

#pragma SOVRel easeOrder (nethodl, method2, ..., nethodn)

Aswith IDL, MacSOM based classes must specify the release order of the
member functions of the class. Thisis done using the SOM Rel easeOrder
pragma. The net hod, 'sin the pragma are simple member function (case
independent) method names with no qualification and no signature.

The SOMReleaseOrder pragma must specify every member introduced (i.e., no
overrides) by the class. Once the release order is specified, and the class made
available to clients, that order must not be changed. If a member is deleted, its
name must remain in the release order. If anew member is added, its name
should be added at the end of the release order list. If amember is migrated up
in the ancestry, its name will appear in both the ancestor and also in its original
release order.

If the SOMReleaseOrder pragma is omitted, the assumed release order will be
the lexical order that the member functions appear in the class. Thisis permitted
since it can be ainconvenient to maintain the pragma during initial class
development. But the pragma should be provided when the classis released for
use by clients. If the pragmais supplied, it is considered an error condition to
not list all the class' members.

#pragma SOMCl assVersi on (cl assNane, mmj or Versi on, m norVersion)

The SOMClassV ersion pragma specifies the version numbers for the MacSOM
class. If the pragmaisn’t provided, zeros are assumed. Version numbers must be
non-negative. If the classis being defined, then its version numbers are passed
to the MacSOM kernel in the class meta-data. When an instance of the classis
instantiated via the new operator, the version numbers are passed to the runtime
kernel which performs a consistency check to make sure the class
implementation is not out of date.

#pragma SOWMet adl ass (cl assNane, net ad assNane)

A class that defines the implementation on class objectsis called a metaclass.
Just as an instance of aclassis an object, so an instance of ametaclassisaclass
object. Moreover, just as an ordinary class defines methods that its objects
respond to, so a metaclass defines methods that a class object responds to.

SOMClassistheroot classfor al SOM metaclasses. SOMClassitself isa
descendent of SOMObject and therefore inherits all the generic object methods;
thisis why instances of a metaclass are class objects (rather than ssimply classes)
in the MacSOM runtime. All metaclasses must be descendants, directly or
indirectly, of SOMClass.

The default metaclass for aMacSOM class is SOMClass. The SOMMetaClass
pragma allows the user to pick another metaclass. It isan error if the specified

met aCl assNane does not have SOMClass as one of its ancestors. Also aclass

cannot be defined as its own metaclass. Thus the cl assName and

met adl assName parameters must never specify the same class.

#pragma SOMCal | Styl e O DL

MacSOM itself supports two call styles, an older style that does not support
DSOM, called OIDL, and the newer that does, called the IDL call style. MrCpp,
by default, assumes that classes defined using Direct-To-SOM use the newer
IDL call style. When using this call style, all methods must have an
Environment pointer parameter as the first parameter. Just as when using
MacSOM without the DTSOM compiler support, the environment parameter is
used to communicate exception information following method invocation. This
environment parameter is explicitly required in the (DTSOM) C++ method
specifications. The pragmafor OIDL is supplied and used by the SOM base
classes SOM Object and SOMClass. Note that when overriding methods
declared in SOMObject or SOMClass, the override method declaration should
appear exactly the same as the method when originally introduced. That is, for
SOMObject and SOM Class introduced methods, no environment parameter is
used; however, for other classes an environment parameter is required.

#pragma SOWMbdul eName idq::idy::...::id

When an instance of a SOM object is created, that class' name is made known to the
SOM runtime since the name is generated as part of the static data associated with any
MacSOM object. This meansthat there is the possibly of name collision between two
SOM objects (usually provided from two different suppliers). The SOMModuleName
pragma should be used to avoid this problem. It approximates the module name
functionality in IDL.

Thei d,,’sin the SOMModuleName pragma specify simple identifiers. Any number of
identifiers may be specified, each separated by a“: : ’. The sequence of identifiersis

used to qualify all the externally visible names associated with a MacSOM aobject. In
other words, the token table name and the class name generated as part of the class
static data so that the class is unique with respect to the SOM runtime environment.
For example, for class X, the token table name, Xd assDat a becomes
idy_id,_..._id,_Xd assData. The classname that will be known to the SOM

X

#pragma SOMCheckEnvironment on | off | reset

As discussed previously, the compilers assume the IDL call style by default. Thus all
introduced members of all descendants of SOM Object and SOM Class have an
Environment pointer parameter as the first parameter. The Environment is a data struc-
ture that contains environmental information and is also used to return exception data to
aclient. After acall to an IDL introduced member returns, the caller can look at the
_maj or fieldinthe Environment data. If the value of _maj or isnot equal to
NO_EXCEPTI ON (0), there was an exception returned by the call. The caller can retrieve
the exception name and value using the somExceptionld and somExceptionV alue rou-
tines.

Assume the analysis of the exception is not done at the call site but rather in aroutine
called __som check_ev(Envi ronnent *). Then atypical member call might look like,

menber (&ev, other args...);
__som check_ev(&ev);

This can get tedious to do on every member call, so the SOM CheckEnvironment
pragmais provided to tell the compiler to automatically insert acall to

__som check_ev which should check _maj or and act accordingly if it is non-zero.
__som check_ev iswritten by the user and must have the following prototype (which
is defined in somdts.h),

extern "C'" void __som check_ev(Environnent *);

Notethat __som check_ev should clear the error status of the Environment (by calling
sonmExcept i onFr ee), otherwise the next SOM call that returns will see the same error

again!

In addition to inserting a check after each member call, when SOM CheckEnvironment
ison, the compiler will insert acall to__som check_new after each operator new call.

T *p = new T,
__som check_new p);

The user also supplies __som new_new which should check to seeif the allocation suc-
ceeded. It has the prototype (defined in somdts.h),

extern "C' void __som check_new(SOMObj ect *);

These checks are inserted by the compiler as long as SOM CheckEnvironment is on. If
they are not needed, #pr agnma SOMCheckEnvi r onment of f may be specified. Thisis
also the default setting.

Finally, areset option isprovided in case nesting of this pragmais needed. It restores
the SOM CheckEnvironment state to what it was at the time of the most recent corre-
sponding on.

#pragma SOMCal | Optinization on | off | reset

Inserting the additional check code enabled by the SOM CheckEnvironment pragma
will obviously increases code size. Even without the checks, just doing a member call
requires accessing a pointer in the SOM data (generated by the compiler) and indirectly
jumping through that pointer. On the PowerPC, a size optimization is available to
minimize the call site code down to asingle instruction (not counting the parameter
setup)!

The size optimization can be enabled by using #pr agma SOMCal | Opt i i zat i on on.
The optimization involves moving most of the member call code to asmall code
sequences referred to as “glue’ code. The glue code is generated as part of the compila-
tion unit. Thereis one or two glue code routines for each explicitly called member (one
unless the same member is called with both SOM CheckEnvironment on and off). But
al callsto the same member go through the same glue code associated with that mem-
ber. The member call becomes a single instruction to the glue routine (ignoring parame-
ter setup). The glueisdefined as if a#pr agma i nt er nal was done so there is no NOP
following the call.

Each glue routine is responsible for determining the member pointer only. All the call-
ing (and the requisite NoP following the call) and Environment or NULL checking is
constant and therefore factored out into asmall set of library routines. The glue code
therefore branches to these library routines. These routines are located in
PPCRuntime.o.

In an experimental implementation of this optimization in OpenDoc 1.1 code size was
reduced by approximately 10%.

Pragmas (General)
#pragma unused (var_or _param |[,var_or_parani...)

wherevar_or_param isalocal variable or function parameter.

This pragma suppresses compile-time warnings (warning 29) that are emitted when the
compiler discovers that one or more local variables or parameters have not been

referenced within the body of afunction definition. The pragmais only allowed within
the body of afunction definition. The warnings may either be suppressed by explicitly
including the pragma or specifying-w 29 on the command line. Note that variables are
only checked for reference independent of flow analysis. Thereis no validation as to
whether such variables are used correctly or skipped over due to changes in flow
control.

#pragma [nolinline func ['"list'] <func_list>

<func_list>
<the_list>

["('"] <the_list>[")"]
<func> | <the list>"',"' <func>

<func> ["::"]<id> | <menber> | <ctor> | <dtor>
<operator> | <tenplate>(only <id> for C

<nmenber > = <id>'::' <id>| <menber>"'::' <id>

<ctor> = <id>"'::' <id>(<id>s are the sane)

<dt or > = <id>"'::'" '~ <id>(<id>s are the sane)

<oper at or > = 'operator' <op>

<t enpl at e> = <id>'<" <tenplate_args> '>" '::' <id>
<id> '<" <tenplate_args> '>" '::' <nenber>

Theinline_func pragma specifies functions that are to be candidates for inlining are all
places in the source following the pragma. Conversely, the noinline_pragma specifies
that its functions are not to be inlined even if explicitly specified for inlining using the
inline keyword in C++.

For C++ we can have asimpleid (asin the C case), or amember name. Member
names, in turn, can take to form of ctors (e.g., A: : A), dtors (e.g., A: : ~A), simple
members (e.g., A: : f 0o), operators (e.g., A: : operat or<< or B::operator int*),and
template members (e.g., T<char, 2>::fo00).

<the_list> may optionally be enclosed in parentheses.

Thekeyword | i st isignored unlessit isthe only identifier specified. Note that if the
first member of <t he_l i st>isli st:: <i d>, then an ambiguity existsin determining
whether toignorel i st asa“noise” word. MrC[pp] electstotreat | i st as“noise’ in
that case. If Ii st : : <i d> must be specified, then it cannot be specified as the first
member, or the optional parentheses may be used. It is an error to omit all function
names or to have a null function name (i.e., two commas).

The Semantics of the pragma are:

» Any function specified on the function list must not be defined or called.
Declarations, however, are permitted. Template references require that the template
definition exist prior to the pragma. That's the only way the references to instances
can be parsed. However, the specified instances must not exist.

» A validreferenceto afunction implies that function is a candidate for inlining
wherever it is used.

» A referenceto afunction in C++ implies areference to all of its overloads, if any. In
example 1, thereferenceto T: : menber 3 isareferenceto both T: : nenber 3() and
T::member3(int).

» Any valid function specified in the [no]inline_func pragmathat has not been defined
by the end of the compilation unit will be reported as “undefined” warning.

» Duplicate references to the same functions are reported as a warnings. References to
functions specified for inline_func are reported as an error if an attempt is made to
define them for noinline_func and vice versa.

« If thereisaresolution conflict between the inline_func pragma and the auto-inliner,
then the pragmawill override the analysis of the auto-inliner.

» Turning inlining or optimization off from the command line overrides these pragmas.

#pragma [nolinline site ['"list'] <func_list>

The Syntax for the[no] i nl i ne_sit e pragmaisidentical toi nl i ne_f unc described
above. Thusthekeyword!i st isignored unlessit isthe only identifier specified.

The Semantics of the pragma are:

 The[no]inline_site pragmamay only be used within afunction (brace-enclosed
block) and applies only to that block and all blocks nested within it.

* The[no]inline_site pragmamay not be used in template (member) function
definitions. Template definitions can be viewed basically as macro definitions. As
such, preprocessor statements like #pragma are processed as seen. If it occurs within
atemplate definition it is not in afunction. Thus statement (1) applies.

 Inner blocks with their own [no]inline_site pragmas override enclosing block
[no]inline_site pragmas.

» Duplicate references to the same functions is reported as a warning. References to
functions specified for inline_site are reported as an error if an attempt is made to
define them for noinline_site and vice versain the same block.

» Referencesto defined or declared functions are validated (e.g., they must actually be
functions). References to yet-to-be-defined functions are also permitted but
obviously these are not validated.

» A referenceto afunction in C++ implies areferenceto all of its overloads.

 If a[no]inline_site pragma appears in the middle of ablock, then only functionsin
the block from the point at which the pragma occurs are candidates for [no]inlining.
The pragma has no effect on callsin the block before the pragma.

* The[na]inline_site pragmas have precedence over the [no]inline_func pragmas for
the same functions.

» Any valid function specified in the [no]inline_site pragmathat has not been called by
the end of the block will be reported as “ unreferenced” warning (at the end of the
block containing the pragma).

#pragma sel dom

Thesel dom pragma controls movement of the blocks of code containing the pragma.
sel domspecifiesthat ablock (of code) is seldom executed and that the compiler may
move the block to the end of its function (csect).

The Semantics of the pragmaare

» The pragmamay only be used within afunction (brace-enclosed block) and applies
only to that block and all blocks nested within it (i.e., this has the same scoping rule
as#pragma [no]inline_site).

» The seldom pragma may not be used in template (member) function definitions.
Template definitions can be viewed basically as macro definitions. As such,
preprocessor statements like #pr agma are processed as seen. If it occurs within a
template definition it is not in a function. Thus the rule above applies.

» The pragma appliesto the entire block that containsit even if the pragma does not
appear at the beginning of the block.

 Speed optimizations like inlining may be turned off in blocks marked seldom unless
the optimization leads to smaller code size.

#pragma segnent <seg name> [[list] <funclist>]

<seg_nane>
<funclist>

<id> | string
see #pragma [no]linline_func for syntax

Segment names may take the form of asingle identifier or a double quoted (possibly
concatenated) character string. Case is significant. The syntax for the <f unc_I i st > is
identical to that described for [no] i nl i ne_f unc.

The semantics of the pragma are:
» Thispragmamay only appear outside of any function definitions.

 For thelist form, any function on the list must not be defined or called. See
#pragma [no]inline_func for the complete semantics on the functionsin the list
since the segment functions have identical semantics ([no] i nl i ne_f unct Semantics
items 1 and 2).

A reference to afunction in C++ implies areference to all of its overloads.

Any valid function specified in the segment pragma that has not been defined by the
end of the compilation unit will be reported as “undefined” warning.

Duplicate references to the same functions are reported as a warnings.

The non-list form applies to the next function in the compilation unit and all
following functions unless changed by another non-list segment pragma.

The list form defines the segments for specific functions and takes precedence over
the non-list form.

If the string is defined as null (""), the following functions are not defined for any
segment. It is error to specify anull string with the list form of this pragma.

All functions defined for a particular segment are collected together at link time to be
placed adjacent to each other in the final executable.

#pragma <cfm pragma> <option>

<cf m pragma> = '"export' | "inmport' | '"internal

<opti on> = 'on" | 'off" | ['list'] | reset| | <nanme_list>
<nane_| i st> = ['('] <the_names> [')"]

<t he_nanes> = <nane> | <the_nanes> ',' <nane>

<nane> <func> | <id>

Thelist form specifiesalist of variable or function names. The syntax for function
names is identical to that described for <f unc>swhich make up the <f unc_l1i st >s
described for the [no] onl i ne_f unc pragmas. The syntax for a<name_l i st > isthe
same asa<func_l i st > with respect to the treatment of the keyword ‘list’ and
parentheses. The use of this pragma requires that you use PPCLink v. 1.5d3 or later.

Common CFM Pragma Semantics are:

This pragmamay only appear outside of any function definitions.
Template references require that the template definition exist prior to the pragma.

Thelist form of these pragmas may only specify variables before they are defined or
referenced. Thus only externs are acceptable declared variables to the list form.

The list form of these pragmas may only specify functions before they are defined or
called. Thus functions must be declared (explicitly through an extern or are class
member functions).

A reference to amember function in C++ implies areference to al of its overloads.
References to C++ class variables is not allowed.

» Variables and functions referenced by the list forms must be “known” prior to the
pragma. They can be defined or declared. What specifically islega depends on the

pragma.

» These pragmas are never applied to file scoped symboals, i.e., those using the
keyword “ static” . Specifying such a symbol in the list form will be reported as an
error by the pragma.

 Subject to the specific semantics of the CFM pragma (described later), an on CFM
pragma affects all functions and variables following the pragma up to the matching
of f.

 Subject to the specific semantics of the pragmas, “inner” nested on pragmas override
or merge with “outer” nested on pragmas.

* Thereset optionissimilartotheof f option except that the state is reset to what it
was at the time of the most recent corresponding on.

The Semantics of the Export Pragma are:

» Theexport pragmais never applied to file scoped symbols, i.e., those using the
keyword st at i ¢c. Specifying such asymbol in the list form will be reported as an
error by the pragma.

» The export and import pragmas are orthogonal and may be applied independently.

» The export and internal pragmas are orthogonal for variables and may be applied
independently.

» Specifying export and internal for functionsis an error since these pragmas conflict
with respect to functions (export says generate a TV ector while internal says don't).

The Semantics of the Import Pragma are:

» Theimport pragmais never applied to file scoped symbols, i.e., those using the
keyword st at i ¢c. Specifying such asymbol in the list form will be reported as an
error by the pragma.

» Theimport and export pragmas are orthogonal and may be applied independently.

* Theimport and internal pragmas are mutually exclusive. The import pragma will
disable theinternal statusif it is set.

The Semantics of the Internal Pragma are:

* Theinternal pragmais never applied to file scoped variables, i.e., those using the
keyword st at i ¢. Such variables are implicitly internal. Specifying such asymbol in
the list form will be reported as an error by the pragma.

 Internal does affect file scoped (static) functions indicating that their function
descriptor (“TVector”) may be omitted.

* |tisan error to take the address of a“interna” function.

* Theinternal and export pragmas are orthogonal for variables and may be applied
independently.

» Specifying internal and export for functionsis an error since these pragmas conflict
with respect to functions (export says generate a TV ector while internal says don't).

» Theinternal and import pragmas are mutually exclusive. The interna pragmawill
disable the import statusif it is set.

The following explains the usage of these pragmas
e Terminology

» A compilation unit isafile compiled using MrC. A fragment is formed by linking
together compilation units. Global symbolsin the fragment have the following
attributes:

» Export: List of global symbols that are defined in this fragment and thus can be
exported

» Import: List of global symbolsthat are referenced indirectly in the fragment.
These symbols can either be defined in the fragment or can be defined in some
other fragment. An extension of this concept is patchability. Symbols that are
defined in afragment but are patchable require that they be treated as imports.
Thus for asymbol to be patchable, it should be declared as an import.

* Internal: List of global symbols whose uses are internal to afragment, i.e., al
referencesto it from afragment are direct.

 Effect of these attributes on Code generation

» MrC default (i.e., in the absence of any attributes) isto do interprocedural analysis
for functions defined in a compilation unit. Consistent with this, MrC will
generate single instruction call sites (no TOC reload) for global functions defined
in the compilation unit. Thisis also true for static functions as well

» For functions marked internal, a one instruction call site (no TOC reload) will be
generated

* For functions marked internal and whose address is not taken, a T-V ector may not
be generated in the compilation unit.

 For data marked internal, the data may be placed in the TOC. The size of data can
be controlled by a compile time option. MrC does not do this optimization yet.

» For imported functions, no interprocedural optimizations will be done.

» For imported functions, two instruction call siteswill be generated (bl and TOC
reload).

» For imported data, access will be through TOC (that is, indirect).
» Relationship with other options

* shared_| i b_export: Thismechanism has been used in the past to generate alist
of functionsin a .x file and mark them as exports. This mechanism has been
extended to also mark the defined functions as imports. Thiswill provide
backward compatibility and ease of migration for users who want every function
defined to be patchable. However, users should be aware that marking functions
as imports turns interprocedural optimization off for such functions. For this
reason, the users should migrate to using the pragmawhere they can selectively
specify imports.

#pragma options inline [=] on | all | off | none | O |
1] 2| 3| 4|5 | reset

This pragmais used to either temporarily or permanently override the level of inlining
specified by the command line - i nl i ne option. The syntax for the pragma following
thei nl i ne keyword isidentical to that of the command line (except for r eset whichis
specific to this pragma). The parameters have the same meaning as the command. The
reset option resetstheinline level to what was specified or implied by the command
line.

The semantics of the pragma are:

* When the pragma is used outside of afunction, then the specified inline level
overrides the command line until another #pr agma opt i ons i nl i ne IS encountered
outside of any functions. If reset is specified, theinline level isreset to what was
specified or implied by the command line.

* If the pragmais placed inside a function body (i.e., anywhere between its enclosing
braces), then the inline level istemporarily set according to the pragmafor that
function only. The specified inlining level applies to the entire function no matter
where within the function the pragmaiis placed. If more than one #pr agna opt i ons
i nl'i ne is placed within the function, then it’s an error to specify different inlining
levels. The reset option is not permitted when the pragmais used within functions.
Following the function, the default inlining level is reset to what was in effect prior
to that function.

#pragma options opt [=] off | none | local | size
speed[, <nodifier> ...] | reset
<nodi fier> = unroll | norep | nointer | unswtch

This pragmais used to either temporarily or permanently override the level of
optimization specified by the command line - opt option. The syntax for the pragma
following the opt keyword isidentical to that of the command line (except for r eset
which is specific to this pragma). The parameters have the same meaning as on the
command line.

The semantics of the pragma are

When the pragma s used outside of afunction, then the specified optimization level
overrides the command line until another #pr agma opt i ons opt is encountered
outside of any functions. If reset is specified, the optimization level is reset to what
was specified or implied by the command line.

If the pragmalis placed inside a function body (i.e., anywhere between its enclosing
braces), then the optimization level istemporarily set according to the pragma for
that function only. The specified optimization level applies to the entire function no
matter where within the function the pragmais placed. If more than one #pr agma
opt i ons opt Isplaced within the function, then it's an error to specify different
optimization levels. Ther eset option isnot permitted when the pragmais used
within functions. Following the function, the default optimization level is reset to
what was in effect prior to that function.

Note, - symon implies no optimization. If anything other than of f (or none) is

specified on the pragma, a warning will be issued, and the optimization level will
remain unchanged.

#pragma traceback [list] <func_list>

The semantics of the pragma are:

This pragma generates traceback tables for specified functions on the list. The syntax
for the<f unc_I i st > isidentical to that described for [no]i nl i ne_func.

The semantics of the pragma are:

This pragmais only processed if the - t b pragma option was specified on the
command line (See new command line options).

This pragma may only appear outside of any function definitions.

Any function on the list must not be defined or called. See

#pragma [no]inline_func forthe complete semantics on the functionsin thelist,
since the segment functions have identical semantics ([no] i nl i ne_f unct Semantics
items 1 and 2).

» A referenceto afunction in C++ implies areferenceto all of its overloads.

» Any valid function specified in the traceback pragma that has not been defined by the
end of the compilation unit will be reported as an * undefined” warning.

» Duplicate references to the same functions are reported as a warnings.

#pragma ignore <id>. ..
This pragma specifies that any subsequent pragmawhoseid ison thegivenidlististo

be ignored by the compiler without warning. Note that the same effect is produced by
use of the-i gnore pragma command line option.

#pragma di sjoint (<disjoint—list>)

where <di sj oi nt - | i st > isdefined asfollows:

<disjoint list> ::= <di sj oi nt-name> ',"' <disjoint-nanme> |
<disjoint_list>"',"' <disjoint-nane>

<di sj oi nt - nane> = <id> | <disjoint-ptr>

<di sjoint-ptr> 1= *<id> | *<disjoint-ptr>

Each identifier must be defined at the point this pragmais specified. For C++, a‘:’
may be used to specify a global scope reference. Asindicated in the syntax, there must
be at least two identifiers or pointers specified and no duplicates are allowed.

The semantics of the pragma are:

This pragma informs the compiler that none of the identifiers listed share the same
physical storage. If any identifiers share the same physical storage, the pragma may
giveincorrect results. You can use #pr agma i gnor e to turn off #pragma di sj oi nt to
analyze the problem further. The digoint pragmais applied to the identifiers within the
scope of their use.

The identifiers cannot refer to a member of a class, structure or union, a class, structure
or union tag, an enumeration constant, alabel, afunction or a function pointer.

The following transformation kernel was run for 1000 iterations with 500 transforms
per iteration with and without the use of the pragma digoint . Without the use of the
pragma, the program runs in 110 milliseconds giving a cycle count per transform of 29.
With the use of the pragma, the program runs in 59 milliseconds or 16 cycles per
transform. The hardware used isa 132 MHz PPC 604.

voi d TransfornVectorsl (fl oat *pDestVectors, float
const (*pMatrix)[3],float const *pSourceVectors, int
Number OF Vect or s)

#pragma di sj oi nt (*pDest Vectors, *pSourceVectors, *pMatri X,
**pMat ri x)
{
int Counter, i, j;
for (Counter = 0; Counter < Nunber Of Vectors; Counter++)
{

for (i =0; i < 3; i++)

{
float Value = O;
for (j =0; j <3; j++)
{
Value += pMatrix[i][j] * pSourceVectors[j];
}
*pDest Vect or s++ = Val ue;
}
pSour ceVectors += 3;
}
}
Note: The MacSOM pragmas are to be found in the Direct to SOM section
above.

Intrinsic functions

Support for intrinsic (built-in) functions which generate special PowerPC instructions
has been added. Calling an intrinsic evaluates the function arguments into the source
operands of the instruction and returns the destination operand of the instruction (if
any). The use of these intrinsics does not incur any function overhead, so they offer
benefits to performance-critical code that cannot be achieved with library routines.

With exceptions noted below, the function's name and prototype follow from the
machine instruction's name and operands. The function return value corresponds to the
instruction's destination operand, e.g. FABS; the function returns void if thereis no
destination operand, e.g. STHBRX. The function’s arguments agree in number and
correspond with the instruction's source operands. The correspondence is also shown by
the function argument names in relation to the instruction template in the comment next
to each function.

The interface for these functionsis as follows:

int _cntlzw (unsigned int r9); [* ONTLZW rArS */
void __dcbf (void * rA int rB); /* DCBF rArB */
void __dcbt (void *rA int rB); /* DCBT rArB*/

void _ dcbst (void *rA int rB); /* DOBST rArB*/

void __dcbtst (void *rA int rB);

void __dcbz (void *rA int rB);

void __eieio (void);

doubl e _ fabs (double frB);

doubl e _ frmadd (doubl e frA doubl e frC double frB);
doubl e _ frsub (doubl e frA doubl e frC double frB);
doubl e __fnabs (doubl e);

doubl e __ fnmadd(doubl e frA doubl e frC double frB);
doubl e __fnnsub(doubl e frA doubl e frC double frB);
float _ fnadds(float frA float frCfloat frB);
float _ fnsubs(float frA float frCfloat frB);
float _ fnnadds(float frA float frC float frB);
float _ fnnsubs(float frA float frC float frB);
double _ frsqgrte (double frB);

float _ fres (float frB);

doubl e _ fsel (double frA double frC double frB);
double _ fsqgrt (double frB);

float _ fsgrts (float frB);

unsigned int _ lhbrx (void *rA int rB);

unsigned int _ Iwbrx (void *rA int rB);

double _ nffs (void);

void _ nmtfsb0 (unsigned int crbD);

void _ ntfsbl (unsigned int crbD);

int __milhw(int rA int rB);

unsigned int _ mul hw (unsigned int rA unsigned int rB);
doubl e __setflm(double frB);

void __sthbrx (unsigned short rS, void *rA int rB);
void __stwbrx (unsigned int rS, void *rA int rB);
void __sync (void);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

DCBTST rA rB */

DCBZ rA rB*/

EIEIO */

FABS frD frB */

FMADD frD frA frCfrB */
FMSWUB frD frAfrCfrB */
FNABS frD frB */

FNVADD frD, frA frC frB */
FNVBUB frD frA frCfrB */
FMADDS frD, frA frCfrB */
FMBUBS frD frA frCfrB */
FNVADDS frD, frA frC frB */
FNVBUBS frD frA frCfrB */
FRSQRTE frD frB */

FRES frD frB */

FSEL frD frAfrCfrB */
FSQRT frD frB */

FSQRTS frD frB */

LHBRX rDrArB */

LWBRX rDrArB */

MFFS frD */

MIFSBO crbD */

MIFSB1 crbD */

MLHW rDrArB */

MLHW D rA rB */

M-FS frD, MIFSF 255, frB */
STHBRX rS rArB */

STWBRX rS rArB */

SYNC */

Other vendors provide the same intrinsics under different names. Y ou should map

names to the ones recognized by MrC.

Motorolamcc
#define _builtin eieio _eieio
#define __builtin_isync __isync
#define __builtin_sync __ sync

IBM XLC
#define __iospace eieio _eieio

Notes:

e frsgrte, _ fres, _ fsel are603and 604 instructionsonly.

e _ fsqgrt and _ fsqrts are 604 instructionsonly.

o _ setfl mexpandsto two instructions. mffsto retrieve the old FPSCR, and mtfsf to
set the PFSCR to anew value. The old FPSCR is returned. Only the bottom 32 bits

of the argument and return value are defined.

» The data cache instructions and |oad/store byte reversed instructions take two
register operands which are added to form the effective address. The operands are
symmetric; however the intrinsic prototypes for the corresponding functions are
givenas(void *, int) tomakesenseinterms of C address arithmetic.

» The data cache instructions act on cache blocks, whose size is processor-model
dependent. The dependency is especially manifest in __dcbz which modifies data.

» Fused multiply-add and related numerical functions are provided so that numerical
code which is sensitive to the increased accuracy of these instructions can explicitly
control their use. These functions would typically be used in conjunction with a
compiler switch that suppresses automatic MAF generation. In the same spirit of
providing explicit control, the negative MAF formsand __f nabs are included.

e Intrinsics.h

Introduced at the time of the ETO22 Pre-release was a MrC-specific header file
“Intrinsics.h”, located in the Cincludes folder. Thisfileis primarily for the
documentation of intrinsic functions recognized by MrC version 2.0 and later. It is
not necessary to include Intrinsics.h if the file is compiled with MrC, because the
prototypes are built into the compiler. If the file is compiled using a compiler other
than MrC, or prior to MrC version 2.0, one of two situationsis possible. The other
compiler may support theintrinsic as does MrC and inline it appropriately. Or, you
can include Intrinsics.h for the compilation and link with the static library
PPCCRuntime.o; the intrinsic function call will then resolve to an external library
routine which implements the functionality.

Optimization

L oop optimizations have been improved in MrC 3.0 with the addition of unswitching
on loop-invariant IF conditions (- opt speed, unswi t ch). Loop unrolling can now
unroll loops which consist of multiple basic blocks. The default for -opt speed is not to
unroll loopsin general but unrolling is done by default for simple cases where the
iteration count is a small constant. In practice this often yields the performance benefit
without the size cost of unrolling all loops.

Conditional expressions of theform ((i relop 0) ? x : y) without side effects, and
the equivalent sequence written using | F statements, are optimized as expressions and
generated as a branchless inline sequence.

Pattern recognition of shift, mask, rotate and bit insert operations isimproved, resulting
in better use of the RLW NMand RLW M instructions.

Local register alocation has been improved, resulting in fewer spills.

Multiplication of integers by constantsis reduced to shift and add operations when the
resulting sequence improves performance. The settting of - t ar get isconsidered in
estimating the tradeoff. At -opt size, only multiplication by a power of 2 isrewritten as
a shift.

Better code is generated for expressions involving char and short types. The optimizer
removes unnecessary conversions to full-width integers. Optimization of long long
types has been improved since the ETO #22 Pre-release.

#pragma di sj oi nt allowsthe user to specify pointer aliasing information that cannot
be expressed otherwise in C. See the description of this pragmafor an example of its
use in performance tuning.

A stack frame is no longer created for leaf functions with stack usage of 220 bytes or
less (“red zone” optimization). At - opt si ze, functions which use more than afew
non-volatile floating point registers call subroutines to do the save and restore.

The optimization improvementsin MrC 3.0 arereflected in avariety of standard C and
C++ CPU benchmark programs. On the cross-platform BY TE benchmark MrC has
improved from an integer score of 2.8 to 6.1 on a Power Mac 9500/132. MrC’s
Nullstone score of 85% is among the best of current PowerPC compilers, asisits score
of 1.0 on the Stepanov C++ benchmark. MrC performance measurements are available
viathe web at http://www.devtools.apple.com/compilers.

Other Improvements

Error Reporting

Error reporting has been “fixed” to format type conversion errors more properly (a
separator line was in the wrong place) and to show which argument isin error when a
conversion error Occurs in parameter passing.

New Warnings

« warning 41: Thisusageis deprecated. [Arises from the usage b++, whereb isa
boolean.]

» warning 40: Floating point constant does not fit in type xxxx. [Attempting to
initialize avariable of type xxxx with a value which it cannot hold.]

» warning 39: Floating point constant represented as denormalized. [Specified floating
point constant can only be represented as denormalized.

» warning 38: You can’t ignore #pragmaignore! [Arises from using the option
-i gnor epragma ignore. |

Compatibility and Usage | ssues

» Under certain circumstances MrC does not generate a v-table for a C++ classwhen it
is necessary. This problem occurs if the first member function of aclassis not
defined. The problem may be avoided by ensuring that the first constructor for a
classis defined.

In some sense this behavior is not a problem. Instead it is areflection of the
mechanism used by many C++ compilers to decide in which compilation unit to emit
the definition of aclass s v-table. The convention isto do thisin the compilation that
includes the definition of the first member function of the class.

 Since the default for string constants has been changed from generating them
uniguely to sharing them, - uni que_st ri ng option should be used if such constants
are being modified in code.

» Werecommend that usersof - shared_| i b_export moveto the#pragma export
form for identifying exported symbols. Thisinformation is then internally passed to
the linker in the object file and there is no need to identify exported symbols through
the - export or - @xport PPCLink option.

» When multiple conflicting options are present on the command line, the option that
textually appears last wins. For example
M C -opt speed -opt local -inline off foo.c

In this case the file will be compiled at - opt | ocal without any inlining.

» The commando interface to the compiler is not complete with respect to new options
added to the compiler. However, al the options supported in the commando are
correctly implemented.

» Users of the Standard Template Library (STL) should be aware that MrCpp is not
compatible with all of the public domain libraries or with the Metrowerks STL
library.

* A common problem that has arisen in the past is to compile a function and then to
link it as an export using the PPCLink option -export or @export. A side effect of
this can be that the compiler will optimize a call site to such afunction to one word
call site, that is, one without the TOC reload slot, and PPCLink will add glue code
for thiscall site. This can lead to erroneous run time behavior. The correct thing to
dointhis caseisto use #pragmaimport for functions that need patching. The
compiler will then generate a TOC reload after the call. An alternate but less optimal
way to achieve the same effect isto use the -shared_l i b_export option with the
compiler. Thiswould make all global functions defined in the file asimports. This
would also turn off interprocedural analysis on those functions.

Known Outstanding Bugs

» Anexpression involving the long long type will generate incorrect code in the
following case: a comparison result is converted to long long and used in abinary
expression, e.g., the expression has the form x + (long long)(a!= b). The conversion
to long long isincorrectly optimized away.

Bug Fixesinv. 3.0.1

* MrC crashes when compiling MD5 stack overflow in CG caused by LO creating a
huge tree. Stack check macros were added at strategic places in the backend to avert
a crash when compiling programs that produce deep expression trees. (Radar
#115688)

» MrC was generating the wrong code when optimization = on. The compiler
overwrote a CR-reg before using it. (Radar #115691)

» MrC Preprocessor has an error preprocessing the macro expansion when it sees the
‘## operator. The behavior of these compilersis different than the ANSI C spec.
(Radar #115738)

* MrC reports error, “cannot open PIL file 'Moonlighting: System Folder
7.5.1:PreferencessMPW: TempTS:MPEGVideoAdvanceT oStartCodes.cp.n': Invalid
argument.” It was not detecting when the file name was too long. (Radar #1603713)

BE: Incorrect code motion of __setflm intrinsic by GOptimizer and scheduler MrC
incorrectly movesthe _ setflm intrinsic backwards within the basic block for sgrt.c.
This has been fixed; changed the tree builder to put setflm callsinto blocks by
themselves. All code motions stopped across these kinds of intrinsic cals. (Radar
#164070)

Linker error for unresolved __ Type_info::_rttivtbl. This has been fixed; we have
clarified the release notes for this release (starting with the 3.0.0d3 engineering
release), emphasizing the need to use the MrCPlusLib.o that comes with the -rtti
compiler. (Radar #1605054)

Code Warrior Plugin compilers: MrC plugin currently drops temporary filesin the
source repository. This has been changed in the 3.0.1 release of the MrC plugin.
(Radar #1605458)

Code Warrior MrC/MrCpp Plugins: Does not handle UNIX-style source files (EOL
== newline). The change was to “enhance” the compilers to accept Mac (newlines,
0x0D), Unix (linefeeds, 0x0A), and DOS (newlines-linefeed in that order) all as end
of line characters. Both the MPW and future plugins will have this capability. (Radar
#1605466)

MrC needs intrinsics to set single bits of FPSCR. I'd like to see intrinsics to support
the mtfsbl and mtfsb0 commands. This has been chnaged and the “new” intrinsics
implemented. (Radar #1605458)

void _ mfsbO(unsigned int);

void _ mfsbl(unsigned int);

MrCpp cannot invoke a virtual function of a base class defined within another class.
(Radar #1606815)

MrC has along double optimization bug. Problem ws fixed by changing GRA.. In
some cases the second part of along double register candidate was participating in
data flow analysis. (Radar #1606904)

Error message information lost. Multi-line error messages are no longer truncated.
(Radar #1610766)

Two pointer updates do not generate "lbzu" instructionsin tight loop. Bugs
prevented this case from being recognized. (Radar #1611376)

FE: symbol scoping problem with function-try-blocks; only the parameters are
visible in the catch blocks. (Radar #1611546)

MrC doesn't honor #pragma import with -opt speed. (Radar #1612002)

Extrawarning emitted with - shared_I i b_export on and -sym on. Thiswas
because the option, - shared_I i b_export onimplies-inline 0 andwas
“pretendening” that an EXPLICIT -i nl i ne 0 wasdone. You would/should get the

warning when the “-inline” is explicitly stated (other than 0). | suppressed the
"explicit" switchin “-shared_lib_export” on so the warning will not appear when
-shared_l i b_export on isdone. (Radar #1613418)

Unsigned cast lost in conversion of 32-bit integer to long long. (Radar #1616590)

"function-try-block" not yet implemented. Support for this has now been
implemented. (Radar #1363228)

FE: Compiler Error building ODF. This problem occurs with exceptions and sym on
when there is a precompiled header which includes classes with inline member
functions which use operator new. (Radar #1600614)

Anint and athrow in a conditional (?:) expr has a problem. The fix also makes sure
that both the second and third operands of the ternary are not throws. (Radar
#1363226)

MrCpp rejects exception spec in func ptr declaration. (Radar #1364821)
Compiler failsto handle redefinition of atemplate function. (Radar #1401810)

SCpp and MrCpp generate bad code for 'char(x)' type of casting in switch. The
compiles can disambiguate the cast vs. declaration ambiguity in this test. (Radar
#113087)

MrC treats func ptr param decl with same name as class treated as an expr.This has
been fixed. The routine that tries to decide whether it has a declaration/cast or
expression now is more syntax sensitive to avoid such mistakes. (Radar #1191289)

enum & int overloading and argument matching error. Compiler now does the
promotion to int of any enum involved in an expressions. (Radar #1191051)

A union may not have virtual functions. This has been fixed and the compilers report
an error. (Radar #1215450)

MrC nested scope bug. Externs are declared in the block in which they occur. A
global copy is aso made and that is the one actually used for code generation. (Radar
#1174649)

Enhancement request: exploit “red zone” for locals and temporaries. Changed to use
the red zone of the stack for leaf functions whose frame size is 220 bytes or less.
(Radar #1339572)

do / while loop does not use BDNZ and CTR. (Radar #1393519)

Overloading does not consider best match in local scope first. (Radar #1172083)

Accepts taking an address of cast expression that does not yield alvalue. (Radar
#1224842)

Two classesin different scope with same v-base name get duplicate vtable entry.
(Radar #1197954)

Pascal keword in overloaded operator function gets error. (Radar #1191286)

"c %= x" isdifferent from "c = ¢ % x"; first isunsigned, latter is signed. (Radar
#1394695)

The compiler generates bad code, while accessing parameters of afunction, if the
parameters contain along double and the total byte length of all parametersis greater
than 32 bytes.

Some problems have been detected with extracting bit fields whose size is smaller
than a character. (Radar #1364763)

Incorrect values are sometimes assigned during structure assignments of four bytes
or less. (Radar #1364067)

The compiler does not correctly handle static initialization of structures containing
bit field groups which are smaller than aword. A bit field group is a group of
successive hit field declarations that are packed together. One manifestation of this
problem is an error message from the compiler indicating that it ran out of memory
while requesting avery large amount of memory. This problem occurs with
structures defined with the mac68k alignment mode. (Radars #176381, #1339273)

In addition, bugs with the following Radar numbers were fixed: 1616141, 1616590,
1618383, 1618542, 1397516, 1398002, 1253046, 1377140, 1172086, 1360164,
1360624, 1600870, 1601252, and 1601609.

