
Direct to SOM

Contents
General Description
Header Requirements
Language Restrictions
MacSOM Pragmas

General Description

MrCpp and SCpp support Direct-To-SOM programming in C++. You can write
MacSOM based classes directly using C++, that is, without using the IDL language or
the IDL compiler.

To use the compiler’s Direct-To-SOM feature, combine the replacement SOMObjects
headers (described below) from CIncludes, and the MrCpp/SCpp tools from the Tools
found in the folder Past&Future:PreRelease:Direct SOMObjects for Mac OS, with an
MPW installation that already has SOM 2.0.8 (or greater) installed. Look in the
SOMExamples folder for build scripts called DTS.build.script .

The -som command line option enables Direct-To-SOM support. When this flag is
specified, classes which are derived (directly or indirectly) from the special class named
SOMObject will be processed differently than ordinary C++ classes—for these classes,
the compiler will generate the MacSOM enabling class meta-data instead of standard
C++ vtables. Also when -som is specified on the command line, the preprocessor
symbol __SOM_ENABLED__ is defined as 1.

MrCpp and SCpp ship with new, replacement MacSOM header files. The header files
have been upgraded to support Direct-To-SOM. Two new header files are of special
interest:

Header Requirements

MrCpp and SCpp ship with new, replacement MacSOM header files. The header files
have been upgraded to support Direct-To-SOM. Two new header files are of special

interest:

• somobj.hh Defines the root MacSOM class SOMObject. It should be included
when subclassing from SOMObject. If you are converting from IDL
with C++ to Direct-To-SOM C++, then this file can be thought of as a
replacement for both somobj.idl and somobj.xh .

• somcls.hh Defines the root MacSOM meta-class SOMClass. It should be
included when subclassing from SOMClass. If you are converting
from IDL with C++ to Direct-To-SOM C++, then this file can be
thought of as a replacement for both somcls.idl and somcls.xh .

Several other header files are worth documenting in relation to their usage with Direct-
To-SOM.

• som.xh This standard MacSOM header file defines the procedural interface to
SOMObjects™ for MacOS runtime kernel. It is not needed for basic
Direct-To-SOM use with the compilers; however, it can be included
should you wish to invoke procedural kernel interfaces.

• somdts.h New for Direct-To-SOM support. Do not include directly from your
source. This header file is included internally by the MacSOM header
files as needed.

• somobj.xh Use somobj.hh instead.

• somcls.xh Use somcls.hh instead.

A new version of all the SOMObjects™ for MacOS header files is provided for use with
Direct-To-SOM. These header files replace the older versions, and still allow non-
Direct-To-SOM IDL, C and C++ MacSOM class library development.

Note, as part of the normal SOM installation you should also have “somlib” in the
MPW {SharedLibraries} and “SOMobjects™ for Mac OS” in your Extensions folder.

Language Restrictions

Direct-To-SOM supports the development and use of MacSOM classes as well as
DSOM and CORBA compatible classes. MrCpp and SCpp handle both SOM and
DSOM classes uniformly.

SOMObjects and the CORBA model of programming requires a higher degree of
encapsulation than is allowed in standard C++. These requirements result in the follow-
ing language restrictions which apply to either instance objects of or classes derived

from SOMObject.

With one exception, the C++ language restrictions listed below apply only to operations
on SOM classes or to operations on their instance objects. The exception is that enums
must be int (full) sized in the entire compilation unit. Standard C++ (non-MacSOM
based) classes can still be declared and used when the -som flag is on, and, of course,
these restrictions do not apply to them.

(a) When subclassing, the compiler uses the class derivation to determine if the new
class should be a MacSOM class. If it finds SOMObject as the base class then the
new sub-class becomes a MacSOM class, otherwise not. When subclassing with
more than one directly specified parent (i.e., multiple inheritance), all parents
must either be MacSOM classes, or none must be MacSOM classes — a class
may not inherit from both a MacSOM and non-MacSOM class.

(b) Struct and union MacSOM-based classes are not allowed.

(c) All class inheritance must be virtual.

(d) All data members must be private.

(e) Non-inlined member functions must be unique independent of casing and signa-
ture. Thus, in general, function and operator overloading and overriding are not
allowed even if the function name has different casing. Because the CORBA
standard requires case insensitivity, it is allowed to override a virtual function
with the same (case independent) name and signature.

(f) There must be at least one introduced, overridden, or virtual inline member func-
tion in the class. The lexically first such function in the class is treated as the
“key” member function used to detect whether the class is implemented in the
compilation unit.

(g) Inlined member functions have their access restricted to the attributes of the sec-
tion in which they are defined. Thus public inlines can access only public mem-
bers, protected inlines can access protected and public members, and private
inlines have full access.

(h) No static members (data or functions) are permitted.

(i) Only parameterless constructors (ctors) are allowed.

(j) No copy constructors are allowed. Thus passing MacSOM objects by value and
other direct copy assignments are not allowed.

(k) No global MacSOM objects are permitted.

(l) Sizeof() expressions involving SOMObjects and their classes are not allowed.

(m) All enums are int-sized. Specifying -som on the command line will imply -enum
max which will cause all enums to be int sized. This affects the entire compilation
unit. (The compiler does not allow multiple sizes of enums in SOM environ-
ments.)

(n) Method invocation with explicitly scoped by classname are treated with protected
access and the specific classname must be a direct parent of the implementation
class. “Scoped” here means that the access specifies the scope explicitly, e.g.,
A::member. Thus, method invocation syntax using classname qualification is used
in MacSOM method implementations to perform MacSOM parent call through.

(o) Templates that expand to MacSOM classes are not allowed.

(p) MacSOM-based classes may not have nested class definitions.

(q) Long double member function parameters and return type are not allowed.

(r) Aggregate parameters cannot be passed by value.

(s) Members with a variable number of argument (i.e., “...”) are not allowed.

(t) Only the basic forms of operator new and delete are allowed (e.g., new(T),
delete p). In other words the placement and array forms of new (e.g., new
(address) T, new T[n]) and array form of delete (e.g., delete [] p) are not
allowed.

(u) Arrays of MacSOM objects are not allowed.

(v) Embedded MacSOM objects are not allowed, i.e., MacSOM objects declared
within other classes.

(w) MacSOM classes are always defined as if they were surrounded by an #pragma
align=power and #pragma align=reset. In other words, all MacSOM classes are
power aligned.

MacSOM Pragmas

MrCpp and SCpp support seven MacSOM-specific pragmas:

#pragma SOMReleaseOrder (method1, method2, ..., methodn)

#pragma SOMClassVersion (className, majorVersion, minorVersion)

#pragma SOMMetaClass (className, metaClassName)

#pragma SOMCallStyle [O]IDL
#pragma SOMModuleName id1::id2::...::idn

#pragma SOMCheckEnvironment on | off | reset

#pragma SOMCallOptimization on | off | reset

These pragmas supply the compiler with information it needs to provide to the
MacSOM runtime kernel or for the compilation itself. Please refer to the SOMObjects
Developers Toolkit documentation, specifically, the Users Guide, for more information
regarding release order, class version, meta class programming and call styles. The
SOMCheckEnvironment and SOMCallOptimization pragmas are specific to MrCpp
and SCpp and are fully described here.

The syntax for these is compatible with other Direct-To-SOM C++ compilers. All these
pragmas except for SOMCheckEnvironment and SOMCallOptimization may only oc-
cur within the scope of the class definition for which they are intended. The pragmas
may occur more than once within the class but only if they specify exactly the same
information. An error is reported if they are inconsistent.

#pragma SOMReleaseOrder (method1, method2, ..., methodn)

As with IDL, MacSOM based classes must specify the release order of the member
functions of the class. This is done using the SOMReleaseOrder pragma. The methodi’s
in the pragma are simple member function (case independent) method names with no
qualification and no signature.

The SOMReleaseOrder pragma must specify every member introduced (i.e., no over-
rides) by the class. Once the release order is specified, and the class made available to
clients, that order must not be changed. If a member is deleted, its name must remain in
the release order. If a new member is added, its name should be added at the end of the
release order list. If a member is migrated up in the ancestry, its name will appear in
both the ancestor and also in its original release order.

If the SOMReleaseOrder pragma is omitted, the assumed release order will be the lexi-
cal order that the member functions appear in the class. This is permitted since it can be
a inconvenient to maintain the pragma during initial class development. But the pragma
should be provided when the class is released for use by clients. If the pragma is sup-
plied, it is considered an error condition to not list all the class’ members.

#pragma SOMClassVersion (className, majorVersion, minorVersion)

The SOMClassVersion pragma specifies the version numbers for the MacSOM class. If
the pragma isn’t provided, zeros are assumed. Version numbers must be non-negative.
If the class is being defined, then its version numbers are passed to the MacSOM kernel
in the class meta-data. When an instance of the class is instantiated via the new opera-
tor, the version numbers are passed to the runtime kernel which performs a consistency
check to make sure the class implementation is not out of date.

#pragma SOMMetaClass (className, metaClassName)

A class that defines the implementation on class objects is called a metaclass. Just as an
instance of a class is an object, so an instance of a metaclass is a class object. Moreover,
just as an ordinary class defines methods that its objects respond to, so a metaclass
defines methods that a class object responds to.

SOMClass is the root class for all SOM metaclasses. SOMClass itself is a descendent
of SOMObject and therefore inherits all the generic object methods; this is why in-
stances of a metaclass are class objects (rather than simply classes) in the MacSOM
runtime. All metaclasses must be descendants, directly or indirectly, of SOMClass.

The default metaclass for a MacSOM class is SOMClass. The SOMMetaClass pragma
allows the user to pick another metaclass. It is an error if the specified metaClassName
does not have SOMClass as one of its ancestors. Also a class cannot be defined as its
own metaclass. Thus the className and metaClassName parameters must never spec-
ify the same class.

#pragma SOMCallStyle OIDL

MacSOM itself supports two call styles, an older style that does not support DSOM,
called OIDL, and the newer that does, called the IDL call style. MrCpp and SCpp, by
default, assume that classes defined using Direct-To-SOM use the newer IDL call style.
When using this call style, all methods must have an Environment pointer parameter as
the first parameter. Just as when using MacSOM without the DTSOM compiler sup-
port, the environment parameter is used to communicate exception information follow-
ing method invocation. This environment parameter is explicitly required in the
(DTSOM) C++ method specifications. The pragma for OIDL is supplied and used by
the SOM base classes SOMObject and SOMClass. Note that when overriding methods
declared in SOMObject or SOMClass, the override method declaration should appear
exactly the same as the method when originally introduced. That is, for SOMObject and
SOMClass introduced methods, no environment parameter is used; however, for other
classes an environment parameter is required.

#pragma SOMModuleName id1::id2::...::idn

When an instance of a SOM object is created, that class’ name is made known to the
SOM runtime since the name is generated as part of the static data associated with any
MacSOM object. This means that there is the possibly of name collision between two
SOM objects (usually provided from two different suppliers). The SOMModuleName
pragma should be used to avoid this problem. It approximates the module name
functionality in IDL.

The idn’s in the SOMModuleName pragma specify simple identifiers. Any number of
identifiers may be specified, each separated by a ‘::’. The sequence of identifiers is
used to qualify all the externally visible names associated with a MacSOM object. In
other words, the token table name and the class name generated as part of the class’
static data so that the class is unique with respect to the SOM runtime environment.
For example, for class X, the token table name, XClassData becomes

id1_id2_..._idn_XClassData. The class name that will be known to the SOM
runtime becomes id1::id2::...::idn::X.

#pragma SOMCheckEnvironment on | off | reset

As discussed previously, the compilers assume the IDL call style by default. Thus all
introduced members of all descendants of SOMObject and SOMClass have an
Environment pointer parameter as the first parameter. The Environment is a data struc-
ture that contains environmental information and is also used to return exception data to
a client. After a call to an IDL introduced member returns, the caller can look at the
_major field in the Environment data. If the value of _major is not equal to
NO_EXCEPTION (0), there was an exception returned by the call. The caller can retrieve
the exception name and value using the somExceptionId and somExceptionValue rou-
tines.

Assume the analysis of the exception is not done at the call site but rather in a routine
called __som_check_ev(Environment *). Then a typical member call might look like,

member(&ev, other args...);
__som_check_ev(&ev);

This can get tedious to do on every member call, so the SOMCheckEnvironment
pragma is provided to tell the compiler to automatically insert a call to
__som_check_ev which should check _major and act accordingly if it is non-zero.
__som_check_ev is written by the user and must have the following prototype (which
is defined in somdts.h),

extern "C" void __som_check_ev(Environment *);

Note that __som_check_ev should clear the error status of the Environment (by calling
somExceptionFree), otherwise the next SOM call that returns will see the same error
again!

In addition to inserting a check after each member call, when SOMCheckEnvironment
is on, the compiler will insert a call to __som_check_new after each operator new call.

T *p = new T;
__som_check_new(p);

The user also supplies __som_new_new which should check to see if the allocation suc-
ceeded. It has the prototype (defined in somdts.h),

extern "C" void __som_check_new(SOMObject *);

These checks are inserted by the compiler as long as SOMCheckEnvironment is on. If
they are not needed, #pragma SOMCheckEnvironment off may be specified. This is
also the default setting.

Finally, a reset option is provided in case nesting of this pragma is needed. It restores
the SOMCheckEnvironment state to what it was at the time of the most recent corre-
sponding on.

#pragma SOMCallOptimization on | off | reset

Inserting the additional check code enabled by the SOMCheckEnvironment pragma
will obviously increases code size. Even without the checks, just doing a member call
requires accessing a pointer in the SOM data (generated by the compiler) and indirectly
jumping through that pointer. On the PowerPC, a size optimization is available to
minimize the call site code down to a single instruction (not counting the parameter
setup)! Unfortunately, for complex reasons related to parameter-passing models, this
optimization is not available on the 68K (SCpp). So the following discussion applies
only to MrCpp.

The size optimization can be enabled by using #pragma SOMCallOptimization on.
The optimization involves moving most of the member call code to a small code
sequences referred to as “glue” code. The glue code is generated as part of the compila-
tion unit. There is one or two glue code routines for each explicitly called member (one
unless the same member is called with both SOMCheckEnvironment on and off). But
all calls to the same member go through the same glue code associated with that mem-
ber. The member call becomes a single instruction to the glue routine (ignoring parame-
ter setup). The glue is defined as if a #pragma internal was done so there is no NOP
following the call.

Each glue routine is responsible for determining the member pointer only. All the call-
ing (and the requisite NOP following the call) and Environment or NULL checking is
constant and therefore factored out into a small set of library routines. The glue code
therefore branches to these library routines. These routines are located in
PPCRuntime.o.

In an experimental implementation of this optimization in OpenDoc 1.1 code size was
reduced by approximately 10%.

