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Cover Letter and Notes on this Revision of the Specification

This document is a draft proposal and your comments are welcome.  Please let us know about any
ABI issues that we have missed.  Please note the various "Open Issues" sections and feel free to
comment on any of these or any other ABI issues.

If you are planning on writing up your comments please refer to sections by name rather than by
number since the document is still changing and the names are more likely to remain meaningful.

While this version of this document is relatively complete in that it describes all of what we know
to be relevant to the C++ ABI, it is still just a draft proposal and many of the sections should be
considered to be "straw man" proposals which will serve as a starting point for discussion.  Given
that the point of a Macintosh C++ ABI is to work toward having C++ compilers for the Macintosh
conform to a common set of conventions, this document makes reference to strategies used by
various compilers (particularly Apple's MrCpp and Metrowerks' CodeWarrior compiler).  In the
various "Open Issues" sections in this document we have tried to enumerate ABI-related issues and
problems that have been uncovered but not yet resolved.  Please feel free to provide pros and cons
on these and any other issues in the ABI.  We have not had the time to investigate all of the issues
that have been raised, so a more detailed analysis of these or any new issues would be greatly
appreciated.

The sections on Virtual Base Classes, Virtual Base Class Tables, and Pointers to Members are
provisional and have a reasonably high likelihood of changing.  The run-time type information
(RTTI) mechanism is being investigated and compared with other RTTI implementations.  The
exception handling mechanism will be redesigned to address the issues which are listed in the
"Open Issues - Exceptions" section.  The new exception mechanism will be documented in a future
revision of this document.

This revision of the ABI also includes a proposal for a new C++ virtual function dispatch
convention.  Your comments are welcome.  Preliminary discussions of this mechanism have
already indicated areas for optimization of the current mechanism if the new one is not adopted.

This revision of the ABI document includes a rewrite of the section on alignment.  The alignment
rules have not changed, however, we hope that the specification of these rules has become much
clearer.

The current version of this document is known to have an application-centric perspective.
Subsequent revisions will attempt to provide more information on how DLLs affect ABI issues.
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1 . Introduction: The Macintosh C/C++ ABI

This section outlines the purpose and scope of this document.

1 . 1 What is an ABI?

An ABI is an “application binary interface” and describes conventions at the binary level which
apply to applications targeted to the same system.  An ABI establishes conventions for such things
as register usage, parameter passing, and layout of data.  Typically, these conventions are effected
in development tools, particularly compilers.  Assembly-level programmers must be aware
explicitly of these conventions, especially if they wish to interface their assembly code with code
produced by a compiler.

The primary goals of an ABI are:
1. to establish machine-level runtime conventions for a processor family
2. to ensure object file compatibility between compilers

While it is possible for programs to depart from the conventions of an ABI, particularly within
isolated sections of a program (such as sections of hand-crafted assembly code), conformance to
the ABI is often required to make use of system-level code and code produced by other compilers.
To the extent that a program is monolithic and is built with the same set of tools conformance to the
ABI is only an issue when the program interfaces with the system.  To the extent that a program is
made up of (or accesses) components which may have been built with other tools conformance to
the ABI is more critical.

For some, the issue of binary compatibility resolves to whether the output of two compilers can be
made to be link compatible.  But for others, binary compatibility can be seen as the issue of
whether two compilers will produce objects with the same link characteristics given the same
source.  This latter, more constraining definition of binary compatibility is the one we will address
in this document since it ensures a greater degree of source portability between conforming
compilers.

1 . 2 The Scope of this Document

The foundation level of the Macintosh ABI is documented in the book Macintosh Runtime
Architectures (to be available in fall '96) which covers various basic conventions such as register
usage and parameter passing conventions.  This document covers what we are calling the
"Macintosh C/C++ ABI" which includes some special cases of low-level conventions needed for C
and C++, conventions for C such as alignment rules (which also apply to C++), and conventions
for C++ specific constructs which get exposed at the ABI level.

The C++ language poses special ABI problems.  While the C language relies on a few well-
established ABI conventions, the object-oriented features of C++ require a new runtime
architecture and conventions, such as v-tables and name-mangling.  While some of these
conventions have a common precedent in their implementation in AT&T’s CFront, the evolution of
the language and the proliferation of compilers has resulted in the availability of many compilers
whose binaries are not compatible.  The purpose of this document is to address that problem by
establishing a set of ABI conventions for C++ on the Macintosh.

This document limits itself to issues directly related to the support of the C and C++ languages
with the expectation that this restricted focus will facilitate adoption of a standard set of runtime
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conventions by Macintosh C++ compiler providers.  Other issues such as standards for SOM and
Direct-to-SOM are left to other documents.  This document currently limits itself to describing
these conventions for the PowerPC Macintosh since many of the conventions for the 68K
Macintosh have been in place for many years and since significant changes in compilers targeting
the 68K are not anticipated.

Several source compatibility issues are mentioned in this document due to their close connection to
ABI issues (for example, the use of types other than "int" for bit fields).  While not strictly ABI
issues, they can affect source portability between compilers.

The ABI attempts to address issues spanning various levels of interoperability--procedural DLL
interoperability, C++ DLL interoperability, compiler and linker interoperability, and source
interoperability.  We have chosen the tack of organizing the ABI by functional areas since any one
given functional area may include issues at several levels of interoperability.  Your suggestions for
other organizations are welcome.

One important issue which is not addressed in this document is the process of transforming a
compiler to conform to the ABI and what to do at the inevitable stages where the compiler only
conforms partially to the ABI.  The issue is made more complicated by the fact that a change in
ABI will often require that both an old and new ABI be supported during the transition.  A
succession of steps towards ABI conformance can present a variety of difficult packaging issues
since the different ABIs will often require different libraries.

1 . 3 The Evolution of this Specification

This specification will continue to evolve for some time for the following reasons:

1. This ABI specification is a working draft.

The Macintosh C/C++ ABI is a work in progress--progress toward identifying all of the
potential ABI issues raised by the C++ language, documenting conventions to address these
issues, and then coming to an agreement with Macintosh C/C++ compiler providers about the
ABI conventions.

Given the open nature of this process, we encourage discussion of the conventions
documented here.  If there are potential problem areas that have yet to be identified please let
us know.

2. The C++ language is still evolving.

While the C++ language is nearing standardization, some areas, such as templates, have
continued to change.  Some of these changes affect ABI issues (such as name mangling of
templates).

3. The ABI specification identifies issues which have not been resolved.

Many sections of the ABI specification contain a sub-section of open issues.  Many of these
are questions and suggestions that have not yet been investigated.  Please feel free to discuss
these issues with us and to identify any other potential problem areas in the specification.

4. The ABI should not be immutable.
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If there is something wrong or sub-optimal about the current ABI specification please let us
know.  Even once the standard is complete and has been widely adopted, potential
improvements should be discussed and weighed against the cost of change.

1 . 4 When it is Permitted to Deviate from the ABI

The ABI may be violated in generating code for and calls to functions which are known to be local
to a compilation unit or internal to a DLL.  When a function and all calls to it are local to the
compilation unit the compiler may choose to relax the rules of the ABI in order to generate more
optimal code.  Similarly, when a function is known to be internal to a DLL, the compiler may
deviate from the ABI as it chooses as long as the same compiler is used to build all of the pieces of
the DLL.  The compiler may identify these cases by observing which functions are static and which
are specified as internal using the CFM pragmas.

Going a step further, the ABI may be freely violated between DLLs that are constrained to be used
together.

2 . PowerPC Runtime ABI

This section provides an overview of the conventions of the Macintosh runtime ABI; additionally it
describes some special case calling conventions needed to support larger data types as parameters
and return values.

2 .1 PowerPC ABI Overview

The processor-level Macintosh PowerPC ABI is based on the PowerOpen ABI.  The details of the
Macintosh PowerPC ABI are given in Macintosh Runtime Architectures ([2]).

2 .2 Special Calling Conventions

This section describes calling conventions which are not covered explicitly in Macintosh Runtime
Architectures ([2]).  See Macintosh Runtime Architectures  for details on the Macintosh PowerPC
parameter passing conventions.

2 . 2 . 1 Passing and Returning Long Longs

Long longs are a 64-bit integral data type.  They are represented in memory by two adjacent longs,
the first containing the high-order 32 bits and the second containing the low-order 32 bits.

Long long parameters occupy two words in the parameter area and will be passing in registers if
they fall in the first eight words of the parameter area.

Long long function return values are returned in the R3/R4 register pair.
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2 . 2 . 2 Passing and Returning Long Doubles

Long doubles are a 128-bit floating point data type.  They are represented in memory by two
adjacent doubles, the first containing the high-order 64 bits and the second containing the low-
order 64 bits.

Long double parameters occupy four words in the parameter area will be passing in floating point
registers if they fall in the first eight words of the parameter area.

Long double function return values are returned in the FPR1/FPR2 floating point register pair.

2 .3 Open Issues - Calling Conventions

1. When chars or shorts are passed in a register are the upper bytes of the register undefined?
Or do we expect the caller or the callee to sign extend the value if appropriate?  Macintosh
Runtime Architectures  indicates that the high order bits are undefined.

2. Consider returning small structures by value.  Currently structures are returned by reference
via a hidden temporary passed to the function, regardless of the size of the structure.

3 . Macintosh PowerPC Compiler ABI

The Macintosh compiler ABI covers conventions which apply to compilers targeting the Macintosh
architecture.  Conventions such as object module formats apply to compilers independent of their
target language.  Other conventions are language dependent, such as alignment and bit field rules
which apply to C and C++ compilers.  The C++ language requires quite a few conventions to
support its set of language features.  A common set of conventions must be followed in order for
compilers to produce code that will be link compatible and will interoperate with code produced by
other compilers.  These conventions are discussed in the following sections.

3 .1 Object Module Formats

Object module formats specify the format of the output of compilers which, in turn, is input for
linkers and, sometimes, debuggers.  An object file includes code, data descriptions and
initializations, fixup information for relocating code, and information to support symbolic
debugging.

Integrated development environments (IDEs) may have their own internal conventions for object
formats, but should have provisions for importing and exporting object files for use with other
systems.  This section identifies the standard object formats for the Macintosh.

3 . 1 . 1 PowerPC Macintosh Object Module Format - XCOFF

The object module format for PowerPC Macintosh architecture is XCOFF.  The XCOFF format is
documented in "AIX XCOFF Object and Load Module Format for IBM RISC System/6000" [5].

The XCOFF format has been extended for use on the PowerPC Macintosh as indicated in the
following section.
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3 . 1 . 1 . 1 XCOFF Extension to Identify Imports and Exports

Motivation

The goal of this extension to XCOFF is to allow translators such as compilers and assemblers to
provide linkers/binders with more information about the imports and exports of DLLs in order to
simplify the build process for such libraries and to enable more efficient code generation.  It is also
a goal to minimize the impact of such an extension to the XCOFF format so that tools processing
XCOFF files will require modification only if they wish to process the new information.

The document "C Compiler Pragmas for Macintosh “CFM” Runtime" [4] describes the pragmas
used to identify exports and imports in C and C++ programs.  In this section we describe how this
information can be passed from the compiler to the linker via the generated XCOFF file.

XCOFF Change

Import and export information will appear in two new XCOFF sections, named “.import” and
“.export”.  The type (s_flags) of these new sections will be STYP_INFO identifying them as
comment sections.  As such, they should be ignored by any well-written XCOFF tool which does
not know or care about them.

The format of the contents of these sections will be names in STAB string format.  The section
begins with a four byte length, which is the length of the comment section, not including the 4
length bytes.  The contents of the section will then  consist of a sequence of strings with two-byte
lengths and NULL terminators, where the length is the length of the string including the NULL
terminator but not including the two length bytes.

The section headers for these new sections should specify the following fields: s_name (“.import”
or “.export”), s_size (size in bytes of the section), s_scnptr (offset from the beginning of the
XCOFF file to the first byte of the section data), and s_flags (STYP_INFO).  The remaining
section header fields should be zero.

When processing the new sections when creating a statically linked library a linker should
concatenate the contents of any “.export” sections to create the “.export” section for the library, and
similarly for “.import” sections.

3 .2 Compiler Support Libraries

This section covers issues pertaining to language support libraries.



Macintosh C/C++ ABI  Standard Specification December 5, 1996

Fred Forsman 6 Copyright Apple Computer, Inc. 1995-6

3 . 2 . 1 Runtime Routines with Special Calling Conventions

The ABI would benefit from defining a common set of compiler runtime-support routines with
special calling conventions which the compiler can call with less overhead than a normal routine.
For example, the compiler could know which volatile registers remain unchanged when calling
such routines.

<Candidates for such routines need to be identified.>

3 . 2 . 2 Names for Compiler Runtime-support Routines

Even if a compiler conforms to the ABI, there may still be the potential for conflicts when linking
with the output of other compilers if the compilers make use of runtime-support routines whose
names may collide with those provided by other vendors which may not follow the same calling
conventions.

Mangling the names of runtime-support routines provides only a partial solution, limiting collisions
to routines with the same names and signatures which is still not a guarantee that they implement
the same function.

To ensure that there are no collisions, runtime-support routines should have names which contain
some unique (vendor-specific) tag tying the routine to the corresponding compiler.  In addition, the
ABI could specify the names and functions of standard runtime-support routines to be made
available to all compilers on the platform.

3 .3 C Compiler ABI

This section defines the conventions which apply to compilers supporting the C language.

3.3 .1 Alignment and Bit Field Layout

This section defines the rules for alignment of data objects and the layout of bit fields.1  The
compiler's alignment mode can typically be controlled by command line options, environment
settings or pragmas.  The pragmas controlling alignment modes are described in Appendix 1.

Alignment is involved in five areas of memory allocation: local and globals (free standing
variables), parameters, heap variables, and members of structures.

This section defines the alignment rules for members of structures and array elements, as well as
for allocation of local and global variables.

The alignment for parameters is set by the calling conventions of this ABI, not by these rules.

Since alignment of local variables is relative to the stack pointer, and there is no hardware or OS
enforcement 16 byte alignment of the stack pointer, physical alignment of locals is not assured.
Today's compiled code generally insure 8 byte alignment  of the stack pointer.

1 These rules were derived early in Apple’s PowerPC program from alignment rules supported by IBM’s xlc
compiler and from alignment rules supported by Apple’s Macintosh 68K C compiler.
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This ABI does not specify the actions of memory allocators for heap variables.  It is expected that a
general purpose allocator return memory aligned relative to the size of allocation.

Many environments (ABIs) on other platforms support only one alignment mode, a natural
alignment mode, sometimes made from a compromise between performance and space
requirements.  By contrast, this ABI defines and condones multiple alignment strategies.  The
presence of multiple alignment modes causes situations that single mode environments never have
to deal with.  This specification attempts to clarify the interactions of the different alignment modes
by separating aspects of alignment that most other ABIs don't attempt to and don't need to.  For
example, allocating a "short" variable is addressed separately from embedding a "short" in a struct.

Each data type has two alignments: a natural alignment, which is fixed, and an embedding
alignment, whose interpretation can change.  Embedding alignment is controlled by the
alignment mode.

The alignments of an enumeration data type and the int data type are the same as the alignments of
the basic type (char, short, long) of the same size.

Alignment of elements in aggregates can result in pad bytes.  Pad bytes in static objects should be
initialized with zero.

3 . 3 . 1 . 1 Natural Alignment

The natural alignment of the type of is used whenever an instance of that type, a local or global,
is allocated to memory or assigned a memory address.

A natural alignment for each basic type is set by this ABI and is defined with processor
performance in mind.

Data Type Natural Alignment
char 1
short 2
long 4

pointer 4
float 4

double 8
long long 8

long double 16

The natural alignment for an aggregate type is the maximum of the natural alignments of its
members.

NOTE: It is recommended that compilers use the following formula to choose the alignment for
local and global aggregate variables instead of using the natural alignment :

size of 1 byte -> alignment of 1 byte
size of 2-3 bytes -> alignment of 2 bytes
size of 4-7 bytes -> alignment of 4 bytes
size of 8-15 bytes -> alignment of 8 bytes
size of 16 byte or more -> larger of 8 and the embedding alignment of the variable's type
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This will result in more alignment than the mandatory minimum natural alignment for variables of
certain types, but there are good reasons why this is recommended.  First, consider a variable of
type struct or array consisting of 256 characters.  Though none of the embedding members require
alignment greater than 1 byte, an operation such as copying the entire array will almost certainly
benefit greatly from 8 byte alignment of the overall variable.  Cache performance will probably
improve with the additional alignment.  The second reason is more practical, that compilers need
not maintain an internal value for the natural alignment for each aggregate type (computed from its
members), but rather may simply compute it from the total size whenever it is needed.

3 . 3 . 1 . 2 Embedding Alignment and Alignment Mode

The embedding alignment of a type is combined with the current alignment mode and used
when computing the offset for an instance of that type (a member) within a struct.

The embedding alignment of a type is determined when the type is declared. For basic types the
embedding alignments under various modes is given in the table below.

The alignment of an array element or structure member is the lesser of the embedding alignment of
the type of the element or field and the "aggregate" alignment below, determined by the current
alignment mode.

The embedding alignment of an aggregate type is the largest of the resulting alignments of its
constituents**.  The total size of a struct or union is rounded up to a multiple of its embedding
alignment**.

This ABI defines 4 alignment modes: “power”, “mac68k”, “packed” and “natural”.

Data Type power mac68k** packed natural
char 1 1 1 1
short 2 2 1 2
long 4 2 1 4

pointer 4 2 1 4
float 4 2 1 4

double 4 (8) * 2 1 8
long long 4 2 1 8

long double 4 2 1 16
aggregate 4 (8) * 2 1 16

* When in power alignment mode, a special exception is made when the first embedding element
of a struct or any element of a union has the data type of double -- in this case, the embedding
alignment for all (directly included/top level) double members in the aggregate is 8.  By the rules of
computing the embedding alignment for the struct being declared, this will also cause the
embedding alignment of the entire struct or union to be at least 8 as well.  The aggregate table entry
for power is 8 for such structs.

** In mac68k alignment mode, all struct and union types have a size which is rounded up to an
even byte count.  The embedded alignment for all struct and union types is 2.

Example
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The alignment mode is set to "power", and a struct, X, containing two longs is declared.  It has a
size of 8 and an embedding alignment of 4.  If the alignment mode is then switched to "packed"
and a struct Y is declared as one char followed by an X, the member of type X begins at an offset
of 1 and the embedding alignment of Y is 1.  If the alignment mode is then set to "natural", and a
struct Z is declared as a short followed by a char followed by a Y, the member of type Y begins at
an offset of 3 and the embedding alignment of Z is 2.

3 . 3 . 1 . 3 Bit Fields

There are two methods for laying out bit fields--"mac68k" and "power"--depending on the
alignment mode.  The differences are mainly historical, however the mac68k method can result in
fewer bytes allocated for a series of bit field definitions.  The "mac68k" bit field rules are in effect
in the "mac68k" and "packed" alignment modes, while the "power" bit field rules are in effect in
the "power" and "natural" alignment modes.

The mac68k bit field rules are as follows:

1. A bit field may be declared with any integral type, including an enumeration type, or
“char”, “short”, or “int”, either “plain”, “signed”, or “unsigned”, just as in C++.  This
type has no effect on how space for the field is allocated.  For example, a bit field may
be declared with type “char”, yet the given width of the field may be more than the
number of bits in a byte.  The type is ignored, and the specified number of bits is
allocated for the field.

2. The type determines whether the field is signed or unsigned.  A bit field declared as
plain “int” shall be a signed field.

3. A bit field may be named or unnamed.  No reference can be made to an unnamed bit
field.  Unnamed bit fields of static objects are initialized to zero.

4. A single bit field may have a width of no more than 32-bits.  A named bit field may
have a width of no less that 1-bit.  An unnamed bit field may have a width of 0 bits.

5. A single bit field may not span a 4-byte boundary. Bit padding will be added to cause a
field that would otherwise span a 4-byte boundary to start at the next 4-byte boundary.

6. A zero-width bit field takes no space and results in no padding.
7. One or more sequential bit fields are packed into a single unit.  This will be referred to

here as a bit field group.
8. A bit field group will be allocated starting at the next byte boundary, or the current byte

boundary if the previous element ended on a byte boundary, except as in rules #5 and
#6.  A bit field group is allocated in the minimum number of bytes needed to contain all
the fields of the group, either 1, 2, 3, or 4 bytes, regardless of the declared type(s) of
the bit field(s).  Another way to say this is that bit fields are packed into the current 4-
byte unit, in the minimum amount of space, immediately following (if possible)
whatever element started at the previous 4-byte boundary.

9. A bit field group ends at the next 4-byte boundary, because of rule #5.  Thus a bit field
group is no more than 4-bytes wide.  A single bit field that would otherwise span a 4-
byte boundary will start the next bit field group at the next 4-byte boundary.

10. The fields of a bit field group will be packed into the group from high-order to low-
order.

11. The preferred alignment of a bit field group is 1-byte.
12. It is NOT legal to perform the “sizeof” operator on a bit field.
13. It is not legal to take the address of a bit field.

The power bit field rules are the same as those for the mac68k, except for the following rules:
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1. In the strict ANSI mode, a bit field may be declared with only the types “int”, “signed
int”, or “unsigned int”.  In the relaxed ANSI mode, a bit field may be declared with any
integral type, except an enumeration.

2. The type determines whether the field is signed or unsigned.  A bit field declared as
plain “int” shall be an unsigned field.

4. The given width of a bit field may be no larger than can be contained in the declared
type.  Thus, a “char” bit field may have a width of no more than 8-bits.

6. A zero-width bit field forces alignment of the next structure element (either bit field or
other member) on the next 4-byte boundary, or the current 4-byte boundary if the
previous field ended on a 4-byte boundary.  Thus, a zero-width bit field may not force
padding in all instances.

11. The preferred alignment of a bit field is the same as its declared type.

3 . 3 . 1 . 4 Open Issues - Alignment

1. Alternate schemes for how bit fields should work in the new “packed” alignment mode will
be considered.  The current proposal is obviously based on the “mac68k” mode treatment of
bit fields.

2. There may be interest some day in 64 bit wide bit fields based on long longs.

3 .4 C++ ABI

This section describes ABI conventions for C++ compilers for the Macintosh which should be
followed in order to produce objects which are link compatible with other Macintosh compilers.

3.4 .1 Name Mangling

This section describes how C++ compilers for the Macintosh should implement name mangling in
order to be link compatible with other Macintosh compilers.

Name mangling was originally developed to distinguish overloaded functions in C++ by encoding
the type signature of functions in their names.  Over time name mangling has developed into a
means for providing type-safe linking.  The presumption of this approach to type-safe linking is
that linkers are typically not “smart” or easy to change, so virtually all of the work is done in the
compiler.

While the C++ ARM [1] presents “one scheme” for name mangling, which was partially
institutionalized in CFront, various compilers have chosen to depart from the original scheme,
occasionally in major (e.g., templates) and often in minor ways.  Because the ARM’s description
of name mangling is “commentary” it is not an official part of the language standard.  However, a
consistent mangling scheme is necessary for binary interoperability of code produced by different
compilers, so a standard for C++ name mangling on the Macintosh is needed.

3 . 4 . 1 . 1 Name Mangling and Interoperability

Interoperability of code produced by different compilers is often undermined by the compilers' use
of different mangling schemes.  One may encounter this issue when using a library produced by a
different compiler.  Problems may occur with both statically-linked and dynamically-linked shared
libraries.
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There are two categories of name mangling interoperability problems: (1) functions which are
compatible but which are given different mangled names by different compilers, and (2) functions
which are not link compatible but which are given the same mangled name by different compilers.
The first problem can be addressed by encouraging all compilers to support the same name
mangling standard.  The second problem can come about from compilers using different calling
conventions for the same function (such as how to pass an object by value), in which case the
mangling conventions should provide mechanisms to distinguish the use of different calling
conventions.

The C++ ARM has the following to say on this second type of incompatibility:

If two C++ implementations for the same system use different calling sequences or in other
ways are not link compatible it would be unwise to use identical encodings of type
signatures.  Such implementations might agree on using encodings that differ by a single
character where incompatibilities exist (only).  [1, §7.2.1c]

This would indicate that compilers should be required to generate incompatible mangled names
until they conform to the platform's standard calling conventions.

3 . 4 . 1 . 2 The Rules of Mangling

The names of all externally-known C++ entities -- methods, functions, v-tables, etc. -- should be
mangled except for those that are declared to be ‘extern “C”’.2

 <mangled_name> ::= <entity_name> "__" [<class_name>] <type>

When a name is mangled, the function name is followed by "__" and the encoded type signature.
The two underscores ("__") are the signal indicating that the name is mangled.  If the function is a
member of a class, the class qualification is encoded before the type signature.

 <entity_name>  ::= <id> | <special_name>
 <special_name>   ::= "__ct" | "__dt" |

    "_vtbl" | "_rttivtbl" | "_vbtbl" |
    "__rtti" | "__ti" | "___ti" |
    "__op" <type> | "__" <op>

Entity names can be either an <id> (a normal identifier or name as permitted by the language) or a
special name in the case of constructors (“__ct”), destructors (“__dt”), vtables (“_vtbl” or
“_rttivtbl”), virtual base class tables (“_vbtbl”), run-time type information (“__rtti”, or
“__ti”, or “___ti”) or operator functions.  Constructors and destructors are identified by their
<class_name> and type signature.  The "__op" form of <special_name> is used for types as
conversion operators.  Operator functions are encoded using special operator names (<op>) from
the table below.

operator <op>
"new" "nw"
"new[]" "nwa"
"delete" "dl"

2 A compiler may choose to mangle static function names in order to deal with the overloading of such functions,
but this is not an ABI issue or requirement.
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"delete[]" "dla"
"+" "pl"
"-" "mi"
"*" "ml"
"/" "dv"
"%" "md"
"^" "er"
"/=" "adv"
"&" "ad"
"|" "or"
"~" "co"
"!" "nt"
"=" "as"
"<" "lt"
">" "gt"
"+=" "apl"
"-=" "ami"
"*=" "amu"
"%=" "amd"
"^=" "aer"
"&=" "aad"
"|=" "aor"
"<<" "ls"
">>" "rs"
">>=" "ars"
"<<=" "als"
"==" "eq"
"!=" "ne"
"<=" "le"
">=" "ge"
"&&" "aa"
"||" "oo"
"++" "pp"
"--" "mm"
"()" "cl"
"[]" "vc"
"->" "rf"
"," "cm"
"->*" "rm"

If the entity is a member of a class, the <class_name> is encoded immediately following the "__"
and before the type signature.

 <class_name> ::= <qualified_name>
 <qualified_name> ::= 'Q' <count> <qual_name_list>
 <count> ::= <terminated_int>
 <terminated_int> ::= <int> '_'
 <int> ::= <digit> | <int> <digit>
 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 <qual_name_list> ::= <qual_name> | <qual_name_list> <qual_name>
 <qual_name> ::= <l_name> |

    <parameterized_type>
 <l_name> ::= <int> <id>
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If the entity is a member of a class, the class information is encoded as a <qualified_name>
which is a list of names (more than one if there are nested classes).  A <qualified_name> is
introduced by a 'Q' followed by the <count> of the number of names in the following
<qual_name_list>.

The <count> is a <terminated_int> which is an <int> followed by an underbar ('_') to
separate the integer from what follows (which may begin with a digit).  An <int> is a base 10
representation of a value using decimal digits with no leading zeros.

The <qual_name_list> is a list of <qual_name>’s which may be either an <l_name> (consisting
of a length and the characters making up the name) or a <parameterized_type> (discussed
further below).  If there is more than one name in the qualified name list, the names appear from
left to right in outer-to-inner order.

The type of a named entity is represented in one of several different ways depending on whether
the entity is an instance of a basic type, a class, an array, or a function.

 <type>           ::= <basic_type> |
    <qualified_type> |
    <class_name> |
    <array_type> |
    <function_type>

The syntax for basic types is as follows:

 <basic_type>     ::= <int_type> |
    <other_base_type>

 <int_type>    ::= [<sign_mod>] <int_base_type>
 <sign_mod> ::= 'S' | 'U'
 <int_base_type>    ::= 'b' | 'c' | 's' | 'i' | 'l' | 'x' | 'w'
 <other_base_type> ::= 'f' | 'd' | 'r' | 'v' | 'e'

A <basic_type> can be either an <int_type> which can be modified by a <sign_mod> to
indicate whether it is signed ('S') or unsigned ('U').  Otherwise a <basic_type> can be an
<other_base_type> which includes the floating point types, void, and ellipsis.

Even though <basic_type>s which are declared without an explicit <sign_mod> attribute are
considered to be signed, they should be encoded to reflect whether the <sign_mod> attribute was
present or not since this distinction is significant for function overloading.  Thus something
declared as an "int" should be encoded as "i", an "unsigned int" as "Ui", and a "signed
int" as "Si".

The encodings for basic types are given in the following table:

type encoding
bool ‘b’
char ‘c’
double ‘d’
... ‘e’
float ‘f’
int ‘i’
long ‘l’
long double ‘r’



Macintosh C/C++ ABI  Standard Specification December 5, 1996

Fred Forsman 14 Copyright Apple Computer, Inc. 1995-6

long long ‘x’
short ‘s’
void ‘v’
wchar_t ‘w’

Note that a conformant compiler must support all of the above types as basic types in order to
produce correct mangled names for entities containing these types in their type signatures.  Thus,
for example, a compiler in which "bool" is a predefined type will produce a different mangled
name for "void f(bool)" than would a compiler for which "bool" must be provided by a
typedef.

A type can be qualified using the following syntax:

 <qualified_type> ::= [<cv>] [<type_qualifier_list>] <type>
 <type_qualifier_list> ::= <type_qualifier> |

    <type_qualifier_list> <type_qualifier>
 <type_qualifier> ::= 'R' | 'P' | 'M' <type>
 <cv>     ::= 'C' | 'V' | 'CV'

The optional <cv> allows for the specification of whether the type is a const or volatile type.  The
optional <type_qualifier_list> allows for the specification of a variety of type modifiers.
When more than one <type_qualifier> is present they are interpreted from right to left.  The
meaning of the various qualifiers is given in the following table:

type syntax encoding
pointer “*” ‘P’
reference “&” ‘R’
pointer to member “::*” ‘M <type>’

The syntax for encoding types which represent arrays is as follows:

 <array_type> ::= <dimension_list> <type>
 <dimension_list>     ::= <dimension> | <dimension_list> <dimension>
 <dimension>      ::= 'A' <terminated_int>

An array type is encoded as a <dimension_list> and a <type> representing the base type of the
array.  Each <dimension> is encoded with an 'A' followed by a <terminated_int> representing
the array dimension in decimal.

The syntax for encoding types which represent functions is as follows:

 <function_type> ::= 'F' <param_list> ['_' <return_type>]
 <param_list> ::= <param> |

    <param_list> <param>
 <param> ::= <type>
 <return_type> ::= <type>

An 'F' is used to encode a function type.  The signature of the function is given by its
<param_list>.  The parameter list consists of one or more parameters (<param>).  A parameter is
specified by its <type>.3

3 Two conventions exist for a more concise encoding of repeated parameters, using the following syntax:
 <param> ::= <type> |

    'T' <index> |
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Note: A function with no parameters should be encoded as having a “void” parameter, e.g.,
“foo__Fv”.

Note: A function with no explicit parameters other than ellipsis should be encoded as having a
“...” parameter, e.g., “foo__Fe”.

When the entity whose name is being mangled is a function, no <return_type> is specified at the
end of its <function_type> signature.4  On the other hand, if a <function_type> is being used
to specify a function typed parameter in the <param_list> of another <function_type> a
<return_type> must be specified, even if void.

When the name being mangled represents a class or parameterized type it is encoded using the
<class_name> syntax discussed above.  The syntax for encoding parameterized types is as
follows:

 <parameterized_type> ::= <int> <pt>

Parameterized types are encoded by an <int> representing the length of the parameterized type
encoding followed by <pt> which represents the template name and instance parameters.
Parameterized types are encoded according to the following syntax:

 <pt> ::= "__PT" <template_name> <pt_param_list>
 <template_name> ::= <l_name>

A parameterized type is introduced by "__PT" and is followed by the <template_name> (an
<l_name>) and then the <pt_param_list>, the parameter list of the parameterized type.  The
parameters are encoded according to the following syntax:

 <pt_param_list> ::= <pt_param> | <pt_param_list> <pt_param>
 <pt_param> ::= <type> | <expr>

A <pt_param_list> consists of a list of one or more parameters, each of which may be either a
<type> or an <expr>.  Expressions in the parameter lists of parameterized types are encoded
according to the following syntax:

 <expr>  ::= 'V' <value>
 <value>  ::= <reference> |

    <num_value>

    'N' <rep_count> <index>
 <rep_count> ::= <digit>
 <index>     ::= <digit>
Using this scheme, a parameter may either be specified by its <type> or, if its type has already appeared in the
parameter list, by a special form indicating that it has the same type as a previous parameter.  The 'T' form
indicates that the current parameter has the same type as the parameter indicated by <index> (using 1-based
indices).  The 'N' form indicates that the next <count> parameters have the same type as the parameter indicated
by <index>.  We choose not to use these conventions because either there must be explicit rules for when they
are to be used or else they introduce incompatible names for link compatible functions.

4 The rationale for omitting the function’s return type signature given in pages 126-7 of The Annotated C++
Reference Manual ([1]) is that this allows linkers to identify when there are two functions with the same name
and arguments lists but different return types, something which is not allowed in C++.
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An <expr> in a <pt_param_list> is encoded using a 'V' followed by a <value>.  A value may
be encoded in a number of ways depending on its type, according to the following syntax:

 <reference>  ::= 'R' <count> <characters>
 <num_value> ::= 'N' <count> <characters>
 <characters> ::= <any_char> | <characters> <any_char>
 <any_char> ::= any ASCII char

Values may be expressed by addresses or numeric values.  A reference value (representing
something beginning with ‘&’) is encoded with an 'R' followed by a <count> and a string of
characters.  Numeric values (<num_value>) are encoded with an 'N' followed by a <count> and a
string of characters representing the value after it has been reduced to an integer value.

3 . 4 . 1 . 3 The Grammar for Mangled Names

The following is the complete grammar for mangled names.

 <mangled_name> ::= <entity_name> "__" [<class_name>] <type>
 <entity_name>  ::= <id> | <special_name>
 <special_name>   ::= "__ct" | "__dt" |

    "_vtbl" | "_rttivtbl" | "_vbtbl" |
    "__rtti" | "__ti" | "___ti" |
    "__op" <type> | "__" <op>

 <op> :: see table

 <class_name> ::= <qualified_name>
 <qualified_name> ::= 'Q' <count> <qual_name_list>
 <count> ::= <terminated_int>
 <int> ::= <digit> | <int> <digit>
 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 <terminated_int> ::= <int> '_'
 <qual_name_list> ::= <qual_name> | <qual_name_list> <qual_name>
 <qual_name> ::= <l_name> |

    <parameterized_type>
 <l_name> ::= <int> <id>
 <parameterized_type> ::= <int> <pt>

 <type>           ::= <basic_type> |
    <qualified_type> |
    <class_name> |
    <array_type> |
    <function_type>

 <basic_type>     ::= <int_type> |
    <other_base_type>

 <int_type>    ::= [<sign_mod>] <int_base_type>
 <sign_mod> ::= 'S' | 'U'
 <int_base_type>    ::= 'b' | 'c' | 's' | 'i' | 'l' | 'x' | 'w'
 <other_base_type> ::= 'f' | 'd' | 'r' | 'v' | 'e'

 <qualified_type> ::= [<cv>] [<type_qualifier_list>] <type>
 <type_qualifier_list> ::= <type_qualifier> |

    <type_qualifier_list> <type_qualifier>
 <type_qualifier> ::= 'R' | 'P' | 'M' <type>
 <cv>     ::= 'C' | 'V' | 'CV'
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 <array_type> ::= <dimension_list> <type>
 <dimension_list>     ::= <dimension> | <dimension_list> <dimension>
 <dimension>      ::= 'A' <terminated_int>

 <function_type> ::= 'F' <param_list> ['_' <return_type>]
 <param_list> ::= <param> | <param_list> <param>
 <param> ::= <type>
 <return_type> ::= <type>

 <pt> ::= "__PT" <template_name> <pt_param_list>
 <template_name> ::= <l_name>
 <pt_param_list> ::= <pt_param> | <pt_param_list> <pt_param>
 <pt_param> ::= <type> | <expr>
 <expr>  ::= 'V' <value>
 <value>  ::= <reference> |

    <num_value>
 <reference>  ::= 'R' <count> <characters>
 <num_value> ::= 'N' <count> <characters>
 <characters> ::= <any_char> | <characters> <any_char>
 <any_char> ::= any ASCII char

3 . 4 . 1 . 4 Open Issues - Name Mangling

1. Should the places mangling syntax uses an <int> to indicate a number be modified to use a
<terminated_int>, an integer terminated by an underscore, as is already used elsewhere in
the grammar?  In these cases an int without an underscore is unambiguous; however, there may
be too many forms of encoding counts without any clear tradeoffs motivating the different
forms.

2. Numeric values in parameterized types need to be represented by canonical strings.  Floating
point values in particular are problematic due to the need for a standardized, normalized
representation.

3. Is there any need to impose limits on lengths of names?

4. Assignment-expressions are now allowed in template definitions to express default values.  A
mechanism is needed to express this in a mangled name for a template.

5. Name mangling should distinguish between classes that are declared locally in functions since
two such classes may generate names (e.g., for v-tables) which conflict at link time.

6. The name mangling rules need to cover how namespaces impact mangling.  One simple scheme
is let the namespace act like an enclosing class, making use of the existing mechanism for
mangling the names of enclosing classes.

7. Categorizing wchar_t as a basic type is a problem since it can change from one implementation
to another and can range in size from a char to an unsigned long.  Either wchar_t must have a
fixed size in the Macintosh API or the mangling must distinguish the possible sizes.

Resolved Issues

1. Should the Pascal attribute on a function be considered to be part of the mangling signature?
The Pascal attribute doesn’t make any difference in the PowerPC calling conventions;
however, it is significant for 68K calling conventions.  One suggestion is that functions with
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the Pascal attribute should not have their names mangled, but instead the name should be
converted to upper case.
Resolution:
The Pascal attribute should be ignored in the mangling of function names for the PowerPC.

3.4 .2 Class Object and V-Table Layout

In this section the layout of class objects and vtables are described using a C-like struct syntax.

There are a variety of cases of class object layout depending on whether the class is simple,
whether it inherits from one or more other classes, whether it has virtual base classes, and whether
it has virtual functions.

3 . 4 . 2 . 1 Simple Classes

class X {
<members>

};

struct {
<members>

};

Members within a class are aligned according to the same rules that govern structure alignment.
The alignment will be done according to the alignment mode in effect at the declaration of the class.
Consider the following example:

#pragma options align=mac68k
class c0 {

short s;
long l;

};
#pragma options align=power
class c1 {

short s;
long l;

};

Given the different alignment modes in effect for each of the declarations, the long in class c0 will
be aligned at offset 2, while the long in class c1 will be aligned at offset 4.

3 . 4 . 2 . 2 Single Inheritance Classes

class X: <base> {
<members>

};

struct {
<base>
<members>

};
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A base class is laid out in a derived class as if the first member of the derived class is the struct
representing the base class.  Subsequent members are laid out following the general rules
governing structure alignment with the exception of the case where the base class has no explicit or
implicit (e.g., compiler generated table pointers) data members (i.e., it is empty).  In this case the
subsequent members are aligned where the empty base class begins, rather than following the
bytes (depending on the alignment mode in effect) usually allocated for empty structs which are
normally not permitted to have zero size.

If the base class or the derived class has virtual functions then the class will begin with a 4-byte
entry for a virtual function table pointer, which is discussed in the section on "Virtual Function
Table (vtable) Pointers" below.

3 . 4 . 2 . 3 Multiple Inheritance Classes

class X: <base1>, ..., <baseN> {
<members>

};

struct {
<base1> // non-virtual direct base classes in lexical order
... //  except that base classes with virtual functions
<baseN> //  go first
<members>

};

The base classes are laid out in lexical order, however, all non-virtual bases classes which have
virtual functions are moved "to the front" so that sub-objects for them will precede sub-objects for
base classes without any virtual functions.  This facilitates sharing of the vtable pointer slot.  (See
section 3.2.6 below.)

3 . 4 . 2 . 4 Virtual Inheritance Classes

class X: <base1>, ..., <baseN>, virtual <vbase1>, ..., <vbaseM> {
<members>

};

struct {
<vbtable ptr> // pointer to table of virtual base class offsets
<word> // currently unused
<base1> // non-virtual direct base classes in lexical order
... //  except that base classes with virtual functions
<baseN> //  go first

<members> // This class’ members

<vbase1> // all direct and indirect virtual base class
... //  sub-objects in canonical order
<vbaseM>

};

A derived class with virtual base classes will contain a pointer to a table of virtual base class
offsets.  Thus, instead of having a pointer for each virtual base class in the object, there is a single
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pointer for the virtual base class table.5  In simple cases, this vbtable pointer will be the first
member (i.e., its offset will be zero).

The vbtable pointer can have an offset greater than zero if:
• there is a virtual function table, in which case the virtual function table pointer slot will

precede that of the virtual base table pointer, or
• any of the non-virtual direct base classes has a vbtable, in which case the first such base

class sub-object's vbtable pointer slot will be used for the derived class's vbtable pointer.

3 . 4 . 2 . 5 Virtual Base Class Offset Tables (vbtables)

Every class with one or more virtual base classes will have a single vbtable object named
"_vbtbl__<class_name>", where <class_name> is the mangled name of the owning class.

Every vbtable entry is four bytes long.  The first entry is always zero, representing the offset of the
derived class in itself, and is followed by one entry for each direct or indirect virtual base,
containing the virtual base's offset.  Each offset is the address of the virtual base object within the
most-derived object, relative to the address of the vbtable pointer itself.

Example:

Here we have a simple virtual base class, inherited by a derived class which has a virtual function:

struct B { int bm; };
struct D : virtual B {

virtual void f();
int dm;

};

This will give us a D object like this

0 vf-table-ptr
4 vb-table-ptr
8 dm
12 bm

and a vb-table that looks like this:

vb-table 0
8

The 8 means that D's virtual base sub-object B is 8 bytes beyond the D’s vbtable pointer, or 12
bytes from the start of a D.

Another Example:

In this case, we have a virtual base class which is inherited indirectly.  This allows the derived
class to share its vbtable pointer with one of its base classes.

struct B { int bm; };

5 The Metrowerks compiler has a pointer for every virtual base class in the object.
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struct V { int vm; };

struct C : virtual V { int cm; };

struct D : B, C {
int dm;

};

This D object will be laid out as follows:

0 bm
4 xxxxx
8 vb-table-ptr
12 cm
16 dm
20 vm

The vb-table for this D object will look like this:

vb-table 0
12

The 12 means that D's virtual base sub-object V is 12 bytes beyond the D’s vbtable pointer, or 20
bytes from the start of a D.

3 . 4 . 2 . 6 Virtual Function Table (vtable) Pointers

Every class with any virtual functions will have a virtual function table ("vtable") which is used for
indirect dispatch of the virtual functions.  Each object of a class with virtual functions will have a
virtual function table pointer slot.  When present, the vtable pointer slot is allocated at offset zero.

If the first non-virtual base class also has a vtable pointer, the derived class will "share" it by
allocating the first base class at offset zero so that its vtable pointer slot will coincide with that of
the derived class.  If some of the base classes have vtables and others don't, the base classes will
be reordered so that the base classes with vtables are first, in order to facilitate the sharing of the
vtable pointer.  If the derived class has its own vbtable pointer the vtable pointer slot will not be
shared.  Note that the base classes will be reordered regardless of whether the vtable pointer is
actually shared.

The following examples illustrate the various cases of sharing and not sharing vtable pointer slots.

Simple case:

class X {
<members> // includes one or more virtual functions

};

struct {
void * <vtblptr>; // pointer to virtual function table
<members>

};
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Note that elements that are added implicitly to classes by the compiler (such as vtable pointers)
affect the preferred alignment of the class to which they are added.  Thus, in the power alignment
mode, a class with virtual functions and containing a single char will have a preferred alignment of
4 and a size of 8 (due to the vtable pointer), as opposed to a preferred alignment of 1 and a size of
1 (as would be the case if the class had no virtual functions and no vtable pointer).

Sharing, non-virtual base:

class X: <base> {
<members> // includes one or more virtual functions

};

struct {
<base>; // reuse base's vtable ptr slot
<members>

};

Sharing, reordering of multiple non-virtual bases:

class Y {
<members> // includes no  virtual functions

};
class Z {

<members> // includes one or more virtual functions
};
class X: Y, Z {

<members> // includes one or more virtual functions
};

struct {
<Z>; // reordered to reuse Z's vtable ptr slot
<Y>;
<members>

};

Note that if X had virtual base classes, then the vtable pointer should be followed by the vbtable
pointer.  In this case, X would not share Z's vtable pointer slot because X's vbtable pointer could
not immediately follow the vtable pointer since, in order to share Z's vtable pointer, all of Z has to
appear at offset zero, conflicting with the required location for X's vbtable pointer.

3 . 4 . 2 . 7 Pointers to Members

Pointers to data members and pointers to member functions require different treatment.

3 . 4 . 2 . 7 . 1 Pointers to Data Members

Pointers to data members have 3 fields: (1) the data member offset "in its class", (2) the offset to
the vbptr, and (3) the virtual base index (always greater than 0 if this is a pointer in a virtual base).
Here "in its class" means the offset in the most derived class unless the member comes from a
virtual base, in which case the offset is the offset in the virtual base.

struct ptdm {
unsigned int dmoff; // data member offset "in its class"
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unsigned int vbix; // index of vbase in vbtbl (or 0 if no vb)
unsigned int vbptroff; // offset to relevant vbtbl ptr, if any

};

The algorithm for dereferencing a ptdm is as follows:

Deref(ObjectAddress oa, PtrToDataMember ptdm) ==>
if ptdm.vbix == 0

// the ptdm is not from a virtual base
resultAddr = &oa[ptdm.dmoff];

else
// the ptdm comes from a virtual base
vbtpio = oa + ptdm.vbptroff;
vbt = *vbtpio;
vbo = vbt[ptdm.vbix];
vbio = vbtpio + vbo;
resultAddr = &vbio[ptdm.dmoff];

fi

3 . 4 . 2 . 7 . 2 Pointers to Member Functions

Pointers to member functions have 4 fields: (1) the address of the function or thunk, (2) the this-
ptr-delta, (3) the offset to the vbptr, and (4) the virtual base index (always greater than 0 if this is a
pointer in a virtual base).

struct ptmf {
void * address_of_func;
int this_ptr_delta; // adjustment to "this" pointer
unsigned int vbix; // index of vbase in vbtbl (or 0 if no vb)
unsigned int vbptroff; // offset to relevant vbtbl ptr, if any

};

The algorithm for calling a ptmf is as follows:

CallViaPTMF(ObjectAddress oa, PtrToMemberFunction ptmf, OtherArg...) ==>
if ptmf .vbix == 0

// the ptmf is not from a vitual base
pth = oa;

else
// the ptmf comes from a virtual base
vbtpio = oa + ptmf.vbptroff;
vbt = *vbtpio;
vbo = vbt[ptmf.vbix];
vbio = vbtpio + vbo;
pth = &vbio[ptmf.dmoff];

fi
pth += ptmf.this_ptr_delta;
CALL(ptmf.address_of_func, pth, OtherArgs...);

3 . 4 . 2 . 8 Virtual Function Tables (vtables)

Every polymorphic class will have a single virtual function table named "_vtbl__<class_name>"
where <class_name> is the mangled name of the owning class, for example, the vtable for class
XXX is "_vtbl__3XXX".
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If RTTI is enabled then name of the vtable is "_rttivtbl__<class_name>", and the table has an
additional pointer at its start which points to a type_info object.  The object's constructor will
initialize the vtable pointer by adding 4 to the _rttivtbl__<class_name> symbol, so as to skip the
RTTI pointer.  This makes the rest of the vtable similar to the non-RTTI case.  (For more details
see section 3.5 on Runtime Type Information.)

The rest of the vtable (the whole vtable when RTTI is disabled) contains pointers to member
functions (or thunks which in turn dispatch to member functions).

A class's vtable is a lexical-order concatenation of the vtables of its direct base classes (not
including the RTTI information), followed by the virtual function pointers unique to the class.  The
virtual function pointers are allocated in lexical order.  New virtual function pointers are appended
at the end of the vtable.  Virtual function pointers for overridden functions reuse the corresponding
slot in the area representing the base class vtable.6  Base classes that have no virtual functions have
no vtables and therefore do not have any effect on the vtable of the derived class.

Multiple non-virtual inherited vtables:

class X: <base1>, ..., <baseN> {
<members> // includes M virtual functions

};

struct {
<vtable base1>; // vtables from inherited base classes
<...>
<vtable baseN>;
<vfptr1>; // X's virtual function pointers
<...>
<vfptrM>;

};

Virtual inherited vtables:

class X: <base1>, ..., <baseN>, virtual <vbase1>, ..., <vbaseM> {
<members> // includes L virtual functions

};

struct {
<vtable base1>; // vtables from direct base classes
<...>
<vtable baseN>;
<vfptr1>; // X's virtual function pointers
<...>
<vfptrL>;
<vtable vbase1>; // all direct & indirect vbtables
<...>
<vtable vbaseM>;

};

6 The Metrowerks compiler only reuses the slot for an overriden virtual function if it is in a base class with a zero
offset.  In all other cases a new virtual function pointer is appended to the end of the derived class's vtable.
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3 . 4 . 2 . 9 Open Issues - Class Object and Vtable Layout

1. Should a class with nothing in it occupy any space when it is a base case of some other derived
class?  The base class by itself typically will be assigned a non-zero size.  The pertinent rules in
the language standard are as follows: (1) two different entities cannot have the same address;
(2) however, the first data member of a class/struct can have the same address as the class; and
(3) a base class can have the same starting address as the derived class (but perhaps only one
base class may do so in the case of multiple inheritance).

2. Is the space savings of having a vbtable worth the additional time overhead of the added
indirection to access virtual bases?  Do virtual bases occur frequently enough to make the space
issue dominate?

3.4 .3 Constructors and Destructors

The following sections describe conventions for constructor and destructor functions.

3 . 4 . 3 . 1 Constructors

Constructors take an implicit first argument which is the "this" pointer.  They have an implicit
return value which is also the "this" pointer.  Constructors for classes with virtual base classes
have a second implicit argument ("vbasearg") which will be 1 in the most derived constructor call.
Base constructor calls (from inside another constructor) will always pass a 0.  This allows virtual
base classes to be constructed only once.

Compilers implicitly generate constructor calls for base classes and members which are classes.
The constructor also sets up the vtable pointers in the object being constructed.

The following examples illustrate the two basic forms of constructors.

Constructor for class with no virtual bases:

C::C(<args>) { <user written body> }

C* __ct__<class_name> (C* const this, <args>)
{

// construct direct bases
// construct members (as needed)
// set up vtable pointers (if any)

<user written body>

return this;
};

Constructor for class with virtual bases:

C::C(<args>) { <user written body> }

C* __ct__<class_name> (C* const this, int vbasearg, <args>)
{

if (vbasearg != 0) {
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// set up virtual base pointers
// construct all direct & indirect virtual bases

}
// construct direct non-virtual bases
// construct members (as needed)
// set up vtable pointers (if any)

<user written body>

return this;
};

3 . 4 . 3 . 2 Destructors

Destructors take an implicit first argument which is the "this" pointer.  They have an implicit return
value which is also the "this" pointer.7

Compilers implicitly generate destructor calls for base classes and members which are classes.

The following examples illustrate the basic form of destructors.

C::~C() { <user written body> }

C* __dt__<class_name> (C* const this)
{

if (this != NULL) {
// set up vtable pointers (if any)

<user written body>

// destroy members in reverse order
// destroy direct base classes in reverse order

}

return this;
};

3 . 4 . 3 . 3 Static Constructors and Destructors

Static objects (those declared at the file level) require a special mechanism to enable their
construction and destruction.  This mechanism is based on a set of conventions recognized and
supported by compilers and linkers.

By convention, compilers will create routines with names prefixed by "__sinit__" and "__sterm__"
to identify code that provides for static construction and destruction.  Linkers will recognize these
names and create an array called "_cdtors".  The "_cdtors" array is used by the application's or
shared library's startup and termination routines to call the appropriate static ctor and dtor routines.

The "_cdtors" array is made up of pairs of 4-byte pointers.  The first element of each pair is the
"__sinit__" function pointer for the compilation unit or zero if an initialization function does not

7 The Metrowerks compiler passes an extra argument to the destructor which tells the destructor to destroy and
delete, to destroy without deleting, or to destroy without also destroying the virtual bases.
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exist, and the second element of the pair is the "__sterm__" function pointer or zero if a termination
function does not exist.  The array of pairs is terminated by a pair of 4-byte zeros.

3 . 4 . 3 . 4 Open Issues - Constructors and Destructors

1. The Metrowerks compiler declares the vbasearg argument for constructor for classes with
virtual bases to be a signed short for compatibility with their 4-byte and 2-byte int models for
the 68K.  This small change could remove an obstacle to compatibility.

2. The Metrowerks compiler adds an additional signed short argument to destructors which gets
interpreted as follows:

0 destroy non-virtual bases
-1 destroy all bases
1 destroy all bases and delete object

So if the value of this additional argument is 1, the destructor will call delete of this .  This
results in space savings in PowerPlant and MacApp applications.  This also simplified
Metrowerks' exception handling model because all destructors are called in the same way and
the exception handler does not have to distinguish between classes with and without virtual
bases.

3.4 .4 Runtime Type Information (RTTI)

This section describes the representation of Run-Time Type Information (RTTI).

The C++ language definition requires a user-visible form of RTTI.  The Macintosh C++ ABI uses
the same underlying mechanism for both the user-visible RTTI and the implied RTTI which is
required in order to support exception handling.

3 . 4 . 4 . 1 RTTI in C++

The user-visible RTTI functionality consists of typeinfo, typeid, and dynamic_cast.
Implementors usually implement the three other “new-style” casts along with RTTI, because they
share the odd syntax that dynamic_cast uses.  These are const_cast, static_cast, and
reinterpret_cast.

3 . 4 . 4 . 1 . 1 RTTI and Exception Handling

When an exception is thrown,  the runtime must be able to determine whether a given handler  is
capable of handling that exception’s type.  Since the normal C++ assignment-compatibility rules
are followed,  the runtime must be able to tell whether the handler’s type is an ancestor of the
thrown exception’s type.  This is done by comparing RTTI entries for the two.

There are two levels of RTTI — the low-level RTTI used for exception matching and the user-
visible RTTI, i.e., the class type_info, defined in typeinfo.h.

3 . 4 . 4 . 1 . 2 RTTI Features
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This section contains a brief description of the user-visible aspects of C++ RTTI features.

RTTI is available for any polymorphic type (i.e., any class which has a virtual function table) and
for any other type which is used in a typeid expression or dynamic_cast expression.

typeid(typename)
typeid(expression)

These expressions yield a value of type const type_info &.  The type_info class is
defined in typeinfo.h.

dynamic_cast<new-type>( expression )
This expression casts the expression (usually a pointer to a base class) to the new type
(typically a pointer to a derived class) if the object “really is” of the desired type.  If not, the
expression returns zero.  RTTI is used to determine this.

class type_info
This is the type returned by typeid expressions.  The only operations allowed on this type
are comparison (==, !=), and the member functions before and name.  In particular, the
copy constructor and assignment operators are declared to be private, so objects of this
type cannot be copied or passed to other functions.

3 . 4 . 4 . 1 . 3 Related Non-RTTI Features (the Other "new-style" Casts)

Following are very brief descriptions of the other new kinds of casts in C++.  For more details,
see sections  5.2.8, 5.2.9, and 5.2.10 of the C++ committee’s draft working papers [3].

static_cast<new-type>( expression )
This cast is used to render implicit conversions explicit, and is also used for a few other
kinds of conversions — to void, int to enum, et al.

reinterpret_cast<new-type>( expression )
This is the least restrictive cast — in most cases, on most implementations, it will produce a
representation unchanged from the representation of the original value.  However, this is
not mandated:  the mapping is implementation-defined.

const_cast<new-type>( expression )
This cast is most often used to “cast away” const; it can also add a const, or add or
remove a volatile.

3 . 4 . 4 . 2 RTTI Data Structures

RTTI is implemented at two levels.  The compiler generates a low-level kind of RTTI (sometimes
called "pdata") for any type seen in a throw or catch.  For types seen in typeid expressions, the
compiler will also generate the (user-visible) type_info structure, which contains only a pointer to
the low-level RTTI for that type.

In addition to the RTTI structures themselves, there are changes in the virtual function tables
(vtables) generated for polymorphic types.  If the -rtti flag is on when the compiler generates the
vtable, then that vtable will contain a pointer to the typeinfo for that type, and the vtable is given a
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name of the form "_rttivtbl__<class>".8  (Normally, the vtable's name is
"_vtbl__<class>".)  This is done to ensure that a normal, non-RTTI vtable will not link with
code expecting to find that RTTI pointer in the vtable.  An RTTI-aware constructor will adjust the
class’s this pointer to point just past that RTTI pointer.

3 . 4 . 4 . 2 . 1 High-level — typeinfo structure

The high-level data for the type_info structure consists of a simple pointer which points to the
low-level type information for the type in question.  The structure is generated as a file-level static
variable whose name consists of "__rtti" followed by the mangled name of the type which this
structure describes.

3 . 4 . 4 . 2 . 2 Low-level — pdata

The low-level data (pdata) is also generated as file-level static variables whose names consist of
"__ti" followed by the mangled name of the type described.

The pdata consists of a pointer, a tag character, and then other items depending on which tag
character is there.  Every kind of pdata ends with a string containing the human-readable (non-
mangled) name of the described type.  The human-readable form of the name should be as it
appeared in the declaration of the type with all sequences of "white space" replaced with a single
blank.

The pointer points to an unused "common" data byte (i.e., a unique address,  of a single byte, used
only by the runtime type-matching routine, to compare addresses).  That “common” data byte is
given a name beginning with three underscores:  "___ti<type>".  Following that pointer will be a
tag character, which then tells what else is in the pdata:

Tag characters

0 simple type (int, char, float, ...), enumerations, and function types
1 pointer or reference
2 class, struct, or union type

The data representations for each of these categories are described in the following sections.

3 . 4 . 4 . 2 . 2 . 1 Simple Types and Enumerations

The pdata for a simple type consists of the “common” pointer and the zero tag character, followed
immediately by the name of the type.  Thus, for instance, the pdata for the unsigned short type
will be a variable named __tiUs, and will contain

[ pointer to common ___tiUs ], [ 0 tag byte ], [ “unsigned short\0” ]

8 The latest versions of MrCpp generate only the "_rttivtbl" form of vtable, so there is always a slot in the vtable
for rtti information.  The "_rttivtbl" name is used to prevent inadverntent problems with older code not compiled
with new versions of the compiler.
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Enumerations are treated as if they were simple types, and the name string that they end with
includes the underlying representation type (since the size of an enum type may depend on how
many enumerators it contains).  So:

enum anEnumerationType { anE, anotherE, yaE, lastE };

will yield a pdata like this:

[ ptr-to-___ti17anEnumerationType ], [ 0 tag byte ],
[ “unsigned char anEnumerationType\0” ]

Function types are also treated as if they were simple types.  Example:

int func( int, float );

yields

[ ptr-to-___tiFif ], [ 0 tag ], [ “int \"C++\"(int ,float)\0” ]

Note that the “C++” in the function type name indicates C++ linkage.

3 . 4 . 4 . 2 . 2 . 2 Pointer and Reference Types

The pdata for pointer types consists of the pointer-to-common, a tag byte (1), a flags byte, a copy
of the “pointer-to-common” for the target type, and finally the string describing the pointer type.
The flags byte was intended originally to give const/volatile info, but changes in the language
definition have made that information irrelevant here, so the flags are currently set to 0x0F
always.9  Example:

int *xp;

yields

[ ptr-to-___tiPi ], [ tag byte 1 ], [ 0x0F flags byte ],
[ ptr-to-___tii ], [ “int *\0” ]

3 . 4 . 4 . 2 . 2 . 3 Struct/Class/Union Types

The pdata for structured types (classes, structs, and unions) consists of the pointer-to-common, a
tag byte (2), an alignment byte (currently unused, always zero), and a short containing the number
of base classes.  That is followed by a pair of four-byte words per base class:  an offset-from-this
(32 bits), and a pointer to the pdata for the base class.  (Note: the pointer is to the pdata, i.e., the
data with the name with two underscores, not the pointer-to-common for it, which is the pointer
RTTI pdatas use.)  After all of the base classes, the name of the current class is given, as a null-
terminated string.

The list of base classes lists all of the direct base classes (both virtual and non-virtual), in lexical
order, followed by the virtual-base sub-objects.  There is no easy way to tell exactly how many

9 The flags byte appears to be a candidate for elision.
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items there are in the list.  The “short containing the number of base classes” is actually the number
of direct bases plus the number of indirect virtual bases.  This could probably be improved.

Example:

struct A { int a1, a2; };
struct B { int b1, b2; };
struct V { int v1, v2; };
struct W { int w1, w2; };

struct D : A, B, virtual V, virtual W { int d1, d2; };

struct X : virtual V { int x1, x2; };
struct E : A, B, X, virtual W { int e1, e2; };

yields the following pdatas for D and E:

__ti1D: [ ptr-to-___ti1D ], [ tag byte 2 ], [ unused 0 byte ],
[ 4 bases ],
[  8, ptr-to-__ti1A ],
[ 16, ptr-to-__ti1B ],
[  0, ptr-to-__ti1V ],
[  0, ptr-to-__ti1W ],
[ 32, ptr-to-__ti1V ],
[ 40, ptr-to-__ti1W ], [ “D\0\0\0” ]

__ti1E: [ ptr-to-___ti1E ], [ tag byte 2 ], [ unused 0 byte ],
[ 5 bases ],
[  0, ptr-to-__ti1A ],
[  8, ptr-to-__ti1B ],
[ 16, ptr-to-__ti1X ],
[  0, ptr-to-__ti1W ],
[ 40, ptr-to-__ti1V ],
[ 48, ptr-to-__ti1W ], [ “E\0\0\0” ]

3 . 4 . 4 . 3 Open Issues - RTTI

1. Does the RTTI mechanism described address cross-DLL issues?  How do you throw and "int"
exception and catch it as an "int" in a different DLL?

2. How do multiple type info structure actually share a common byte?  Is this mechanism
necessary or can the address of the low-level data be used?

3. The name strings should be in a read-only section.

3.4 .5 Exception Handling

The following sections document the ABI for C++ exception handling.

3 . 4 . 5 . 1 Roles of Compilers, Linkers, and Runtime Libraries

The compiler identifies the life spans of try and catch blocks, of new calls, and of any relevant
local variables.  These potentially nested ranges are converted into a flattened, disjoint set of code
ranges, which are represented in an exception table for each function.  Some code ranges have no
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actions associated with them and become simple “skip” entries in the range’s table entry.  Each
“actionable” code range entry gets a list of trys, catches, and destructors associated with it.  The
tables are generated into separate code sections called “DB csects”.

The Linker combines the exception sections and strips the original copies, and sorts the resulting
tables in PC address order.

The runtime library contains routines which actually perform the throw and the subsequent type-
matching, destructor invocation, and stack unwinding.

3 . 4 . 5 . 2 Exception Tables

There are three levels of tables involved:  Function tables, Code Block tables, and various kinds of
third-level tables.  The Function and Code Block tables are language independent; most of the
types of third-level tables are C++-specific.  All of the tables live in the exception (“.except”)
section of the PEF container which contains the relevant code.  The exception section starts with
the first-level table.  There is one restriction on the ordering of the other table levels:  the first
function table entry with a non-zero second-level pointer must point to the second-level entry
which appears immediately following the function table.  This allows the runtime to find out how
many function table entries there are.

Here is an overview of the table layout:

Function Table  Entry — f1

Function Table  Entry — f2

. . .

Code Block Table for f1 (all CBDs)

Action Lists for  f1

. . .

CBT for f2

Action Lists for f2 /

. . .

3 . 4 . 5 . 2 . 1 Function Tables

The first-level tables are called the EH Function Tables.  There is one entry per function.  The
number of entries (i.e., the number of functions) is not specified directly.  Instead, the runtime
relies on the restriction mentioned above — that the first non-zero CBT address points to the
physically first CBT entry, and that CBT entry follows the function table immediately.  The
runtime can then use that address to determine the number of function table entries.
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  The linker will ensure that every function in a code fragment has a corresponding entry.  Each
entry has two 32-bit words:

Function Address (Code-Section Relative)

Code Block Table Address (Exception Sec. Rel.)

struct EH_functionTableEntry {
address functionStart;
address CBT_addr;

};

The function’s address is relative to the beginning of the code section which contains it.

The Code Block Table is the second-level table; the address given here is relative to the beginning
of the exception section.  If a function has no CBT information, this field is set to zero.

3 . 4 . 5 . 2 . 2 Code Block Tables

The second-level tables are the Code Block Tables.  Entries in the CBTs are called Code Block
Descriptors (CBDs), and are 64 bits long.  The entries span the function — i.e., they “flatten” the
nested scopes of the variables and try blocks which they describe.  They are in PC order and must
be processed linearly by the exception handling runtime support code.  The format of a CBD is:

Type Code Nr Bytes to Skip Block Length

End Flag Block Info or Line Number

The one-byte Type Code combines with a possible 3rd-level type code, to describe the nature of
the third-level table (if any).

The Number of Bytes to Skip is a 12-bit field telling how many “unactionable” bytes precede the
code range.  This allows for a compact table representation of code for which the runtime does not
need to perform any actions.

The Block Length is a 12-bit field containing the length in bytes of this code range.  The start of
each code range must be calculated by starting with the function’s first CBT entry.

The End Flag is a one-byte field; it is set to 5 (kStop) or 6 (kContinue) to indicate whether this is
the last code block in the function.

The 24-bit Block Info is a table-relative offset (i.e., offset from the start of the CBT for this
function) which usually points to a third level of table entry.  The third level table entry formats
differ, depending on the values of both the second-level type code and the third- level type code.
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Currently, four type codes are defined in the CBD:

0 kEpilog A function epilog — the block info
is an unwind descriptor.

1 kProlog The function prolog.  Block Info is
an unwind descriptor.

3 kOther Other — these kinds of entries have
a more complex descriptor.

A function has one prolog, and may have many epilogs.  All of the prolog and epilog entries for a
given function point to a single unwind descriptor.

The other kinds of entries (for try blocks, variables to be destroyed, memory to be reclaimed, and
exception specifications) are differentiated by their own type codes within the third-level table
entries.  These are kept distinct from the second-level type code in order to protect the sanity of the
implementors.  For reference, those third-level type codes are listed here:

4 kSimple An unwind descriptor

8 kDestruct A destructor whose address is
locally known

9 kDestrInd An imported destructor

10 kTry A “try” descriptor

11 kCatch A “catch” descriptor

12 kDelete A delete function, locally known

13 kDelInd An imported delete function

14 kExcSpec An exception specification

16 kClean Cleanup, with function to call

17 kClnInd Cleanup, indirect

3 . 4 . 5 . 2 . 3 Third Level Tables

The third level tables include unwind descriptors which could be language-independent, and a
variety of C++-specific tables.

The third-level entries for try blocks, for destructor calls, and for new/delete calls are collected
as Action Lists.  There is one Action List per code block; it lists all of the actions which are
necessary at this particular code range, and all of the try blocks enclosing this code range.  The
ordering of actions on the Action List reflects the nesting of the try blocks and of the scopes of the
variables being destroyed.  Once the unwinder knows which range applies, it can simply go down
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the Action List, performing the relevant destructor and/or delete calls, and then transfer control to
the relevant catch block.  The Action List ends with a kTry entry with a zero catch-list offset.

3 . 4 . 5 . 2 . 3 . 1 Unwind Descriptors
The Unwind Descriptors tell which registers are saved by this function.  This allows for the
possibility of recovery in the case of asynchronous exceptions.  A single type of unwind descriptor
is currently defined; its type code is kSimple; it is 32 bits long.  (Future compiler versions might
choose more aggressive optimization of prologs and epilogs, which may require more complex
unwind descriptors.)

Type Code
kSimple

unused CR LR SP Number of FP
Registers

Nr General
Registers

The Type Code is kSimple (4).  This field is one byte wide.

There are 5 unused bits, and then one bit each to tell whether each of the condition register (CR),
the link register (LR), and the stack pointer (SP) is saved in this frame.

The final two bytes of the unwind descriptor tell how many floating point  and general registers are
saved in the frame.  In each case, PowerPC conventions determine which registers are saved first,
so the simple count of them should be sufficient.

3 . 4 . 5 . 2 . 3 . 2 Destructor (TVector) Descriptors
The third-level entries for “normal” destructor calls are 64-bit entries:

Type Code
kDestruct

Stack offset of variable to destroy

TVector for  Destructor  or Delete

The Type Code is kDestruct (8) for a locally-known destructor.  (That is, a destructor for which
we know the address of its transfer vector.)  If the destructor is imported from a DLL, it will have
type kDestrInd (see the following section).

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.

The function to be called is indicated by the TVector field, which contains the data section offset
for the transfer vector for the destructor.

3 . 4 . 5 . 2 . 3 . 3 Destructor (Imported) Descriptors



Macintosh C/C++ ABI  Standard Specification December 5, 1996

Fred Forsman 36 Copyright Apple Computer, Inc. 1995-6

The third-level entries for destructor calls for destructors imported from other DLLs are 64-bit
entries similar to those described in the previous section :

Type Code
kDestrInd

Stack offset of variable to destruct

Pointer to TVector for  Destructor  or Delete

The Type Code is kDestrInd (10) for a destructor function we are importing.

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.

The function to be called is indicated by the Pointer to TVector field, which contains the data
section offset for a pointer to the transfer vector for the destructor.

3 . 4 . 5 . 2 . 3 . 4 Delete (TVector) Descriptors

The third-level entries for delete calls are 64-bit entries, very similar to the corresponding
kDestruct and kDestrInd descriptors.

Type Code
kDelete

Stack offset of variable to destruct

TVector for  Destructor  or Delete

The Type Code is kDelete (12) for a locally-known delete function.  (That is, an operator
delete() function for which we know the address of its transfer vector.)  If the delete function is
imported from a DLL, it will have type kDelInd (see the following section).

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.  (Note
that even if the newly-allocated pointer is ultimately assigned only to a global variable, the compiler
will also have created a stack-local variable to hold it.)

The delete function is indicated by the TVector field, which contains the data section offset for the
transfer vector for the operator delete to be called.

3 . 4 . 5 . 2 . 3 . 5 Delete (Imported) Descriptors

The third-level entries for delete functions imported from other DLLs are 64-bit entries similar to
those described in the previous section :

Type Code
kDelInd

Stack offset of variable to destruct

Pointer to TVector for  Destructor  or Delete

The Type Code is kDelInd (13) for a delete function we are importing.

The stack offset is a 24-bit field which indicates the address of the variable to be destroyed.
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The delete function is indicated by the Pointer to TVector field, which contains the data section
offset for a pointer to the transfer vector for the operator delete to be called.

3 . 4 . 5 . 2 . 3 . 6 Try Descriptors

The third-level entries for try blocks are simple 32-bit entries:

Type Code
kTry

Catch list offset (CBT-relative)

The Type Code is kTry (10).

The 24-bit catch-list offset is a CBT-relative offset, pointing to the list of catch blocks associated
with this try block.  The try descriptors, along with some Destructor/Delete descriptors and
catch descriptors, will comprise the Action List for a code block.

A try descriptor with a catch-list offset of zero indicates the end of the Action List for a code
block.

3 . 4 . 5 . 2 . 3 . 7 Catch Descriptors

The third-level entries for catch blocks are 96-bit (3 “word”) entries:

Type Code
kCatch

Function-relative PC

Run-Time Type Info (RTTI) for type caught

End Flag Catch Variable (stack offset)

The Type Code is kCatch (11).

The 24-bit Function-relative PC  is a pointer to the start of the catch block — this is where we
jump to after we’ve unwound the stack and initialized the catch variable.

The RTTI is a data-section offset to the typeinfo structure describing the type that this catch
block is interested in catching.

The End Flag tells whether this try block has more catches to check (kContinue) or whether this
is the last catch for this try block (kStop).

The Catch Variable is the stack offset of the variable which we will initialize with the thrown

3 . 4 . 5 . 2 . 3 . 8 Exception Specifications
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The third-level entry for an exception specification is a variable-length entry.  It is considered to be
a part of an action list.

Type Code
kExcSpec

number of RTTI types

Run-Time Type Info (RTTI) for first type

RTTI for 2nd type

. . .

The Type Code is kExcSpec (14).

The number of RTTI types tells how many types are in the exception spec for this function.

The RTTI for nth type is a data section offset of the low-level RTTI structure for this type.

The special case of a “throw nothing” exception specification (i.e., a function which is not
permitted to throw any exception, as in void f() throw() {...} ) is encoded with a count of
1, and an RTTI pointer of zero.

Currently, the exception specification entry happens to be associated with the first code block for a
function, but there is no requirement that this remain the case.  Since it’s considered to be part of
an action list, the exception spec entry is usually followed by the end-of-action-list indicator (a try
descriptor with a catch-list offset of zero).

3 . 4 . 5 . 2 . 3 . 9 Cleanup Descriptors

The purpose of a cleanup descriptor is to handle the situation where an exception occurs during the
construction of a derived-class object, after some of its base classes are already fully constructed.
The bases which have been constructed must be destroyed.  This kind of descriptor is more
complex than the normal Destructor Descriptor because the address of the base class sub-object
might not be at the start of the variable, and might be virtually inherited.  These descriptors are
actually a bit more general than they currently need to be — basically, they simply tell the exception
runtime to call a given function, with a given parameter, with some possible offsets and
indirections.  The general design should make it possible to keep the same table definitions and
library functions, even if our virtual base class strategy changes.

Type Code
kClean or
kClnInd

Offset 1

[Pointer to]TVector for  Destructor

mode+base offset2

The Type Code is kClean (16) or kClnInd (17) depending on whether the function to be called is
known locally.  (This is parallel to the difference between kDestruct and kDestrInd entries.)

The offset1 entry is used in conjunction with the mode+base entry; think of it as the main stack-
offset of the parameter to the function which will be called.
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The function to be called is indicated by the TVector field, which contains the data section offset
for the transfer vector for the destructor.  (For kClnInd descriptors, this field contains the data
section offset for a pointer to that TVector.)

The mode+base field is 3 bits of addressing-mode information and 5 bits indicating the base
register.  (Currently, the base register is always the stack pointer.)  The possible addressing modes
are listed in the following table:

amBD 0 Base + unsigned Displacement
amBS 2 Base + signed Displacement
amBDID 4 Base + unsigned Disp. Indirect, + unsigned Disp.
amBDIS 5 Base + unsigned Disp. Indirect, + signed Disp.
amBSID 6 Base + signed Disp. Indirect, + unsigned Disp.
amBSIS 7 Base + signed Disp. Indirect, + signed Disp.

The first two addressing modes make no use of the offset2 field.  In order to form the argument
with which to call the given function, they’ll take the base register, and add the offset1 field, as
either a signed or an unsigned value, to the base.  The other four will do that, then load a word
from the resulting address, and add the offset2 field (either signed or unsigned) to it.

3 . 4 . 5 . 3 Algorithms

In this initial implementation, we handle only synchronous exceptions.  For this case, the initial
point of entry into the exception handling mechanism is always a throw expression.  The compiler
implements this as a call to an assembly-language routine called __eh_throw (the full signature is
“__eh_throw(const char*, int (*)(), unsigned int, ...)”).  This routine saves all of
the registers and then calls __eh_throw.  A re-throw expression (“throw;”) is converted by the
compiler into a call to __eh_rethrow__Fv, which sets the size of the thrown object to a -1, and
then shares the rest of its implementation with the assembly-language throw mentioned above.
__eh_throw and its support functions are written in C and are defined in the file mrc_except.c.

Here’s a list of the major routines involved:

__eh_throw
__eh_new
FindCatcher

(the table locator functions)

ehDebuggerHook
CallDestructors

In the algorithm outlines given below, the type “addr” is used to indicate addresses upon which
we might have to do address arithmetic, and “func” indicates function address.

3 . 4 . 5 . 3 . 1 __eh_throw

Calling sequence:
void __eh_throw( rtti_t *rtti, func destructor, int tsize,

void *tobject, gen_regs, fp_regs, frame, sp );
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Arguments:
rtti address of the low-level runtime type information string for the type of the

object being thrown.
destructor address of the destructor for the object being thrown.
tsize size of the object being thrown (or zero if small object).
tobject pointer to the thrown object (object itself if tsize is zero).
gen_regs pointer to the 32 saved general registers
fp_regs pointer to the 32 saved floating-point registers
frame pointer to the frame
sp stack pointer at throw time

Here’s a pseudocode summary of what __eh_throw does:

void __eh_throw ( ... )
{

peh = __eh_new( allocate new EH stack entry );

if it’s a rethrow {
if there is no current exception

terminate();
set up peh as copy of current exception

}
else {

set up peh with newly thrown exception
}

Find the TOC at throw point.
Call FindCatcher to figure out who will catch this exception.
if no catcher,

terminate();

CallDestructors (for each frame between the throw and the catch).

FindOwner (ask CFM to locate the container associated with the
throw point’s PC).

// This loop performs the unwind:
loop through each frame between thrower and catcher {

FindCodeBlockTable for that frame
FindUnwindInfo for the frame

reload the registers saved in this frame

find caller
FindOwner
if the caller’s TOC is different, reset the TOC

}
reset sp and linkage register, so that return from this

function will actually “return” to the catcher.
}

3 . 4 . 5 . 3 . 2 FindCatcher

Calling sequence:
void FindCatcher( struct frameMarker *catcher,



Macintosh C/C++ ABI  Standard Specification December 5, 1996

Fred Forsman 41 Copyright Apple Computer, Inc. 1995-6

PCOwnerInfo *ownerText, *ownerData,
void *rttiPtr );

Arguments:
catcher address of a stack-frame structure, initially set to indicate the frame of the

routine that contains the throw.
ownerText a CFM structure which FindCatcher will set to the container which

“owns” the text segment
ownerData who owns the data segment
rttiPtr pointer to the RTTI for the thrown object

Returns:
FindCatcher sets the catcher structure to the frame info for the routine which will catch

this exception.  catcher->reserved1 will be the stack offset of the catch
variable; it will be zero if no handler is found.

void FindCatcher ( catcher, ownerText, ownerData, rttiPtr )
{

FindOwner( PC, ownerText );
FindOwner( TOC, ownerData );

loop until we find a frame with no unwind info {
cbbase = FindCodeBlockTable( ownerText, PC, &funcPC );
actionList = GetActionList( cbbase, PC - funcPC );

loop through this action list {
if this is a TRY, and its PC is within range,

loop through its catches {
if this catch matches {

set up the catcher struct
return;

}
}

}
move up to next frame

}
set catcher->reserved1 = 0;  (couldn’t find a catcher)

}

3 . 4 . 5 . 3 . 3 Table locators

These functions (FindOwner, GetFunctionTable, FindCodeBlockTable, FindUnwindInfo,
FindDestrInfo, and GetActionList) locate the tables which are relevant to the current exception
and program state.

FindOwner — given an address, call the CFM routine FragFindOwnerOfPC to locate the CFM
container associated with that code (or data) fragment.

GetFunctionTable — look through the sections of a CFM container, to locate its (unique)
exception-tables section.

FindCodeBlockTable — search the function table for a given code section, looking for the code
block table associated with a given PC.  (Currently, this is a linear search.)
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FindUnwindInfo — given a code block table pointer, find a kProlog entry, which will give us the
“how-to-unwind” info for the function.

FindDestrInfo — given an action list, return the next destructor entry in the list.  Update the
given action list pointer.

GetActionList — given a PC offset and a code block table, search for an action list that’s
relevant to the given PC.  Return zero if there is no such action list.

3 . 4 . 5 . 3 . 4 Other Support Routines

ehDebuggerHook— at certain points during exception handling, the library will call this routine,
passing it a reason code.  The debugger can set a breakpoint in this routine, and can
sometimes examine the extra parameters (two frame pointers and an RTTI pointer) in order
to implement debugger commands like “stop on throw” and “who will catch?”.

CallDestructors— this function walks the stack between the throw and the relevant catcher-
frame, and calls the destructors for each relevant action list in each frame between the two
endpoints.

3 . 4 . 5 . 4 Future Directions

These table formats are not yet fully stabilized.  We hope to support exceptions in other languages,
and some limited forms of asynchronous exceptions.  More details on these areas will be in a
future revision of this document.

3 . 4 . 5 . 5 Open Issues - Exceptions

1. Is the exception handling model flexible enough to handle other languages?  Is there a
provision for handling machine exceptions?  If RTTI structures are used in the location of
handlers, what is the RTTI description of an access fault?

2. Is the exception handling model thread-safe?  Is __eh_new a memory allocation function and
does this present a problem?

3. Is the exception handling model really a zero-overhead model?  All exception action
descriptors seem to expect variables in memory, so the this pointer in a constructor cannot
be a register variable (or it will have to be copied into memory) if it has base classes so that a
partially constructed object can be destroyed.

4. Is there a provision for exception actions for conditional temporary destructions?  For
example, the temporaries that have to be constructed in the right part of an "a && b"
expression are only constructed and destroyed if "a" is true.

5. The exception tables need to be redesigned with scalability issues in mind, so that very large
programs/DLLs may be handled while providing space-efficient representations for smaller
code fragments.

6. The topmost table needs a header containing version information, overall sizes, etc.

7. The exception mechanism has no support for multiple code and data sections within a DLL.
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3.4 .6 Special C++ Calling Conventions

There are several constructs which require special calling conventions in the Macintosh C++ ABI.
In particular, these are cases where there are implicit parameters or parameters that must treated
specially.

3 . 4 . 6 . 1 Passing Objects By Value

In the simplest cases, parameters which are objects (class instances) are passed by value as if they
were simple structures.  However, if the object is an instance of a class for which there is an
explicit copy constructor or a destructor then a temporary copy of the object must be made and
passed by reference.  If there is a copy constructor it will be used to construct the temporary, and if
there is a destructor it will be used to destruct the temporary after the evaluation of the expression
containing the call is complete.

The requirements above are dictated by the C++ Standard, Section 12.2, which indicates:

When an implementation introduces a temporary object of a class that has a non-trivial
constructor, it shall ensure that a constructor is called for the temporary object.  Similarly,
the destructor shall be called for a temporary object with a non-trivial destructor.
Temporary objects are destroyed as the last step in evaluating the full expression that
(lexically) contains the point where they were created.  This is true even if that evaluation
ends in throwing an exception.

... A temporary bound to a reference parameter in a function call persists until the
completion of the full expression containing the call.

The name of the called routine will be mangled as usual, even if it requires that a temporary be
created and passed by reference.

3 . 4 . 6 . 2 Order of "this" and "Hidden" Parameters

Functions which return structures require a "hidden" parameter which is a pointer to the temporary
memory into which the function return value will be placed.  Such hidden parameters are always
passed as the first parameter to the function.  A hidden parameter is always used when the function
return value is a structure, regardless of its size.10

C++ member functions require an implicit parameter for the value of the object's "this" variable.
The implicit "this" parameter is passed as the first parameter unless there is a "hidden" parameter
for a structured return value in which case the "this" parameter is passed as the second parameter.

10 A possible optimization of the ABI would be to pass back structured return values in registers when the
structure is small enough to fit in a register.  Such optimizations are not allowed because they violate the ABI;
the ABI must change to permit them, in which case they would be required.
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3 . 4 . 6 . 3 Thunks

In virtual function dispatch, a vtable entry may be a pointer to a thunk rather than to a virtual
member function.  A thunk is a small piece of code which performs a minor adjustment (such as
modification of the "this" pointer value or saving of the current TOC) and then branches to the
"real" intended function.

There must be agreement between compilers about the circumstances under which thunks are
generated and what function(s) they perform in order for C++ object files produced by different
compilers to be link compatible.

The naming convention for thunks should not be a problem since they should be emitted at the time
that the vtable is generated.  The vtable will have pointers to the thunks which in turn will have
branches to the appropriate routines.  Since the vtable and thunks for a class are generated in a
simple compilation the names will be consistent regardless of the convention used.

Modification of the "this" pointer takes place when a base class pointer is used for a virtual
function call that does not correspond to the address of the derived class (in other words, the base
class is not the first base class in the derived class).  On the PowerPC such a thunk might look like
the following code:

subi r3, r3, <delta> // change the "this" pointer argument
b <vfunc> // branch to the intended function

3 . 4 . 6 . 4 Proposal - C++ Virtual Function Dispatch

This is a proposal to change the calling conventions for C++ virtual functions.  The C++ virtual
function calling conventions are open to change because they can be distinguished from normal
calls by the compiler, and because such calls depend on other compiler-dependent conventions
such as vtable layouts.  We are soliciting input on the merits of this proposal and hope to gather
some data on its effects on some large code samples.

In this scheme R2 becomes a nonvolatile register, saved and restored on the callee side.  The callee
accesses its R2 via the R12 pointer to its TVector.  This is fine for virtual functions since they
always use indirect calls (see local monomorphic optimization below).

Proposed model

The code below summarizes the R2 switching today and as proposed.

Today Proposal

      caller   (TVPtr in R12)                caller   (TVPtr in R12)

         bl            ProcPtrGlue              bl           VirtPtrGlue
         lwz           R2, 20(SP)

      ProcPtrGlue VirtPtrGlue

         lwz           R0, 0(R12)               lwz          R0, 0(R12)
         stw           R2, 20(SP)               mtctr        R0
         mtctr         R0                       bctr
         lwz           R2, 4(R12)
         bctr
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      callee with globals                    callee with globals

         <nothing extra>                        stw           R2, 20(SP)
                                                lwz           R2, 4(R12)
                                                ...
                                                lwz           R2, 20(SP)

      callee without globals                 callee without globals

         <nothing extra>                        <nothing extra>

Note that direct calls to virtual functions (e.g., cases where the base class is expressed explicitly in
the call) will have to either make an indirect call or perform the equivalent operations.

Possible optimizations

The save of the old R2 and load of the new R2 can be freely scheduled, as long as an exception
dispatcher and debugger know enough to unwind the stack properly.  The same holds for the
restore of the old R2.

Recognizing whether the callee uses R2 or not is an obvious optimization opportunity.  This may
very well apply to a large fraction of virtual functions.  Note that this really is whether or not this
one routine uses globals.  In particular, it may very well make calls to other virtual functions
without having to load its own R2.

The shorter virtual function glue is more amenable to inlining.  For this purpose the TVector
contents should be viewed as nonvolatile, at least within the current function.

A possible, but unlikely optimization can be made for monomorphic methods that are known to be
in the same DLL.  Instead of doing the "bl VirtPtrGlue" you do "bl .LocalMonomorph".

Effect on space

The proposed model saves 4 bytes per call site.  It costs 12 bytes per virtual function that uses
globals.  The glue savings of 8 bytes per DLL are not worth counting.

If every virtual function uses globals the break-even point is at an average of 3 calls per function.
I.e. if you make 3 outgoing calls you've paid for your access to globals.  If you make 5 outgoing
calls you've paid for your global access and that of another function that only makes 1 call.

If no virtual functions use globals then we are ahead by 4 times the number of call sites.

If 1/3 of the virtual functions use globals the break-even point is at an average of 1 call per
function.

Effect on time

The space savings is probably the most important time savings too, since space is time.  The R2
switching code in the ProcPtrGlue falls into delay slots, so essentially has no cost other than cache
effects.  The same can also be said of properly scheduled switching code in the callee.  Saving
the R2 reload on return is constant, but probably not significant overall.  Note though that a well
scheduled reload in the callee will significantly mitigate cache misses compared to the caller side
reload.
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Another significant opportunity to save time can come from use of inlined glue for inner loops.

3 . 4 . 6 . 5 Open Issues - C++ Calling Conventions

1. Consider defining vtable formats and thunks for various special cases, just as SOM does.
Anyone want to provide some specific proposals?

2. Can anything be gained by adding extra fields to the TVector, such as data for thunks?

3.4 .7 Miscellaneous C++ ABI Issues

There are a some implementation-dependent language features in C++ which will affect whether
the outputs of different C++ compilers are link compatible.

3 . 4 . 7 . 1 The Type of size_t

There must be agreement between compilers about the type of size_t (i.e., is it an unsigned int or
an unsigned long) in order for C++ object files produced by different compilers to be link
compatible.  Currently MrC expects it to be an unsigned int while the Metrowerks compiler expects
it to be an unsigned long.  Given that "int" may represent something smaller than 4 bytes in some
compilers, it may be preferable to have size_t be an unsigned long.

3 . 4 . 7 . 2 Trigger Members for Vtable Generation

Most compilers have a strategy based on "trigger members" or "trigger functions" for when to
generate the data definition of the vtable for a class so that vtable definitions are not generated in
every compilation unit that uses the class.  One data member or function in the class is identified as
the trigger member, and, when the definition of that member is encountered in a compilation unit
the compiler will emit the definition for the vtable.  This (usually) ensures that only one definition
of the vtable is emitted.

The Macintosh C++ ABI identifies the first declared function which is not inlined in the class to be
the trigger function.11

3.4 .8 Open Issues - C++ ABI

1. Enum sizes.
2. Static constructor/destructor ordering--are DLLs a problem case?

11 The Metrowerks compiler uses different rules to trigger the generation of vtables.  The situation in the
Metrowerks environment is somewhat different in that the Metrowerks linker knows to merge multiple vtable
definitions within an application; thus their rules for the generation of vtables are more "libera;" and emit
vtables in more cases.  The Metrowerks compiler identifies the "trigger member" to be the lexically first static
data or function member not defined within the class, or the lexically first virtual function member not defined
within the class.  If there are no static or virtual members, vtables are generated if the vtable is referenced.  Also
if a virtual or static trigger function is defined as inline outside of the class definition a vtable definition will be
emitted.
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A1. Appendix 1: Compiler Pragmas Affecting the ABI

The pragmas identified in this appendix affect generated code at the ABI level.

For the purpose of compatibility at the language (or API) level, it is desirable to have all compilers
to be consistent in their implementation of these pragmas.

A1.1 Alignment Mode Pragma

The alignment mode is changed by a compiler command line option or by the use of the following
pragma:

#pragma options align=<alignment_specifier>

where

<alignment_specifier>12 ::= power | mac68k | packed | natural | reset

The “power” alignment specifier establishes the “powerpc” alignment mode.  The "mac68k"
specifier establishes the 68000 Macintosh alignment conventions used by much of the original
Macintosh Toolbox.  The "packed" specifier establishes an alignment mode in which no padding is
used and fields are packed into the minimum space possible.  The "natural" specifier establishes a
variant of the "powerpc" alignment mode in which all data types including doubles and long
doubles are aligned according to their "natural" alignment.

The “reset” specifier changes the alignment mode back to the alignment mode in effect when the
current alignment mode was set, or to the default mode if no other was specified.  Thus, “reset”
does a “pop” of the alignment mode, while the other options do a “push”.  An arbitrary nesting of
modes is allowed.

The alignment mode used for an aggregate type definition is the mode that is in effect at the
beginning of the defining declaration of the type.  If there is a different alignment mode in effect for
an incomplete declaration, then that mode has no effect on the eventual mode used to complete the

12 At one time a “native” <alignment_specifier> was supported as a synonym for “powerpc”; however, since the
term is ambiguous for different host and target machine configurations, its use has been deprecated and
discontinued.
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aggregate definition.  Changing the alignment mode in the middle of a type definition does not
change the alignment mode to be used for the type.13

A1.2 CFM Pragmas

The CFM pragmas are documented in "C Compiler Pragmas for Macintosh “CFM” Runtime" [4].

A1.3 Open Issues - Compiler Pragmas Affecting the ABI

1. It may be desirable to have an additional alignment pragma of the following form:

#pragma alignment <alignment_specifier>

This pragma would have restrictions on its placement within source code, so that it could not
appear inside a definition.

13 Changing alignment modes in the middle of a type definition is not a recommended programming practice.  This
is an area where compilers are known to have problems conforming to the alignment rules.


