Power Mac Debugger
Reference

For version 2.1

& Apple Computer, Inc.

© 1997 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software or documentation.
The same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or
loaned to another person. Under the
law, copying includes translating
into another language or format.
You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

Printed in the United States of
America.

The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to
ensure that the information in this

manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
Macintosh, Macintosh Quadra,
MPW, and Power Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

SOM and System Object Model are
licensed trademarks of IBM
Corporation.

Simultaneously published in the
United States and Canada.
LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, ADC
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to ADC.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO

WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
I1S,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface

Contents

Figures, Tables, and Listings iX

About This Book 13

Chapter 1

What'’s in This Book 13

Related Documentation 14

Conventions Used in This Book 14
Special Fonts and Font Styles 15
Syntax Notation 15
Types of Notes 15

Code Samples 16

For More Information 16

Introduction 19

Chapter 2

About the Power Mac Debugger 21
The Host-Nub Architecture 22
The Nub Software 23

Installation 24
Installing the Debugger Host 24
Installing the Application Nub 25
Installing the Serial Nub 25
Installing Optional Files 26

Connecting the Host and Target Machines 26
Connecting When Using the Application Nub 27
Connecting When Using the Serial Nub 28
Using Debugger Nub Controls 29

Getting Started 31

Building Your Code for Debugging 33
Building With MPW 34
Building With Third-Party Development Environments

35

Chapter 3

Where to Keep Your Files For Debugging 35
Launching the Debugger and Targeting Code 36

Launching the Debugger and Opening a Symbol File

Specifying the Target Connection Type 38

Launching the Target Application 39

Targeting and Stopping Your Code 40

Mapping Symbols To Code 41

The Debugger Windows 43

36

General Information About Debugger Windows 45
Saving and Printing a Window’s Contents 47
Taking a Snapshot of a Window’s Contents 47
Remembering Window Positions 48
Multiple-Pane Windows 48

The Browser Window 49
The Browser’s Panes 49
Working With the Code Pane 51
Creating Other Code Windows 54

Instructions Windows 57
Disassembling PowerPC Code 57
Disassembling 680x0 Code 59

The Control Palette 60
Program Status Information 60
Program Control Commands 61

The Stack Crawl Window 63
Navigating the Call Chain 64
Examining Local Variables 65
Displaying a User Stack Crawl 66

The Log Window 66

Memory Windows 67
Editing Memory 69
Searching Memory 70

The Register Windows 71
General-Purpose Registers 71
Floating-Point Registers 72

The Process Browser 73

Chapter 4

The Process List 74
The Current Focus 76
Application Preferences 77
The Fragment Info Window 78
Exports Windows 79
The Global Variables Window 80
The Breakpoint List 81

Basic Debugging Tasks 83

Setting Breakpoints 85
Types of Breakpoints 86
Simple Breakpoints 89
One-Shot Breakpoints 89
The Breakpoint Options Dialog Box 90
Counting Breakpoints 91
Conditional Breakpoints 92
Performance Breakpoints 92
Inactive Breakpoints 93
The Breakpoint List 94
Removing Breakpoints 95
Setting Breakpoints on System Calls 95
Entering the Debugger From Your Source Code
Controlling Program Execution 96
The Current Statement 97
Stepping Through Your Code 98
Other Program Control Commands 100
Displaying and Editing Variables 101
Global Variables 101
Expression Results Windows 105
Using the Evaluate Dialog Box 107
Evaluating “this” 109
Evaluating SOM Objects 109

96

Chapter 5

Advanced Debugging 113

Chapter 6

Debugging Non-Application Code 115
Shared Libraries 115
MPW Tools 116
Assembly-Level Debugging Without a Symbol File
Debugging Emulated Code 116
Using a ROM Map 117

Measuring Performance 119

116

Chapter 7

About the Adaptive Sampling Profiler 121
Using the Adaptive Sampling Profiler 122
Starting a Profiling Session 123
Specifying a Sampling Rate 124
Collecting Performance Data 125
Measuring Selected Routines 126
Generating a Performance Report 127
The Statistics View 129
The Summary View 131
Editing the Performance Report 131
Saving and Printing Performance Data 132
Evaluating Performance Data 133
Possible Problems Or Errors 134
How the ASP Gathers Data 134

Troubleshooting 139

Targeting and Mapping 141
Symbol File Not Mapped 141
Can’t Map a Fragment 142
Using the Serial Nub 142
Can’t Open Windows 142
Can’t Debug Threads 143
Connecting Two Machines 143
Can’t Connect to the Target Machine 143
Can’t Reconnect to the Target Machine 145

Appendix A

Source-File Problems 145
Statement Markers Not Correct 145
Source Code Not Displayed 146
Assembly Code Not Displayed 146
Other 147
Can’t Single-Step 147
Global Variables Not Visible 147

Debugger Preferences 151

Appendix B

Process Control Preferences 152
Browser Preferences 153
Disassembly Preferences 155
Other Preferences 156

Expression Evaluation 159

Appendix C

Additions to C/C++ Syntax 159
Register Names 159
Constants 160

What Isn’t Supported 161

Debugger Extensions 163

Appendix D

Executing Debugger Extensions 163
Writing Debugger Extensions 163
A Sample Debugger Extension 165
Using Callback Routines 166
Building a Debugger Extension 167
Debugger Extension Reference 168

Creating Custom Unmangle Schemes

175

Creating a 680x0 Code Resource 175
Creating a PowerPC Code Resource 178

Appendix E Quick Reference Guide 181

Glossary 187

Index 191

Figures, Tables, and Listings

Preface About This Book 13

Chapter 1 Introduction 19
Figure 1-1 Single-machine debugging 27
Figure 1-2 Two-machine debugging using the application nub 28
Figure 1-3 Two-machine debugging using the serial nub 29
Figure 1-4 The Debugger Nub Controls windows 29

Chapter 2 Getting Started 31

Figure 2-1 Building your application for debugging (MPW) 34
Figure 2-2 Opening a symbol file 37

Figure 2-3 Selecting the target connection 38

Figure 2-4 Selecting a target machine 39

Figure 2-5 Mapping the symbol file to a fragment 42

Chapter 3 The Debugger Windows 43

Figure 3-1 The Window menu 45

Figure 3-2 The View menu 46

Figure 3-3 The File menu 47

Figure 3-4 The resize icons 49

Figure 3-5 The Browser window 50

Figure 3-6 The Edit menu 52

Figure 3-7 Finding text in a code window 53
Figure 3-8 A breakpoint in the Code pane 54
Figure 3-9 The clone-window cursor 55
Figure 3-10 A cloned window with assembly-code display 56
Figure 3-11 Locating a function’s code 56
Figure 3-12 A PowerPC instructions window 58
Figure 3-13 A 68K instructions window 59
Figure 3-14 The control palette 60

Figure 3-15 Control palette icons 61

Chapter 4

10

Table 3-1

Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27

Control palette icons and their Control menu equivalents
The Stack Crawl window 63

A variable window cloned from the stack variables pane
The Log window 67

A memory window 68

The Search Memory window 70

The general-purpose registers 71

The floating-point registers 72

The Process Browser 74

A multithreaded application 75

The Process Browser when using the serial nub 76
The Fragment Info window 78

An exports window 80

Basic Debugging Tasks 83

62

66

Figure 4-1
Table 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Table 4-2
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21

Setting a simple breakpoint 85
Debugger breakpoint icons 88

Setting a one-shot breakpoint 90
Specifying breakpoint options 91
Selecting a counting breakpoint 92
Selecting a conditional breakpoint 92
Setting a performance breakpoint 93

A breakpoint in unmapped code 93

A currently inactive focused breakpoint 94
Viewing the currently set breakpoints 94
The PC in subroutine marker 97

The stopped context in the serial nub 98
The Control menu 99

The Global Variables window 102
Viewing a global variable’s value 103
Examining global variables 104

The Evaluate menu 106

An expression results window 106
Changing the type of a displayed expression 107
The Evaluate dialog box 108

Evaluating “this” 109

SOM object display 110

SOM object with superclass data 111

Chapter 5

Chapter 6

Chapter 7

Appendix A

Appendix B

Appendix C

Advanced Debugging 113

Measuring Performance 119

Figure 6-1 The Performance submenu 122

Figure 6-2 A blank performance window 124

Figure 6-3 Setting the sampling rate 125

Figure 6-4 Selecting a performance breakpoint 127

Figure 6-5 A performance window after a report has been gathered
Figure 6-6 Filtering data by fragment 130

Figure 6-7 The report configuration dialog box 132

Figure 6-8 Flat-time measurement 133

Figure 6-9 Recording bucket hits in a node 136

Figure 6-10 Splitting a bucket 137

Troubleshooting 139

128

Debugger Preferences 151

Figure A-1 The General Preferences dialog box 151
Figure A-2 Process control preferences 152

Figure A-3 Browser preferences 154

Figure A-4 Disassembly preferences. 156

Figure A-5 Other preferences 156

Expression Evaluation 159

Table B-1 PowerPC register names 160

Debugger Extensions 163

Listing C-1 Skeleton code for a debugger extension 164

Table C-1 Values passed in the request field 164

Listing C-2 Sample source code for debugger extension 165
Table C-2 Header and library files for debugger extensions 167

11

Appendix D

Appendix E

12

Creating Custom Unmangle Schemes 175

Listing D-1
Listing D-2
Listing D-3
Listing D-4
Listing D-5
Listing D-6
Listing D-7

Setting up an A5 world 176

The file SAGTobals.c 176

The file SAGTobals.h 177

A makefile for a 680x0 unmangle code resource

A makefile for a PowerPC unmangle code resource
The file MyUnmangle.rl 179

The file MyUnmangle.r?2 179

Quick Reference Guide 181

177

179

Table E-1
Table E-2

Common debugging tasks 183
The Power Mac Debugger windows 185

P REFACE

About This Book

This book describes how you can use the Power Mac Debugger, version 2.1, to
debug your programs and measure their performance. It is intended for
developers creating applications, libraries, or other programs for
PowerPC™-based Mac OS computers.

What'’s in This Book

This book contains several chapters and appendixes. Chapters 1 and 2 show
how to install the Power Mac Debugger and get set up for debugging. Chapters
3 and 4 provide basic information about using the debugger to debug your
code. The remaining chapters and appendixes discuss additional topics that
will be of interest to developers with specific needs. Appendix E provides a
quick reference guide that you can refer to once you are familiar with the
debugger.

= Chapter 1, “Introduction,” describes the architecture of the Power Mac
Debugger and shows you how to install it on your system.

= Chapter 2, “Getting Started,” shows you how to build your code for
debugging, launch the Power Mac debugger, and target your code.

= Chapter 3, “The Debugger Windows,” describes the appearance and
functionality of each of the debugger’s windows.

= Chapter 4, “Basic Debugging Tasks,” explains how to accomplish the most
common debugging tasks, such as setting breakpoints, stepping through
your code, and examining variables.

= Chapter 5, “Advanced Debugging,” discusses some specialized topics, such
as debugging non-application code.

= Chapter 6, “Measuring Performance,” shows how to use the Adaptive
Sampling Profiler to help you tune your application’s performance.

= Chapter 7, “Troubleshooting,” contains solutions to the most common
difficulties people can have when using the debugger.

13

P REFATCE

= Appendix A, “Debugger Preferences,” discusses the many options you can
set to customize the debugger.

= Appendix B, “Expression Evaluation,” documents the grammar of C and
C++ expressions that the debugger can evaluate.

s Appendix C, “Debugger Extensions,” describes how you can create
debugger extensions to customize and extend debugger functionality.

= Appendix D, “Creating Custom Unmangle Schemes,” shows how to use a
custom C++ unmangling scheme with the debugger.

s Appendix E, “Quick Reference Guide,” has two tables summarizing the
most common tasks you can perform with the debugger and the windows
you work in.

Related Documentation

This books assumes basic knowledge of PowerPC-based software development
on the Mac OS platform. For further information, the following books may be
helpful:

= Mac OS Runtime Architectures
= Inside Macintosh: PowerPC System Software
= Macsbug Reference and Debugging Guide

= Building and Managing Programs in MPW, second edition

Conventions Used in This Book

This book uses various typographic conventions to present certain types of
information. Words that require special treatment appear in specific fonts or
font styles.

14

P REFACE

Special Fonts and Font Styles

Letter Throughout this book, words that you must type exactly as
Gothic shown are in Letter Gothic.

Letter Gothic font is also used in text for command names,
command parameters, arguments, and options, and for
resource types.

boldface Key terms or concepts are shown in boldface and are defined
in the glossary.

Syntax Notation

The following syntax conventions are used in this book:

Titeral Letter Gothic text indicates a word that must appear exactly
as shown. Special symbols (9, =, §, &, and so on) must also be
entered exactly as shown.

italics Italics indicate a parameter that you must replace with
anything that matches the parameter’s definition.
[1 Brackets indicate that the enclosed item is optional.

Ellipsis points (. . .) indicate that the preceding item can be
repeated one or more times.

| A vertical bar (]) indicates an either/or choice.

Types of Notes

This book uses two types of notes.

Note

A note like this contains information that is interesting but
possibly not essential to an understanding of the main
text. O

IMPORTANT
A note like this contains information that is essential for an
understanding of the main text. a

15

P REFATCE

Code Samples

All code listings in this book are shown in C or C++ (except for listings that
describe resources, which are shown in Rez-input format). They show methods
of using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested. However,
Apple Computer does not intend that you use these code samples in your
application. You can find the location of this book’s code listings in the list of
figures, tables, and listings.

To make the code listings in this book more readable, only limited error
handling is shown. You need to develop your own techniques for detecting and
handling errors.

This book occasionally illustrates concepts by reference to sample applications
called CTubeTest, DemoDialogs, and SortPicts. These are not actual products of
Apple Computer, Inc.

For More Information

16

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring all
current versions of Apple development tools and the most popular third-party
development tools. ADC offers convenient payment and shipping options,
including site licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.

P REFACE

P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

Internet order.adc@apple.com
http://www.devcatalog.apple.com

17

18

P REFATCE

CHAPTER 1

Introduction

Contents

About the Power Mac Debugger 21
The Host-Nub Architecture 22
The Nub Software 23

Installation 24
Installing the Debugger Host 24
Installing the Application Nub 25
Installing the Serial Nub 25
Installing Optional Files 26

Connecting the Host and Target Machines 26
Connecting When Using the Application Nub
Connecting When Using the Serial Nub 28
Using Debugger Nub Controls 29

Contents

27

19

20

CHAPTER 1

Contents

CHAPTER 1

Introduction

The Power Mac Debugger is an application that allows you to debug software
written for PowerPC™-based Mac OS computers at a source-code or
assembly-language level. You can use the Power Mac Debugger to debug
applications, shared libraries, stand-alone code and system software. You can
run the Power Mac Debugger on the machine containing the code you are
debugging or on a different machine.

First, this chapter describes the architecture and basic capabilities of the
debugger. Then it explains how to install the debugger on your system. Finally,
it describes how to connect two machines if you are using a two-machine
debugging setup.

About the Power Mac Debugger

The purpose of a debugger is to help you find errors in your programs. To do
so, it allows you to control the execution of a program and examine its internal
state at various points.

The Power Mac Debugger allows you to do source-level debugging. For most
programmers, a source-level debugger makes debugging easier and quicker. It
allows you to see your source code as you debug. With it, you can easily
browse and display your code. In addition, you can stop the program at any
line of code and examine the values of your variables.

Source-level debugging is made possible by the use of symbolic information
files, or symbol files, for short. Symbol files tell you which statements of your
program correspond to which machine instructions in your executable code.
They also tell you where your variables reside in memory. If you do not
provide a symbol file, the Power Mac Debugger still allows you the option of
doing assembly-level debugging. You can examine memory and registers, and
disassemble any area of memory to machine instructions.

The Power Mac Debugger consists of a series of windows that display
information and commands to control the execution of your program.

The debugger lets you control the execution of a program in various ways:

= You can set breakpoints, which cause the debugger to stop at a particular
statement in your program. Breakpoints can have conditions attached to
them; for example, you can stop at a breakpoint only when a certain variable
has a particular value.

About the Power Mac Debugger 21

22

CHAPTER 1

Introduction

You can single-step through your code, that is, execute one instruction at a
time. When stepping, you have the option to step over or into subroutines.

When the program is stopped, you can

display the stack and navigate through routines in its calling chain
display and edit local and global variables

display and edit general-purpose and floating-point registers
display and edit any range of memory

disassemble PowerPC and 680x0 code

In addition, you can

display and individually target the processes and threads running on your
machine.

measure the performance of a program
evaluate C and C++ expressions

customize or extend the capabilities of the debugger by writing debugger
extensions (similar to 'dcmd' resources used with the MacsBug debugger)

The Host-Nub Architecture

The Power Mac Debugger has a flexible architecture. It allows you to debug
using a single machine or two machines and provides different capabilities for
different debugging needs.

Here are some terms that are used throughout this book:

The code you debug is called the target. It can be, for example, an
application, a driver, or a shared library.

The application you interact with when you debug is known as the host. It
has a user interface, with several windows that display information about
the target and commands to control the execution of the target. It can be
running on the same machine as the target or on another machine connected
to the target machine.

The nub is software that runs on the target machine and actually controls
the code being debugged. The host communicates with the nub, not directly
with the target code. You do not interact directly with the nub. The nub can
handle exceptions, set breakpoints, single-step through the target code, and

About the Power Mac Debugger

CHAPTER 1

Introduction

read and write memory and registers. When the target is stopped (for

instance, at a breakpoint) the nub provides information to the host about the

state of the machine, and the host displays this information to the user. The

Power Mac Debugger provides two different nubs that can be used in
different situations. See “The Nub Software” (page 23) for more details.

There are several advantages to having a separate host and nub:

= The user interface is consistent, regardless of the type of software being
debugged. Whether you are debugging applications, extensions, or drivers
or are working at the source level or assembly level, you use the same host

application. You can use different nubs depending on the type of debugging

you are doing.

= The host and nub can be on a single machine, or they can be on separate
machines that communicate with each other. Each of these setups has
advantages and disadvantages:

o Single-machine debugging eliminates the need for additional hardware.

It

can also be more convenient as you make changes to your program, since
you can have your development environment and the debugger host and

nub on the same machine. (With a two-machine setup, your source files
and symbol file are on the host machine. As a result, you need to move
the executable code to the target machine.)

o Two-machine debugging prevents the debugger host from interfering
with the target. This setup is essential in low-level debugging. It is also
advantageous when you are debugging code that draws to the screen,
since the host’s windows may make it difficult to see what is happening
in the target application. In addition, the target cannot interfere with the
host; if the target machine crashes, the host machine (which usually
includes the development environment as well as the debugger) is still
running.

The Power Mac Debugger, version 2.1, provides two nubs. The one you use
depends on the type of code you are debugging, the system it is running on,
and the level of control needed on the target machine. The next section
describes these nubs.

The Nub Software

There are two nubs that can be used with the Power Mac Debugger:

About the Power Mac Debugger

23

CHAPTER 1

Introduction

= The application nub (also known as the high-level nub). This nub runs as a
background application on the target machine. When you are debugging,
the nub takes control of the target process, but other applications continue to
run. The host may run on the same machine as the nub or on another
machine connected to the target machine.

= The serial nub (also known as the low-level nub). This nub takes control of
the target machine when the target code is stopped. In effect, the entire
machine is stopped. No other applications can run, and file servers are likely
to time out. Using the serial nub requires two machines (connected via the
serial port), since the host cannot run on the same machine if the machine is
stopped.

Most developers use the application nub for their debugging. You must use it if
you are debugging code that uses cooperative threads under the Thread
Manager; the serial nub works with programs on a process basis and is not
aware of individual threads.

The serial nub is useful for debugging system code, drivers or other low-level
code. You must use it if you want to debug code that runs at interrupt time.

Installation

24

This section describes how to install the debugger software; it shows you
which files are needed and where they should be installed. Some files are put
on the host machine, others on the target machine. In a single-machine
configuration, the host and target are the same machine.

Once you've installed the debugger software, Chapter 2, “Getting Started,”
shows you how to launch the debugger and target your code.

Installing the Debugger Host

The Power Mac Debugger is the host application you interact with when you
are debugging any Mac OS software. This application takes up approximately 4
MB of disk space and requires a minimum of 5 MB of RAM to execute (it takes
an extra 2 MB if virtual memory is off). It is a “fat” application; that is, it can
run on either a PowerPC-based Mac OS computer or (as the host in a
two-machine setup) a 680x0-based system. System 7.1.2 or later is required for

Installation

CHAPTER 1

Introduction

a PowerPC-based Mac OS system and 7.1 or later for a 680x0-based Mac OS
system.

To install it, drag the Power Mac Debugger application to any location on the
host machine.

Installing the Application Nub

The application nub is contained in a file called Power Mac DebugServices. It is
compatible with system software version 7.5.1 or later. It runs as a faceless
background application on the target machine and uses about 200 KB of RAM.
To install it, drag Power Mac DebugServices to the hard disk of your target
machine.

When you launch the Power Mac Debugger on a single-machine setup, the
host automatically launches the application nub. With two machines, you must
be sure the application nub is running in order to debug. You can have the
application nub launch automatically when you start the target machine by
installing it in the target machine’s system Startup Items folder.

Note

The application nub does not appear as an item in the
Application menu. If you want to quit the nub when
you've finished debugging, press the keys
Shift-Control-Delete and hold them down until you see an
alert with the message “Quitting DebugServices”. O

Installing the Serial Nub

The serial nub stops the target machine whenever a breakpoint or other
exception occurs in the target application. For that reason, it must be installed
on a different machine from the host. To install it, perform these steps:

1. Drag the files PPC Debugger Nub and PPCDebuggerNubINIT onto the
System folder icon on the target machine.

These files are installed in the Extensions folder and contain the actual serial
nub code.

2. Drag the file Debugger Nub Controls onto the System folder icon on the
target machine.

Installation 25

CHAPTER 1

Introduction

This file is installed in the Control Panels folder. It is used to determine
which serial port is used to connect the two machines and whether the nub
is active. See “Using Debugger Nub Controls” (page 29) for information on
using this control panel.

3. Restart the target machine so that you can begin debugging.

Note

You may want to have the serial nub and application nub
installed on the same target machine and use them at
different times. To use the application nub, the serial nub
must be disabled using Debugger Nub Controls; see
“Using Debugger Nub Controls” (page 29). O

Installing Optional Files

You may wish to install additional software to aid your debugging efforts:

= MacsBug. You can use the Power Mac Debugger without MacsBug, but
there are some advantages to having MacsBug installed. It allows you to set
breakpoints and step through emulated 680x0 code, and has commands for
examining various system data structures. Install MacsBug in the System
Folder on the target machine. See Chapter 5, “Advanced Debugging,” for
more information on using MacsBug with the Power Mac Debugger.

= A ROM map, which contains information about symbols in ROM code. A
ROM map can be useful when disassembling ROM code or generating a
performance report. To install it, drag the RomInfo file to the same location
as the Power Mac Debugger.

» Preferences files. If you have written debugger extensions or custom C++
unmangle schemes, you need to create preferences files for them. See
Appendix C, “Debugger Extensions,” and Appendix D, “Creating Custom
Unmangle Schemes,” for information on these.

Connecting the Host and Target Machines

When debugging on a single machine, the debugger host and nub, as well as
the target software, reside on the same machine, as shown in Figure 1-1.

26 Connecting the Host and Target Machines

CHAPTER 1

Introduction

Figure 1-1 Single-machine debugging

Host/Target
Power Macintosh

In contrast, when using two machines, the software you are debugging runs on
one machine (the target machine), while the debugger host runs on another
machine (the host machine). The host machine can be any Mac OS computer
with a PowerPC processor or a 68020 (or later) processor. (For the most efficient
processing, a Macintosh Quadra or PowerPC-based Mac OS computer is
recommended.)

How you connect the two machines depends on whether you are using the
application nub or the serial nub. These two ways are described next.

Connecting When Using the Application Nub

If you are using the application nub, you connect the two machines through an
AppleTalk network connection, as shown in Figure 1-2. The host communicates
with the nub through the Program-to-Program Communication (PPC) Toolbox.
You must enable program linking on the target machine through the control
panels Sharing Setup and Users & Group. For more information, see Chapter 7,
“Troubleshooting.”

Connecting the Host and Target Machines 27

CHAPTER 1

Introduction

Figure 1-2 Two-machine debugging using the application nub

28

oooo

Host Target
680x0 or Power Macintosh Power Macintosh

Connecting When Using the Serial Nub

If you are using the serial nub, you connect the machines through one of the
serial ports, as shown in Figure 1-3. To indicate to the nub which port you are
using, use the Debugger Nub Controls panel on the target machine. The next
section provides more details on using this control panel.

IMPORTANT
For best results, use the System Peripheral 8 Cable (part
number M0197LL/B) to connect the host and target; other
cables may result in communications failures. If possible,
avoid running the cable near monitors or power cables. a

For best results, unmount all server volumes before beginning system-level
debugging. When the target is stopped, the nub disables interrupts, preventing
continuous communication between your computer and file servers. As a
result, you may experience delays while your computer waits for connections
with a server to be timed out.

Connecting the Host and Target Machines

CHAPTER 1

Introduction

Figure 1-3 Two-machine debugging using the serial nub

Serial cable

Host Target
680x0 or Power Macintosh Power Macintosh

Using Debugger Nub Controls

When you use the serial nub, you can set several options by opening the
Debugger Nub Controls control panel on the target machine (see the left
window in Figure 1-4). You can specify

= whether the nub is active. It is possible to use the application nub and the
serial nub at different times, but you must make the serial nub inactive if

you want to use the application nub.

= which serial port you are using to connect to the host machine.

Figure 1-4 The Debugger Nub Controls windows

S[M= Debugger Nub Controls E0= Debugger Nub Controls

Frimary Configuration Secondary Configuration
Low Lewel Nub Low Lewel Nub
@ Active |:| Low speed zerial connection

o |:| w'ait indefinitely for host connection
[Enable Mub in ROM
@ o

Fort changes will take effect after reboot.

]

Connecting the Host and Target Machines

29

30

CHAPTER 1

Introduction

You can set additional options by clicking the page-turning control in the
lower-right corner of the window. These options are:

= Low-speed serial connection. Check this box if you are using a host
computer that is slower than a Macintosh Quadra and you are having
problems maintaining the connection between the host and target machines.
You must set the same preference on the host machine, using General
Preferences.

= Wait indefinitely for host connection. Unless you check this box, the
debugger nub times out after attempting to connect to the host for 5 seconds.

= Enable Nub in ROM. This is an option only on certain models of Power
Macintosh computers that have PCI buses and that were built with a serial
nub in their ROM. On those machines, the option is turned off by default but
can be enabled if the user desires. Since this nub loads early in the boot
process, it is useful for developers of PCI native device drivers.

Connecting the Host and Target Machines

CHAPTER 2

Getting Started

Contents

Building Your Code for Debugging 33
Building With MPW 34
Building With Third-Party Development Environments
Where to Keep Your Files For Debugging 35
Launching the Debugger and Targeting Code 36
Launching the Debugger and Opening a Symbol File
Specifying the Target Connection Type 38
Launching the Target Application 39
Targeting and Stopping Your Code 40
Mapping Symbols To Code 41

Contents

36

35

31

32

CHAPTER 2

Contents

CHAPTER 2

Getting Started

This chapter shows you how to get up and running with the Power Mac
Debugger. It shows you

= how to build your code for debugging
= how to launch the Power Mac Debugger

= how to target your code so you can begin debugging

Building Your Code for Debugging

To debug a program at the source-code level, the debugger needs information
to associate the statements in your source code with the instructions in an
executing program. This information is contained in a symbol file. The Power
Mac Debugger can read two types of symbol file formats, those with. xcoff and
.xSYM suffixes.

When you build your code for debugging, you give directions to the compiler
and linker to generate the symbol file and the executable program. Make sure
to turn off all optimization when compiling. If you generate optimized code,
you cannot do accurate source-level debugging.

Figure 2-1 shows how building your application for source-level debugging
relates to the build process as a whole.

Note

Normally your symbol file has the same name as your
application (or other code) with the .xcoff or .xSYM suffix
added. In certain cases, the names may be different, and
you may heed to tell the debugger which code goes with a
particular symbol file. See “Mapping Symbols To Code”
(page 41) for more information. O

Building Your Code for Debugging 33

CHAPTER 2

Getting Started

Figure 2-1 Building your application for debugging (MPW)

34

files

Source \ |

g
g
E

App2. ¢ M/Apps3. ¢
- Using -SYM on or
-SYM full option

[
{ |)

Object
files MAppl.c.o M/App2. c. 0 MyApp3. c. 0
Using -SYM big option
Symbol ff Executable
file M App. xco MAPD | file
IMPORTANT

For debugging on a single machine, applications must
have a 'S1ZE' resource (with resource ID -1) with its
CanBackground bit set to TRUE. a

Building With MPW

When using an MPW compiler (MrC or MrCpp) to produce native PowerPC
code, specify the -sym on or -sym full options in order to generate symbolic

Building Your Code for Debugging

CHAPTER 2

Getting Started

information. The compiler does not produced optimized code if you use these
options.

When linking with PPCLink, you generate the symbol file by specifying the
-sym big option. The output of PPCLink is an . xcoff file that is usable by the
Power Mac Debugger.

Note

The -sym on linker option also produces symbols;
however, it is much slower, in both linker speed and
variable evaluation in the debugger, and is not
recommended. O

You can also use the MakeSYM tool (with the -sym big option) to create an
.xSYM file from the . xcoff file. Although MakeSYM is not needed when using
the Power Mac Debugger, it gives you the option of using some third-party
debuggers to debug the code as well.

Building With Third-Party Development Environments

You can use the Power Mac Debugger to debug programs built with any
development environment that produces .xSYMmor .xcoff files. Metrowerks
CodeWarrior, for example, generates . xsyM files when building native PowerPC
programs. Consult your development system’s manual for information.

Where to Keep Your Files For Debugging

In addition to the debugger itself, the host machine must contain the following
files:

= Your .xcoff or .xSYM symbol file

If you are doing single-machine debugging, it is recommended that you
place the symbol file in the same directory as the target application. The
debugger can then easily find the symbol file if you launch the application
under debugger control.

= Your source files

The debugger looks for these files in the same directory in which the symbol
file is located. If it can’t find them, it prompts you to locate them.

The application you are debugging must be on the target machine.

Building Your Code for Debugging 35

CHAPTER 2

Getting Started

Launching the Debugger and Targeting Code

This section discusses how to get the debugger running and targeting the code
you want to debug. There are several possible sequences you can follow, each
one involving a number of steps. To debug, you must

= launch the debugger

= tell the debugger whether you are using one machine or two and, if two,
how the machines are connected

= make sure your code is running on the target machine, then stop it under
debugger control

To do source-level debugging, you must
= open one or more symbol files
= map the symbol files to code running on the target machine

The following sections discuss these steps in detail.

Launching the Debugger and Opening a Symbol File

To launch the Power Mac Debugger, follow these steps.
1. Double-click the Power Mac Debugger icon.

The debugger launches and prompts you for a symbol file to open,
displaying a dialog box like the one in Figure 2-2.

36 Launching the Debugger and Targeting Code

CHAPTER 2

Getting Started

Figure 2-2 Opening a symbol file

Select a symbol file, application or project file:

= 5ortPicts « — Karr
(D PPCObjects []
[3 SortPicts Source
@ SortPicts.Native Desktop
&) SortPicts.Native.dbg -
TE SortPicts.Native.#coff
| I Open I

3.

. Select a symbol file (.xSYM or .xcoff) from the dialog box.

The debugger then displays a Browser window for the symbol file. See “The
Browser Window” (page 49) for more information on the Browser.

Click open.

Instead of selecting a symbol file, you can also do one of these things:

select a debugger project (.dbg) file. The debugger opens the corresponding
symbol file. See Appendix A (page 154) for more information on .dbg files.

select an application (single-machine debugging only). The debugger opens
the symbol file associated with the application, then launches the application
and stops it before it reaches its main routine. See “Launching the Target
Application” (page 39) for more information about this break on launch
procedure.

click Cancel. In this case, the debugger opens no symbol file. You can open
one later by choosing Open from the File menu, or you can do
assembly-level debugging without the use of a symbol file.

You can also open a symbol file (an . xcoff or .xSyM file) directly from the
Finder or drag the symbol file's icon onto the Power Mac Debugger’s icon. The
debugger is launched, if it is not already open. When you open a symbol file
this way, the dialog box is bypassed.

Launching the Debugger and Targeting Code 37

CHAPTER 2

Getting Started

Specifying the Target Connection Type

Once you have opened a symbol file, a dialog box (Figure 2-3) appears,
prompting you to choose how you wish to connect to the target.

Figure 2-3 Selecting the target connection

Select a target connection type:
@ Local
) Remote
 AppleTalk
_ Modem port
_ Printer port

[mit] [ok

= If you are debugging on a single machine, click Local, then click OK.

= If you are debugging on two machines, click Remote. Then select the type of
remote connection you want.

o If you are connecting to the application nub, click AppleTalk, then click
OK. Make sure that both machines are connected to an AppleTalk
network.

o If you are connecting to the serial nub, click Modem port or Printer port,
then click OK. Make sure the host machine has a serial cable in that port
and that the cable is connected to a serial port on the target machine. See
“Using Debugger Nub Controls” (page 29) for information about setting
the port on the target machine.

38 Launching the Debugger and Targeting Code

CHAPTER 2

Getting Started

Note

If you want to skip this dialog box in subsequent
debugging sessions, you can choose Connection
Preferences from the Edit menu. A similar dialog box
appears, asking you to specify your default setting. From
then on, you will not be prompted for your target
connection type when you launch the debugger. O

If you connected via AppleTalk, a dialog box like the one in Figure 2-4 displays
a list of machines running the application nub. Select the one you want and
click OK. If you have problems, make sure that both machines are connected to
an AppleTalk network. Use the Sharing Setup control panel to make sure
program linking is enabled for the target machine.

Figure 2-4 Selecting a target machine

Please select the Macintosh you wish to debug

Appletalk Zones: Macintoshes:

ILZ ARL
IL3 1st
IL3 2nd
IL3 3rd

User Experience Marketing
Wimble's 8500

IL4 2nd
IL4 ARL
ILS 15t
ILS 13t - DU Classroom
ILS 2nd
115 Zrid

gl

Launching the Target Application

If an application you want to debug is not running, you must launch it.

= Double-click the application’s Finder icon while holding down the
Control key.

This causes a break on launch: the application launches and stops before
execution reaches its main function. (Be sure to hold the Control key down

Launching the Debugger and Targeting Code 39

CHAPTER 2

Getting Started

until the Power Mac Debugger comes to the front.) This process causes the
application to be automatically targeted for debugging. Code is targeted
when the debugger is aware of it and has read its process information.

If you double-click an application’s icon without holding down the Control
key, the application launches normally; that is, it does not stop and is not
targeted by the debugger. If you wish to target the application for
debugging, follow one of the procedures in the next section, “Targeting and
Stopping Your Code”.

If you are debugging on a single machine, there are three other ways to do a
break on launch:

Use the Launch command from the Control menu. A dialog box appears,
allowing you to choose an application to launch.

Drag the application’s icon onto the debugger’s icon in the Finder.

Use the Open command from the File menu, and select your application
from the dialog box. In addition to launching your application, the debugger
opens the symbol file associated with the application, if it can find it.

Targeting and Stopping Your Code

The previous section showed how to automatically target and stop your code
by doing a break on launch. There are several other ways to target or stop your
code:

You can include Debugger and DebugStr calls in your program. Any time one
of these is executed, the debugger is entered, the string (if any) is written to
the Log window, and the process is automatically targeted.

You can target an untargeted application (or a thread within an application,
when using the application nub) by using the Process Browser. For
information, see “The Process Browser” (page 73). Once your code is
targeted, you can set breakpoints in order to stop it. Chapters 3 and 4
contain information on setting breakpoints.

If you are using the serial nub, you can click the Stop icon (black square)
from the control palette or choose Stop from the Control menu. Make sure
that your application is the current process when you do this; for example,
pull and hold down a menu in the target application while clicking Stop.

Launching the Debugger and Targeting Code

CHAPTER 2

Getting Started

Mapping Symbols To Code

For you to debug at the source level, the debugger must associate the
information in a symbol file with code running on the target machine. This
process is called mapping. Any symbol file you open must be mapped to a
code fragment. Normally, this mapping is automatic, and you do not need to
do anything explicitly.

= The most common type of matching is done by name. If you have opened a
symbol file called MyApp. xcoff or MyApp.xSYM, the debugger maps it to a
loaded code fragment named MyApp.

= [f there is no code fragment with a matching name, the debugger looks for a
fragment having the same size as the size specified in the symbol file. If it
finds one, the mapping takes place. If it finds more than one fragment with
the same size, no mapping takes place.

If you do not want mapping by size, you can uncheck the option “Always
auto-map symbol file” in the General Preferences dialog box. For more
information, see Appendix A.

= |f the debugger cannot do the mapping or if you want to explicitly map the
symbol file to a particular fragment, choose Map Symbol File from the
Control menu. A dialog box (Figure 2-5) appears, allowing you to select a
fragment to map to the symbol file.

Launching the Debugger and Targeting Code 41

CHAPTER 2

Getting Started

Figure 2-5 Mapping the symbol file to a fragment

Select the code information for:
CTubeTest.xHcoff

Container Marne Code Addr Code Size
CodeFragrmenttgr 409EQ0SCO 409E11EBO oDooCzeC
CodeFragrienttgr D321 0#1 onopsca0 O000C 495
CTubeTest copy ODEEDCE0 00007624
Interfacelib.11EZQ0*2 001 1ESS0 [alulu]uluio)
Interfacelib.11EBBO*3 001 1EEQO 00001 3c0
Interfacelib 409FZ710 40 A0ZE40 O00Z2E2C
Interfacelib 22600 ¥ 00028430 00o000BCO
InterfaceLib CYFEO#4 00ocE 430 00001438
MathLib.1 20210 00121140 00018700
MizedMode 409EDTFO 409EDEAD 00004438
MizedMade EOBDO#1 000E12F0 0000410
NOD EEDS0 OO0ES400 0004260
Privatelnterfacelib 40427090 404ZE900 00o004Cc50
Privatelnter faceLib 2CE10#%1 00o3acCs0 00oo0oovo
ProcessMgrSupport 409F2C A0 409FZEDO 000007Ed
ProcesshigrSupport. ABZCO¥1 000 ABSZE0 00000 ARS

Code size firom symbolic file: 00007624

Note

The Browser window (or other code window) must be
frontmost for the Map Symbol File command to be
activated. Also, the fragments displayed in the Map
Symbol File dialog box are those associated with the
currently focused process. If the code you want to map is
associated with a different process, you must change the
current focus. See “The Current Focus” (page 76). O

Launching the Debugger and Targeting Code

CHAPTER 3

The Debugger Windows

Contents

General Information About Debugger Windows 45
Saving and Printing a Window’s Contents 47
Taking a Snapshot of a Window’s Contents 47
Remembering Window Positions 48
Multiple-Pane Windows 48

The Browser Window 49
The Browser’s Panes 49
Working With the Code Pane 51
Creating Other Code Windows 54

Instructions Windows 57
Disassembling PowerPC Code 57
Disassembling 680x0 Code 59

The Control Palette 60
Program Status Information 60
Program Control Commands 61

The Stack Crawl Window 63
Navigating the Call Chain 64
Examining Local Variables 65
Displaying a User Stack Crawl 66

The Log Window 66

Memory Windows 67
Editing Memory 69
Searching Memory 70

The Register Windows 71
General-Purpose Registers 71
Floating-Point Registers 72

The Process Browser 73

Contents 43

44

CHAPTER 3

The Process List 74
The Current Focus 76
Application Preferences 77
The Fragment Info Window 78
Exports Windows 79
The Global Variables Window 80
The Breakpoint List 81

Contents

CHAPTER 3

The Debugger Windows

The Power Mac Debugger has several types of windows you can work with to

control your program’s execution and get information while debugging. This
chapter describes what they look like and how you work with them.

Chapter 4, “Basic Debugging Tasks,” goes into more detail about some of the
tasks you can perform when using the debugger’s windows.

General Information About Debugger Windows

It’s useful to think of the debugger’s windows as falling into three major
categories: windows that can have only one instance, those that can have any
number of instances, and those that can have one instance per process.

Windows that can have only one instance are listed in the Window menu
(Figure 3-1): Breakpoint List, Fragment Info, Global Variables, Log Window,
Process Browser, and control palette.

You open them by choosing Show windowname from the Window menu. You
can close them by choosing Close windowname from the Window menu.

Figure 3-1 The Window menu

Snapshot Active Window

Show Breakpoint List
Show Fragment Info

Show Global Dariables 3L
Show Log Window
Show Process Browser Y

Show Control Palette

+SortPicts.Native.xcoff Browser

Windows that can have any humber of instances are listed in the View menu
(Figure 3-2): User Stack Crawl, Memory, Instructions, and 68K Instructions.

General Information About Debugger Windows

45

CHAPTER 3

The Debugger Windows

You open them by choosing New windowname Window from the View menu.

Figure 3-2 The View menu

Set Default Window Position

Stack Crawl 3
New User Stack Crawl Window

New Memory Window M
New Instructions Window #0
New 68K Instructions Window 38

Registers K
FPU Registers

Display Code For...
Display Code For “MainEventLoop”

Current PC *®/

Windows that can have one instance per process, except for the Code Browser,
are listed in the View menu: Stack Crawl, Registers, and FPU registers.

The Code Browser opens automatically whenever you open a symbol file (by
choosing Open from the File menu). You open the other windows by choosing
their name from the View menu.

When you open any window, its name appears at the bottom of the Window
menu and you can choose it from there anytime to bring it to the front.

Any window can be closed by clicking its close box or by choosing Close from
the File menu (Figure 3-3).

General Information About Debugger Windows

CHAPTER 3

The Debugger Windows

Figure 3-3 The File menu

Open... #0
Open ROM Map...

Locate Correct Source File...
Show Full Path Name

Close W
Save Window as Text...

Page Setup...
Print... ®P
Quit #0

Saving and Printing a Window’s Contents

To save a window’s contents, choose Save Window as Text from the File menu.
The contents are saved in an MPW text file. To print the contents of any
window, choose Print from the File menu.

For some windows, such as those displaying source code for a single function,
the debugger saves or prints the entire scrollable contents of the window. For
windows that display memory and instructions, and allow you to scroll over
the entire address space, only the visible portion of the window is saved or
printed.

Taking a Snapshot of a Window’s Contents

Information displayed in debugger windows is dynamic and can change every
time a program stops. To preserve a window’s data at any point in time, choose
Snapshot Active Window from the Window menu. The debugger creates a new
window showing the visible contents of the original window. You cannot save
this snapshot window. You can, however, print the window by choosing Print
from the File menu.

General Information About Debugger Windows 47

48

CHAPTER 3

The Debugger Windows

Note

The contents of the snapshot window are fixed at the time
the snapshot is taken. The window can be resized but
can’t, for example, be scrolled to reveal additional lines of
code that were offscreen when the snapshot was taken. O

Remembering Window Positions

When you initially open a window, the debugger places it at a default location
(near the upper-left corner of the screen). Often you will move the window to a
convenient location as you are debugging.

For the windows listed in the Window menu (those that have only one
instance), the debugger automatically remembers their positions and sizes. For
example, if you close the Process Browser and then reopen it, it appears at its
previous location.

For the windows listed in the View menu, which can have multiple instances,
the debugger places each new instance of the window at a slight offset from
where the previous one was opened. If you choose Set Default Window
Position from the Window menu, the debugger saves the frontmost window’s
location and size so that the next time you open a window of that type, it
appears in the remembered location; if you open more than one of the same
type, the windows are staggered.

The Browser window is a special case. If you use debugger project files, the
position and size of the Browser is remembered separately for each symbol file.
See “Browser Preferences” (page 153) for more information about project files.

Multiple-Pane Windows

Some of the debugger windows (Browser, Process Browser, Stack Crawl, and
Global Variables) have several panes. Figure 3-5 (page 50), for example, shows
the three panes of the Browser window.

To save screen space, the titles of the panes (Files, Function, and Code in the
Browser), by default, do not appear in the window. Figure 3-8 (page 54) shows
the Browser as it appears without the windowv titles. To show the titles as they

General Information About Debugger Windows

CHAPTER 3

The Debugger Windows

appear in Figure 3-5, check “Show pane titles” in General Preferences in the
Edit menu.

To resize the panes, place the cursor over the split bar separating the panes; the
cursor then changes to the resize icon (see Figure 3-4). Then click and drag
away from the pane whose size you want to increase.

Figure 3-4 The resize icons

== vertical resize icon

++ Horizontal resize icon

The Browser Window

The Browser window is a three-pane window displayed when you open a
symbol file (by choosing Open from the File menu). You use this window to
view the source code for selected functions in your target program. The
Browser window is the only window that must be open in order to do
source-level debugging. If you close it, the symbol file is no longer available.

The Browser allows you to navigate easily through your source code, set
breakpoints, and see the statements that are executing as you single-step.

You can open any number of symbol files, and the debugger creates a Browser
window for each of them. The title of the window is the name of the symbol
file, followed by the word Browser.

The Browser’s Panes

Figure 3-5 shows the Browser window and its parts.

The Browser Window 49

CHAPTER 3

The Debugger Windows

Figure 3-5 The Browser window

S[[=——— SortPicts.Native.icoff Browser
Current Focus : CTubeTest copy . Thread. 100 [Stopped)
Files Functions
CPluzlnit.c AboutBoxFilter
Ewvents.cp Gi'or1d0bj ::AbautOb i)
filebuf.cp Giw'ord0bj::AdjusttenusOb i) : .
Gorldibj.cp GworldOb] : EackGroundib il Functions in

Source files HeapSort.cp G or1dobj : Begintlew Thiread() selected

foz.cp G or1d0bj : :ClosewindowOb i) source file
fostream_init.cp Giw'or1d0bj : Drag'windawOb jEventReca
Code

s Boolean Gllor 1d0bj : :BeginMewThreadd woid?
Source code — {
for selected OSErr errlhatErr;
function
s ifi gHasThreads)
{
errlhatErr = MewThread(kCooperatiwveThread,
Gllor | dThreadEntry,
Tuoid *®ithis,
Breaprint ;ggaguiﬁ ded + kCi tel fH
otMeede reqte =
column Cunid¥ oni |
s Ethreadlnfol;
s ifi errlhatErr !'= noErr2

| Gource w | [Not Mapped | [0l

Source/Assembly Branch result Status panel
pop-up menu (Assembly only)

The Browser window contains three panes, which display the following
information:

» Files. The upper-left pane displays a list of source files, in alphabetical order.
To select a source file, click its name. When this pane is active, you can type
the first few letters of a file name to select it.

= Functions. The upper-right pane lists the functions in the selected source
file, in alphabetical order. To select a function, click its name, or activate the
Functions pane and type the first few letters of the function name.

= Code. The lower pane displays the code for the selected function. The
pop-up menu at the lower-left corner of the window allows you to switch
between source-code and assembly-language views of the selected function;
the default is source code.

50 The Browser Window

CHAPTER 3

The Debugger Windows

To the right of the pop-up menu is an area that shows the result of a branch
instruction, when the Browser is displaying assembly code (see Figure 3-10).

The status panel at the bottom of the Browser tells you whether the code
associated with the symbol file is currently mapped to targeted code, that is,
whether it is ready to be debugged. See “Targeting and Stopping Your Code”
and “Mapping Symbols To Code” (page 41) for information on how to target
code and map it to a symbol file.

The currently active pane has a black border. You can navigate through the
panes clockwise by pressing the Tab key or counterclockwise with Shift-Tab.
You can also click whichever pane you want to make active. In Figure 3-5, the
Functions pane is active and the currently selected function is highlighted. The
Files pane shows which file is selected. The Code pane displays the source code
for the selected function.

Sometimes the debugger cannot display the source code. For example, symbol
information may not be available for that file (because the file was not
compiled with the correct compiler option). At other times, the symbol
information is available but the debugger cannot locate the source file. In this
case, you are prompted with a standard file dialog box to locate the file.

If you keep more than one version of source code on your disk, you may need
to tell the debugger which version to use. To do this, choose Locate Correct
Source File from the File menu. To find out which version the debugger is
using, choose Show Full Path Name from the File menu.

If source code is not available for a function, the debugger attempts to display
assembly code. Assembly code is available only when the application is
targeted. If it is, the Code pane lists the assembly instructions along with their
addresses in memory.

Working With the Code Pane

The Code pane displays functions formatted as they appear in the source file.
By default, C and C++ code is color-coded: language keywords are shown in
blue and comments are shown in red. You can turn color coding on and off by
choosing General Preferences from the Edit menu (Figure 3-6) and clicking the
“Use syntax coloring” option.

The Browser Window 51

CHAPTER 3

The Debugger Windows

Figure 3-6 The Edit menu

52

Can't Undo ®Z
Cut #H
Copy #C
Paste U
Clear

Select All ¥A
Find... #®F
Find Again 0
Find Selection #H
General Preferences...
Connection Preferences...

The text in the Code pane cannot be edited. However, you can select text in
order to highlight certain statements or to copy and paste it. Here are some
short cuts for doing so:

To select a word, double-click it.

To select an entire source-code statement, triple-click it. (If you then switch
to the assembly-language view, all the instructions corresponding to the
source statement are highlighted.)

To select the text between delimiters, double-click one delimiter in that pair.
The delimiters are parentheses (), brackets [], braces {}, angle brackets <>,
single quotes (), and double quotes (*).

To search for a string, Choose Find from the Edit menu (or press
Command-F). A dialog box appears (Figure 3-7), containing several search
options. In addition, you can use Find Again (Command-G) to search for the
same text again, or Find Selection (Command-H) to search for the currently
selected text. If you hold down the Shift key with these commands, the
search proceeds backwards through the function.

These actions can also be performed in any other code window. See “Creating
Other Code Windows” (page 54).

The Browser Window

CHAPTER 3

The Debugger Windows

Figure 3-7 Finding text in a code window

Find

Find what string?
[ex

@ Literal
1 Entire Word

[case Sensitive
[search Backwards
O wrap-Around Search

[Cancel][[Find]]

In the Code pane, the area to the left of the vertical dotted line is the breakpoint
column. To set a breakpoint, click one of the diamonds next to a source or
assembly statement; a breakpoint icon appears in place of the diamond.

Figure 3-8 shows an example of a breakpoint. See “Setting Breakpoints”

(page 85) for information on the types of breakpoints you can set.

The Browser Window 53

CHAPTER 3

The Debugger Windows

Figure 3-8 A breakpoint in the Code pane

54

S[I=———— sortPicts.Native.Hcoff Browser
Current Focus : SortFicts Mative Thread. 100 [Stopped)
CPlusinit.c App & justCursor(Region #%)
Ewvents.cp Handle ActivatelEventRecord *)
filebuf.cp HandlelizkInsert(EventRecard *)
GWorldObj.op HandleEvent(EventRecord #)
HeapSort.cp HandleKeyPress(EventRecard %)
ios.cp HandleMouseDownlEventRecord #1
iostrearn_init.cp HandleMoEvent()
istrearn cn Handle(S5F went FwentBerord #1

uoid Hand |l eEuvent: EusntRecord #ausntl

=3 =witche event—rwhat)
i

case mouseDown:
Hand | eMouselown{ ewvent?;
break. ;

case keyDown:

case autokey:
Hand | ekeyPressd auentl;
braak.;

coze activoteBEut:
HandleActivated auwentl;
breaak. ;

case updateEwt:
Harnd | elpdated ewentl;

Source W | Mapped [-<afi

4

P

The green arrow represents the program counter (PC), which is the next
statement or instruction to be executed. In Figure 3-8, the position of the PC
shows that the breakpoint has just been hit. If you begin single-stepping, the
program arrow moves; the breakpoint stays where it is. See “Controlling
Program Execution” (page 96) for more information on single-stepping.

When your code is stopped at a breakpoint, or when you have single-stepped,
the Code pane displays the function containing the current program counter. If
you then select another function from the Functions pane, the PC is no longer
visible; to get back to the function containing the PC, choose Current PC from
the View menu.

Creating Other Code Windows

There may be occasions when you want to see more than one function at a
time, or more than one view of a single function. You may, for example, want to

The Browser Window

CHAPTER 3

The Debugger Windows

compare source and assembly code for a given function. Or you may have
narrowed a bug search to two or three routines and want them all on the screen
simultaneously. The Browser can display only one routine, but you can “clone”
its Code pane to create a new window by following these steps:

1. Place the cursor in the Code pane of the Browser window.

2. Hold down the Option key. The cursor changes into a small window icon,
as shown in Figure 3-9.

3. Click in the pane, then drag and release to create a code view window
displaying the same function.

4. Select Source or Assembly from the pop-up menu in the newly created
window to display the desired view.

Figure 3-9 The clone-window cursor

1

Figure 3-10 shows the assembly-language view of the code shown in

Figure 3-8, displayed in its own code window. The breakpoint (and program
counter) is at the assembly instruction corresponding with the source-code
instruction in the other window.

The Browser Window 55

CHAPTER 3

The Debugger Windows

Figure 3-10

A cloned window with assembly-code display

+00000
+00004
+0000E
+0000C
+00010
+000 14
+00018
+0001C
+00020
i g +0o00z24
+00028
+00020C
+000:20
+00024
+00038

QOCES1FD
OOCES1F4
OOCES1FE
OOCESFC
QOCES200
OaceS204
OaCES202
Qoces20c
QOCE3210
QOCes2 14
OOCES2 13
OacCES21c
QoCEs220
QOCeS224
OOCES225

HandleEvent(EventRecord *)

0
0, Ox000SCSP »
5P, —0x0040CSP »
3, 00052 (SR »
3, O=00S2 (5P »
4, 000003y
4, Ox003SCSP >
Hand | eEvent{EventRecord # 3
3, 00052 C5F »

Hand | eMouseDown {Even tRaecor

Hand | eEventcEventRacord #
3, 00052 (SR »
Hand | ekeyPress EventRacord

Assembly W | will Branch

[<&]

If you want to display a function in its own code window but don’t remember
which source file it is in, use one of the following commands from the View

menu.

= Display Code For. Display Code For allows you to enter the name of a
function in a dialog box, as shown in Figure 3-11. If the function exists, the
debugger displays it in an independent code window. For C++ methods,
you must give the full class name and function name, as shown here. You do
not need to type parentheses or argument lists. (If there are two are more
C++ functions with the same name but different argument lists, the

debugger may not display the one you want.)

Figure 3-11

56

Locating a function’s code

Display Code For...

|TrestH|J|JIicatiun::l]uMenuEummand |

Cancel

The Browser Window

CHAPTER 3

The Debugger Windows

= Display Code For Selection. When the name of a function is selected in an
active code window, you can use the Display Code For Selection command.
The word “Selection” is replaced by the name of the function. For example,
if you select the name Hand1eFvent, the menu command reads Display Code
For “HandleEvent”. Choosing that command causes the code to be
displayed in a new window.

Note

Remember to specify the complete name of a C++ method,
for example, MyClass: :MyRoutine. If you select the name
MyRoutine inside a code window displaying another
function of the same class and choose Display Code For
MyRoutine, the routine will not be found. You must either
type the complete name in the Display Code For dialog
box or double-click the name in the Stack Crawl; see “The
Stack Crawl Window” (page 63). O

Instructions Windows

In addition to code windows displaying a single routine, the debugger
provides instructions windows that can disassemble any area of memory. They
are particularly useful for stepping through code that is not part of your
application (for example, system code).

Disassembling PowerPC Code

An instructions window disassembles an area of memory to PowerPC
instructions (Figure 3-12). To open one of these windows, choose New
Instructions Window from the View menu (or press Command-D).

Instructions Windows 57

CHAPTER 3

The Debugger Windows

Figure 3-12 A PowerPC instructions window

58

S[[=——— SortPicts.Native PowerPC Instructions-2
|F'C | [Use POER Instructions
. $ +0002C 010004Z2C Ihia 3, O=0038 5P »
+00090 01000430 subic ra,ra, 1
+00094 01000434 lw= rd, —0=0108CRTOC
+00092 01000438 cmp i 3, O=000E
+0009C 01000430 bgt Hand | eEvent(EvantRecord # MH0u000
+000A0 0000440 =lwi r3,r3,2
+000R4 01000444 lwzzx r3,rd, S
+000ARS 01000442 addc r3,rd, S
+000AC 01000440 mtlr 3
+000B0 01000450 bl
+000BE4 01000454 lw= 0, O=0048 5P »
+000EBE 01000458 addic SR, 5P, 64
+000BC O100045C mtlr rQ
+000C0O 01000450 blr
+000C4 01000454 de | 0=FFFFFFSC
+000CE 01000468 frmsub fp31, fp31, fp30, fp31
+000CC 01000460 fsqrt fp31, fp3i i
ajli =]

The box at the upper-left corner of the window shows the starting address of
the disassembly. If the debugger can convert the selection in the previous
frontmost window to an address, it uses that address to begin the disassembly.
Otherwise, it uses the program counter. To change the beginning address, enter
a new value and press Return or Enter.

Unlike code windows, instructions windows are not restricted to a single
function. In fact, you can scroll through the entire range of memory. To scroll
up or down in the display, click the arrows; to move up or down one page,
respectively, click above or below the thumb.

Note

In instructions windows, the thumb in the vertical scroll
bar does not move. Because you can scroll through the
entire range of memory, in a sense what you are viewing is
always at the “center” of the display. O

As with source-code displays, you can set breakpoints and single-step through
code in instructions windows. You can set a breakpoint on any instruction by
placing the cursor in the breakpoint column and clicking to the left of the
desired instruction. See “Setting Breakpoints” (page 85) and “Controlling
Program Execution” (page 96).

Instructions Windows

CHAPTER 3

The Debugger Windows

Note

Instruction displays use PowerPC mnemonics by default.
The PowerPC instruction set is a subset of IBM’s original
POWER instruction set, which uses a different set of
mnemonics. If you prefer to use the POWER mnemonics,
click the checkbox in the window (Figure 3-12). You can
also change the default setting by using General
Preferences in the Edit menu. See Appendix A, “Debugger
Preferences,” for more information. O

Disassembling 680x0 Code

A 68K instructions window disassembles an area of memory to 680x0
instructions (Figure 3-13). To open one of these windows, choose New 68K
Instructions Window from the View menu.

Figure 3-13 A 68K instructions window

EO0=——— SortPicts.Native 68K Instructions-1 =——8=15
[Fc |

02218978 JSA (i)

02212977 ORI.E #37E85, —(ADD

02218976 MOUE L A, D4

02218980 JSR oo

02218982 ORI.E *§7ES, —(ADY

02213036 MOUE L A, D4

02213938 JSR oo

02213937 ORI.E *§7ES, —(ADY

02213036 MOUE L A, D4

02213990 JSR oo

02212992 ORI.E *47000, —CAO Y

02213096 MOUE B $7C00CA4 7, A4

02213097 SUBI L #7000 1FAC, $4C00CA4

022180RZ ETST D0, $4ES0CA4 2

022130R6 ORI.E #3EC0Z, —CAO D

022139RA ORI.E #37C00, 00

Wk

F=] [[=1]

The box at the upper-left corner of the window shows the starting address of
the disassembly. If the debugger can convert the selection in the previous
frontmost window to an address, it uses that address to begin the disassembly.
Otherwise, it uses the program counter. To change the beginning address, enter
a new value and press Return or Enter.

Instructions Windows 59

CHAPTER 3

The Debugger Windows

Note

The Power Mac Debugger does not allow you to set
breakpoints in or step through 680x0 code. For that reason,
the 68K Instructions window does not show the current
PC and does not have a breakpoint column. The validity of
the disassembled instructions depends on your specifying
an address that actually contains 680x0 code. O

The Control Palette

When you launch the debugger, the control palette appears (Figure 3-14). Itis a
floating palette that appears in front of all other open windows, showing
information about your program’s status and containing a row of icons that
you can click to control the execution of your program.

Figure 3-14 The control palette

Current Focus
DernolialogsPPCHMEC
Thread 100

Status
Stopped
Ereakpoint

Timing (Secs)
2822919

To shrink the control palette so that it shows only the control icons, click the
zoom box in the upper-right corner. To close it, click the close box or choose
Close Control Palette from the Window menu. To reopen it, choose Show
Control Palette from the Window menu.

Program Status Information

The control palette displays the following status information:

60 The Control Palette

CHAPTER 3

The Debugger Windows

= Current Focus. At any given time, a number of applications may be targeted
by the debugger. Only one of these (at most) has the current focus. All the
commands in the control palette and Control menu (such as the Step Over
command) operate on this process. To single-step in a different process, you
must change the current focus. See “The Process Browser” (page 73) for
more information on setting the current focus and on targeting and
untargeting processes.

= Status. A targeted application can be in one of several states:

o Running.The application is executing. It has an entry in the Process menu
and the user can interact with it (assuming it has a user interface).

o Stopped. The application has been stopped under debugger control. Its
entry in the system Process menu is dimmed. The control palette displays
the reason for the stop: Breakpoint, Stepped, DebugStr, or User Break.

o Suspended. A thread of the application has been temporarily halted and
may be continued later. This state applies only to cooperative threads
under the Thread Manager.

= Timing. If you set a breakpoint, run a process, and reach the breakpoint, the
debugger displays the time elapsed on the target machine between the start
of execution and the break.

In the control palette shown in Figure 3-14, the application
DemoDialogsPPCMrC has the current focus, and it is stopped at a breakpoint.
The name “Thread.100” refers to the application’s main thread of execution.
For more information on threads, see “The Process Browser” (page 73).

Program Control Commands

The icons in the control palette (Figure 3-15) represent the most common
commands to control the execution of a program. Table 3-1 shows the action
that takes place when you click each icon and their Control menu equivalents.

Figure 3-15 Control palette icons

The Control Palette 61

62

CHAPTER 3

The Debugger Windows

Table 3-1 Control palette icons and their Control menu equivalents
Control
Palette menu
icon equivalent Effect
[] Stop Stops the application (available only when using
the serial nub).
e Run Resumes execution of the application. If already

£

Note

(Command-R)

Step Into
(Command-T)

Step Out
(Command-U)

Step Over
(Command-S)

Turn
Continuous
Step On/Off

running, the application comes to the front.

Executes the next statement. If it is a function call,
stepping continues with the first statement of the
called function. The new routine is displayed in
the Browser window.

Completes execution of the current routine.
Stepping continues following the statement that
called the current routine.

Executes the next statement. If it is a function call,
the function is executed in its entirety; stepping
continues with the first statement following the
function call.

When you click this icon, it highlights. When you
then choose Step, Step Into, or Step Out, the
debugger repeatedly executes that command
until a breakpoint is reached. To stop the
continuous stepping, click the icon again.

All commands operate on the application that has the
current focus. O

When stepping through code, if the active window is displaying a source view,
the program steps one source statement at a time. If the active window is
displaying an assembly-language view, the program steps one machine
instruction at a time. If the active window is not a code window, the debugger

The Control Palette

CHAPTER 3

The Debugger Windows

uses the last code view that had been displayed to determine whether to step in
source or assembly.

For additional information on these commands, as well as other commands in
the Control menu, see “Controlling Program Execution” (page 96).

The Stack Crawl Window

The Stack Crawl window (Figure 3-16) is a two-pane window that displays
information about routines on the stack. To open this window, choose Stack
Crawl from the View menu (or press Command-J).

Figure 3-16 The Stack Crawl window

EO=—— sortPicts.Native.Thread.100 Stack =———=00=

Yariables

[midPoint Ox01207F4C
[+ this { 0=010139C3
§ Dx1207F40
000000AD

FC Frame dddr Frame Type Function Marme
0232B004 | 01208446 68K PrYYE
000FCE2ZC | O1Z082C0 68K PrYYE

01 00SFED 012028288 FPowerPC | _cplusstart

01007484 | 01202248 | PowerPC |?2P?

O100ZFE4 | 1208210 | PowerPC |main

01000598 | 012081B0 | PowerPC |[MainEventLoopl)

010003C4 01202170 FPowerPC [HandleEvent(EvertRecord *)

OOFFF264 | 01208100 | PowerPC |HandleMouseDown(EventRecord ¥)

01002EF4 01 207F58 FowerPL [GWorldObj::MenuObjlshort, short, EventRecord £)
O1001ECC | O1207F08 | PowerPC |GWorldObj::New'window0Obj()

[&]

The lower pane shows the call chain of routines on the stack. The upper pane
shows the variables corresponding to each routine. The active pane is indicated
by a black border (the lower pane in Figure 3-16). You can switch between the
panes by using the Tab key or by clicking in a pane.

The Stack Crawl Window 63

64

CHAPTER 3

The Debugger Windows

You can resize the panes by placing the cursor over the split lines to display the
vertical resize icon, then clicking and dragging. You can also resize the columns
in the upper pane.

Navigating the Call Chain

In Figure 3-16, the current routine (that is, the routine containing the current
program counter) is GWor1d0bj: : NewWindowObj. It is displayed at the bottom of
the Stack pane. The routine that called it, GWor1d0bj: :MenuObj, is above it in the
display. That routine, in turn, was called by the routine in the row above it.
This list of routines represents the call chain.

This display can be very useful for understanding how certain problems
occurred. When you enter the debugger (for instance, with a DebugStr call), the
Code Browser shows the current routine. Seeing only that routine may not help
you to pinpoint the problem, particularly if it is a routine that is called from
several places. The Stack Crawl provides more information by giving you a
view of the path your program took to reach the current routine.

Each row in the display shows the following information:

= PC. For the current routine, this value represents the current program
counter. For other routines in the call chain, this value represents the address
of the instruction that called the next routine.

If you double-click an address in the “PC” column, an instructions window
appears, showing assembly code starting at that address (PowerPC or 680x0,
as appropriate). For more information, see “Instructions Windows”
(page 57).

= Frame address. The address of the stack frame, which is an area on the stack
containing data related to the routine. The current routine’s stack frame
address is equal to the current stack pointer (SP), that is, the top of the stack.
Since the PowerPC stack grows toward low memory, the frame address of
each calling routine is higher in memory.

If you double-click a frame address, the debugger displays a memory
window, with the memory display beginning at the frame address. For more
information, see “Memory Windows” (page 67).

= Frame type. The routine’s instruction set, that is, either PowerPC or 680x0.

The Stack Crawl Window

CHAPTER 3

The Debugger Windows

= Function name. The routine’s name (if it is known). If the name is not
known, it is shown as four question marks (????).

If you double-click the name, the routine is displayed in the Browser
window. To display the routine in a separate code window, hold the Option
key down while double-clicking. If the routine’s name is “????”, the
debugger displays an instructions window starting at the address listed in
the “PC” column.

Examining Local Variables

The upper pane of the Stack Crawl windowv lists the variables corresponding to
the stack frame selected in the lower pane. This list includes the routine’s local
variables as well the parameters that were passed to it. To select a routine, click
anywhere in its row in the lower pane; the variables are then displayed in the
upper pane. The variables’ names appear to the left of the dotted line, and their
values appear to the right.

Some variables have disclosure triangles to the left of their names. The
triangles indicate variables that are structures, arrays, pointers or handles. If
you click a triangle, it points down and shows the contents of the variable in
expanded form. You can also display the variable in its own window by
double-clicking its name. See “Displaying and Editing Variables” (page 101) for
more information on interpreting variable displays.

You can create a separate copy, or “clone”, of the variables pane. To do this,
hold down the Option key, click in the pane and drag. The pane then appears
in a new window, as shown in Figure 3-17. Cloning allows you to maintain a
view of a given routine’s variables regardless of what the Stack Crawl window
shows. The variables’ values are automatically updated each time the program
stops.

The Stack Crawl Window 65

CHAPTER 3

The Debugger Windows

Figure 3-17 A variable window cloned from the stack variables pane

S[0I= GWorld0b j:NewlWindow0Ob j() Dariables-1 =3I
P rmidPeint { Dx01072600 ! Use Current Focus (3 |17}
[this { OxO0ETFOAS i Use Current Focus (2
[) winRect 0x=01073600 Use Current Focus ()

P winRectHandle i 000000040 { Use Current Focus (3D 6

S|l |

Note

The third column of this clone window shows the context
in which the variable is being evaluated. By default, this
context is the current focus. For more information on
setting the context of a variable, see “Global Variables”
(page 101).

Displaying a User Stack Crawl

A User Stack Crawl window displays a stack starting at an arbitrary address.
To open one of these windows, choose New User Stack Crawl from the View
menu. By default, the stack displays a copy of the existing stack crawl in a new
window. At the top of the window is a box called “Frame Address”, in which
you can type any address. If that address is a valid stack frame, the rest of the
stack is displayed.

The Log Window

The Log window is a text window that
= allows you to execute commands (in particular, debugger extensions)
» displays the output of DebugStr calls and debugger extensions

To open this window, choose Show Log from the Window menu. Figure 3-18
shows the Log window as it first appears.

66 The Log Window

CHAPTER 3

The Debugger Windows

Figure 3-18 The Log window

Ei———————————— Log Window E=————J|=
I1dle
In this window you can type commands then press Enter or Cmd-Return to ii

exaecute them, =similar to MPH.

The following commands are auailable:
EXTEMNS 1 OME Dizplays the extensions installed on the Target.
HELF Displays this message, or HELF <EXTEMSI0M: will
dizplay help for the nomed debugger extenzion.

=)

<l

As in the MPW Shell, you can execute commands by typing them and then
pressing the Enter key. Entering “help” gives you a list of available commands.

You can execute debugger extensions from this window. See Appendix C,
“Debugger Extensions,” for information on creating and executing debugger
extensions.

Whenever a DebugStr call executes, The Log window opens and displays the
string that was passed as a parameter to DebugStr. If you want the debugger to
display the date and time next to Log window output, choose General
Preferences from the Edit menu and check the “Time stamp log entries” option.

You can save the contents of the Log window to an MPW text file by choosing
Save Window as Text from the File menu.

Memory Windows

Memory windows display the contents of memory starting at a given address
(Figure 3-19). To open a memory window, choose New Memory Window from
the View menu (or press Command-M).

Memory Windows 67

CHAPTER 3

The Debugger Windows

Figure 3-19 A memory window

68

S[O=——— SortPicts.Native Memory-1 =———
|D1E|F?5EID | [Search...] By te M'ignrnent:

OGBFVSE0: O16F7SF0 42000422 40R0SEFO OSO0BFE ou B (B . F..
OHGFVYACO: 00000000 O001FAD4 00000000 O000z20AC -
OHGF?S00: O1DRIC3G Y3637V259 01501B10 G2FFFY40
OHGFVSED: 0006003A C1DARC3EA 00010000 22000207
Q1EFTSFO: O16F7ES0 01S00BFS O14EFQCC Q1GF77EZ
QIEFTE00: O1S01B1C 01S00BFS O18F763C FFFFFFFF
QIEFTE10: O1EF7ES0 22000422 0004E32C Q0000000
Q16F7E20: 000000EE S2EBC1OF O14EESG4 QOOQ0000
CHEFTE3E0: 00000000 Q00003ES 00000001 Qo0 10000
OHGF7640: O00000EE G32E0006 003R0400 01500594
OHBFVYES0: O16F7E2E 023IBS1A 014F3412 00000001
OHBFVEE0: 02338514 O1S00BFE 00000001 Q0000001
CHGFVET0; OMGF7EED 42000400 40R00222 Q0000000
Q1EFTE20: 00009302 0001FAC4 O18F7ECE GEFFF?40
Q1EF7E00: O14FSEES 01DAS190 O14F32C8 Q1S00BFS
QIEFTEA0: 22000807 O1S00BFS O1S01E10 Q0000001
QIGFTEED: O016F7700 Q00AZESO OOOES3ZA0 GSFFF740

<l

ik
mE

Using memory windows, you can view and edit any area of memory. You can
also search for any value in memory:.

The box at the upper-left corner of the window shows the starting address of
the display. When you choose New Memory Windowy, if the debugger can
convert the selection in the frontmost window to an address, it uses that
address to begin the display. Otherwise, it uses the stack pointer. To change the
address where the display begins, enter a new value (an address, a register, or
an arithmetic expression) in the box and press Return or Enter.

Note

When a memory window is active, pressing
Shift-Command-M causes the display to scroll to whatever
address is selected in the window. O

On the Mac OS platform, addressable memory ranges from $0000 0000 to
$FFFF FFFF, a range of 4 gigabytes (GB). You can use the scroll bar to move the
display up and down through the entire range of memory. Click above or
below the thumb to move up or down one page. If you attempt to show an area
of memory that is not valid, the debugger displays an alert.

Memory Windows

CHAPTER 3

The Debugger Windows

Note

Unlike the thumb in most scrolling windows, the thumb in
the vertical scroll bar does not move. The reason is that
you can scroll through the entire range of memory, thus in
a sense what you are viewing is always the “center” of the
display. O

Each row of the memory display shows 16 bytes of data in hexadecimal and
ASCII format. By default, the hexadecimal display shows the data in groups of
4 bytes (8 hexadecimal digits). To change the byte grouping, select “2 Bytes” or
“1 Byte” from the Byte Alignment pop-up menu. To change the byte grouping
default, choose General Preferences from the Edit menu; the “Other” category
has a “Default mem view byte grouping” item with a pop-up menu for setting
the value.

Editing Memory

You can edit any area of memory using a memory display window. Here are
the steps:

1. Click the value you want to change.

You can select groupings of 4 bytes, 2 bytes, or 1 byte, depending on the
grouping preference you have set. You can select the next group by pressing
the Tab key, and the previous group by pressing Shift-Tab.

2. Enter the new value.

You are allowed to enter no more than the number of bytes selected. For
example, if the byte grouping is 4, you can enter up to eight hexadecimal
digits. If you enter fewer digits, the value is shown right justified, padded
with zeros on the left.

3. Press the Return, Enter, or Tab key to make the change.
4. To undo a change, choose Undo from the Edit menu.
WARNING

Changing memory can be dangerous unless you are
absolutely sure what you are doing. The debugger cannot

protect you from a crash if you accidentally change data
that is important to an application or the system. a

Memory Windows 69

CHAPTER 3

The Debugger Windows

Searching Memory

When a memory window is frontmost, you can search for any string or other
value in memory. To do this, click the Search button (see Figure 3-19). A Search
Memory window like the one in Figure 3-20 appears.

Figure 3-20 The Search Memory window

70

=[O Search Memory

Target memory window name :
SortPicts Native Memory-1

Beginning search addresz: 01 6F7SED

@ Search until the end of memory

D FMazx numnber of bytes to search:

Search arguments (no spaces]:

® Hex (O ASCII

This window is associated with the foreground memory window; when you
close the memory window, the Search Memory window also closes. It is
possible to have several Search Memory windows open, each associated with a
memory window.

When searching memory, you can specify
= an ASCII or hexadecimal value to search for
= alocation in memory to begin the search

By default, this is the value displayed in the memory window’ upper-left
box.

= whether you want to search through all of memory or only a specific range
of addresses

You can stop a search at any time by pressing Command-period.

Memory Windows

CHAPTER 3

The Debugger Windows

The Register Windows

The debugger provides two windows that allow you to display and change the

values of PowerPC registers. One displays general-purpose registers, and the
other displays floating-point registers.

General-Purpose Registers

The Registers window (Figure 3-21) displays the values of the PowerPC
general-purpose registers. To open this window, choose Registers from the

View menu (or press Command-K).

Figure 3-21 The general-purpose registers
=] CTubeTest.Thread.100 Registers
CRO__CR1 CAZ CR3 CR4 CRS CRG CAY
CR OO 1000 1000000100 0010 0100 1000 0010
pC O20ECFO4 TTTOTELD
LR 020ES0CE s50C Compare Count
CTR DOOBGGZ0, WER 000 oo, 1z,
F 00 OZOEFFCC R O 00000001 R 16 OOOD2E2C R 24 OZ0DBDYS
SP 0200DBAFOD R 0D 00000001 R 17 O10AR3208 R 25 00000000
TOC 00454104 R 10 OD4SEF30 R 18 73537260 R 26 000000OZ
F 03 DOOOOOIE R 11 OO4SS16E R 19 002320000 R 27 OZO0DEEZE
F 04 0D000DOODZ R 12 000DOOOO4 R 20 02372014 R 28 00000001
F 05 00000001 R 13 00000000 R 21 023720C4 R 20 O04550ES
F 05 DD4SBF70 R 14 00000013 R 22 00000041 R 30 OOO00DOIE
F 07 0D000OO40 R 15 00210003 R 23 70777053 R 31 OZ0DBESS

The Registers window displays the 32 general-purpose registers, the branch

unit registers, and the program counter.

= The general-purpose registers, the program counter (PC), the Link Register

(LR), and the Count Register (CTR) are displayed in hexadecimal form. You
can change the value of a register by clicking its value, entering a new value,

and pressing Enter or Tab. To undo a change, choose Undo from the Edit

menu.

The Register Windows

71

CHAPTER 3

The Debugger Windows

= The Condition Register (CR) and the Summary Overflow (S), Overflow (O),
and Carry (C) bits of the Fixed-Point Exception Register (XER) are displayed
in binary. Click a bit to toggle its value.

Note

By convention, R1 is the stack pointer and R2 points to the
Table of Contents (TOC) for the currently executing
fragment. R3 is used by C functions to store small result
values (short, long, pointer). O

Floating-Point Registers

The FPU Registers window displays the values of the PowerPC floating-point
registers (Figure 3-22). To open this window, choose FPU Registers from the
View menu.

Figure 3-22 The floating-point registers

72

CTubeTest.Thread.100 FPU Registers

F HI11ZI C
FPECR FEVOUZXASDODMUFF B uyouzxH
XEXXXEXXXHNIIZZCRIC =7 IEEEEE | BN
00000000000 000000000000000000000

FPR 0O FrAN255) FPR 16 0.000000000000000E+00
FPR 01 0. 000000000000000E+00 FPR 17 0.000000000000000E+00
FPR 02 4. S03601774854224E+15 FPR 13 0.000000000000000E+00
FPR 03 4.503601774854224E+15 FPR 19 0.000000000000000E+00
FPR 04 —HAMC255) FPR 20 0.000000000000000E+00
FPR 03 1.000000000000000E+14 FPR 21 0.000000000000000E+00
FFR 05 1.000000000000000E+20 FFR 22 0.000000000000000E+00
FPR O7 1.000000000000000E+132 FPR 22 0.000000000000000E+00
FFR 0= 1.000000000000000E+21 FFR 24 0.000000000000000E+00
FPR 09 1.000000000000000E+06 FPR 23 0.000000000000000E+00
FFR 10 1.000000000000000E+07 FFR 26 0.000000000000000E+00
FFR 11 1.000000000000000E+05 FPR 27 0.000000000000000E+00
FFR 12 1.000000000000000E+08 FFR 22 0.000000000000000E+00
FPR 13 1.000000000000000E+04 FPR 29 0.000000000000000E+00
FFR 14 0. 000000000000000E+00 FFR 20 0.000000000000000E+00
FPR 15 0. 000000000000000E+00 FFR 31 0.000000000000000E+00

The Register Windows

CHAPTER 3

The Debugger Windows

This window shows the 32 floating-point registers and the Floating-Point
Status and Control Register (FPSCR).

= By default, the floating-point register values are displayed in scientific (float)
notation. You can change the display of an individual register by selecting
the register and choosing either View as Float or View as Hexadecimal from
the Evaluate menu.

To change the value of a register, select the register, enter the new value, and
press Enter or Tab. To undo a change, choose Undo from the Edit menu.

= The FPSCR value is displayed in binary form. Click a bit to toggle its value.

The Process Browser

The Process Browser window (Figure 3-23) displays a list of all currently
executing native PowerPC processes and threads on the target machine. To
open this window, choose Show Process Browser from the Window menu (or
press Command-Y).

The Process Browser allows you to
= see which processes and threads are executing on the target machine
= target and untarget specific processes and threads for debugging

= select which process or thread you want to be the focus of program control
commands (for instance, single-stepping)

= set preferences for when the debugger should be entered, on a process basis
A process is equivalent to a running application on the Mac OS.

With System 7.5 and later, a programmer can use the Thread Manager to create
multiple cooperative threads of execution within a single process. The Power
Mac Debugger provides support for debugging separate threads within a given
process, if you use the application nub (Power Mac DebugServices). For
example, you can set a breakpoint that causes the program to stop at a
particular line of code, but only if a specific thread is executing. The Process
Browser displays information for all threads on the system.

The following sections describe the information displayed in the Process
Browser.

The Process Browser 73

CHAPTER 3

The Debugger Windows

Figure 3-23 The Process Browser

74

|§DE Process Browser ="rc—————011=
Current Focus : SartPicts Native Thiead.100 (Stopped)

Marre State

[] Stop on DebugStr()
[CTubeTest copy Targeted ﬁ Estop on Debugger()
I FrametakerS { Untargeted
7 SortPicts Native Targeted
Thread.100 | Stopped
[System Untargeted

[J5top on task creation
[] Stop on code loads
Ebisplag process state alerts

|

I&

The Process List

The left pane of the Process Browser displays a list of the processes running on
the target machine. This list includes all native PowerPC applications, as well
as the System process. (Emulated 680x0 applications are not listed.)

To the right of each process name is displayed its state—either targeted or
untargeted. If a process is untargeted, it is not ready to be debugged. A process
is untargeted by default unless you have launched it under debugger control or
used one of the other methods mentioned in Chapter 2.

To target an untargeted process, you can
= double-click its name in the Process Browser
= select its name and choose Target from the Control menu

= generate an exception in the target application (for example, with a DebugStr
call)

When a process is targeted, the Process Browser displays additional
information. In Figure 3-23, note the disclosure triangles to the left of the
process names. When you click a triangle, it points downward to reveal one or
more items (if the process is targeted). These items represent the threads
associated with a given process. Typically, each targeted process has a single
thread associated with it, known as the main thread. An application’s main
thread is always named Thread.100, by convention. Here, the SortPicts.Native

The Process Browser

CHAPTER 3

The Debugger Windows

application has a single main thread of execution. If new threads are created
using the Thread Manager, they show up in the Process Browser and can be

individually targeted if desired, as shown in Figure 3-24.

Figure 3-24 A multithreaded application

E@

Process Browser ==—————— [91=

Current Facus : SortPicts Native Thread.100 (Running)

Marne

State

7 SortFicts Mative
Thread 122
Thread.121
Thread 115
Thread. 100

[+ Systern

<l i

Targeted

Untargeted

Estop on DebugStr()

[<]Stop on Debugger()

|:| Stop on task creation

|:| Stop on code loads

|:| risplay process state alerts

S

i

In this example, each thread has a state displayed to the right of its name. A
thread can be running, stopped or suspended. See “Program Status

Information” (page 60) for descriptions of these states.

If you are using the serial nub (PPC Debugger Nub), you cannot debug

individual threads. Therefore, the Process Browser displays processes only. See

Figure 3-25, which lists five processes but shows no individual threads.

The Process Browser

75

CHAPTER 3

The Debugger Windows

Figure 3-25 The Process Browser when using the serial nub

76

ED=——————— Process Browser ————J-

Current Focus: Graphing Caleulator (Running)

State
: Stop on DebugStr()
i Stopped ﬁ Est Deb o
H op on Debugger!
DernolizlogsPPCHMEC i Running E P 99
‘ 5t task ti
Graphing Caleulator i Running []stop on task creation
SortPicts Native { Running [<] Stop on code loads
Systemn Untargeted [<]Display process state alerts
7]
- I&

To untarget a process, select its name in the Process Browser and choose
Untarget from the Control menu.

The Current Focus

Note that in Figure 3-24 the entry for SortPicts.Native.Thread.100 is in boldface.
This shows that it has the current focus—that all the commands in the control
palette and Control menu apply to this process. A Step Over command, for
example, causes the currently focused process to single-step, whether or not
other processes are targeted. If you wish to single-step in a different process,
you must change the current focus.

Note

When using the application nub, the current focus
technically refers to a specific thread. If, however, the
process has only a single thread, the focus can be
considered to belong to the process. O

The current focus is also displayed at the top of the window, as well as in the
control palette. To change the current focus, you can double-click the name of a
process or one of its threads.

= If you double-click the name of an untargeted process, the process’s state
changes to targeted and its main thread (Thread.100) appears in boldface.

The Process Browser

CHAPTER 3

The Debugger Windows

= If you double-click the name of a targeted thread, the thread’s name changes
to boldface and it becomes the current focus.

The current focus is automatically changed when
= Yyou use the Launch command to launch an application

= an application hits a breakpoint or other exception (such as a DebugStr call)

Application Preferences

The right pane of the Process Browser has a series of checkboxes, which specify
how a process can stop and enter the debugger, as shown in Figure 3-23. These
items can be changed individually for any process. By default, some of the
items are checked and some are unchecked. You can change the defaults, if you
wish, by choosing General Preferences from the Edit menu and selecting items
in the Process Control section. See Appendix A, “Debugger Preferences,” for
more information on the preferences you can set.

Here are the items that you can check:

= Stop on DebugStr() and Stop on Debugger(). The debugger is entered
whenever this process executes one of these calls. These items can also be
checked or unchecked for individual threads.

= Stop on code loads. The debugger is entered any time a code fragment gets
loaded. Stopping on code loads is useful if you want to debug some code,
such as a stand-alone code resource, that your application loads. This option
does not cause a hewly launched process to stop when its code fragment is
loaded; for that, you must explicitly break on launch.

= Display process state alerts. The debugger displays alerts when a process is
launched under debugger control or when a process quits.

= Stop on task creation. The debugger stops whenever an application creates
a new thread.

The Process Browser 77

CHAPTER 3

The Debugger Windows

The Fragment Info Window

The Fragment Info window (Figure 3-26) allows you to get information about
all code fragments on the target machines (not just those being debugged). To
open this window, choose Show Fragment Info from the Window menu.

Figure 3-26 The Fragment Info window

78

SO=————————— Ffragment Info

Process Name Fragrent Namne Address Size Dbg? Type
SortPicts Native Quickdrawlib C2A00 opocecso 00000ZFC | Yes | Code
SortPicts Native QuickdrawLib C2A00 0QosCcos0 oooo0o02s |Yes | Data
SortFicts Mative SortPicts Mative 01 4EEBOO oo0osi 00 | Yes | Code
SortFicts Mative SortPicts Mative 015002B0 00001 225 |Yes | Data
SortPicts Native StdCLib. 105248 O14FEEDO O00O1F88 |Yes | Data
SortPicts Native StdCLib 1052458 023eC470 O0010CF4 | Yes | Code
SortPicts Native ThreadsLib 252704 01500820 00o0020C | Yes | Data
SortPicts Native ThreadsLib 252704 023&8FZ0 000034ZC | Yes | Code
Systemn 4EDE4D OD4&E0Z0 00000Z40 | Mo | Code
System 46DE40 003&39F0 00000030 | Mo | Data
Systern CodeFragrmentt-1gr 409EOSCO 0001 Fas0 000007 Mo Drata
Systern CodeFragrmentt-1gr 409EOSCO 40%E11BO Oo00CzZEC Mo | Code
Systemn CodeFragmenti-igr DE4EO#1 00042930 OO000E34 Mo | Data
System CodeFragmenttigr DE4EQ#1 O00DEFS0 O000C A9 Mo | Code

Enter an addreszs to dizplay infarmation.

Fragrent :
!
Function:
[

In the Fragment Info window, each row represents a fragment. Each of the six
columns displays information about the fragment, as described here.

= Process Name. The name of the process associated with this fragment. For
each process, the window shows fragments containing the code for the
process itself, as well as shared libraries that it calls. For example, in
Figure 3-26, the SortPicts.Native process uses fragments belonging to the
QuickDrawLib, StdCLib and ThreadsL.ib libraries, as well as its own code.

= Fragment Name. The name of the fragment. Several fragments can have the
same name, but their addresses will be different. In Figure 3-26, for instance,

The Fragment Info Window

CHAPTER 3

The Debugger Windows

there are two fragments called CodeFragmentMgr.409£08C0 and two called
CodeFragmentMgr.D64E0#1. The addresses appended to the names show
where the fragments reside in memory.

= Address. The address of the code or data. For a code fragment, the address
is the same for all processes that use the fragment. For a data fragment, in
contrast, each process that uses the fragment can get a separate copy of the
fragment’s global data; therefore, for data fragments there is a different
starting address for each process.

» Size. The size of the fragment.

= Dbg? The target state of the fragment. Yes if it is currently targeted for
debugging; no if it is not.

= Type. The type of the fragment (code or data).

By default, the items in the Fragment Info window are sorted alphabetically by

process name. If you wish, you can sort the data by fragment name, address or
size by clicking the heading at the top of the appropriate column.

When fragments are created or deleted on the target machine, the information
in the Fragment Info window is not automatically updated. You can use the
Refresh button to get an updated list at any time.

Sometimes you may want to know what code is located at a particular address
in memory. If you enter that address in the text box at the bottom of the
Fragment Info window, the display tells you which fragment, if any;, is loaded
at that address, and what function it is in, if the symbols are available.

You can also enter a transition vector into the text box to display the function
name. See “Exports Windows” (page 79).

Exports Windows

A code fragment may contain routines that are exported for use by other
fragments. To list these routines, double-click any row in the Fragment Info
window or select the row and click the Show Exports button. An exports
window appears, listing all the exports in the given fragment (Figure 3-27).

The Fragment Info Window 79

CHAPTER 3

The Debugger Windows

Figure 3-27 An exports window

S=———— CodefragmentMgr.409E08C0-1 =———P0I=
Symbol Hame address Symbol Type
FragRefadAccRsre TOOTFFLT Togde Vecior G
FragReload dccRerc O003C468 |Code Vector
FragReroveMotifyProc: Oo02c428 |Code Vector
FragReroveMotifyProc: 00020020 |Code Vector
FragReroveSearchPros Oo02c428 |Code Veotor
FragReroveSearchPros 00020028 |Code Yeotor
FragResalveSy mbal Oo02c458 |Code Veotor
FragResolveSymbal Q0020008 |Code Vector
GetliskFragrnent Q002003C |Code Vector
GetliskFragrnent Q003C4E0 |Code Vector
GetindSymbaol Oo0z00Cce |Code Vector
GetindSymbaol Oo02c428 |Code Vector
GetMernFragrment 00020098 |Code Wector
GetMernFragrent 0009c4 48 |Code Veotor Wk
GetSharedLibrary ao0zo020 |Code Yeotor [=]

In the window, each exported symbol is identified by name, address, and type
(code vector or data). The address points to code or data, as follows:

= If the symbol type is code vector, the address is a pointer to the routine (a
transition vector). Double-clicking the row brings up an instructions
window showing the code for the function.

= If the symbol type is data, the address is a pointer to the data itself.
Double-clicking the row brings up a memory window starting at that
address.

By default, the exports list is sorted by symbol name. You can sort by address
or symbol type by clicking the appropriate column header.

The Global Variables Window

The Global Variables window displays a list of global variables for all
currently open symbol files. To open this window, choose Show Global
Variables from the Window menu (or press Command-L). For more
information, see “Global Variables” (page 101).

80 The Global Variables Window

CHAPTER 3

The Debugger Windows

The Breakpoint List

The Breakpoint List window displays all the breakpoints that are currently set.
To open this window, choose Show Breakpoint List from the View menu (or
press Command-N). For more information, see “Setting Breakpoints” (page 85)
and “The Breakpoint List” (page 94).

The Breakpoint List 81

82

CHAPTER 3

The Debugger Windows

The Breakpoint List

CHAPTER 4

Basic Debugging Tasks

Contents

Setting Breakpoints 85
Types of Breakpoints 86
Simple Breakpoints 89
One-Shot Breakpoints 89
The Breakpoint Options Dialog Box 90
Counting Breakpoints 91
Conditional Breakpoints 92
Performance Breakpoints 92
Inactive Breakpoints 93
The Breakpoint List 94
Removing Breakpoints 95
Setting Breakpoints on System Calls 95
Entering the Debugger From Your Source Code
Controlling Program Execution 96
The Current Statement 97
Stepping Through Your Code 98
Other Program Control Commands 100
Displaying and Editing Variables 101
Global Variables 101
Expression Results Windows 105
Using the Evaluate Dialog Box 107
Evaluating “this” 109
Evaluating SOM Objects 109

Contents

96

83

84

CHAPTER 4

Contents

CHAPTER 4

Basic Debugging Tasks

This chapter describes the fundamental tasks you perform when debugging:
setting breakpoints, stepping through your code, and examining your variables.

Setting Breakpoints

A breakpoint stops execution of the target program at a specific statement or
instruction. Once the program is stopped, you can examine the state of the
system (such as memory, registers, and your program’s variables).

You typically set breakpoints in the Code Browser window. You can also set a
breakpoint in any other source-code or instructions window. Each of these
windows contains a breakpoint column, the narrow space to the left of the
vertical dotted line in a source-code or instructions window (see Figure 4-1).

Figure 4-1 Setting a simple breakpoint

EO0=———— SortPicts.Native.qcoff Browser
Current Focus: SortPicts Native Thread. 100 (Stopped)
CPlusinit.c AppadjustCursor(Region %)
Events.cp Handle dctivatelEventRecord *)
filebuf.cp HandleliskInsert(EventRecard *)
G'or d0bj cp HandleEvent(EventRecord #)
HeapSart.cp HandlekeyPress(EventRecord %)
i0s.cp HandlelMausebown(EventRecard *1
instream_init cp HandleMoEvent()
iztrean oo HandleNSFwentlFventRennrd #1

woid Hand | eMouselowncEventRecord *euvent)

long newsize;
Rect growRect;

HindowPtr thellindow;!
short part;
GrafP - oldPort;

long menufnd | tem;

part = FindWindowlevent—where, Sthedindow?;

switchy parts
{

case inMenuBar:
thelindow = FrontHindowds;
ifo I=sAppHindowd thel indow s>

Source w | Iapped

4

Setting Breakpoints 85

86

CHAPTER 4

Basic Debugging Tasks

= In the Browser or other source-code window, the hollow diamond icons in
the breakpoint column show where you can set breakpoints. They
correspond to the statements in your program.

= In any window displaying assembly code, you can set a breakpoint on any
instruction. Therefore, no diamonds appear in the breakpoint column.
Figure 3-12 (page 58) shows an example of a breakpoint in assembly code.

For more information about the windows in which you can set breakpoints, see
“The Browser Window” (page 49) and “Instructions Windows” (page 57).

To set a breakpoint, click one of the diamonds; a breakpoint icon replaces the
diamond. To set different types of breakpoints, you press one or more modifier
keys while clicking. The cursor changes to reflect the type of breakpoint that is
set. For some types of breakpoints, you need to enter additional information in
a dialog box.

Note

If you attempt to set a breakpoint in ROM, the debugger
displays an alert. O

Types of Breakpoints

The Power Mac Debugger allows you to set several types of breakpoints.
= Asimple breakpoint stops every time it is encountered.

= A one-shot breakpoint stops once and is then removed. When you set a
one-shot breakpoint, the program resumes execution immediately.

= A counting breakpoint stops after it is encountered a specified number of
times.

= A conditional breakpoint stops when a specified condition evaluates to true.

= A performance breakpoint causes performance measurement to be turned
on or off. You can choose whether to have the program stop when a
performance breakpoint is reached.

In addition, any breakpoint can be a focused breakpoint. A focused breakpoint
applies only to the process (or thread) that has the current focus at the time you
set the breakpoint. Execution stops only if that process was executing when the
breakpoint was hit. For example, if you set a focused breakpoint in a shared
library, execution will stop only if the library is called by your application, not
if it is called by any other program.

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

When you set a breakpoint, pressing the Command key (along with any other
modifier keys) causes it to be a focused breakpoint. Table 4-1 shows the icons
corresponding to each breakpoint and the modifier keys necessary to set them.

Setting Breakpoints 87

CHAPTER 4

Basic Debugging Tasks

Table 4-1 Debugger breakpoint icons

Breakpoint Icon Modifiers
Simple . None
Focused Simple . Command
One-Shot D Option
Focused 'G' Command-
One-Shot Option
Counting E Control
Focused a Command-
Counting Control
Conditional E Control
Focused @ Command-
Conditional Control
Performance On Control
Performance On: ﬂ Command-
Focused Control
Performance Off ﬂ Control
Performance Off: ﬁ Command-
Focused Control

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

To delete a breakpoint, click its icon; the icon disappears and the breakpoint is
removed.

The following sections give more detail about each type of breakpoint.

Simple Breakpoints

A simple breakpoint stops program execution every time it is encountered. To
set a simple breakpoint, click once in the breakpoint column next to the
statement you want to break on. A red octagon (stop-sign shape) inside a black
square appears next to the statement, as shown in Figure 4-1 (page 85). If you
set a focused simple breakpoint, its icon is a stop sign without a black square
around it.

One-Shot Breakpoints

A one-shot breakpoint, or temporary breakpoint, allows you to set a breakpoint
and resume execution immediately in one step.

To set a one-shot breakpoint, press Option while clicking in the breakpoint
column. The debugger places a one-shot breakpoint icon where you clicked,
resumes execution of the target application, and stops at the one-shot
breakpoint (unless it hits another breakpoint first). When the one-shot
breakpoint is reached, its icon is removed. The icon is a yellow yield sign inside
a black square; for a focused one-shot breakpoint, it is a yellow yield sign only.

Figure 4-2 shows the Browser window after a one-shot breakpoint has been set.

Setting Breakpoints 89

CHAPTER 4

Basic Debugging Tasks

Figure 4-2 Setting a one-shot breakpoint
SO=———— SortPicts.Native.Hcoff Browser ==———031=
Current Focus : SortPicts Native Thread.100 (Running)
CFlusinit.c G orldob; : Dragwindow Ob il EventRecor
Events.cp GY%or1dObj Dy awiGrew leonObji)
filebuf.cp G'or1dObj : :Drawilbjl)
Ghw'orldObj.cp GworldObj : :ExchangeSortitertlang, long]
HeapSort.cp G or1dobj : (G owwindawOb JEventRecar]
ios.cp Gworldobj::Idle0bjc)
fostream_init.cp G orldobj::InitObj()
Liztrean oo Gw'nrldibi - MennObilshort <hort Fwend

woid

GHor 1dObj : : 1dledbjc woid?

HindowPesk #firstlindow = (HindowPesk *3 0x906;
HindowPeek windowList = (HindowPeek *firstlind
GHor | d0b j *target;

short windowCount;

<+

windowCount = 1;

whi le{ windowList?
{
target = ¢Glorldibj #*){windowList—>refConl;
if¢ windowCount++ == gHextBlagndld i ndowtHum)
i

targe t-rBackGraundObj < ;)
++gHextBlkgndl i ndowMum ;
return;

Source W | Mapped

e B e

The Breakpoint Options Dialog Box

If you press the Control key while clicking in the breakpoint column, the
Breakpoint Options dialog box appears. (If you press Command and Control
together, the dialog box is entitled Focused Breakpoint Options.) Using the
Breakpoint Options dialog box, you can specify information needed to set
counting, conditional and performance breakpoints. Figure 4-3 shows this
dialog box.

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

Figure 4-3 Specifying breakpoint options

Breakpoint Options

3l Simple
) kd One Shot
® [Counting

Murnber Hits Before Ereaking :

7 E Cconditional

D Turn Performance Tools ON when hit
[stap when hit
D B Turn Performance Tools OFF when hit

Note

You can use this dialog box to set any kind of breakpoint;
however, it is easier to set a simple or one-shot breakpoint
just by clicking in the breakpoint column. If you use the
dialog box to set a one-shot breakpoint, the target does not
resume immediately but waits for you to issue a Run
command. O

Counting Breakpoints

A counting breakpoint halts program execution every nth time the breakpoint
is encountered. You specify the value of n when you set the breakpoint.

To set a counting breakpoint, click the “Counting” radio button, as shown in
Figure 4-4, and enter a number in the text box below it, then click Apply. A
counting breakpoint icon appears next to the line of code for which the
breakpoint has been set.

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

Figure 4-4 Selecting a counting breakpoint

@ €3 Counting

Murnber Hits Before Breaking :

E |

Conditional Breakpoints

A conditional breakpoint halts program execution when the breakpoint is
encountered and a previously specified condition is true.

To set a conditional breakpoint, click the “Conditional” radio button, as shown
in Figure 4-5, and enter an expression in the text box below, then click Apply. A
conditional breakpoint icon appears next to the line of code where the
breakpoint has been set.

Figure 4-5 Selecting a conditional breakpoint

92

(@ @ Conditional
Expression To Break On When Evaluates To Non ero;

|ml,| Boolean == TELIEI

Note
For additional information about expression grammar, see
Appendix B, “Expression Evaluation.” O

Performance Breakpoints

A performance breakpoint allows you to start or stop performance
measurement for selected blocks of code.

To set a performance breakpoint, click one of the performance radio buttons
illustrated in Figure 4-6. If you check the “Stop when hit” checkbox, the
debugger stops when the breakpoint is reached; otherwise, performance
measurement is turned on or off but the program keeps executing.

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

Figure 4-6 Setting a performance breakpoint

@ {2 Turn Performance Tools OM when hit
[] Stop when hit
l:::l ® Turn Performance Tools OFF when hit

For more information about using the performance tools, see Chapter 6,
“Measuring Performance.”

Inactive Breakpoints

If you set a breakpoint in code that is not mapped, the breakpoint icon has an
“unhappy face” in it, as shown in Figure 4-7.

Figure 4-7 A breakpoint in unmapped code

s woid Hand | eMousebown EventRecord #event s
{ =]
larg newsize;
Rect growRect ;
L i ndowP 4 thelindow;
short part;
GrafPtr oldPort;
long menufAnd | tem;
B par-t = Finddindondevent—uhetre, &thellindow?;
& switchl partl
case inMenuBar:

Source W | Mot Mapped [=]]

If you set a focused breakpoint, whenever the current focus is not the one that
applies to this breakpoint, the icon appears as a hollow octagon, as shown in
Figure 4-8.

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

Figure 4-8 A currently inactive focused breakpoint

pascal woid #GHor |dThreadEntrys woid *therel

Gllor [dOb #object = (GHorldObj #*ithere;

object-rdoneSorting = false;
object—rScramblePictdl;

+ +0Q +

=switch! object-rgSortAlgorithm?

cose iShellSort:
object-:Shel 1Sartcl;
break;
case iHeapSort: i
& object-:HeapSortol;
Source W || Mapped = eS| 5

4

The Breakpoint List

To see a list of the currently set breakpoints, choose Show Breakpoint List from
the Window menu (or press Command-N). The debugger displays a window
like the one shown in Figure 4-9.

Figure 4-9 Viewing the currently set breakpoints

94

Breakpoint List

Ereakpoint Address Breakpoint Type Function Mame
4 0ocEezin One Shot HandleEvent(EventRecord *) ﬁ
El ooczezec Counting HandleEvent(EventRecord *)
B oocsedic Sirnple GWwWorldObj : BeginMewThread()
O0CBECS0 Performance On | GWorldThreadEntry
- @ 00CE&CS4 Focused Simple Ghw'or1dThreadEntry
@ SortPictz Native Thread. 100 Focuzed Simple | GWorldThreadEntry
O SortPicts Native Thread 103 Focused Simple Ghw'or1dThreadEntry
O SortPictz Native Thread. 104 Focuzed Simple | GWorldThreadEntry
[+ @l 00C3ECE4 Focused Simple | GWarldThreadEntry
HE ooczerd0 Ferformance Off | GWorldThreadEntry]
o
<plfim: [i]

Each row represents a currently set breakpoint and shows the following
information:

= The breakpoint’s address. If you double-click the address, an instructions
window appears showing the assembly code for the function. A missing

Setting Breakpoints

CHAPTER 4

Basic Debugging Tasks

address means that the breakpoint has been set for code that is not yet
targeted.

= The breakpoint type. If you double-click the type, the Breakpoint Options
dialog box appears, allowing you to change the type of breakpoint. The icon
representing the type is also displayed to the left of the address. Table 4-1
shows all the breakpoint icons and what they mean.

For focused breakpoints, a disclosure triangle appears to the left of the icon;
you can click it to reveal information about the context in which the
breakpoint was set. You can have more than one focused breakpoint set at a
given location, as shown in this example.

= The function name, if it is known. If you double-click the function name,
the source view of the function is displayed in the Browser window.

If the function name displayed is “????”, it indicates that the debugger could
not find symbolic information or embedded names mapped to the
breakpoint’s address. You cannot display source code for this function.

Removing Breakpoints

You can remove breakpoints one at a time or you can remove several at once.
There are two ways to remove a single breakpoint:

= Click the breakpoint’s icon in a code view.
» Select the breakpoint in the Breakpoint list and press Delete.
Here’s how to remove several breakpoints at once:

» Select the breakpoints in the Breakpoint list and press Delete. (To select these
breakpoints, Shift-click on their rows.)

= To remove all breakpoints, choose Clear All Breakpoints from the Control
menu.

Setting Breakpoints on System Calls

The debugger has no mechanism for setting breakpoints on A-traps. On
PowerPC-based Mac OS systems, however, all system software routines are
called through glue routines. In the Browser, the list of source files includes an
entry named “eeesynthesized glue==<". This is not actually one of your
source files; rather, it lists all the glue routines used by your code. There is a

Setting Breakpoints 95

CHAPTER 4

Basic Debugging Tasks

glue routine for each imported routine, including Toolbox and operating
system calls, as well as shared library calls. As a result, you can set breakpoints
in the appropriate glue routines to catch calls into system or library routines.

Entering the Debugger From Your Source Code

In addition to setting breakpoints while debugging, you can put calls to two
system routines, Debugger and DebugStr, into your source code in order to
determine when to enter the debugger. To use these routines, include the
header file Types.h in your code.

= When the program hits a bebugger routine, the debugger is entered. The
program counter points to the next instruction to be executed.

The syntax of the Debugger routine is

Debugger();

= When the program hits a DebugStr routine, the debugger is entered. The
debugger writes a string (the parameter to the DebugStr routine) to the log
window, and the program counter points to the next instruction to be
executed.

Here is an example of a call to DebugStr:

DebugStr((ConstStr255Param)"\pOutput this string to the Log
window");

If, instead, you want the debugger to ignore these calls, then uncheck the “Set
stop on Debugger()/Debugstr() default” option from General Preferences in
the Edit menu. Also, you can control this option on a process basis by using the
Process Browser; see “Application Preferences” (page 77).

Controlling Program Execution

96

This section discusses how to control the execution of your program. In
“Program Control Commands” (page 61), you saw the commands that are
available from the Control Palette, along with their icons. This section describes
these commands further. In addition, it describes other commands that are
accessible only from the Control menu (Figure 4-12).

Controlling Program Execution

CHAPTER 4

Basic Debugging Tasks

The Current Statement

When your code is stopped, the program counter (PC) is displayed as a solid
arrow to the left of the current statement or instruction, as shown in Figure 3-8.

If the arrow is not visible (if, for instance, it is in a window that has been
obscured), you can make it visible by choosing Current PC from the View
menu. The current routine is normally displayed in the Browser window. If the
PC is executing code that is outside your source code, it is shown in an
instructions window.

If you use the Browser (or other code window) to display a routine other than
the current routine, but which is part of its call chain, a gray
downward-pointing arrow is shown at the last statement that was executed.
This arrow can be seen in Figure 4-10, in which the routine
TTestApplication::DoMenuCommand is displayed. In it, the arrow indicates that
the routine RunTypeTests was called and that the program stopped somewhere
in that routine (or a routine that it in turn called).

Figure 4-10 The PC in subroutine marker

|§D§ TTestApplication::DoMenuCommandilong) =i———=[115
Code

= T o = T e e e e e T T E
break: ;
coze cTabbingTest:
MakeDialoglatommandHumber 3 ;
break. ;
case cCalculator:
HakeCalcu | ator (aCommandHumber 3 ;
break. ;

4

N

coze cRunTypeTests:
FunTypaTests(aCommandHumber 3 ;
break: ;

coze chebugger:
DebuggerTrap (atommandHumber 2 ;
break. ;

case chebugStr:
Debugs trTrap CaCommandHumber 3 ;
break. ;

+
P

4

N

defaul t:
Source W [l

To see the entire call chain, you can show the Stack Crawl window. For more
information, see “Navigating the Call Chain” (page 64).

Controlling Program Execution 97

CHAPTER 4

Basic Debugging Tasks

Stepping Through Your Code

The Power Mac Debugger provides several methods of stepping through your
code. To step through code, the following conditions must be met:

= The code must be targeted. This means the debugger is aware of it.

= The code must have the current focus. If more than one process is targeted,
only one can be the current focus.

= The code must be stopped.

For more information on targeting, focusing and stopping processes, see
“Targeting and Stopping Your Code” (page 40) and “The Process Browser”
(page 73).

When you use the serial nub, a stopped application is referred to as the
stopped context, as shown in Figure 4-11; it may or may not be the same as the
current focus. The stopped context is the only process in which you can
single-step. The current focus, if different, is used only for global evaluation;
see “Global Variables” (page 101).

Figure 4-11 The stopped context in the serial nub

98

14|34]+ira
Stopped Context
CTubeTest

Status
Stopped
LrebugStr

Tirning [Secs)

If the frontmost code window is showing a source view, stepping proceeds one
source-code statement at a time. If the window is showing an assembly view,
stepping proceeds one assembly instruction at a time.

The commands you use to step through your code are available from the
Control menu, as shown in Figure 4-12. Many of them are available from the
control palette as well.

Controlling Program Execution

CHAPTER 4

Basic Debugging Tasks

Figure 4-12 The Control menu

Run “CTubeTest” 3R
Stop

Suspend

Kill “CTubeTest”

Untarget “CTubeTest”

Map Symbol File... #1
Launch...

Step Over S
Step Into T
Step Dut U
Step To Branch #*B

Step To Branch Taken 3,
Turn Continuous Step On

Clear All Breakpoints
Performance »

Enter MacsBug
Propagate Exception

Choose Step Over from the Control menu (or press Command-S) to execute the
next statement. If the next statement is a subroutine call, Step Over causes the
subroutine to be executed in its entirety and control stops at the statement
following the subroutine call. In other words, you “step over” the subroutine.

If the next statement is a subroutine call, and you want to single-step through
the subroutine, choose Step Into from the Control menu (or press
Command-T). This command causes execution to proceed with the first
statement of the subroutine. If you step into a routine that is not part of your
program (for instance, a system call) the debugger brings up an instruction
display window showing the assembly code for that routine; see “Instructions
Windows” (page 57). You can then continue to step through the code, at the
assembly-instruction level, if you wish.

If you want to exit the routine and return to your source code, you can use the
Step Out command (or press Command-U). This causes execution to proceed
to the statement just following the one that called the subroutine. This process
is useful any time you want to exit from a subroutine.

Controlling Program Execution 99

100

CHAPTER 4

Basic Debugging Tasks

Note

When you initiate a Step Out command, the debugger
implements it by placing a one-shot breakpoint at the
statement after the calling statement. Typically, this
breakpoint appears and disappears quickly; however, if
you hit a breakpoint while stepping out, the one-shot
breakpoint is still in effect (it also appears in the
Breakpoint List). See “One-Shot Breakpoints” (page 89) for
more information. O

If you choose Step To Branch from the Control menu (or press Command-B),
the debugger steps over all instructions until it reaches any branch instruction,
at which point it stops. Step To Branch Taken (Command-comma) has the same
effect as Step To Branch, except that it stops only if the branch is actually going
to be taken. While these two commands are most meaningful when viewing
assembly code, they can also be used when viewing source code.

If you want to execute one of the step commands repeatedly, so that you can
watch your program execute in “slow motion”, choose Turn Continuous Step
On from the Control menu or click the corresponding icon in the control
palette. Then choose Step, Step Into, or Step Out, and the program steps
repeatedly until it hits a breakpoint. To stop the continuous stepping, choose
Turn Continuous Step Off or click the control palette icon again.

Other Program Control Commands

In addition to the “step” commands, the debugger has other commands for
controlling your program. All of these are reached through the Control menu.

Choose Run (or press Command-R) to continue execution of the program with
the current focus. If this program is already running, it is brought to the
foreground.

Choose Stop to stop the program with the current focus. This command is
available only when using the serial nub.

Choose Kill to terminate the process currently selected in the Process Browser.
All of the windows associated with the process are closed.

Choose Suspend to suspend execution of a thread currently selected in the
Process Browser. You can resume execution by selecting the thread and
choosing Resume from the Control menu.

Controlling Program Execution

CHAPTER 4

Basic Debugging Tasks

Choose Launch to launch an application and have it stop before executing main.
The Launch command only works for one-machine debugging; to break on
launch when using two machines, hold down the Control key on the target
machine as you double-click the application.

The Power Mac Debugger is entered whenever an application generates an
exception (such as a bebugStr call). If you choose Propagate Exception, control
passes to the next exception handler that exists on the system. Typically, this is
a low-level debugger such as MacsBug.

In addition, you can choose Enter MacsBug from the Control menu to go
directly to MacsBug (or another low-level debugger that is installed on your
target machine).

Note

Enter MacsBug is slightly different from Propagate
Exception in that it generates a separate exception as
opposed to propagating the existing one. O

Besides the Control menu commands, there is one other way to alter your
program’s execution: you can click the PC arrow and drag it to another
statement. When you resume the program, execution begins where the new PC
is. Be extremely careful when using this option, because you can get
unexpected (and possibly fatal) results when executing statements out of order.

Displaying and Editing Variables

This section describes some of the ways you can examine your program’s
variables. See also “Examining Local Variables” (page 65) for information on
using the Stack Crawl to see local variables.

Global Variables

To display the names and values of your program’s global variables, choose
Show Global Variables from the Window menu (or press Command-L). The
debugger opens a two-pane window like the one shown in Figure 4-13.

The top pane of the Global Variables window lists the global and static
variables for all programs for which a symbol file is open, in alphabetical order.
Each row has three columns, showing the variable’s name, the source file in

Displaying and Editing Variables 101

CHAPTER 4

Basic Debugging Tasks

which it is declared and the corresponding symbol file. The columns can be
resized just as the window panes can.

Figure 4-13 The Global Variables window

S[[&—————— Global Variables &=ice—F"——015
Current Focus: CTubeTest Thread. 100 (Stopped)

Yariables

doneFlag TubeTezt.c i CTubeTest xcaff 4
dragRect TubeTest e TubeTest xeoff E
error i TubeTest TubeTexst coff

ghata TubeTest TubeTest xeoff
ghragRgnHandle Giwor1dObj.cp ortPicts Mative xooff
ghragRgnHandlel alid ; Giwor1dObj.cp ortPicts Mative xooff

Watch Yariables List

Note

Some global variables may live in “data-only” fragments.
To display the values of these variables, you must open a
symbol file corresponding to their fragment. Because the
fragment contains data only, the Browser window that
opens does not display any functions. O

To see the value of a variable, double-click anywhere in its row. An entry for
the variable appears in the lower pane, the Watch Variables List, as shown in
Figure 4-14. To remove an item from the Watch Variables List, select it and
press Delete.

102 Displaying and Editing Variables

CHAPTER 4

Basic Debugging Tasks

Figure 4-14 Viewing a global variable’s value
EC] Global Variables 5
Current Focus : CTubeTest Thread.100 (Stopped)
Wariables
dragRect TubeTest . CTubeTest xooff
errar TubeTest.c CTubeTest. xooff
gCata TubeTest.c CTubeTest xcoff

gL agRgnHandle
gL agRgnHandley alid

=) i

GiworldObj.cp
GiworldObj.cp

SortFicts Mative scoff
SortFicts Mative scoff

&

watch Variables List

b dragRect | 0x00A4E2E0
arror]

glnBackground Inwalid Focus For ... §

CTubeTest.0:x00A44DEZ0
Use Current Focus ()

Use Current Focus (3

=

The Watch Variables List also has three columns, showing the variable’s name,
its value, and the context in which it is being evaluated. This context is, by
default, the thread or process that has the current focus. A pop-up menu allows
you to change it to any context to which the variable applies. In the case of a
shared library, for example, a global variable may be instantiated several times,
once for each application that uses the library.

If the global variable does not exist in the current focus, the value is shown as
“Invalid Focus for Variable!” For example, in Figure 4-14 the variable error
belongs to the application CTubeTest, which is not the current focus. To show
the value, use the pop-up menu and select an appropriate context. In

Figure 4-14, CTubeTest was selected as the context for the global variable

dragRect.

Note

A global variable may exist in no context (when the code
corresponding to a symbol file is not running). In this case,
it is not possible to display the value of the variable. O

Global variables are displayed in the same way that local variables are
displayed in the Stack Crawl window. Note that some variable names have
disclosure triangles to their left and some do not.

Displaying and Editing Variables

103

CHAPTER 4

Basic Debugging Tasks

= Simple (nonstructured) data types or arrays are shown without disclosure
triangles. Their value is displayed to the right of their name.

= Structured data types, pointers, and handles use disclosure triangles to
allow you to get more information.

o If the variable is a structured data type, the value displayed represents its
address. (All addresses are displayed in hexadecimal, with the prefix
“0x”.) You can see the structure’s fields by clicking the disclosure triangle
to the left of its name. Any fields that are structures or pointers are
displayed in turn using disclosure triangles, as shown in Figure 4-15.

o If the variable is a pointer (or a handle), you can click its disclosure
triangle to display its dereferenced value. The next line will show the
name of the pointer preceded by an asterisk (*). The value displayed
follows the same rules as for other variables: simple variables are
displayed directly; structures are displayed showing their address, and
can be expanded further to show their fields.

Figure 4-15 Examining global variables

104

[[E————— Global Variahles ="0————11|
Current Focus: CTubeTest. Thread. 100 (Stopped)

Wariables

Ghw'orlddbj:wibl Ghw'orlddbj.cp SortPicts Native xcoff
kTestConstant TubeTest .o CTubeTest xooff
myEwvent TubeTest . CTubeTest xcoff
iy Menus TubeTest . CTubeTest xcoff
iy W ind o TubeTest.: CTubeTest xcoff
g4 rnain,co o tPicts Mative s=ooff
Wwhatch Mariables List
= iy wWindow D00 A4F ACO Use Current Focus (3D 4
e Frryg window D00 A4F ACO
device a]
A portBits 000 A4F ACZ
A bazefAddr D=00AZETI1C
#baze dddr [Oe.0.40e0,-, ..
rowBytes -16354
e bounds Q=00 A4F ACS
top 163
left -7og4
bottorn o
right -Z27e8
A portRect D00 A4F ADO
top o
Teft o E

Displaying and Editing Variables

CHAPTER 4

Basic Debugging Tasks

If you double-click the name of a variable that has a disclosure triangle, an
expression results window opens, displaying the contents of the variable in
expanded form. If the window is left open, its information is updated
whenever the program stops. See “Expression Results Windows” (page 105) for
more information.

Just as with Browser windows, you can create a “clone” of the Watch Variables
List by holding the Option key down, clicking in the pane, and dragging. A
new window is created showing the global variables you selected. Their values
are updated whenever a program stops.

You can change the value of a global variable by selecting its value and typing
the new value. The value takes effect when you press Return, Enter, or Tab, or
click in a new field. You can undo the change by choosing Undo from the Edit
menu (or pressing Command-Z). As always, remember to use caution when
changing the value of any variable.

Expression Results Windows

The result of any evaluation (such as a variable or arithmetic expression) can be
displayed in its own window. The title of the window is the expression (in this
case, a variable) itself.

There are several ways to create expression results windows:

= You can double-click the name of a variable in the Stack Crawl or Global
Variables windows. See “Examining Local Variables” (page 65) and “Global
Variables” (page 101) for more information.

= You can choose the Evaluate command from the Evaluate menu
(Figure 4-16), then enter the value of the variable or expression.

Displaying and Editing Variables 105

CHAPTER 4

Basic Debugging Tasks

Figure 4-16 The Evaluate menu

|_Evaluate I

Evaluate...
Evaluate “theMenu” 3EE
Evaluate “this”

Evaluate As 50M Object

v Uiew As Default
Uiew As Character
Uiew As Decimal
Uiew As Hexadecimal
Uiew As C-5tring
View As P-String
View As OSType
Uiew As Float

= You can select a variable or expression name in a code view and choose
Evaluate Selection from the Evaluate menu (or press Command-E). The
word “Selection” is replaced by the selection, if there is one. For instance, if
you select the variable MyCounters, the menu item reads Evaluate
“MyCounters”.

Figure 4-17 An expression results window

106

S0=——— *gDragRgnHandle =——"=P1=
| Lse Current Focus - l
< %gDragRgnHandle 000060000 i)
= ¥¥ghragRgnHandle Q0000000
ranSize 22222
e ranBEo:x Cx000E0002
top 1640
left 24832
bottom 1966
right 10570 —1
ik
||

The display in Figure 4-17 contains several disclosure triangles, which allow
pointers to be dereferenced and structures to be expanded. By default,
variables are automatically expanded (that is, the disclosure triangles are
turned downward) up to three levels. If there is further nesting, you can do the
expansion manually by clicking the triangles. Choose General Preferences in

Displaying and Editing Variables

CHAPTER 4

Basic Debugging Tasks

the Edit menu to change the default number of auto-expansions. See Appendix
A, “Debugger Preferences,” for more information.

The pop-up menu at the top of the window allows you to change the context in
which a variable is being evaluated, in the same way as it is done in the Watch
Variables pane of the Global Variables window.

To change the type of a value in an expression results window, select the value
and choose one of the options shown in Table 4-2 from the Evaluate menu. If an
option is not appropriate for the given expression or variable, it is dimmed.

Table 4-2 Changing the type of a displayed expression

Iltem Effect

View As Default Display the selected value using the appropriate
default format. The default format for numbers is
decimal; for unsigned longs, it is decimal unless
you choose “View unsigned long as hex by
default” in the General Preferences dialog box.
The default format for strings is an array of type

char.

View As Character Display the selected value as a character.

View As Decimal Display the selected value as a signed decimal
number.

View As Hexadecimal Display the selected value as a hexadecimal
number.

View As C-String Display the selected value as a C string.

View As P-String Display the selected value as a Pascal string.

View As OSType Display the selected value as a four-character
literal.

View As Float Display the selected value in scientific notation.

Using the Evaluate Dialog Box

If you choose Evaluate from the Evaluate menu, the debugger displays a dialog
box like the one shown in Figure 4-18.

Displaying and Editing Variables 107

CHAPTER 4

Basic Debugging Tasks

Figure 4-18 The Evaluate dialog box

108

E[[=——— [valuate

Evaluate Expression

Expreszion: || |

Tgpe:| |

In the Type text field, you can enter any valid C or Mac OS data type, such as
short, char*, Or OSErr.

In the Expression text field, you can enter

= the name of a variable. When you click Evaluate, an expression results
window appears, showing the variable and its value. If you specify a type,
the debugger attempts to coerce the variable to that type.

= an address. In this case you must enter a type name in the Type text field so
that the data can be interpreted correctly. The type entered must be some
type of pointer; otherwise, it is evaluated as a plain number. For example,
you might enter the type as WindowRecord*; the window displays the contents
of a WindowRecord beginning at the address you specify.

= an expression.
Here are some examples of valid expressions:

&al0] != ptrs[0]

Oxabc + 1234L - r1 + fp0 /* rl specifies GPR 1 */
/* fp0 specifies FPR 0 */

sizeof(\"abcdef\")

$abc + #12L + fp0 /* $ specifies hexadecimal */
/* 4 specifies decimal */

(b << 4) >> 8

(*(**Handle)->substruct)

"\Ant o+ \AET 4+ "\ o+ 'AN0123" - "\\xIfa' - 'abc!'

For additional information about the evaluation of expressions, see
Appendix B, “Expression Evaluation.”

Displaying and Editing Variables

CHAPTER 4

Basic Debugging Tasks

Evaluating “this”

If the target program is stopped in a C++ method, you can display the value of
the instance of the current class (that is, the object whose method is being
executed) by choosing Evaluate “this” from the Evaluate menu. The fields of
the object are shown in a window like the one in Figure 4-19. This value is also
available in the Variables pane of the Stack Crawl window.

Figure 4-19 Evaluating “this”
EO=————— this =———1-
| Use Current Focus - |
=7 this 0:=00EQZDIE
= *#thiz 0:=00EQZDIE
= me D:00EQ4500
23 *me 0x00EQ4500
usehctivateClicks u]
dirtyFlag 222
Scrap 0:=00DEFSCE
UndoScrap MULL
ryPrint Info MNULL

wirtual
savedCount
savedPort
savedGOH
sortPict

windPictRect
sortGworld

T T T T T TT

Note

worldPictRect

Cx00EQTEDD
u}

0:00EQ4S00
0x0000Z4E0
Cx00DEF224
Ox00EQZDED
Dx00EOZDES
0x00EQ4550

The Evaluate “this” command is enabled only when the
Browser is the frontmost window and the code pane is
selected, or when another code view is the frontmost
window. O

Evaluating SOM Objects

IBM’s System Object Model™ (SOM™) is a technology that allows programs
to use object classes written in any programming language without the need

Displaying and Editing Variables 109

CHAPTER 4

Basic Debugging Tasks

for recompilation. The Power Mac Debugger can display, to a limited degree,
the contents of SOM objects referenced in your programs.

To display the contents of SOM objects, you must

= have installed the system extension SOMobjects™ for Mac OS (also referred
to as the SOM kernel).

= open all symbol files that define type information for the SOM objects you
wish to display.

If the symbol files are not open or available, the debugger can display only
address information, not the names of fields.

= select the name of a SOM object in a code view and choose Evaluate As SOM
Object from the Evaluate menu.

In Figure 4-20, the object being evaluated doesn’t define any data members, but
its superclass does.

Figure 4-20 SOM object display

110

S[=—— obj EEE'
SOMOb jectData By

Data dddress: Qooocooc
Data Size: [a]ulaluululu u]

This class has no data rmembers.

HelloData

Data dddress: gococosc
Crata Size: [n]ulululululul:8

Tupe inforrmation for this class was not found!
It may be neceszary to open another symbolic file.

=1 I

i)

Figure 4-21 shows the result of the evaluation when the symbol file for the
superclass has been opened.

Displaying and Editing Variables

CHAPTER 4

Basic Debugging Tasks

Figure 4-21 SOM object with superclass data

E—D——————— b =———— EI
SOMObjectData Ein
[Cata dddress: pgococosc
[rata Size: ooooooo0
This class has no data members.
= Hella ! mnncocoac
= msg | D0ZEZFI20

*msg : " efram C override : Like a duck!> © G
af i [T

Displaying and Editing Variables 111

CHAPTER 4

Basic Debugging Tasks

112 Displaying and Editing Variables

CHAPTER 5

Advanced Debugging

Contents

Debugging Non-Application Code 115
Shared Libraries 115
MPW Tools 116
Assembly-Level Debugging Without a Symbol File 116
Debugging Emulated Code 116
Using a ROM Map 117

Contents 113

CHAPTER 5

114 Contents

CHAPTER 5

Advanced Debugging

This chapter contains specialized information that not all developers will need.

Debugging Non-Application Code

Whenever you debug code using the Power Mac Debugger, you are operating
within the context of a process, or a thread within a process. As described in
“The Current Focus” (page 76), the process or thread being debugged is
referred to as the current focus. The Process Browser lists all the targetable
processes on the target machine. In addition to targeting applications, you can
also target the system process.

When you want to debug code that is not packaged as an application (shared
libraries, drivers, extensions, MPW tools, and stand-alone code resources), you
must take certain steps to ensure that the correct process is targeted.

To make sure your code is targeted correctly, you can use DebugStr or Debugger
calls. When one of these calls is executed, the debugger takes control and
automatically targets the correct process. If you are debugging a driver or
extension, the system process may be the target. You will then be able to set
breakpoints and debug your code.

If you do not use DebugStr or Debugger calls, you must make sure that the
process in which your code is running is targeted. If the code is loaded in the
system heap, you must target the system process explicitly.

The following sections give specific hints for debugging shared libraries and
MPW tools.

Shared Libraries

Ashared library is a code fragment of type 'sh1b' containing code that can be
called by one or more other fragments. This code is loaded into memory only
once regardless of how many fragments use it, although each caller (context)
has its own copy of the library’s global variables.

To debug a shared library, you must

= launch and target an application that calls the shared library. (It is not
necessary to open a symbol file for this application, although it may be
helpful.)

Debugging Non-Application Code 115

CHAPTER 5

Advanced Debugging

= open a symbol file for the library. Once you have done this, the status panel
in the Browser window for the shared library should read “Mapped”.

Once the library has been targeted, you can begin performing operations such
as setting breakpoints in the library, do single-stepping, and so on.

Note

If you set a focused breakpoint in the shared library;,
execution stops there only when the currently focused
application calls the shared library. Any other calls to the
shared library do not cause a break. O

MPW Tools

To debug an MPW tool written in native PowerPC code,
= open a symbol file for the tool

= hold down the Control key while executing the tool from the MPW shell
command line

This causes a break on launch in the tool. You can then set breakpoints in the
tool’s Browser window and continue debugging.

Assembly-Level Debugging Without a Symbol File

If you do not have a symbol file, you can still debug your code at the assembly
level. If the code has been compiled using a directive that generates embedded
symbols (also known as MacsBug symbols), the Power Mac Debugger will
display the symbol names in instructions windows and stack crawls, as well as
in performance reports.

Debugging Emulated Code

116

The Power Mac Debugger has limited ability to debug emulated 680x0 code
running on a PowerPC-based Mac OS computer. Here are the operations
available to you:

Assembly-Level Debugging Without a Symbol File

CHAPTER 5

Advanced Debugging

= You can disassemble any area of memory as 680x0 instructions. See
“Disassembling 680x0 Code” (page 59).

= You can see the addresses of 680x0 routines in the calling chain. See
“Navigating the Call Chain” (page 64).

You cannot, however, use the Power Mac Debugger to step through 680x0 code
or set breakpoints in it. For these operations, you can use MacsBug (or a similar
low-level debugger). Once you know the address of an emulated routine you
want to debug, you can choose Enter MacsBug from the Control menu. Then
you can use commands such as br to set breakpoints and so to step through
code. You can type g (GO) to return to the Power Mac Debugger.

Using a ROM Map

The debugger can use a ROM map to identify memory ranges in ROM with
symbol names. This map allows you to see symbol names in ROM
disassemblies and in ASP performance reports.

If you choose Open ROM Map from the File menu, a standard file dialog box
allows you to select a file (usually called RomInfo) to use as the ROM map; the
debugger then uses this file every time you launch it.

Using a ROM Map 117

CHAPTER 5

Advanced Debugging

118 Using a ROM Map

CHAPTER 6

Measuring Performance

Contents

About the Adaptive Sampling Profiler 121
Using the Adaptive Sampling Profiler 122
Starting a Profiling Session 123
Specifying a Sampling Rate 124
Collecting Performance Data 125
Measuring Selected Routines 126
Generating a Performance Report 127
The Statistics View 129
The Summary View 131
Editing the Performance Report 131
Saving and Printing Performance Data 132
Evaluating Performance Data 133
Possible Problems Or Errors 134
How the ASP Gathers Data 134

Contents

119

CHAPTER 6

120 Contents

CHAPTER 6

Measuring Performance

When you are trying to optimize the performance of a program, it is useful to
know how much time is spent executing different sections of code. This can
help you see where to focus your efforts for best results.

This chapter explains how you can use the Power Mac Debugger to analyze the
performance of a program, using a utility called the Adaptive Sampling
Profiler (ASP). The first two sections, “About the Adaptive Sampling Profiler”
and “Using the Adaptive Sampling Profiler,” explain what the ASP is and how
to use it. The last section, “How the ASP Gathers Data,” is not essential but
gives extra information that may be useful in interpreting the performance
results.

About the Adaptive Sampling Profiler

To measure performance, the ASP samples the program counter (PC) at regular
intervals; that is, it determines where the PC is. To keep track of the sampling
information, the ASP divides the computer’s memory into several discrete
ranges, or buckets. When it takes a sample, the ASP determines which bucket
the PC falls in and increments the count of hits for each bucket.

Instead of associating a fixed-size region of memory with each bucket, as most
sampling tools do, the ASP dynamically adjusts the sizes of the buckets as it
takes the samples (hence the term adaptive). The goal is to give you the finest
granularity for those routines or instructions that execute most often. See “How
the ASP Gathers Data” (page 134) for details on how buckets are allocated.

After you have run your program for a while, you generate a report that
displays the sampling results. The report shows the amount of time spent in
each routine in your application, as well as the time spent in other code
running on the system (for instance, Toolbox routines). The ASP uses your
symbol files to associate memory ranges with specific routines in your code.

In addition to applications, you can measure the performance of code in shared
libraries or in stand-alone code resources. To do so, you must have an
application that calls routines in the shared library or that loads and executes
the routines in the stand-alone code resource.

Note

You cannot use the ASP to measure the performance of
code that runs at interrupt time. O

About the Adaptive Sampling Profiler 121

CHAPTER 6

Measuring Performance

Using the Adaptive Sampling Profiler

Because the ASP is an integral part of the Power Mac Debugger, no additional
files are required to use it. In addition, unlike some other performance tools,
the ASP does not require you to modify your source code to use it.

Before you can use the ASP, you must

= launch the Power Mac Debugger

= launch the application to be measured

= open the symbol file or files for the code you are measuring

You can use the ASP on a one-machine or two-machine setup, with either the
application nub or the serial nub.

Before you can start a sampling session, the application must initially be
stopped. You can stop your application by using one of the methods described
in Chapter 2, “Getting Started,” such as on launch, inserting a DebugStr call in
your code, or setting a breakpoint.

All the commands you use when taking performance measurements are found
in the Performance submenu in the Control menu (see Figure 6-1).

Figure 6-1 The Performance submenu

Performance [d New Session

Configure Utility...
Enable Utility

Configure Report...
Gather Report

Show Source

Normally, you take the following steps when using the ASP:

1. Create a performance window (New Session).

122 Using the Adaptive Sampling Profiler

CHAPTER 6

Measuring Performance

. (Optionally) set the sampling rate (Configure Utility).

. Turn on the ASP (Enable Utility).

. Run the program you are measuring.

. Stop the program, or turn off the ASP (Disable Utility).

. Display the statistics (Gather Report).

. (Optionally) filter out data from the report (Configure Report).

oo N oo o b~ wWwN

. (Optionally) display sampled routines (Show Source).

The following sections describe the steps in more detail.

Starting a Profiling Session

To begin a profiling session, choose New Session from the Performance
submenu. A performance window that will display the performance data for
this session is displayed (Figure 6-2). Performance windows are numbered
consecutively: the first one is named Run #1, the second is Run #2, and so
forth. Since only one performance window can be open at a time, to begin a
new session you must close any existing performance window.

Using the Adaptive Sampling Profiler 123

CHAPTER 6

Measuring Performance

124

Figure 6-2 A blank performance window
|§DE Run # 1
Surnmnary
Execution Profile: Application - CTubeTest
Utility Type: ASP Sampler Sampling Rate: 0.010 sec |4H
Tirme Count Percentage
Total Systern Tirming : 0.000 sec o
Mative PowerPC Execution Timing: 0.000 sec o 0.0 %
Ernulated MEE0:0 Execution Timing : 0.000 sec o 0.0 %
Configured Systern Statistics: 0.000 zec o 0.0 %
Unaceounted Systern Statistics: 0.000 zec u} o0%
Statistics
No symbols available Begin End Time Count Percentage
Show Symbols:| Everuthin hd
u [uthing B

The performance window contains two scrollable panes: the summary view
and the statistics view. At the top of the summary view is the name of the
fragment that contains the main function for the current process (in this
example, CTubeTest). After you run your code and gather the report, the data
is displayed in these panes. For more information about the information in
these panes, see “Generating a Performance Report” (page 127).

You can change the relative size of these two views by placing the cursor
directly over the split lines and dragging the resize icon up or down to enlarge
the desired view.

Specifying a Sampling Rate

At regular intervals, the ASP issues an interrupt and records the current PC
value. This interval is called the sampling rate; the default value is 10

Using the Adaptive Sampling Profiler

CHAPTER 6

Measuring Performance

milliseconds (ms).The sampling rate for the current session is shown in the
upper-right corner of the performance window.

To specify a different sampling rate, choose Configure Utility from the
Performance submenu. A dialog box like the one shown in Figure 6-3 is
displayed.

Figure 6-3 Setting the sampling rate

Utility Type: [AsP sampler |

Sample Rate:
Lok] (Ccancer]

The dialog box has two pop-up menus:
= Utility Type (currently the ASP Sampler is the only utility available)
= Sample Rate (you can choose here a value between 1 and 20 ms)

Begin by using the default sampling rate. You may then wish to try different
settings to arrive at the best overall picture of your program’s performance.
Keep in mind that a time interval that is too large can result in a partial view of
your program’s performance. In contrast, an interval that is too small can result
in excessive interrupt processing that might distort the results.

Once you have resumed execution with the ASP enabled, you cannot change
the sampling rate.

Collecting Performance Data

To begin measuring the performance of your code, follow these steps:

1. Choose Enable Utility from the Performance submenu.

Using the Adaptive Sampling Profiler 125

126

CHAPTER 6

Measuring Performance

This command changes to read Enable ASP Sampler after you create a new
session. After you choose it, the command then changes to read Disable ASP
Sampler.

2. Resume execution of your application.

You can resume your application by

o choosing Run from the Control menu or the control palette. The ASP then
begins taking sampling measurements.

o using the Step commands (Step Over, Step Into, Step Out). The ASP
measures performance during the time the code is actually running, not
during the time you are stopped in the debugger.

3. Exercise the features of your application.

Test those areas of your application that you are interested in, to be sure the
results of the performance measurement are meaningful.

4. Stop your program.

While the ASP is collecting data, no new information appears in the
performance window. This window is updated only when you stop
measurement and generate a performance report.

5. Choose Gather Report from the Performance submenu.

The ASP generates a report for the data collected so far. See “Generating a
Performance Report” (page 127) for information on interpreting the report.

Measuring Selected Routines

You may want to measure the performance of only certain portions of your
code rather than the entire program. One method is to turn performance
measurement on and off manually when your program is stopped by choosing
Enable Utility or Disable Utility from the Performance submenu.

Another method is to use performance breakpoints, which turn sampling on or
off at a given point in the program. By using them, you can create zones of
your program where sampling will take place and zones where it will not take
place.

To set a performance breakpoint, hold down the Control key and click in the
breakpoint column next to a statement in a code window. The Breakpoint
Options dialog box appears; for more information, see “The Breakpoint

Using the Adaptive Sampling Profiler

CHAPTER 6

Measuring Performance

Options Dialog Box” (page 90). Figure 6-4 shows the part of the dialog box that
you use to set performance breakpoints.

Figure 6-4 Selecting a performance breakpoint

@ {2 Turn Performance Tools OM when hit
[] Stop when hit
l:::l ® Turn Performance Tools OFF when hit

For each breakpoint, you click one of the radio buttons to specify whether
Performance Tools should be turned on or off.

= If you turn Performance tools on, sampling begins and continues until an
“Off” performance breakpoint is reached.

= If you turn Performance tools off, sampling stops and stays off until an “On”
performance breakpoint is reached.

If you click the “Stop when hit” checkbox, the performance breakpoint acts as a
real breakpoint as well; that is, the program stops when the statement is
reached. Otherwise, the ASP is turned on or off but the program does not stop.

Note

Take care when using performance breakpoints. Because it
takes time for the debugger to process performance
breakpoints, inaccuracy can be introduced into the
measurement of time-critical paths (for instance, when
processing events in the event loop). O

You can also enable and disable performance measurement manually by
placing simple breakpoints in your code and then choosing Enable Utility or
Disable Utility from the Performance submenu when a breakpoint is reached.

Generating a Performance Report

To generate a performance report, you
= stop the program that is being measured

= choose Gather Report from the Performance submenu

Using the Adaptive Sampling Profiler 127

CHAPTER 6

Measuring Performance

The ASP then collects and sorts the performance information and updates the
performance window. Figure 6-5 shows a performance window containing
data from a report.

The window has two panes: the statistics view and the summary view.

Figure 6-5 A performance window after a report has been gathered
|§DE Run # 1
Surnmnary
Execution Profile: Application - CTubeTest
Utility Type: ASP Sampler Sampling Rate: 0.010 sec [4H
Time Count Percentage F
Total Systern Tirning: 11.540 zec 1154
Mative PowerPC Execution Timing : 5870 26 EE27 595 %
Ernulated MEE0:0 Execution Timing : 4 670 sec 467 40.4 %
Configured Systern Statistics: 11.540 zec 1154 100.0 %
Unaceounted Systern Statistics: 1.230 zec 123 106 %
Systemn # £80=0 Emulated Symbals 4 650 sec 465 40.2 %
ROM Statistics: 2270 zec 227 196 %
Privateinterfacelib SD040%1 0.000 zec u} 0o0%E
Interfacelib 65180%2 0.000 sec o 0.0%
CodeFragrenttigr S004A0%1 0.040 =6 4 0IZ%E
Statiztics
Name Begin End Time Count Percentage
Lo dery Longloop Ox24dFC20 Ox244FLET 3050 sec 305
SetRect Oa24dE928 Ox244E93F 0480 sec 4&
SYSTEMTASK 4084 AZED 04084 44 2F 0150 zec 13
{#BUCKET #} Ox=D2a5e 002259 0140 zec 14
—GETSUEW INDOwS 40872400 0:4087245F 0140 zec
LERICKET £1 Dy PEdd PR S 0100 sar
Show Symbols:] Everything - |

The following sections provide more detail on the information in the window.

128 Using the Adaptive Sampling Profiler

CHAPTER 6

Measuring Performance

The Statistics View

The statistics view shows the number of hits registered in each memory range,
or bucket. If possible, the name of the routine associated with a bucket is
displayed. Each row shows information about a specific routine or an unnamed
bucket, showing starting and ending addresses and performance data. The
performance data is shown in three ways:

= time (number of hits times the sampling rate)

= count (actual number of hits recorded)

= percentage (number of hits divided by total hits for the session)
The routine names can be identified if

= abucket is in an address range associated with one of the fragments linked
to your application and there’s a symbol file for that fragment

= a MacsBug symbol exists whose address falls within the bucket

Otherwise the ranges are identified with the name {*BUCKET*}.

Note

Because function boundaries are unlikely to correspond
exactly to bucket boundaries, errors can arise when the
ASP associates functions with buckets. The ASP computes
the number of hits for a function as the percentage of code
the function has in the bucket times the number of hits in
the bucket. O

By default, the functions and unnamed buckets are listed in descending order
by count, that is, by number of hits. You can sort the list alphabetically by
name, or by beginning and ending address, by clicking on the appropriate
column heading.

If you double-click a routine name, the source code for that routine is displayed
in the Browser window. Alternatively, you can select the routine-name and
choose Show Source from the Performance submenu. If you double-click an
unidentified bucket, the assembly code starting at the beginning address of the
bucket is displayed in an instructions window.

By using the Show Symbols pop-up menu in the lower-left corner of the
performance window, you can set the fragment or fragments you wish to see
hits for. By default, the Show Symbols pop-up menu is set to Everything,

Using the Adaptive Sampling Profiler 129

CHAPTER 6

Measuring Performance

meaning that you will see the results for all fragments. In Figure 6-6, the

fragment CTubeTest is selected.

Figure 6-6 Filtering data by fragment

S——m———————————————— Run # 1
Surnmnary
Execution Profile: Application - CTubeTest

Utility Type: #5F Sarnpler Samnpling Rate: 0.010 sec
Tirme Count FPercentage

Total Systern Timing: 11.540 zec 1154
Mative PowerPC Execution Timing : 5870 =ec 527 595 %
Ernulated MES0x=0 Execution Timing : 4 670 sec 457 40.4 %
Configured Systemn Statistics: 11.540 sec 1154 100.0 %
Unaceounted Systern Statistics: 1.220 =ec 122 106 %

Statiztics

Name Begin End Time Count Percentage

Lo deryLongloop Owx24dFC20 Ox244FLET Z.050 se: 305

SetRect Ox244E328 Ox244E93F 0460 sex 46

SYETEMT ASK D424 AZED Ox4024 A42F 01350 sex 15

{¥BUCKET*} g Everything e

— GETSUBwnDa Sustem 680x0 Emulated Symbols
Privatelnterfacelib SDD40* 1

sen 14

{*BUCKET #} Interfacelib.65150%2 =ee 1

CodeFragmentMgr 80040 1
* *
(FBUCKET*} MixedMode. 53220% 1

=20 E

ProcessMgrSupport 35720# 1

NID. 235E0%1

Interfacelib.D1200%1
CTubeTest

StdCLib
CodeFragmentgr 409EC0ECO
MixedMode. 409EDTFO
ProcesstMgrSuppart. 409F2CA0
Interfacelib. 409F3710
Privatelnterfacelib 40427090
MathLib. 40433EAD

NOD. 4045BFAD

130 Using the Adaptive Sampling Profiler

CHAPTER 6

Measuring Performance

The Summary View

In the summary view, the performance data is grouped into several categories,
showing total time, number of hits, and percentage for each. The categories are

= Total System Timing. Total hits recorded for the entire session.

= Native PowerPC Processor Execution Timing. Hits recorded in native
PowerPC code.

= Emulated M680x0 Execution Timing. Hits recorded in emulated 68K code.
= Configured System Statistics. Hits mapped to specific fragments.

= Unaccounted System Statistics. Hits that cannot be clearly associated with
specific fragments.

= System/680x0 Emulated Symbols. Hits in code executing outside of any
fragment associated with the application being measured. This category
includes the ROM and Toolbox code.

= ROM Statistics. Hits in an address range in ROM.

Following these categories is a breakdown of statistics by fragment, listed in
ascending order by address of the fragment. For an example of such a list, see
the bottom of the summary view in Figure 6-5 (page 128).

Editing the Performance Report

At times you may find it useful to display a subset of the data rather than
showing statistics for every bucket. If you choose Configure Report from the
Performance submenu, the ASP displays a dialog box like the one in Figure 6-7.

Using the Adaptive Sampling Profiler 131

CHAPTER 6

Measuring Performance

Figure 6-7 The report configuration dialog box

E Percentage -

Min: Max:

oo 100.0

o Jg" [ro0 |=
E Count:
Min: | o | Max: | |
E Time :

Hi“:|D.DDD | Max: | |
ms =

0K Cancel

This dialog box allows you to specify a maximum or minimum value for
percentage of hits, number of hits, and time elapsed. You may, for example,
want to show only buckets that have at least 1% of the total number of hits. To
do so, click the Percentage checkbox, and enter “1.0” in the Min text field. You
can also specify a maximum value. Leaving the Max text field blank means
there is no upper bound.

You may check more than one checkbox. For example, if you check Percentage
and specify a minimum of 13% and also check Count and specify a minimum
of 10 hits, only routines that satisfy both conditions are shown.

Saving and Printing Performance Data

Choose Save Window As Text from the File menu to save performance data to a
tab-delimited MPW text file. You can view the file in any program that reads
text files. You cannot reload and view the file using the Power Mac Debugger.

Note

The saved file contains the performance data in its entirety,
regardless of how you have configured the statistics

view. O

132 Using the Adaptive Sampling Profiler

CHAPTER 6

Measuring Performance

You can print either the summary view or the statistics view of a performance
window. To do so, make the view you want the active pane and choose Print
from the File Menu.

Evaluating Performance Data

After the ASP collects, sorts, and displays performance data, it’s up to you to
interpret the data. This section offers some suggestions on interpreting your
performance data.

The ASP displays flat-time measurements. Flat time is the amount of time
spent executing a routine, not counting time spent in called routines. For
example, in Figure 6-8, in which routine A calls routine B, the flat time for
routine Alisequal to T1 + T3 + T5.

Figure 6-8 Flat-time measurement
) T1 T3 T5
Routine A I | |
T2 T4
Routine B L] |
Tn = time of execution

It’s best to generate several performance reports before drawing general
conclusions about your application’s performance. Any one invocation may
suffer from “blind spots,” due either to a partial use of the application’s code or
to measurement inaccuracies. The following section discusses some of the
possible sources of inaccuracy in the results.

Using the Adaptive Sampling Profiler 133

CHAPTER 6

Measuring Performance

Possible Problems Or Errors

Because of the statistical nature of sampling, the results you obtain in any run
may contain small errors or inaccuracies. There are three major categories of
errors:

= Resonance effects

A resonance effect can occur when an application’s code has a loop that
executes with a regular period. If the frequency of the loop’s execution is a
multiple of the sampling rate, the ASP will always register hits for the same
instruction in that loop. Other instructions will never register, even though
they may execute frequently.

To correct this problem, reset the sampling rate to be slightly lower or higher
than its current value and take new measurements.

= Dynamic splitting and reformation errors

You may occasionally see a hit in a memory area you know your program
did not execute in. This type of error, which occurs because of the way the
ASP adjusts the size of its buckets as it takes samples, tends to be statistically
insignificant. The next section, “How the ASP Gathers Data,” explains the
sampling process further.

= Overhead

There is a certain amount of overhead involved when running your
application with the ASP enabled. In other words, the act of measuring
performance has an effect on performance.

Tests have determined that the total overhead is about 3% of the total time.
Of that total time, 2% is measured overhead; that is, it is included in the
statistics. The other 1% is unmeasured overhead. In other words, if you
perform certain tasks with your application and look at the total time x
reported by the ASP, you can assume the tasks would have taken about 98%
of x without the ASP running.

How the ASP Gathers Data

This section describes how the ASP registers hits and how it matches hits with
distinct memory regions. You do not need to read this section to use the ASP.

134 How the ASP Gathers Data

CHAPTER 6

Measuring Performance

However, reading it can help you better understand the data in the
performance report.

The ASP registers hits that occur anywhere in memory, not only in your
application’s code but also in shared libraries, system software, ROM code, and
any other running applications.

Traditional sampling tools allocate a large number of buckets of fixed size. This
allocation takes a lot of memory and can result in a poor level of granularity for
the regions that execute most frequently. The ASP does not associate a
fixed-size region of memory with each bucket. Instead, it dynamically adjusts
the sizes of the buckets as it takes the samples. It uses smaller buckets for
sections of code that execute most often and larger buckets for infrequently
used sections. This allows it to use a relatively small, fixed buffer size.

The ASP uses an array called a node table, consisting of several nodes. Nodes
are divided into 16 buckets of equal size. Each node stores its address range, its
total number of hits, and the number of hits in each bucket.

When sampling begins, only one node (node index 0) is active. This node is
divided into 16 buckets that cover the entire address space (0x0000 0000 to
OxFFFF FFFF). Each bucket covers has a range of 0x1000 0000 bytes (228).

Every time the ASP samples the PC, it determines which bucket the PC belongs
in and increments the bucket’s count. Figure 6-9 shows what the first node
might look like after 32 samples have been taken.

When a bucket receives more than a certain number of hits (the threshold), a
new node is added to the table, corresponding to that bucket, and the bucket is
split into 16 new buckets.

How the ASP Gathers Data 135

CHAPTER 6

Measuring Performance

136

Figure 6-9 Recording bucket hits in a node
Node
table
Node
index
7 Node information
Beginning address: 00000000
6 Bucket range: OFFFFFFF
Total hits: 32
5 Parent:
4 |
|2 4]4/2]4foj2]ojefojo]4elojo]a)z
3]
2]
10000000 FFFEFFFE
1 00000000
(U —
Note

The following formula is used to calculate the threshold:
T = max (5, (§/128)) where S is the total number of
samples taken. In other words, for a small number of
samples the threshold (T) is 5; as the number of samples
taken increases, the threshold increases in proportion with
the number of samples taken. O

In this example, suppose the next sample registers a hit in the second bucket
from the left, thus increasing its count to 5. Since 5 is the threshold, the ASP
splits the bucket. It allocates a new node, containing 16 buckets, each of which
is 1/16 the size of the previous bucket; in this case the new buckets are 2724 in
size.

Figure 6-10 shows what the node table and two allocated nodes look like after
the bucket is split.

How the ASP Gathers Data

CHAPTER 6

Measuring Performance

Figure 6-10 Splitting a bucket

Node
table
Node information
Beginning address: 10000000
Bucket range: 00FFFFFF
Node Total hits: 5
index Parent: 0
7
10000000
6 | 11000000 1FFFFFFF
* H Y
4 1 1 1 1 1
3 |
2
! 2 4 2 4 0 2 0 4 0 O 4 0 0 4 2
o L i i
1FFFFFFF
10000000 FFFFFFFF
00000000

When the ASP splits a bucket, because it no longer has exact PC information
for hits in the bucket, it distributes the hits evenly to the buckets in the new
node. In this example, the 5 existing hits are shown evenly spread among the
new buckets. This distribution can result in some inaccuracy, because any
individual hit might be assigned to the wrong bucket. However, this error is
usually insignificant, because as the new buckets fill up, the erroneous hits
become only a small percentage of the total.

As hits accumulate further, the ASP continues to split buckets as necessary
until it cannot split them any more (that is, it reaches a bucket size of 1 byte per
bucket). Since ASP uses a fixed-size node table, it’s possible that when a bucket
needs to be split, there may be no more available entries in the table. To solve
this problem, the ASP selects the five least frequently used nodes and frees
them from the table, reallocating their hits to the parent node. It then uses the
freed nodes for the more frequently used buckets. Although this process causes
some loss of information, the error is insignificant because the reformulated
buckets have a low density of hits.

How the ASP Gathers Data 137

CHAPTER 6

Measuring Performance

138 How the ASP Gathers Data

CHAPTER 7

Troubleshooting

Contents

Targeting and Mapping 141
Symbol File Not Mapped 141
Can’t Map a Fragment 142
Using the Serial Nub 142
Can’t Open Windows 142
Can’t Debug Threads 143
Connecting Two Machines 143
Can’t Connect to the Target Machine 143
Can’t Reconnect to the Target Machine 145
Source-File Problems 145
Statement Markers Not Correct 145
Source Code Not Displayed 146
Assembly Code Not Displayed 146
Other 147
Can’t Single-Step 147
Global Variables Not Visible 147

Contents

139

CHAPTER 7

140 Contents

CHAPTER 7

Troubleshooting

This chapter provides solutions to the problems that developers most
commonly encounter when using the Power Mac Debugger.

Targeting and Mapping

Symbol File Not Mapped

Problem

You opened a symbol file, but the status panel reads “Not mapped”. When you
set a breakpoint, it appears as a sad face, like the one shown in Figure 4-7

(page 93).

Solution

First make sure the application you want to debug is running. If it is not,
launch it either by choosing Launch from the Control menu or by holding
down the Control key while launching it from the Finder. These procedures
cause a break on launch and cause the application to be targeted.

If the application was already running when you opened the symbol file, it is
not automatically targeted. Instead, you must explicitly target the application
by using the Process Browser. See “The Process Browser” (page 73) for
instructions.

If the application is targeted but the debugger is unable to map the code to the
symbol file, the message “Not mapped” is displayed in the Browser’s status
panel. This message can occur for one of two reasons:

= The symbol file name differs from the fragment name, and you have
disabled the “Always auto-map symbolics to code” option. As a result, the
debugger does not match the fragment to the symbol file by size. For more
information, see “Browser Preferences” (page 153).

= The option is enabled but there is more than one fragment of the correct size.
As a result, the debugger does not do the mapping.

Targeting and Mapping 141

CHAPTER 7

Troubleshooting

In either of these cases, you need to do the mapping explicitly by choosing Map
Symbol File from the Control menu. See “Mapping Symbols To Code”

(page 41).

Can’'t Map a Fragment

Problem

The code fragment you want to map does not appear in the Map Symbol File
dialog.

Solution

The Map Symbol File dialog box shows only fragments associated with the
currently focused process. You may have to change the current focus in order
to see your fragment. For example, if you are debugging code that resides in
the system heap, you must change the current focus to the system process by
double-clicking its name in the Process Browser. This operation is described in
“The Current Focus” (page 76).

Using the Serial Nub

142

Can’t Open Windows

Problem

When you're using the serial nub and open the Process Browser, no
applications (or not all running native applications) are listed. Also, the
debugger won’t let you open most of the other windows.

Solution

When using the serial nub, a process must be stopped for any communication
to take place between the host and the nub. The information in the Process

Using the Serial Nub

CHAPTER 7

Troubleshooting

Browser (and all other debugger windows) is not updated unless a process is
stopped under debugger control.

If you open the Process Browser before having stopped in any process, it does
not display any information. The first time you stop a process, the currently
running applications are displayed. If this window does not appear to be
updating correctly, you may need to open and close the window.

You can stop a process by doing a break on launch, by having debugStr or
Debugger calls in your program, or by using the Stop command. Once you have
stopped the machine, you can use all the features of the debugger to look at the
stack and registers, to display and change memory, to set breakpoints and
single-step, and so on.

Can’t Debug Threads

Problem

Your program uses the Thread Manager to create cooperative threads, but the
Process Browser doesn’t display them.

Solution

The serial nub cannot target individual threads, only processes. You must use
the application nub (Power Mac DebugsServices) in order to debug individual
threads.

Connecting Two Machines

Can’t Connect to the Target Machine

Problem

You are trying to use a two-machine setup, with the application nub on the
target machine. You can’t connect to your target machine.

Connecting Two Machines 143

144

CHAPTER 7

Troubleshooting

Solution

Here’s how to connect to the target machine using AppleTalk:

1. Make sure both machines are on an AppleTalk network.

2. Make sure the application nub (Power Mac DebugServices) is installed
and running on the target machine.

3. Make sure Program Linking is enabled on the target machine.
Open the Sharing Setup control panel on the target machine. Set the names
and password if they are not already specified. Turn on Program Linking if it
is not already on.

4. Make sure you are a user on the target machine.
Open the Users & Groups control panel on the target machine. If you are not
already a user, select New User from the File menu. Open your user icon by
double-clicking it, then make sure the Program Linking checkbox is turned
on.

WARNING

Do not enable program linking for Guests unless you want
to give everyone else on the network access to your
computer. a

5.

6.

When you launch the debugger, select AppleTalk when you are prompted
for the connection type.

If the dialog box shown in Figure 2-3 (page 38) does not appear, you may
have already selected a default connection type. To change the default
connection type, choose Connection Preferences from the Edit menu.

Select your target machine.

A dialog box like the one shown in Figure 2-4 (page 39) prompts you to select
the target machine. The list displays only PowerPC-based Mac OS computers
currently running the application nub (Power Mac DebugServices). Select your
target machine and click OK. A Program Linking dialog box now asks for your
user name and password. Enter them and click OK.

Connecting Two Machines

CHAPTER 7

Troubleshooting

Can’'t Reconnect to the Target Machine

Problem

Your target application crashed and you relaunched it. Now the debugger does
not target the application correctly.

Solution

If the target crashes when you are using the application nub, you must quit the
Power Mac Debugger on the host machine and relaunch it.

Source-File Problems

Statement Markers Not Correct

Problem

When you single-step through your source file, the statement markers are not
correct. Statements are highlighted partially, or they overlap.

Solution

The symbol file and source file may be out of date with respect to each other.
You may have more than one version of the source code on your disk, and the
debugger is using a different source file than was used to create the symbol file.
To correct this, choose Locate Correct Source File from the File menu. A
standard file dialog box appears, allowing you to navigate to the correct source
file.

To find out which source file the debugger is using, choose Show Full Path
Name from the File menu.

Source-File Problems 145

CHAPTER 7

Troubleshooting

Source Code Not Displayed

Problem

The debugger does not display source code for a routine.

Solution

Symbol information may not be available for that file (because the file was not
compiled with the correct compiler option).

Another possibility is that symbol information is available but the debugger
cannot locate the source file. In this case, you are prompted with a standard file
dialog box to locate the file.

Assembly Code Not Displayed

Problem

The debugger does not display assembly code for a routine.

Solution

Assembly code is available only when the application is targeted. If the
application is not running, launch it with the Control key down and it will be
automatically targeted. If it is already running, use the Process Browser to
target it.

146 Source-File Problems

CHAPTER 7

Troubleshooting

Other

Can't Single-Step

Problem

You can set a breakpoint in your application, but when you single-step, the
program counter arrow disappears and you can’t tell where you are.

Solution

Make sure your application has a 'S1ZE' resource (with resource ID -1), and
make sure its CanBackground bit is set to TRUE.

Global Variables Not Visible

Problem

Not all your program’s global variables are visible in the Global Variables
window.

Solution

Some global variables live in “data-only” fragments. To display the values of
these variables, you must open a symbol file corresponding to their fragment.
Because the fragment contains data only, the Browser window that opens does
not display any functions.

Other 147

CHAPTER 7

Troubleshooting

148 Other

Appendixes

A PPENDIX A

Debugger Preferences

You can alter the Power Mac Debugger’s behavior according to your
debugging needs. The debugger provides several preferences that you can set.

To set a preference, choose General Preferences from the Edit menu. A dialog
box appears, as shown in Figure A-1. In it are four categories of preferences:
Process Control, Browser, Disassembly, and Other. To show the preferences
under each category, click a disclosure triangle.

Figure A-1 The General Preferences dialog box
General Preferences

[r Process Control ﬁ

[r Browser

[Dizassernbly

[Other
2]

[cancel [

The rest of this appendix describes the preferences for each category.

151

APPENDIX A

Debugger Preferences

Note

The preferences you set are stored in the Power Mac
Debugger Prefs file, which is located in the Macintosh
Debugger Preferences folder in the Preferences folder of
the host machine’s System Folder. The first time you run
the debugger, a default set of preferences is created. O

Process Control Preferences

Process control preferences (Figure A-2) include settings that determine
whether or not the debugger is entered by default under certain conditions,
such as DebugStr calls. You can override these settings for any running process
or thread by using the Process Browser’s preferences; see “Application
Preferences” (page 77).

Figure A-2 Process control preferences

152

= Frocess Control

[<] set stop on Debuggert) # DebugStr) default
I:‘ Set stop on task creation default

E Set stop on code loads default

E Set dizplay process state alerts default

E Uze control palethe

I:‘ [Lon't stop in glue code

E [izplay alert when target has been rebooted

I:‘ 0nly shove focused context wiews

= Set stop on Debugger()/DebugStr() default. If this box is checked, the
debugger is entered whenever a Debugger () Or DebugStr() statement is
executed in any process.

= Set stop on task creation default. If this box is checked, the debugger is
entered whenever a process creates a new thread using the Thread Manager.

= Set stop on code loads default. If this box is checked, the debugger is
entered whenever a targeted process loads any code (for example, when an
application loads a code fragment). The debugger displays an alert

Process Control Preferences

APPENDIX A

Debugger Preferences

indicating which fragment was loaded. This is useful when you want to
debug, say, a code resource that your application loads.

This option does not cause a newly launched process to stop when its code
fragment is loaded; for that, you must explicitly do a “break on launch.”

= Set process state alerts default. If this box is checked, the debugger displays
alerts under certain conditions, such as when a break on launch occurs or
when a process quits. If the box is unchecked, the alerts are not displayed.

= Use control palette. If this box is checked, the control palette is displayed
automatically when you launch the debugger. If the box is unchecked, the
control palette is not displayed. You can, however, display it manually.

= Don’t stop in glue code. Whenever a PowerPC program makes a system
call, a few instructions of glue code generated by the compiler are executed
before the system call is actually entered. Glue code is also generated, for
example, when an application makes cross-fragment calls or C++ method
calls. If you step into one of these calls, by default you first step into the glue
code. If this box is checked, the debugger skips over the glue code and takes
you directly to the first instruction in the called routine.

System glue code can be accessed from the Browser by selecting the entry
called “eeesynthesized glue==<” (at the end of the Files pane).

= Display alert when target has been rebooted. If this box is checked, when
using a two-machine setup, the host displays an alert when it detects that
the target machine has been rebooted.

= Only show focused context views. If this box is checked, the debugger
hides all stack and registers windows associated with contexts other than
the current focus. These windows are displayed again when their context
becomes the current focus. If the box is unchecked, all windows you have
opened are visible.

Browser Preferences

Browser preferences (Figure A-3) include settings that affect the behavior and
appearance of the Browser, as well as other debugger windows.

Browser Preferences 153

APPENDIX A

Debugger Preferences

Figure A-3 Browser preferences

154

= Browser

E Update browser to show PC on halt

D Use Tive scrolling

D lgnore source out of date warning

E Always auto-rmap symbol file

D Uze debugger project files

I:l Display Methodiame\ClassMName in browser
E Use syntax coloring

D Show pane titles

EI Launch application when opening browser

Update browser to show PC on halt. If this box is checked, the Browser
window displays the function containing the program counter whenever a
program stops. If the box is unchecked, the Browser continues to display
whatever it was already displaying.

Use live scrolling. If this box is unchecked, and you drag the thumb in a the
scroll bar of a debugger window, the contents of the window change do not
change until the thumb stops moving. If the box is checked, the window’s
contents change as the thumb moves.

Ignore source out of date warning. If this box is unchecked, the debugger
warns you if the symbol file is out of date with respect to the target
application or the source files. If you know that any changes do not affect the
mapping between files, you can check this option and the alerts will not
appear.

Always auto-map symbol file. If this box is checked, if the debugger cannot
map a symbol file to a fragment by name (for example, MyApp.xcoff with a
fragment called MyApp), it looks for a fragment whose size is the same as the
one specified in the symbol file, and uses it for the mapping. Uncheck this
option if you do not want this mapping to occur.

Use debugger project files. If this box is checked, the debugger keeps track
of information about your debugging session and can restore its state if you
quit and resume later. It stores information about

o the size and location of the Browser window

o breakpoints

o the path to your source files

The information is stored in files with the suffix .dbg. For example, if your
symbol file is MyApp. xcoff, the project file is MyApp.dbg and is stored in the

Browser Preferences

APPENDIX A

Debugger Preferences

same directory as the symbol file (unless the symbol file is on a read-only
volume, in which case you are asked to create an alias to it on a writable
volume).

When using the Open command from the File menu, if you select a .dbg file,
the debugger automatically opens the corresponding symbol file.

= Display MethodName\ClassName in browser. If this box is checked, C++
method names are displayed in the form MyMethod\MyClass instead of the
standard form MyClass: :MyMethod. Check this option if you want to use
keyboard navigation in the Browser’s function list. Because source files often
contain several methods belonging to the same class, typing the first few
letters of the class name is not helpful when the class name is displayed
first. By using the alternate notation, you can type the first few letters of the
function name to locate it.

= Use syntax coloring. If this box is checked, C and C++ code is displayed
color-coded: language keywords are shown in blue and comments are
shown in red.

= Show pane titles. If this box is unchecked, debugger windows that have
several panes do not display the titles of the panes, in order to save screen
space. For example, the Files, Functions, and Code panes in the Browser
window appear without titles. If you check this option, the titles appear.

= Launch application when opening browser. If this box is checked,
whenever you open a symbol file, the debugger launches the corresponding
application. This option goes into effect only when you are debugging on a
single machine and your application and symbol file are in the same
directory.

Disassembly Preferences

Disassembly preferences (Figure A-4) control the appearance of windows
displaying assembly-language code.

Disassembly Preferences 155

APPENDIX A

Debugger Preferences

Figure A-4 Disassembly preferences.

7 Dvizazsembly

D Use ernbedded symbols
I:‘ Use POWER instruction set by default

E Usze extended mnemonics

» Use embedded symbols. If this box is checked, the debugger displays

function name symbols in stack and instructions windows when no symbol
file is available. This option is useful if you are doing low-level debugging. If
you do not need to use this option do not select it, because it slows the
debugger.

Use POWER instruction set by default. If this box is checked, the debugger
uses POWER mnemonics in instructions windows. If the box is unchecked,
the debugger uses PowerPC mnemonics.

Use extended mnemonics. If this box is checked, the debugger uses
extended mnemonics in PowerPC instructions displays. (If you selected the
“Use POWER instruction set by default” option, this preference does
nothing.)

Other Preferences

Figure A-5 shows the other preferences that you can set.

Figure A-5 Other preferences

156

= Other

I:l Yiew unsigned long as hex by default

D Low speed serial connection

I:l Show performanee info with zero hits

E Show open dialog at startup

D Timne stamp log entries

E Show context of Tog entries

E Auto expand variables through depth
Default rern wiew byte grouping :

-1

Other Preferences

APPENDIX A

Debugger Preferences

= View unsigned long as hex by default. If this box is checked, unsigned long
values are shown in hexadecimal in variable displays. If the box is
unchecked, unsigned longs are shown as decimal values.

= Low speed serial connection. Check this box if your host machine is slower
than a Macintosh Quadra and you experience communication problems
between host and target machines. You must also check the low-speed serial
connection box in the Debugger Nub Controls control panel. See Figure 1-4

(page 29).

= Show performance info with zero hits. If this box is unchecked, the
Adaptive Sampling Profiler does not display buckets with zero hits in
performance reports. Check this option to include buckets with zero hits.

= Show open dialog at startup. If this box is checked, the debugger prompts
you to open a symbol file when it launches. If you uncheck this option, the
debugger does not prompt you.

= Time stamp log entries. If this box is checked, any text that is written to the
Log window (such as output from debugger extensions or calls to DebugStr)
is marked with the date and time.

= Show context of log entries. If this box is checked, the Log window displays
the application or thread that generated the Log entry, such as with a
DebugStr call.

= Auto expand variables through depth n. When displaying variables in
evaluation windows, nested variables are automatically expanded through
this number of levels; the default is 3. See “Expression Results Windows”
(page 105) for more information.

= Default mem view byte grouping. By default, memory is displayed (and
edited) in groups of 4 bytes. Choose a different value from the pop-up menu
to set the default memory display at a 2-byte or 1-byte grouping.

= C++ Unmangle Scheme. If you have created a custom C++ unmangle
scheme, you can use this option to make it active. Refer to Appendix D,
“Creating Custom Unmangle Schemes,” for more information on unmangle
schemes.

Other Preferences 157

APPENDIX A

Debugger Preferences

158 Other Preferences

A PPENDIX B

Expression Evaluation

The Power Mac Debugger allows you to use expressions in these situations:

= When setting conditional breakpoints, you specify an expression that must
evaluate to TRUE for the program to stop at the breakpoint.

= When you choose Evaluate from the Evaluate menu, a dialog box allows you
to enter an expression to be evaluated.

The debugger’s expression evaluator supports a subset of C and C++ grammar.
It allows some additional expression syntax, including the use of register
names and other ways of specifying constants.

Additions to C/C++ Syntax

This section shows how you use register names and constants in expressions
that the debugger can evaluate.

Register Names

Register names have predefined meaning in the debugger, as shown in Table
B-1. However, register names are not reserved words. If you declare a variable
to have the same name as a register, the expression evaluator recognizes it as a
variable name. If you want to refer to the register by that name in the same
program, you must add the delta (&) symbol before the register name. To do so,
type Option-J. For example, if your source code contains the following
declaration,

Int R1=10; /* R1 as a variable */

you can evaluate this expression, in which R1 is a reference to a variable, as

x + R1

Additions to C/C++ Syntax 159

160

APPENDIX B

Expression Evaluation

You can also evaluate the following expression, in which R1 is a reference to
register R1:

x + AR1

The same rule applies to references to the floating-point registers and to the
special-purpose registers.

Note
To speed up processing, use the A prefix in register names,
whether or not you have also declared those names to be

variables. O

Table B-1 PowerPC register names

Register name Use

R0O-R31 General-purpose registers

FPO-FP31 Floating-point registers

SP Stack pointer

TOC Pointer to the Table of Contents (TOC)

PC Program counter

LR Link Register

CR Condition Register

CTR Count Register

XER Integer Exception Register

MQ Register extension for multiply and divide
FPSCR Floating-Point Status and Control Register
Constants

The expression evaluator handles constants according to the rules defined in
ANSI C and The C Programming Language by Kernighan and Ritchie. In
addition,

Additions to C/C++ Syntax

APPENDIX B

Expression Evaluation

= a decimal number (consisting of the characters 0-9) can be preceded by a
pound sign (#)

= a hexadecimal number (consisting of the characters 0-9 and A-F) can be
preceded by a dollar sign (3$)

A number not preceded by any special characters is treated as hexadecimal if it
contains the characters A-F and decimal otherwise. However, keep in mind that
a hexadecimal constant such as F9 could cause a conflict with a variable of the
same name declared in your program.

What Isn’t Supported

The evaluator does not support
= assignments

= member pointers

= type casting

= expressions of the form sizeof (typeName), although it can handle
expressions of the form sizeof (variableName)

= taking the address of a function

Although the evaluator does not support type casting, you can change the type
of an expression result by selecting it and choosing Evaluate from the Evaluate
menu. See “Expression Results Windows” (page 105).

What Isn’t Supported 161

APPENDIX B

Expression Evaluation

162 What Isn’t Supported

A PPENDIX C

Debugger Extensions

You can customize and extend the Power Mac Debugger by creating debugger
extensions. A debugger extension is a C or C++ function that you can execute
to perform a task while using the debugger. Typically, developers use debugger
extensions to display system data structures such as those that are used to track
installed drivers, volumes, open files, and VBL tasks.

This chapter describes how to execute, write and build debugger extensions. It
also documents the callback routines you can use when writing debugger
extensions.

Executing Debugger Extensions

You execute debugger extensions from the debugger’s Log window.

= To get a list of available debugger extensions, enter extensions in the Log
window.

= To get information about what an extension does, and its required
parameters, enter help extensionname in the Log window.

= To execute an extension, enter its name followed by any necessary
parameters in the Log window. All output from the extension is displayed in
the Log window.

For more information, see “The Log Window” (page 66).

Writing Debugger Extensions

Debugger extensions contain native PowerPC code and are written in C or
C++. After compiling an extension and linking it with the appropriate libraries,
you store the executable code in a resource of type 'ndcd'. (Itis similar to a
MacsBug extension, which is stored in a code resource of type 'dcmd'.) Then
you add the code resource to the resource fork of the debugger’s preferences

Executing Debugger Extensions 163

APPENDIX C

Debugger Extensions

file, located in the Preferences folder of the target machine’s System folder. The
debugger loads the extensions into the system heap during system startup.

A debugger extension must contain a function declared as follows:

pascal void CommandEntry (dcmdBlock* paramPtr);

When the user executes the extension, the debugger calls the CommandEntry
function and passes it a single parameter, which is a pointer to a parameter
block. For more information on this parameter block, see “Data Structures”
(page 169). The request field of the parameter block can be one of three
constants, as shown in Table C-1.

Table C-1 Values passed in the request field
Constant Description
demdInit This value is passed when the debugger first calls the

extension, after the debugger is loaded into memory. The
extension can perform any necessary initialization
actions, for example, initializing its global variables or
gathering information about the operating environment.

dcmdDolt This value is passed when the user executes the extension.

demdHelp This value is passed when the user asks for information
about the extension by typing help in the Log Window.

Listing C-1 shows the format of the source code for a debugger extension.
Although a debugger extension can contain more than one procedure, the main
procedure must be called CommandEntry.

Listing C-1 Skeleton code for a debugger extension

164

f#Finclude <Types.h>
#include "dcmd.h"
#include "ndcd.h"

/*Declare global variables, if any.*/

pascal void CommandEntry (dcmdBlock* paramPtr){
/*Declare local variables, if any.*/

Writing Debugger Extensions

APPENDIX C

Debugger Extensions

/*The following case statement dispatches on the value
of the request field of the parameter block.*/
switch (paramPtr->request){
case demdInit:
/*code that executes at initialization time*/
case dcmdHelp:
/*code that displays syntax and help info*/
case dcmdDolt:
/*code that performs command’s normal function*/

A Sample Debugger Extension

Listing C-2 shows sample source code for the Echo debugger extension. This
command echoes extension parameters; if the parameter is an expression, it
evaluates the expression. The sample code makes use of debugger callback
routines, which are introduced in the next section, “Using Callback Routines.”

Listing C-2 Sample source code for debugger extension

/*File: Echo.c, sample debugger extension*/
#include <Types.h>
##include "dcmd.h"

void NumberToHex (long number, Str255 hex){
Str255 digits = "0123456789ABCDEF";
int n;
strcpy (hex, ".00000000");
for (n=8; n > 1; n--){
hex[n] = digits[number % 167];
number = number / 16;
}

pascal void CommandEntry (dcmdBlock* paramPtr){

short pos, ch;
long value;
Boolean ok;
Str2b5 str;

Writing Debugger Extensions 165

166

APPENDIX C

Debugger Extensions

switch (paramPtr->request){
case demdInit:
case dcmdHelp:
break;

case dcmdDolt:
do {
/*save position so we can rewind if error*/
pos = dcmdGetPosition();
ch = dcmdGetNextExpression(&value, &ok);
if(ok){
/*the expression was parsed correctly*/
NumberToHex (value, str);
elsef
/*the expression contained an error
go back to saved position*/
dcmdSetPosition(pos);
/*and get it as string*/
ch = dcmdGetNextParameter(str);
dcmdDrawline(str);
}
while (ch != CR);
break;

Using Callback Routines

There are a number of callback routines you can use to assist you in writing
debugger extensions. Most of these routines are also used by writers of
MacsBug 'dcmd' debugger extensions (hence the prefix 'demd' in the routine
names) and are declared in the file decmd. h. In addition, the routines
dcmdReadRegister and demdWriteRegister are declared in the file ndcd.h. The
routines are implemented in the library file NubExt.xcoff.

You can use debugger callback routines to
= parse user input
= display help text or other output

= obtain or change the values of PowerPC registers

Writing Debugger Extensions

APPENDIX C

Debugger Extensions

Building a Debugger Extension

To build and use a debugger extension, you must complete the following steps:

1.

Compile the source code for the extension.

2. Link the resulting object file with ndcdGlue.o and the NativeNub library.
3.
4

Create an 'ndcd’ code type resource, using Rez.

. Add the resource to the resource fork of the preferences file.

To do so, use Rez, or a resource editor such as ResEdit.

If you are using the serial nub, add the resource to the Debugger Nub
Preferences file. If you are using the application nub, add the resource to the
Power Mac DebugServices Prefs file. Both of these files are in the Preferences
folder of the target machine’s System Folder.

. Reboot the machine.

The new debugger extension will be available to execute after you reboot.

Table C-2 lists the files you need to build a debugger extension.

Table C-2 Header and library files for debugger extensions

File Use

ndcd. h Header file containing declarations for dcmdReadRegister
and dcmdWriteRegister routines

demd. h Header file declaring all other callback routines (also used
by MacsBug 'dcmd’ extensions)

ndcdGlue.o Standard glue file that you must link with

NativeNub Library file containing the implementation of the routines
declared in dcmd.h and ndcd. h

Put.c A set of formatting routines that can be used by debugger
extensions

Put.h Header file for the formatting routines

Building a Debugger Extension 167

APPENDIX C

Debugger Extensions

Debugger Extension Reference

Constants

This section describes the constants, data structures, and routines that you use
in writing a debugger extension.

168

The following constants are used to define values returned in the request field
of the parameter block passed back to the extension by the debugger.

ffdefine demdInit 0
Jfdefine dcmdDolt 1
jidefine dcmdHelp 2

The following constants are used to specify register names for the
demdWriteRegister and dcmdReadRegister functions:

Jidefine RORegister 0
j#define R1Register 1
Jfdefine R2Register 2
Jfdefine R3Register 3
Jfdefine R4Register 4
J#fdefine RHRegister 5
Jidefine R6Register 6
j#define R7Register 7
Jfdefine R8Register 8
Jfdefine R9Register 9
J#fdefine R10Register 10
Jfdefine R11Register 11
jfidefine R12Register 12
j#define R13Register 13
Jfidefine R14Register 14
Jfdefine R15Register 15
Jfdefine R16Register 16
Jfdefine R17Register 17
J#idefine RI18Register 18
j#define R19Register 19
Jfdefine R20Register 20
Jfdefine R21Register 21
Jfdefine R22Register 22

Debugger Extension Reference

APPEN

DIX C

Debugger Extensions

ftdefine
ffdefine
J#define
fidefine
fidefine
fidefine
ftdefine
ffdefine
J#define

ffdefine
J#define
fidefine
fidefine

Data Structures

R23Register
R24Register
R25Register
R26Register
R27Register
R28Register
R29Register
R30Register
R31Register

PCRegister
LRRegister
CRRegister
CTRRegister

23
24
25
26
27
28
29
30
31

32
33
34
35

The debugger passes a pointer to the extensionBlock data structure when it
calls the debugger extension. The data structure is declared as follows:

typedef struct {

long
short
Boolean

*registerFile; /*not used*/
request; /*initialize;execute; display help*/
aborted; /*not used*/

} extensionBlock;

Field descriptions

registerFile

request

aborted

Not used; retained for compatibility with MacsBug
extensions, which use the field as a pointer to an array
containing the contents of the 680x0 registers. To read or
change the value of PowerPC registers, use the callback
routines dcmdReadRegister and dcmdWriteRegister,
described in “Utility Routines” (page 173).

A field with a value of demdInit, demdDolt, Or demdHelp. In
response to dcmdInit, the extension should perform any
required initialization. In response to dcmdDolt, the
extension should execute its main function. In response to
dcmdHe1p, the extension should display a help message.

Not used; retained for compatibility with MacsBug
extensions.

Debugger Extension Reference 169

APPENDIX C

Debugger Extensions

Callback Routines

This section describes the three types of routines you can call when writing a
debugger extension: input routines for parsing user input, output routines for
displaying help messages and other output, and utility routines for displaying
or changing the PowerPC registers.

Note

The routines dcmdGetBreakMessage, dcmdGetNameAndOffset
dcmdGetMacroName, dcmdSwapWorlds, dmcdSwapScreens
dcmdScrol1, and demdDrawPrompt are also declared in the
header file demd. h. They are stub routines included for
compatibility with MacsBug extensions. O

Input Routines

You can use the following routines to parse user input.

dcmdGetPosition

Returns a short integer specifying the current command line position.

pascal short dcmdGetPosition();

dcmdSetPosition

Sets the current command line position.
pascal void dcmdSetPosition(short pos);

pos The position to set. This should be a value returned by the
dcmdGetPosition routine.

170 Debugger Extension Reference

APPENDIX C

Debugger Extensions

dcmdGetNextChar

Returns the next character or a return character if the entire line has been
scanned.

pascal short dcmdGetNextChar();

dcmdPeekAtNextChar

Returns the next character on the command line or a return character if the
entire line has been scanned. The current command line position is not changed.

pascal short dcmdPeekAtNextChar();

dcmdGetNextParameter

Copies all characters from the command line to the parameter string until a
delimiter is found or the end of the command line is reached. A delimiter can
be a space, a comma, or a return character. Both single- and double-quoted
strings are allowed on the command line; however, the leading and trailing
quotes must be of the same type. The routine returns the ASCII value of the
delimiter after the expression.

pascal short dcmdGetNextParameter(Str255 str);

str The parameter string, stripped of quotes.

dcmdGetNextExpression

Parses the command line for the next expression. All expressions are evaluated
to 32 bits. A delimiter can be a space, a comma, or a return character. A space is
not treated as a delimiter if it occurs in the middle of an expression. For
example, the expression 1 + 2 is evaluated to 3, and the delimiter will be the

Debugger Extension Reference 171

APPENDIX C

Debugger Extensions

character following the 2. The routine returns the ASCII value of the delimiter
after the expression.

pascal short dcmdGetNextExpression(long* value, Boolean* ok);

value On exit, the evaluated value of the expression.
ok On exit, if true, indicates that the expression was parsed
successfully.

Output Routines

You can use the following routines to display help text or to format program

output. All output produced by debugger extensions is written to the Log
window.

dcmdDrawlLine

Draws the text in the Pascal string as one or more lines separated by carriage
returns.

pascal void dcmdDrawLine(const Str2b5 str);

str The text to be drawn.

dcmdDrawsString

Draws the text in the Pascal string as a continuation of the current line.

pascal void dcmdDrawString(const Str2b5 str);

str The text to be drawn.

172 Debugger Extension Reference

APPENDIX C

Debugger Extensions

dcmdDrawText

Draws a number of characters starting from the specified pointer, as a
continuation of the current line.

pascal void dcmdDrawText(StrPtr text, short length);

text The beginning address of the characters to be drawn.

Tength The number of characters to be drawn.

Utility Routines

You can use these routines to obtain or change the value of a PowerPC register.

dcmdReadRegister

Returns the value of the specified PowerPC register.

pascal void dcmdReadRegister(short regNum, short regSize,
void *regValue);

regNum An integer from 0 to 31 that specifies the register number whose
contents you want returned. Use integers 32 through 35 to
specify special registers. See “Constants” (page 168) for
additional information.

regSize An integer specifying the size of the register: 32 specifies a
general-purpose register; 64 specifies a floating-point register.

regValue On exit, the value in the register specified by regNum.

Debugger Extension Reference 173

APPENDIX C

Debugger Extensions

decmdWriteRegister

Writes a value to a PowerPC register.

pascal void dcmdWriteRegister(short regNum, short regSize,
void *regValue);

regNum An integer from 0 to 31 that is the register you want to write to.
Use integers 32 through 35 to specify special registers. See
“Constants” (page 168) for more information.

regSize An integer specifying the size of the register: 32 specifies a
general-purpose register; 64 specifies a floating-point register.

regValue The value you want to place in the register.

174 Debugger Extension Reference

A PPENDIX D

Creating Custom Unmangle Schemes

C++ code requires an “unmangle” scheme to correctly display routine names.

The Power Mac Debugger is able to load any unmangle scheme as a code
resource and use its algorithm to unmangle symbols within the symbol file.
This capability lets the user use multiple compilers with varying unmangle
schemes with the Power Mac Debugger.

This appendix outlines the steps necessary to package your unmangle scheme
as a stand-alone code resource containing either PowerPC or 680x0 code. If you
are running the Power Mac Debugger host on a 680x0-based system, you must
use a 680x0 code resource. On a PowerPC-based system, you can use either
kind.

Here’s the function definition for an unmangle scheme:
long unmangle(char *dst, char *src, int limit);

The routine returns the number of characters copied to the unmangled string.

Creating a 680x0 Code Resource

1. If you use global variables in your unmangle scheme, you must set up an
A5 world.

Listing D-1 shows how to structure your code to set up an A5 world. Listing
D-2 shows the code for the routines referenced in Listing D-1. This code is
assumed to be in a file called SAG1obals.c. The header file for these routines,
SAGlobals.h, is shown in Listing D-3.

2. Build the resource.
A sample makefile is shown in Listing D-4.
3. Place the created resource in the Macintosh Debugger Preferences folder.

4. Choose General Preferences from the debugger’s Edit menu

Creating a 680x0 Code Resource 175

APPENDIX D

Creating Custom Unmangle Schemes

5. Select your scheme as the chosen unmangle scheme from the popup in the
“Other” category.

Listing D-1 Setting up an A5 world

AbRefTypeA5Ref;
long 01dA5;
long theReturnValue = 1;

MakeA5World(&A5Ref);
01dA5 = SetAS5World(A5Ref);

//your code goes here
SetA5(ol1dA5);

DisposeAbWorld(A5Ref);

Listing D-2 The file SAGTobals.c

#include <Memory.h>
#Finclude <0SUtils.h>
#Finclude <SAGlobals.h>
jidefine kAppParmsSize 32

long Ab5Size(void); /* prototype for routine in Runtime.o */
void ASInit(Ptr myA5); /* prototype for routine in Runtime.o */

pascal void MakeA5Wor1d(A5RefType *A5Ref)
{
*A5Ref = NewPtr(A5Size());
if ((long)*A5Ref)
ASInit((Ptr)((long)*A5Ref + A5Size() - kAppParmsSize));

pascal lTong SetA5World(A5RefType A5Ref)
{
return SetA5((long)A5Ref + A5Size() - kAppParmsSize);

176 Creating a 680x0 Code Resource

APPENDIX D

Creating Custom Unmangle Schemes

pascal void DisposeA5World (A5RefType A5Ref)
{
DisposPtr((Ptr)AbRef);

Listing D-3 The file SAGTobals.h

#include <Types.h>

typedef Ptr A5RefType;

/* MakeAbWorld allocates space for an A5 world based on the
size of the global variables defined by the module and its
units. If sufficient space is not available, MakeA5World
returns NIL for A5Ref and further initialization is aborted. */
pascal void MakeASWorl1d(A5RefType *A5Ref);

/* SetAbWorld locks down a previously allocated handle containing
an A5 world and sets the A5 register appropriately. The return
value is the old value of A5. The client should save it for

use by RestoreAbWorld. */

pascal long SetASWorld(A5RefType AS5Ref);

/* DisposeAbWorld simply disposes of the A5 world handle. */

pascal void DisposeASWor1d(A5RefType AS5Ref);

Listing D-4 A makefile for a 680x0 unmangle code resource

b File: MyUnmangle.make
Target: MyUnmangle
Sources: SAGlobals.c
unmangle.c

VARIABLE DEFINITIONS

Creating a 680x0 Code Resource

177

APPENDIX D

Creating Custom Unmangle Schemes

App = MyUnmangle

MAKEFILE = {App}.make

COMPILE = SC

Objs = unmangle.o 0
SAGlobals.o 0

"{CLibraries}"StdCl1ib.od
"{Libraries}"MacRuntime.o

DEPENDENCIES

{App) ff (MAKEFILE} ({Objs}
Link -rt CUST=1000 -t CODE -c '?7?7?"'" -m unmangle -sg unmangle 0
{Objs} o
-0 {App!

unmangle.o ff {MAKEFILE} unmangle.c
{COMPILE} unmangle.c -0 unmangle.o

SAGlobals.o ff {MAKEFILE} SAGlobals.c
{COMPILE} SAGlobals.c -o SAGlobals.o

Creating a PowerPC Code Resource

1. Build the resource.

Listing D-5 shows a sample makefile for PowerPC code. Listing D-6 and
Listing D-7 show the files used by the Rez commands: the file MyUnmangle.rl
defines the code resource’s ID and type, and the file Myunmangle.r2 gives the
code fragment a routine descriptor that in turn gives the debugger directions
to the new unmangle scheme.

2. Place the created resource in the Macintosh Debugger Preferences folder.
3. Choose General Preferences from the debugger’s Edit menu.

4. Select your scheme as the chosen unmangle scheme from the popup in the
“Other” category.

178 Creating a PowerPC Code Resource

APPENDIX D

Creating Custom Unmangle Schemes

Listing D-5 A makefile for a PowerPC unmangle code resource

File: MyUnmangle.make
Target: MyUnmangle
Sources: unmangle.c

VARIABLE DEFINITIONS

App = MyUnmangle
MAKEFILE= {App}.make

COMPILE = MrC

0bjs = unmangle.o 0

"{SharedlLibraries}"InterfacelLibo
"{SharedlLibraries}"StdCLib

DEPENDENCIES
{App) ff{0bjs} {App}.rl {App}.r2 {MAKEFILE}
PPCLink -packdata off -term none {Objs} -o {App} -main unmangle
Rez {App}.rl -o {App} -c RSED -t 'CODE’
Rez {App}.r2 -a -m -o {App} -c RSED -t 'CODE’
Setfile {App} -a B
unmangle.o ff {MAKEFILE} unmangle.c
{COMPILE} unmangle.c -o unmangle.o

Listing D-6 The file MyUnmangle.rl

Read 'CUST' (1000) "MyUnmangle";

Listing D-7 The file MyUnmangle.r2

#include "MixedMode.r"
type 'CUST' as 'rdes';
resource 'CUST' (1000)
{

$00000FF1, /* this is the Mixed ModeManager procInfo value */
$$Resource ("MyUnmangle", 'CUST', 1000)

Creating a PowerPC Code Resource 179

APPENDIX D

Creating Custom Unmangle Schemes

180 Creating a PowerPC Code Resource

A PPENDIX E

Quick Reference Guide

This appendix provides two tables that can help you get started without
having to read the rest of the book.

Table E-1 is a guide to performing some of the most common debugging tasks
when using the Power Mac Debugger. Table E-2 shows a list of the debugger’s
windows, summarizes their main functions, and describes how to open them.

181

APPENDIX E

Quick Reference Guide

182

APPENDIX E

Quick Reference Guide

Table E-1

Common debugging tasks

Task

Getting started

Open symbol file to begin
debugging

Break on launch (stop application

under debugger control before
main)

Target a running process for
debugging

Displaying Code
Display source code for a function

Create a “clone” of a code or
variable display

Disassemble PowerPC code
starting at a given address
Disassemble 68K code starting at

a given address

Setting breakpoints

Set simple breakpoint

Set one-shot breakpoint
Set focused simple breakpoint

How to do it

Double-click symbol file’s Finder icon

Press Command-O (Open from File menu) in debugger
Hold down Control key while launching application

Select Launch from Control menu or drag application
icon onto Power Mac Debugger icon in Finder
(single-machine debugging only)

Press Command-Y (Show Process Browser from
Window menu) to display Process Browser;
double-click name of process

Click name of function in Functions pane in Browser
window

Double-click function name in Stack Crawl

Press Option key, then click in pane and drag (applies
to any code view, Globals Watch Variables list or Stack
Crawl variables)

Select an address in any window and press
Command-D (New Instructions Window from View
menu)

Double-click PC address in Stack Crawl

Select an address in any window and press
Command-8 (New 68K Instructions Window from View
menu)

Click diamond next to statement or instruction in
Browser, instructions window, or other code view

Press Option and click next to statement or instruction

Press Command and click next to statement or
instruction

183

APPENDIX E

Quick Reference Guide

Task

Set conditional, counting or
performance breakpoints

Set focused conditional, counting
or performance breakpoints

Examine currently set breakpoints

Clear breakpoint

Clear all breakpoints

Program Control
Step one line of code

Step into a function

Step out of a function
Continue executing a stopped
program

Change program counter

Examining Memory and Variables

Examine PowerPC registers

Display (or edit) memory starting
at a given location

Find a hexadecimal or ASCII
value in memory

Examine global variables

Examine local variables
Evaluate any expression

184

How to do it

Press Control and click next to statement or instruction
(brings up Breakpoint Options dialog box)

Press Command-Control and click next to statement or
instruction (brings up Focused Breakpoint Options
dialog box)

Press Command-N (Breakpoint List from Window
menu)

Click existing breakpoint icon

Select breakpoint in Breakpoint List and press Delete
Select Clear All Breakpoints from Control menu

Press Command-S (Step Over from Control menu or
control palette)

Press Command-T (Step Into from Control menu or
control palette)

Press Command-U (Step Out from Control menu or
control palette)

Press Command-R (Run from Control menu or control
palette)

Click program counter and drag it to another instruction

Press Command-K (Registers from View menu)

Select an address in any window and press
Command-M (New Memory Window from View menu)

Double-click frame address in Stack Crawl

Press Command-M to display a Memory window; click
Search button and enter a value to search for

Press Command-L (Show Global Variables from
Window menu)

Press Command-J (Stack Crawl from View menu);
Select Evaluate from Evaluate menu

Select name of variable and press Command-E

APPENDIX E

Quick Reference Guide

Table E-2

The Power Mac Debugger windows

Window

Browser

PowerPC
Instructions

68K Instructions

Control palette

Stack Crawl

Log

Memory

General-purpose
registers

Floating-point
registers

Process Browser

Fragment Info

Menu command and key
equivalent

Open (File menu)
Command-O

New Instructions Window
(View menu)
Command-D

New 68K Instructions
Window (View menu)
Command-8

Show Control Palette
(Window menu)

Stack Crawl (View menu)
Command-J

Show Log Window
(Window menu)

New Memory Window
(View menu)
Command-M

Registers (View menu)
Command-K

FPU Registers (View
menu)

Show Process Browser
(Window menu)
Command-Y

Show Fragment Info
(Window menu)

Main Functions

Display source code

Set breakpoints

See currently executing statement

Disassemble memory to PowerPC code

Disassemble memory to 68K code

Control execution of program (stop,
run, step into, step out, step over, turn
continuous step on)

Navigate call chain

Examine local variables

See output from DebugStr calls and
debugger extensions

Display and edit memory

Search for values in memory

Display and edit PowerPC
general-purpose registers

Display and edit PowerPC
floating-point registers

Display and target running processes
and threads

Set preferences for entering debugger
on a process or thread basis

Display information about all fragments

185

APPENDIX E

Quick Reference Guide

Table E-2

The Power Mac Debugger windows

Window
Global Variables

Breakpoint List

User Stack Crawl

Expression
Results

186

Menu command and key
equivalent

Show Global Variables
(Window menu)
Command-L

Show Breakpoint List
(Window menu)
Command-N

User Stack Crawl (View
menu)

Evaluate (Evaluate menu)
Command-E

Main Functions

Display global variables for all targeted
processes

Display all currently set breakpoints

Display stack crawl starting at a
user-specified location

Display value of any variable or
expression

Glossary

680x0 Any member of the Motorola 68000
family of microprocessors.

680x0 application An application that
contains code only for a 680x0
microprocessor. See also PowerPC
application.

680x0-based Mac OS computer Any
computer containing a 680x0 central
processing unit that runs Mac OS system
software. See also PowerPC-based Mac OS
computer.

68K Instructions windows Debugger
windows that display a disassembly of
680x0 code starting at a specified address.

Adaptive Sampling Profiler (ASP) A
sampling utility that allows you to measure
the time spent executing sections of your
code.

application nub A debugger nub that
allows other applications to run when a
process is stopped. Can be used with one-
or two-machine debugging.

assembly-level debugging Debugging
without the use of a symbol file. You can
examine memory and registers and
disassemble any area of memory to
machine instructions.

break on launch The process of launching
an application and stopping it before its
main function is executed.

breakpoint A location in a program at
which execution will stop and control will
return to the debugger.

Breakpoint List window A debugger
window that displays a list of all currently
set breakpoints.

Browser window A three-pane window
displayed when you open a symbol file.
You can use this window to view the source
code for selected functions in your target
program.

bucket In performance measurement, a
range of memory for which performance
samples are taken.

callback routines Routines that you can
call from debugger extensions. You use
these routines to get user input, to display
output, and to get or change the value of
PowerPC registers.

call chain Alist of routines displayed in
the Stack Crawl window, showing the
current routine and its callers in sequence.

code fragment See fragment.

Code Fragment Manager The part of the
Mac OS system software that loads
fragments into memory and prepares them
for execution. See also fragment.

conditional breakpoint A breakpoint that
halts program execution when it is
encountered and a previously specified
condition is true.

187

GLOSSARY

control palette A floating window that
displays information about the target
process and allows you to control its
execution.

counting breakpoint A breakpoint that
halts program execution after it has been
encountered a specified number of times.

current focus The process or thread that is
capable of being single-stepped. Only one
thread at a time can have the current focus.

debugger extension Code of type 'ndcd’,
used to extend or customize debugger
functionality.

debugger nub See nub.

exception An error or other special
condition detected by the microprocessor in
the course of program execution.

exception handler Any routine that
handles exceptions.

Extended Common Object File Format
(XCOFF) A format of executable file
generated by some PowerPC compilers. See
also Preferred Executable Format.

flat time In performance measurement,
the amount of time spent executing a
routine, not including the time spent in any
called routine.

Floating-Point Status and Control Register
(FPSCR) A 32-bit PowerPC register used
to store the floating-point environment.

focused breakpoint A breakpoint that is
set for a particular context (such as a
cooperative thread or a client of a shared
library). Execution stops at the breakpoint
only when the context for which it was set
is executing.

188

FPU Registers window A debugger
window displaying the current value of the
PowerPC floating-point registers.

fragment Any block of executable
PowerPC code and its associated data.

Fragment Info window A debugger
window that displays a list of all fragments
on the target machine.

global variable A variable that is
accessible by all code in a given program.

Global Variables window A debugger
window displaying a list of global and
static variables for all currently open
symbol files.

glue code Code inserted by the
development environment that provides
linkage between your code and certain
called routines, such as system calls and
C++ method calls.

hexadecimal An adjective that describes
base-16 notation.

host The debugger’s user interface. It
presents information transmitted by the
nub to the user. See also nub.

instructions windows Debugger
windows that display a disassembly of
PowerPC code starting at a given address.

Link Register (LR) A PowerPC register
that holds the return address of the
currently executing routine.

local variable A variable whose scope and
life span correspond to the execution of a
specific subroutine.

GLOSSARY

Log window A debugger window that
displays the output of DebugStr calls and
debugger extensions.

MacsBug An assembly-level debugger for
Mac OS.

mapping The correspondence between
information in a symbol file and code
running on the target machine.

memory windows Debugger windows
that display the contents of memory
starting at a given address.

Mixed Mode Manager The part of the
system software that manages the
mixed-mode architecture of Power PC-
based Mac OS computers running
680x0-based code (including system
software, applications, and stand-alone
code modules).

node table The name of an array used by
the ASP to track the location of PC samples.

nub Debugger software that resides on
the target machine and provides
information about the state of the target
machine to the host software.

one-shot breakpoint A breakpoint that is
in effect once only; execution resumes
immediately when you set the breakpoint.

parameter a value passed to a subroutine.
PEF See Preferred Executable Format.

performance breakpoint A breakpoint
that starts or stops performance
measurement for selected blocks of code.

performance window A window in
which the ASP displays the performance
data for a single performance session.

Power Mac Debugger An application that
allows you to debug PowerPC software at
the source-code and assembly-language
level.

PowerPC-based Mac OS computer Any
computer containing a PowerPC central
processing unit that runs Mac OS system
software. See also 680x0-based Mac OS
computer.

PowerPC Any member of the family of
PowerPC microprocessors. The MPC601
processor is the first PowerPC CPU.

PowerPC application An application that
contains code only for a PowerPC
microprocessor. See also 680x0 application.

Preferred Executable Format (PEF) The
format of executable files used for PowerPC
applications and other software running on
Mac OS computers. See also Extended
Common Object File Format (XCOFF).

process A running application.

Process Browser A debugger window
displaying a list of all currently executing
native PowerPC processes and threads on
the target machine.

program counter (PC) Aregister in the
CPU that stores the location of the next
instruction to be executed.

Registers window A debugger window
displaying the current values of the
PowerPC general-purpose registers.

ROM map A file containing information
about symbols in ROM code.

RTOC See Table of Contents Register.

189

GLOSSARY

sampling rate The frequency with which
a PC address is taken in measuring
program performance.

serial nub A debugger nub that stops the
target machine when an exception occurs.
Requires a second machine, connected
through a serial port, to run the host.

shared library A code fragment of type
'sh1b' containing routines that can be
called by one or more other fragments.

simple breakpoint A breakpoint that
stops program execution every time it is
encountered.

single-step To execute a program one
source-code statement or
assembly-language instruction at a time.

SOM See System Object Model (SOM).

source-level debugging Debugging with
the ability to step through source code and
examine variables; made possible by the
use of symbol files.

Stack Crawl window A debugger
window displaying information about the
calling chain of routines on the stack,
including local variables.

stack frame The area of the stack used by
a routine for its parameters, return address,
local variables, and temporary storage.

symbol A name for a discrete element of
code or data in a fragment.

symbolic information file (symbol file) A
file produced at link time containing
information that allows the debugger to
associate source code and variable names
with machine instructions and memory
locations.

190

System Object Model (SOM) IBM’s
System Object Model. Allows programs to
make use of objects created in different
programming languages.

Table of Contents (TOC) An area of static
data in a fragment that contains a pointer to
each routine or data item that is imported
from some other fragment, as well as
pointers to the fragment’s own static data.

Table of Contents Register (RTOC) A
processor register that points to the Table of
Contents of the fragment containing the
code currently being executed. On the
PowerPC processor, general-purpose
register 2 is dedicated to serve as the RTOC.

target The code being debugged or
measured by the Power Mac Debugger.
Also, the machine that the target code runs
on.

targeting The process of informing the
debugger that you want to debug a
particular application.

thread A cooperative execution context as
implemented by the Thread Manager.
Threads can be debugged individually
using the application nub.

TOC See table of contents.

transition vector An area of static data in
a fragment that describes the entry point
and TOC address of a routine.

Index

Numerals

680x0 instructions, displaying 59

A

Adaptive Sampling Profiler. See performance
measurement
alerts, displaying 153
AppleTalk, connecting via 27
application nub 24
connecting two machines 27
installing 25
quitting 25
when to use 24
applications, launching 155
ASP. See performance measurement
assembly-language code, displaying 51, 57

B

break on launch 37, 40
breakpoint column 53, 85
breakpoint icons 88
Breakpoint List 94
Breakpoint list 94, 95
Breakpoint Options Dialog Box 90
breakpoints 85-96

conditional 86, 92

counting 86, 91

displaying 94

focused 86

in source code 96

in untargeted code 93

one-shot 86, 89, 100

performance 86, 92

restoring 154

setting 58, 96

simple 86, 89

on system calls 95

types of 86

user breaks 96
Browser window 49-57

breakpoint column 53

cloning 55

Code pane 50, 51

Files pane 50

Functions pane 50

panes 49

searching for text in 52

selecting text in 52

status panel 51

updating PC in 154
bucket. See performance measurement 121
build process 33-35

C

C++ expression evaluation. See expressions
call chain 63
C expression evaluation. See expressions
Clear All Breakpoints command 95
Close command 46
Close Control Palette command 60
Code pane, in Browser window 50, 51
conditional breakpoints 86, 92
Configure Report command 131
Configure Utility command 125
Connection Preferences command 39
constants, in expressions 160
Control menu 99

Clear All Breakpoints 95

191

I NDEX

Enter MacsBug 101

Kill 100

Launch 100, 101

Map Symbol File 41

Performance 122
Configure Report 131
Configure Utility 125
Disable Utility 126, 127
Enable Utility 125, 126, 127
Gather Report 126, 127
New Session 123
Show Source 129

Propagate Exception 101

Resume 100

Run 62, 100

Step Into 62, 99

Step Out 62, 99

Step Over 62, 99

Step To Branch 100

Step To Branch Taken 100

Stop 62, 100

Suspend 100

Turn Continuous Step On 62, 100

Untarget 76

dcmdGetNextParameter function 171
dcmdGetPosition function 170
dcmdPeekAtNextChar function 171
dcmdReadRegister function 173
dcmdSetPosition function 170
demdWriteRegister function 174
CommandEntry function 164
constants in 168-169
data structures in 169
defined 163
executing 66, 163
files needed to build 167
sample code for 165
skeleton code for 164
Debugger Nub Controls 28, 29-30
debugger project files (. dbg files) 37, 154
DebugStr calls 96, 115, 152
inserting in source code 96
output from 66
Disable Utility command 126, 127
Display Code For command 56
Display Code For dialog box 56
Display Code For Selection command 57

control palette 60-63
displaying by default 153
counting breakpoints 86, 91 E

current focus 61, 76, 98, 103

Current PC command 54, 97 Edit menu 52
Connection Preferences 39
Find 52
Find Again 52

D Find Selection 52

General Preferences 49
Enable Utility command 125, 126, 127
Enter MacsBug command 101
Evaluate As SOM Object command 110
Evaluate command 105
Evaluate dialog box 107
Evaluate menu 106

.dbg files. See debugger project files
Debugger calls 96, 115, 152
inserting in source code 96
debugger extensions 163-174
building 167
callback routines 170-174

dcmdDrawline function 172
decmdDrawString function 172
dcmdDrawText function 173
dcmdGetNextChar function 171
demdGetNextExpression function 172

192

Evaluate 105

Evaluate As SOM Obiject 110
Evaluate Selection 106
Evaluate “this” 109

View As Character 107

INDEX

View As C-String 107

View As Decimal 107

View As Default 107

View As Float 107

View As Hexadecimal 107

View As OSType 107

View As P-String 107
Evaluate Selection command 106
Evaluate “this” command 109
exported symbols 79
Exports windows 79
expression results windows 105
expressions

constants in 160

evaluating 159-161

registers in 159

F

G

File menu 47

Close 46

Locate Correct Source File 51, 145

Open 49

Open ROM Map 117

Print 47, 133

Save Window As Text 132

Save Window as Text 47

Show Full Path Name 51, 145
Files pane, in Browser window 50
Find Again command 52
Find command 52
Find Selection command 52
flat-time measurement 133
floating-point registers 72-73
focus, current. See current focus
focused breakpoints 86

inactive 93
FPU Registers command 72
Fragment Info window 78-80

Show Exports button 79
fragments, data-only 147
Functions pane, in Browser window 50

Gather Report command 126, 127
General Preferences command 49
general-purpose registers 71-72
global variables 101-105

context for 103

displaying value of 101
Global Variables window 102
glue code 153

H

high-level nub. See application nub

host 22

host-nub architecture 22-24
advantages of 23

icons, resize 49

installation 24-26
application nub 25
Power Mac Debugger host 24
serial nub 25

instructions windows 57-60

K

Kill command 100

L

Launch command 100, 101
launching an application 101
launching the debugger 36-39
local variables, displaying 65

Locate Correct Source File command 51, 145

193

I NDEX

Log window 66-67
displaying context of entries 157
time-stamping entries 157
low-level nub. See serial nub

M

Open command 49
Open ROM Map command 117

P

MacsBug
installing 26
symbols 116
Map Symbol File command 41
memory
displaying and editing 67-70
editing 69
searching 70
memory windows 67-70
byte grouping 157
method names, displaying 155
MPW
building with 34
tools, debugging 116

N

'ndcd' resources 163
New 68K Instructions Window command 59
New Instructions Window command 57
New Memory Window command 67
New Session command 123
New User Stack Crawl command 66
non-application code, debugging 115
nub 22

application 24

high-level. See application nub

low-level. See serial nub

serial 24

O

one-shot breakpoints 86, 89, 100

194

panes, displaying titles 155
PC. See program counter
performance breakpoints 86, 92
performance measurement 121-137

buckets 121, 129

flat-time measurement 133

generating performance report 128

node table 135

sampling errors 134

sampling rate, specifying 125
performance report

displaying empty buckets 157

editing 131

evaluating 133

generating 128

printing 132

saving 132

statistics view 129

summary view 131
Performance submenu. See Control menu
POWER instruction set 59, 156
Power Mac Debugger Prefs 152
PowerPC code, disassembling 57
PPC Debugger Nub. See serial nub
preferences 151-157
Print command 47, 133
Process Browser 40, 73-77

targeting and untargeting processes 74
process list 74
process state alerts 153
process states 75
program counter 54, 97

arrow 97, 101

show on halt 154

in subroutine marker 97
program execution, controlling 60, 96-101
program linking, enabling 27, 144
Propagate Exception command 101

INDEX

R

registers
floating-point 72-73
general-purpose 71-72
in expressions 159
Registers command 71
register windows 71-73
resize icons 49
Resume command 100
ROM maps 117
Run command 62, 100

S

sampling rate, specifying 125
Save Window As Text command 132
Save Window as Text command 47
scrolling, live 154
Search Memory window 70
serial connection 28

low speed 157
serial nub 24, 142, 143

connecting two machines 28

in ROM 30

installing

when to use 24
Set Default Window Position command 48
shared libraries, debugging 115
Show Breakpoint List command 94
Show Control Palette command 60
Show Fragment Info command 78
Show Full Path Name command 51, 145
Show Global Variables command 101
Show Log Window command 66
Show Process Browser command 73
Show Source command 129
simple breakpoints 86, 89
single-machine debugging 23
single-stepping 98-101
"SIZE' resources 34, 147
Snhapshot Active Window command 47
SOM 109

source code
color-coding 51
displaying 51
source files, location of 35
source-level debugging 21
Stack Crawl command 63
Stack Crawl window 63-66
call chain pane 63
variables pane 63, 65
status, application 61
status panel, in Browser window 51
Step Into command 62, 99
Step Out command 62, 99
Step Over command 62, 99
stepping 98-101
step. See Step Over command
Step To Branch command 100
Step To Branch Taken command 100
Stop command 40, 62, 100
stopped context, when using serial nub 98
stopping a process 40
Suspend command 100
symbol files 21
building 33-35
location of 35
mapping to code 141, 154
opening 37, 157
.xcoff 33
.xSYM 33
symbolic information files. See symbol files
symbols, embedded 116, 156
syntax coloring 155
synthesized glue 153
system-level debugging 96
System Object Model. See SOM
System Peripheral 8 Cable, and low-level
debugging 28

T

target application 22
launching 39
location of 35

195

I NDEX

target connection, specifying 38 Display Code For 56
targeting code 40, 74 Display Code For Selection 57
text FPU Registers 72
searching for 52 New 68K Instructions Window 59
selecting 52 New Instructions Window 57
third-party development environments, building New Memory Window 67
with 35 New User Stack Crawl Window 66
this 109 Registers 71
threads 73 Set Default Window Position 48
stop on creation 152 Stack Crawl 63

Turn Continuous Step On command 62, 100
two-machine debugging 23
connecting 26-30

W
warning, source out of date 154
U Watch Variables List 103
cloning 105
unmangle schemes defined 103
activating 157 Window menu 45
creating 175-179 Close Control Palette 60
unsigned longs, viewing as hexadecimal 157 Show Breakpoint List 94
Untarget command 76 Show Control Palette 60
user breaks 96 Show Fragment Info 78
user interface 22 Show Global Variables 101

Show Log Window 66
Show Process Browser 73
Snapshot Active Window 47

Vv windows 45-81
] general information about 45-49
variables panes 48

displaying 157
displaying and editing 101-109
globals 101-105
structured 103
View As Character command 107
View As C-String command 107

remembering positions 48
saving and printing 47
snapshots 47

View As Decimal command 107 X

View As Default command 107

View As Float command 107 .xcoff files 33
View As Hexadecimal command 107 .xSYM files 33

View As OSType command 107
View As P-String command 107
View menu 45

Current PC 54, 97

196

INDEX

197

T HE A P PLE P UBLISHI

N G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using

Adobe™ lllustrator and Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Ron Karr

EDITOR
Jeanne Woodward

ILLUSTRATOR
Deborah Dennis

PRODUCTION EDITORS
Alexandra Solinski, Lisa Le

Special thanks to Gary Kratzer

Acknowledgments to Dave Bice, Paul
Forrester, Robert Goosey, Sandeep Gupta,
Liz Ghini Locklear, Kevin Looney, Herb
Ruth, Julie Wang, Mike Wimble

	Power Mac Debugger Reference
	Contents
	Figures, Tables, and Listings
	About This Book
	What’s in This Book
	Related Documentation
	Conventions Used in This Book
	Special Fonts and Font Styles
	Syntax Notation
	Types of Notes

	Code Samples
	For More Information

	Introduction
	About the Power Mac Debugger
	The Host-Nub Architecture
	The Nub Software

	Installation
	Installing the Debugger Host
	Installing the Application Nub
	Installing the Serial Nub
	Installing Optional Files

	Connecting the Host and Target Machines
	Connecting When Using the Application Nub
	Connecting When Using the Serial Nub
	Using Debugger Nub Controls

	Getting Started
	Building Your Code for Debugging
	Building With MPW
	Building With Third-Party Development Environments...
	Where to Keep Your Files For Debugging

	Launching the Debugger and Targeting Code
	Launching the Debugger and Opening a Symbol File
	Specifying the Target Connection Type
	Launching the Target Application
	Targeting and Stopping Your Code
	Mapping Symbols To Code

	The Debugger Windows
	General Information About Debugger Windows
	Saving and Printing a Window’s Contents
	Taking a Snapshot of a Window’s Contents
	Remembering Window Positions
	Multiple-Pane Windows

	The Browser Window
	The Browser’s Panes
	Working With the Code Pane
	Creating Other Code Windows

	Instructions Windows
	Disassembling PowerPC Code
	Disassembling 680x0 Code

	The Control Palette
	Program Status Information
	Program Control Commands

	The Stack Crawl Window
	Navigating the Call Chain
	Examining Local Variables
	Displaying a User Stack Crawl

	The Log Window
	Memory Windows
	Editing Memory
	Searching Memory

	The Register Windows
	General-Purpose Registers
	Floating-Point Registers

	The Process Browser
	The Process List
	The Current Focus
	Application Preferences

	The Fragment Info Window
	Exports Windows

	The Global Variables Window
	The Breakpoint List

	Basic Debugging Tasks
	Setting Breakpoints
	Types of Breakpoints
	Simple Breakpoints
	One-Shot Breakpoints
	The Breakpoint Options Dialog Box
	Counting Breakpoints
	Conditional Breakpoints
	Performance Breakpoints

	Inactive Breakpoints
	The Breakpoint List
	Removing Breakpoints
	Setting Breakpoints on System Calls
	Entering the Debugger From Your Source Code

	Controlling Program Execution
	The Current Statement
	Stepping Through Your Code
	Other Program Control Commands

	Displaying and Editing Variables
	Global Variables
	Expression Results Windows
	Using the Evaluate Dialog Box
	Evaluating “this”
	Evaluating SOM Objects

	Advanced Debugging
	Debugging Non-Application Code
	Shared Libraries
	MPW Tools

	Assembly-Level Debugging Without a Symbol File
	Debugging Emulated Code
	Using a ROM Map

	Measuring Performance
	About the Adaptive Sampling Profiler
	Using the Adaptive Sampling Profiler
	Starting a Profiling Session
	Specifying a Sampling Rate
	Collecting Performance Data
	Measuring Selected Routines
	Generating a Performance Report
	The Statistics View
	The Summary View
	Editing the Performance Report

	Saving and Printing Performance Data
	Evaluating Performance Data
	Possible Problems Or Errors

	How the ASP Gathers Data

	Troubleshooting
	Targeting and Mapping
	Symbol File Not Mapped
	Problem
	Solution

	Can’t Map a Fragment
	Problem
	Solution

	Using the Serial Nub
	Can’t Open Windows
	Problem
	Solution

	Can’t Debug Threads
	Problem
	Solution

	Connecting Two Machines
	Can’t Connect to the Target Machine
	Problem
	Solution

	Can’t Reconnect to the Target Machine
	Problem
	Solution

	Source-File Problems
	Statement Markers Not Correct
	Problem
	Solution

	Source Code Not Displayed
	Problem
	Solution

	Assembly Code Not Displayed
	Problem
	Solution

	Other
	Can’t Single-Step
	Problem
	Solution

	Global Variables Not Visible
	Problem
	Solution

	Debugger Preferences
	Process Control Preferences
	Browser Preferences
	Disassembly Preferences
	Other Preferences

	Expression Evaluation
	Additions to C/C++ Syntax
	Register Names
	Constants

	What Isn’t Supported

	Debugger Extensions
	Executing Debugger Extensions
	Writing Debugger Extensions
	A Sample Debugger Extension
	Using Callback Routines

	Building a Debugger Extension
	Debugger Extension Reference

	Creating Custom Unmangle Schemes
	Creating a 680x0 Code Resource
	Creating a PowerPC Code Resource

	Quick Reference Guide
	Glossary
	Index

