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P R E F A C E  

 

About This Manual

 

This

 

 

 

manual describes MacsBug, Apple’s assembly-language debugger for Macintosh 
programmers. This manual is an updated version of the 

 

MacsBug 6.1 Reference, 

 

and has 
been expanded to cover

 

■

 

Extensions and changes to commands introduced in MacsBug 6.2.

 

■

 

Macros, templates, dcmds and other resources provided with MacsBug that you can 
use to make debugging easier.

 

■

 

Discipline, a tool that tests the validity of parameters passed to and received from 
system calls.

 

■

 

Macintosh memory management and the operating system as these relate to low-level 
debugging.

 

■

 

Information for high-level language programmers who want to interpret and steer 
through disassembled code.

 

■

 

Debugging strategies that you can use to find and cure common bugs.

 

How to Use This Manual 0

 

The manual contains the following sections:

 

■

 

This preface describes the manual and the conventions used in it.

 

■

 

Chapter 1, “MacsBug and Low-Level Debugging,” provides an overview of MacsBug 
and error handling, including a summary of new features in MacsBug 6.2.

 

■

 

Chapter 2, “Getting Started,” provides installation instructions, including instructions 
for installing MacsBug under A/UX. It also describes the MacsBug display and 
various ways to invoke MacsBug, and includes a hands-on exercise to get you started.

 

■

 

Chapter 3, “An Assembly-Language Primer,” is designed to teach you how to read 
enough assembly language to interpret MacsBut output and relate this output to your 
source code.

 

■

 

Chapter 4 , “Macintosh Memory Organization,” explains how to use MacsBug 
commands to examine the heap and the stack, how the stack is used to implement 
your routines, how virtual memory affects the memory map, how the heap is orga-
nized in a multiple-application environment, and how you can build templates to get 
a more intelligible display of data structures used by your program or by the system.

 

■

 

Chapter 5, “The Macintosh Operating System,” explains exception processing:  the 
implementation of system calls (including packages, patches, and glue) and the 
requirements of code that runs at interrupt time. The chapter also explains MacsBug’s 
A-trap commands and the standard dcmds: VBL, VOL, FILE, and DRVR.
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P R E F A C E  

 

■

 

Chapter 6, “Discipline,” describes how to install and use Discipline, a tool used with 
MacsBug to test parameters passed to and returned by system calls.

 

■

 

Chapter 7, “Debugging Strategies,” describes how you can use MacsBug commands 
to control the execution of your program and to display values at any point during 
execution. It also contains tips about how to prevent and also how to find and 
cure bugs.

 

■

 

Chapter 8, “Introduction to MacsBug Commands,” provides an overview of the use of 
MacsBug commands, including macros and dcmds.

 

■

 

Chapter 9, “MacsBug Commands,” provides complete descriptions of MacsBug 
commands, arranged in alphabetical order.

 

■

 

Appendix A, “Command Summary,” provides a summary of MacsBug commands 
and their syntax.

 

■

 

Appendix B, “Error Messages,” lists MacsBug error messages in alphabetical order 
and includes a brief description of the possible causes for each error.

 

■

 

Appendix C, “Macintosh Error Codes,” lists error codes returned by the Macintosh 
system software.

 

■

 

Appendix D, ‘“Procedure Names,” explains how compiler writers should define 
procedures so that MacsBug is able to accept and return addresses as procedure 
names and offsets.

 

■

 

Appendix E, “MacsBug Internals and Discipline Interface,” describes how MacsBug 
installs itself and how it interfaces with Discipline.

Hands-on exercises, to make learning easier and more certain, have been included 
wherever possible. In some cases, you will need to load the Demo program (from 
the MacsBug 6.2 distribution disk) in order to do the exercises.

If you are an expert Macintosh programmer and have been working with MacsBug for a 
while, you should check the descriptions of the commands that have changed, which are 
listed in the section “New Features in MacsBug 6.2” in Chapter 1. You should also read 
Chapter 6, “Discipline,” and the section “Virtual Memory” in Chapter 4.

If you are a seasoned Macintosh programmer, but have stayed away from MacsBug 
because you cannot read assembly language, you should read chapters 1, 2, 3,6, 7, 8, 
and 9. You should also take a look at the section “Virtual Memory” in Chapter 4.

If you are new to Macintosh programming, you should read the whole book. 

 

Other Sources of Information 0

 

This manual covers many topics covered in 

 

Inside Macintosh

 

, but focuses on their 
relationship to low-level debugging and the use of MacsBug commands. Although it 
covers some topics that are not covered in 

 

Inside Macintosh

 

, this manual is not a 
substitute for that indispensable tome.

You should also get an up-to-date copy of the Macintosh Technical Notes. These notes 
document special implementation issues, gotchas, updates, and many other details you 
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might need to know in developing an application. They are available through APDA and 
from many on-line services, and are mailed out automatically to registered developers.

If you are new to Macintosh programming, you should also read 

 

How to Write Macintosh 
Software

 

 by Scott Knaster (published by Addison-Wesley). There is no finer book to get 
you started in Macintosh programming and debugging.

 

Notation Conventions 0

 

The following syntax conventions are used to describe MacsBug commands:

literal Plain text indicates a word that must appear in the command 
exactly as shown. Special symbols (-, §, &, and so on) must also be 
entered exactly as shown.

 

variable

 

Italics indicate a parameter that you must replace with specific 
information.

[ 

 

optional

 

  ] Brackets indicate that the enclosed elements are optional. Omit the 
brackets when you enter the command.

… Ellipsis (…) indicates that the preceding item can be repeated one or 
more times.

| A vertical bar (|) indicates an either/or choice.

Command names and file names are not sensitive to case.

Your input to MacsBug and MacsBug output use two physically separate areas of the 
display. Since this separation cannot be conveniently represented in the description of 
sample commands and their output, input to MacsBug is represented by bold Courier 
text and MacsBug output is represented by plain Courier text. For example, in the 
following two lines, BRC is what you enter on the command line, and “All breakpoints 
cleared” is what MacsBug displays in the output region of the display.

 

BRC

 

  All breakpoints cleared

 

This convention is used throughout this manual.

In the text of this manual, numbers preceded by a dollar sign are in hexadecimal (like 
this: $21E8), and all other numbers are in decimal. In any MacsBug display, all numbers 
are in hexadecimal unless they are preceded by a pound sign (like this: #2148).
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Error Handling on the Macintosh

 

This chapter introduces MacsBug, a Motorola 68000-family assembly-language debugger 
customized for the entire Macintosh

 



 

 family of computers. First introduced in 1981, 
MacsBug has continued to evolve along with the Macintosh. The section “New 
Features in MacsBug 6.2” in this chapter summarizes changes introduced with 
version 6.2 of MacsBug.

MacsBug 6.2 runs on all Macintosh computers except for the Macintosh XL and com-
puters with the 64K ROM. It is designed to support future members of the 68000 
family. It handles the MC68881 floating-point coprocessor and the MC68851 Memory 
Management Unit (MMU). MacsBug supports external displays for Macintosh Classic 
computers as well as various screen sizes and bit depths for monitors used with modular 
Macintosh computers. There’s no need to customize MacsBug for particular configura-
tions, since it determines the attributes of the machine at system startup.

MacsBug 6.2 works with all versions of Macintosh system software. It is compatible with 
MultiFinder

 



 

 

 

in system software versions 5.0 and 6.0.

 

Error Handling on the Macintosh 1

 

Error handling on the Macintosh is initiated by the microprocessor. When the micro-
processor encounters an instruction that it does not recognize or cannot execute, it saves 
information about its current state and then transfers control to one of several routines 
whose addresses are stored in low memory and that are responsible for responding 
to the instruction. The means by which the processor does this is called 

 

exception 
processing;

 

 the routines to which the processor transfers control are called 

 

exception 
handlers.

 

 

The Macintosh uses exception processing to implement User Interface Toolbox and 
operating system routines as well as to handle errors: 

 

■

 

The routine that is called when the microprocessor encounters a system call (that is 
implemented as an A-trap instruction) is the 

 

trap dispatcher.

 

 Chapter 5, “The 
Macintosh Operating System,” describes how A-traps are implemented using the 
trap dispatcher.

 

■

 

The routine that is called when the microprocessor encounters a fatal error is called an 

 

error handler. 

 

When a fatal error occurs and MacsBug is not installed, the microprocessor transfers 
control to the System Error Handler, which puts up the bomb box and, optionally, 
executes a routine that allows the user to resume program execution. If MacsBug (or 
another resident debugger) is installed, the processor transfers control to it. MacsBug, in 
turn, displays the debugging screen. 

Using MacsBug commands and the information displayed on the debugging screen, you 
can determine which instruction caused the error, how that instruction came to be 
executed, and how to change your code to eliminate the error. This process is called 
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low-level debugging because MacsBug shows you the disassembled object code that the 
machine is executing, rather than the source-level code (if your source code is written in 
a high-level language). 

 

Why Low-Level Debugging? 1

 

If you were a doctor and someone came to you with a fever, a sore throat, and a runny 
nose, you could make a diagnosis on the basis of this external evidence alone; or you 
could take a throat culture, look at it through a microscope, and make a diagnosis based 
on your examination of the biological evidence. A programmer might call the diagnosis 
based on external evidence source-level debugging, and the diagnosis made with the aid 
of a microscope low-level debugging.

Obviously, low-level debugging is not necessary in every case. If a man has been run 
over by a truck, you won’t need your microscope. But if the diagnosis you have made on 
the basis of external evidence hasn’t cured the patient, it’s time to reach for more precise 
tools and get a more detailed view.

A low-level debugger is the tool of choice in three situations:

 

■

 

You have a bug that cannot be analyzed with a source-level debugger either because 
the bug occurs in an INIT that runs before any applications (including your source-
level debugger) are loaded or because the bug crashes the source level debugger.

 

■

 

The syntax and logic of your program appear to be perfect, but your program is 
crashing or behaving erratically nevertheless. It is now necessary to read between 
your source lines, that is, to look at the instructions the processor is executing and 
to determine which instruction is causing the problem and what part of your source 
code is causing that instruction to be executing. 

 

■

 

Your program is running fine, but you want to make sure that you’re making efficient 
use of memory and system resources, and doubly sure that you have eliminated 
potential bugs. You can use MacsBug to check for fragmentation in the application 
heap and to force the Memory Manager to move blocks in the heap as often as 
possible, thus unearthing any bad pointers that haven’t surfaced yet.

If you’re not familiar with assembly language, a low-level debugger can be rather 
forbidding. You must learn how to interpret the information it displays and how that 
information relates to your source-level program and the program’s use of system calls 
before you can use a low-level debugger to find and fix bugs. If you’re in this situation, 
you should read carefully through Chapters 3, 4, and 5 of this manual. These chapters 
are designed to familiarize you with assembly language and to give you a better under-
standing of how MacsBug commands relate to debugging a Macintosh program.
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Why MacsBug?

 

Why MacsBug? 1

 

When you’re debugging a program, you are interested in the interaction between your 
code and the system. Any debugger you use also interacts with the system: it makes 
system calls and uses memory. The less interaction that takes place between the 
debugger and the system and the less memory the debugger uses, the more certain you 
can be that the errors you discover are caused by your code. The main advantage of 
MacsBug over other low-level debuggers is that it does not use the Macintosh system 
software. The only exceptions to this are the LOG command and whatever system calls 
are used by a dcmd. MacsBug also takes up very little space in memory: a minimum of 
90K or the more standard 140K. If you are a systems programmer, you can debug your 
software without having to worry about the debugger using the code you’re debugging. 
If you are an applications programmer, and therefore still concerned about the 
interaction between your application and the system, you’ll find MacsBug a powerful 
tool for debugging applications.

MacsBug is an assembly-language debugger. If you’re writing programs in a high-level 
language like C or Pascal, you’ll more often want to use the Symbolic Application 
Debugging Environment (SADE

 



 

). SADE lets you debug your program at the 
source-code level, which means you don’t need to know assembly language or map 
object code back to your program’s source-level instructions. If you need to, SADE lets 
you monitor program execution at the machine level as well.

SADE does have its limitations, however, and high-level programmers will find that 
MacsBug picks up where SADE leaves off. Specifically:

 

■

 

SADE uses the Macintosh system software extensively, and in the case of a severe 
crash may not be operable. MacsBug lets you examine the remains to try to determine 
what went wrong.

 

■

 

If RAM is severely limited, you may not be able to run SADE. MacsBug is lean 
and mean.

MacsBug is loaded at system startup and sits quietly in RAM until it’s invoked. Unlike 
debuggers that expect a target program to work with, MacsBug lets you look at 
practically anything running on the Macintosh—Toolbox and operating system routines, 
applications, desk accessories, and so on. 

You can suspend program execution and invoke MacsBug at any point, either manually 
(by pressing the interrupt switch or a key that you define) or programmatically (by 
calling special traps from within your program). And since MacsBug needs so little of 
the system to operate, it can be used even in the case of fatal system errors. Whenever 
the System Error Handler is called, or when an exception occurs, MacsBug takes control 
and lets you look around. 

Once MacsBug has been invoked, you can enter commands to

 

■

 

Display and set memory and registers.

 

■

 

Disassemble memory.
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■

 

Set execution breakpoints.

 

■

 

Step and trace through both RAM and ROM.

 

■

 

Monitor system traps.

 

■

 

Display and check the system and application heaps.

Chapter 2, “Getting Started,” explains how you install MacsBug. It also provides specific 
instructions about how to invoke and leave MacsBug, and how to interpret MacsBug’s 
display. Chapter 2 ends with a hands-on exercise to get you started. The Preface to 
this manual describes the contents of the other chapters and how to use this manual 
depending on your experience with programming on the Macintosh and with low-
level debugging.

 

New Features in MacsBug 6.2 1

 

One of the major changes to MacsBug since version 6.1 is that it now works reliably with 
all Apple monitors and all third-party monitors if their slot ROM and driver software 
has been designed according to the guidelines presented in 

 

Designing Cards and Drivers 
for the Macintosh II and Macintosh SE.

 

 In addition to its increased portability, MacsBug 6.2 
includes the following new features:

 

■

 

A new display that shows you the name of the current application, the memory 
management scheme (24-bit/32-bit) currently used, and whether MacsBug can access 
virtual memory.

 

■

 

New options for the Find command that allow you to specify the width of the pattern 
for which MacsBug searches. You can even use one of these options to have MacsBug 
look for pointers.

 

■

 

A more detailed heap dump display. The HD command can now display all blocks, 
even if some block headers are slightly damaged. (Damaged blocks are indicated by a 
question mark (?) or an exclamation point (!) prefixed to the master pointer.)

 

■

 

 A more detailed heap zones display:. The HZ command now indicates embedded 
heaps, and whether a heap is 24-bit or 32-bit. The HZ command also indicates 
whether a heap contains a damaged block by displaying an exclamation point (!) after 
the heap zone’s ending address.

 

■

 

An extension to the GT (Go To) command that allows you to specify one or more 
MacsBug commands to be executed once the specified breakpoint is reached.

 

■

 

If an address is in a known resource but not in a known procedure, Macsbug will 
display information about that resource.

 

■

 

The SC and SC7 commands take optional parameters that you can use to specify the 
beginning and ending address of a private stack. You can then use either Stack Crawl 
command to examine that stack.

 

■

 

The BRD command tells you whether the microprocessor will step or trace to find the 
specified instruction.

 

■

 

A standard printf dcmd (debugger command) that allows you to produce formatted 
output.
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New Features in MacsBug 6.2

 

In addition to these specific changes, you should find MacsBug 6.2 easier to use. When-
ever possible its output has been made more articulate and its displays more intelligible. 
Table 1-1 provides a summary of changes and additions introduced with version 6.2. 

 

Table 1-1

 

Summary of MacsBug 6.2 extensions 

 

Item Syntax Effect/Change

 

Command-D Command-D Displays a menu of procedure names from 
which you can select a name to insert in the 
command line. This is not a new command; it 
is a way of implementing the Command-: 
command on German and Scandinavian 
keyboards. See the section “Determining 
Where to Start Disassembly” in Chapter 3 for 
additional information.

Command-B Command-B Scrolls the command line buffer up. See 
Chapter 8, “Introduction to MacsBug 
Commands,” for additional information.

Find command F 

 

addr nbytes expr

 

 | "

 

string

 

" Returns the address where it finds the specified 
pattern. See the description of the Find com-
mand in Chapter 9 for additional information.

Find command F[B|W|L|P] 

 

addr nbytes expr

 

Returns the address where it finds the specified 
Byte, Word, Long word, or Pointer. See the 
description of the Find command in Chapter 9 
for additional information.

ATP command ATP If ATR is off, the ATP command plays back infor-
mation from the most recent ATR. See the 
description of the ATP command in Chapter 9 
for additional information.

BRD BRD Output tells you whether the microprocessor 
has to step or trace in order to break on the 
specified instruction, and whether the specified 
instruction is in a relocatable block.

GT command GT 

 

addr

 

 [';

 

cmds

 

'] Breaks at the specified address and executes one 
or more commands. See the description of the 
GT command in Chapter 9 for additional 
information.

HD HD[

 

qualifier

 

 ] A new qualifier, Q, has been added that causes 
MacsBug to display all blocks that might have 
damaged headers. See the description of the 
HD command in Chapter 9 for additional 
information.

HZ HZ [ 

 

addr 

 

] Indicates whether a heap zone contains a 
damaged block, whether a heap zone is embed-
ded within another heap zone (by levels of 
indentation), and whether a heap zone is 24-bit 
or 32-bit.

 

continued
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SC6 SC6 [ 

 

address

 

 [ 

 

nbytes 

 

]] Provides two new parameters, 

 

address 

 

and 

 

nbytes, 

 

that you can use to specify the beginning 
and ending address of a private stack. See the 
description of the SC6 command in Chapter 9 
for additional information.

SC7 SC7 [ 

 

address

 

 [ 

 

nbytes 

 

]] Provides two new parameters, 

 

address 

 

and 

 

nbytes, 

 

that you can use to specify the beginning 
and ending address of a private stack. See the 
description of the SC7 command in Chapter 9 
for additional information.

DebugStr trap DebugStr ("

 

string

 

 [; 

 

cmd

 

]...") Sets a break from within the source program. 
When MacsBug is invoked, it displays 

 

string

 

 
and executes one or more commands. See 
“Invoking MacsBug from Your Source Program” 
in Chapter 2 for additional information.

Printf dcmd printf "

 

format

 

" 

 

arg

 

 ... Formatted output command. See “The printf 
dcmd” in Chapter 8 for additional information.

UserZone 
variable

UserZone Identifies the heap whose address you last 
furnished as a parameter to the HX command. 
See the description of the HX command in 
Chapter 9 for additional information.

TargetZone 
variable

TargetZone Specifies the zone currently set with the HX 
command. See the description of the HX 
command in Chapter 9 for additional 
information.

 

Table 1-1

 

Summary of MacsBug 6.2 extensions (continued)

 

Item Syntax Effect/Change
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Installing MacsBug

 

This chapter explains how to install MacsBug and begin using it, including

 

■

 

How to install MacsBug under both the Macintosh Operating System and A/UX

 



 

.

 

■

 

How to display MacsBug on a different monitor.

 

■

 

How to interpret the information displayed in the different regions of the 
MacsBug display.

 

■

 

The various ways to invoke MacsBug.

 

■

 

The various ways to get out of MacsBug.

 

■

 

How to log MacsBug output to a file or a printer.

 

■

 

The contents of the Debugger Prefs file.

The chapter concludes with a brief exercise designed to get you started using MacsBug.
Chapter 1, “MacsBug and Low-Level Debugging,” provides an overview of MacsBug 
and error handling. Make sure you understand these basic concepts before you read 
this chapter.

If you have worked with MacsBug before, you only need to read the section “The Status 
Region,” which describes new information shown by MacsBug version 6.2.

 

Installing MacsBug 2

 

To install MacsBug and the Debugger Prefs file, open your distribution disk and drag the 
MacsBug file and the Debugger Prefs file into your System Folder. Then restart your 
system. MacsBug is installed at system startup and resides in RAM until shutdown.

After successful installation, the message shown in Figure 2-1 is displayed below the 
“Welcome to Macintosh” message. The start-up application is then launched; this is 
usually Finder

 



 

. 

 

Figure 2-1

 

Installation message

 

To prevent MacsBug installation indefinitely, you can rename the MacsBug file, or move 
the file from the System Folder. To override MacsBug installation for a single session 
only, simply hold down the mouse button during startup.
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Once MacsBug is installed, it can be invoked in a number of different ways. For 
additional information, see “Invoking MacsBug,” later in this chapter.

 

Installing MacsBug Under A/UX 2

 

To install MacsBug, drag the MacsBug document and the Debugger Prefs file into the 
System Folder. When you are done, you should have the following two files: 

 

/mac/sys/System Folder/MacsBug

/mac/sys/System Folder/DebuggerPrefs

 

Then restart your Macintosh.

To invoke MacsBug, press Control-Command-I simultaneously. This will bring up the 
MacsBug display, and allow you to start working with MacsBug. See “Invoking 
MacsBug Under A/UX,” later in this chapter, for additional information.

In most respects, the version of MacsBug that runs under A/UX behaves identically 
to that running under the Macintosh system software. You can therefore use this 
documentation for your debugging; however, make sure you read “Invoking MacsBug 
Under A/UX,” later in this chapter, for special considerations. 

 

Displaying MacsBug on a Different Monitor 2

 

If you are working with more than one monitor, MacsBug uses the “Welcome to 
Macintosh” screen by default. To run your application on one monitor and MacsBug 
on another, use the procedure that is appropriate for the system software on your 
Macintosh.working with multiple;

 

System Software Versions 3.2 Through 6.x 2

 

Choose Control Panel from the Apple menu and scroll down until you see the Monitor 
icon; then press the Option key while clicking on the Monitor icon. You will see a 
display like the one shown in Figure 2-2. Press the Option key to display the “happy 
Macintosh” icon.

MacsBug displays the debugging screen on the monitor containing the “happy 
Macintosh” icon. Figure 2-2 shows two monitors installed. To run your application 
on Monitor 1 and display the debugging screen on Monitor 2, drag the “happy 
Macintosh” icon to Monitor 2 and restart.

You can use the SWAP command, described in Chapter 9, to keep MacsBug visible at all 
times on the second monitor. Otherwise, MacsBug is displayed on the second monitor 
only when it is invoked.
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Installing MacsBug

 

Figure 2-2

 

The Monitor display (system software versions 3.2 through 6.x)

 

System Software Version 7.0 2

 

Choose Control Panels from the Apple menu or open the Control Panels folder in the 
System Folder. Then, double-click the monitors icon.

MacsBug displays the debugging screen on the monitor containing the “happy 
Macintosh” icon. To run your application on Monitor 1 and display the debugging 
screen on Monitor 2, hold down the Option key and drag the “happy Macintosh” 
icon to Monitor 2 and restart.

You can use the SWAP command, described in Chapter 9, to keep MacsBug visible at all 
times on the second monitor. Otherwise, MacsBug is displayed on the second monitor 
only when it is invoked.

 

Updating the Debugger Prefs File 2

 

If you have used MacsBug before and have created additional macro, template, or dcmd 
resources, you can use ResEdit

 



 

 to copy these resources into the version of the 
Debugger Prefs file that comes with MacsBug 6.2. For more information, see “Working 
With the Debugger Prefs File,” later in this chapter.
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The MacsBug Display 2

 

Figure 2-3 shows the different regions of the MacsBug display. Normally, when MacsBug 
is invoked, the status region and the PC region contain information about the current 
state of the microprocessor. However, these regions are shown blank in Figure 2-3 to 
make the different regions easier to see. 

The sections that follow describe each of these regions, the information they provide, 
and the MacsBug commands or resources you can use to change the default settings that 
determine how much information or, in some instances, the kind of information that is 
shown in each region.

 

Figure 2-3

 

Regions of the MacsBug display

 

The Command Line 2

 

The 

 

command line

 

 is the area in which you enter commands and perform base 
conversions and arithmetic calculations. When MacsBug is invoked, the command line 
is blank. The insertion point is indicated by a blinking cursor in the first position on 
the command line.

You cannot change the size of the command line. MacsBug contains a command line 
buffer in which each command that you execute is stored. Command-key combinations 
allow you to scroll through the buffer and copy a command you have entered before to 
the command line.

Status region

Output region

PC region

Command line
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The MacsBug Display

 

You can use the standard editing keys (Delete, Left Arrow, and Right Arrow) as well as 
several special functions to edit commands you have already entered.

To enter a command, type the command and press Return. You can enter several 
commands on the command line by separating them with a semicolon (;), but you 
cannot continue to a second line.

Please see Chapter 8, “Introduction to MacsBug Commands,” for additional information 
about entering commands and working with the command line.

 

The PC Region 2

 

The 

 

PC region

 

 displays the address of the next instruction to be executed as well as the 
disassembly of that instruction. It is called the PC region because the address of the next 
instruction to be executed is always stored in the program counter or PC register.

By default only one instruction is displayed in this region. However, you can use ResEdit 
to change the default setting in the 'mxbi' resource and display several lines. Follow 
these steps to change the setting:

1. Open the Debugger Prefs file.

2. Open the 'mxbi' resource.

3. Use the Tab key to move to the field labeled “#of PC lines shown” and enter the 
number of lines that you want displayed. 

4. Save the changes to the resource. To load the changed resource, you will have to 
restart.

Figure 2-4 shows a sample PC region display.

 

Figure 2-4

 

PC region display

 

In the sample display shown in Figure 2-4, the PC region displays three lines: the 
asterisk preceding the first instruction indicates the next instruction to be executed. 

The only other information displayed in this region concerns the execution of branching 
instructions. The branching indicator, shown in the upper-right corner of the PC region, 
tells you whether the program will branch after executing the next instruction.

PC
region

Command 
line

Branching
indicator
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The Output Region 2

 

The largest area of the screen is the 

 

output region: 

 

this is the area that MacsBug uses 
to display information in response to the commands you enter. The size of this area 
depends on the number of lines you choose to display in the PC region. The more lines 
you display in the PC region, the smaller the output region.

When MacsBug is invoked, the first line of the output region always displays a message 
explaining the reason for the break. This could be a microprocessor exception, Macintosh 
system error, or a user-specified break.

In general, MacsBug output falls into three categories, indicated by three levels of 
indentation:

 

■

 

The leftmost line displays the reason for the break.

 

■

 

The next level of indentation displays a message for each command you enter, either 
confirming execution or explaining a failure.

 

■

 

The rightmost level of indentation displays command output.

Information shown in the output region scrolls up (and eventually off) the screen as you 
execute new commands. You can use the Up Arrow and Down Arrow keys to examine 
text that has scrolled off the top of the display. If you scroll back to examine some text 
and then enter another comand, the new output is displayed starting from where you 
are (rather than at the end of the buffer). MacsBug does this on the assumption that 
you’ll more often want to see the new output along with the output at which you were 
just looking.

Scrollable output is enabled by a history buffer whose default size of 2K you can change 
using the 'mxbi' resource. You can use ResEdit to change the size of the buffer by 
following these steps:

1. Open the Debugger Prefs file.

2. Open the 'mxbi' resource.

3. Use the Tab key to move to the field labeled “Size of the history buffer” and enter the 
number of bytes that you want displayed. An 8K buffer will hold about four pages 
of output.

4. Save the changes to the resource. To load the changed resource, you will have 
to restart.

See the section “Saving MacsBug Output” in this chapter for information on how to log 
output to a file or printer.
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The MacsBug Display

 

The Status Region 2

 

The 

 

status region,

 

 which is at the left of the MacsBug debugging screen, displays 
information about the system at the time that MacsBug is invoked. Figure 2-5 shows 
a schematic view of the status region.

 

Figure 2-5

 

The status region

 

As you can see, the status region consists of three areas: 

 

■

 

At the top of the status region MacsBug displays an area of memory called the stack. 

 

■

 

In the middle of the status region, MacsBug displays the current application name, the 
current memory configuration, a virtual memory marker, the setting of the condition 
codes in the status register, and the interrupt level set by the system.

 

■

 

At the bottom of the status region, MacsBug displays the contents of the CPU registers.

The following three sections describe the information shown in each area of the status 
region in greater detail.

 

The Stack Area 2

 

By default, MacsBug uses the stack area of the status region to display first the contents 
of the stack pointer (SP) and then memory on the stack starting with the lowest location. 
The section “Looking at the Stack,” in Chapter 4, provides a more detailed explanation of 
this display.

You can use the MacsBug SHOW command, described in Chapter 9, to display the stack 
using different formats or to use this portion of the status region to display an entirely 
different area of memory.

Status region

Stack

Status

area

Registers

CurApName

Finder

SR  Smxnzvc   0

24-bit   RM

Memory configuration

Current application name

Virtual memory marke

Interrupt level

Condition codes
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The Status Area 2

 

As shown in Figure 2-5, the first two lines of this area display the name of the current 
application. If your application is running in a multiple-application environment (that is, 
under system software version 5.0 or 6.0 with MultiFinder turned on, or under system 
software version 7.0), it is possible that one of the background applications has caused 
the crash. If this is the case, the name of the current application shown in the MacsBug 
display will 

 

not

 

 be the name of the foreground application.

The third line displays information about the current memory configuration and 
virtual memory:

 

■

 

The memory configuration marker indicates whether the Memory Manager is in 
24-bit mode or 32-bit mode. Being aware of which mode the Memory Manager is in 
could save you time and trouble in identifying the cause of some bus errors. (When 
you try to access a bad address in MacsBug, the error would be “Unable to access that 
address.”). For example, to implement drivers that access a NuBus board, you need to 
switch the hardware to 32-bit addressing mode. If you now dereference an address 
that uses the high byte to hold data, you will get a bus error because the address does 
not refer to a valid location.
It is your responsibility to make sure that your program is not using invalid addresses 
either by switching back to 24-bit mode or by using the StripAddress routine to strip 
the misleading high byte from the address. The marker tells you what memory 
management scheme the Memory Manager is using. It is then up to you to make 
sure that your application is behaving appropriately given that state. Please note 
that the description of the StripAddress routine in the “Memory Management” 
chapter in 

 

Inside Macintosh, 

 

Volume VI, corrects the description of the routine 
included in Volume V.
The virtual memory marker displays one of three codes to indicate whether virtual 
memory is being used and whether MacsBug can rely on the Memory Manager to 
swap pages if the program being debugged makes use of virtual memory. The codes 
displayed have the following meaning:

For additional information, see “Virtual Memory” in Chapter 4.

The fourth line displays the setting of the condition codes in the status register. The flags 
used depend on the microprocessor used on your machine. In general, if the letter 
representing the flag is capitalized, the flag is set; if it’s lowercase, the flag is not set. The 
rightmost item on this line is a number from 0 to 7 indicating the interrupt level set by 
the system at the time MacsBug was invoked. For more information about interrupt 
levels, see “Interrupts” in Chapter 5.

RM Virtual memory is not being used (Real Memory).

VM Memory Manager can swap pages if MacsBug requires it.

vM MacsBug was invoked while the Memory Manager was swapping pages; 
now the Memory Manager cannot swap pages for MacsBug.
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Invoking MacsBug

 

The Register Area 2

 

The area at the bottom of the status region displays the contents of the CPU registers. As 
you execute your program, MacsBug updates the register display. If you want to record 
register values so that you can compare them with their updated values, you can use the 
TD (Total Display) command to have MacsBug write their values to the output region of 
the display.

MacsBug provides two additional commands that display the contents of other registers:

 

■

 

The TF (Total Floating-Point) command displays the contents of the floating-
point register.

 

■

 

The TM (Total MMU) command displays the contents of the MMU register.

For additional information about these commands, see Chapter 9, “MacsBug Commands.”

 

Invoking MacsBug 2

 

Once you have installed MacsBug, it takes control of your system and displays the 
debugging screen either as the result of a system error or because you invoke it. This 
section describes the various ways that you can invoke MacsBug and the circumstances 
under which MacsBug will invoke itself.

▲ W A R N I N G

 

When you invoke MacsBug, you generate a level 7 interrupt, which 
means that all interrupts are disabled while MacsBug is running. 
AppleShare uses interrupt routines to keep continuous communication 
going between a file server and a workstation. If you are logged on to a 
file server, and you enter MacsBug for more than 2F(1,2) minutes, the file 
server will assume your application has died and you will lose your 
server connection.

 

▲

 

MacsBug When You Least Expect It 2

 

Perhaps the most dramatic and frustrating way to find yourself in MacsBug is as the 
result of a system error. If you find yourself in this situation, the first thing to do is gather 
whatever information you can that helps you determine the cause of the crash. MacsBug 
helps you a little by displaying a message describing the reason for the break in the 
output region of the display.

You can also get a sense of where your program crashed by looking in the PC region of 
the display. The instruction displayed in this region is the next instruction to be executed. 
You can disassemble around that address to find out which routine was executing when 
you crashed.

Finally, you can use the Tilde (~) or Esc keys to see what the screen looked like right 
before the crash. Press any letter key to return to MacsBug.
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MacsBug is also invoked if you have Discipline turned on and one of the values sent to 
or returned from a system call does not meet Discipline’s test. MacsBug displays infor-
mation about the offending call. Having Discipline break in and display diagnostic 
messages gives you some warning about a situation that might result in a crash. In 
addition, Discipline displays sufficient information for you to fix the call that caused 
the break. For more information, see Chapter 6, “Discipline.”

If MacsBug is invoked as the result of a system error, you need to be careful about how 
you get out of MacsBug. Please see the section “Getting Out of MacsBug” for additional 
information.

Chapter 7, “Debugging Strategies,” provides additional information on locating the 
cause of the crash.

 

Using the Programmer’s Switch to Invoke MacsBug 2

 

The 

 

programmer’s switch

 

 is a two-pronged plastic gadget that is shipped with every 
Macintosh. If you have not already installed it, please consult the documentation that 
came with your computer for instructions. The programmer’s switch has two parts:

 

■

 

A reset switch. This button is marked with an arrowhead (or the word “Reset” on the 
Macintosh Plus). If you are in the Finder, this switch is the preferred way to restart 
your Macintosh in the event of a crash so bad that you cannot use commands in the 
Special menu and you can’t get into MacsBug.

 

■

 

An 

 

interrupt switch.

 

 This button is marked with a circled V (or the word “Interrupt” 
on the Macintosh Plus). Pressing this button generates a level 7, non-maskable 
interrupt, which is why it is often called the NMI key. (On the Macintosh Plus/SE, it 
can generate a level 4, 5, 6, or 7 interrupt.) The microprocessor handles this interrupt 
by invoking MacsBug. 

If you use the interrupt switch to invoke MacsBug, there is a possibility that the system 
might be in an uncertain state: perhaps the Memory Manager was in the middle of 
moving a heap block or perhaps a ROM routine was executing which used register A5 
for its own purposes and the interrupt occurred before the routine restored its value. If 
this is the case, you might wind up looking at unreliable values. To avoid this possibility 
when using the interrupt switch, you might want to enter the following commands 
when MacsBug is invoked:

 

ATB WaitNextEvent; G

 

and then 

 

ATC WaitNextEvent

 

This will usually eliminate the problem and you can continue working without worry. 
Under earlier systems and applications, use GetNextEvent rather than WaitNextEvent.
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Invoking MacsBug

 

Defining an 'FKEY' Resource to Invoke MacsBug 2

 

Another way to invoke MacsBug is to define an 'FKEY' resource using ResEdit or 
MPWS(

 



 

)

 

.Once you have defined this resource, you can use a Shift-Command-key 
combination to invoke MacsBug.

To define an 'FKEY' resource using ResEdit 2.1, follow these steps:

1. Launch ResEdit.

2. Open the 'FKEY' resource in the System File.

3. Choose “Create New Resource” from the Resource menu to create a new 'FKEY' 
resource.

4. Type the following numbers into the new resource exactly as shown:

 

A9FF 4E75

 

A9FF is machine code for the _Debugger trap; 4E75 is machine code for the RTS 
instruction.
Figure 2-6 shows what the resource looks like after you’ve entered the instruction.

 

Figure 2-6

 

Defining an 'FKEY' resource to invoke MacsBug

 

5. Choose Get Resource Info from the Resource menu and set its ID number to a number 
greater than 4 and less than or equal to 9. Please remember to use a number that is not 
already in use. The numbers 1, 2, 3, and 4 are reserved for system functions.

6. Close and save the System file.

7. To invoke MacsBug, press Command-Shift and the ID number you have assigned the 
resource. For example, if you’ve assigned the resource ID 7, press Command-Shift-7 to 
invoke MacsBug.

This method of invoking MacsBug will only work when the application is calling 
GetNextEvent or WaitNextEvent regularly, which it might not do if it’s hung or frozen.
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Invoking MacsBug from Your Source Program 2

 

You can call two system routines, Debugger and DebugStr, from your source program to 
invoke MacsBug. Calling either of these two routines is also referred to as implementing 
user breaks.

The Debugger trap simply invokes MacsBug; the DebugrStr trap invokes MacsBug and 
optionally displays a message and executes one or more commands.

If you think that a certain part of your program is causing a crash, you can place the 
Debugger call in your source code, just before the suspect statement. MacsBug will be 
invoked right before the code in question executes. For example, if your source code 
contains the lines

 

Begin

thisnumber := $666;

Debugger;

newnumber := thisnumber

End

 

MacsBug is invoked after the instructions for the first assignment statement are executed.

The DebugStr trap pushes a pointer to a Pascal string onto the stack and then invokes 
MacsBug. If the string contains text, it is displayed by MacsBug as part of its break 
message. If the first character in the string is a semicolon (;), MacsBug assumes that the 
string contains MacsBug commands and executes them.

You can include multiple MacsBug commands, separated by semicolons, in the DebugStr 
call. MacsBug then executes all the commands when it encounters the call. The DebugStr 
call can also contain text followed by a semicolon and one or more commands. For 
example:

 

DebugStr ('Displaying the heap and application name; HD; DM 910');

 

This line in your source code calls MacsBug and passes the string. MacsBug displays the 
message “Displaying the heap and application name”, then it does a heap dump and 
displays memory at location 910. You can embed carriage returns in text that you want 
to print.

For information on how you can use DebugStr to display variable values when MacsBug 
is invoked, see the section “Setting Breakpoints” in Chapter 7.

 

Inactivating User Breaks 2

 

If you wish to temporarily inactivate breaks set with Debugger and DebugStr, you can 
use the MacsBug DX (Debugger Exchange) command. This command turns user breaks 
on or off. When DX is OFF, MacsBug ignores Debugger and DebugStr calls. You can 
enter DX again to enable user breaks. Since the FKEY invokes MacsBug by calling the 
Debugger trap, disabling breaks with the DX command will also disable the FKEY.
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Getting Out of MacsBug

 

Using DebugStr from an Assembly-Language Source Program 2

 

You can call both the Debugger trap and the DebugStr trap from an assembly-language 
source program. The Debugger trap (_Debugger) is predefined in the file ToolTraps.a. To 
use the DebugStr trap (_DebugStr), you need to define it yourself:

 

_DebugStr OPWORD $ABFF

 

Before calling the trap, you will also need to include the following instruction

 

PEA # ' 

 

message

 

 '

 

to push the address of the message string on the stack.

 

Invoking MacsBug Under A/UX 2

 

To invoke MacsBug under A/UX, you must press the Control-Command-I keys 
simultaneously. This will bring up the MacsBug display, and you can start working 
with MacsBug. 

The only limitation you will encounter in working with MacsBug under A/UX is that 
you will not be able to use the LOG command to log output to an ImageWriter

 



 

. 
However, you can still log to a file.

▲ W A R N I N G

 

Do not press the programmer’s switch to invoke MacsBug under A/UX. 
The programmer’s switch is used to break into the A/UX kernel 
debugger; it will not get you into MacsBug.

 

▲

 

Getting Out of MacsBug 2

 

How you get out of MacsBug largely depends on how you got there in the first place 
and on what you want to do next. Table 2-1 describes the commands you can use to 
leave MacsBug.

 

Table 2-1

 

Commands used to get out of MacsBug

 

Command Action

 

G Resumes program execution.

GT Resumes execution until the program counter reaches 
the specified address.

EA Restarts the application from which MacsBug was invoked.

ES Returns you to the current shell, this is usually Finder.

RS Unmounts all mounted volumes and restarts the Macintosh.

RB Restarts the system. It unmounts the startup volume before restarting.
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If you invoked MacsBug yourself, you can use the G, GT, EA, or ES command, 
depending on what you want to do next.

If you dropped into MacsBug as a result of a system error, the system might have been 
damaged. Try to exit using the ES command, then select Restart from the Special menu. 
If ES fails, use the RB command. 

Saving MacsBug Output 2

If you want a permanent record of your MacsBug session, you can use the LOG 
command to write MacsBug output to a file or to an ImageWriter. Of course, you 
will still see the output on the screen.

The syntax of the LOG command is

LOG [pathname | Printer]

You can specify a full or partial path name as a file name. The Printer option specifies 
that you want the output to be sent to an ImageWriter. The LOG command does not 
work with the LaserWriter  or AppleTalk ImageWriter; however, you can send output to 
a file and then print the file on a LaserWriter.

Working With the Debugger Prefs File 2

This section describes the Debugger Prefs file included on the MacsBug 6.2 release disk. 
It assumes that you are using version 2.1 (or later) of ResEdit. 

When you open the Debugger Prefs file, ResEdit 2.1 displays a list of resources similar to 
that shown in Figure 2-7. Note that the display includes information about the number 
of resources of a certain type (count) as well as the total size of the resources of that type.

Note that all MacsBug resources, except for the resource used to provide help 
information have been placed in the Debugger Prefs file. 

Figure 2-7 Debugger Prefs file
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Table 2-2 describes the contents of the Debugger Prefs file.

If you must save space in memory, you can do so by deleting, moving or altering 
resources from the Debugger Prefs file. You should not remove the TMPL resource 
because this is the resource that ResEdit uses to display the other MacsBug resources. 

The effect of moving or altering the resources is described in Table 2-3.

Table 2-2 Resources in the Debugger Prefs file

Resource Contents

mxbi Specifies the size of the history buffer, the number of traps recorded by 
MacsBug, and the number of lines displayed in the PC region of the 
display. See the section “The MacsBug Display” in this chapter for 
information on how to change the default settings.

mxbc Specifies color display preferences.

mxbm Defines the macros you can use to reference low-memory globals and 
macros that define useful command lines. See the section “Using 
Macros” in Chapter 8 for additional information.

mxwt Defines the templates you use to obtain a more readable memory 
display. See the section “Using Templates to Display Memory” in 
Chapter 4 for additional information.

dcmd Defines the dcmds you can use in addition to MacsBug commands. See 
the section “Using dcmds” in Chapter 8 for additional information.

C++ Unmangles C++ compiled files so that MacsBug can understand them.

Table 2-3 Effect of removing resources from Debugger Prefs file

Size (K) Resource Effect

5 C++ Needed only by C++ programmers for unmangling CFront 
generated code.

-- mxbi MacsBug uses default values. If you reduce the size of the 
history buffer, you gain some memory but can save less 
information.

-- mxbc Uses default black and white display.

8 mxbm If you remove resources 101 and 102, you will no longer be 
able to reference low-memory globals by name. Examine the 
contents of the other mxbm resources before you remove or 
delete them.

8 mxwt You will lose the use of templates to make sense of 
memory display.

1.6 dcmd You will no longer be able to use these commands. You can 
remove dcmds individually. 
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Exercise: Getting Started With MacsBug 2

Follow the instructions at the beginning of this chapter to install MacsBug. For the 
purposes of this exercise, you need to be working in a single-application environment, 
which means you must be using a version of system software earlier than version 7.0, 
and you must have Finder selected in the Set Startup dialog box before you start or 
restart your Macintosh. 

Open the A-Trap Demo application from your MacsBug distribution disk. Choose User 
Break from the Debug menu. The User Break item contains a call to the Debugger trap, 
which invokes MacsBug. 

Take a few minutes to look over the MacsBug display. Go back to the section “The 
MacsBug Display” in this chapter and read over the information provided there while 
you are actually looking at the display. See if you can answer the following questions by 
looking at the display:

1. What is the name of the current application?

2. Is the Memory Manager in 24-bit mode or 32-bit mode?

3. Is the current application running under virtual memory?

4. What is the value stored in register A7? Look at the top of the status area; notice that 
the value for SP (the stack pointer) is identical to the value stored in register A7.

5. What is the next instruction to be executed?

6. What caused MacsBug to be invoked? Look at the output region of the MacsBug 
display. MacsBug displays a message describing how it was invoked. In this case, 
it displays the message

User break at 00192A4A UserBrk+0008

To see the application screen again, press the Esc key. To display the MacsBug display, 
press any character key.

The simplest way to leave MacsBug is to use the G (Go) command; this resumes 
program execution exactly where you left off. Type G and press the Return key.

Remember that when MacsBug is invoked because of an unexpected error condition, it 
might not be possible to resume program execution. See the section “Getting Out of 
MacsBug” in this chapter for additional information.



C H A P T E R  2

Getting Started

26 Exercise: Getting Started With MacsBug

Getting Information About MacsBug 2
Choose User Break from the Debug menu to invoke MacsBug again. Type help and then 
press Return. MacsBug displays the following information in the output region: 

Return shows sections sequentially. "HELP name" shows that section

 Editing

 Selecting procedure names

 Expressions

 Values

 Operators

 Flow control

 Breakpoints

 A-Traps

 Disassembly

 Heaps

 Symbols

 Stack

 Memory

 Registers

 Macros

 Miscellaneous

 dcmds 

MacsBug lists all the topics for which you can obtain help. To display information for 
any one of these topics, type help and the name of the topic, then press Return.

Try this now. Type help editing and press Return. MacsBug displays information 
about entering and editing commands.

Editing

Type a command and then press Return or Enter to execute it. 

Typing return without entering a command repeats the last 

command. Multiple commands can be executed by separating them 

with ';'.

Editing commands

Command-V Restore previous command lines for 

editing.

Command-B Command-V the other way.

Option-Left Arrow Move cursor left one word.

Option-Right Arrow Move cursor right one word.

Option-Delete Delete the word to the left of the cursor.

Command-Left Arrow Move cursor to begin of line.

Command-Right Arrow Move cursor to end of line.

Command-Delete Delete the line to the left of the cursor.
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Press Command-V. As mentioned earlier in this chapter, MacsBug maintains an internal 
command-line buffer in which it stores the commands you have already executed. 
Pressing Command-V moves backward through the buffer, copying the previous 
command to the command line. The command you entered previous to help editing 
was help. This command should now be copied to the command line. 

Now Press Command-B. This command copies the command you entered after entering 
help. The command help editing is now displayed on the command line. Of course, 
if you’re entering commands like Help, it’s just as easy to retype them. But in working 
with MacsBug, you’ll often be entering commands that use complex expressions and 
addresses, which you’ll not want to bother to enter again. Using Command-V and 
Command-B moves you backward and forward through the command-line buffer, and 
can save you time and eliminate the possibility of error in retyping addresses.

Press Command-Delete to delete the line. The command line should now be blank. Type 
DV and press Return. MacsBug displays information about the version of MacsBug you 
are currently running:

 MacsBug version 6.2

 Copyright Apple Computer, Inc. 1981-1991

  CODE  Leo Baschy, Michael Tibbott, scott douglass

  TEST  Leo Baschy, Keith Nemitz

  BOOK  Joanna Bujes, Bob Anders

  PMGR  Tom Chavez

Using the Command Line to Perform Calculations 2
In addition to using the command line to enter commands, you can also use it to perform 
base conversions and arithmetic calculations.

Type 15 and then press Return. MacsBug displays the following information:

15 = $00000015   #21   #21   '••••'

For any value you type, MacsBug displays its hexadecimal value, unsigned decimal 
value, signed decimal value, and ASCII value. MacsBug assumes that every number you 
type is in hexadecimal. To tell MacsBug you are specifying a decimal number, you must 
prefix the number with the # sign. Type #15 and press Return; MacsBug displays the 
following:

#15 = $0000000F   #15   #15   '••••'

Now type #–15; MacsBug displays the following:

#–15 = $FFFFFFF1   #15   #–15   '••••'

Compare the hexadecimal number MacsBug displays for the positive and for the 
negative number. They are different, although both appear to be positive. Your compiler 
uses a special scheme for the representation of negative numbers. For more information, 
see “The Representation of Negative Numbers” in Chapter 3.
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You can also use the command line to perform arithmetic calculations. Type 

#20 + 40 * 2 

and then press Return. MacsBug displays the following in its usual hex, decimal, 
unsigned decimal, and ASCII formats:

#20 + 40 * 2 = $000000A8   #168   #168   '••••'

Displaying Memory 2
This section demonstrates some of the commands you use to display memory. For 
information on how to display memory using templates and how to create your own 
templates to display memory, see “Using Templates to Display Memory” in Chapter 4 of 
this manual.

You can display a selected portion of memory in hexadecimal and ASCII format using 
the DM (Display Memory) command. Type DM 910 and press Return. MacsBug displays 
the following:

Displaying memory from 910

  00000910  0646 696E 6465 7220  2020 2020 2020 2020  •Finder

The first column displays the address of the first byte of memory displayed. To the right 
of this address MacsBug displays the first byte of memory, 06 in this case, and then 15 
more bytes. The last column of the display shows the 16 bytes of memory in ASCII 
format. Address 910 specifies a memory location where the current application name is 
stored. If you look at the ASCII portion of the display, you’ll see the name of the current 
application, Finder.

Now type DM SysZone and press Return. MacsBug shows you something like this:

Displaying memory from 02A6

 000002A6  0000 1E00 0025 813C  4080 0000 0000 1E00 •••••%•<@•••••••

SysZone is a low-memory global that contains the address of (points to) the beginning of 
the system heap. This address (pointer) is always stored at location 02A6, but you can 
specify this location using the name SysZone because MacsBug contains a macro 
resource that defines the string SysZone as 02A6. If the macro were not installed, you 
would have to specify the address.

SysZone is a pointer, that is, it refers to an address where another address is stored. Since 
addresses are always 4 bytes long, you need to look at the first 4 bytes displayed to 
determine the address where the system zone begins. In the example shown above, 
that address is 0000 1E00. This address might be different on your Macintosh, but 
the address of the low-memory global where the address is stored is the same on all 
Macintosh computers. 
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Now type DM ApplZone and press Return. ApplZone is also a low-memory global; it 
points to the starting address for the application zone. Like SysZone and all low-memory 
globals, ApplZone is always found at the same address, 02AA:

Displaying memory from 02AA

 000002AA  0002 D528 4080 0000  0000 1E00 0000 A5F4 •••(@•••••••••••

According to MacsBug, the application zone starts at 0002 D528 on the Macintosh used 
for this example.

In a single-application environment, the application heap comes immediately after the 
system heap, so the beginning of the application heap is also the end of the system heap. 
To find the size of the system heap subtract the starting address of SysZone from the 
starting address of ApplZone. Type 

@ApplZone – @SysZone 

and press Return. MacsBug shows something like this:

@02AA - @02A6 = $0002B728   #177960   #177960   '•••('

The system heap is 2B728 bytes long on the Macintosh used for this example. Notice the 
indirection operators that we’ve used with the low-memory globals names. These @ 
operators tell MacsBug to subtract the address stored at location 02A6 from the address 
stored at location 02AA. Without the indirection operators, MacsBug would subtract the 
address 02A6 from the address 02AA.

Figure 2-8 shows you a standard Macintosh memory map. As you can see, memory in 
the Macintosh is divided into separate areas. The starting (and sometimes the ending) 
addresses for each area are stored in the low-memory globals shown to the right of the 
memory map. Try using the DM command to determine the address of each area of 
memory. Then use the command line to calculate the size of each area.

Creating a memory map can be a great help during debugging. For example, by noting 
the range of addresses that refer to your application’s heap, you can determine whether 
your variable’s addresses make sense.
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Figure 2-8 Sample memory map

Note that MemTop is only valid in a single-application environment.

See Chapter 4, “Macintosh Memory Organization,” for information about how memory 
is organized on the Macintosh and how to use MacsBug commands to examine memory.

Where Is an Address? 2

You can find the name and location of an address by using the WH (Where) command. 
Type WH PC. MacsBug shows you the following information:

Address 0002E004 is in the Application heap at USERBRK+0006

It is 000004E8 bytes into this heap block:

Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 • 0002DB1C 00001C52+02   R   0002D634   L   P   CODE  0002  011C

If the address is in a heap, MacsBug displays the name of the heap and heap block. In 
this case, the address is in the application heap. If the address is in a named routine, 
MacsBug displays the address as an offset from the start of the routine. If MacsBug does 
not know the procedure name, but the address is in a known resource, it displays the 

ROM

High memory

Application globals

Stack

Application heap

System heap

RAM

Low-memory globals

ROMBase ($2AE)

MemTop ($108)

BufPtr ($10C)
CurrentA5 ($904)
CurStackBase ($908)

Register A7 

(top of stack)
ApplLimit ($130)

ApplZone ($2AA)

SysZone ($2A6)

$00

High memory

Low memory

addr =
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type of the resource, the number of the resource, the file in which the resource is stored, 
the name of the resource, and the offset within the resource where the instruction is 
found; for example:

'CODE 0007 0294 Init'+0A3C 

Now execute the G command to return to the A-Trap Demo application and choose Quit 
from the File menu to quit the application.

Further Explorations 2
You should now feel more comfortable working with MacsBug. As you read through the 
chapters that follow, try to duplicate the given examples if possible and work through 
the hands-on exercises. The first step in learning to use MacsBug is to become familiar 
with it. If you have a very simple program that you’ve written, use MacsBug to poke 
around in it; you’ll learn more about using MacsBug if you can simplify the object you’re 
looking at and eliminate the fear that you will inadvertently destroy a valuable piece 
of code. 
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Compilers and Assemblers

 

This chapter covers the fundamentals of assembly language. Its aim is not to teach you 
how to program in assembly language, but to help you to recognize a program’s control 
structures, system calls (or A-traps), and variables when you use MacsBug to examine 
your compiled code. 

The chapter starts by describing the differences between source code, compiled or 
assembled code, and disassembled code. It then provides an overview of assembly-
language syntax, addressing modes, and instructions. Once you can interpret assembly-
language instructions, you can learn to recognize how your program’s control structures, 
routines, A-trap calls, and local and global variables are represented in disassembled 
code. The chapter concludes with an overview of MacsBug’s disassembly commands.

If you are already familiar with assembly language, you do not need to read all of this 
chapter. If you have not used MacsBug before, you should read through the sections 
“Inter-Segment Calls and the Jump Table” and “MacsBug’s Disassembly Commands.”

 

Compilers and Assemblers 3

 

Microprocessors can only interpret 

 

machine language

 

—that is, the hexadecimal 
numbers that are stored in memory for direct execution by the microprocessor. When 
you write a program, you usually write it in a high-level language

 

,

 

 such as Pascal 
or C, and use a program called a 

 

compiler

 

 to translate your source code into machine 
language. Alternatively, you can write a program in assembly language and use a 
program called an 

 

assembler 

 

to translate it into machine language.

Although compilers and assemblers both translate source code into object code, 
the kinds of translation they perform are very different, as the remainder of this 
section explains.

Every assembly-language instruction corresponds to one instruction in machine 
language—that is, to the equivalent hexadecimal code executed by the microprocessor. 
For example, the assembly-language instruction

 

MOVE.L A3,–(A7)

 

means “push the contents of register A3 onto the stack.” Once you learn to read 
assembly language, instructions like this are relatively easy for humans to understand. 
But the equivalent machine language for this instruction—the code actually executed by 
the microprocessor—looks like this:

 

2F0B

 

Terms like MOVE and ADD in assembly-language represent types of machine operations 
and are called mnemonics

 

,

 

 because they are easier to remember than the equivalent 
machine language. Terms like A3 and –A7 are called operands. Operands use addressing 
modes that tell the processor what to operate on. The assembler translates the mnemonic 
representation of the instruction into machine code. Another program, called a 

 

disassembler,

 

 reverses the process by converting machine language into a stream of 
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lines; each line contains a mnemonic and, usually, two operands. Since the computer can 
easily convert between the two, most low-level programmers prefer to work with 
assembly language. The important thing to note is that there is a direct, one-to-one 
correspondence between each assembly-language instruction and each instruction in 
machine language.

When a compiler translates a Pascal or C program into machine language, there is no 
direct correspondence between the source level statements and machine instructions. 
In fact, the compiler has to generate many machine instructions in order to implement 
a single Pascal or C statement. One way to describe the difference between what 
assemblers do and what compilers do is to say that an assembler translates in the way 
that one would translate a number expressed in words into its numeric equivalent; for 
example, the numeric translation of one hundred twenty-three is 123. What the compiler 
does, on the other hand, is more like translating an English sentence into German. 

Clearly, in the former case, there is only one way to do it (assuming base ten); in the 
latter case, one could come up with many equivalents. The main thing to remember is 
that a high-level source statement generates more than one machine instruction.

As Figure 3-1 shows, if you were to use three different compilers to compile your source 
code, you would obtain three slightly different machine-language translations. The 
differences between compiler translations are not usually significant. The kinds of 
disassembled code you’ll learn to interpret in this chapter are unlikely to be affected by 
these differences. The important thing to understand is that when you look at a program 
using MacsBug, you see the disassembled version of the code generated by the compiler, 
not the original Pascal or C in which the program was written. There are cases in which 
you might need to know the peculiarities of your compiler’s translations, but these are 
rare. Realizing that these differences do exist, however, allows you to appreciate how 
complex the compiler translation is and how much greater the distance between high-
level languages and machine language is than the distance between assembly language 
and machine language.
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Reading Assembly-Language Instructions

 

Figure 3-1

 

Compilers and assemblers

 

Reading Assembly-Language Instructions 3

 

As described in Chapter 4, “Macintosh Memory Organization,” the 68000 family of 
microprocessors can address a large address space that includes RAM and ROM as well 
as other more specialized areas of memory. Assembly-language instructions tell the 
processor how to modify parts of memory or change the flow of instruction execution. 
Each instruction performs a single small task, such as moving data from one place to 
another, or adding two values. One statement in a higher-level language like Pascal or C 
compiles into several different assembly-language instructions.

In addition to addressable memory space, the microprocessor itself contains some 
specialized memory that it can manipulate—a total of 70 bytes in its own registers. These 
consist of the address registers A0 to A7, the data registers D0 to D7, the status register 
(SR), and the program counter (PC). Each register is 4 bytes long and holds a single value 
at a time (with the exception of the status register, which is 2 bytes long).

The sections that follow describe the syntax of assembly-language instructions and how 
memory locations and register names are used in instructions to refer to values. There 
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are about 60 basic operations in 68000 assembly language, most of which use several of 
the 68000’s 12 addressing modes, providing a wide variety of instructions. Fortunately, 
you only need to learn a few common operations and addressing modes to use MacsBug.

 

Instruction Syntax 3

 

Assembly-language instructions are roughly comparable to high-level language 
statements. Instructions are composed of an operator, which performs some action on 
one or more operands. Sometimes the operand to be used is implied in the operator, in 
which case the instruction takes no operands. Unlike high-level language statements, 
each of which requires its own syntax diagram, all assembly-language instructions can 
be generally represented by one diagram, as shown in Figure 3-2. 

 

Figure 3-2

 

Syntax of an assembly-language instruction

 

The operator indicates to the processor the simple task to be done, such as adding two 
operands together, or moving the value of one operand into the memory location 
specified by another operand. The processor determines the values of the operands by 
the addressing modes used to specify the operand. The value of an operand refers to an 
address or the contents of an address in RAM or ROM; it can also refer to the contents of 
a register.

For example, the instruction

 

MOVE $500(A5),$600(A5)

 

uses the same addressing mode for both the source and destination operands: address 
register indirect with displacement. To find the value of the source operand, the address 
in register A5 is added to the displacement, $500. This forms the 

 

effective address,

 

 
which is where to find the operand. The effective address of the source operand is the 
displacement added to the contents of register A5. If A5 contains $10000, then the 
effective address is $10000+$500 = $10500. By the same reasoning, the destination 
operand would be found at $10600. You will frequently see the "Address Register 
Indirect with Displacement" addressing mode because of the architecture of the 
Macintosh Operating System.

The operator often includes a suffix that specifies the size of the source operand—that is, 
how many bytes are being affected by the operator. Operand sizes can be specified as .B, 

Operator[.size]             [operand]             [,ope

 = byte

 = word

 = long word

.B


.W


.L

source

operand

destination

operand
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Reading Assembly-Language Instructions

 

for byte (8 bits); .W, for word (16 bits); or .L, for long word (32 bits). For example, if 
register A5 contains $10000, the instruction

 

MOVE.B $500(A5),$600(A5) 

 

moves one byte from memory location $10500 to memory location $10600. The 
instruction

 

MOVE.W $500(A5),$600(A5)  

 

moves one word (two bytes); that is, it moves the bytes at locations $10500 and $10501 to 
locations $10600 and $10601, respectively. And the instruction

 

MOVE.L $500(A5),$600(A5) 

 

moves a long word, or 4 bytes, from $10500 to four new consecutive locations beginning 
at $10600. Instructions which do not have a suffix default to the size of a word.

The syntax diagram shown in Figure 3-2 presents a simplified view of the format of an 
instruction. The representation of operands in actual assembly-language instructions 
reflects the various ways that values can be manipulated by an operator, as explained in 
the next section, “Addressing Modes.”

 

Addressing Modes 3

 

Assembly-language instructions tell the microprocessor how to modify parts of memory. 
Instructions calculate the specific addresses or values represented by operands using 
different methods, or 

 

addressing modes.

 

 This section describes the addressing modes 
you are likely to see when you are reading your disassembled code. If you happen to run 
across an operand that uses a format different from those described in this section, please 
consult the Motorola manual for your microprocessor for additional information.

Figure 3-2 shows the syntax of an assembly-language instruction. In that figure, the 
operands that make up the instruction are shown simply as placeholders:

[ 

 

operand 

 

] [ ,

 

operand 

 

] 

In fact, the representation of operands requires more detailed syntax diagrams that are 
different for every addressing mode. Table 3-1 summarizes the syntax of operands for 
different addressing modes. 

 

■

 

 

 

The symbols 

 

n

 

 and 

 

d 

 

represent any hexadecimal number; 

 

d 

 

can be negative.

 

■

 

 

 

The symbol A

 

n 

 

represents an address register; D

 

n 

 

represents a data register.

 

■

 

 

 

The symbol X

 

n

 

 represents either a data or an address register.
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The following sections describe the addressing modes listed in Table 3-1 in greater detail. 
You should read these sections to familiarize yourself with the way these addressing 
modes are used in sample MOVE instructions. You may find Table 3-1 useful when 
you’re reading through disassembled code. You can also use it to see patterns in the 
addressing modes. For instance, five different addressing modes use “address register 
indirect” as all or part of the method for finding the operand. Once you understand 
address register indirect, you have an excellent start in understanding the rest of the 
addressing modes. 

 

Table 3-1

 

Addressing modes

 

Addressing mode name Syntax Meaning

 

Absolute $

 

n

 

The value stored at address $

 

n. 

 

If the 
address can be represented in 2 bytes or 
less, the addressing mode is absolute 
word, otherwise it is absolute long.

Data Register Direct D

 

n

 

The value stored in data register D

 

n

 

.

Address Register Direct A

 

n

 

The value stored in address register A

 

n.

 

Address Register Indirect (A

 

n

 

) The value stored at the address in 
address register A

 

n

 

.

Address Register Indirect 
with Postincrement

(A

 

n

 

)+ The value at the address in address 
register 

 

n.

 

 After use, the value in 
register 

 

n 

 

is incremented by the size 
of the operator suffix.

Address Register Indirect 
with Predecrement

–(A

 

n

 

) Register A

 

n 

 

is decremented by the size 
of the operator suffix. The value at 
the address now stored in register A

 

n 

 

is used.

Address Register Indirect 
with Displacement

 

d

 

(A

 

n

 

) The value is at the address that results 
when adding the contents of register A

 

n 

 

to the 16-bit displacement 

 

d

 

.

Indexed Address Register 
Indirect with Displacement 

 

d

 

(A

 

n, 

 

X

 

n

 

) The value is at the address which is the 
result of the contents of address register 
A

 

n

 

 added to the 8-bit displacement 

 

d,

 

 
then added to the index register X

 

n

 

.

PC-Relative with 
Displacement

 

d

 

(PC) The value is at the address which is 
the sum of the address stored in the 
program counter and the 16-bit 
displacement 

 

d.

 

PC-Relative with Index 
and Displacement

 

d

 

(PC,X

 

n

 

) The value is at the address which is 
the sum of the address stored in the 
program counter, the 8-bit displacement 

 

d, 

 

and the index register X

 

n.

 

Immediate #

 

n

 

The value 

 

n.
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Reading Assembly-Language Instructions

 

Absolute Addressing 3

 

The absolute addressing mode is one of the simplest addressing modes.

 

 

 

Here’s 
an example:

 

MOVE.L $21F0,$21E4

 

This instruction copies the long word in memory location $21F0 into memory location 
$21E4. The number previously located in memory location $21E4 is overwritten. Note 
that this instruction doesn’t change the number at memory location $21F0; it merely 
copies that number into location $21E4, as shown in Figure 3-3.

 

Figure 3-3

 

Absolute addressing

 

In this case, both operands use absolute addressing. It is also possible to have one of the 
operands use a different addressing mode. For example, the instruction

 

MOVE.L $21F0,D1

 

uses the absolute addressing mode and the data direct addressing mode, described next. 
The instruction

 

MOVE.L D1,$21F0

 

uses the data direct addressing mode and then the absolute addressing mode.

The direct addressing mode is most often used to access low-memory globals, which are 
always stored at fixed addresses. Other than that it is not seen very often because of the 
architecture of the Macintosh Operating System.

 

Data and Address Register Direct Addressing; 3

 

The data register direct or address register direct addressing mode has, as its operand, 
the value that is in the data or address register, respectively. The differences between 
these two modes are found in mnemonics (MOVEA for address registers, MOVE for data 
registers), the type of register (data or address register), the condition codes (bits in the 
status register) that are set, and the instructions for which the mode is valid. 
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Here’s an example:

 

MOVE.L D0,A0

 

This instruction copies the long word in register D0 into register A0. 

(In Macsbug, you would see Movea.l D0,A0. If the operands were reversed, however, the 
mnemonic would only be Move.l A0,D0 because the destination operand uses the data 
address direct mode).

Note

 

Assemblers frequently accept the same mnemonic for the address 
register direct mode as for the data register direct; The Motorola manual, 
however, uses the data register direct mode mnemonic suffixed with an 
“a” for the same instruction when the address register direct is used for 
the destination operand; Macsbug follows this convention.

 

◆

 

 

 

Address Register Indirect Addressing 3

 

The address register indirect addressing mode is distinguished by a set of parentheses 
enclosing an address register. Thus the instruction

 

MOVE.L (A2),(A4)

 

takes the long word stored at the address in A2 and moves it to the address stored in 
register A4. 

In Figure 3-4, register A2 contains the address 0000 21F4, so the microprocessor goes 
to that location to find the value, and moves it to the location contained in register A4, 
0000 21E8.

 

Figure 3-4

 

Indirect addressing

0000 21F4


0000 21F0


0000 21EC


0000 21E8


0000 21E4

Before MOVE.L (A2), (A4)

0000 21F4


0000 21F0


0000 21EC


0000 21E8


0000 21E4

After MOVE.L (A2), (A4)
Address




0000 21E8


52DE 4CAB


23A5 5BAD


0000 21F4

1148 42FE





1148 42FE


0000 21E8


52DE 4CAB





0000 21F4










1148 42FE





A2        0000 21F4

A4        0000 21E8

A2        0000 21F4

A4        0000 21E8

ValueAddress Value



 

C H A P T E R  3

 

An Assembly-Language Primer

 

42

 

Reading Assembly-Language Instructions

 

This MOVE.L instruction might be generated from the following C code:

 

main () {

pLocal1 *longint;

pLocal2 *longint;

*pLocal1 = *pLocal2

}

 

The address register indirect addressing mode is the base of the next four addressing 
modes: address register indirect with predecrement, address register indirect with 
postincrement, address register indirect with displacement, and indexed indirect 
addressing with displacement.

 

Address Register Indirect With Predecrement Addressing, 
and Address Register Indirect With Postincrement Addressing 3

You will frequently see these two addressing modes (address register indirect with 
predecrement, and address register indirect with postincrement) used just before a 
routine call, and at the beginning and end of a routine. When a routine is called, the 
calling routine passes parameters onto a dynamic data structure known as the stack. 
Often, at the beginning of a routine, values in some registers are saved on the stack and 
at the end of the routine, the register values are returned to their respective registers. The 
first two of these operations use the predecrement form, the last uses the postincrement 
form. In addition, the postincrement form is also used to perform repetitive operations 
on arrays with elements which are either 1, 2 or 4 bytes.

Like the address register indirect addressing mode, these two addressing modes use the 
value in the address register to find the operand. In addition, the value in the address 
register is adjusted. If the predecrement form is used, the value is decremented first, and 
the resulting value is used to find the operand. If the postincrement form is used, the 
value is first used to find the operand, then incremented. The amount by which the value 
in the address register is increased or decreased is either 1, 2 or 4, depending upon 
whether the size of the instruction is byte, word or long, respectively.

The architecture of the 68000 family of microprocessors has register A7 permanently 
assigned as the stack pointer, sometimes called the SP. Stacks grow downward in 
memory, from numerically higher addresses to lower addresses. The stack pointer points 
to the last item that was stored, or "pushed", onto the stack. When a piece of data is 
pushed on the stack, the address in A7 is decremented and the source operand is moved 
to the resulting address (the value now stored in A7); for instance:

MOVE.L #$2,-(A7)

pushes the number 2 onto the stack, as shown in Figure 3-5.
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Figure 3-5 Predecrement register indirect addressing

The register indirect with postincrement addressing (shown in Figure 3-6) is used to 
retrieve, or "pop" a value off the stack, like this:

MOVE.L (A7)+,D0

Before this instruction is executed register A7 points to the last value pushed on the 
stack. The instruction causes the value to be moved into the address stored in register D0 
and then shrinks the stack by adding 4 (the size of the instruction) to the value in A7. (If 
you push one byte onto the stack, the stack pointer will be decremented by 2 because the 
value in the stack pointer must be even.) 

For additional information, see the section “Life on the Stack” in Chapter 4. 
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Figure 3-6 Postincrement register indirect addressing

Address Register Indirect With Displacement Addressing 3

When you see an address register in parentheses with a number prefix, you are looking 
at the address register indirect with displacement addressing mode. The prefix is a 16-bit 
displacement, and, when used, will be sign-extended. To determine where the operand 
is, calculate the effective address, that is, the address that results when you take the 
value in the address register and add it to the sign-extended displacement. For example, 
the instruction

MOVE.L 4(A0),8(A0)

adds $4 to the address stored in register A0, uses the result as the address of the value to 
move, and moves that value to the address found by adding $8 to the address stored in 
register A0, as shown in Figure 3-7.
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Figure 3-7 Address register indirect with displacement addressing

This addressing mode is most commonly used to reference your application’s globals, 
which are stored at addresses that are at a fixed distance from the address stored in 
register A5, and to reference your routines’ parameters, local variables, return result, and 
return address, which are stored at addresses that are at a fixed distance from the 
address stored in register A6. For additional information see the sections “Allocating 
Space for Global Variables” and “Stack Frames” in Chapter 4.

Indexed Indirect Addressing With Displacement 3

The indexed indirect with displacement addressing mode looks very similar to the 
indirect with displacement addressing mode, except that the operand is composed 
of two addresses separated by a comma. When the microprocessor encounters the 
instruction

MOVE.L $-4(A0,D0.W),$4(A0,D0.W)

it takes the address in register A0, adds the low word in register D0, adds $–4 to that, 
and uses the result as the address of the value to move. It moves that value to the 
address found by adding register A0 plus the low word in register D0 plus $4, as shown 
in Figure 3-8.

Figure 3-8 Indexed indirect addressing with displacement
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This addressing mode is not often used. It comes in handy when the program has a table 
of addresses so that given 

displacement (An 1, Xn 2)

the microprocessor can compute the effective address by using An 1 + displacement to 
compute the starting address of the table and Xn 2 as an index into the table.

Program Counter (PC) Relative Addressing Modes 3

PC-relative addressing modes, which include PC-relative with displacement and PC-
relative with index and displacement, are used to compute addresses relative to the 
address currently stored in the program counter. This mode of addressing is especially 
useful on the Macintosh because code resides in resources that are loaded as relocatable 
blocks. Thus if the code has to use a JSR instruction to jump to a location within the same 
segment, it must express the address of that location relative to the address stored in the 
program counter. PC-relative with displacement addressing makes this possible.

For example, the instruction 

JSR $104(PC)

tells the microprocessor to execute the instruction stored 104 bytes from the address 
stored in the program counter.

The PC-relative with index and displacement addressing mode is used to switch control 
when the address to jump to must be calculated with reference to a table, as would be 
the case with Pascal CASE or C switch statements. Given the instruction

JSR $104(PC,A1.W)

the microprocessor computes the address to jump to by adding 104 to the address stored 
in the program counter and then adding the low word stored in register A1 (the index 
value) to the result.

The program counter is represented either by the initials PC or by an asterisk in 
disassembled code.

These two PC-relative addressing modes are very similar to the address register indirect 
with displacement and the indexed address register indirect with displacement 
addressing modes. The only difference is that the value in the Program Counter is used 
instead of the value in an address register. 

Immediate Addressing 3

The immediate addressing mode indicates a constant value rather than the contents of a 
memory location. A “#” sign before the first operand distinguishes this mode from the 
others. The instruction

MOVE.L #$2,$21E4
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moves the number $2 (not the value at memory address $2) into memory location $21E4, 
as shown in Figure 3-9.

Figure 3-9 Immediate addressing

Similarly, the instruction

MOVE.L #$2,A0

moves the number $2 into register A0.

Implied Addressing 3

The effective mode used by some instructions is implied by the instruction itself. For 
example, the RTS (Return from Subroutine) instruction takes no operands; it takes the 
address stored in A7 (top of the stack), adds 4 bytes to that value, and then moves the 
result into the program counter. Program execution resumes at that address. To figure 
out the values used by instructions that use one operand or no operands, look up the 
description of the instruction in the Motorola manual for your microprocessor.

Assembly-Language Instructions 3
Now that you are familiar with the syntax of assembly-language instructions and 
operands, you can begin to look at the instructions you are most likely to encounter 
in reading your disassembled code. This section presents some of the most common in-
structions in three categories: integer arithmetic, program control, and stack frame 
instructions. If you want more detailed information about these instructions or others 
that are not covered in this section, please consult the Motorola manual for your 
microprocessor.

Before you begin learning specific instructions, you need to know something about the 
way negative numbers are represented in disassembled listings. The section that follows, 
“The Representation of Negative Numbers,” provides a summary.

0000 21F4


0000 21F0 


0000 21EC 


0000 21E8 


0000 21E4 

Before MOVE.L #$2, $21E4
Address            Value

0000 21F4


0000 21F0


0000 21EC


0000 21E8 


0000 21E4

After MOVE.L #$2, $21E4
Address            Value

0000 6FAD

1148 42FE

0000 32CD

52DE 4CAB

23A5 5BAD

1148 42FE


0000 32CD


52DE 4CAB


23A5 5BAD








0000 0002
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The Representation of Negative Numbers 3

 All numbers displayed by MacsBug are shown in hexadecimal notation unless they 
are preceded by a pound sign like this: #2110, which indicates a decimal value. It is 
important to note that many hexadecimal numbers shown by MacsBug appear to be 
positive; in fact they can be either positive or negative.

The microprocessor uses a mathematical scheme called two’s complement arithmetic to 
represent negative numbers. Using this method, the microprocessor uses the highest bit 
of the value represented to specify its sign: 1 indicates a negative number; 0 indicates a 
positive number.

If the value is positive, the lower bits represent the value. If the value is negative, the 
remaining bit pattern (after the high-order bit) represents the two’s complement of 
the value. The microprocessor must then calculate the two’s complement of this pattern, 
or, as we think of it, the negative number. How the microprocessor does this is not 
important for debugging purposes. But you do need to remember two points about 
the microprocessor’s handling and representation of negative numbers.

First, since all numbers look positive, you need to know which number is supposed to be 
negative, so that you can use MacsBug’s command-line arithmetic to display its signed 
decimal value. For example, suppose you’re testing register D0 on exit from a trap; 
this register normally holds the error number, which is negative, so you’re definitely 
interested in what that number is. Second, since it is the highest bit of the number that 
determines its sign, it is very important to specify the size of the value you want 
converted. So, if you are testing the value of D0 and you enter

D0

MacsBug shows you that value as a hexadecimal number, an unsigned decimal number 
and a signed decimal number. 

D0 = $4080F2A8  #1082192552   #1082192552   '@•••'

In this case, MacsBug assumes you want the long word stored in D0. But most operating 
system errors are defined as integers, which are one word long. If you enter

D0.W

MacsBug shows you the value of the low word stored in D0; for example

D0.W = $FFFFF2A8   #4294963880   #-3416   '••••'

If you enter 

D0.B

MacsBug shows you the value of the low byte stored in D0; for example:

DO.B = $FFFFFFA8   #4294967208   #-88   '••••'
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Notice that MacsBug has produced three different signed decimal values for data 
stored starting at the same memory location. The size of data you’re converting matters. 
In summary:

■  MacsBug displays all numbers as positive hexadecimal numbers, unless they are 
prefixed by a # sign, in which case they are decimal numbers. (The most common 
exception to this rule is that MacsBug displays negative displacements to an address 
register as negative numbers.)

■  To have MacsBug display the signed decimal value of a hexadecimal number, just 
type the value you want converted (including its size) on the command line and 
press Return.

■  You must know what the assembly-language instructions are doing and how these 
correspond to your source code in order to understand which numbers might be 
negative; you must also know the size of the data you are converting since this affects 
the result of the conversion.

Integer Arithmetic Instructions 3

The compiler produces integer arithmetic instructions whenever your source code 
statements perform some kind of integer arithmetic. Here are some examples of 
instructions that perform standard arithmetic operations with hexadecimal numbers:

ADD.W D0,D1

adds the low word stored in D0 to the low word stored in D1, and stores the result in D1. 
The high word is unchanged. 

The following instructions perform signed and unsigned multiplication, respectively, of 
the value in D1 by $4:

MULS.W #$4,D1

and

MULU.W #$4,D1

The following instructions perform signed and unsigned division, respectively:

DIVS.W #$4,D1

and

DIVU.W #$4,D1

Table 3-2 provides a summary of integer arithmetic instructions. Remember that the size 
of the data being manipulated is represented by a size suffix appended to the operator. If 
no size is specified, a word size is used by default.

You might want to review the description of multiply and divide instructions in your 
Motorola manual to gain a better understanding of how the destination operand is used.
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Program Control Instructions 3

Assembly-language instructions are stored as machine code. To the human eye this 
consists of a series of random-looking bytes located somewhere in memory. A special 
register called the program counter (PC) informs the microprocessor which bytes of code 
to execute and in what order.

The PC always contains the address of the next instruction to execute. After an 
instruction finishes executing, the PC automatically increments to point to the 
instruction that follows. Program control statements, which are compiled into program 
control instructions, allow programmers to direct the flow of a program along many 
possible paths. The instructions used to change the order of execution manipulate the 
address stored in the PC so that execution can shift to another location. 

Nonconditional branching is implemented by JSR, BSR, JMP, and BRA instructions. For 
example, the JSR (Jump to Subroutine) instruction

JSR xxx

calls a subroutine, where xxx is the address of the subroutine. Usually this instruction 
looks like this:

JSR MYPROC

where MYPROC is the routine you want to call. The assembler replaces MYPROC with 
the actual address to jump to. 

On the Macintosh, JSR instructions usually use some form of address register indirect 
addressing or PC-relative addressing. Generally, if the destination address is in the 
same code segment, PC-relative addressing is used. If the destination address is in 

Table 3-2 Arithmetic integer instructions

Instruction Action

ADD Add operands and place result in destination operand.

CLR Clear operand bits.

CMP Compare operands and set condition codes.

DIVS Signed: Divide destination by source; place result in destination.

DIVU Unsigned: Divide destination by source; place result in destination.

EXT Convert smaller size value to larger size value: byte to word, word to 

MULS Signed: Multiply operands; place result in destination.

MULU Unsigned: Multiply operands; place result in destination.

NEG Negate operand.

SUB Subtract source from destination; place result in destination operand.

TST Compare operand with zero and set condition codes.
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another code segment, the JSR instruction will use the address register indirect with 
displacement addressing mode and go through the jump table. See the section “Inter-
Segment Calls and the Jump Table” in this chapter for additional information.

The BSR (Branch to Subroutine) instruction, for example,

BSR xxx

also calls a subroutine, but xxx is a PC-relative address—that is, xxx is added to the 
address of the current instruction (BSR) to get the address of the subroutine. Whether 
you use the JSR or BSR instruction to call a subroutine, you use the RTS (Return from 
Subroutine) instruction to return from the subroutine. 

Another instruction that changes the flow of program control is JMP (Jump). 
For example;

JMP xxx

jumps to the instruction at address xxx. This is not a subroutine call, and it does not 
allow you to return using an RTS instruction. It resembles a GOTO statement in BASIC. 
The PC-relative version of the JMP instruction is the BRA (Branch) instruction; this 
instruction jumps to the instruction at xxx, where xxx is a PC-relative address.

To implement conditional branching, the compiler uses an instruction that performs a 
test, usually a CMP (Compare) or TST (Test) instruction, followed by an instruction that 
branches depending on the results of that test. The microprocessor sets bits in the status 
register (SR) to reflect the results of the test.

When you execute most instructions, the SR (status register) is modified to reflect certain 
aspects of the action that just took place. The SR contains five flag bits for condition 
codes, and their state (0 or 1) depends on the result of the last operation that occurred. 
For example, if the operation produces a zero, a flag called the zero flag is set to one; or, 
if the result is negative, a negative flag is set. When flags are set in the SR, the letters that 
represent the respective flags are capitalized. (The contents of the status register are 
displayed on the MacsBug screen, in the middle of the status region.)

The instruction

CMP.L D0,D1

compares the values in registers D0 and D1. This command sets some flags in the SR, 
which can be checked by the next instruction to determine whether to branch. The 
instruction,

BEQ xxx

will branch to xxx if D0 and D1 are equal. xxx is PC-relative. Conversely, the BNE 
(Branch if Not Equal) instruction will cause a branch if the values stored in D0 and D1 
are not equal. 

If you are about to execute a conditional branch instruction, MacsBug will tell you, in the 
upper-right corner of the PC region, whether you will branch or not. Figure 3-10 shows 
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the PC region of the MacsBug display. The next instruction to be executed is the BNE 
instruction. Since MacsBug already knows the result of the previous CMP instruction, it 
can tell you whether the branch will occur.

Figure 3-10 Conditional branching indicator

Table 3-3 provides a summary of the branch instructions.

Table 3-3 Branching instructions

Instruction Action

BCC Branch if C flag is clear (no carry from previous operation).

BCS Branch if C flag is set.

BEQ Branch if Z flag is set; the operands compared by previous instruction are 
equal.

BGE Branch if (in previous instruction) destination operand is greater or equal 
to source.

BGT Branch if (in previous instruction) destination operand is greater 
than source.

BHI Branch if high (C and Z flags are clear).

BLE Branch if (in previous instruction) destination operand is less than or 
equal to source.

BLS Branch if low or same (C or Z flag set).

BLT Branch if (in previous instruction) destination operand is less than source.

BMI Branch if negative (N flag set).

BNE Branch if operands of previous instruction are not equal. (Z flag clear).

BPL Branch if positive (N flag clear).

BVC Branch if overflow is clear (V flag clear).

BVS Branch on overflow (V flag set).

PC
region

Command 
line

Branching
indicator
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Note that the Z(ero) flag plays a part in determining whether two values are equal 
because, if they are, the difference between them is 0; if they are not, it is not 0.

Inter-Segment Calls and the Jump Table 3

Code for Macintosh applications is stored in resources of type 'CODE'. A 'CODE' 
resource is generally limited to 32K. Because applications are usually larger than 32K, 
they must be split up into multiple code segments, named 'CODE' 0, 'CODE' 1, 'CODE' 2, 
and so forth. Resource 'CODE' 1 usually contains the main entry point of your compiled 
program, that is, the first routine run.

When you compile and link a program, the linker places your program’s routines into 
code segments, usually in the order in which they are fed into the linker. The Macintosh 
uses a table called the jump table to track the location of these multiple resources. 
Resource 'CODE' 0 is always the jump table. 

The jump table is stored above the stack, next to the application parameters. Like the 
application parameters, the jump table is generated and used by the compiler, linker, and 
operating system without the programmer’s direct knowledge.

'CODE' resources, like all other resources, are loaded in relocatable, purgeable heap 
blocks. These are locked while in use, but unlocked by the UnloadSeg routine that most 
applications call from their main event loop. This means that a routine in one segment 
can call a routine in another segment that has been unlocked and that the Memory 
Manager might have moved or even purged. The jump table keeps track of the location 
of each 'CODE' resource and the offset of each routine inside each segment. 

If one routine needs to call another routine in a different segment, it must go through the 
jump table to determine the address where the other routine starts. If a routine calls 
another routine in its own segment, it does not need the jump table. Although 'CODE' 
resources move in the heap, their contents are constant, so the routines always keep a 
constant distance apart and can be accessed using a self-relative (PC-relative) branch. 
The section “Program Counter (PC) Relative Addressing” in this chapter describes how 
routines are addressed by an intra-segment call.

Figure 3-11 shows how the jump table and a self-relative branch work. When Proc A calls 
Proc B, Proc A must go through the jump table, since the procedures are in different 
segments. But Proc C can call Proc B without going through the jump table, since the 
procedures are in the same segment.
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Figure 3-11 The jump table and self-relative branching

The Segment Loader loads a 'CODE' resource from disk when any routine inside that 
resource is called. The Segment Loader also locks the resource after it is loaded so that it 
won’t move while it is running. Since the system cannot tell which segments you are 
actually using, it never unlocks them. The application itself unlocks the segments with 
the UnloadSeg call. This call makes a specific 'CODE' resource unlocked and purgeable 
and updates the jump table. You would normally want to include the UnloadSeg call for 
your application’s segments in the main event loop.

The next time a routine in the same segment is called, the jump table checks to see 
whether the segment is still loaded. If the segment is still in RAM, the jump table locks 
it again. But if the segment has been purged, the jump table loads the segment from 
disk again.

If you are ever tracing through code and see an instruction like

JSR 60(A5)

you are looking at a call to a routine in another code segment—that is, a call that will go 
through the jump table. Remember that A5 points to the application’s global variables 
and the jump table. Negative offsets from A5 reference global variables, while positive 
offsets (greater than 32) get you into the jump table. 

If you step once using the S (Step) command, you will enter the jump table. If the 
segment is already loaded, the jump table will contain a single instruction, JMP, which 

ROM

Screen buffer

High memory—RAM

Jump table

Procedure A

Low-memory globals

System heap

Stack

Procedure B

Procedure C

Code 1

Code 2

Application globals

Application heap
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will take you into the routine in the correct segment. But if the segment is not loaded, 
you will see something like this:

MOVE.W #$0001, -(SP)

_LoadSeg

You can step through the MOVE instruction, but if you try to step over the LoadSeg trap 
with the SO command, you will not be successful. The LoadSeg trap does not return in 
the standard way, so the SO command never realizes the trap is over. The GS macro is 
designed to step over a LoadSeg trap, so you should use it instead. After executing the 
GS macro, you will end up at the first instruction of the routine in the code segment that 
was loaded.i).jump table;

Stack Frame Instructions 3

The section “Stack Frames” in Chapter 4 explains how the calling program and the 
called program work together to set up stack frames. The compiler uses stack frames as a 
way of referencing everything your routines need to do their work (parameters, local 
variables, return result, return address) relative to one register, usually register A6. The 
compiler uses two special instructions, LINK and UNLK to set up and dismantle stack 
frames. This section describes these two instructions.

For example, the instruction

LINK A6,#$FFFE

sets up half of a stack frame. This instruction pushes the current value of register A6 onto 
the stack, and then sets A6 equal to the stack pointer (A7). It then allocates 2 bytes of 
space on the stack by adding –2 to A7 ($FFFE is –2 as determined by two’s complement 
arithmetic). The 2 bytes of stack space is all the space the routine needs for its local 
variables. The LINK instruction could allocate more space, if required by the number 
and size of the routine’s local variables. 

When the routine has finished executing, the compiler will have appended one last 
instruction, the instruction UNLK, to the instructions that make up the routine; for 
example, the instruction

UNLK A6

removes everything that LINK put on the stack and restores register A6 to its 
previous value.

A Simple Assembly-Language Program 3
This section uses a simple program to demonstrate the basic building blocks of assembly 
language. The program just clears a specified section of memory, setting each byte to 
zero. The number of bytes it clears is determined by the value stored in register D1; the 
address at which it starts to clear memory is stored in register A0.
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Figure 3-12 shows the assembly-language source code for the program; Figure 3-13 
shows the disassembled version as you would see it from MacsBug. As you can see, the 
instructions are identical in each version, but there are some notable differences 
in formats. 

Figure 3-12 Source code for an assembly-language routine

MOVE.L #$1000,A0 ; A0 is the address that will be cleared

MOVE.W #$10,D1 ; D1 is the number of bytes to clear

MOVE.W #$0,D0 ; D0 is the loop variable

@1 CLR.L $0(A0,D0.W) ; clear 4 bytes at A0+D0

ADD.W #$4,D0 ; increment loop variable by 4

CMP.W D1,D0 ; is the loop over yet?

BLT @1 ; if not, branch back and continue

The symbol “@1” is a statement label. It lets the programmer write the BLT (Branch if 
Less Than) instruction without having to compute how many bytes long the branch is. 
That is figured out by the assembler. Anything that appears after a semicolon is 
a comment. 

Figure 3-13 shows the disassembled version of the program. Each instruction begins at a 
specific memory address, shown to the left of the instruction. Notice also that the 
assembler has resolved the statement label to a specific address and that the comments 
have been removed. MacsBug has inserted a comment of its own, to tell you the actual 
address that the branch instruction will go to.

Figure 3-13 Assembly-language program: disassembled code

0001AB00 MOVE.L #$1000, A0

0001AB04 MOVE.W #$10, D1

0001AB08 MOVE.W #$0, D0

0001AB0C CLR.L $0(A0, D0.W)

0001AB10 ADD.W #$4, D0

0001AB14 CMP.W D1, D0

0001AB18 BLT *-$C ;0001AB0C
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If you already understand how the program works, you can skip this next part. If not, 
work through the instructions one line at a time and use the charts in Figure 3-14 to 
record changes in registers and related changes in memory. 

Figure 3-14 Registers and memory for sample program 

Begin with the first three instructions.

MOVE.L #$1000,A0 ; A0 is the address that will be cleared

MOVE.W #$10,D1 ; D1 is the number of bytes to clear

MOVE.W #$0,D0 ; D0 is the loop variable

The first instruction puts the value $1000 into register A0. The next instruction puts $10 
in register D1. The third instruction moves $0 into D0. After the first three instructions 
have been executed, your first row of registers should look like this:

Now that the registers have been set up, you’re at the beginning of the loop. The next 
instruction,

CLR.L $0(A0,D0.W) ; clear 4 bytes at A0+D0

clears memory (sets it to zero) at the address A0+D0+$0. Notice that this instruction uses 
an indexed indirect addressing with displacement mode. Since it operates on a long 

$1000      $1001     $1002      $1003      $1004      $1005      $1

$1008      $1009      $100A     $100B      $100C     $100D      $1

Memory

Registers

D0                    D1                   A0

D0                   D1                 

0                    10                  



C H A P T E R  3

An Assembly-Language Primer

58 Reading Assembly-Language Instructions

word (the operator has an “.L” suffix), it actually clears 4 bytes, starting at A0+D0+$0 
and going for 3 more bytes. Compute the value of A0+D0+$0. You should get $1000. In 
the Memory portion of Figure 3-14, write zero in the bytes $1000, $1001, $1002, and $1003. 

Now you’re ready to increment the loop variable. The next instruction,

ADD.W #$4,D0 ; increment loop variable by 4

adds $4 to register D0. The second row of your registers table now looks like this:

Next, you need to find out whether the loop is over yet. The next instruction

CMP.W D1,D0 ; is the loop over yet?

compares the values in registers D0 and D1 to determine whether the loop is finished. 
This causes certain flags in your status register to be set, which are checked by the next 
instruction. If D0 is less than D1, the branch instruction executes, taking you back to the 
clear instruction. If D0 is not less than D1, you simply fall through to the next instruction. 

The next instruction

BLT @1 ; if not, branch back and continue

goes back to the clear instruction.

CLR.L $0(A0,D0) ; clear 4 bytes at A0+D0

Once again, you must clear the memory in the 4 bytes starting at address A0+D0+$0. 
A0+D0+$0 should equal $1004. In the Memory portion of Figure 3-14, write zero in the 
bytes $1004, $1005, $1006, and $1007.

Now you must increment the loop variable again using the ADD.W instruction:

ADD.W #$4, D0 ; increment loop variable by 4

Write the result in the appropriate place on the Registers chart. Continue through the rest 
of the program on your own. Remember that $8+$4 = $C, and $C+$4=$10. 

Comparing Assembly-Language Code to Source Code 3
If you are debugging a program that you originally wrote in a high-level language, you 
need to learn not only how to navigate through the disassembled code using MacsBug 
commands, but also how to map this code back unto your source code. 

This mapping is not necessarily straightforward. As explained at the beginning of the 
chapter, the compiler uses a great deal of discretion in compiling your code. In addition, 
disassembled object code looks very different from the equivalent source code: the 
compiler replaces your symbol names with address or register references, and it must 

D0                   D1                 

4                    10                  
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often use many instructions to implement one high-level language statement. Compiler 
optimization can cloud things further. All these differences make the job of mapping the 
disassembled code back unto your source code a bit of a puzzle. 

Although there is no set formula for matching your source code to the assembly code, 
here are a few hints. 

■ Always have a complete, up-to-date printout of your source code next to you as you 
debug. This may sound obvious, but people often don’t do it, and it makes debugging 
a lot harder. (If you wrote your original program in assembly language, your 
comments and variable names will be missing from the disassembled version, so it 
is still a good idea to keep an up-to-date hard copy of your source code handy.)

■ If you are using certain control structures over and over, try compiling a dummy 
structure, just to see what its bare bones look like in assembly language. Having these 
disassembled structure “templates” around can help you locate these same structures 
in your real programs.

■ Make sure you start debugging at a known place in your program. The easiest way to 
do this is to put a Debugger call in your program right before the statements you want 
to debug. The Debugger call drops you into MacsBug immediately after executing the 
Debugger trap, thus guaranteeing that you know where you’re starting from. If you 
use the DebugStr trap, you can even include a string that MacsBug displays when it 
displays the debugging screen; for example: 

The IF clause starts here

For more information about the Debugger and DebugStr routines, see “Invoking 
MacsBug From Your Source Program” in Chapter 2.

After this, you have to use your wits. Walk through the assembly code, watching what 
each line does. When the assembly-language instruction(s) have done everything 
described by one line of Pascal or C source code, you know you’re starting the next line 
of source. This works well for simple instructions, like assignments or conditional 
branches. But some source instructions, like loops and case statements, are scattered 
across several other statements when translated into assembly language, and don’t look 
anything like what you might expect. 

For example, the compiler often moves the condition check in a loop to the bottom of the 
loop, regardless of whether the source code had it at the top or the bottom. Also, case 
statements are often implemented using a lookup table placed directly in the code. The 
disassembler doesn’t realize that the table isn’t code, and disassembles it into 
gobbledegook. You must read the code carefully to realize that the table is accessed as 
data and is never executed. Finally, some compilers optimize the code, which makes the 
assembly code look even less like the original source code. 

If you have trouble figuring out what the assembly code is doing, write down each 
register and memory location in a chart, as described in the section “A Simple Assembly-
Language Program” earlier in this chapter. If you run into an instruction or addressing 
mode that’s unfamiliar, you might have to look it up. 

The sections that follow walk you through some Pascal statements and the assembly-
language instructions that might be generated by a compiler to implement them. 
Remember that every compiler will generate different assembly code for the same Pascal 
code. The assembly-language equivalents presented here are only examples.
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Assignment Statements 3

This section describes the way a Pascal compiler might translate assignment statements. 
The Pascal code

PROCEDURE David;

VAR

X: integer;

BEGIN

X := 12;

END;

has only one executable line, that is, a line that actually causes assembly language to be 
generated by the compiler—the line X := 12;. All the other lines simply set up the context. 
The line X := 12; generates the following line of assembly language when compiled:

MOVE.W #$C,-$2(A6)

This instruction simply moves the value 12 ($C) into the memory location where X is 
stored. Notice that X is stored at a negative offset from register A6. 

If X were a parameter instead of a local variable, it would be stored at a positive offset 
from register A6. The Pascal code

PROCEDURE Stephen (X : integer);

BEGIN

X := 12;

END;

would generate this line of assembly code when compiled:

MOVE.W #$C,$8(A6)

If X were a global variable, it would be referenced from register A5. The Pascal code

VAR

X: integer;

PROCEDURE Graham;

BEGIN

X := 12;

END;

would generate this line of assembly code when compiled:

MOVE.W #$C,-$8(A5)

For additional information about how variables are specified in disassembled listings, 
see “Life on the Stack” in Chapter 4.
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A Procedure Call 3

The Pascal line

MyProc (X, 10);

calls the procedure MyProc with two parameters. It generates this assembly code:

MOVE.W -$4(A6),-(A7)

MOVE.W #$A,-(A7)

JSR MYPROC

The first line pushes the variable X onto the stack. What kind of variable is X in this case? 
It has to be a local variable because it’s referenced by a negative offset from register A6. 
The next line pushes the number 10 ($A) onto the stack. The third line calls MyProc. 
MyProc will remove the parameters from the stack before it returns.

A Loop 3

Here’s the Pascal code for a loop:

VAR

X, J : integer;

FOR J := 1 TO 10 DO

BEGIN

X := J;

END;

Here’s the equivalent assembly code:

0000AB00 MOVEQ #$1,D6

0000AB04 BRA.S *+$C ;0000AB10

0000AB08 MOVE.W D6,-$4(A6)

0000AB0C ADDQ.W #$1,D6

0000AB10 MOVEQ #$A,D0

0000AB14 CMP.W D6,D0

0000AB18 BGE.S *-$10 ;0000AB08

The remainder of this section steps through this code one line at a time.

0000AB00 MOVEQ #$1,D6

The first line puts the value $1 into register D6. It got the $1 from the FOR statement. But 
why is it putting it into D6 instead of J? The compiler is doing a little optimization here. 
Even though J is a local variable, and thus is normally on the stack, the compiler has put 
it in a register, because it makes the code faster and smaller. Accessing registers is faster 
than accessing memory, and the machine code to do it is several bytes smaller. 

0000AB04 BRA.S *+$C ;0000AB10
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The next instruction is a branch, which jumps down to the second MOVE instruction. 
But the FOR statement isn’t finished yet! The test to see whether J is greater than 10 is 
located at the bottom of the loop in assembly language. In Pascal or C, you can put the 
test to see whether you should exit either at the top or the bottom of the loop. In 
compiled code, the test is usually put at the bottom of the loop, no matter where it was in 
the source code. If the test was at the top of the loop in the source code, a branch is put in 
above the loop contents that branches to the test. If the test was at the bottom of the loop 
in the source code, the branch is not put in. This is easier for the compiler to generate, 
and semantically the same.

0000AB10 MOVEQ #$A,D0

0000AB14 CMP.W D6,D0

0000AB18 BGE.S *-$10 ;0000AB08

The MOVE instruction puts 10 ($A) into D0, so that the next instruction can compare the 
loop variable and check whether it’s greater than 10. The compare instruction compares 
the loop variable, which is in register D6, against 10, which is in register D0. Then the 
branch instruction goes back to the top of the loop if the loop variable has not hit 10 yet. 
Notice that it is doing the compare backwards—that is, it is not checking whether the 
loop variable is less than or equal to 10; it is checking whether 10 is greater than the loop 
variable. Compilers often do things like this.

The next line,

0000AB08 MOVE.W D6,-$4(A6)

executes the statement inside the loop: X := J. 

Finally, the instruction 

0000AB0C ADDQ.W #$1,D6

adds 1 to J, the loop variable. You’re back at the test to see whether you should exit 
the loop.

MacsBug’s Disassembly Commands 3

MacsBug provides four commands that you can use to display disassembled code 
starting at an address you specify. The syntax of the disassembly commands is

command name [ address ]

You can use a procedure name for the address. If you do not specify an address, 
MacsBug uses the address stored in the program counter (PC register). 

Table 3-4 provides a summary of the disassembly commands. Each command is 
described in detail in Chapter 9 of this manual.
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The address you specify for a disassembly command must actually be the starting 
address of an instruction. MacsBug will disassemble code even if you give it an address 
that occurs in mid-instruction—but the code will not make much sense. The section 
“Determining Where to Start Disassembling” at the end of this chapter provides addi-
tional information about selecting a valid and useful starting address for disassembly

Reading the Disassembly Display 3
The format used to display disassembled code is exactly the same for all the disassembly 
commands. Figure 3-15 shows the meaning of each field in the display.

Figure 3-15 Reading the disassembly display

If MacsBug knows the name of the routine that contains the disassembled code, it 
displays the name and the offset of the instruction within the routine in the first (left-
most) column. If MacsBug does not know the procedure name, but the address is in a 
known resource, it displays the type of the resource, the number of the resource, the file 
in which the resource is stored, the name of the resource, and the offset within the 
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C 

Table 3-4 MacsBug’s disassembly commands

Command Action

ID [ addr ] Disassembles and displays one line starting at addr.

IL [ addr [ n ] ] Disassembles and displays n number of lines starting at addr.

IP [ addr ] Disassembles and displays a half page (64 bytes) centered around addr.

IR [ addr ] Disassembles and displays code from addr to the end of the procedure 
containing the instruction at addr. 

Offset from
beginning of
procedure

Absolute
address

Operator Operands Machine
code

Comments

Procedure 
name
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The next column specifies the absolute address of the instruction. The next two columns 
display the operator and operand(s) that make up the instruction. To the extreme right of 
the display, MacsBug shows you the same instruction in machine language.

MacsBug uses several markers to provide additional information about your code:

■ An asterisk preceding the operator indicates the next instruction to be executed 
(whose address is currently stored in the PC).

■ A dot preceding the operator indicates that a breakpoint has been set on that 
instruction.

■ A semicolon after the instruction indicates a comment, or, in the case of a branch 
instruction, it indicates that the object code specifies the address to jump to. 

Determining Where to Start Disassembling 3
If you crash into MacsBug, you’ll probably want to disassemble around the program 
counter to see where you are and where you came from.

If you want to disassemble code that belongs to a specific routine, you can find the 
address of the routine you’re interested in by using the Symbol Display command. You 
execute the command by pressing Command-: (or Command-D). MacsBug displays a 
pop-up window in which it lists all the routine names in the currently selected heap. You 
can then use the Up Arrow and Down Arrow keys to select the routine name you want 
to use. When you press Return, the procedure name will be inserted in the command line 
at the point you pressed Command-:.

If you want to restrict the names displayed in the pop-up window, type the first few 
letters that you want the names to include. If you’ve qualified the list and want to move 
back to the previous level of qualification, press the Delete key. To remove the menu 
without making a selection, press the Esc key.

Remember that the symbol display (also known as the symbol dump) only shows 
routines in the currently selected heap. If the routines you want aren’t appearing in 
the symbol dump, stop and think about whether they’re in another heap. (See the 
descriptions of the HZ and HX commands in Chapter 9 for more information about 
displaying and switching heaps.)

Sometimes the symbol dump won’t display the routine name you want no matter what 
you do, but when you disassemble the code, it puts in the correct routine names. This 
can happen even when you have the correct heap set. If you know you have the correct 
heap set, the missing symbols are a sign that your code is not in a resource that MacsBug 
expects to contain code. For example, your resource may have been detached, or you 
may have made up your own custom code resource type. In both these cases, MacsBug 
will not show the routine names in the symbol dump.

When asked to perform a symbol dump, MacsBug goes through the selected heap and 
checks the relocatable blocks that contain resources of types that usually contain code. 
These include 'CODE', 'INIT', 'FKEY', 'WDEF', and dozens more. But the list is finite. 
When disassembling code, however, MacsBug gets the symbol names from the code 
itself, which is why it can sometimes find the correct names during disassembly even 
though it can’t find them with a symbol dump.l 
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When you write a program in a high-level language, you manipulate local variables, 
global variables, resources, and files that you refer to by name. By the time this informa-
tion is translated into a language the microprocessor can understand, however, the 
names are gone; they are replaced by addresses in memory. Although MacsBug can 
display procedure and trap names, you must use addresses to refer to your program’s 
variables, and to determine the value of a variable you must understand how these 
values are stored in memory.

MacsBug provides commands that allow you to look at every memory location, but 
before you can put these commands to effective use, you need to understand where the 
information you’re interested in is likely to be stored; that is, you need to understand 
how memory on the Macintosh is organized and how the contents of memory change as 
your program executes.

This chapter describes the kinds of memory used by the Macintosh, how to examine the 
different regions of memory using MacsBug commands, and how to interpret the 
information that MacsBug displays about these regions. 

Although memory management remains the same across all Macintosh platforms, 
memory organization and memory addressing depend on two major factors:

 

■

 

Whether you are running an application in a single-application environment (system 
software earlier than version 7.0, with MultiFinder turned off) or a 
multiple-application environment (system software version 7.0, or system software 
version 5.0 or 6.0 with MultiFinder turned on).

 

■

 

Whether your code is 32-bit clean.

This chapter also discusses how these factors affect the information displayed 
by MacsBug.

 

An Overview of Macintosh Memory Space 4

 

In the broadest sense, memory is simply a place where you store information. The 
Macintosh uses four different kinds of memory, which are distinguished from each other 
according to two criteria: whether memory is volatile or nonvolatile, and whether it is 
directly addressable by the microprocessor. As shown in Figure 4-1, the four kinds of 
memory are RAM, ROM, registers, and disk. For the purposes of this discussion, “disk” 
includes floppy and hard disks, tape drives, CD-ROM, optical disks, and other forms of 
mass storage. 
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Figure 4-1

 

 

 

Types of Macintosh memory

 

The memory in RAM and registers is volatile: the information it contains disappears 
every time you turn off your computer’s power supply. The memory in ROM and on 
disks is nonvolatile

 

:

 

 the information it contains remains intact whether or not the 
computer is turned on.

A computer’s 

 

address space 

 

consists of the total amount of memory the microprocessor 
is capable of addressing. Every byte of memory in the address space has a unique 
address. All of RAM and ROM have addresses, and thus are in the address space. 
Registers and disks do not have addresses, and therefore are not in the address space. 

Before you can manipulate information stored on disk, the information must first be 
loaded into RAM. To manipulate information stored in registers, you simply use the 
register name. 

How much address space is available to your application depends upon the Macintosh 
on which it runs. The Macintosh Classic and the Macintosh SE, which use the 68000 
microprocessor, have an address space of 16 megabytes (MB). Of this total space, any-
where up to 4 MB is assigned to RAM. The Macintosh II computers, which use the 68020 
or 68030 processor, can address up to 4 gigabytes (GB) of address space. Of this total 
space, anywhere up to 128 MB can be assigned to RAM. As you can see, the amount of 
memory available varies widely. The 

 

Macintosh Family Hardware Reference 

 

describes the 
amount and configuration of memory available on different Macintosh computers in 
fine detail.

Fortunately, you do not need to know fine details about the hardware to debug your 
program because no matter how large the memory space, it is organized into regions 
whose starting addresses are stored in global variables that you can refer to by name and 
that are found at the same address in every Macintosh. The next section, “The Memory 
Map,” describes the different regions of memory and explains what information is stored 
in each. The remainder of this chapter examine these regions in greater detail.

 

The Memory Map 4

 

The arrangement of information within the address space is represented by a memory 
map. Just as a road map can show you where to find a particular place in a large city, 
the memory map shows you where to find individual bytes of memory within your 
computer’s address space. Every byte of memory has an address that you can identify 
and to which you can refer. In order to read a memory map, you need to understand the 
units of memory and how these are arranged in memory. 

Not in address space

In address space

Volatile Nonvolatile

RAM ROM

Registers Disk
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The next section, “Memory Units and Their Representation,” discusses the conventions 
used to represent memory. The sections that follow explain how address space is used on 
the Macintosh by taking an increasingly detailed look at the Macintosh memory map.

 

Memory Units and Their Representation 4

 

Whatever the upper limit of addressable memory is, it is referred to as 

 

high memory.

 

 
The lowest limit is referred to as 

 

low memory.

 

 Figure 4-2 shows the typical figure used 
to represent memory, a rectangle. The base of the rectangle represents the lowest 
memory location and the top of the rectangle represents the highest memory location. 

 

Figure 4-2

 

High and low memory

 

Locations on a Macintosh memory map start at 0 and go up to either $00FF FFFF or 
$FFFF FFFF, depending on whether the machine is using the 680000 or 68020/30 
processor. 

The units of memory are the nibble, the byte, the word, and the long word. Table 4-1 
describes them.

 

Table 4-1

 

Units of memory

 

Term Size Bits Example

 

nibble half a byte 4 C

byte 1 byte 8 2C

word 2 bytes 16 E22C

long word 4 bytes 32 002C E22C

High memory

Low memory
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As mentioned earlier, only one byte of memory is stored at each address. If all the infor-
mation you’re using is cut up in byte-size chunks, then there’s one piece of information 
stored at each address; but, if you need to store information in larger size units, you 
must use successive addresses to store one chunk of information. For example, suppose 
you need to store an address. An address is always a long word, 4 bytes long; for the 
sake of this example, assume the address is 1234 5678. Figure 4-3 shows how a long 
word is stored at four successive addresses.

 

Figure 4-3

 

 

 

Storing a long word

 

MacsBug displays all numbers, including addresses, in hexadecimal notation. As shown 
in Figure 4-3, the leftmost byte of a word or long word is referred to as the most 
significant byte, and the rightmost byte as the least significant byte. Similarly, when you 
translate a byte, word, or long word into bits, you determine the most significant and 
least significant bit in the same fashion.

The only additional terms that you need to know are 

 

low-order word,

 

 

 

high-order word,

 

 

 

low-order byte,

 

 and 

 

high-order byte.

 

 The definitions are best furnished by examples. 

 

■

 

 

 

In the long word 56E5 12FF, the high-order word is 56E5 and the low-order word 
is 12FF.

 

■

 

 

 

In the word 56E5, the high-order byte is 56 and the low-order byte is E5.

In accordance with the storage convention described in Figure 4-3, the high-order word 
or byte is stored at a lower memory location than the low-order word or byte.

 

 Using MacsBug Commands to Display and Set Memory 4

 

The preceding section described the way data is stored in memory and the convention 
used to represent memory in this manual as well as throughout 

 

Inside Macintosh

 

. This 
section describes how MacsBug displays memory. Table 4-2 summarizes the MacsBug 

0104


0103


0102


0101


0100


0099

Address

00


78


56


34


12


00

123456781 8

0001 0010  0011 0100  0101 0110  0111 10000 0

Most significant bit Least significant bit
Bit 31 Bit 0

Memory storage on 

the Macintosh: 

the most significant 

byte is stored at the 

lowest address.

Most significant byte Least significant byte

Value
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commands that you can use to display information that is stored in memory and to 
change that information if you wish.

Each of these commands is described in greater detail in Chapter 9. 

To see an example of the way MacsBug displays memory, enter the command

 

DM 910

 

—that is, “display the information stored beginning at address 910.” MacsBug displays 
the following information:

 

Displaying memory from 910

 00000910  0E4D 6963 726F 736F  6674 2057 6F72 6400  •Microsoft Word•

 

The DM (Display Memory) command displays memory in hexadecimal notation and also 
displays, at the extreme right, its ASCII representation. Also, although you specify only 
one address, the DM command shows you the byte at that address and 15 more bytes. The 
subsequent bytes, in accordance with the memory storage convention described in the 
previous section, are stored at increasingly higher memory locations. Figure 4-4 shows a 
graphic representation of the output to the DM command shown above.

Of course, not even the hardiest programmer can make much sense out of a string of 
hexadecimal numbers. Fortunately, MacsBug allows you to use templates to display 
memory so that you can immediately see what the stored values are about. The section 
“Using Templates To Display Memory,” in this chapter, explains how you can define 
templates that MacsBug can use to display memory intelligibly. 

 

Table 4-2

 

 Commands that display and set memory

 

Command Action

 

DM Displays 16 bytes of memory starting at the specified address.

DP Displays 128 bytes of memory starting from the specified address.

DB Displays the byte at the specified address.

DW Displays the word at the specified address.

DL Displays the long word at the specified address.

SM Assigns a value to memory starting at the specified address.

SB Assigns a value to a byte starting at the specified address.

SW Assigns a value to a word starting at the specified address.

SL Assigns a value to a long word starting at the specified address.



 

C H A P T E R  4

 

Macintosh Memory Organization

An Overview of Macintosh Memory Space

 

71

 

Figure 4-4

 

 

 

Graphic representation of DM output

 

Memory Map Regions 4

 

The DM command described in the last section displayed memory beginning at address 
910. The hex dump didn’t reveal much, but the ASCII representation of the same portion 
of memory gave the name of the current application. How would you know to look at 
that particular address for that piece of information? The answer to this is that specific 
locations in memory have a special and consistent meaning for all Macintosh computers. 
Some of these locations hold pointers to other locations where certain information is 
stored (low-memory globals); others are entire regions dedicated to some specific 
structure in memory that the system or your program uses to do its work (such as the 
stack, the heap, or the jump table).

Macintosh computers that use the 68000 microprocessor divide the available address 
space into four sections of 4 MB each, as shown in Figure 4-5. (On the 68020 and 68030, 
RAM gets 8 MB in 24-bit mode.) The first 4 MB are set aside for RAM, the next 4 for 
ROM, and the last 8 MB for memory-mapped I/O, meaning special chips like the disk 
drive controller. Chips that control I/O devices can access mass storage outside of the 
address space through a special 1-byte “window.” Thus most of the memory-mapped 
I/O section is empty, with 1-byte islands here and there.

Although not all of the available address space is used on every machine, every machine 
with the same microprocessor divides up the address space the same way.

Address               Value

925

924

923
922

921

920

919

918

917
916

915

914

913

912

911
910

00

64

72
6F

57

20

74

66

6F
73

6F

72

63

69

4D
0E
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Figure 4-5

 

Address space for the 68000 processor

 

Figure 4-6 shows the area of memory that you’ll be working with most of the time in 
debugging. Figure 4-6 assumes that your program is running in a single-application 
environment (system software earlier than version 7.0, with MultiFinder turned off). The 
principal difference between memory organization in a single-application environment 
and in a multiple-application environment concerns the application heap region. (See the 
section “Heap Management in a Multiple-Application Environment” for additional 
information.) Note that Figure 4-6 is not drawn to scale. Although the order of the 
regions is correct, their relative sizes are not. In reality the application heap is much 
larger than any of the other regions.

 

Figure 4-6

 

 

 

A simple Macintosh memory map

16 MB

8 MB

12 MB

4 MB

0 MB

Memory map shown i
Figure 4-6

ROM

RAM

Memory-mapped I/O

       (hardware)

ROM

Screen buffer

High memory

Application globals

Stack

Application heap

System heap

Low-memory globals

RAM
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As Figure 4-6 shows, most of the regions of memory that are important for debugging 
purposes are part of RAM. The size of each region differs on different types of Macintosh 
computers, but the regions remain in the same order. If you add RAM to your system, 
the size of each region expands, but the order remains the same. 

Since the size, and thus the starting point, of each region can change, you need a way to 
find each starting point. It is not possible to draw dividing lines in memory as shown in 
Figure 4-6, but it is possible to store the address where each region begins at specific 
addresses that we can count on not to change. This is accomplished by means of pointers 
to each region that are stored in low memory. (The low-memory region always starts at 
zero, so that the pointers in low memory are always in the same place on all Macintosh 
computers.) 

Knowing how the memory you’re working with is organized is important because 
debugging requires that you decide whether a piece of data—which might be an 
address—makes sense. Table 4-3 describes how each memory region illustrated in 
Figure 4-6 is used.

 

Table 4-3

 

 

 

Memory regions 

 

Region Description

 

Low-memory globals Single numbers or pointers used mainly by the operating 
system, rarely by applications.

System heap Contains system information such as lists of the disks 
mounted, open files, and so on. Items in the system heap 
are not single numbers but larger data structures used mainly 
by the system, and rarely by applications.

Application heap Used by applications to store application code, windows, 
dialogs, alert boxes, data, menus, icons, and so on.

Stack Used by an application’s routines to store function results, 
local variables, return addresses of calling routines, and to 
pass routines’ parameters.

Application globals Used by the application to store its global variables. 
QuickDraw and the operating system also place some 
information here.

High memory Used by resident programs such as debuggers. Note that the 
term high memory is used to refer both to high memory in 
RAM as well as to high memory in the total address space.

Screen buffer The Macintosh hardware reads the screen buffer and displays 
its contents directly on the screen. This is called memory-
mapped video

 

.

 

 If you change the memory in the screen 
buffer, you will see the changes on the screen. On Macintosh 
computers that make use of the NuBus architecture, such as 
the Macintosh IIci, the screen buffer is actually above the 
ROM, not below it.

ROM ROM is located above RAM on the memory map, but it is not 
necessarily contiguous with RAM. The ROM contains system 
code and data (in the form of resources).
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The next section, “Using Low-Memory Globals to Draw a Memory Map,” explains how 
you can use the pointers to these regions to produce an exact map for the computer 
you’re developing on. 

 

Using Low-Memory Globals to Draw a Memory Map 4

 

The Macintosh has hundreds of low-memory globals. Most of these contain single values 
or pointers to other places in memory. 

 

How to Write Macintosh Software

 

 

 

by Scott Knaster 
has the best publicly available list of low-memory globals, although it is not complete or 
totally accurate. It is a very bad idea to write to low-memory globals or even to read 
them except by using the routines for this purpose that are documented in 

 

Inside 
Macintosh,

 

 but you can make effective use of some low-memory globals in debugging. 
This section describes how to use low-memory globals to make a map that accurately 
describes the memory configuration of the machine you’re developing on. “Exercise: 
Getting Started with MacsBug,” in Chapter 2, provides an exercise that accomplishes the 
same thing.

As mentioned earlier in this chapter, the various regions of the memory map start at 
different addresses, depending on available RAM and the model of the Macintosh you 
have. Some of the most useful low-memory globals are pointers to the beginning of each 
region, because they point to the correct location regardless of the characteristics of the 
particular machine being used. 

To make them easier for people to remember, every low-memory global has a name as 
well as an address, both of which MacsBug knows. If you identify a low-memory global 
by name, MacsBug automatically computes its address. (See the section “Standard 
Macros” in Chapter 8 if you would like to know how MacsBug translates low-memory 
global names to addresses.) Figure 4-7 shows the locations pointed to by the following 
low-memory globals (and register A7).
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Figure 4-7

 

 

 

Memory regions and low-memory globals

 

To find out the exact starting address for each memory region on your machine, you 
have only to dereference the low-memory global pointer. For example, if you enter

 

SysZone^

 

MacsBug displays the address that is stored at the address 02A6 (SysZone):

 

02A6^ = $00001E00   #7680   #7680  '••••'

 

The starting address of the system heap is 1E00.

If you dereference every low-memory global that is used to store the address of a region 
in memory, you will obtain output like the following. You can use this data as a memory 
reference map for your machine. 

 

02A6^ = $00001E00 #7680   #7680   '••••'

02AA^ = $0019713C #1667388 #1667388   '••q<'

0130^ = $00294752 #2705234 #2705234   '•)GR'

A7   = $0029AE94 #2731668 #2731668   '•)••'

0908^ = $0029AF14 #2731796 #2731796   '•)••'

ROM

Screen buffer

High memory (RAM)

Application globals

Stack

Application heap

System heap

RAM

Low-memory globals

ROMBase ($2AE)

Mem Top ($108)

ScrnBase ($824) *

BufPtr ($10C)
CurrentA5 ($904)
CurStackBase ($908)

Register A7 (Top Of Stack)

ApplLimit ($130)

ApplZone ($2AA)

SysZone ($2A6)

$00

* On Macintosh II computers, the screen buffer is above 
the ROM, but ScrnBase still points to the correct location
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0904^ = $0029B114  #2732308 #2732308   '•)••'

010C^ = $003C06F0 #3933936 #3933936   '•<••'

0824^ = $FAA00020 #4204789792 #-90177504  '•†• '

0108^ = $00141350  #1315664   #1315664   '•••P'

02AE^ = $40800000 #1082130432 #1082130432 '@•••'

 

Table 4-4 describes the memory location to which each low-memory global points.

 

Memory Management Under System Software Version 7.0 4

 

System software version 7.0 introduces two features that affect memory management:

 

■

 

 

 

32-bit addressing, which allows software running on machines with 32-bit clean 
ROMs (for example, the Macintosh IIci and the Macintosh IIfx) to access up to 4 GB of 
address space.

 

■

 

 

 

Virtual memory, which allows software running on 608030- and 608020-based 
machines (with a 68851 PMMU) to increase the amount of logical address space 
available to an application.

This section describes how these features affect your code’s ability to run under system 
software version 7.0. For a complete and detailed description of memory management 
under system software version 7.0, see the “Memory Management” chapter in 

 

Inside 
Macintosh

 

, Volume VI.

 

Table 4-4

 

 

 

Memory regions and low-memory globals

 

Name Address Description

 

SysZone $2A6 Points to the beginning of the system heap.

ApplZone $2AA Points to the beginning of the application heap.

ApplLimit $130 Points between the application heap and the stack.

Register A7 — Points to the top of the stack.

CurStackBase $908 Points to the base of the stack.

CurrentA5 $904 Points to the application globals.

BuffPtr $10C Points to the bottom of high memory.

ScrnBase $824 Points to the bottom of screen memory.

MemTop $108 Points to the top of RAM. Used to determine the 
amount of RAM installed on the machine. Accurate 
only in a single-application environment.

ROMBase $2AE Points to the beginning of ROM.
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32-Bit Addressing 4

The 68000 microprocessor has 24 address lines and has an address space of 224 bytes, or 
16 MB. The 68020 and 68030 microprocessors used in the Macintosh II product line have 
32 address lines, and thus have a total address space of 232 bytes, or 4 GB (4000 MB). 
However, Macintosh computers that use the 68020 and 68030 usually run in 24-bit mode, 
and use only the low 24 address lines. The effective total address space for these com-
puters is 16 MB, like that of the 68000-based computers. Starting with system software 
version 7.0, Macintosh computers with a 68020 (equipped with a PMMU) or 68030 micro-
processor will be able to run in 32-bit mode, which means that programs can access the 
full 4-GB address space. (Note that the 68000 microprocessor has only 24 address lines, 
and thus cannot run in 32-bit mode.)

Programs will not work properly in 32-bit mode unless they strictly follow the 
Macintosh programming guidelines contained in Inside Macintosh and the Macintosh 
Technical Notes. Because the high 8 bits of each 32-bit address have not been used until 
now, the Macintosh operating system has stored flags in the high byte. Some program-
mers have manipulated these flags directly instead of using the supplied system calls. 
For example, programmers occasionally set the bits that lock and unlock relocatable 
blocks directly instead of using the HLock and HUnlock calls. These bits are currently 
stored in the high byte of master pointers. Under systems that run in 32-bit mode, 
they are stored someplace else. The HLock and HUnlock calls will do the right thing 
regardless of which system a program is running under. However, if your program 
directly sets a bit in the high byte of a master pointer under a system that runs in 32-bit 
mode, you will end up changing the address stored in the master pointer rather than 
locking or unlocking the relocatable block.

Programs that follow the Macintosh programming guidelines and do not make use of 
this type of shortcut are described as 32-bit clean. If your program is not 32-bit clean, 
you need either to change the program or to set a flag in your program’s SIZE resource 
that indicates you want to run in 24-bit mode. Programs must be 32-bit clean in order to 
run under A/UX.

For more information about keeping your code 32-bit clean and associated issues, see 
Macintosh Technical Note #212, The Joy of Being 32-Bit Clean, and “Compatibility 
Guidelines” and “Memory Management” in Inside Macintosh, Volume VI.

Virtual Memory 4

Logical address space is the address space that the microprocessor can address. The 
amount of logical address space is determined by the number of address lines. If your 
processor has 24 address lines, it can address 16 MB of memory; if your processor has 32 
address lines, it can address 4 GB of memory.

Physical address space is the address space that actually exists. Physical address space is 
limited in principle by the amount of logical memory that your processor can address 
and is determined in reality by the amount of memory shipped with your computer and 
any memory that you add by installing additional memory. 
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Until system software version 7.0, the only way you could increase physical memory 
was by installing additional memory. System software version 7.0 includes software that 
implements a virtual memory scheme. 

 

Virtual memory

 

 is a way of expanding available 
memory by using software rather than by installing additional hardware. 

A program running under virtual memory can access the entire logical memory of the 
computer as if it were RAM, except for blocks of memory reserved for the system heap, 
ROM, NuBus cards, and a resident debugger. The operating system makes this possible 
by writing everything an application does not currently need to disk, and swapping it in 
as needed. In sum, expanding the memory available to your application by using virtual 
memory is cheaper but slower than buying additional physical memory.

Figure 4-8 illustrates how virtual memory affects memory allocation in 24-bit mode.

 

Figure 4-8

 

 

 

Virtual memory in 24-bit mode

 

The use of virtual memory in 24-bit mode creates more than 8 MB of logical memory. 
NuBus slots that don’t have cards in them are made available as RAM. If you designate 
the Process Manager (MultiFinder) heap as the target heap and use the HD command to 
display information about that heap, assigned NuBus slots, the resident debugger (if 
any), ROM, and the system heap will be represented as unrelocatable blocks. Thus, even 
though virtual memory increases the total amount of RAM available to your application, 
this amount does not represent contiguous free space in memory.

Figure 4-9 illustrates how virtual memory affects memory allocation in 32-bit mode.
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Figure 4-9

 

 

 

Virtual memory in 32-bit mode

 

As you can see, the basic difference between virtual memory in 32-bit mode and virtual 
memory in 24-bit mode is that in 24-bit mode, it is possible for RAM locations to be at 
higher addresses than ROM. In 32-bit mode, ROM starts at $40800000 rather than at 
$800000 (24-bit mode); otherwise the allocation of memory above ROM is the same 
whether virtual memory is on or not. In other words, using virtual memory with a 32-bit 
configuration increases the amount of memory you can address, but does not affect the 
memory map. This is because the 1 GB set aside for RAM currently exceeds the capacity 
of any disk. If disks become available that can hold say, 3 GB of information, the memory 
map in 32-bit mode with virtual memory on (shown on the right in Figure 4-9) would 
have to be altered.

MacsBug provides two markers in the status region of its display to indicate whether the 
machine is operating in 24-bit or 32-bit mode, whether virtual memory is installed, and if 
so, whether you can access pages that are currently swapped out. For additional 
information, see “The Status Region” in Chapter 2.

The operation of virtual memory should be transparent to most applications. You need 
to be concerned about the swapping process if
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Your application calls the SCSI manager directly.
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You are writing a SCSI driver.
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You are writing code that runs on a NuBus card and accesses the main memory.
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You are writing code that runs at interrupt time.

 

■

 

 You are writing a debugger that is meant to run under virtual memory.

■  You are writing an application that has critical timing needs.

The operating system provides routines that allow you to hold or lock portions of 
memory. Holding memory means that a portion of memory cannot be swapped out but 
can be relocated in RAM; locking memory means that a portion of memory can be 
neither swapped out nor moved. If you are writing a driver, or a sound or animation 
application with critical timing requirements, you might need to hold memory using the 
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HoldMemory function. You should also use the HoldMemory function to prevent 
buffers or code used by code that runs at interrupt time from having to be paged in. This 
is to prevent a possible double-page fault, which can occur if the code that runs at 
interrupt time needs to swap in pages while the operating system is in the process of 
swapping pages in or out.HoldMemory routine

You can lock memory using the LockMemory function; this function is used by drivers 
and other code when hardware other than the Macintosh CPU is transferring data to or 
from user buffers, such as any NuBus master peripheral card or DMA hardware.

For additional information about holding and locking memory and how to avoid 
situations that can cause double page faults, see the “Memory Management” chapter 
in Inside Macintosh, Volume VI.

Registers 4
In addition to memory that can be addressed and that is external to the microprocessor, 
the 68000, 68020, and 68030 microprocessors can also access a total of 70 bytes of 
memory in their own registers. These include the address registers A0 to A7, the data 
registers D0 to D7, the status register (SR), and the program counter (PC). Each register is 
4 bytes long and holds a single value at a time (with the exception of the status register, 
which is 2 bytes long). 

Registers are not shown on the memory map; when you refer to them using MacsBug 
commands you use their names. For example, the command:

DM A7

means “display the value stored in register A7.”

The registers are the microprocessor’s working space. When you cook a meal or work on 
a car, you need a working area that can hold the tools and ingredients that you need to 
complete the job at hand. You could go fetch each item as you needed it from the store or 
from storage, but this would be inefficient. The microprocessor works the same way; 
it stores the instructions and data it’s about to use in registers in order to do its work 
more quickly.

As their names indicate, registers have specialized functions:

■  The address registers, A0 – A7, hold addresses. Two of these, A6 and A7, are used to 
refer to addresses on the stack. See “Life on the Stack” in this chapter for additional 
information. Register A5 contains an address relative to which the application’s 
globals, parameters, and jump table information can be accessed. See the sections 
“Application Globals” and “Application Parameters and the Jump Table” in this 
chapter for additional information.

■  The data registers, D0 – D7, hold data. Operating system routines, which are 
register-based, use some of these registers to pass data to or receive data from the 
calling program.

■  The PC register holds the address of the next instruction to be executed by the 
processor. For additional information about this register see Chapter 2.
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■  The Status or Condition Code register holds information about the operation that 
has just taken place. For additional information, see the Motorola manual that 
describes your microprocessor.

The 68020 and 68030 microprocessors contain some additional special-purpose registers. 
It is not necessary to know about these extra registers for normal debugging purposes.

The values stored in the address registers, data registers, PC register, and status register 
are normally shown in the MacsBug display every time MacsBug is invoked. For 
information about interpreting MacsBug’s display, see Chapter 2, “Working with 
MacsBug.” Table 4-5 lists the MacsBug commands that allow you to display the contents 
of other registers or to change the normal MacsBug display of register information. Each 
of the commands in Table 4-5 is described in greater detail in Chapter 9, “MacsBug 
Commands.”

You can change the value of a register by using a command in this form:

RegisterName := expression or RegisterName = expression

Using Templates to Display Memory 4
This section describes the TMP command, which lists the templates installed in your 
system, and explains how to create your own templates. This section also includes a brief 
exercise that you can work through to create a template that displays the mouse position.

Templates allow you to control the way MacsBug displays memory. When you use the 
DM (Display Memory) command to display memory, you have the option of specifying 
a basic type or a template name in order to make the display more intelligible. The 
syntax of the command is

DM address template-name

This means “display memory starting at the specified address using the specified 
template.”

Table 4-5  MacsBug register commands

Name Action

RAD Allows you to choose between two register-naming conventions.

SHOW Allows you to change the display format used in the status area of the 
MacsBug display. Allows you to show the contents of other registers or 
other memory regions in the status area.

TD Displays the contents of all CPU registers.

TF Displays the contents of the 68881 floating point registers.

TM Displays the contents of the 68851 MMU registers.



C H A P T E R  4

Macintosh Memory Organization

82 An Overview of Macintosh Memory Space

For example, you know that the mouse position is stored at address 830, so you execute 
the command DM 830 and MacsBug displays the following information:

Displaying memory from 0830

 00000830  0009 000F 0000 0000  01E0 0280 0008 0000  •••••••••••••••

You don’t work with screen coordinates in hexadecimal form, however, so you would 
like MacsBug to display the same information in decimal notation. You know that the 
word at 830 contains the vertical position and that the word at 832 contains the 
horizontal position of the mouse. By using the basic type SignedWord as a template (see 
Table 4-6), you can get MacsBug to display the same information in a more useful way. 
For example, if you type the command

DM 830 signedword; DM 832 signedword

MacsBug displays the following:

Displaying signedword

  00000830   #438

  00000832   #402

You can use basic types to display memory on the run, but if you would also like to 
display information about what the values refer to, in this case vertical and horizontal 
points, or if you want to display information for larger data structures, you might need a 
more customized and permanent template. 

You can use the names of templates defined by the 'mxwt' resource to display data 
structures created and maintained by User Interface Toolbox or operating system 
managers. For example, the 'mxwt' resource provides templates that you can use to 
display window records, grafPorts, heap zones, event records, and so forth. You can also 
create your own templates to display data structures created by your application or data 
structures created by the system that are not defined by the standard 'mxwt' resources.

Standard Templates 4

The Debugger Prefs file contains 'mxwt' resources that define standard templates. To 
display the names of templates that are loaded when you install the Debugger Prefs file, 
use the TMP command. If you enter TMP without parameters, MacsBug displays a list of 
all available templates. You can use these names with the DM command; for example

DM  000234C4 EventRecord

or

DM @WindowList WindowRecord
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MacsBug will then display memory in new and enlightening ways; for example, in 
response to the last command, MacsBug displays the following information:

Displaying WindowRecord at 002BEF10

002BEF20 portRect     #0 #0 #429 #506 

002BEF28 visRgn        002BF024 -> 002D560C   

002BEF2C clipRgn       002BF038 -> 002D8A6C   

002BEF7C  windowKind    0008

002BEF7E  visible       TRUE 

002BEF7F  hilited       TRUE 

002BEF80 goAwayFlag    TRUE 

002BEF81  spareFlag     TRUE 

002BEF82  strucRgn      0025F9D4 -> 002D7ACC   

002BEF86 contRgn       0025F9C0 -> 002D7AE0   

002BEF8A updateRgn     0025F9C8 -> 002D7760  

002BEF8E windowDefProc 080020D4 -> 20832A5C   

002BEF92 dataHandle    0025F9A8 -> 002D8150   

002BEF96 titleHandle   0025F9CC -> 002D813C  Chapter 4 

002BEF9A titleWidth    0040

002BEF9C controlList   002BF1DC -> 002D5528   

002BEFA0 nextWindow    NIL

002BEFA4 windowPic     NIL

002BEFA8 refCon        00000003 

Try the command without using the template, DM @WindowList, and you’ll notice a 
significant difference.

Using Basic and Template Types to Define Template Fields 4

You can create your own templates using ResEdit, or you can build your own resource 
using the file Templates.r as a model and then use the Rez tool to add it to the Debugger 
Prefs file. The next section provides a hands-on exercise that shows you how to use 
ResEdit to create a template. Whichever method you use, you need to give MacsBug 
three pieces of information: a field name, type name, and count for each line that you 
want it to display.

Figure 4-10 shows how the use of field name, type name, and count determine the 
information displayed by MacsBug for the portRect field of a window record.
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Figure 4-10  Template fields

MacsBug uses the string you enter into the Field name field of the resource as a label to 
describe the information that follows. It’s up to you to name the field.

MacsBug uses the Type name field of the resource to figure out how many bytes to 
display and in what format. The Type name SignedWord, in this example, tells MacsBug 
that you want 2 bytes displayed as a signed decimal number. You can use the types 
described in Table 4-6 and Table 4-7 to specify a Type name.

MacsBug uses the Count field of the resource to figure out the number of times items of 
the specified type should be displayed on one line. In this case, it will display 4 words as 
signed decimal numbers. 

MacsBug figures out the address of the field by taking the address at which you specify 
memory display should start and then adding however many bytes you have specified 
for previous fields. This means that you must specify the correct starting address for the 
data structure and that you must correctly specify the size of all the fields in the 
structure, even the ones for which you do not want information displayed (see Table 4-7).

Table 4-6 lists the basic type names that you can use to specify the size of data you want 
MacsBug to display and how to display it. 

Table 4-6  Basic types 

Type Display

Byte Display byte in hexadecimal.

Word Display word in hexadecimal.

Long Display long word in hexadecimal.

SignedByte Display byte in decimal.

SignedWord Display word in decimal.

SignedLong Display long word in decimal.

UnsignedByte Display byte in decimal.
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In addition to these basic types, which can be used individually with the DM command, 
you can also use the type names listed in Table 4-7 to describe the display of data. You 
can only use these type names in templates.

Constructing Linked Lists Using the 'mxwt' Resource 4

If a template named Temp contains a field type of ^Temp or ^^Temp, MacsBug assumes 
the field is a link to another data structure of the same type. Thus MacsBug can display 
linked lists if you have specified the appropriate type name in your 'mxwt' resource.

UnsignedWord Display word in decimal.

UnsignedLong Display long word in decimal.

Boolean Display byte as TRUE (nonzero) or FALSE (0).

pString Display a Pascal string. If you specify this for the type name, the 
value you specify for count indicates the maximum string size and 
is used to compute the next field address. If the string is only as long 
as the actual number of characters, specify 0 for count; MacsBug 
uses the length byte to determine the end of the string.

cString Display a C string (zero-terminated).

Table 4-7  Template type names

Name Display/Action

Text Displays a text string for the number of bytes you specify in the count 
field. For example, you can display resource types with the Text type 
and a count of 4.

Skip Do not display the next n bytes. Use the count field to specify n; leave 
the field name blank.

Align Aligns to a word boundary. Use this as the type name for the field 
following a C or Pascal string. Leave the field name and count 
value blank.

Handle Dereferences the next long word twice and displays the address of the 
master pointer and then the address that the master pointer points to. 
If you want to display what is stored at the address that the master 
pointer points to, use the ^^BasicType type name described below.

^BasicType Dereferences the next long word and displays the contents stored at 
that address using the specified BasicType. 

^^BasicType Dereferences the next long word twice and displays the contents of the 
address the master pointer points to using the specified BasicType. For 
example, you can display a window title by specifying ^^pString as a 
type name for the titleHandle field.

Table 4-6  Basic types (continued)

Type Display
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Figure 4-11 shows the entry for the nextWindow field for the WindowRecord template. 

Figure 4-11  Linked list field entry in mxwt resource

If you use the DM (Display Memory) command from MacsBug to show you a window 
record; for example:

dm @WindowList WindowRecord

and the application you’re debugging has several windows open, MacsBug displays 
information similar to the following:

Displaying WindowRecord at 003E94CC

 003E94DC  portRect #0 #0 #429 #516 

 003E94E4  visRgn 003E7D0C -> 003E9570   

 003E94E8  clipRgn 003E7D08 -> 003E9584   

 003E9538  windowKind 0008

 003E953A  visible TRUE

 003E953B  hilited FALSE 

 003E953C  goAwayFlag TRUE 

 003E953D  spareFlag TRUE 

 003E953E  strucRgn 003E7CB4 -> 003FF734

 003E9542  contRg 03E7CB0 -> 003BCFA0  

 003E9546  updateRgn 003E7CAC -> 003EC5E4   

 003E954A  windowDefPro 080020D4 -> 20832A5C   

 003E954E  dataHandle 003E7CA0 -> 003EC630   

 003E9552  titleHandle 003E7CA8 -> 003FF24C  Untitled1 

 003E9556  titleWidth 003C 

 003E9558  controlList 003E7C94 -> 003FD6DC   

 003E955C  nextWindow 003E7A50 

 003E9560  windowPic NIL 

 003E9564  refCon 00000004 
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If you press Return, MacsBug displays information about the next window in 
WindowList, whose address (003E7A50) is given in the nextWindow field. 

Displaying WindowRecord at 003E7A50

 003E7A60  portRect #0 #0 #429 #506 

 003E7A68  visRgn 003884B0 -> 003E7AF4   

 003E7A6C  clipRgn 003884B4 -> 003F8DEC   

 003E7ABC  windowKind 0008 

 003E7ABE  visible TRUE 

 003E7ABF  hilited FALSE 

 003E7AC0  goAwayFlag TRUE 

 003E7AC1  spareFlag TRUE 

 003E7AC2  strucRgn 003E7B5C -> 003F8D68   

 003E7AC6  contRgn 003E7B58 -> 003F8D7C   

 003E7ACA  updateRgn 003E7B54 -> 003F88E8   

 003E7ACE  windowDefPro 080020D4 -> 20832A5C    

 003E7AD2  dataHandle 003E7B48 -> 003F8938  

 003E7AD6  titleHandle 003E7B50 -> 003FD814 -> 

mbreleasenotes

 003E7ADA  titleWidth 006A 

 003E7ADC  controlList 003E7B3C -> 003F8B5C   

 003E7AE0  nextWindow NIL

 003E7AE4  windowPic NIL 

 003E7AE8  refCon 00000003 

(The underlined portions of these listings are for your benefit; they are not underlined in 
the MacsBug display.) 

When the nextWindow field has a value of NIL and you ask MacsBug to show you the 
next window record, it displays the message “End of linked list.” Linked lists are 
zero-terminated. If a template contains more than one field specifying a link, MacsBug 
uses the last field found.

Exercise: Creating Your Own Template 4

This exercise demonstrates how to create a template named MouseCoords, which will 
allow you to display the position of the mouse in an intelligible and useful way. The 
exercise assumes that you are using ResEdit 2.1.

1. Place the cursor in the upper-left corner of the screen and use the interrupt switch 
to invoke MacsBug.
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2. Type DM mouse and press Return.
This command asks MacsBug to display memory at address 830, also known to 
MacsBug by the system global name, mouse. MacsBug displays information similar to 
the following:

Displaying memory from 0830

 00000830  0009 000F 0000 0000  01E0 0280 0008 0000  •••••••••••••••

3. Type G, press Return, and move the cursor to the lower-right corner of the screen.

4. Press the interrupt switch to invoke MacsBug.

5. Type DM Mouse again and press Return.
MacsBug displays something like the following:

Displaying memory from 0830

 00000830  0017 0228 0000 0000  01E0 0280 0016 0220  •••(••••••••••• 

Notice that the coordinates of the mouse have changed. Now you’ll create a template 
that you can use to get a more useful display.

6. Type G and press Return.

7. Double-click the Debugger Prefs file in your System Folder to launch ResEdit.

8. Open the 'mxwt' resource.

9. Choose Create New Resource from the Resource Menu.

10. Click on the five asterisks (*****). Choose Insert New Field(s) from the 
Resource Menu.
ResEdit displays a template similar to the one shown in Figure 4-12.

Figure 4-12  The 'mxwt' template
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11. Type MouseCoords in the Template name field.

12. Click on the dashed lines and choose Insert New Field(s) from the Resource menu.

13. Type Vertical in the Field name, SignedWord in the Type name, and 1 in the 
Count field.

14. Click on the dashed line below the Count field. Choose New Insert New Field(s) 
from the Resource menu.

15. Type Horizontal in the Field name, SignedWord in the Type name, and 1 in 
theCount field. 
Your template should like the one shown in Figure 4-13.

16. Choose Save and then Quit from the File menu, then restart your system. 
You must restart because MacsBug only loads the template resources during system 
startup. Now you can use the new template.

17. Place the cursor in the upper-left corner of the screen. Press the interrupt switch to 
invoke MacsBug. Type DM Mouse MouseCoords and press Return.
MacsBug should display something like the following:

Displaying MouseCoords at 00000830
  00000830  Vertical           0002 
  00000832  Horizontal         0001 

18. Type TMP to display template names.
You’ll see MouseCoords at the bottom of the list.

19. Type G to leave MacsBug.

Figure 4-13  MouseCoords template
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Application Space 4

Your application can store information in three places in memory: in local variables, in 
global variables, and in the heap.

■  You use global variables to store information (or pointers to information) that needs 
to be accessed by different procedures in your program. The section “Application 
Globals” in this chapter describes how global variables are stored in this area and how 
they are addressed with reference to register A5.

■  Your routines’ local variables, parameters, and return result (if any) are stored on the 
stack. The section “Life on the Stack” in this chapter explains how this region of 
memory is used both by your application and by the system to execute routines and 
A-traps.

■  The resources and data structures created by your application are stored in your 
application’s heap. You allocate and deallocate space on the heap for the information 
you want to store there through calls to the Memory Manager. The next section, “The 
Heap,” describes how this region of memory is organized.

MacsBug provides commands and standard macros that you can use to display informa-
tion stored in these three areas. But in order to use these commands, you must under-
stand the characteristics of each of these regions of memory. 

The shaded area of Figure 4-14 shows the region of memory that belongs to your applica-
tion if it’s running in a single-application environment. The section “Heap Management 
in a Multiple-Application Environment,” later in this chapter, provides additional 
information that you need to know if your application is running in a multiple-
application environment. However, as the basic structure of the heap and the units 
(blocks) that make it up is the same in both environments, you need to read about the 
heap first before proceeding to that section.

Your application is not normally concerned with the system heap and low-memory 
globals. You can use low-memory globals for debugging; otherwise, you should access 
information stored in this area only by using system calls. The system heap stores data 
structures and resources it needs to do its work; in a multiple-application environment, it 
also stores resources that are shared by concurrently running applications. The Memory 
Manager uses the same scheme to manage the system heap as it does to manage the 
application heap.
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Figure 4-14  Application space in a single-application environment

The Heap 4

A heap or heap zone is a large piece of memory that is broken up into units called 
blocks. The current application heap’s starting address is stored in the low-memory 
global ApplZone and ends at the address stored in the low-memory global HeapEnd, 
though it is possible to grow the zone up to the address stored in the low-memory global 
ApplLimit. The Memory Management chapters in Inside Macintosh, Volumes II, IV, and 
VI, describe how you use Memory Manager routines to allocate, resize, and deallocate 
blocks in the heap and how to grow the heap if necessary. This section summarizes some 
of this information in order to better describe the MacsBug commands that you use to 
examine the contents of the heap; however, it is no substitute for the detailed presenta-
tion in Inside Macintosh. 

The number of heaps varies depending on whether you are running in a single-
application or multiple-application environment:

■  In a single-application environment, there are two heaps: the system heap and the 
application heap, as shown in Figure 4-14. The system heap is used by the operating 
system to store system data, while the application heap is used by the application to 
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store the application’s code, data, resources, and anything else the application keeps 
in memory (except its variables).

■  In a multiple-application environment, the number of heaps varies according to the 
number of applications that are launched. In addition to the system heap, all appli-
cations are launched within a larger heap managed by the Process Manager (or 
MultiFinder in system software versions previous to 7.0.) Each open application has 
its own separate heap. For additional information, see the section “Heap Management 
in a Multiple-Application Environment,” later in this chapter.

Whether the Memory Manager manages a heap in a single-application or multiple-
application environment, the elements that make up the heap, the format of the heap, 
and the strategy used by the Memory Manager to allow your application to use space as 
efficiently as possible do not change.

Figure 4-15 shows the format of a heap zone. The important things to note are the zone 
header and the zone trailer. The placement of blocks within the heap varies for each 
heap, though they always occupy the content area of the heap. The arrangement of 
blocks in Figure 4-15 is just an example; the blocks would not have to be allocated in that 
order or in those specific locations. 

Figure 4-15  Heap zone format

The Memory Manager uses a set number of bytes at the start of a heap zone to store 
information that it uses to manage the heap. This includes the address of the first byte of 
the contents of the zone, the address of the beginning of the zone trailer, and other data. 
“The Memory Manager” chapter of Inside Macintosh, Volume II provides complete 
information about the contents of the zone header. 
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The Memory Manager is responsible for creating a heap zone in memory and for 
allocating and deallocating space within it. Your application does not manipulate any 
part of the heap directly. You need to understand, however, that if you happen to write 
over information contained in the zone header, the Memory Manager can no longer 
reliably find blocks it has allocated nor allocate new ones, and this may cause your 
system to crash. The MacsBug HC (Heap Check) command tells you if the selected heap 
zone header or any block headers in that heap have been damaged.

MacsBug provides two commands that return information about heap zones.

The HZ (Heap Zones) command lists all the heaps. In a single-application environment, 
if you enter HZ, MacsBug returns the starting address of the current heap zones. 
For example:

Heap zones

 00001E00  SysZone

 0002D528  ApplZone  TheZone  TargetZone

The HX (Heap Exchange) command selects the target heap for other heap commands. In 
a single-application environment, entering HX toggles between the system heap zone 
and the application heap zone.

The HZ and HX commands are described in greater detail in Chapter 9, “MacsBug 
Commands.” For information about how these commands work in a multiple-
application environment, see “Heap Management in a Multiple-Application 
Environment,” later in this chapter.

Heap Blocks 4
All heaps are made up of blocks. Your application does not create or delete heap blocks 
directly. The Memory Manager provides routines that you use to request the kind of 
block you need. You use other routines to give the Memory Manager additional informa-
tion about how to handle these blocks and still others to resize the blocks or to dispose of 
the blocks when you no longer need them.

All blocks in the heap have the format shown in Figure 4-16. Blocks have two parts: the 
header area and the contents area.
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Figure 4-16  The format of a heap block

The Memory Manager uses the information kept in the block header to manage the heap. 
Although the Memory Manager is responsible for creating and managing blocks, you 
need to be aware of three things:

■ The logical size of a block is the amount of space you specified with the size parameter 
when you call NewPtr or NewHandle. The physical size of the block includes the 
header region as well as whatever padding the Memory Manager adds to the block. 
The number of bytes added for padding is stored in the size correction field of the block 
header and is displayed in the output for the MacsBug HD (Heap Display command).

■ The starting address of the block, displayed by the MacsBug HD command, is the 
starting address of the block’s content area.

■ If you allocate a block that is 100 bytes in size and then write 120 bytes into it, you will 
write past the end of your heap block and over the beginning of the next block. Worst 
of all, you’ll be writing over the block header of the next block and whatever kind of 
block that is, even if it’s free, you will destroy the information stored in that header. 
The Memory Manager needs most of the information stored in the block header 
to manage the heap. If you write over this information, the next time you call the 
Memory Manager, it will crash. Fortunately, MacsBug provides a special command, 
HC (Heap Check), that you can use to check the heap and find the cause of 
such crashes.

There are three kinds of heap blocks: nonrelocatable, relocatable, and free:

■ Nonrelocatable blocks never move. You request space for these blocks by using a 
NewPtr call or by calling another routine that calls NewPtr, such as NewWindow. The 
Memory Manager allocates these kinds of blocks as near to the bottom of the heap as 
it can. After it has allocated space in the heap for a nonrelocatable block, it returns a 
pointer to the block; the pointer contains the address of the start of the block. When 
you no longer need the block, you can call the DisposePtr routine to deallocate the 
space in the heap.
Using too many nonrelocatable blocks can cause the heap to become fragmented, 
because when you deallocate them, you leave gaps in the heap that the Memory 
Manager can only fill with nonreloctable or relocatable blocks that are that size 
or smaller.

Block contents

Block header
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■ Relocatable blocks can be moved by the Memory Manager at certain well-defined 
times. You request space for these blocks by using a NewHandle routine or by calling 
another routine that calls NewHandle. The Memory Manager allocates space for these 
blocks right above the nonrelocatable blocks. After it has allocated space in the heap 
for a relocatable block, it stores the starting address of the block in a master pointer 
and then returns the address of the master pointer to you. Whenever you need to 
access the contents of the block, you use that pointer to the master pointer, or handle 
for short. When you no longer need the block, you call the DisposHandle routine to 
get rid of it.
Figure 4-17 shows the relationship between a relocatable block, the master pointer, 
and a handle. Whenever the Memory Manager moves the block, it also updates the 
address stored in the master pointer. In the example shown, the master pointer, at 
address 00022B40, stores the starting address of the relocatable block, 00091C2C. The 
handle, at address 0009BCE6, stores the address of the master pointer, 00022B40.

Figure 4-17  Handles and master pointers

■ Free blocks are chunks of space that have not yet been allocated. Although their name 
would suggest that they are bits of blank space, this is not the case. Each free block 
has a header that contains information which the Memory Manager uses to keep track 
of the contents of the block and of the structure of the heap. Overwriting the header of 
a free block has the same dire consequences as overwriting the header of any other 
block: a corrupt heap and a nontrivial bug.

Relocatable blocks have three properties not associated with other types of blocks:

■ They can be locked or unlocked. Locking a relocatable block prevents it from being 
moved. While locked, a relocatable block acts like a nonrelocatable block and frag-
ments the heap. The HLock and HUnlock calls lock and unlock relocatable blocks. 
Unecessarily locking relocatable blocks or neglecting to unlock them as soon as you 
can also causes heap fragmentation.

■ They can be purgeable or unpurgeable. Making a block purgeable allows the Memory 
Manager to deallocate it, if necessary, to make room for another block. The HPurge 
and HNoPurge calls make relocatable blocks purgeable and nonpurgeable.

■ They can contain resources. 

If a block is marked as both locked and purgeable, the locked marking takes precedence 
over the purgeable marking.
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Purgeable blocks are useful for data stored on disk that must be read in and used 
periodically, because they allow you to take full advantage of the memory available on 
any given machine. When you are finished with a block of data for the time being, but 
you might need to use it again, you can mark it as purgeable. As long as there’s enough 
memory, the Memory Manager will leave a purgeable block sitting around in the heap 
after it has been used. This means that the next time your program needs that particular 
block, it will be available without having to read it into memory again from disk. But if 
memory is tight, the Memory Manager purges the block (deallocates it) to make room for 
something else. When you need the original data again, you have to read it in again 
from disk.

Using purgeable blocks thus allows your program to run faster on computers with lots 
of RAM. Your program doesn’t need to keep track of whether memory is tight or not—
the Memory Manager does that for you, and adjusts your program’s memory usage 
accordingly.

Displaying Information About Heap Blocks 4
MacsBug provides two commands that display information about heap blocks: the HT 
(Heap Total) command and the HD (Heap Display) command. Before you use either of 
these commands, you must use the HX command to select the heap to which the blocks 
belong. If you are running in a multiple-application environment, use the HZ (Heap 
Zones) command to list the beginning address of all heap zones. You can then select 
the heap you’re interested in by specifying its starting address as a parameter to the 
HX command.

The HT command displays information about the total number of each kind of block in 
the heap. Its output looks like this:

Totaling the Application heap at 00279FB8

Total Blocks  Total of Block Sizes

 Free 0D1B #3355 00040954 #264532

 Nonrelocatable 000E #14 00037924 #227620

 Relocatable 000D8  #216  00085368  #545640

   Locked 00003  #3  0006B73C  #440124

   Purgeable and not locked 000C #12  00002D24   #11556

 Heap size 00E01 #3585  000FD5E0 #1037792

The HT display can be slightly misleading if you’re trying to figure out how much room 
you’ve got left in the heap. The amount it shows you is a total of all free blocks in the 
heap; if the heap is fragmented, you have nowhere near that amount of contiguous free 
space. To get a more exact picture of the heap, use the HD command. This command 
displays information about each block in the heap, including its starting address, its 
length, its type, the address of its master pointer and whether it’s purgable (if it’s a 
relocatable block), its resource attributes (if it’s a resource), and the file reference number 
and name (if it’s a resource block).
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The output of the HD command is similar to the following:

Displaying the Application heap

Start Length Tag Mstr Ptr Lock Prg Type ID File Name

 • 0031CFE8 00000100+00 N

 • 0031D0F0 00000018+00  R 0031D0E4   L

 • 0031D110 00000032+02  N

 • 0031D14C 0001CD36+02  N

  00339E8C 0000BDFC+00  F

 • 0035232C 00000A60+00  N

 • 00352D94 00029800+00  R 0031D070   L

 • 0037C59C 00000006+02  N

  0037C5AC 0000009C+00  F

 • 0037C650 0000000C+00  N

  0037C664 0000000C+00  F

  0037C678 00000010+00  F

 • 0037C690 00000100+08  N

Each line of the display provides information about one heap block. Heap blocks are 
listed in order from the lowest address to the highest address. You can use the HD 
command to obtain information about one particular block or about all the blocks in a 
heap. (The description of the HD command in Chapter 9 describes the syntax and output 
of the command in greater detail.) Because the HD command lists information about 
blocks in the order in which blocks are stored in the heap, it literally gives you a picture 
of the heap. 

If the starting address of a block is preceded by a dot, this indicates that the block cannot 
be moved, either because it’s a nonrelocatable block or because it is a locked relocatable 
block. A look at the output of the HD command will quickly reveal whether your heap is 
fragmented. There’s some serious fragmentation in the example just shown. 

Although the Memory Manager is responsible for allocating blocks and letting you know 
where they are, it is your responsibility to request space in ways that allow you to make 
long term efficient use of memory. The Memory Manager uses two methods to avoid 
heap fragmentation: memory reservation and memory compaction. It compacts the heap 
to create space for new relocatable blocks and it reserves space on the heap for new 
nonrelocatable blocks. Volume I, Issue 2 of Develop magazine contains an excellent article 
by Richard Clark, “The Secret Life of the Memory Manager,” that explains exactly how 
the Memory Manager manages the heap and what you can do to help it. The optimal 
arrangement of blocks on the heap is shown in Figure 4-18.

If the “picture” of your heap provided by the HD command looks very different from 
that shown in Figure 4-18, take a look at “The Secret Life of the Memory Manager” in 
Develop to find out what you can do about it.
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Figure 4-18  Optimal arrangement of blocks in the heap

Corrupting the Heap 4
A heap becomes corrupt when the information that is stored in the heap zone header 
or the header of any block stored in the heap is overwritten. As with any form of 
corruption, the more damage occurs, the more difficult it is to find its source. That’s why 
the best cure for heap corruption is to prevent it from occurring in the first place or, if it 
does occur, to set things up in such a way that it is easy to find the cause. This section 
provides a brief summary of the things that can corrupt the heap and describes two 
MacsBug commands that can help you anticipate problems and keep damage to 
a minimum.

The one thing you can do that will corrupt the heap every time is to write over the 
heap zone header or the header of a block in the heap. There are several ways to 
accomplish this:

■ Writing beyond the end of the block you should be writing to and into the beginning 
of the next block. Even if the next block is free, the Memory Manager needs the 
information in its header to keep track of all the blocks and, if that information is not 
valid, it can no longer manage the heap.

■ NIL or dangling pointers and handles. If the address they point to happens to be in a 
heap header or block header, the heap will become corrupted the first time you write 
to that address. The next section, “Lost in the Heap,” describes the most common 
causes of NIL or dangling pointers and handles.

The MacsBug HC (Heap Check) command allows you to check whether the information 
in block headers and the heap header is intact. If you suspect that your application is 
crashing because of a corrupt heap, you can narrow down the cause of your troubles by 
executing the HD (Heap display) command. If a block header, rather than the heap 
header is damaged, you’ll get a listing of all the blocks that are OK. You should be able 
to extrapolate the beginning address of the block that’s not OK by looking at this listing. 
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If the heap header contains bad information, this won’t work, but then at least you’ll 
know that. 

To find what instruction is causing the damage, turn A-trap recording on using the ATR 
command. Then, start by checking the heap every time you call an A-trap from your 
application by rerunning your program using the ATHCA (A-trap Heap Check) com-
mand. Once the ATHCA command returns an error message, you’ll know that either the 
previous A-trap call or any instructions following that call (but before the A-trap pointed 
to by the PC) have caused the problem. Use the ATP (A-trap Playback) command to 
display the last traps executed; from this listing you’ll be able to figure out what the 
previous A-trap call was. If the range of instructions that you get using this procedure 
is small enough, you can step through the instructions, checking the heap after each 
instruction with the HC command to discover the offending instruction. If the range 
is too large to do this, you can take some educated guesses and then step through the 
smaller range of instructions.

Alternately, you can narrow down the source of heap corruption by using the DebugStr 
trap with an argument of ';HC;G'. For example, inserting the following call at key points 
in your program will cause MacsBug to be invoked every time the microprocessor 
encounters the DebugStr trap:

DebugStr ';HC; G'

The HC; G commands direct MacsBug to check the heap and continue executing if 
everything is OK. Otherwise, the HC command displays an error.

Lost in the Heap 4
As mentioned in the last section, NIL or dangling pointers or handles can corrupt your 
heap—if you’re lucky. If you’re not lucky, they’ll just corrupt your data and be that much 
more difficult to find. The sections “Catch NIL Pointers and Handles Instantly” and 
“Nasty Pointers” in Chapter 7 offer detailed suggestions on how to prevent and deal 
with these problems.

A NIL pointer or handle is what the Memory Manager returns to you when it can’t 
allocate the space you ask for. When this happens, the Memory Manager stores an error 
code in the low-memory global MemErr that provides some additional information 
about why space could not be allocated. If, before using the pointer or handle, you test 
for the possibility of its being NIL, you’ll be OK. Otherwise, if the Memory Manager 
can’t find the space you need, your pointer will contain whatever value is stored at 
address 0; your handle will contain whatever value is stored at the address pointed to by 
the value stored at address 0. When you write to or read from the location your pointer 
or handle points to, you’ll be corrupting the heap or the system data. Not checking for 
NIL handles and pointers is one of the most common causes of system crashes.

Dangling pointers or handles are pointers and handles that you think refer to the starting 
address of a block in memory, but which, for one of the following reasons, do not in fact 
refer to the block you’re interested in:
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■ You deallocate space using a DisposePtr or DisposHandle routine, forget all about it, 
and use the pointer or handle to write or read to that block again.

■ For greater run-time efficiency, you sometimes dereference the handle—that is, make 
a copy of the block’s master pointer, and then use that pointer to access the block by 
single indirection. However, if the Memory Manager moves the relocatable block after 
you got the value stored in the master pointer (the address of the block), and you 
access the data in the block, you will read or write to the wrong place in memory. That 
is, you will write to where the data was, not to where it is now.

If you must make a copy of the master pointer, remember that your copy may be 
invalidated when you make a system call, because the Memory Manager may move the 
relocatable block to which it points. Appendix B of Inside Macintosh contains a list of 
system calls that can cause the Memory Manager to move heap blocks. If you must make 
one of the system calls listed, you can do one of two things to make sure that the data the 
handle is pointing to remains valid:

■ You can use the MoveHHi call to move the block as high in memory as possible 
and then lock the relocatable block so it will not move. Unlock it again as soon as 
possible—a locked relocatable block fragments the heap just as a nonrelocatable 
block would.

■ You can store the data in a temporary variable and use that variable any time that you 
think a block might move.

There are many subtle ways in which your program can crash because of dangling 
pointers. For example, suppose you need to make the system call GetNextEvent. 
GetNextEvent returns information in an EventRecord—so, being a good programmer 
who doesn’t want to fragment the heap, you allocate a relocatable block for an 
EventRecord called MyEventHandle. You would call GetNextEvent like this:

result := GetNextEvent (everyEvent, MyEventHandle^^):

When you call GetNextEvent, the address of MyEventHandle is passed to 
GetNextEvent. But GetNextEvent can cause heap blocks to move, thus invalidating 
the address passed in. However, GetNextEvent has no way of knowing that the 
event record was in a relocatable block. It therefore writes to the address that was passed 
in and trashes your heap.

There are two easy solutions to this problem. One is to lock the handle before the 
GetNextEvent call (remember to unlock it afterwards). Alternatively, don’t use a 
relocatable block to store your EventRecord. Store it somewhere else, for example 
in a local or global variable.

As previously noted, a dangling pointer or handle, depending what address it’s really 
pointing to, can cause you to corrupt the heap (if it points into a block or heap header) or 
to corrupt the data in the heap if it points into a block’s contents. The HC (Heap Check) 
command, described in the previous section “Corrupting the Heap,” can help you find 
the trouble; but if you’re trashing a block’s contents, you’ll get symptoms that are much 
harder to pin down.
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The MacsBug HS (Heap Scramble) command is a very useful tool for finding dangling 
pointers and handles. Normally, the Memory Manager only moves blocks around when 
it has to; if you’re developing a program and you’ve got lots of RAM to play with, the 
Memory Manager might not have to move blocks very often. In this case, you might not 
discover that you have a dangling handle because the block it’s pointing to is never 
moved. This is where the HS command comes in; it makes the Memory Manager move 
relocatable blocks around whenever the move is legitimate—that is, during every A-trap 
call that can allocate memory directly or indirectly. This process also simulates running 
your program on a Macintosh with very little memory.

The HS command is described in greater detail in Chapter 9. It’s mentioned here to 
emphasize the fact that it is a great aid in development and testing. If by moving blocks 
around the HS command only causes you to trash the contents of your blocks, you won’t 
get any error messages (aside from possible bus errors), you’ll just get some weird and 
inconsistent behavior on the part of your application. But chances are that the HS 
command will get your application to damage some block headers, in which case you’ll 
corrupt the heap and be able to use the HC command to find the trouble.

If you run your program with heap scrambling turned on, you are likely to find a lot 
more bugs than if you leave it off. But these bugs are not created by the HS command; 
they are created by your program, and the earlier you find them, the easier they’ll be to 
fix. A program with no bugs will run perfectly with heap scrambling turned on.

Heap Management in a Multiple-Application Environment 4
The section “Application Space” in this chapter described how application space was 
organized in a single-application environment. As shown in Figure 4-19, the memory 
map in a multiple-application environment looks different from the memory map in a 
single-application environment (see Figure 4-14). 

In a multiple-application environment, the Process Manager (MultiFinder in system 
software version 5.0 or 6.0) manages a heap within which it allocates a locked relocatable 
block, called a partition, for each open application. An open application or process is the 
Finder, any application launched by the user, and any application that runs only in the 
background. The partition for each open application is structured like the application 
space in a single-application environment: it contains the application’s heap, stack, A5 
world, and jump table. When you create an application, you specify the amount of 
memory you want the Process Manager to allocate for your application’s partition using 
the application’s 'SIZE' resource. (The Process Manager allocates a locked-relocatable 
block for each open application, because each application can allocate nonrelocatable 
blocks in its heap; if the Process Manager moved an application’s partition around 
within its heap, the application’s nonrelocatable blocks would also move, which is 
not allowed.)
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Figure 4-19 Application space in a multiple-application environment

When you launch an application, the Process Manager places the application’s partition 
as high as possible in its heap. Because the Process Manager cannot move the partition, it 
is possible to fragment the Process Manager’s heap, as illustrated in Figure 4-20.

Since the Finder is automatically launched at startup, its heap is always the highest 
(unless you have background printing on, in which case that heap is the highest, and 
Finder is next). If you launch MacPaint, MacPaint’s heap will be right below Finder’s. If 
you then launch MacWrite, MacWrite’s heap will be next. The left half of Figure 4-20 
shows the situation at this point, with 500K still available in the Process Manager’s heap. 
You want to launch FullWrite Professional, but you need 1000K for FullWrite. So you 
quit MacPaint. Can you launch FullWrite now? No—even though you have 1000K free, it 
is fragmented, as shown in the right half of Figure 4-20. If you were to quit MacWrite 
and relaunch it, it would be launched as high as possible (in MacPaint’s old spot), the 
heap would be unfragmented, and you could then launch FullWrite.
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Figure 4-20 Fragmenting the Process Manager’s heap

The Process Manager places application partitions as high as possible for a good reason. 
In a single-application environment, when an application needs a system resource, such 
as a printer driver, the resource is loaded into the application’s heap. But in a multiple-
application environment, it would be a waste of memory for each application to get its 
own copy of every system resource. So these resources are automatically loaded into the 
system heap, allowing every application that’s open to share the same copy. 

This means the system heap will contain much more in a multiple-application environ-
ment than it would in a single-application environment. Originally, the system heap was 
designed to be small, hold a few system resources, and remain pretty much static once it 
was loaded. It had just enough space to hold the basics, and very little extra free space. 
In a multiple-application environment, the system heap might have to accept all kinds of 
system resources dynamically. To allow it to do this, the Process Manager expands the 
system heap as needed by shrinking the bottom of its own heap. But it’s important that 
the Process Manager’s heap not have any nonrelocatable blocks at its base, or this 
strategy won’t work.

For additional information about the Process Manager, see the “Process Management” 
chapter in Inside Macintosh, Volume VI.

Displaying Heaps in a Multiple-Application Environment 4

When you drop into MacsBug in a multiple-application environment, MacsBug behaves 
as though you were running a single application. MacsBug sees two heaps: the system 
heap and the heap of the currently running application, which is usually the frontmost 
application. The name of the current application is shown in the status region of the 
MacsBug display. It’s a good idea to check this item in case the application that caused 
MacsBug to be invoked was a background application that was running at the time of 
the crash.
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If you enter the HZ (Heap Zones) command, MacsBug displays a list of addresses that 
indicate the start and end of each heap. The current application has its heap labeled as 
ApplZone. The addresses of the Process Manager’s heap and of the other application 
heaps are listed but not labeled. The HZ command also tells you, in the leftmost column 
of the display, whether the heap is 24-bit or 32-bit. For example,

Heap zones

 24 00001E00 to 0006B41F  SysZone^

 24 00001FB8 to 0000248B

 24 0006B420 to 004C40DB

 24 004092C4 to 00482A53  ApplZone^  TheZone^  TargetZone

 24 0048A2CC to 004AEFF3

 24 004B62D4 to 004B7BB7

The HZ display identifies embedded heaps by indenting them. In the output just shown, 
the heap zone from 00001FB8 to 0000248B is embedded in the system heap; the heap 
zones from 004092C4 to 00482A53, from 0048A2CC to 004AEFF3, and from 004B62D4 
to 004B7BB7 are all embedded in the Process Manager’s heap zone, which starts at 
0006B420 and ends at 004C40DB. All heap zones in this example are 24-bit.

The HZ command uses three low-memory globals and one MacsBug variable to describe 
some of the heaps:

■ ApplZone (low-memory global) points to the start of the current application heap.

■ TheZone (low-memory global) points to the zone currently set by the SetZone routine.

■ TargetZone MacsBug variable) points to the zone currently set by the MacsBug 
HX command.

■ SysZone (low-memory global) points to the start of the system heap.

The other heaps are identifiable only by their addresses and by your knowledge of the 
fact that the earlier the application was launched, the higher its address. See the 
description of the HZ command in Chapter 9, “MacsBug Commands,” for additional 
information.

Switching Heaps in a Multiple-Application Environment 4

You can use the HX (Heap Exchange) command to switch among the various heaps that 
are currently in RAM. If you simply type HX, MacsBug switches between the system 
heap and the current application heap. If you type HX and the address of a heap, 
MacsBug will switch to that specific heap. If you do specify an address for the HX 
command, MacsBug identifies that heap in the display as “UserZone” just to remind 
you that this was the last heap you were specifically interested in.

Remember that all MacsBug heap commands (except for the HS command) work on 
the heap you selected with HX. The beginning address of this heap is stored in the 
MacsBug variable TargetZone. When you start MacsBug, it defaults to the frontmost 
application heap.
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The HX command does not do anything else except to select a heap as the implied target 
for most heap commands. It does not make the selected heap the frontmost application, 
for example. This can affect the information that’s displayed about heaps if the selected 
application is not frontmost. For example, if you use HX to select a heap belonging to a 
background application, MacsBug displays resource blocks in that heap, but identifies 
them only as relocatable blocks and displays the message “resource not found” in the 
space where it would normally display resource information.

This happens because the Process Manager disconnects the resource chains of applica-
tions when they are not running. This prevents the foreground application from acciden-
tally loading a resource from another application. It also means that when you switch to 
another application’s heap in MacsBug, resources in the heap won’t be identified as such 
if that application is not running in the foreground. The HD command will only display 
resource information for resource blocks in the currently running application.

Life on the Stack 4

As mentioned in the beginning of this chapter, the compiler does not know variable 
names, but only their addresses. Since your program can be loaded at different locations 
in memory, the compiler needs to use some scheme of relative addressing that allows it 
to manipulate variables (addresses) and what’s stored in them independently of where 
your program is loaded. The compiler does this by using a data structure called the stack 
and three address registers, A5, A6, and A7, that the compiler can use to reference the 
global variables, local variables, parameters, and context information that your program 
needs to use as it’s running. 

This section explains how registers A5, A6, and A7 are used to reference data placed on 
the stack. It describes the units of the stack, called stack frames. It also describes the 
different conventions used by Pascal and C compilers in implementing routines, and 
what C programmers must do when calling A-traps, which use Pascal calling conven-
tions. Finally, it discusses how you can use the MacsBug command MR (Magic Return) 
to step out of a procedure, and the commands SC (Stack Crawl) or SC7 (Stack Crawl 
Using A7) to obtain information about the current calling chain.

Looking at the Stack 4
It’s unfortunate that Microsoft  Word can’t display the title of this section upside down, 
just to imprint in your mind the first thing about stacks: they grow down, toward 
low memory.

The left side of Figure 4-21 shows a picture of the stack in memory; the right side shows 
the picture of the stack that MacsBug shows you by default in the status region of 
the display.
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Figure 4-21 Representations of the stack

As you can see from the picture on the left, the stack grows down. The “top of the stack” 
is a euphemism; it is literally at the bottom of the stack. The address of the base of the 
stack, which remains fixed, is stored in the low memory global CurStackBase. To display 
its location, enter 

DM CurStackBase 

or 

CurStackBase^

The address of the top of the stack is always stored in register A7. Displaying the value 
of A7 displays the address; dereferencing A7, by entering A7^, displays what is stored at 
that address.

The MacsBug display of the stack, which takes up the upper half of the status region, is 
slightly misleading because it turns the stack upside down, so that the top of the stack is 
at the top of the display. 

The stack display begins with SP (for Stack Pointer) and the address that it points to 
right underneath. (If you look in the register area of the status region, you’ll notice that 
this same address is stored in register A7.) The next line of the stack display shows the 
least significant byte of this address and 4 bytes of memory starting at that address. The 
display then shows 4 bytes of memory for every line of the display, preceded by the least 

The stack in the memory map
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The stack as shown by Mac
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significant byte of the address. The address is not shown in its entirety to save space and 
because, for the range that can be shown in the display, the upper 3 bytes are not likely 
to change. You can figure out the upper 3 bytes by looking at the SP address at the top of 
the display. Figure 4-22 shows how the top two lines of the MacsBug stack display 
(shown in figure 4-21) translate into memory storage at consecutive addresses.

Figure 4-22 Stack display and storage in memory

After you compile your program, the instructions that are generated to allocate space for 
your global variables and for implementing routines do their work by allocating space 
on the stack, and representing all values as offsets from key addresses on the stack, 
which are stored in registers A5, A6, and A7. The following sections explain how.

Before proceeding though, make sure you’re familiar with these three aspects of 
the stack: 

■ Space on the stack is always allocated and released in last-in, first-out (LIFO) order; 
the last item allocated is always the first to be released. In this respect, the stack is like 
a pile of papers in a basket: you can put papers on the top or take them off the top, but 
you can’t put things into or take things from the middle of the pile without first 
dealing with the stuff on top. 

■ To push something means to put it on the stack; to pop something means to take it off 
the stack. The stack pointer is used in assembly language to push individual items 
onto the stack or to pop them off. See “Stack Frame Instructions” in Chapter 3 for 
additional information.

■ The size of each item on the stack varies, just as a pile of papers in a basket might 
include magazines and reports as well as smaller clipped or stapled groups of papers. 
Although MacsBug’s default display of the stack might suggest that all items on the 
stack take up exactly 4 bytes, this is a characteristic of the display, not of the stack. 
Furthermore, there are no boundaries between items on the stack (as there are block 
headers to mark heap units off from each other). Rather, the compiler (or the assembly-
language programmer) allocates the right amount of space on the stack for each item 
that is pushed on. The section “Stack Frames,” later in this chapter, explains how.
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Allocating Space for Global Variables 4
Although it can be argued that global variables are not part of the stack at all, learning 
how space is allocated for global variables provides a good introduction to the way the 
compiler allocates space for your routines’ results, parameters, and local variables, which 
is described in the next section.

When your program begins to execute, there is nothing on the stack. The first thing that 
the compiler allocates space for on the stack is your global variables. Before it does this, 
however, it must record a point of origin, relative to which it can find the beginning 
address of every global variable. The way the compiler does this is to take the address 
the stack pointer is pointing to and put it in register A5. Then, as it allocates space for 
each global variable, it decrements the address in A5 by exactly the number of bytes that 
the global variable is going to take up. If the global variable is an integer, it decrements 
the address by two bytes; if it’s an address, it decrements the address by four bytes; and 
so forth.

Why does it decrement the address stored in A5? Because the stack grows toward low 
memory. What happens to the stack pointer (the address stored in A7)? It is also decre-
mented as space is allocated on the stack and the stack grows; it always points to the 
address where items can be pushed on or popped off the stack.

Figure 4-23 shows the correspondence between the space allocated for global variables 
and your high-level language declarations.

Figure 4-23 Allocating space for global variables
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Notice how the addresses where the variables are stored are computed in Figure 4-23. 
If you want to display the value of one of your global variables, you would use the 
command

DM (A5 - 2)

Displaying memory from (A5-2)

 003BFFD6  0000 0027 DDBA 6DB6  DB6D 0000 0000 0000  •••'••m••m••••••

or just

(A5 - 2)^

 (a5 -2)^ = $00000027   #39   #39   '•••''

Also, notice how the compiler has “renamed’” your variables. What is age to you is 
-2(A5) to the compiler. The compiler reads -2(A5) as follows: “Take the address stored in 
register A5, subtract two from it, and dereference the resulting address.” 

All the compiler has done so far is to allocate space on the stack for your variable. The 
space that is allocated is not necessarily blank; nor does it magically hold the value that 
you want age to be. To put a useful value in the space that the compiler has conscien-
tiously reserved, you have to initialize your variable. To find out whether the variable 
contains the correct value, you can display memory at the address you are interested in 
by using the DM command as shown in the example just provided.

Finally, after allocating space for your variables, the compiler will forever be referring to 
the value of these variables as they are shown on the left side of Figure 4-23. Thus, if you 
ever see an expression of the form –X(A5) in the code generated by the compiler, you 
will know that it is referring to a global variable.

Stack Frames 4
In addition to storing global variables, the compiler also uses the stack to reserve space 
for your routines’ return result, local variables, parameters, and other information 
needed to restore the context that was current when your main program called a routine 
or one routine called another. Because there are so many kinds of information to allocate 
space for and to find, the compiler needs a systematic way to place that information on 
the stack so that it is readily identifiable and accessible. The way it accomplishes this is 
through the use of stack frames.

The compiler uses a stack frame to allocate the information a routine needs to execute 
and to return to the right place after it’s finished. Just as the compiler uses register A5 to 
store an address relative to which it can reference all global variables, it uses register A6 
to store an address relative to which it can reference everything in the stack frame. 
Figure 4-24 shows a complete stack frame. 
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Figure 4-24 A stack frame

This section describes each step involved in building a stack frame. Since system 
routines follow Pascal’s conventions for using the stack, the description focuses on those 
conventions. If you are a C programmer, you’ll need to consult the documentation for 
your own compiler and the section “Pascal and C Calling Conventions” in this chapter 
for additional information.

Every routine is called either by the main program or by another routine. Because a stack 
frame is partly built by the calling routine and partly by the called routine, it is easiest to 
understand its structure by understanding what information the calling routine has and 
what information the called routine has.

What does the calling routine (be it the main program or another routine) know about 
the called routine when it’s about to call it? At that point the program counter is pointing 
either to a BSR or a JSR instruction, so one of the things it knows is that when the routine 
is finished executing and control is returned to the calling routine, the calling routine has 
to resume execution at the instruction following the JSR or BSR instruction. In short, by 
adding 4 bytes to the address stored in the PC register, it knows the return address.

The calling routine also knows whether the called routine is a function or a procedure; 
that is, it knows whether the routine will return a result or not. If the called routine 
returns a result, the calling routine knows the size of the result. The calling routine also 
knows how many parameters (if any) are passed to the called routine, their order, their 
size, and their value. 

With this information, the calling routine is ready to build the first half of the stack 
frame, which it does in a predetermined order: first it makes room for the routine’s 
result, then for the routine’s parameters, and then for the return address. Finally, the 
compiler knows that after the calling routine has finished building its part of the stack, 
the first thing the called routine will do is to save the current value of A6 on the 
stack and then set A6 equal to A7. Thus everything that the calling routine puts on 
the stack can be referenced relative to the address in A6. Figure 4-25 shows an example 
of the part of the stack frame that is built by a calling routine.
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Figure 4-25 Part of stack frame built by calling routine

As you can see, everything the calling routine puts on the stack is referenced as a 
positive offset from A6. When the PC points to the JSR instruction, the compiler will 
have already allocated space on the stack for the return value (if any) and the param-
eter(s). When the JSR instruction executes, the compiler will have allocated four more 
bytes for the return address and stored it. The first instruction of the called routine is a 
LINK instruction; this instruction saves the current value in A6 on the stack and stores 
the current value of A7 in A6. Every item the called routine now allocates on the stack 
will be referenced as a negative offset from A6.

Pascal uses the following conventions when it puts values for your routine’s parameters 
on the stack:

■ The compiler pushes a pointer on the stack for any parameter that’s passed by 
reference (VAR parameters). 

■ The compiler pushes a pointer on the stack for any parameter that is larger than 
4 bytes.

■ The compiler pushes a pointer on the stack for any Pascal string, even if it’s smaller 
than 4 bytes.

■ The compiler pushes a pointer on the stack for any SANE variable: Real, Single, 
Double, Extended, and Comp.

This means that the address of such parameters, not their values, are stored on the stack.

What does the called routine know after it executes the LINK instruction? It knows the 
size and order of its local variables, but it does not know their value until the instruc-
tions that assign each value are executed, and these can be anywhere in the procedure. It 
also knows the current value of all the registers, and it is required to save the value of 
some of these registers on the stack (D3–D7 and A2–A6). The routine might need to save 
the value of all registers it expects to use. Then, when the routine has finished executing, 
it can restore the original values so that these are available to the calling routine. 
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Depending on the value of the parameters, the called routine might also add a copy of a 
parameter that is passed by reference in the first half of the stack frame because it is too 
large. Why does it store a copy on the stack now if the parameter was deemed too large 
to be placed on the stack in the first place? Because when the rule was made, stacks were 
very tiny; when stacks got larger, additional room existed to make an actual copy of the 
parameter, though the rule was still observed about what it should look like in the first 
half of the stack frame. 

Figure 4-26 illustrates the order in which the called routine adds pieces to the 
stack frame.

Figure 4-26 Part of stack built by called routine

When the procedure starts to execute—to initialize variables, to compute and store new 
values in these variables, or to use values passed to it in parameters—it can access all 
these variables as offsets from A6. If you understand how the compiler sets up a stack 
frame, you can display memory at various addresses on the stack to see the values of 
your variables, parameters, and so forth. Figure 4-27 shows a complete picture of the 
stack frame.
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Figure 4-27 The stack frame

What happens when the called routine finishes executing? Basically, everyone cleans up 
their own mess:

■ The called routine executes an UNLK instruction, which moves the stack pointer back 
to the address stored in A6, moves the saved value of A6 into A6, and then increments 
the stack pointer by 4 bytes so that it is now pointing at the return address. All that is 
left of the stack now is what the calling routine has put there.

■ The calling routine pops the return address off the stack and saves it in register A0, 
increments the stack pointer by the amount allocated for the parameters, and then 
jumps to the address stored in A0. You’ll notice that if the routine is a function, this 
leaves the function result sitting neatly on top of the stack, where the instruction that 
has been jumped to conveniently finds it.

MacsBug allows you to do several useful things that depend on stack frames. These are 
described in the next two sections.

Stepping Out of a Procedure 4

The MR (Magic Return) command allows you to step out of a procedure that you’ve 
accidentally stepped into. That is, the MR command executes the rest of the procedure 
and invokes MacsBug when the PC points to the return address. MR lets you do this 
by setting up a breakpoint at the return address on the stack, but you have to help the 
MR command figure out where that value is stored on the stack. The syntax of the MR 
command is 

MR [param]

A6 

A7

Return result

Return address

Saved A6

Local variables

Local copy of

parameters

Parameters
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The value you specify for param gives the MR command the information it needs. The 
value you choose depends on how far you’ve stepped into the procedure:

■ If the program counter points to the LINK instruction, enter MR with no parameters. 
In this case the return address is assumed to be stored on the top of the stack. 

■ If the program counter points after the first instruction, you should specify A6 as the 
parameter to the MR command, like this: 

MR A6

If you do, the MR command looks for the return address at A6 + 4.

The MR command is described in greater detail in Chapter 9, “MacsBug Commands.”

Displaying a Function’s Result 4

Another useful thing you can do using the MR command and your knowledge of stack 
frames is to define a breakpoint so that every time a certain function is called, MacsBug 
is invoked and displays the function result. For example, if you enter the following 
commands

BR functionname  ' ; MR ; DW  SP '

Whenever the breakpoint is reached, MacsBug executes the MR command and displays 
the top word on the stack (the function result). For functions that return long words, use 
the command

BR functionname  ' ; MR ; DL  SP '

For functions that return pointers, dereference the pointer and display the structure 
using a template; for example:

BR functionname  ' ; MR ; DM SP^ templatename '  

Using Stack Frames to Establish a Calling Chain 4

What does the stack look like when one procedure calls another? Figure 4-28 shows what 
the stack looks like in the case of routine A calling routine B, which calls routine C.
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Figure 4-28 Multiple stack frames

Each stack frame in Figure 4-28 has been stripped of most of its detail to underline the 
way in which the frames are linked together through the use of register A6 as a stack 
frame pointer.

When procedure C executes, it locates everything it needs to do its work relative to the 
value stored in register A6. When it has finished and it executes the UNLK instruction, it 
cleans up after itself (as explained earlier) and moves the saved value of A6 from the 
stack into register A6. Now procedure B (the calling procedure at this point) can clean up 
its part of the stack and resume execution. 

Since A6 now points to the right place in B’s stack frame, B can do all its work with 
reference to that value. When it is finished, B executes an UNLK instruction, and puts the 
value of A6 it has saved in its stack frame into register A6. Procedure A can now clean up 
its part of B’s stack frame and resume execution using the current value of A6 as a way 
of referencing everything it needs to work with. 

As noted earlier in this chapter, the use of stack frames allows the compiler to generate 
instructions that reference everything a routine creates and manipulates relative to one 
address, stored in register A6. The use of stack frames also allows MacsBug to determine 
the calling chain when one procedure calls another. This can be very helpful when you’re 
hunting for bugs.

How does MacsBug use stack frames to determine the calling chain? The return address, 
which is always an address in the calling procedure, is always stored 4 bytes off A6. The 
stack frame makes the address easy to find; once MacsBug has the address, it can figure 
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out what procedure it’s in. To display the calling chain, use the SC (Stack Crawl) 
command. MacsBug displays information like the following:

Calling chain using A6 links

 A6 Frame   Caller

 0027BB5C  00218DC6 CONVERSI+0016

 0027BB54  00218D2A DOMAINEV+003A

 0027BB0A  00218B72 DOCLICK+0038

 0027BAC4  00218AB6 DOMENUDI+002C

 0027BA98  003B418A

 0027B93C  0080F19E _GetMouse+0070

The first row describes the oldest stack frame (procedure); the last row describes the 
newest stack frame (procedure). This listing can be interpreted as follows: 

1. At address 00218DC6 the procedure CONVERSI stored an instruction (JSR or BSR) 
that called the DOMAINEV procedure. 

2. At address 00218D2A the procedure DOMAINEV stored an instruction that called the 
DOCLICK procedure. 

3. At address 00218AB6 the procedure DOMENUDI stored an instruction that called an 
unnamed procedure. 

4. At address 003B418A an unnamed procedure stored an instruction that called the 
GetMouse trap. 

The value of A6 when each of the calling procedures is current is listed in the 
first column.

If MacsBug does not know the procedure name, but the address is in a known resource, 
it displays the type of the resource, the number of the resource, the file in which the 
resource is stored, the name of the resource, and the offset within the resource where the 
instruction is found; for example:

'CODE 0007 0294 Init'+0A3C

Pascal and C Calling Conventions 4
The conventions described so far for setting up stack frames are the conventions used by 
Pascal compilers. C compilers use different conventions. Since A-trap routines expect to 
be called according to Pascal conventions, you have nothing to worry about if you’re 
writing a Pascal program. Setting up a stack frame for a system routine is just like setting 
one up for a routine you’ve written yourself. The parameters are placed on the stack in 
the same order (left to right); large parameters, string parameters, and VAR parameters 
are passed by reference. The calling routine sets up and cleans up its part of the stack; the 
A-trap sets up and cleans up its part of the stack.
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If you’re writing a C program and call an A-trap, you need to use the Pascal compiler 
directive before the A-trap declarations (this is done in the C include header file); this 
directive will take care of most of the differences, but not all. Keep the following points 
in mind:

■ In Pascal, return results are passed back onto the stack. In C, they are passed back in 
register D0. Using the pascal keyword with a C compiler for the Macintosh will take 
care of this.

■ In Pascal, parameters are pushed in left to right order. In C, they are pushed in right to 
left order. Using the pascal keyword with a C compiler for the Macintosh will take care 
of this.

■ The calling function always puts the parameters on the stack. In Pascal, the called 
function removes the parameters from the stack. In C, the calling function removes the 
parameters from the stack. Using the pascal keyword with a C compiler for the 
Macintosh will take care of this.

■ In Pascal, any parameter that is 4 bytes or smaller is passed by value. In other words, 
the value of the parameter is simply pushed onto the stack. Any parameter larger than 
4 bytes is passed by reference. This means that the address of the parameter is pushed 
onto the stack. VAR parameters are always passed by reference, no matter what their 
size. In C, scalar parameters (such as char, int, or long) are passed by value. Structures 
(similar to records in Pascal) are passed by value. Arrays are passed by reference. 
Using the pascal keyword with a C compiler for the Macintosh will not take care of 
this. The programmer must take care of this explicitly

■ In other words, if your C program calls an A-trap routine that requires you to pass a 
pointer, you must pass a pointer even though you would not have to if this were a C 
routine. This does not involve extra work, it only means that you must pass param-
eters to A-trap calls exactly as described in Inside Macintosh. 

Application Parameters and the Jump Table 4

The remaining two regions of memory that belong to the application’s memory space 
are reserved for the application parameters and the jump table. Figure 4-29 shows 
these regions.
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Figure 4-29 Application parameters and jump table

The allocation of space for your program’s global variables is discussed in the section 
“Global Variables” in this chapter. The chief thing to remember is that anything the 
compiler translates into the form –X(A5) is a global variable.

The application parameters reside above the global variables. Register A5 points to the 
first byte of the application parameters. The system accesses the application parameters 
using positive offsets from A5, while the application accesses the application globals 
using negative offsets from A5.

Application parameters contain information about the program. However, the system, 
and not the application, sets up and uses this information. The most important applica-
tion parameter is at the address stored at 0(A5); it points to the first QuickDraw global 
variable. QuickDraw global variables are stored in your program’s global variables 
region, just after the space reserved for your program’s global variables.

The jump table is discussed in greater detail in the section “Inter-Segment Calls and the 
Jump Table” in Chapter 3. The main point to remember is that the jump table resides 
above the application parameters, and that it contains pointers to the routines in each 
code segment. Routines in one code segment use the jump table to find routines in 
another code segment. 

Since the application parameters are always exactly 32 bytes long, the application gets to 
the jump table by adding 32 to the value in A5. The jump table is set up by the linker and 
used automatically by your application; you don’t usually need to worry about it.

Operating system or User Interface Toolbox routines sometimes save the value in A5 so 
they can use it as another register. When this happens, the routine always restores the 
value of A5 before returning. The low-memory global CurrentA5 ($904) contains the 
proper A5 value for the currently executing application. This is useful if you find 
yourself in a ROM routine in which A5 is used to store other information. CurrentA5 is 
not valid during the Process Manager’s context switches.
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Exception Processing

 

From the point of view of your application, Macintosh system software consists of a set 
of external routines grouped under a specific manager according to their functions. 
These routines are divided into User Interface Toolbox routines and operating system 
routines. This chapter describes how these routines are implemented by means of 
exception processing and how they are modified and extended using patches and glue. 

Understanding how system routines work allows you to make better use of MacsBug. In 
particular, this chapter explains how you can use MacsBug to monitor the execution of 
these routines: how to invoke MacsBug when a routine is called, how to record and play 
back the sequence in which these routines are executed, and how to perform heap checks 
when a routine is called. It includes a hands-on exercise that you can use to watch how a 
system routine is implemented.

Many system routines typically operate upon one or more data structures that are 
maintained by the managers. Managers use various means of maintaining and keeping 
track of these data structures. Although a detailed description of how each manager does 
this lies beyond the scope of this manual, this chapter includes descriptions of three 
standard dcmds, VOL, FILE, and DRVR, that allow you to look at the information 
maintained by the File Manager for mounted volumes and files, and by the Device 
Manager for installed drivers and desk accessories. This chapter also describes the VBL 
dcmd, which lists all VBL tasks currently scheduled to run.

To understand this chapter, you should be familiar with the way the compiler uses the 
stack to implement procedures and functions. If you are not, please read the relevant 
sections in Chapter 4, “Macintosh Memory Organization.”

If you are thoroughly familiar with Macintosh programming, you do not need to read 
the entire chapter but you might want to review the description of the VBL, VOL, FILE, 
and DRVR dcmds.

 

Exception Processing 5

 

The microprocessor is always in one of three states: normal, exception, or halted. The 
normal state means that the microprocessor can understand and knows how to process 
every instruction it encounters. In the halted state, a catastrophic system failure has 
occurred; only an external reset can restart a halted processor. Exception processing lies 
somewhere between these two extremes: something has happened that the microproces-
sor cannot understand or handle directly, but it knows that there is a routine designed to 
take care of the “exceptional” condition; its job is to find that routine and transfer control 
to it.

 

Exception processing

 

 refers to the means used by the microprocessor to handle unusual 
conditions caused by the hardware or by the software that must be addressed before 
normal processing resumes. 

During exception processing, the microprocessor must save sufficient information about 
its current state (PC and register values) to be able to restore that state after the exception 
has been processed. As just mentioned, the microprocessor itself does not know the 
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details of how to handle the various kinds of exceptions, but it is responsible for figuring 
out the address of a routine that does and for transferring control to that routine by 
putting the routine’s address into the program counter. Processing then resumes at 
that address.

Exception processing can be generated by the hardware, in which case it’s called an 

 

interrupt;

 

 or, it can be generated by the software, in which case it’s called an 

 

exception. 

 

■

 

If the exception is generated by the hardware, the routine that handles the exception is 
called an 

 

interrupt handler. 

 

The section “Interrupts” in this chapter explains how the 
processor handles interrupts and the guidelines you must follow when writing code 
that runs at interrupt time.

 

■

 

If the exception is generated by the software and is due to an error condition (division 
by zero, illegal instruction, bus error, or address error), the routine that handles the 
exception is called an 

 

error handler. 

 

Chapter 1 of this manual, “MacsBug and Low-
Level Debugging,” describes error handling and how MacsBug functions as an 
error handler.

 

■

 

If the exception is generated by the microprocessor as a result of encountering an 
unimplemented instruction, the routine that handles the exception is called the 

 

trap 
dispatcher.

 

 To the microprocessor, all A-trap calls in your application are unimple-
mented instructions that cause it to begin exception processing. The first half of this 
chapter describes how A-traps are processed.

How does the microprocessor know where to transfer control? Motorola has provided 
for the possibility that 256 different kinds of exceptions can occur; a vector table in 
low memory assigns a number to every kind of exception. When an exception occurs, 
the microprocessor determines the number (also called the vector number) that identi-
fies that particular kind of exception. For an interrupt, the microprocessor obtains the 
number from an internal location; for a software-generated exception, internal logic 
provides the number. The microprocessor then uses this number to calculate the 
address of the routine that can handle the exception. This address is also called an 

 

exception vector.

 

A-Trap Exceptions 5

 

When the compiler generates code for any call you make to the User Interface Toolbox or 
the operating system, it substitutes a 2-byte instruction, which always begins with the 
hexadecimal digit A, for the function or procedure name in your source code. (These 
instructions are not implemented in the microprocessor; the microprocessor calls the trap 
dispatcher to handle them.) This is why system routines are generically known as 
A-traps. For instance, the A-trap A913 is NewWindow, and A92D is CloseWindow. 
Appendix C of 

 

Inside Macintosh

 

 contains a complete list of A-traps sorted both by name 
and by number. (Note that each volume of 

 

Inside Macintosh

 

 has a different Appendix C, 
each with a different list.) MacsBug knows the name, number, and address of every 
A-trap.
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A-Trap Exceptions

 

A-traps are also referred to as ROM calls, but as we shall shortly see this name is 
inaccurate, because the code such instructions cause to be run is not always in ROM. 
This manual refers to User Interface Toolbox and operating system routines as system 
routines, distinguishing between them when necessary.

To the microprocessor, any instruction that causes a system routine to execute is an 
unimplemented instruction: that is, an instruction that was not defined by Motorola. 
Unimplemented instructions are a kind of exception and the microprocessor has to 
determine the address of the routine that knows what to do with them and transfer 
control to that routine.

The following section explains what happens when an application calls an A-trap 
instruction: how control is transferred to the trap dispatcher, how the trap dispatcher 
executes the right routine, and how control is handed back to your program.

 

How the Operating System Handles an A-Trap 5

 

Figure 5-1 demonstrates how the operating system handles an A-trap instruction. The 
right part of the figure shows the flow of control. The remainder of this section describes 
the process in detail.

 

Figure 5-1
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Suppose the microprocessor is running an application and encounters an A-trap. 
Because an A-trap is not a defined instruction, it causes an exception. The micro-
processor handles the exception by following these steps

 

■

 

The microprocessor fetches the vector number for the exception and calculates the 
address of the exception handler. 

 

■

 

Every A-trap uses the same exception vector, which always points to the same 
exception handler, the 

 

trap dispatcher.

 

 The microprocessor turns control over to the 
trap dispatcher.

 

■

 

The trap dispatcher looks up the address of the A-trap in the 

 

trap dispatch table

 

 in 
RAM. The trap dispatch table is simply a table listing the address of every A-trap 
routine. (The trap dispatcher also sets things up so that the A-trap routine can 
terminate with an RTS instruction and return to the instruction following the A-trap 
call when the A-trap routine is finished.)

 

■

 

The trap dispatcher then jumps to the code at the address it got from the dispatch 
table. This code is usually the actual ROM routine (although it could just as easily be 
in RAM) that does whatever your application wants done, such as opening a window.

 

■

 

When the trap is done executing, it returns control to your application.

Why such a roundabout procedure? Why have the trap dispatcher in ROM and the trap 
dispatch table in RAM? The answer has to do with the ongoing evolution of software. If 
a routine in ROM needs to be fixed, improved, extended, or if new routines are added, a 
trap dispatch table in RAM provides a very easy way to implement such changes: simply 
change the address of the routine in the table to the new address of the changed routine, 
place the routine in the system file in RAM, replace the old system file with the new 
system file, and everything will work just right. The code that changes the address of an 
A-trap is called a 

 

patch.

 

 The next section describes this process in greater detail.

 

Patches and Glue 5

 

There are two cases in which a system routine is not located in ROM:

 

■

 

In the first case, the code for an existing routine in ROM has been modified and the 
trap dispatch table has been patched so that it now points to an address in RAM 
where the modified code resides. This process, called patching, is used to modify 
existing routines or to add new routines.

 

■

 

In the second case, the code that constitutes the system routine is so simple that, 
rather than going through the multiple instructions that are needed to process an 
exception, the compiler or the linker inserts the code that makes up the routine 
directly into your program. This process is called inserting 

 

glue

 

.

The sections that follow describe these two situations and discuss the consequences 
for debugging.
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Patches and Glue

 

Patching an A-Trap 5

 

Installing a patch

 

 

 

changes the address of the A-trap entry in the A-trap dispatch table so 
the table points to the patch (in RAM) rather than to the original routine in ROM, as 
shown in Figure 5-2. Apple uses patches to fix bugs in system software or to add features 
to a system routine. 

 

Figure 5-2

 

Patching an A-trap

 

Figure 5-2 shows how control goes from the application to the patched A-trap and back 
to the application in the case of an A-trap that is patched so that it entirely replaces the 
old trap. Note that in the case where a patch is designed to completely replace a ROM 
routine, control returns to the calling application from the patch itself. Only Apple 
should install these kinds of patches. 

Developers can also use patches to customize A-traps. Figure 5-3 shows how control 
should flow in the case of a trap that you are patching yourself.
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Figure 5-3

 

Pre-patched A-trap

 

In general, it is a bad idea to patch an A-trap unless there is absolutely no other way to 
do what you want. If you need to patch an A-trap however, you should follow the 
procedure described here. For example, suppose that you are writing a resident program 
that needs to install its menu in the menu bar of whatever application is currently 
frontmost. One way to achieve this is by pre-patching the DrawMenuBar routine. 

The system routine GetTrapAddress returns the address of an A-trap, and the system 
routine SetTrap Address puts a new address into the trap dispatch table. To pre-patch the 
DrawMenuBar routine, follow these steps:

 

■

 

Use the GetTrapAddress routine to obtain the address of the A-trap and save this 
value. In this case, you would save the address of the DrawMenuBar routine.

 

■

 

Use the SetTrapAddress routine to insert the address of the code you want to execute 
into the trap dispatch table. In this case, your code would consist of a call to the 
InsertMenu routine to add the menu of your program to the menu bar right before 
calling the DrawMenuBar routine.

 

■

 

After your patch does its stuff, it must use a JMP instruction to the saved address of 
the original A-trap. Note that if at this point the patch simply makes an A-trap call, it 
will wind up at its own address again. Because you must use a JMP instruction, you 
must write your patch in assembly language, not C or Pascal.
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Patches and Glue

 

■

 

When your application exits, you must use SetTrapAddress again to restore the old 
A-trap in the trap dispatch table. If a trap dispatch table entry still points to an old 
patch that has been cleared, the next application will crash when it calls that A-trap. 

 

■

 

INITs cannot remove their own patches because someone might have patched 
behind them.

In general, you can install multiple layers of patches as long as each patch, when 
complete, calls the original A-trap. Finally, if there is any chance that your patch can be 
called from an interrupt, you must observe the guidelines for any code that runs at 
interrupt time. These are described in the section “Interrupt Handlers” in this chapter. In 
general, you should assume that your trap will be called at interrupt time and take the 
proper precautions

It is illegal for a patch to

 

■

 

Modify the stack or register values and not restore them when it is finished.

 

■

 

Call the original A-trap as a subroutine, and then perform its function after the 
original A-trap runs. It must call the original A-trap as described above.

 

■

 

Perform its function and return control to the program, ignoring the original A-trap.

 

Determining Whether a Trap Has Been Patched 5

 

There are two ways of determining whether a trap has been patched. 

From MacsBug, you can use the WH (Where) command to find out whether a trap is 
patched. Given a trap name, this command returns information about the location of the 
trap. For example, the command 

 

WH menuselect

 

tells you that the MenuSelect routine is in RAM:

 

Trap number A93D (_MenuSelect) starts at 003C02A2 in RAM

It is 0019F732 bytes into this heap block:

Start Length Tag  Mstr Ptr Lock Prg  Type   ID   File      Name

00220B70 00054FF0+00   F

 

If you need to find out whether a trap is patched from within your application program, 
you can use the GetTrapAddress routine to find out its address and than compare that 
value to the value stored in the low-memory global ROMBase. If the address is greater 
than ROMBase, the routine is not patched. (Note that if your program runs under virtual 
memory, some portion of RAM could be above the ROM in the memory map, so that 
a patch could be stored at an address that is higher than ROMBase; however this is 
highly unlikely.)
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Using In-Line Glue to Implement a System Routine 5

 

Some system routines are so simple that the compiler or linker puts the code, called 

 

glue,

 

 
needed to perform the routine directly into your program. For example, when you 
execute the function GetDateTime, the glue simply loads the value from a low-memory 
global, because the load takes only one instruction. If you run through the A-trap 
dispatcher, more than ten instructions are required. Figure 5-4 shows how glue is 
inserted into your application’s code. Compare this figure with Figure 5-1.

 

Figure 5-4

 

Using in-line glue to implement an A-trap

 

Obviously, the glue can load a single value faster than you can call an A-trap. However, 
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_trap name 

 

entry. If you are stepping through your code in MacsBug and find yourself 
looking at code you’re sure you didn’t write, you may be looking at glue.
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Using the Stack to Implement A-Traps

 

Operating system routines can also use glue code that is stored in libraries. For addi-
tional information see “Operating System Routines” in this chapter.

 

Using the Stack to Implement A-Traps 5

 

The previous section described the method by which the microprocessor transfers 
control to a User Interface Toolbox or operating system routine—that is, how the 
micro-processor actually finds the first instruction of the routine. But when the routine 
begins to execute, like any routine that you have written yourself, it expects to find the 
parameters it needs on the stack and, if the routine is a function, it expects to find space 
on the stack for the return result. The compiler generates instructions that allocate the 
necessary amount of space on the stack with the help of interface files that are included 
with your development system. These files contain public declarations of every A-trap 
routine. In MPW Pascal, the declaration takes the following form:

PROCEDURE 

 

trapname

 

 (

 

param1

 

: 

 

type

 

; [

 

param2

 

: 

 

type

 

]...); Inline $

 

trapword

 

When the compiler encounters an A-trap, it allocates space on the stack for the specified 
parameters and then inserts the word specified by 

 

trapword

 

 directly in the code. For 
example, let’s suppose that your code includes the following function call:

 

WPtr:=GetNewWindow(WindowID,WRec,WindowPtr(-1));

 

The compiler needs to make space on the stack for the function result and also allocate 
space for three parameters. The code generated looks something like this:

 

CLR.L -(A7) ;make space on stack for result

MOVE.W #$012C,-(A7) ;push WindowID

PEA -$01E8(A5) ;push WRec address

PEA $FFFF ;push -1

_GetNewWindow ;call GetNewWindow

MOVEA.L (A7)+,A0 ;pop return result from stack

MOVE.L A0,-$01EC(A5) ;save it in a variable

 

Although setting all this up is the compiler’s business, it is important to understand how 
this work is reflected in the disassembled code. You can use this information if you need 
to check that you are passing the right values to the function or if you need to check the 
function’s return result. To watch an A-trap being called from inside a Pascal program, 
work through “Exercise: Watching an A-trap Call,” later in this chapter.

 

Operating System Routines 5

 

The use of the stack to implement A-trap routines becomes slightly more complicated in 
the case of operating system routines. If you are writing a program in a high-level 
language, the compiler generates code that resolves the problem for you, but again, it’s 
useful to understand what the compiler is doing when you’re reading through 
disassembled code.
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User Interface Toolbox routines pass their parameters and return the result on the stack 
as described in the previous section. Parameters are always passed in Pascal sequence, 
whether the application is written in Pascal or not. (Some managers introduced in 
system software version 7.0 pass parameters in C format.) Operating system A-traps 
pass their parameters and return the result in registers. Register A0 often holds the 
input parameter or the pointer to the parameter. Register D0 usually holds the return 
result, which is often an operating system error code (a code of zero means that no 
error resulted).

The previous section described how the compiler allocates space on the stack for 
a routine’s return result (if any) and parameters. In the case of an operating system 
routine, two extra steps are needed. In the first step, the parameters must be moved from 
the stack, where the compiler puts them, into the registers where the routine expects 
them. In the second step, after the routine returns, the return result must be moved from 
the register where the routine has left it back onto the stack where the compiler expects it.

The extra code that does this work for you is also called glue and can be implemented as 
in-line glue, in which case you’ll see the actual instructions in your disassembled code, 
or as library glue, in which case you’ll see a JSR instruction to the procedure that moves 
the values from the stack into the registers, calls the trap, and, when the trap is finished, 
moves the values from the registers back onto the stack.

There are two complications that can arise, from a debugging standpoint, if the glue 
resides in a library. 

 

■

 

If you crash in the ROM while an operating system trap is executing and you need to 
find your way back to the point in your program where you called the trap, you’ll 
need to do a stack crawl to find out where the library routine that called the trap was 
called from. 

 

■

 

If you set an A-trap break on an operating system call when MacsBug is invoked, 
you’ll find yourself in the library routine right before the trap call is made. In this case 
you’ll need to disassemble around the PC to find out the return address. Usually, the 
first instruction in the glue is something like MOVE.L (A7)+, A1; that is, save the 
return address in register A1. The address stored in register A1 should tell you where 
in your program you’ve made the A-trap call.

 

Exercise: Watching an A-Trap Call 5

 

This exercise uses disassembly and step commands to walk through a program. It uses a 
User Interface Toolbox function as an example of how the stack is used to implement a 
system routine.

This is the Pascal code for this example:

 

CONST
WindowID=300;

VAR
WPtr: WindowPtr;
WRec: WindowRecord;

BEGIN
WPtr:=GetNewWindow (WindowID, WRec, WindowPtr(-1));

END;
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Using the Stack to Implement A-Traps

 

Note that there is only one line of executable code, that is, a line for which the compiler 
generates machine code: 

 

WPtr:=GetNewWindow (WindowID, WRec, WindowPtr(-1));

 

The other lines simply set up the variables and the constant required to execute this one 
line. The function GetNewWindow is an A-trap routine and is listed in 

 

Inside Macintosh

 

. 
As you might guess, it creates a new window and returns its address in WPtr.

This is the assembly code generated from the Pascal code:

 

CLR.L -(A7) ;make space on stack for result

MOVE.W #$012C,-(A7) ;push WindowID

PEA -$01E8(A5) ;push WRec address

PEA $FFFF ;push -1

_GetNewWindow ;call GetNewWindow

MOVEA.L (A7)+,A0 ;pop return result from stack

MOVE.L A0,-$01EC(A5) ;save it in a variable

 

Throughout this exercise, “entering” a command means to type the specified command 
and then to press Return.

 

1. Launch the “A-Trap Demo” application on the MacsBug disk and choose the Watch 
GetNewWindow A-trap item from the Debug menu.

 

This invokes MacsBug. The figure that follows shows the bottom of the MacsBug 
display. The commands you enter will be displayed in the command line area. The PC 
region shows the next command to be executed. Depending on how you have 
configured MacsBug, the PC region might display more than one line. If it does, the 
line preceded by an asterisk (*) is the next instruction to be executed.

 

2. Enter 

 

IR PC

 

The MacsBug IR command disassembles code from the address you specify until the 
end of the procedure containing the instruction at the specified address. MacsBug 
displays the following information:

 

 Disassembling from pc

  ShowATrap

+0006  00216DCE *CLR.L -(A7) | 42A7

+0008  00216DD0  MOVE.W #$012C,-(A7) | 3F3C 012C

+000C  00216DD4  PEA -$01E8(A5) | 486D FE18

+0010  00216DD8  PEA $FFFF | 4878 FFFF

+0014  00216DDC  _GetNewWindow ;A9BD | A9BD

PC region

Command line
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+0016  00216DDE  MOVEA.L (A7)+,A0 | 205F

+0018  00216DE0  MOVE.L A0,-$01EC(A5) | 2B48 FE14

+001C  00216DE4  UNLK A6 | 4E5E

+001E  00216DE6  RTS 

 

The call to GetNewWindow is implemented by the seven instructions starting with 

 

CLR.L -(A7)

 

 and ending with 

 

MOVE.L A0,-$01EC(A5)

 

. These are the instruc-
tions you’ll be stepping through in this exercise. The asterisk shows the next 
instruction to be executed. Note that this instruction is the same as that shown in 
the PC region.
MacsBug does not update the disassembled code shown in the output area of the 
display. To see an updated display, you would need to enter an IL command each 
time you step through an instruction. But it is more convenient to look at the PC 
region, which is updated, to see the next instruction to be executed.

In the remainder of this exercise, you’ll be stepping through the first four lines of the 
assembly code, which set up the first part of the stack frame for the routine. Then you’ll 
step over the code that makes up the routine itself. Finally, you’ll step through the last 
two instructions, which retrieve the return result and save it in a variable.

 

3. Look at the stack at the top of the status region in the MacsBug display.

 

The top of the stack is at the top of the display, and the stack pointer’s value is shown 
right above that. The stack pointer’s value is also stored in register A7. Look at the 
value of register A7; the two values are identical.

For the remainder of the exercise, you will be concerned only with what gets put on the 
stack, not what’s already on it. Because the stack is updated, you’ll be using the DM 
command to display memory starting with the top of the stack so that you can compare 
the old values with the updated values.

 

4. Enter 

 

DM A7

 

 

 

MacsBug displays memory starting with the address stored in A7, which always 
holds the address of the stack pointer. MacsBug displays something like the following:

 

Displaying memory from a7

 0048BA16  0048 BB2A 0046 8ADC  4080 6544 0046 8130  •H•*•F••@•eD•F•0

 

This display shows you 16 bytes starting at the address in A7. In this case the address 
is 

 

0048BA16.
The first assembly-language instruction makes space on the stack to hold the return 
result from the GetNewWindow routine. The S (Step) command executes one 
instruction and then invokes MacsBug. 
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5. Enter S 
The screen flashes, as MacsBug allows the application to run for one instruction, and 
then returns. Notice that the PC region now displays the next instruction to be 
executed, MOVE.W:

6. Enter DM A7 to display memory starting with the top of the stack. 
MacsBug displays two lines similar to the following:

Displaying memory from A7

 0048BA12  0000 0000 0048 BB2A  0046 8ADC 4080 6544  •••••H•*•F••@•eD

Compare the output of this command with that of the DM A7 command you entered 
in step 5. The address of the stack pointer has been decreased by 4 bytes (remember 
the stack grows toward low memory) and a long word of zero has been pushed onto 
it. This is not the value of the return result; it simply holds the place where the return 
result will be placed later. 

Now that space for the return result has been reserved, you can execute the next three 
instructions, which push the three parameters onto the stack. In Pascal, the parameters 
are pushed from left to right. So WindowID will be first, then WRec, and finally –1.

The first parameter, WindowID, is a word equal to 300 ($12C). 

7. Enter S to execute the next instruction. 
Again, the PC region is updated:

8. Enter DM A7 to look at the stack again. 
MacsBug displays something like this:

Displaying memory from A7

  0048BA10  012C 0000 0000 0048  BB2A 0046 8ADC 4080  •,•••••H•*•F••@•

Compare the memory display with that of the DM A7 command you entered in 
step 7. The stack pointer address has been decreased by 2 byes and the first parameter, 
12C, has been pushed onto the stack. 
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The next parameter you’ll be pushing on the stack is WRec, which is a pointer to a 
window record. A Window Record is a pretty big data structure. But the assembly code 
simply pushes its address. This is because Pascal has a rule that any data structure larger 
than 4 bytes has its address pushed, instead of the data structure itself.

The PEA (Push Effective Address) instruction simply pushes the address it’s given. The 
operand is the address of the window record, and that address is pushed onto the stack. 
Addresses are always 4 bytes. Note that in this example the address of the window 
record is stored in a global variable. You can tell it’s a global variable, not a local variable 
or parameter, because it’s expressed as a negative offset from register A5.

9. Enter S to execute the first PEA instruction.
MacsBug executes the instruction and updates the PC region:

10. Enter DM A7 to look at the stack.
MacsBug displays something like this:

Displaying memory from a7

 0048BA0C  0048 BD90 012C 0000  0000 0048 BB2A 0046  •H•••,•••••H•*•F

Compare this output with the output of the DM A7 command you entered in step 9. 
The stack pointer has been decreased by 4 bytes, and the address of the window 
record is now on top of the stack.

Next you’ll push the last parameter, which is –1. In two’s complement arithmetic, –1 is 
$FFFFFFFF. The last parameter is a also a pointer, so it’s 4 bytes. The instruction PEA 
$FFFF is a fancy way of pushing –1 onto the stack. Even though $FFFF is only a word, it 
is automatically expanded to be a long word, because PEA deals with addresses, and 
addresses are always long words. 

11. Enter S to execute the instruction.
MacsBug displays the following information:
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12. Enter DM A7 to look at the values on the stack.

MacsBug displays something like this:

Displaying memory from a7

 0048BA08  FFFF FFFF 0048 BD90  012C 0000 0000 0048  •••••H•••,•••••H

You have now pushed all the parameters onto the stack, which is just what the calling 
routine should have accomplished. The next instruction is the call to GetNewWindow. 
When the routine begins to execute it will expect to find all the information you’ve put 
on the stack. The called routine takes the parameters off the stack and fills in the return 
result. When GetNew Window returns you’ll take another look at the stack.

If you executed another S command, you would be executing the first instruction of the 
GetNewWindow routine. It will be more useful at this point to use the SO (Step Over) 
command to execute all the instructions in the A-trap call; this will bring you to the next 
instruction in the code, MOVEA.L (A7)+, A0. 

13. Enter SO
MacsBug executes the A-trap and updates the PC region as shown: 

14. Enter DM A7 to look at the stack again.
MacsBug shows you something like this:

Displaying memory from a7

 0048BA12  0048 BD90 0048 BB2A  0046 8ADC 4080 6544  •H•••H•*•F••@•eD

The stack has shrunk back. The return result, 0048 BD90—the address of the nonrelo-
catable block where the window has been stored—is stored at the top of the stack.

Now you’re ready to step through the code that takes the return result off the stack and 
puts it in the variable WPtr. First you need to take the return result off the stack. 

15. Enter S to execute the next instruction. 
MacsBug updates the PC region as shown:
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16. Enter DM A7 to look at the stack.
MacsBug displays information like the following:

Displaying memory from a7

 0048BA16  0048 BB2A 0046 8ADC  4080 6544 0046 8130  •H•*•F••@•eD•F•0

The return result was popped from the stack, and placed in A0. The stack is now the 
same as it was before you put anything on it. The next instruction moves the return 
result from A0 into the variable WPtr. 

17. Enter S to step through the next instruction.
The return result was placed into the variable WPtr. Is the window up?  

18. Press the Tilde (~) key to look at the A-Trap Demo application. 
The screen is empty. The GetNewWindow routine simply allocates a block of memory 
for the window and adds the window to the window list. To position the window and 
make it visible, you would also need to execute the ShowWindow routine.

19. Press the Tilde (~) key again to return to MacsBug.
Now you’ve executed one line of Pascal code. As you can tell, stepping through code 
can be a slow process. It can also be hard to tell which disassembled lines correspond 
to a particular line of Pascal, but it gets easier with practice.

20. Enter G to return to the A-Trap Demo application. 
The window is now visible, because the G command has executed the rest of the code, 
which includes the A-trap call that positions the window and makes it visible.

Interrupts 5

As mentioned in the beginning of this chapter, exception processing can also be 
generated by the hardware, in which case it is called an interrupt. The hardware sends 
the microprocessor a signal that tells it to stop what it’s doing and do something else. 

The microprocessor uses exception processing to handle an interrupt: it saves the current 
context, determines the address of the routine or interrupt handler that knows what to 
do in response to that interrupt, and sets the PC equal to the address of the first instruc-
tion in the interrupt handler. When the interrupt handler returns, the microprocessor 
restores the context that was current when the interrupt occurred using the information 
it has saved. The interrupted program should not be aware that it has been interrupted. 
This places some restriction on the code that runs at interrupt time.
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The procedure used by the microprocessor to handle interrupts is similar to that used to 
handle A-traps. A clean context switch is needed in both situations. However, in the case 
of interrupt handling, the microprocessor recognizes seven interrupt priority levels, 
numbered from 1 to 7. The system prioritizes the handling of interrupts by defining an 
interrupt mask, which it can set (or which your application can set) at a level from 0 to 7. 
The incoming interrupt must have a level higher than the current interrupt mask, or the 
interrupt is ignored. A program cannot mask out the highest interrupt, level 7. The 
level 7 interrupt is processed without regard to the interrupt mask setting. The highest-
level interrupt is called a non-maskable interrupt (NMI).

When you invoke MacsBug, you generate a level 7 interrupt, which means that all 
interrupts are disabled while MacsBug is running. The interrupt mask set by the operat-
ing system before you entered MacsBug is shown just to the right of the status register. 
In the following example of the status register display, the interrupt mask is set to 0.

SR Smxnzvc 0 

AppleShare uses interrupt routines to keep continuous communication going between a 
fileserver and a workstation. If you are logged on to a file server, and you enter MacsBug 
for more than 2F(1,2) minutes, the file server will assume your application has died and 
you will lose your server connection.

Macintosh Interrupts 5
Interrupts are used for several purposes on the Macintosh. Here are some examples:

■ The interrupt switch. The interrupt switch generates a level 7 interrupt. MacsBug is 
the interrupt handler for level 7. This level of interrupt cannot be masked out. (On a 
Macintosh Plus, the interrupt switch generates a level 4 interrupt.)

■ Mouse movement. Every time you move the mouse on a Macintosh Plus, you 
generate an interrupt. The interrupt handler for this interrupt updates the 
mouse’s location.

■ The disk driver. Floppy disk drives generate interrupts to permit asynchronous access 
to information on the disk. 

■ Serial ports. The serial ports can generate interrupts for incoming data such as 
AppleTalk packets. 

■ Programmable timer, implemented by the Time Manager. Applications can use a 
millisecond timer that generates an interrupt when it goes off and runs a specified 
interrupt task.

■ Screen refresh. This is also referred to as Vertical Blanking, or VBL. A VBL interrupt 
occurs every time the CRT electron beam (not the software) redraws the screen; that is, 
about 60 times per second.

The VBL Manager maintains a list of interrupt tasks that it performs at each VBL 
interrupt. For example, during each VBL interrupt, the system runs the stack sniffer to 
check whether the stack has overflowed into the heap, checks for inserted disks, and 
looks for mouse clicks. Your application can add its own routines to the VBL Manager’s 
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list. The VBL dcmd, which is shipped with MacsBug, lists all the VBL tasks currently 
installed. The next two sections provide information about writing code that runs at 
interrupt time and using the VBL dcmd.

Code That Runs at Interrupt Time 5
The code that recognizes an interrupt and gives control to the appropriate routine 
is called the interrupt handler. If you are writing code designed to run at interrupt 
time, you must take account of certain restrictions: you can’t use any handles to 
unlocked relocatable blocks, and you can’t make any system calls that might move 
or allocate memory.

Because interrupts can occur at any time, an interrupt routine might be running while 
the heap is being compacted. As a result, a handle might be invalid, because the data it 
points to might have been moved and the Memory Manager might not yet have updated 
the master pointer. So using a handle at interrupt time is taboo unless the relocatable 
block to which the handle points is locked before the interrupt routine starts to run.

It’s also possible that the current application may be calling the Memory Manager when 
the interrupt occurs. The Memory Manager is not reentrant—that is, it cannot accept a 
call while one or more previous calls to it are pending. So you can’t use the Memory 
Manager during an interrupt. But lots of A-traps call the Memory Manager indirectly, so 
you can’t call any of those either. A-traps that move memory are listed in Appendix B of 
Inside Macintosh. (Note that each volume of Inside Macintosh contains a different 
Appendix B, each with a different list of calls.)

In addition to these two restrictions, if your code uses global variables, you need to 
set up register A5 before using them and to restore it when you’re finished. You need to 
make sure A5 points to the right globals for the following reasons:

■ In an environment where multiple applications are running at once, any one of these 
applications might be using A5 when your code is called.

■ An interrupt can occur right after the application has called a ROM routine. ROM 
routines sometimes save register A5 (the global pointer) and use it as just another 
register in which to store data. Before the ROM exits, it restores A5, so the application 
is not messed up. However, if an interrupt routine were to run after a ROM routine 
had changed A5 but before it had restored it, the interrupt routine would not be able 
to access the application’s global variables, since they are addressed relative to the 
address stored in register A5. 

For additional information see the section “Using Application Global Variables in Tasks” 
in the “Time Manager” chapter of Inside Macintosh, Volume VI.

Displaying Information About VBL Tasks 5
A VBL task, which always runs at interrupt time, is described by a VBLTask record that 
the Vertical Retrace Manager maintains in a linked queue. The VBL dcmd uses the 
information in this queue to display information about all currently installed VBL tasks. 
If you are writing interrupt routines that are handled by the Vertical Retrace Manager, 
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you can use the VBL dcmd to list information about all currently installed VBL tasks. 
For example:

vbl

Displaying VBL tasks

 Addr Count Phase VBL at

 82e23e 0006 0000 002e98

 82f3fe 0011 0009 003008

 004b7c 003f 0000 005518

 00317e 0001 0000 003170

 3cbbb6 7f95 0000 3b5852

 #5 VBL tasks

Table 5-1 describes the meaning of the information displayed by the VBL dcmd.

MacsBug’s A-Trap Commands 5

MacsBug includes eight commands that are entirely concerned with the execution 
of A-traps. Table 5-2 provides a brief summary of these commands. Note that only the 
A-trap command name is listed in the table; the complete syntax of each command is 
shown under the description of that command in Chapter 9, “MacsBug Commands.”

Table 5-1 VBL dcmd information

Field Description

Addr Address where code for VBL task starts.

Count Ticks between successive invocations of task.

Phase Integer (smaller than Count), used to stagger execution times slightly for 
VBL tasks that are started at the same time and have equal count values.

VBL at The address of the VBLTask record; the address is a queue element.



C H A P T E R  5

The Macintosh Operating System

MacsBug’s A-Trap Commands 139

These eight MacsBug commands are specifically dedicated to monitoring the execution 
of A-traps in your program. They are necessary because of the different kind of 
processing that is involved in executing system routines. The main difference between 
these commands and other MacsBug commands that perform similar functions can be 
illustrated by the difference between the BR command and the ATB command. The BR 
command invokes MacsBug when the program counter reaches an address you specify; 
the ATB command invokes MacsBug every time a specified A-trap is encountered.

You can take advantage of A-trap processing to focus in on bugs. For example, you can 
use the ATSS command to checksum a range of memory before the execution of every 
A-trap. When the ATSS command invokes MacsBug, you know that the A-trap that is 
about to execute is not responsible for the change in value. You also know that the 
instruction you are looking for is either the previous A-trap or any instruction executed 
between the previous A-trap and the current call. You can now use the SS command 
within the suspect range to find that instruction. Having trap recording turned on while 
using the ATSS command allows you to determine the previous A-trap call. You can also 
disassemble backward from the current PC until you find the previous A-trap.

The A-Trap Action Table 5
When MacsBug is installed and an A-trap exception occurs, MacsBug pre-patches the 
trap dispatcher. That is, MacsBug becomes the all-purpose exception handler and the 
microprocessor hands the trap word to MacsBug 

MacsBug keeps an internal table in which it records the A-trap actions you have defined 
using one of the commands in Table 5-2. When the PC points to an A-trap, the micro-
processor starts exception processing. The microprocessor passes control to MacsBug. 

Table 5-2 A-trap commands

Command Action

ATB Invokes MacsBug whenever the microprocessor encounters the specified 
A-trap. You can display the state of the microprocessor and memory just 
before the A-trap is executed.

ATC Clears actions set using the ATB, ATT, ATHC, and ATSS commands.

ATD Displays information about all actions currently set with the ATB, ATT, 
ATHC, and ATSS commands.

ATHC Checks the heap before executing the specified A-trap.

ATP Displays information saved while trap recording is on.

ATR Turns trap recording on and off.

ATSS Invokes MacsBug if the value for a memory location or range has 
changed before an A-trap is executed.

ATT Writes information to the MacsBug output buffer without stopping the 
current program whenever the microprocessor encounters the specified 
A-trap.
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MacsBug first checks the internal table to see whether there’s any action that has been 
associated with that A-trap. Next, because the A-trap commands allow you to specify 
further conditions that have to be met before any action is taken, MacsBug checks to see 
whether these conditions are satisfied. If an action for that A-trap has been entered in the 
table and the conditions are satisfied, MacsBug displays the debugging screen and halts 
the program when the PC points to the A-trap call. If there is no entry for the A-trap in 
the internal table or if the other conditions you specified are not satisfied, then MacsBug 
passes the information to the trap dispatcher, which in turn locates the routine and 
jumps to the first instruction of that routine.

You use the ATD command to display the contents of the A-trap table. For example:

ATD

 A-Trap actions from System or Application

Trap Range Action Cur/Max or Expression Commands

_MenuSelect Check 00000000 / 00000003

_WaitNextEvent Break  every time

_WaitNextEvent Break  every time ;hc

_GetPort Break D0 = 6

_Pack0 Break SP^.W=#68

You use the ATC command to remove one or more entries from the table.

Using A-Trap Commands 5
This section presents information that applies to using any of MacsBug’s A-trap 
commands.

Specifying an A-Trap Name 5

Every A-trap has both a number and a name. You use the name in your source code. The 
trap dispatch table is organized by number. MacsBug knows both the name and the 
number of every A-trap. Thus, you can use either the name or the number of a trap in a 
MacsBug command. 

When you look through your disassembled code, the A-trap call is usually listed 
as follows:

_A-TrapName

for example:

_WaitNextEvent
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There are two situations in which the name listed in the disassembled listing or in the 
A-trap action table will not match the name you specified in your source program:

■ If the trap belongs to a package, the package name and number will be displayed 
rather than the A-trap name. See the section “A-traps in Packages” for additional 
information.

■ Because assembler names must be unique to eight characters, special macro names 
must be used for Pascal routines whose names aren’t unique to seven characters 
(the underscore counts as one character.) In the case where the first seven characters 
of a trap macro name would duplicate another name, the spelling of the macro 
name will differ from the name of the Pascal routine itself. This is noted in the 
documentation for the particular routine in Inside Macintosh.

There are about 700 A-traps defined, and they are listed in Appendix C of Inside Macintosh. 
(Note that each volume of Inside Macintosh has a different Appendix C, each with a 
different list.)

Setting an A-Trap Action on a Range of Traps 5

All A-trap commands that take a trap name as a parameter also allow you to specify a 
range of traps. Basically, this allows you to set some action on all traps belonging to a 
particular manager. The numerical listing of A-traps in Appendix C of Inside Macintosh 
should help you determine the range for the manager you’re interested in.

Restricting A-Trap Actions to your Application 5

Most A-trap commands give you the option of setting an action on an A-trap only if that 
A-trap is being called from your application. A-traps often call other A-traps. If you want 
to focus on the calls that are made from your application’s heap rather than from ROM 
or the system heap, you should use this option.

You tell MacsBug to take action only on traps called from your application’s heap by 
appending the letter A to the A-trap command. For example, the command

ATBA GetNewWindow

tells MacsBug to break on all calls to GetNewWindow that are made from the application 
heap. Note that there is no space between the command name and the “A” option.

A-Traps in Packages 5

Some A-trap routines are stored in packages; these are stored either as resources of type 
'PACK' in the system file or they are stored in ROM. There are two reasons for placing 
routines in packages. The first reason is that at one time there were more routines than 
there was room in ROM, so that some nonessential routines were moved into the system 
file from where they could be loaded in as needed. The second reason is that as the 
number of routines exceeded the number of A-traps available, it was necessary to find a 
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way to access several routines using one A-trap number. The solution to the space 
problem was to include all traps belonging to one manager in a package and to put the 
package in a resource that could be loaded as needed from the system file. When ROM 
got bigger, this problem was eliminated, but the second problem (too few numbers for 
A-traps) remained and the package solution was used, though packages could now 
reside in ROM.

A package is simply a group of related calls. Each package contains the code for several 
related routines, which are listed separately in Inside Macintosh. There is only one A-trap 
number for all the routines in a given package. Packages are transparent to the high-level 
programmer. Glue automatically calls the correct routine. But you must understand how 
the system uses packages to debug them with MacsBug.

Because each package includes multiple routines, each routine has an index number that 
locates it within the package. When a program calls a routine in the package, the 
routine’s parameters are pushed onto the stack first, and then the routine’s index 
number. This index number is called a routine selector. The Package Manager reads the 
index number and jumps to the correct routine inside of the package.

Thus, the same package A-trap can be called with different parameters, depending on 
the routine for which the A-trap is indexed. Since MacsBug does not know which routine 
in the package is being called, it just disassembles it as a 'PACK' A-trap. You can see 
which routine the A-trap is destined for by looking at the routine selector on the stack. 
(Some routine selectors are put in registers.)

Because all of the routines in a package are implemented by one A-trap number, you 
can’t place an A-trap break on a single routine as you normally would using the ATB 
command. What you must do instead is break on the package and then test for the 
routine selector on top of the stack or in a register to make sure that the routine you’re 
interested in is executing. 

MacsBug is shipped with several sets of macros that allow you to place A-trap breaks on 
individual routines inside a package. The macros actually place an A-trap break on the 
whole package, with a condition that checks the index selector to see if it’s the routine 
you wanted. The description of the ATB command, in Chapter 9, includes a detailed 
description of how to place a break on a routine inside a package.

Macintosh Managers 5

As mentioned at the beginning of this chapter, each system manager is responsible for 
creating and maintaining data structures that you manipulate using system routines. For 
example, the Event Manger creates and tracks event records, the Window Manager 
maintains window records, and so forth. The following two sections provide an over-



C H A P T E R  5

The Macintosh Operating System

Macintosh Managers 143

view of how the File Manger and the Device Manager keep track of the data structures 
and tasks they are responsible for. These sections also explain how you can use low-
memory globals to locate these structures in memory and how you can use standard 
dcmds to display information about open files, mounted volumes, and installed drivers.

Although detailed descriptions of every Macintosh manager lie outside the scope of this 
manual, these two sections will give you an idea of the “pieces” you need to simplify the 
debugging of routines belonging to a particular manager:

■ Learn what data structures are characteristic of that manager and how the manager 
maintains and tracks these structures. Does it queue records in a linked list? Does it 
put the information in a buffer? 

■ How does the manager use low-memory globals to locate the items it needs? 

■ Using this information, you can write your own dcmds to locate the information you 
need, and you can create your own templates to display that information. This takes a 
bit of work, but makes debugging a lot easier. See Chapter 4, “Macintosh Memory 
Organization,” for information on creating templates for system and private data 
structures, and Chapter 8, “Introduction to MacsBug Commands,” for information on 
writing your own dcmds.

The File System 5
This section gives an overview of the lower levels of the Macintosh file system. It does 
not discuss the normal way to read or write a file from an application.

To read from a file, an application calls the File Manager (HFS), which knows where each 
file resides on the disk volume. The File Manager, in turn, calls the Device Manager, 
which knows which device driver runs that disk. Then the Device Manager calls the 
appropriate driver for the device:

■ If it’s a floppy disk, the driver talks directly to the floppy disk drive hardware.

■ If it’s a SCSI disk, the SCSI driver calls the SCSI Manager, which talks to the hardware 
(the SCSI chip).

■ If it’s a file server, the AppleShares  driver calls the serial driver, which talks to the 
serial port hardware.

Figure 5-5 shows the calling chain for these three types of drivers.
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Figure 5-5 Calling chain for reading from or writing to a disk

The File Manager stores internal information about its current state in queues in the 
system heap. The Queue Manager (an operating system utility) manages these queues. 
The following sections describe these queues and how you can use low-memory globals 
to access the first element in a list.

Drive Queue 5

The drive queue is a linked list of all drives connected to a Macintosh. The list includes 
one entry, or queue element, for each connected drive. 

The low-memory global DrvQHdr contains a pointer to the first element in the list. This 
global is useful when you are looking at the drive queue from MacsBug. You can use the 
system call GetDrvQHdr from a program to get the pointer to the first element in the list.

Finding and Displaying Information About Mounted Volumes 5

The volume queue is a linked list of all volumes mounted on a Macintosh. The list 
includes one entry, or queue element, for each volume, SCSI driver, and file server. Not 
every entry in the drive queue has a corresponding entry in the volume queue: a floppy 
drive without a disk is in the drive queue but not the volume queue. A floppy disk that 
has been ejected and appears dimmed on the desktop is in the volume queue but not the 
drive queue.

Application

Device Manager

SCSI driverFloppy driver AppleShare driver

SCSI ManagerHardware Serial driver

Hardware Hardware

File Manager (HFS)
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The low-memory global VCBQHdr contains a pointer to the first element in the list. This 
global is useful when you are looking at the volume queue from MacsBug. The system 
call GetVCBQHdr can be called from a program to get the pointer to the first element in 
the list. You can use the MacsBug template VCB to look at volume queue entries.

You can also use the standard dcmd VOL to display information about mounted 
volumes. For example:

vol

Displaying Volume Control Blocks

 vRef Vol Flg dRef Drive FSID #Blk BlkSiz #Files  #Dirs Blsd Dir VCB at

 ffff Neuromanc… Dsh ffdf  0008 0000 a46a 000400 0003ac 0000d3   000018 00bf24

 fffe Descartes  dsh ffdb  0009 0000 cb72 000600 000a13 00016a   000000 003fbc

 fffd Backpack   dsh fffb  0001 0000 063a 000200 000011 000001   000000 01fce8

 #3 VCBs

Table 5-3 describes the fields of the VOL display.

File Control Blocks (FCBs) 5

A buffer in the system heap contains space for a number of file control blocks or FCBs. 
Each FCB contains information on one currently open file. This buffer is not a queue. 
When the buffer is full, you must close a file to obtain room to open another. The 
low-memory global FCBSPtr points to the buffer. The system call PBGetFCBInfo can be 
called from a program to get the FCB for any open file. 

Table 5-3 vol display fields

Field Description

vRef Volume reference number.

Vol The name of the volume.

Flg D/d:Uppercase = Dirty; S/s:Uppercase = Software locked; 

H/h:Uppercase = Hardware locked.

dRef Driver reference number.

Drive Drive number.

FSID File System ID. 0 means Macintosh file system.

#Blk Number of allocation blocks on volume.

BlkSiz Size in bytes of an allocation block.

#Files Number of files on the volume.

#Dirs Number of directories on the volume.

Blsd Dir Directory ID of the system folder.

VCB at Address of the Volume Control Block.
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The standard FILE dcmd displays information about all open files. For example:

file

Displaying File Control Blocks

 fRef File        Vol      Type Fl Fork  LEof   Mark   FlNum  Parent FCB at

 0002 System      Neuroma… ZSYS dW rsrc#393111 #70829 001b86 000018 005aa6

 0060             Neuroma… •••• dw data#336896 #0     000003 000000 005b04

 00be             Neuroma… •••• dw data#673792 #0     000004 000000 005b62

 011c OnBase      Neuroma… POP2 dw data#255833 #534   001245 000018 005bc0

 017a Suitcase• IINeuroma… INIT dW rsrc#39954  #28649 002433 000018 005c1e

 01d8 Apple Fonts Neuroma… FFIL dW rsrc#103077 #64716 002441 00243a 005c7c

 0236 Laser Fonts Neuroma… FFIL dW rsrc#302184 #7590  002442 00243a 005cda

 0294 Debugger Fk…Neuroma… FKEY dW rsrc#351    #351   00243e 002439 005d38

Note that some files don’t have names. In the listing above there are two files without 
names. These are the two B*tree files stored on each HFS volume, which contain the 
directory information.

Table 5-4 describes the fields of the FILE display.

File I/O Queue 5

The file I/O queue is a linked list of all pending asynchronous I/O requests. The list 
includes one entry, or queue element, for each request.

The low-memory global FSQHdr contains a pointer to the first element in the list. This 
global is useful when you are looking at the file I/O queue from MacsBug. You can call 
GetFSQHdr from a program to get the pointer to the first element in the list.

Table 5-4 FILE display fields

Field Description

fRef The file’s reference number

File The name of the file.

Vol The volume the file is on.

Type The file’s type.

Fl D/d:Uppercase = Dirty; W/w:Uppercase = Writeable.

Fork Which fork is open, resource or data.

LEOF Logical end-of-file in bytes.

Mark Current file mark position in bytes.

FlNum File number.

Parent File’s parent directory ID.

FCB at Address of the file’s File Control Block.
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Debugging Low-Level File System Calls 5

The low-level file system calls are easy to debug in MacsBug. (The high-level calls are all 
implemented with glue, which ends up calling the low-level calls.) The low-level HFS 
calls all pass a pointer to their parameter block in register A0.

Some HFS calls use packaged traps, which means they are dispatched by means of a 
single A-trap number. Macros shipped with MacsBug allow you to set A-trap breaks on 
the particular A-trap you want.

First use the ATBA command to set a break on the HFS call you are interested in. (If 
you wrote the program in C or Pascal, the HFS call will be in glue. The glue takes the 
parameter block pointer off the stack, where the compiler put it, and puts it in A0.) 
Then type 

DM A0 IOPB

and MacsBug will display the parameter block using the IOPB template, which is the 
most common parameter block template. All the information for a File Manager call is 
in this parameter block.

You can step over (using the SO command) the HFS trap, and then enter DM A0 I0PB 
again to examine what the trap returned. You can easily make your own templates 
for the more esoteric parameter blocks; see Chapter 4 for information about making 
templates.

The Device Manager works just like the File Manager; it passes a pointer to a parameter 
block in A0, and the parameter block contains all the relevant information for the call. 
Use DM A0 IOPB, as described above to examine the parameter block.i).file system;

Synchronous and Asynchronous I/O 5

Synchronous I/O refers to an I/O operation in which the calling process does not 
resume until the operation is finished. Asynchronous I/O refers to an I/O operation in 
which the calling process can continue to run at the same time that the I/O operation is 
being performed. 

With synchronous I/O, your program tells the File Manager to read from a file. The File 
Manager in turn makes calls all the way down the line to the driver. The driver then 
makes the call to read the file. It retains control until the call has been processed and then 
returns control to the application. While the call is in progress, no other actions occur.

With asynchronous I/O, your program tells the File Manager to read from a file. The File 
Manager in turn makes a call to the Device Manager and returns control to the applica-
tion while the call is being processed. This allows the application to keep running while 
the I/O operation is still being performed.

The driver gets slices of time to process the call periodically through an interrupt. When 
the driver completes the call, it sets a variable in the parameter block. The application 
needs to check the variable periodically to determine when the call has been processed. 
The driver also calls a completion routine that the application designates to be run when 
the call is complete.
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Asynchronous I/O improves program speed by allowing the application to process 
during disk access. This time is otherwise wasted waiting for a disk drive head to get 
into position. 

Currently, the only driver that can execute asynchronously is the floppy disk driver. If 
you call a driver asynchronously that can’t support that mode, it simply runs 
synchronously.

For additional information about the File Manager, see “The File Manager,” in 
Inside Macintosh, Volumes IV and VI. (Note that the File Manager chapter in Volume II 
is obsolete.)

Drivers 5
Drivers are programs that connect applications to hardware devices. (A Desk accessory 
is a special kind of a driver.) The driver’s job is to present a uniform software interface to 
an application no matter which of several similar hardware devices the application is 
using. For example, the ImageWriter and LaserWriter drivers present the same interface 
to the application, so the application doesn’t need to take account of which printer the 
user chooses. The application simply sends data to the current print driver. The two 
drivers are responsible for dealing with the very different ImageWriter and LaserWriter 
hardware. Drivers can run at the same time that an application is running.

A driver does not contain a main entry point as does a normal application, but consists 
of a set of five independent routines:

■ Open: Opens a driver.

■ Close: Closes a driver.

■ Prime: Handles read and write operations.

■ Status: Returns the status of the driver.

■ Control: Handles all other driver operations, such as ejecting a disk from a floppy 
disk drive.

Only the Open and Close routines are required for a driver. 

Most drivers are stored in resources of type 'DRVR'. The Resource Manager auto-
matically loads them into memory when they are needed and disposes of them when 
they are closed. Every driver includes a header that lists its name, critical information, 
and the location of all its routines. The routines follow the header.

Applications use system calls to call the Device Manager rather than calling drivers 
directly. The Device Manager then directs the request to the proper driver. Applications 
can request either synchronous or asynchronous driver service. See “The File System,” in 
this chapter, for more information about synchronous and asynchronous I/O.
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Device Control Entry (DCE) 5

The first time a driver is opened, information about it is read into a relocatable block in 
memory (usually in the system heap) called a device control entry, or DCE. The DCE 
includes a handle or pointer to the driver and other information that it copies from the 
driver (see the detailed view of the DCE in Figure 5-6). The block allocated for the DCE 
is locked when the driver it points to is open and unlocked when the driver is closed. 
Figure 5-6 shows the relationship of the DCE to the driver. (If the driver serves a device 
that is plugged into a NuBus slot, five additional entries are appended to the DCE 
shown in Figure 5-6. The “Device Manager” chapter in Inside Macintosh, Volume 5, 
describes the fields added to the DCE for such drivers.)

If the driver is in ROM, the DCE has a pointer to it. If the driver is in RAM, the DCE has 
a handle to it. The DCE also contains a flag that tells you whether the driver is RAM-
based or ROM-based. SCSI drivers are the only exception to this scheme. Although they 
are always in RAM, the flag can be set either way, and the DCE usually contains a 
pointer to the appropriate driver. The flag should therefore be ignored for SCSI drivers. 

Figure 5-6 Device control entry
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Figure 5-7 shows the word labeled dCtlFlags (see Figure 5-6). The high-order byte of this 
word is copied from the driver into the DCE; the low-order byte is only set up in the 
DCE. The bits of the low-order byte are subsequently changed as necessary by the 
operating system.

Figure 5-7 Flag bits in the dCtlFlags word

Table 5-5 describes the meanings of the high-order dCtlFlags flag bits in both the driver 
and the DCE. 

Table 5-6 describes the meanings of the low-order dCtlFlags flag bits (in the DCE only).

Table 5-5 High-order dCtlFlags flag bits

Bit Name Meaning

0 dReadEnable Driver can respond to Read calls.

1 dWritEnable Driver can respond to Write calls.

2 dCtlEnable Driver can respond to Control calls.

3 dStatEnable Driver can respond to Status calls.

4 dNeedGoodBye Tell driver before application quits.

5 dNeedTime Driver needs to be called periodically.

6 dNeedLock Driver needs to be locked in memory.

Table 5-6 Low-order dCtlFlags bits

Bit Meaning

5 Driver is open

6 Driver is RAM based

7 Driver is currently executing

7

High-order byte

6 5 4 3 2 1 0

Low-order byte

7 6 5 4 3 2 1 0
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The Unit Table 5

The location of each device control entry is maintained in a list called the unit table. The 
unit table is an array of handles and is located in the system heap. It is divided into 
sections, as shown in Figure 5-8. Each section of the unit table is devoted to one type of 
driver and is divided into units with one unit per driver. In some sections, such as those 
for system drivers and SCSI drivers, each unit is reserved for one particular driver. In the 
other sections, any unit can be grabbed by any driver, as long as the driver belongs to the 
group of drivers assigned to that section. The reserved section mostly contains various 
network drivers. 

Each unit contains a handle to the device control entry for that driver, or contains the 
value zero if no driver is installed. The unit table has from 32 to 128 units, depending 
upon what type of Macintosh you have. The low-memory global UTableBase ($11C) 
contains a pointer to the unit table. Figure 5-8 shows a simplified view of the Unit Table 
and the way it relates to the DCE.

Figure 5-8 A simplified view of the unit table

Unit numbers 0–12

System drivers

Unit numbers 13–31

Desk accessories

Unit numbers 32–39

SCSI drivers

Unit numbers 40–48

Reserved

Unit numbers 49–127

NuBus slot drivers

Pointer to unit table

UTableBase ($11C)

Unit 

table

(See Figure 5-6 for 

a detailed view.)

Handle 

to DCE

Master

pointer DCE Driver



C H A P T E R  5

The Macintosh Operating System

152 Macintosh Managers

Figure 5-9 shows a more detailed view of the unit table.

Figure 5-9 Detailed view of the unit table

Desk Accessories 5

Desk accessories (DAs) are a special type of Macintosh driver. Hardware drivers don’t 
have user interfaces or interact with the user directly at all. Desk accessories can 
have menus and/or windows. Each desk accessory contains fields in its DCE to store 
pointers to a menu and a window that the DA uses. These fields are left blank by 
hardware drivers.

Since hardware drivers and desk accessories are both resources of type 'DRVR' and all 
'DRVR' resources are required to have names, the system has a simple way to tell them 
apart. Hardware driver names begin with a period, like “.Sony” or “.Sound”. Desk 
accessory driver names begin with a null character (a zero that is a non-printing ASCII 
character), like “Calculator” or “Alarm Clock.” Nonprinting characters are displayed as 
boxes in some fonts. The system looks through all the 'DRVR' resources in the system file 
at startup time and lists the ones that don’t start with a period under the Apple menu.

Desk accessories usually implement different calls than hardware drivers. In addition to 
Open and Close routines, desk accessories are required to implement the Control call. 
They usually don’t implement the Prime or Status calls used by many hardware drivers. 
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Applications interact with desk accessories through the Desk Manager, which makes all 
of the appropriate Device Manager calls. The drvr dcmd, described in the next section, 
displays information about desk accessories as well as hardware drivers.

Displaying Information About Installed Drivers 5

The standard drvr dcmd lists all the drivers currently installed, along with information 
about each driver and its device control entry. For example:

drvr

 Displaying Driver Control Entries

dRef dNum Driver Flg Ver qHead Storage Window Dely  Drvr at DCE at

  fffd 0002 .Print bHO #27 000000 000000 000000 0000 a0026838 8001b82c

  fffc 0003 .Sound bPO #0 000000 000000 000000 0000 82f010   80002fcc

  fffb 0004 .Sony bPO #1 000000 000000 000000 0000 82d72c   80002e58

  fffa 0005 .AIn bPC #3 000000 000000 000000 0000 a082ab92 8000322c

  fff9 0006 .AOut bPC #3 000000 000000 000000 0000 a082abaa 80003268

  fff8 0007 .BIn bPC #3 000000 000000 000000 0000 a082abc2 800032ac

  fff7 0008 .BOut bPC #3 000000 000000 000000 0000 a082abda 800032e8

  ffdf 0020 .SCSI00 bPO #0 000000 0058bc 000000 0000 0041a6   800054bc

  ffdb 0024 .SCSI00 bPO #0 000000 0058bc 000000 0000 0041a6   8001ba04

  ffcf 0030 .Display_V…bHO #0 000000 001f28 000000 0000 c001bb5c 80003020

  #64 Unit Table entries, #12 in use, #52 free

Table 5-7 describes the fields of the drvr display.

Table 5-7 drvr display fields

Field Description

dRef The driver reference number, in two’s complement arithmetic. 

dNum The driver’s unit number. 

Driver The name of the driver. 

Flg B/b:Uppercase = Busy; H/P:driver is stored in a Handle or a Pointer; 
O/C:Open/Closed. 

Ver The driver’s version number. 

qHead The head of the driver’s request queue. 

Storage Pointer or handle to the driver’s private storage. 

Window Pointer to a window that belongs to the driver. 

Dely How often the driver would like to be called, in ticks. 

Drvr at The address of the driver itself. 

DCE at The address of the driver's Device Control Entry.
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How Discipline Works

 

Discipline is a set of routines that a debugger calls to test the validity of parameters 
passed to a User Interface Toolbox or operating system routine and to test the validity of 
parameters passed back to your application by that routine. This chapter describes how 
you install Discipline, how you determine which tests Discipline should use to test 
parameters, and how you work with Discipline during application development.

Discipline is not a stand-alone tool; it must always be used with a resident debugger. 
This chapter assumes that the debugger is MacsBug.

For additional information about the way Discipline interfaces with MacsBug, see 
Appendix E, “MacsBug Internals and Discipline Interface.”

 

How Discipline Works 6

 

If Discipline is installed and your application makes a system call, MacsBug passes 
the call to Discipline instead of passing the call to the trap dispatcher. Discipline is 
responsible for performing two series of tests: it runs the first series before the call 
executes and the second series after the call executes.

Discipline selects the tests it’s going to use depending on the call being tested and on the 
configuration file you selected when you installed Discipline. Thus Discipline might test 
the order in which you have specified the parameters for a call, test the validity of 
pointers, or check valid ranges for some or all of the parameters.

If the system call fails its initial (pre-execution) test, MacsBug saves the results in a 
history buffer and drops into MacsBug where you can examine the information it 
returns. If the call passes its initial test and you have set no actions on that trap (ATB, 
ATHC, ATSS), MacsBug hands it off to the trap dispatcher, which finds the location of 
the call in ROM or RAM and executes the call.

After the call executes, Discipline again tests the values returned by the call. If it finds 
that the values are invalid or less than optimal, it drops into MacsBug and displays a 
diagnostic message. If the returned values pass Discipline’s tests, the next instruction 
is executed.

 

Installing Discipline 6

 

You can install Discipline either as an INIT file or as an application, depending on your 
memory requirements and on whether you plan to run it in a single-application envi-
ronment (system software version earlier than 7.0 with MultiFinder turned off) or a 
multiple-application environment (system software version 7.0, or system software 
version 5.0 or 6.0 with MultiFinder turned on).
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Installing Discipline as an INIT File 6

 

If you are working in a single-application environment, you should install Discipline as 
an INIT file. In this case, Discipline remains installed until you shut down your 
Macintosh. To install Discipline, follow these steps:

1. Insert and open the Discipline disk. 

2. Move the Discipline file into your System Folder.

3. Open the Configuration folder on the Discipline disk.

4. Open either the Lenient or the Strict configuration folder. Select the Discipline Startup 
file and move it into your System Folder. 
You indicate which tests you want Discipline to apply by selecting one of two 
configuration files: Lenient or Strict. Each of these files contains different tests that 
Discipline uses to test the parameters of each system call. The difference between 
these configurations is implied by their names: it will be easier for the parameters you 
supply to satisfy the lenient tests than to satisfy the strict tests.

5. Restart your Macintosh.

The message shown in Figure 6-1 is displayed to let you know that the installation 
was successful.

 

Figure 6-1

 

Discipline installation message

 

You can prevent Discipline from loading when you start up your machine either by 
taking Discipline out of your System Folder and restarting, or by holding the Option 
key down while your Macintosh is starting up.

Discipline is turned off initially. It does not check trap calls until you turn it on. The 
command syntax you use to turn Discipline on and off and to select Discipline options 
depends on the debugger with which Discipline is running. The section “Using Discipline 
During Application Development” in this chapter describes how you use Discipline 
from MacsBug.

 

Installing Discipline as an Application 6

 

If you are working in a multiple-application environment, you will probably want to 
install Discipline as an application. In this case, Discipline remains installed until you 
turn it off from the debugger or press Command-Q to quit the Discipline application.

To install Discipline as an application, follow these steps:

1. Insert and open the Discipline disk.

2. Move the Discipline file into any folder you wish. It does not have to be the 
System Folder.
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Reading Discipline Output

 

3. Open the Configuration folder on the Discipline disk.

4. Open either the Lenient or Strict configuration folder and move the Discipline Startup 
file into the folder containing Discipline. 
You indicate which tests you want Discipline to apply by selecting one of two 
configuration files: Lenient or Strict. Each of these files contains different tests that 
Discipline uses to test the parameters of each system call. The difference between 
these configurations is implied by their names: it will be easier for the parameters you 
supply to satisfy the lenient tests than to satisfy the strict tests.

5. To install and launch Discipline, hold the Option and Command keys down while 
double-clicking the Discipline file. 

When Discipline is installed, the message shown in Figure 6-1 is displayed. When 
Discipline is launched, its icon will be displayed in the space where the active 
application’s icon is normally displayed, and the rest of the menu bar will be completely 
blank; even the Apple menu will be gone. This is just as it should be. You can get back to 
Finder by clicking on the Discipline icon or on the desktop.

At this point you can see Discipline listed as an active application in the Apple menu. 
Also, Discipline is turned on and you are very likely to find yourself in MacsBug or the 
resident debugger because Discipline seldom approves of the way in which Finder 
accesses system calls. This would be a good time either to turn Discipline off or to leave 
it on only for applications.

If MacsBug is the resident debugger, you can turn Discipline off by entering

 

DSC OFF

 

on the command line or by typing Command-Q. When you are ready to use Discipline to 
test an application, you can turn it back on.

To leave Discipline on but arrange things so Discipline doesn’t have to worry about the 
Finder’s manners, enter

 

DSCA

 

from MacsBug.

If you are working in a multiple-application environment, you can install Discipline 
either as an INIT file or as an application. In this case, it is your need for memory that 
might dictate which way you install it. If you install it as an INIT file, Discipline will take 
up space in the system heap until you shut down your computer. If you install it as an 
application, Discipline will only take up space in the system heap when it is turned on.

 

Reading Discipline Output 6

 

Reading Discipline’s output is fairly straightforward. Figure 6-2 shows two messages 
from Discipline in the output region of the MacsBug display. Each message was created 
by Discipline when a system routine failed one of Discipline’s tests.
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Figure 6-2

 

Sample Discipline output

 

The first three entries in the Discipline output tell you when Discipline performed the 
test, the address of the instruction being tested, and the value of the program counter. 
Discipline performed this test before executing the BeginUpdate call. It tells you this in 
the beginning of its message:

 

Before:  BeginUpdate

 

But you can also tell because the value of the program counter (PC) and the address of 
the instruction being tested are the same.

The next field, Parameters, lists the parameters to the call. The BeginUpdate call takes 
one parameter, a window pointer.

The next field, Test, lists the test(s) used to evaluate the parameter. 

The next field, Failure, further narrows the cause for the break. In this case, it pinpoints 
one of the fields of the window record, structRgn. The display gives you all the 
information you need to check the value of this field. The following MacsBug command 
displays memory starting at 004B6B9A using the template windowRecord to make sense 
of the bits: 

 

dm 004B6B9A windowRecord
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Using Discipline During Application Development 6

 

This section describes how you call Discipline from MacsBug. It also suggests ways you 
can use Discipline during various stages of application development and explains how 
to use Discipline to test system routines made from code that runs during system startup 
and from code that executes within another application’s partition. 

This is the syntax of the DSC command:

DSC[A][X] [ON | OFF ]

A specifies that Discipline only checks toolbox calls made from your 
application.

ON turns Discipline on.

OFF turns Discipline off.

X directs MacsBug to keep the Discipline error report internally and 
continue execution rather than stopping before and after every A-trap 
call to display Discipline messages.

 

Using Discipline to Test Applications 6

 

The way you use Discipline depends largely on how confident you are in your code. You 
might want to define three stages: module development, initial application testing, and 
final application testing.

Whenever you add a piece of new code, use the strict Discipline configuration. Use the 
DSCA command to turn Discipline on at the start of the new module. You can use the 
DebugStr command in the source code to do this. You could include the following 
command at the beginning of the piece of code you are adding:

 

DebugStr "Activating Discipline; DSCA ON; G"

 

Turn Discipline off at the end of the module in the same way:

 

DebugStr "Turning Discipline off; DSCA OFF; G"

 

You should also turn Discipline on (DSCA ON) using the lenient configuration every 
time you run your application during development. Using the DSCA option will speed 
up Discipline’s performance, but you should use the DSC command—to test for every 
system call—during final testing.

The DSCX option, which allows Discipline to log test results internally while continuing 
to execute your program, is something to save for last, when you’re sure that your code 
won’t crash. Although the DSCX option keeps Discipline from complaining, it might also 
prevent you from seeing a message that would have warned you of an impending crash. 
If the Macintosh crashes, the log file that Discipline has used to record test results will 
be useless.
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Using Discipline to Test INITs and Other Start-up Code 6

 

If you want to use Discipline to test INITs or other code resources that run during the 
start up sequence, you must make sure that Discipline is loaded before your INIT. You 
can do this by placing a Debugger call at the start of your INIT to drop into MacsBug 
and then turn Discipline on yourself. Or you can use the DebugStr command to turn 
Discipline on and continue execution. For example:

 

DebugStr "Turn Discipline ON; DSCA ON; G"

 

When the INIT completes, turn Discipline off. It is recommended that you use the strict 
configuration every time to test an INIT.

 

Using Discipline to Test DAs and XCMDs 6

 

If you are writing desk accessories, XCMDs, or other code resources that execute within 
an application’s partition (in a multiple-application environment, desk accessories have 
their own partitions), you need to be careful when you are using the DSCA command. 
DSCA simply looks at the local HeapZone where the PC points, whether it be a nested 
zone or the application zone. It confines Discipline’s actions to that zone. You must 
therefore make sure that you are in the right application partition.

This is relatively easy to do with MacsBug 6.2, since it displays the name of the current 
application in the status region of its display. Check the name of the current application 
before you enter DSCA. 

 

Restrictions on Discipline 6

 

You must observe the following restrictions when using Discipline.

If you are using MacsBug,

 

■

 

A command line containing a DSC command cannot contain macros.

 

■

 

You cannot log MacsBug output if DSC is on.

 

■

 

If Discipline crashes, you must turn it off using the DSC OFF or DSCA OFF command 
before you use the ES (Exit to Shell) command.

If you are using any debugger (including MacsBug) and Finder is the current applica-
tion, do not turn Discipline on or you will be inundated with complaints. This does not 
mean that there is anything wrong with Finder, and it does not mean that there is 
anything wrong with Discipline. It just means that you should keep Finder away 
from Discipline. 
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Before the Crash

 

If there were a formula for writing programs, there would also be a formula for 
debugging them. Unfortunately, there are no formulas; only experience, patience, and 
intelligence can help you in either case. Error handling on the Macintosh is especially 
tricky because of the extensive interplay between your code and the system code. You 
have to understand what your code is doing, how the disassembled code that MacsBug 
shows you relates to your source code, and how the system implements User Interface 
Toolbox and operating system routines and manages memory in order to find and 
fix bugs. 

 

■

 

This chapter describes some strategies that can make your work in developing, 
testing, and debugging programs easier: 

 

■

 

It describes how you can take advantage of compiler options and 
system-error-handling routines to catch bugs before they happen.

 

■

 

It describes common bugs, their causes and cures.

 

■

 

It explains how you can use MacsBug commands to focus on potential sources of bugs 
and to test your program.

For additional information about Macintosh debugging, see Scott Knaster’s 

 

How To Write 
Macintosh Software

 

. The information presented in this chapter relies heavily on his work.

 

Before the Crash 7

 

The best way to cure bugs is not to let them happen in the first place. The next best way 
is to observe them when they happen rather than hunting for them after your program 
has crashed. This section describes some of the things you can do during development 
that can prevent bugs from happening or make them easy to find when they do happen. 

 

Use the Compiler’s Directives 7

 

Most compilers include directives that can help you catch errors resulting from range 
violations, integer overflow, uninitialized variables, and unsafe use of handles. You can 
selectively turn these options on and off in your source program to catch potential bugs 
while keeping compilation times to a minimum.

If you anticipate having to do some low-level debugging, use the compiler directive that 
allows debugging symbols to be placed in object code. If this directive is not turned on, 
MacsBug will not be able to display routine names in its disassembly commands. This will 
make it difficult for you to determine where you are in your program when it crashes and 
equally difficult to find your way around when you're working with MacsBug.

 

Turn Trap Recording On 7

 

The MacsBug ATR (A-trap Record) command copies information about each system call 
that executes into an internal buffer. If your program crashes or behaves erratically, you 
can use the ATP (A-trap Playback) command to display information stored in that buffer. 
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(By default, the buffer contains information about the last 24 traps encountered.) The 
information includes the value of the program counter at the time the trap was executed 
as well as the contents of any registers on entry (for an operating system routine) or the 
12 bytes on top of the stack (for a User Interface Toolbox routine).

You can use this information to get a quick history of what code was executing right 
before the crash; you can also check the information saved about the stack or the 
registers to see if there were any suspect values recently passed to a system routine.

Trap recording slows execution down just a little bit, but can give you valuable infor-
mation when you need it most. For additional information about the information 
returned and the number of traps saved, see the description of the ATR and ATP 
commands in Chapter 9.

 

Check Operating System Errors Whenever Possible 7

 

Operating system (OS) errors are available for the program to inspect but should never 
be shown to the user. Some managers, such as the File Manager, provide a return result 
from every call. Others, such as the Memory Manager, return zero to indicate than an 
error occurred, and you must call a special function (MemError for the Memory 
Manager) to get the actual error number.

There are hundreds of OS error codes. They are very specific, and often tell you exactly 
what went wrong. OS errors are usually (but not always) negative numbers. Zero always 
means that there was no error. (For more information about the way the microprocessor 
stores negative numbers, see “The Representation of Negative Numbers” in Chapter 3. 

Make sure you validate every system return value when you’re programming. Most 
programmers don’t check them all, yet this is the easiest way to avoid a crash, since the 
operating system is telling you that something is wrong before the problem becomes 
serious and hard to track down. 

OS errors are listed in Appendix C of this manual, as well as in Appendix A of each 
volume of 

 

Inside Macintosh. 

 

(Note that each volume of 

 

Inside Macintosh

 

 contains a 
different list of errors.) The System Errors desk accessory provides an online list of user 
alerts and system errors.

The OS error returned by the last call to certain managers is stored in some low-memory 
globals. From a high-level language, you should call the routine that returns the error 
(see Table 7-1). If the Macintosh crashes, you can look at the low-memory globals listed 
in Table 7-1 to try to determine the reason for the crash. 

 

Table 7-1

 

Low-memory globals that store operating system errors

 

Name Address Format Description Routine to get error

 

DSErrCode $AF0 word Current user alert error

MemErr $220 word Error from last call MemError

ResErr $A60 word Error from last call ResError
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Results from calls to the Resource Manager are not reported by individual calls but are 
stored in the low-memory global ResErr. The best way to check for resource errors is to 
use the ResErrProc low-memory global, which is a pointer to a resource error-handling 
procedure. You can use the error-handling procedure to invoke MacsBug. When 
MacsBug displays the debugging screen, use the DM command to display the contents 
of ResErr. Register A7 should contain the return address of the routine that called the 
Resource Manager. (If your error-handling procedure is set up using a stack frame, you’ll 
find the return address at A6 + 4.) Using ResErrProc rather than testing ResError every 
time you make a Resource Manager call is more efficient and also allows you to 
catch resource errors that result from routines that make unanticipated calls to the 
Resource Manager.

The other low-memory global that is worthwhile testing in the debugging version 
of your code is MemErr. You can do this by setting a conditional breakpoint in your 
program from MacsBug; for example:

 

ATB memerr <> 0;G

 

To check the value stored in MemErr when MacsBug is invoked, enter 

 

DW MemErr

 

MacsBug displays something like the following:

 

word at 00000220 = $FF94 #65428 #-108 '..'

 

The signed decimal value identifies the memory error.

 

Use Signals and Error Handler Routines 7

 

Signals are a form of intra-program interrupt that allow you to do elegant (memory-
inexpensive) error trapping in stack-frame intensive languages or when you are 
implementing deeply nested procedures. Using signals, your program can call the Signal 
procedure and immediately return to the last invocation of the CatchSignal function, 
which cleans up the stack frame up to the point where it is called. For complete details, 
see Macintosh Technical Note #88, 

 

Signals.

 

Use Assertions in Your Source Program 7

 

An assertion is a procedure that tests a condition and invokes MacsBug if the condition 
fails the test. You can use a compile-time variable to conditionally compile assertions for 
the debugging version of your program.
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Here is an example of an assertion:

 

PROCEDURE Assert(condition:Boolean);

BEGIN

IF condition = FALSE then

DebugStr (‘assertion failed’);

END;

 

You can then call the Assert routine from anywhere in your source program where you 
want to check a value. Notice that this gives you the flexibility of testing for any 
condition; for example:

 

X = GetNumber (0,1)

.

.

.
Y = 10 * x

Assert ( Y > 0 AND Y < 10 )

 

If you’re mixing assembly and high-level languages, you can use assertions to check 
stack balance after executing assembly code. One common problem arises when your 
assembly language routine fails to return the stack pointer to its original location. This 
results in an unbalanced stack and bugs. The cure is to save the value of A7 (the stack 
pointer) when your assembly-language routine starts and then to compare its final value 
to the saved value. If the values don’t match, it’s time to drop into MacsBug and find out 
why.Note that assertions are normally used only in beta versions of the software. In 
release versions, the Assert routine is replaced with a null routine. In C, Assert is usually 
a macro, and the macro is replaced with null, so the release application doesn't even 
have the call stubs to Assert. In Pascal, conditional compiles are used to remove 
assertions in the final version. The standard C library includes an assert routine.

 

Test Code on All Machines 7

 

There are many reasons for doing this; this section lists just a few. 

The 68000, 68020, and 68030 microprocessors use slightly different instruction sets. If 
your compiler is translating your source code using an instruction that the 68030 
recognizes but the 68000 does not, your program will crash when run on the 68000 with 
an illegal instruction error. 

The 68000 microprocessor will generate an address error if you attempt to move a word 
or long word to an odd address; the 68020/30 microprocessors will not generate an error 
but will run more slowly. Testing your code on a 68000 allows you to find out if you’re 
doing this and thereby allows you to get better performance on the 68020/30 when 
you’ve fixed the bug.

Because the 68000 does not allow you to write words or long words to an odd address, it 
also gives you a good chance to catch invalid pointers or handles. For example, if you’ve 
failed to initialize a handle or pointer, when you dereference it, the microprocessor will 
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use whatever value is stored at that location as the address to write to; if the value is 
odd, you’ll get an instant crash. Thus testing code on the 68000 allows you to find invalid 
handles and pointers at the time they happen rather than after they’ve done a lot of 
damage and you have to track down the cause.

The 68020 and 68030 processors report invalid addresses (addresses not in ROM, RAM, 
or memory-mapped I/O) as bus errors. The Macintosh Plus hardware does not generate 
this error but puts in a bogus value. So, if your program crashes on the 68020 or 68030 
with a bus error, but not on a 68000, you’re trying to access an invalid address.

 

Catch NIL Pointers and Handles Instantly 7

 

A NIL pointer or handle is what the Memory Manager returns when it can’t allocate the 
space you ask for. If you fail to test for this, you’ll wind up either writing to memory 
location 0 or to the address equal to the value stored there. Writing to $0 can have dire 
consequences because all the system’s low-memory globals are stored in that vicinity, as 
well as the exception vectors that send the microprocessor to the right address when an 
error happens or a system call is made. This means you might not be able to get into 
MacsBug except by pressing the interrupt switch.

To catch a NIL pointer, you need to test the value returned by the Memory Manager 
when you allocate space for a nonrelocatable block.

To catch a NIL handle, you need to declare a procedure that sets memory location $0 to 
$50FFC003 and to call the procedure from your main event loop. You should only use 
this procedure in the debugging version of your program.

 

■

 

If you’re working in Pascal, you can declare the following procedure in the main 
segment of your program: 

 

PROCEDURE SetZero(); INLINE $21FC, $50FF, $C003, $0000;

 

and then call SetZero from your main event loop.

 

■

 

If you’re working in C, you can declare the following procedure in the main segment 
of your program:

 

pascal void SetZero(void) = {0x21FC, 0x50FF, 0xC003, 0x0000};

 

and then call SetZero from your main event loop.

Once you do this, any attempt to use a NIL handle will result in an instant crash that 
won’t hurt anything and that will allow you to find the cause quickly. For additional 
information, see “Nasty Pointers” in this chapter.

 

Use SetPort Correctly 7

 

Any drawing done by QuickDraw, directly or indirectly, is done to the current GrafPort. 
There is only one current GrafPort, and its address is stored in the global variable 
thePort; register A5 contains the address of a pointer to thePort. The function GetPort 
returns the current value of thePort; the function SetPort changes the value. It’s 
obviously important to write to the right current port. One technique that used to 
be recommended for making sure of the right GrafPort was the use of GetPort to find 
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the current port and then the use of SetPort to change it if it was not the port you 
wanted. Unfortunately, this did not prove to be a good solution because system calls 
intervening between SetPort and the first use of the port sometimes resulted in the port 
being changed. 

A better solution is to call SetPort as close as possible to writing to the current port, and 
not to rely on the GetPort/SetPort technique as a guarantee that you are writing to the 
right port.

 

After the Crash 7

 

Finding the cause and cure for a bug that catches you by surprise is, of course, much 
more difficult than fixing one that you’ve forced in order to catch it before it has covered 
its trail. 

When your program crashes, what MacsBug or the bomb box tells you is not the cause of 
the bug but the symptom. For example, an illegal instruction error can be caused by an 
instruction your processor does not recognize (see “Test Your Code on All Machines” in 
this chapter) or by your having inadvertently written to the location on the stack where 
the return address of an instruction was stored. Once the symptom manifests itself, 
through a crash or through your program’s erratic behavior, debugging is the process of 
finding the cause. The symptom is only the last clue on the bug’s trail.

The same bug might give rise to different symptoms. For example, an invalid pointer 
that results in your writing to the wrong address might produce a crash if you wind up 
writing over a block header in the heap; it might produce odd sounds if you wind up 
writing to the sound buffer; it might put blotches on your screen if you wind up writing 
to the screen buffer; it might simply corrupt data and never let you know anything is 
wrong if you wind up writing to the contents of a heap block. For this reason, you 
should not assume that you can make the same bug happen again by rerunning your 
application. When a crash occurs, gather as much information as you can. If you can 
force the same bug, the information won’t hurt you; if you can’t, it will be very helpful.

The sections that follow describe a few ways you can gather information after your 
program crashes. These methods by no means exhaust the possible ways of finding 
and curing bugs.

 

Where Am I? 7

 

Debugging begins with gathering information, and the first piece of information you’ll 
need is what part of your code was executing when the crash occurred. First, get visual 
information. Use the ~ or Esc key to take a look at what the screen looked like just before 
the crash. Next, use the MacsBug WH (Where) command. The command takes an 
address as a parameter; a good address to use is that stored in the current program 
counter. Since the WH command uses that address by default, entering

 

WH 
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will display information about the location of the instruction pointed to by the PC 
register. If the instruction is in ROM, the WH command will display the address of the 
instruction as an offset from the start of the trap. If the instruction is in RAM, the WH 
command will tell you which heap block the instruction is stored in, the name of the 
routine containing the instruction, and the offset of the instruction from the start of 
the routine.

Remember, the instruction pointed to by the PC is not likely to be the one that caused the 
crash. The next step is finding that instruction.

 

Who Done It? 7

 

If the microprocessor executed only one instruction at a time, finding the instruction that 
caused the crash would be easy; it would always be the instruction just preceding the 
instruction stored in the program counter. Unfortunately, the microprocessor is doing 
several things at once (pipelining), and it is often the case that the instruction you’re 
looking for is a few bytes ahead of or behind the PC. Where the instruction is depends 
on the kind of error that caused the crash:

 

■

 

For an illegal instruction error it is very likely that the instruction currently pointed to 
by the PC did cause the error.

 

■

 

For a bus error, the PC might point one or two instructions ahead of or behind the 
bad instruction.

 

■

 

For an illegal address, the PC might point one or two instructions ahead of or behind 
the bad instruction.

These are the most common errors you are likely to get. The situation is often similar for 
other errors. Don’t just examine the instruction pointed to by the PC. Look around. The 
MacsBug command that lets you do this is the IP (Disassemble Around Address) 
command. This command takes an address as a parameter; if you don’t specify one, it 
uses the address stored in the program counter by default. If you enter

 

IP

 

MacsBug displays 64 bytes centered around the PC. Use the information displayed by 
the break message to figure out which instruction caused the error. For example, if 
you get a division by zero error, you’ll want to look for a DIVS or DIVU instruction; 
if you get an address error, look for a MOVE.W or MOVE.L instruction with an odd 
operand or for the PC to have an odd address; if you get a bus error, look for an instruc-
tion with an operand that refers to an invalid address. 

After you have found the instruction that caused the crash, the next step is to figure out 
how that instruction came to be executed.
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Why Did It Happen? 7

 

You’ve found the offending instruction, but you trust that the compiler has been 
faithfully and accurately translating your source code. Where, then, did it get the bad 
value? This is the point where it is important to be able to relate the disassembled code 
to your source code and to check the values that you think are being referenced against 
the values that are actually being referenced. 

 

Check the Source Code 7

 

Most crashes are the direct result of a bad line in the source code. 

To locate the offending source-code statement, use this procedure following a crash:

 

■

 

Execute an SC (Stack Crawl) command. If the output to the SC command looks 
reasonable—that is, you can recognize routine names—look at the last address on the 
stack (most recent call) by disassembling around the last address shown. Use the 
command
IP 

 

xxxxxxxx

 

where 

 

xxxxxxxx 

 

is the last address shown.

 

■

 

If you can see a routine name in the disassembled output, you need to figure out 
which source-statement line was executing. (Major clues include JSR instructions, 
which are subroutine calls, and A-traps.)

 

■

 

If you can’t recognize the subroutine indicated by the last address on the stack, try 
disassembling around the next-to-last address. Keep going until you’re either on 
familiar territory or until you run out of addresses. (For additional information about 
using Stack Crawl commands and interpreting the information they display, see the 
descriptions of the SC and SC7 commands in Chapter 9 and the section “Life on the 
Stack” in Chapter 4.)

 

■

 

If you run out of addresses, switch tactics. Place SysBeep or DebugStr commands 
throughout the code, and count or watch the number of times they are executed.

 

■

 

When the program crashes, go to the approximate area indicated by the number of 
beeps or debugger breaks. Remove the old SysBeep or DebugStr calls and place new 
ones only within the suspect portion of code. Keep running and refining until you 
discover the offending line.DebugStr routine;

 

Other Suspects 7

 

If looking at the source code does not help you find the cause of the bug, you need to 
check for more subtle causes. The usual suspects include uninitialized variables, invalid 
pointers or handles, or fragmented memory.

If you are working with MPW Pascal, use the –u option, which sets all variables to a 
special uninitialized pattern when they are allocated. This helps catch subtle bugs 
that might have slipped by otherwise, and makes spotting an unintialized variable 
much easier.

To check for bad pointers and handles, use the MacsBug HC (Heap Check) command. 
This command tells you if the information in the heap zone header or any of the block 
headers in the current heap has been corrupted. There are two ways that this informa-
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tion becomes corrupted. If you are writing to an address pointed to by a dangling 
pointer or handle, you are likely to be writing anywhere in memory, including a heap 
block or heap zone header. In the second case, you might be writing to a valid address, 
but writing more data than you think, thus writing over the header of the next block. 
Note that it is possible that a bad pointer or handle can cause you to write to the contents 
of a block, in which case the HC command will not return an error message. You can 
however force bad pointers to show themselves by using the HS (Heap Scramble) 
command to turn heap scrambling on when you run your program. This command 
forces the Memory Manager to move relocatable or unlocked blocks during every A-trap 
call that can allocate memory directly or indirectly. This vastly increases the chance that a 
bad pointer will write over a block or zone header and corrupt the heap. If the heap 
becomes corrupted, MacsBug is invoked and displays an error message. 

To check for fragmented memory, which can prevent the Resource Manager from 
loading the resources your program needs to execute, use the HD (Heap Dump) 
command. The HD command displays information about all the blocks in the current 
heap, listed from the lowest address to the highest address. A dot in the first column 
of the display indicates that the block cannot move. Ideally, blocks that cannot move 
should be located either at the bottom and at the top of the heap. If the HD command 
shows that nonrelocatable and locked blocks (neither of which can be moved) are 
interspersed throughout your heap, this means that memory is fragmented.

 

Common Problems 7

 

This section describes the symptoms and possible causes of common problems caused 
by bugs.

 

The Deep Freeze 7

 

Some crashes don’t give you a chance to use MacsBug. If you’ve been programming the 
Macintosh long, you’ve probably had this experience: your program locks up. You hit 
the interrupt switch, but nothing happens. 

Pointers in low memory called exception vectors point to MacsBug. These vectors allow 
the system to transfer control to MacsBug when a crash happens. If your program wipes 
out low memory, you can’t get into MacsBug. 

Unfortunately, there is a fairly common error that can cause low memory to be wiped 
out. When you ask the Memory Manager for a block of memory, it gives you a pointer to 
that block. If it can’t allocate the memory you asked for (perhaps memory is full), it 
returns zero. If you neglect to check the result, your program might start writing to the 
address the Memory Manager apparently returned—which is zero. All the important 
MacsBug vectors are in the first 256 bytes of memory, so they tend to get wiped out 
quickly. Nothing but the reset button on the programmer’s switch will get you out of this 
one. Moral: 

 

always

 

 check what the Memory Manager returns to see if it’s zero.
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The Restart Surprise 7

 

In this situation, the Macintosh simply up and restarts somewhere in the middle of 
your program.

This is usually caused by two bus errors in a row. Bus errors are handled by a bus error 
handler. If, in the course of crashing, your program damages the bus error handler and 
then generates a bus error, and the damaged bus error handler generates a second bus 
error before the microprocessor can finish processing the first bus error, you’ve got a 
problem. Whenever the microprocessor gets a bus error before it’s finished processing 
another bus error, it gives up and restarts. This is called a double bus fault.

 

Nasty Pointers 7

 

Invalid pointers or handles are a common cause of any number of symptoms, depending 
on where the pointer or handle actually points to. Symptoms include bus errors, address 
errors, illegal instruction errors, corrupted heap, corrupted data, trashed stack, odd 
sounds and flashing screen, and many others.

To win the battle against nasty pointers, you need to do one or more of the following:

 

■

 

Become familiar with the situations in which the Memory Manager will move 
memory and use a temporary local or global variable to store a duplicate of the 
relocatable block. The article “The Secret Life of the Memory Manager,” in Volume I, 
Issue 2 of 

 

Develop, 

 

contains invaluable information about memory management on 
the Macintosh and gotchas not previously documented that can result in bad pointers. 
The first thing to read, however, is the “Memory Manager” chapter in 

 

Inside 
Macintosh, 

 

Volume II.

 

■

 

Set memory location 0 to $50FFC003. This will produce an instant crash when you 
access a NIL handle.

 

■

 

If you suspect that a relocatable block is being moved out from under you, use the 
MacsBug ATSS (A-trap Step Spy) command to checksum memory at the location of 
the block’s master pointer. The ATSS command will invoke MacsBug when memory 
changes at that location—that is, right after a system call that causes your block to 
be moved. This is a less expensive way of guarding yourself against unanticipated 
moves than to lock every handle in your program. Handles only need to be locked if 
they are going to be dereferenced and if a call will be made that can cause relocation.

 

■

 

Use the HS (Heap Scramble) command to force invalid pointers and handles to show 
themselves. This command moves all relocatable blocks whenever they might 
be moved; in other words, whenever the NewPtr, NewHandle, ReallocHandle, 
SetPtrSize, or SetHandleSize trap is called, or any trap that calls these traps. (With 
SetPtrSize and SetHandleSize, the heap is scrambled only if the block size is 
being increased.)
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No Room to Maneuver 7

 

You can run out of space in the heap even if you check for memory allocation. For 
example, when you call MenuSelect, the Menu Manager temporarily saves the part of 
the screen that’s going to be covered up by the menu; if there’s no space available, the 
program crashes. Use the HD command to check for heap fragmentation. Try to preserve 
as much continguous free space in the heap as possible. 

Another common cause of an out of memory condition is when an instruction writes 
over the start of another’s block’s header. If you’re allocating blocks of different sizes, 
you need to be especially careful about writing only within the confines of that block. 
(Arrays in C are especially bad this way.)

You can also run out of space on the stack. If your program uses the MaxApplZone 
routine to expand its heap, it has 8K of stack space left (24K on 68020/68030). If you are 
using large local variables, passing large variables by value, or nesting procedures too 
deeply (especially recursive procedures), you can get a stack overflow error or, if the 
stack sniffer fails to catch the overflow, a corrupted heap. (The stack sniffer is a routine 
that checks to see that the stack pointer does not point into the space allocated for the 
heap; it does not check after every instruction, so that it is possible to corrupt the heap 
without being caught.)

 

Mind-Reading Problems 7

 

Crashes in the ROM are common. This does not mean the ROM has bugs in it, but that 
you probably passed bad parameters to the system routine.

If you make a system call specifying a parameter that refers to an object that exists and 
whose type matches that of the formal parameter required by the routine, the system 
will do exactly what you ask. For example, if you ask the Window Manager to dispose of 
a window and pass it a window pointer, whatever the window pointer points to will be 
disposed of. It’s your responsibility to make sure that you are referring to the right 
objects. The system can’t read your mind.

 

Using MacsBug to Control Program Execution 7

 

Certain MacsBug commands allow you to control the execution of your program; these 
include breakpoint commands and flow control commands. Table 7-2 provides a 
summary of these commands.

The syntax and effect of each of these commands is described in detail in Chapter 9, 
“MacsBug Commands.”
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As you can see from Table 7-2, in some cases MacsBug provides two sets of program 
control commands: one set depends upon the execution of the instructions that make up 
your source code, and the other set depends upon the execution of A-traps. The way 
A-traps are implemented makes this distinction necessary even though the effect of the 
two sets of related commands is similar. This distinction can be used to advantage in 
debugging.

Every Macintosh application consists of A-trap calls interspersed with implemented 
instructions (the object code into which the compiler translates your source code). There 
are normally many more implemented instructions than A-trap calls, especially if you 
restrict the examination of A-traps to those being called from the application heap. This 
situation creates two levels of granularity in your program: the level on which A-traps 
are called, which is the coarser, and the level on which implemented instructions are 
executed, which is the finer. You can take advantage of this situation to focus in on bugs 
in two steps: in the first step, you use an A-trap command to invoke MacsBug when a 
certain condition is met; in the second step, you focus on the range of instructions that lie 
between the A-trap that is about to execute and the last A-trap executed to determine 
which specific instruction is causing the trouble. You can use the following pairs of 
commands in this way: ATB/BR; ATHC/HC; ATSS/SS. See the section “MacsBug’s 
A-trap Commands” in Chapter 5 as well as the description of the ATB, BR, ATHC, HC, 
ATSS, and SS commands in Chapter 9 for additional information.

 

Table 7-2

 

Commands that control program execution

 

Command
A-trap 
command Effect

 

BR ATB BR sets a breakpoint at a specified address. ATB sets a 
breakpoint before the specified A-trap(s) execute.

BRC ATC Clears specified breakpoints.

BRD ATD Displays current breakpoints or other actions (set with 
A-trap commands).

BRM Sets breakpoints using partial name matching.

S Executes the specified instruction(s) or executes 
instructions until a specified condition has been met.

SO Like the S command except that SO steps over A-traps, 
JSRs and BSRs, treating them like single instructions.

SS ATSS Both SS and ATSS check a specified range of memory 
as they step through code. 

G Resumes program execution beginning with the 
instruction stored in the PC.

GT Resumes execution (like G), but breaks at the 
specified address.



 

C H A P T E R  7

 

Debugging Strategies

 

176

 

Using MacsBug to Control Program Execution

 

Controlling Program Execution 7

 

Two commands let you execute instructions one at a time. The S (Step) command 
executes a single instruction, stops at the next instruction, and returns to MacsBug. 
The contents of the program counter—in other words, the next instruction to be 
executed—are disassembled and displayed. You can also step through a specified 
number of instructions, or until a condition is met (for instance, until a register contains 
a particular value). 

When the S command reaches a subroutine or an A-trap call, it steps right in. Particularly 
with ROM routines, which are often very long and typically not of interest, you’ll 
probably want to use the SO (Step Over) command instead. The SO command works 
exactly like the S command except that it treats A-trap calls and subroutines as a single 
instruction, stopping at the first instruction after the A-trap or subroutine returns. (With 
traps that have the auto-pop bit set, MacsBug returns to the address on the top of the 
stack at the time of the trap call.)

While stepping through code, MacsBug decodes conditional statements (DBcc, Bcc, and 
Scc instructions) to determine whether branches will be taken or will fall through. This 
information is shown to the right of the PC information.

If you’ve stepped into a procedure with the S command and want to get out, you can use 
the MR (Magic Return) command; to move to the end of the procedure. The MR 
command; needs to know where the return address is; for this reason, it’s a good idea to 
use the LINK A6 prolog for your procedures.

If you’re stepping through your program and find you want to move past some code, 
you can use the GT (Go Till) command to resume execution until a specified address 
is reached.

 

Setting Breakpoints 7

 

Once you’ve narrowed down the location of a bug, you might want to invoke MacsBug 
when a particular point in your program is reached. There are several ways of doing this.

The ATB (A-Trap Break) command lets you specify a break when A-traps are encoun-
tered. You can specify individual traps or a range of traps, as well as conditions that 
must be met. For instance, you could specify a break when the HFSDispatch trap is 
encountered and the value of register D0 is 6 (which is the routine selector for the 
DirCreate routine). You can also specify commands to be executed once MacsBug has 
been invoked.

Another way to stop program execution is to set a breakpoint at a specified address 
using the BR command. You can specify the address as an actual address or as an offset 
from a procedure name. This information will have been found by disassembling or 
stepping through your code. The BR command also lets you specify commands to be 
executed when the breakpoint is reached. You can specify multiple breakpoints; 
MacsBug stores this information in a table, which you can see at any time with the BRD 
command;. Breakpoints remain set until you clear them with the BRC command.
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You can also set breakpoints by using partial name matching with the BRM command. 
You pass BRM a sequence of characters; it sets breakpoints on all names that contain 
those characters. The BRM command is especially useful with C++ and object Pascal 
debugging; you might, for instance, wish to break on all methods of a given class.

The BR command can be useful in working with A-traps as well as with your own code. 
With some ROM routines, the actual trap is often preceded by glue code that sets up the 
parameters. Whereas the ATB command stops right before the trap is made, the BR 
command can be used to stop at the point where your program calls the routine, letting 
you examine what goes on with the glue code.

An advantage of using breakpoints is that they don’t require changes to your source 
code and can be used after the application has been built. However, breakpoints cannot 
be set in a procedure until the segment containing that procedure is loaded and the 
address determined. One way around this problem is to specify a break from within 
your procedure by using the traps Debugger ($A9FF) and DebugStr ($ABFF). Debugger 
is a system trap that invokes MacsBug and displays the message “User break at 

 

address

 

.” 
DebugStr also lets you supply a custom message for display, as well as MacsBug 
commands for execution. The section “Invoking MacsBug from Your Source Program” in 
Chapter 2 provides additional information.

The DebugStr trap pushes a pointer to a Pascal string onto the stack and then invokes 
MacsBug. You can take advantage of the fact that DebugStr takes a string parameter to 
display the value of a variable at a specific point in your program. You do this by calling 
the NumToString trap, which converts an integer into a string that represents its decimal 
value, and then calling DebugStr to display the string. For example:

 

Begin

thisnumber := 666;

NumToString (thisnumber; mynumber);

DebugStr (mynumber);

newnumber := thisnumber

End

 

If the value of the number is negative, the string is preceded by a minus sign.

To display the value of a non-integer variable, convert its address to a string and send 
the string to MacsBug. For example:

 

Begin

thisnumber := 666.66;

NumToString (@thisnumber; mynumber);

DebugStr (mynumber);

newnumber := thisnumber

End

 

When MacsBug is invoked, it will display the variable’s address. Remember however 
that the address is expressed in base ten. When you use the DM command to display the 
value stored at that address, remember to prefix the address with a pound (#) sign.
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Make It Easy on Yourself

 

DebugStr only accepts Pascal strings. If you are writing in C, be sure to pass a 
Pascal string.

The DX (Debugger Exchange) command lets you disable breaks from the Debugger and 
DebugStr traps without having to go in and remove them from your program.

 

Watching for Memory to Change 7

 

Several commands let you determine when and where a particular area of memory is 
being changed. One common problem occurs when a program inadvertently changes the 
contents of a memory location. You can detect when a range of memory changes by 
using the SS (Step Spy) command. This command checksums a given range and then 
executes instructions one at a time until the checksum changes. The SS command can 
slow down a program considerably, so MacsBug treats a long word as a special case and 
optimizes for speed. If you suspect a certain range of memory is being altered, you 
usually don’t need to check the whole range but can check just a long word within the 
range. If you must check a long range, you’ll probably want to use a hardware emulator. 

You can also use the SS command as a way of slowing down certain routines—those that 
draw to the screen, for instance—so you can actually watch how they work. The best 
way to do this is to use the command

 

SS @Rombase

 

This command simply slows your program down, since ROM never changes.

A variation on the SS command, the ATSS (A-Trap Step Spy), command lets you 
checksum a memory range before specified A-traps are executed. ATSS is much faster 
than SS.

The CS (Checksum) command lets you monitor whether a range of memory has 
changed. The first time you execute the CS command, you specify a range and MacsBug

 

 

 

computes a checksum. Subsequent CS commands compute the checksum and compare it 
with the previous value.

 

Make It Easy on Yourself 7

 

If you associate low-level debugging with excessive grinding of teeth, please remember 
that MacsBug provides several tools that can make your work easier. These include

 

■ Templates, which allow you to display memory in intelligible names and values 
rather than bits and bytes. The section “Using Templates to Display Memory” in 
Chapter 4 describes the standard templates defined by the 'mxwt' resource to 
display data structures used by the system and explains how you can use ResEdit 
to create additional 'mxwt' resources to display data structures that are specific to 
your program. 
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■ Macros, which allow you to use names instead of addresses or command sequences 
that you need to enter often. The section “Using Macros” in Chapter 8 explains how to 
create temporary and permanent macros.

■ dcmds, which allow you to extend MacsBug’s command set. The section “Using 
DCMDs” in Chapter 8 describes the standard dcmds shipped with MacsBug and 
provides detailed instructions on how to write your own dcmds.

In addition, several desk accessories provide instant references to system calls and 
system errors. Find the ones you like and use them.

7
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The MacsBug Command Line

 

This chapter and Chapter 9, “MacsBug Commands,” provide a complete reference to 
MacsBug commands and the rules for their use. While Chapter 9 explains the syntax and 
use of each MacsBug command, this chapter describes methods that work with any of 
the commands you can use in MacsBug. It explains how to:

 

■

 

Use the command line to enter commands.

 

■

 

Use the command line to perform calculations.

 

■

 

Specify command parameters.

 

■

 

Use expressions to define conditions or addresses.

 

■

 

Edit the command line and use the command line buffer to simplify your work.

 

■

 

Get help while you’re working with MacsBug.

This chapter also describes two other kinds of commands you can use in MacsBug: 
macros and dcmds. 

 

Macros

 

 are names that you can substitute for addresses, expressions, or groups of 
commands that you are likely to use many times. The section “Using Macros” in this 
chapter explains how you define temporary and permanent macros and describes the 
standard macros that are shipped with MacsBug.

 

dcmds

 

 allow you to add commands to MacsBug. The section “Using dcmds” in this 
chapter describes the dcmds that are shipped with MacsBug and explains how you write 
'dcmd' resources to define your own dcmds.

 

The MacsBug Command Line 8

 

When you invoke MacsBug, you can’t use the mouse or the menus, the normal channels 
of communication provided by the human interface. You communicate with MacsBug 
using the MacsBug command line, the line at the bottom of the MacsBug display.

Figure 8-1 shows the position of the MacsBug command line relative to the PC region 
and the MacsBug output region. For additional information about the MacsBug display, 
see Chapter 2, “Getting Started.” Although you can reconfigure other areas of the 
MacsBug display using the 'mxbi' resource and the SHOW command, you cannot change 
the size or capacity of the command line. 
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Figure 8-1

 

 MacsBug command line

 

You can use the command line to communicate with MacsBug by entering commands or 
you can use the command line as a calculator to perform base conversions or to evaluate 
arithmetic expressions.

As you can see from Figure 8-1, your input to MacsBug and MacsBug output use two 
physically separate areas of the display. Since this separation cannot be conveniently 
represented in the description of sample commands and their output, input to MacsBug 
is represented by bold Courier text and MacsBug output is represented by normal 
Courier text. For example, in the following two lines, BRC is what you enter on the 
command line, and “All breakpoints cleared” is what MacsBug displays in the output 
region of the display.

 

BRC

 

  All breakpoints cleared

 

This convention is used throughout this manual.

 

Using the Command Line to Enter Commands 8

 

You can use the command line to enter one or more MacsBug commands. The blinking 
cursor shows you the current insertion point. To enter a command, type the command 
and its parameters on the command line. When you press the Return key, MacsBug 
executes the command or commands on the command line. If you press Return without 
entering a command, MacsBug executes the last command you entered. 

Some MacsBug commands, such as HD (Heap Display), generate a lot of output. While 
such commands are executing, you can press the Return key or the Space bar to pause 
and resume execution. To cancel execution of a command, press any other key. For 
information about editing the command line, see the section “Command Line Editing 
Commands” in this chapter.

The basic format of command line entries is

 

command

 

  [ 

 

parameters 

 

] [ 

 

;

 

 

 

command

 

  [ 

 

parameters

 

 ] ]...

 

command

 

 specifies the name of a MacsBug command, macro, or dcmd. The 

 

parameters

 

 of 
a command, macro, or dcmd are defined in the description of the command, macro, or 

MacsBug command line

Insertion point – blinking cursor
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The MacsBug Command Line

 

dcmd. For additional information about command parameters, see “Specifying 
Command Parameters” in this chapter.

Table 8-1 describes the conventions used to describe the syntax of MacsBug commands. 
Developers who write help messages for dcmds should use these conventions. 

 

Specifying Command Parameters 8

 

MacsBug assumes that any number you specify is hexadecimal. To indicate a decimal 
number, prefix the number with a pound (#) sign. For example, #256.

MacsBug commands use a limited set of parameters. The basic types are described in 
Table 8-2. 

 

Specifying an Address 8

 

Most MacsBug operations—setting breakpoints, displaying memory, disassembling 
code—need an actual address to work with. An address can be a hexadecimal or decimal 
number, a trap name or number, a register name, or the name of a procedure.

 

Table 8-1

 

Command syntax conventions

 

Convention Meaning

 

italics Italics indicate a parameter that you must replace with specific infor-
mation. Possible parameter types are described in the next section, 
“Specifying Command Parameters.”

[   ] Brackets indicate that the enclosed elements are optional. Omit the 
brackets when you enter the command. 

... Ellipses (...) indicate that you can repeat the preceding item as needed.

| A vertical bar indicates a choice. For example,

 

 n 

 

| 

 

expr 

 

means that you 
can specify either a number 

 

n

 

 or an expression 

 

expr

 

 as a parameter.

 

Table 8-2

 

Parameter types for MacsBug commands

 

Type Description

 

addr

 

An expression that resolves to an address.

 

cmd

 

A MacsBug command or dcmd.

 

expr

 

A numeric, boolean, or string expression.

 

n

 

A number. All numbers are assumed to be hexadecimal.

 

str

 

A string expression.

 

trap

 

A trap number in the range A000 to ABFF, or trap name.
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The following command uses a hexadecimal number to specify an address:

 

DM 002191C8

 

The following command uses a trap name to specify an address:

 

BR FindWindow

 

The following command uses a register to specify an address:

 

DM A7

 

Using Procedure Names 8

 

Whenever possible, MacsBug accepts and returns symbols in place of addresses. 
Procedure names are the most common example of this. Most compilers for the 
Macintosh have the option of embedding character names after the code generated 
for each procedure or function. (If you are writing a compiler, consult Appendix D, 
“Procedure Names,” for details on procedure name definition.) If your compiler uses this 
option, you can specify a procedure name and offset to specify an address. Conversely, 
MacsBug returns addresses as offsets from procedures whenever it can. For instance, 
if the instruction shown in the PC region is part of a valid procedure, the name and offset 
of that instruction is displayed in the PC region. This command uses an offset within 
a procedure to specify an address.

 

BR MouseDwn + 18

 

If you enter Command–:, MacsBug displays a menu that lists all the procedure names 
in the current application. Typing the first few letters in the name restricts the list to 
procedures that begin with the letters you type. You can use the arrow keys to move 
up and down the list. When the name of the procedure you want is highlighted, press 
Return to insert the selected name into the command line at the insertion point. If you’ve 
qualified the list and want to move back to the previous level of qualification, press the 
Delete key. To remove the menu without making a selection, press the Esc key.

If your keyboard does not allow you to type Command–:, Command–D is an alias for 
Command–:.

 

The Dot Address and the Colon Address 8

 

Because entering addresses is the most tedious and fault-prone part of entering MacsBug 
commands, MacsBug defines two additional variables that you can use to specify 
addresses: the dot address and the colon address. 

 

■

 

The 

 

dot address

 

 is a MacsBug variable that contains the last address used by certain 
commands. The period character (.) refers to this address; you can use it in any 
command that expects an address. For example:

 

DM .
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The MacsBug Command Line

 

The dot address is set by MacsBug commands in anticipation of your next move. For 
example, if you use the WH command to find a trap address, the WH command 
stores the address it returns in the dot address, since the next thing you might want 
to do is to disassemble around or starting from that address. The description of 
each MacsBug command in Chapter 9 indicates whether that command sets the 
dot address. To display the current value of the dot address, type a period and 
press Return.

 

■

 

The 

 

colon address 

 

is a MacsBug variable that contains the starting address of the 
procedure shown in the PC. The colon character (:) refers to this address; you can 
use it in any command that expects an address. In the following example, the IP 
command disassembles a half page around the instruction beginning 18 bytes into 
the current procedure.

 

IP : + 18

 

To display the current value of the colon address, type a colon and press Return. If 
the current procedure does not have a name, the colon address does not contain a 
valid value. 

You can also use an expression to specify an address. 

 

Using Expressions in MacsBug Commands 8

 

The general form of an expression is:

 

 

value1 [operator value2]. 

value

 

is a hexadecimal number, the name of a register, a trap name or number, 
or a procedure name. MMU 64 bit registers and floating-point registers 
are not allowed in expressions.

 

operator

 

is one of the following: 

You can use parentheses to control the order of evaluation. Otherwise, the expression is 
evaluated from left to right.

Expressions always evaluate to a 32-bit value unless you append one of the following 
prefixes to 

 

value

 

 to specify otherwise: .W specifies a 16-bit value; .B specifies an 
8-bit value. 

Expressions evaluate to either a numeric or a Boolean value depending on the operators 
used. The action of some commands change based on this result. For instance, 

 

BR 

 

addr expr

 

  

 

breaks at the specified address after 

 

n 

 

times if 

 

expr

 

 evaluates to a numeric value or 
it breaks when 

 

expr 

 

is true if 

 

expr

 

 evaluates to a Boolean value.

Arithmetic +   -   *   /   MOD

Boolean AND or &   OR or |   NOT or !   XOR

Equality = or ==   <> or !=   <   >   <=   >=  

Indirection @ (prefix) or ^ (postfix)
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You can use an expression to tell MacsBug to take some action when a certain value is 
stored on the stack. For example, the following command specifies that MacsBug should 
be invoked when the GetResource routine is about to get a 'DLOG' resource:

 

ATB GetResource (A7 + 2)^ = 'DLOG'

 

This command specifies that MacsBug should be invoked when the LNew routine is 
about to be executed; the LNew routine is implemented as a package and the expression 
checks to see whether its index number (#68) is stored at the top of the stack.

 

ATB Pack0 SP^.W = #68

 

Resolving Conflicting Name References 8

 

There are two situations in which name references might be ambiguous: a trap that has 
the same name as a procedure or a numeric value that is identical to a register name.

If a trap name conflicts with a procedure name, attach the symbol † to the trap name to 
distinguish it from the name of the procedure. For example, †GetMouse. (To obtain the 
† symbol, press Option–T.)

If a numeric value conflicts with a reference to a register, you have three choices. Either 
use the $ prefix with the number; for example:

 

DM D0 + $D0

 

Or use the RAD command to change the register naming convention and specify

 

DM RDO + D0

 

Or use a zero prefix in front of the number; for example:

 

DM D0 + 0D0

 

For additional information, see the description of the RAD command in Chapter 9.

 

Extending the Command Line 8

 

MacsBug provides no continuation character or any other way to extend the command 
line. If you find that a command or commands you want to enter exceeds the capacity of 
the command line, you can define one or more macros that will expand to the desired 
command or commands and fit within the existing boundaries.

 

The Command Line as Calculator 8

 

By stripping you of menus, MacsBug makes it impossible for you to get to desk 
accessories. But MacsBug does provide some of the functions you need while you’re 
in MacsBug: you can use the command line to convert numbers from one base to 
another and to perform arithmetic calculations.
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The MacsBug Command Line

 

Base Conversion 8

 

To convert from hexadecimal to decimal values while you are running MacsBug, type 
the hexadecimal number and press Return. MacsBug displays the value you entered in 
hexadecimal, signed and unsigned decimal, and ASCII formats, as shown in Figure 8-2. 
It’s up to you to determine which formats are relevant and which are not. 

 

Figure 8-2

 

Base conversion using the command line

 

The dots in the ASCII section indicate there is no equivalent ASCII character for 
the value typed in. 

To convert from decimal to hexadecimal values, type a “#” followed by the 
decimal number. 

In the text of this manual, numbers preceded by a dollar sign are in hexadecimal (like 
this: $21E8), and all other numbers are in decimal. In any MacsBug display, all numbers 
are in hexadecimal unless they are preceded by a pound sign (like this: #2148).

 

Command Line Arithmetic 8

 

You can do simple arithmetic on the command line in hexadecimal and decimal format. 
MacsBug recognizes the arithmetic operators shown in Table 8-3.

You can use @ (prefix) or ^ (postfix) to cause 

 

indirection

 

 (also called 

 

dereferencing

 

), which 
gives you the value a pointer points to rather than the value of the pointer itself. 
Wherever you can enter a number in a calculation, you can also enter a register or an 
expression made up of numbers and registers.

 

Table 8-3

 

tArithmetic operators

 

Operator Operation

 

+ Addition

- Subtraction

* Multiplication

/ Division

MOD Modulus

FFFFFFFB  =   $FFFFFFFB    #4294967291     # - 5       ' . . . . '

Value typed in Hexadecimal

value

Unsigned 

decimal 

value

Signed 

decimal 

value

ASCII

value
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If you enter

 

A0+20

 

MacsBug adds $20 to register A0 and displays the result. If you enter

 

A0+#20

 

MacsBug adds 20 (decimal) to register A0 and displays the result. If you enter

 

$A0+20

 

MacsBug adds twenty to the number $A0 (not register A0) and displays the result.

Finally, if you enter

 

20^ 

 

or

 

 @20

 

MacsBug treats $20 as a pointer and displays the value it points to. This method of 
indicating indirection is valid even in more complex expressions; for example, the 
expression

 

((D0*4)+(A2/#42))/@A4

 

is valid.

 

Getting Help 8

The Help command displays help about MacsBug commands, macros, dcmds, and other 
likely topics that you might need help with when you’re working with MacsBug.

To display a list of topics that Help knows about, simply type Help and press Return. 
MacsBug displays the following information:

Editing

Selecting procedure names

Expressions

Values

Operators

Flow control

Breakpoints

A-Traps

Disassembly

Heaps

Symbols

Stack

Memory
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Registers

Macros

Miscellaneous 

dcmds 

To display information about any of these topics, enter Help followed by the topic 
name. To display information about an individual command, enter Help and the 
command name; for example:

HELP BR

BR addr [n | expr] [';cmds']

   Break at addr after n times or when expr is true and optionally 

execute one or more commands. If no n or expr then break 

always. The addr can be in ROM but will be much slower.

For additional information, see the description of the Help command in Chapter 9. 

Command Line Editing Commands 8

Using MacsBug often involves having to type complicated expressions on the command 
line. MacsBug provides a set of editing commands that allow you move the cursor 
left and right across the command line. Figure 8-3 shows the command line editing 
commands.

Figure 8-3 Command line editing commands

Note
If you have worked with previous versions of MacsBug, please note that 
the command line editing commands have been redefined in version 6.2 
to work as described above. This was done to make command line 
editing in MacsBug more like command line editing in MPW. ◆

Option-


Option-


Option-Delete


     -


     -


     -Delete

Move cursor left one word.


Move cursor right one word.


Delete word to the left of the cursor.


Move cursor to the beginning of the line

Move cursor to the end of the line.


Delete the line to the left of the cursor.
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The Command Line Buffer 8

In addition to providing commands that edit the current command line, MacsBug also 
provides commands that you can use to copy command lines that you have previously 
entered to the current command line; you can then edit these lines and press Return to 
execute them or you can execute them as they are.

MacsBug places each command you execute in a circular buffer. Typing Command–V 
scrolls the buffer down, copying the previous command to the current command line. 
Typing Command–B scrolls the buffer up. Figure 8-4 shows the effect of Command–V 
and Command–B. (In this example, the greater the command line number, the more 
recent the command.)

Figure 8-4 Effect of Command–B and Command–V

For example, suppose you have just entered the following commands:

vol

ip main

hd code

? sc

ip pc

After executing the last command, the command line is blank. If you now press 
Command–V, MacsBug would copy the command ip pc from its internal buffer to the 
command line. If you press Command–V again, MacsBug would copy the command ? 
sc to the command line. If you press Command-B, MacsBug would copy the command 
ip pc to the command line. You can scroll through the buffer using these two 

Command line 1
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command-key combinations. When you have copied the command you’re interested in, 
you can press Return to execute the command or you can edit the command and then 
execute it.

Using Macros 8

Using macros simplifies your work in MacsBug. A macro allows you to substitute one 
string for another. If you anticipate having to type in the same command, expression, or 
address over and over again, you can use the MC (Macro Create) command to assign it a 
macro name, which you can then use instead of the more complicated entry.

For example, the command

DM @windowlist windowrecord

displays data about the frontmost window. But it takes a while to type and it’s likely 
you’ll have to type it repeatedly. A word like “Topwind” is easier to remember and type. 
To make “Topwind” a macro for the above command, use the MC command to specify 
first the macro name and then its expanded form, the form in which you would have to 
type it in for MacsBug to understand it.

MC Topwind 'DM @windowlist windowrecord'

From this point on (until you restart), whenever you type Topwind, MacsBug executes 
the command DM @windowlist windowrecord.

Macro Commands 8
MacsBug contains three commands that help you work with macros:

■ MC: The Macro Create command defines macros that you can use until you restart.

■ MCD: The Macro Display command displays currently installed macros; this includes 
macros defined with the MC command as well as macros defined using the 'mxbm' 
resource. The MCD command displays the name of the macro in the first column and 
its expanded form in the second column; for example:

RTS                     PC = SP^;SP = SP + 4

This standard macro demonstrates how you can use a macro to emulate an instruction.

■ MCC: The Macro Clear command clears all macros from memory. Macros defined in 
the Debugger Prefs file are always available. You load them into memory when 
MacsBug loads at startup time.

These commands are described in greater detail in Chapter 9, “MacsBug Commands.”
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▲ W A R N I N G

Be careful not to use the name of an existing MacsBug command as a 
macro name. If you do, you will no longer be able to use the name to 
execute the command. If you want to make sure a name isn’t already 
assigned, execute the Help command followed by the name. If MacsBug 
displays the message “Unable to find help for this topic,” the name is 
available for use. Note that the macro names FirstTime and EveryTime 
are also reserved. ▲

Using 'mxbm' Resources to Define Permanent Macros 8
When you use the MC command to create a macro, you can use the macro until you 
shut down the Macintosh. When you restart, you have to recreate that macro if you want 
to use it again. To make a macro permanent, you must define it using a resource of 
type 'mxbm'.

This section explains how you use MacsBug macro resources to define and store macros 
permanently, and describes most of the predefined macros that ship with MacsBug. 

Standard Macros 8

MacsBug includes 'mxbm' resources that define standard macros that are generally 
helpful in debugging: some are used to define useful command lines or expressions and 
others to provide a means of translating low-memory global names (macro name) into 
the appropriate address (macro expansion), giving you the convenience of using names 
rather than addresses. These 'mxbm' resources are part of the Debugger Prefs file and are 
loaded when you start the system.

Table 8-4 describes the macros defined by the 'mxbm' resource.

Table 8-4 Macros defined by the 'mxbm' resource 

Macro Expansion and purpose

GG BRC;ATC;G 
The GG macro clears all breakpoints and A-trap breaks and 
resumes execution.

GS SB 12D 1;G;T 2;SB 12D 0 
The GS macro allows you to step over the LoadSeg trap. After you 
execute the GS macro, the PC will point to the first instruction of 
the routine in the code segment that was loaded. See the section 
“Inter-Segment Calls and the Jump Table” in Chapter 3 for 
additional information.

RTS PC = SP^;SP = SP + 4 
After executing a JSR or BSR, but before the LINK instruction is 
executed, the RTS macro allows you to abort the current procedure 
and return to the return address. In order for the RTS macro to do 
the right thing, the return address must be at the top of the stack. 
The RTS macro is an example of how you can use a macro to 
emulate an instruction.

continued



C H A P T E R  8

Introduction to MacsBug Commands

194 Using Macros

GTO GT :+ 
The GTO macro allows you to specify an address as an offset from 
the start of the current procedure. Thus GTO 12 means Go till the 
instruction stored at the twelfth byte from the start of the current 
procedure. For additional information, see the description of the 
GT command in Chapter 9.

BRO BR :+ 
The BRO macro allows you to set a breakpoint and specify the 
breakpoint address as an offset within the current procedure. Thus 
BRO 12 means set a breakpoint at the instruction stored at the 
twelfth byte from the start of the current procedure. For additional 
information, see the description of the BR command in Chapter 9.

thePort DM RA5^^ GrafPort 
The macro thePort displays the data defining the current GrafPort. 

theWindow DM RA5^^ WindowRecord 
The macro theWindow displays the data defining the front-
most window.

theCPort DM RA5^^ CGrafPort 
The macro theCPort displays the data defining the current 
color GrafPort.

IJ IL (.+2)^ 
If you’re tracing into a jump table entry that contains a JMP 
to an absolute address instruction, the IJ macro allows you to 
disassemble as many lines as you like starting with the instruction 
that is being jumped to. Thus IJ 12 disassembles 12 lines. 

DevList DM @@DeviceList GDevice 
The DevList macro displays the GDevice record for each currently 
installed video device. If you press Return, MacsBug displays the 
record for the next device. MacsBug displays the message “End of 
Linked List” when it has displayed information about the last 
device in the list.

VcbList DM @(VCBQHdr+2) VCB 
The VcbList macro displays a volume control block record for each 
mounted volume. If you press Return, the volume control block 
record for the next volume is displayed. See Chapter 5, “The 
Macintosh Operating System,” for additional information.

WindList DM @WindowList WindowRecord 
The WindList macro displays the window record for the frontmost 
window of the current application. If you press Return, MacsBug 
displays the window record for the next window. MacsBug 
displays the message “End of linked list” when it has shown you 
information about all the windows that are open in the current 
application.

AP DM CurApName pString 
The AP macro displays the name of the current application.

continued

Table 8-4 Macros defined by the 'mxbm' resource (continued)

Macro Expansion and purpose
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Creating Permanent Macros 8

You can create your own 'mxbm' resources in two ways. First, you can use ResEdit; the 
Debugger Prefs file contains templates for creating and editing 'mxbm' resources. Or, 
you can use the file Macros.r (included on the MacsBug disk) as a model for building 
your own resource. Be sure to give your resource a unique ID, and then use the Rez tool 
to add it to the Debugger Prefs file. 

This section includes step-by-step instructions that you can follow to create your own 
'mxbm' resource using ResEdit version 2.0 and later. 

Follow these steps to create a permanent macro called Topwind for the command 

DM @WindowList WindowRecord

1. Open the System Folder and double click on the Debugger Prefs file.
 This launches ResEdit.

2. From ResEdit, open the Debugger Prefs file in the System Folder of your 
startup volume.

3. Open the 'mxbm' file.

4. Choose Create New Resource from the Resource menu. 
ResEdit opens a new 'mxbm' resource.

5. Click on the * * * * *

VBLTasks DM @(VBLQueue+2) VBLTask 
The VBLTasks macro displays information about each VBL task 
that is currently installed. To display information about the next 
VBL task, press Return. MacsBug displays the message “End of 
linked list” when it has shown you information about all currently 
installed VBL tasks.

RamF – RamFP You use these macros to define RAM as the range for the Find 
command. See the Find command in Chapter 9 for additional 
information.

SysF – SysFP You use these macros to define the System heap as the range for 
the Find command. See the Find command in Chapter 9 for 
additional information.   

ApF – APFP You use these macros to define the current application heap as the 
range for the Find command. See the Find command in Chapter 9 
for additional information. 

ZF – ZFP You use these macros to define the current TargetZone (heap zone 
set with the HX command) as the range of the Find command. See 
the description of the Find command in Chapter 9 for additional 
information.

Table 8-4 Macros defined by the 'mxbm' resource (continued)

Macro Expansion and purpose
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6. Choose Insert New Field(s) from the Resource menu.
ResEdit displays a template like the one shown in Figure 8-5.

Figure 8-5 New 'mxbm' template

7. Use the Tab key to position the insertion point in the Macro name field. 
This field contains the name of the macro.

8. Type Topwind

9. Use the Tab key to position the insertion point in the Expansion field. 
This field contains the command or commands you want MacsBug to execute when 
you enter the macro name. 

10. Type DM @WindowList WindowRecord
At this point, if you wanted to use this resource to define more macros, you would 
click on the bottom row of * * * * *  and repeat steps 6 through 8.

11. Choose Save and then Quit from the File Menu. Restart your Macintosh to load 
the macro.

12. Invoke MacsBug and type Topwind 
MacsBug should display the window record that describes the frontmost window.

The FirstTime and EveryTime Macros 8

Two macro names have been predefined by MacsBug to allow you to customize your 
debugging environment:

■ FirstTime is a special initialization macro that loads and executes automatically when 
MacsBug loads during system startup. You can use the FirstTime macro to set up 
certain options, specify default values, or execute certain commands every time you 
start or restart your Macintosh. For example, you can use the FirstTime macro to turn 
on A-trap recording.
To have the startup process continue automatically, end the FirstTime macro with the 
G command. Be aware that on a Macintosh Plus, the G command is required. Because 
the keyboard is initialized after MacsBug, you won’t be able to type G to continue.
You need to use the 'mxbm' resource to define a FirstTime macro.
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■ EveryTime is a macro that is executed every time but not the first time MacsBug is 
invoked. For example you could define HC as an EveryTime macro. If you create an 
EveryTime macro, be aware that the last command executed by that macro is set as 
the default command; this command will be repeated if you press Return.
Do not end an EveryTime macro with the G command or you will never be able to 
invoke MacsBug.
You can use either an 'mxbm' resource or the MC command to define this macro. 

Using dcmds 8

No matter how many features and commands are build into new versions of MacsBug, 
developers who use it keep thinking of refinements that would make their own work 
easier. If you need to extend or modify MacsBug’s command set, you can use dcmds. A 
dcmd is a piece of code that you write and compile to provide the additional functions 
you need in your work.

Dcmds are code resources of type 'dcmd'. MacsBug is shipped with standard dcmds 
that are loaded into the system heap when you install the Debugger Prefs file. You 
can use ResEdit to install the dcmds you write yourself in the Debugger Prefs file. 
MacsBug loads all the dcmds from this file during system startup; so after adding a 
dcmd, you must restart your Macintosh in order to use it. Each dcmd is a separate 
resource; you can assign it any resource number that has not been used before for a 
'dcmd' resource. MacsBug identifies dcmds by their resource names. 

Because dcmds reside in a separate file, there’s no complicated installation process to 
follow when MacsBug is updated. You just move the dcmd resources from the old 
Debugger Prefs file to the new Debugger Prefs file, renumbering them if necessary. 
Because they are not tied to MacsBug, dcmds can potentially be shared with other 
debuggers.

The section “Standard dcmds” describes the standard dcmds that are included in the 
DebugPrefs file. 

The section “Creating Your Own dcmds” describes in detail how to write code defining a 
dcmd and how to link and build the dcmd.

Standard dcmds 8
Table 8-5 lists the dcmds included in the Debugger Prefs file 'dcmd' resource. 
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The printf dcmd 8

The printf dcmd is a formatted output command that behaves very much like the C 
programming language printf command. This section describes how you use the printf 
command if you are unfamiliar with C, and gives several examples of how you can use it 
in debugging. To avoid confusion, please interpret any reference to the printf command 
in this section as a reference to the MacsBug printf dcmd, not the C printf command. 

The syntax of the printf command is

printf "string" arg [ arg ] ...

"string" is a combination of literals and conversion specifications.

arg is an expression that is evaluated and converted according to the 
conversion specification to which it corresponds.

A conversion specification consists of the percent symbol (%), which introduces the 
specification; an optional digit specifying the field width of the converted argument; 
and a conversion character specifying how the argument is to be represented.

Table 8-6 shows how MacsBug interprets the conversion characters you use in the 
printf dcmd.

Table 8-5 Standard dcmds

dcmd Description

drvr [refnum|num] Lists all the currently installed drivers or lists informa-
tion for the specified driver. See Chapter 5 for an 
explanation of this display.

file [fRefNum|"filename"] Lists all open files or information about the specified 
file. See Chapter 5 for an explanation of this display.

vol [vRefNum | drvNum 
|  "volumeName"]

Lists all the volumes on line or displays volume informa-
tion for the specified volume. See Chapter 5 for an 
explanation of this display.

vbl Lists all the VBL tasks currently installed. See Chapter 5 
for an explanation of this display.

printf "format" arg... Displays the arguments according to the format. See the 
description of this command in the next section.
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In the sample printf command below, %d and %s are the conversion specifications, and 
1990 and Wednesday are the arguments.

printf "Data for %d will be available on %s" 1990, Wednesday

The command produces the following output:

Data for 1990 will be available on Wednesday

If you’re logging the output of a MacsBug session, you can use the printf dcmd to make 
MacsBug output more intelligible. The command,

printf "this application is %s" curapname

produces this output:

this application is Finder

If you are using the DebugStr inline call to invoke MacsBug from within your source 
program, you can use the printf command to have MacsBug output key values during 
program execution. 

This printf command

printf "Register A7 (%8x) points to word %x (= #%d)." RA7 RA7^.W RA7^.W

produces this output

Register A7 (  4b7026) points to word 4080 (= #16512).

Note the use of 8 in the first specification (%8x) to specify the field width of the 
converted argument.

Table 8-6 Conversion characters for the printf dcmd

Conversion
character Meaning Example

d decimal integer 93

o octal integer 77

x hexadecimal integer 2F

u unsigned decimal integer 99

c single character q

s string application
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Listing Available dcmds 8
To find out what dcmds are installed, drop into MacsBug and enter

HELP dcmd

MacsBug will list all the dcmds that are available, along with a brief description of what 
each one does and its parameters, if any. To get help on a specific dcmd, type HELP and 
the name of a specific dcmd; for example:

HELP vbl

MacsBug displays the same help message in both circumstances; using the more specific 
help request just saves space in the output region of the MacsBug display.

Creating Your Own dcmds 8
The MacsBug distribution disk includes a dcmd folder that contains sample dcmds, 
written in both C and Pascal, interface files, and a glue file to be linked with the 
compiled dcmd when you build the dcmd. The dcmd folder also includes an application 
you can use to debug your dcmd, TestDcmd, and an MPW tool, BuildDcmd, that 
translates an application into a 'dcmd' resource and copies it into the Debugger Prefs file. 
This section explains how you use all these pieces to write your own dcmd.

Writing dcmds is very similar to writing HyperCard 'XCMD' resources. A 'dcmd' 
resource begins with a 4-byte segment header, followed immediately by the program 
code. Since dcmds are limited to a single segment, the segment header is used to specify 
a dcmd version number and the amount of space MacsBug needs to allocate for the 
dcmd’s global variables. The segment header is written by the BuildDcmd tool; you 
don’t need to be concerned with it.

All calls to a dcmd are made through the entry point defined as the fifth byte of the 
resource. MacsBug calls a dcmd as a Pascal procedure taking a single parameter, a 
pointer to a parameter block. The procedure declaration is

PROCEDURE CommandEntry (paramPtr: dcmdBlockPtr);

This is a public declaration for the dcmdGlue file and must be included in every dcmd. 
You cannot change the procedure name. See Figure 8-6 for a skeleton dcmd.

Passing Information to the dcmd 8

The parameter block passed to the CommandEntry procedure is a record that is used to 
store information the procedure needs. It is defined as follows:

TYPE dcmdBlockPtr = ^dcmdBlock

dcmdBlock    = RECORD

registerFile: RegFilePtr;

request: INTEGER;

aborted: BOOLEAN;

END;
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The registerFile field is a pointer to an array containing the contents of the registers. 
MacsBug copies the contents of the registers into this array when you execute the dcmd. 
This allows you to use constant names for identifying the registers in your dcmd; for 
example:

The request field contains one of the following request numbers, which the debugger 
passes to the dcmd:

dcmdInit = 0;

dcmdDoIt = 1;

dcmdHelp = 2;

The first call MacsBug makes to a dcmd is an initialize request (dcmdInit). This happens 
when MacsBug is installed and requires no user action. In response to this request, the 
dcmd can do nothing or it can initialize global variables or gather system information.

The two other calls MacsBug can make to a dcmd are either the dcmdHelp call, if the 
user asks for help for a dcmd, or the dcmdDoIt call, if the user executes a dcmd.

The aborted field is used to inform the dcmd when the user has terminated the 
command; it’s set to True when the user presses a key (other than Return or the 
Space bar) while scrolling.

Figure 8-6 shows the format of the source code for a dcmd. A dcmd can contain more 
than one procedure; however, the main procedure must be called CommandEntry.

Figure 8-6 Skeleton dcmd

UNIT dcmdname;

{$R-}

INTERFACE

USES MemTypes, dcmd;

PROCEDURE CommandEntry (paramPtr: dcmdBlockPtr);

VAR {declare global variables if any}

IMPLEMENTATION

PROCEDURE CommandEntry (paramPtr: DCmdBlockPtr);

VAR {declare local variables if any}

Data Registers: DORegister – D7Register

Address Registers: A0Register – A7Register

Program Counter: PCRegister

Status Register: SRRegister (value stored in high word)
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BEGIN

  IF paramPtr^.request = dcmdInit THEN

BEGIN { The dcmd gets called once when loaded to init itself }

END {this can be an empty statement}

 ELSE

 IF paramPtr^.request = dcmdDoIt THEN

BEGIN { Do the command's normal function }

END

 ELSE

 IF paramPtr^.request = dcmdHelp THEN

  BEGIN { Display the command's help information }

dcmdDrawLine ('dcmdname syntax');

dcmdDrawLine ('   helpmessage');

dcmdDrawLine ('   helpmessage--continued');

  END;

 END;

END

You can write source code for a dcmd using Pascal, C, or assembly language. You can 
also use callback routines to parse the MacsBug command line, display information, and 
so on. These routines are defined in the interface files. It is not a good idea to include 
system calls in your dcmd. For additional information see the section “Restrictions on 
dcmds,” in this chapter.

If you are using assembly language to write the source code, please be aware that 
a dcmd uses Pascal calling conventions: the dcmd is responsible for popping the 
parameters off the stack. The dcmd must also preserve registers D3 through D7 and 
A2 through A6.

Table 8-7 provides a summary of the callback routines that you can use in writing 
dcmds. In addition to the routines listed in Table 8-7, MacsBug also includes a 
dcmdSwapWorlds routine and a dcmdForAllHeapBlocks routine. For information about 
these two routines and for more detailed information about the rest of the routines, 
please refer to the interface file. 

Table 8-7 DCMD callback routines 

Name Description

dcmdDrawLine(mystr) Draws the text in mystr as one or more lines 
separated by CRs.

dcmdDrawString(mystr) Draws the text in mystr as a continuation of 
current line.

dcmdDrawText(strptr, n) Draws n characters starting from strptr, as a 
continuation of current line.

continued
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Responding to a dcmdHelp Request 8

When the user enters help and the dcmd name, MacsBug will call the appropriate dcmd 
with a dcmdHelp request. In response, your dcmd code can use one of the callback 
routines that display text to display the help message for the dcmd. Figure 8-7 shows 
how the Where dcmd responds to the dcmdHelp request:

dcmdScroll Scrolls the output region up one line; leaves a 
blank line at the bottom.

dcmdDrawPrompt(mystr) Displays mystr in the command line area and waits 
for key to be pressed. Returns True if user presses 
CR; returns False for other keys.

dcmdGetPosition Returns an integer for the current command 
line position.

dcmdSetPosition(pos) Sets pos, which should be a value returned by 
dcmdGetPosition.

dcmdGetNextChar Returns the next character or CR if entire line has 
been scanned.

dcmdPeekAtNextChar Returns next character or CR if entire line has 
been scanned; does not change current command 
line position.

dcmdGetNextParameter(mystr) Copies all characters from the command line to 
mystr until a delimiter or CR is reached. Strings 
with matching quotes are allowed.

dcmdGetNextExpression(value, ok)
Parses command line for next expression; 
evaluates expression and returns in value. ok is 
True if line was parsed successfully. Returns 
delimiter.

dcmdGetBreakMessage(mystr) Copies break message last displayed by MacsBug 
into mystr.

dcmdGetNameAndOffset(addr, mystr)
Returns offset within procedure for addr, in mystr.

dcmdGetTrapName(number, name)
Returns the trap name in name for the trap number.

dcmdGetMacroName(value) Returns pointer to macro name for value.

dcmdSwapScreens Toggle between user and debugger displays.

Table 8-7 DCMD callback routines (continued)

Name Description
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Figure 8-7 Responding to the dcmdHelp request

IF paramPtr^.request = dcmdHelp THEN

BEGIN { Display the command's help information }

dcmdDrawLine ('WHERE [addr | trap]');

dcmdDrawLine ('   Display information about address or trap');

dcmdDrawLine ('   If no parameter then use PC as the address');

END;

If at all possible, your dcmd help messages should use the same format as that used to 
provide help for MacsBug commands: the command syntax should be displayed first, 
followed by an explanatory message. The syntax conventions used to describe MacsBug 
commands are described near the beginning of this chapter. 

Responding to a dcmdDoIt Request 8

When the user executes a dcmd, MacsBug calls the dcmd with a dcmdDoIt request. 
Figure 8-8 shows how the Where dcmd responds to the dcmdDoIt request.

The code uses the dcmdPeekAtNextChar routine and the dcmdGetNextExpression 
routine to parse the command line. If the user presses Return following the dcmd 
name, the routine returns the value of the program counter. If the user specifies a trap 
address, the routine returns the name of the trap using the dcmdGetTrapName routine. 
If the user specifies an address that’s an offset in a procedure, the routine uses the 
dcmdGetNameAndOffset routine to return the name of the procedure and the offset of 
the instruction within the procedure. 

Figure 8-8 Responding to the dcmd DoIt request

IF paramPtr^.request = dcmdDoIt THEN

BEGIN { Do the command's normal function }

IF dcmdPeekAtNextChar = CHR(CR) THEN

  address := paramPtr^.registerFile^[PCRegister]

ELSE

  BEGIN

  ch := dcmdGetNextExpression (address, ok);

IF NOT ok THEN

  BEGIN

  dcmdDrawLine ('Syntax error');

  Exit (CommandEntry);

  END;

  END;
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IF (address >= $0000A000) AND (address <= $0000ABFF) THEN

  BEGIN

  dcmdGetTrapName (address, name);

  dcmdDrawLine (name);

  END

ELSE

  BEGIN

dcmdGetNameAndOffset (address, name);

IF Length (name) > 0

  THEN dcmdDrawLine (name)

  ELSE dcmdDrawLine ('No procedure name found');

  END;

END

Restrictions on dcmds 8

The restrictions that you should observe in writing a dcmdare a result of the 
circumstances under which you are likely to use the command: debugging code 
following a system crash.

■ Because the system might be in an unstable state, making a system call is generally a 
bad idea.

■ Never allocate memory on a heap nor make a system call that allocates memory; 
remember, you could have entered MacsBug at interrupt time. 

■ A dcmd has about a 1K stack available to it; if you need more memory than this, 
allocate it in global variables.

■ Although you can write dcmds that override existing MacsBug commands, it is 
recommended that you do not override flow control commands like G, S, ATB, 
and so on;

Building a dcmd 8

To build a dcmd in MPW 3.1, enter the following commands. (You need to specify your 
own information for the italicized fields.)

Pascal dcmdname.p
Link dcmdGlue.a.o dcmdname.p.o {Libraries}Runtime.o -o dcmdname
BuildDcmd dcmdname resource_number

It is important that the dcmdGlue.a.o file be the first file you link with. The BuildDcmd 
builds a 'dcmd' resource with the name and number you specify.

The source code provided for dcmds requires MPW 3.1 to build the dcmds. It does not 
currently build with MPW 3.2. This does not affect the execution of the dcmds included 
in the file Debugger Prefs.
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Debugging dcmds 8

Debugging dcmds can be difficult, since they function within MacsBug. A special 
application called TestDCMD, which ships with MacsBug, is designed to help you debug 
your own dcmds. TestDCMD is a shell that calls the dcmd and provides the normal 
support the dcmd expects from MacsBug. But since it is running within the TestDCMD 
application, you can debug it using MacsBug. 

You do not have to load the dcmd by restarting your system to test it. The TestDCMD 
tool will execute the dcmd as if it had already been loaded and display information to let 
you know if it’s not working.
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This chapter describes most MacsBug commands except for dcmds and macros, which 
are described in Chapter 8, “Introduction to MacsBug Commands.” The commands in 
this chapter are listed in alphabetical order. In addition to these commands, MacsBug 
provides two others that are not included in this chapter: 

 

■

 

The dot command

 

 displays the current value of the dot address. 

 

■

 

The procedure display command,

 

 Command-D or Command-:, displays a menu of 
procedure names for the current application. 

For additional information about these commands, please see “The Dot Address and the 
Colon Address” in Chapter 8.

Chapter 8 provides a complete introduction to the use of MacsBug commands. This 
chapter assumes that you are familiar with the material covered in Chapter 8.
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ATB — A-trap Break 9

 

DESCRIPTION

 

The A-trap Break command invokes MacsBug whenever the microprocessor encounters 
the specified A-trap.

 

SYNTAX

 

ATB[A] [ 

 

trap

 

 [ 

 

trap

 

 ] ]  [ 

 

n

 

 | 

 

expr

 

 ] [ ';

 

cmd

 

 [ ;

 

cmd

 

 ]...']

A specifies that MacsBug should only be invoked when the A-trap is called 
from the application heap.

 

trap

 

is a trap name or number specifying the trap. Specifying two traps 
indicates a range of traps. If you omit this parameter, MacsBug is invoked 
every time an A-trap is called.

 

n

 

is a hexadecimal number specifying that MacsBug should be invoked 
every 

 

n

 

th time that the trap is encountered.

 

expr

 

specifies that MacsBug should be invoked when the trap is encountered 
and 

 

expr

 

 is true.

 

cmd

 

specifies a command for MacsBug to execute after it is invoked.

 

SEE ALSO

 

ATC, ATD

 

Considerations 9

 

A-trap breaks are not associated with a specific instance of an A-trap call. Rather, 
MacsBug is invoked any time the specified A-trap is called and the other conditions 
you specified using the ATB command are met.

When you set one or more breakpoints using the ATB command, MacsBug records the 
number in a table. Whenever the microprocessor encounters an A-trap, MacsBug 
compares the A-trap with the entries in the table. If it finds a match (and whatever other 
conditions you have specified using the ATB command are met), MacsBug displays the 
debugging screen and shows you the state of the microprocessor and memory just before 
the A-trap is executed. The program counter is set to the address of the instruction that 
invoked the A-trap.

Use the ATD command to display current trap actions; use the ATC command to clear 
A-trap breaks.
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ATB — A-trap Break

 

Breaking on Related A-traps 9

 

Because A-traps belonging to the same manager are grouped together by number, 
specifying a range is another way of telling MacsBug to break on every A-trap belonging 
to a particular manager. If you want to exclude some A-traps belonging to a particular 
manager, you can use the ATC (A Trap Clear) command. For additional information, see 
the ATC command.

 

Breaking on A-traps Called from the Application Heap 9

 

The A option restricts MacsBug to breaking only when the specified A-trap is called from 
the application heap. MacsBug does this by checking that the value of the program 
counter lies within the application heap range. Note that if you set a breakpoint in one 
application and you do not clear it, the breakpoint remains valid so that if you quit the 
application and run another application, the same A-trap call will invoke MacsBug.

 

Breaking on A-traps in a Package 9

 

If the A-trap that you want to break on is part of a package, you need to follow a slightly 
different procedure. All of the routines in a package are implemented by one A-trap 
number. Each routine within a package is identified by an index number. When a 
program calls a routine in the package, the routine’s parameters are pushed onto the 
stack first, and then the routine’s index number. This index number is called a routine 
selector. Sometimes the routine selector is placed in a register. To determine where the 
routine selector is placed, consult the description of the package to which it belongs in 

 

Inside Macintosh

 

. 

This means that in order to break on an individual routine in a package you need to 
supply the package number as the routine name and then check the value on the stack to 
see if it matches the index value for the routine you’re interested in. For example, to 
place a break on the routine LNew, a List Manager routine, you would use the ATB 
command

 

ATB Pack0 SP^.W = #68

 

That is, break whenever the A-trap Pack0 is called and the word stored on top of the 
stack equals 68. Note that your specification of the routine selector is just part of the 
normal ATB syntax; the specification is the 

 

expr 

 

that is an option for the command. This 
means that if you want to impose additional conditions, you would have to use AND to 
connect them with the condition that looks for the routine selector; for example:

 

ATB Pack0 SP^.W = #68 AND PC < ApplZone

 

MacsBug is shipped with several sets of macros that allow you to place A-trap breaks on 
individual routines inside a package. The macros actually place an A-trap break on the 
whole package, with a condition that checks the index selector to see if it’s the routine 
you wanted––just as in the previous example. This saves you the work of looking up an 



 

C H A P T E R  9

 

MacsBug Commands

ATB — A-trap Break

 

211

 

individual routine and finding out what its index selector is and whether it is placed on 
top of the stack or in a register. For example, you can just enter

 

ATB LNew

 

and MacsBug expands the macro to

 

ATB Pack0 SP^W = #68

 

You need to remember however that the macro name includes an expression. This means 
that you can’t use the 

 

n

 

 option and that if you want to impose an additional condition, 
you have to put an AND in front of it; for example

 

ATB LNew AND PC < ApplZone

 

Creating a Custom A-trap Trace 9

 

You can create a custom A-trap trace by executing the ATB command with an associated 
action. For example, if you enter

 

ATBA ';TD;G'

 

MacsBug displays all registers when the breakpoint is reached. The ATT command only 
shows information for selected registers. If you do this, you might want to log the output 
in case you exhaust the limits of MacsBug’s output buffer.

For additional information about A-traps, see Chapter 5, “The Macintosh Operating 
System.”

 

Examples 9

 

The following examples show some uses of the ATB command: 

Break on every A-trap.

 

ATB

 

A-Trap Break at A000 (_Open) thru ABFF (_DebugStr) every time

 

Break on every call to MenuSelect.

 

ATB  MenuSelect

 

A-Trap Break at A93D (_MenuSelect) every time

 

Break on every call to MenuSelect made from within the application heap.

 

ATBA  MenuSelect

 

A-Trap Break at A93D (_MenuSelect) every time
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ATB — A-trap Break

 

Break on every A-trap between A010 and A020, inclusive.

 

ATB a010 a020

 

A-Trap Break at A010 (_Allocate) thru A020 (_SetPtrSize) every time 

 

Break on MenuSelect calls when register D0 equals $6.

 

ATB menuselect d0 = 6

 

A-Trap Break at A93D (_MenuSelect) when d0 = 6

 

Break on every third MenuSelect call.

 

ATB  MenuSelect 3

 

A-Trap Break at A93D (_MenuSelect) every #3 times

 

Break on every MenuSelect call, and execute the commands HC and DM910.

 

ATB MenuSelect ';HC;DM 910'

 

A-Trap Break at A93D (_MenuSelect) every time and execute ;hc;dm 910
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ATC — A-trap Clear 9

 

DESCRIPTION

 

The A-trap Clear command clears actions set on all the specified A-traps with the ATB, 
ATT, ATHC, and ATSS commands.

 

SYNTAX

 

ATC [ 

 

trap

 

 [ 

 

trap

 

 ] ]

 

trap

 

is a trap name or number specifying the trap. Specifying two traps 
indicates a range of traps. If you omit this parameter, MacsBug clears 
all A-trap actions. 

 

SEE ALSO

 

ATB, ATD, ATHC, ATSS, ATT

 

Considerations 9

 

You can use the ATC command following an ATB, ATT, ATHC, or ATSS command to 
exclude A-traps from the range specified for these commands. For example, if you set the 
range for the ATHC command to be all A-traps,

 

ATHC

 

MacsBug displays the message

 

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) every time

 

If you then use the ATC command to exclude the StripAddress command

 

ATC StripAddress

 

MacsBug displays the message

 

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) split into two ranges

 

Since the ATC command does not execute conditionally, it is not possible to clear an 
A-trap belonging to a package. However, if you don’t mind excluding all the A-traps in a 
package, you can clear the package as a whole.

When you use the ATC command to exclude an A-trap from the action you define for a 
range, what you are actually doing is setting two ranges. The ATC command saves you 
the trouble of setting two ranges by doing the work itself. This means that, even though 
you are ostensibly clearing a trap action, you are actually creating an additional entry in 
the A-trap table and could receive the error message “Entry will not fit in the table.”
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ATC — A-trap Clear

 

Examples 9

 

Clear all A-trap actions:

 

ATC

 

All A-Traps actions cleared

 

Clear actions on WaitNextEvent; leave actions on other A-traps unchanged:

 

ATC WaitNextEvent

 

A-trap Break at A860 (_WaitNextEvent) cleared
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ATD — A-trap Display 9

 

DESCRIPTION

 

The A-trap Display command displays information about all actions currently set with 
the ATB, ATT, ATHC, and ATSS commands.

 

SYNTAX

 

ATD

 

SEE ALSO

 

ATB, ATC, ATHC, ATSS, ATT, WH

 

Example 9

 

Assume you have entered the following commands:

 

ATHC MenuSelect 3
ATB WaitNextEvent ';hc'
ATB GetPort D0=6
ATB LNew

 

If you then enter the ATD command, MacsBug displays the following information:

 

A-Trap actions from System or Application
Trap Range Action Cur/Max or Expression Commands
_MenuSelect Check 00000000 / 00000003
_WaitNextEvent Break every time
_WaitNextEvent Break every time ;hc
_GetPort Break D0 = 6
_Pack0 Break SP^.W=#68

 

MacsBug lists the name of the trap or the trap range in the first column. It lists the action 
set on the trap in the second column. 

The value displayed in the third column depends on whether you used the 

 

n 

 

or 

 

expr

 

 
option with the ATB command. If you specified that the trap action should occur every 

 

n

 

th time the trap executes, MacsBug displays the current value (Cur) and the value you 
have specified (Max) at which the action should occur. If you specified that the trap 
action should occur when 

 

expr

 

 is true, MacsBug displays the expression it is evaluating 
in the third column. 

If the A-trap belongs to a package and you use a macro to specify the individual trap, 
MacsBug expands the macro and displays the expression that tests for the routine’s 
index value in the third column. See the description of the ATB command for additional 
information.

MacsBug uses the fourth column to display any commands that you specified should be 
executed when the action on the A-trap takes place.
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ATHC — A-trap Heap Check 9

 

DESCRIPTION

 

The A-trap Heap Check command checks the heap before executing the specified A-trap. 
If the heap is bad, MacsBug displays the debugging screen and an error message. See the 
HC command in this chapter for a list of possible errors.

 

SYNTAX

 

ATHC[A] [ 

 

trap

 

 [ 

 

trap

 

 ] ] [ 

 

n 

 

| 

 

expr

 

 ]

A specifies that MacsBug should only check the heap when the A-trap is 
called from the application heap.

 

trap is a name or number specifying the trap. Specifying two traps indicates a 
range of traps. If you omit this parameter, MacsBug checks the heap every 
time an A-trap is called.

n is a hexadecimal number specifying that MacsBug should check the heap 
every nth time that the trap is encountered.

expr specifies that MacsBug should check the heap only when trap is 
encountered and expr is true.

SEE ALSO

ATC, ATD, HC

Considerations 9
Because the ATHC command checks the heap before executing an A-trap, it is not the 
A-trap that the PC is currently pointing to that has corrupted the heap, but either the 
previous A-trap or an instruction belonging to your application. The ATHC command 
therefore allows you to narrow the range of statements that might be causing your 
problem. 

The most common way to use the ATHC command is without parameters, thus checking 
the heap before every A-trap. If you use it in this way you need to note that the Memory 
Manager makes trap calls while moving heap blocks around. In such cases, the ATHC 
command will return an error because the heap is inconsistent, albeit temporarily. You 
can eliminate these error messages by using the ATHCA command to check the heap 
only when traps are called by your application.

You can specify an A-trap belonging to a package for the trap parameter to the ATHC 
command; see “Breaking on A-traps in a Package,” under the ATB command, for 
additional details. 
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For additional information about A-traps, see Chapter 5, “The Macintosh Operating 
System”; for additional information about heaps, see Chapter 4, “Macintosh Memory 
Organization.”

Example 9
The following commands direct MacsBug to check the heap before executing every 
A-trap except for StripAddress:

ATHC

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) every time

ATC StripAddress

A-Trap Check at A000 (_Open) thru ABFF (_DebugStr) split into two ranges

The following ATHC command checks the heap before every LNew routine. The LNew 
routine is a List Manager (Pack0) routine. In this example LNew is a macro; LNew 
expands to Pack0 SP^.W = #68.

ATHC LNew
A-Trap Check at A9E7 (_Pack0) when SP^.W=#68
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ATP — A-trap Playback 9

DESCRIPTION

The A-trap Playback command displays the information saved while trap recording is 
on. If trap recording is turned off, the ATP command displays information from the most 
recent ATR.

SYNTAX

ATP

SEE ALSO

ATR

Considerations 9
The ATP command returns the following information about each trap call:

■ The trap number and trap name.

■ The address from which the call was made; this is the PC value. If your compiler 
embeds procedure names, MacsBug also shows you the address of the PC as an offset 
from the beginning of the procedure from which the A-trap is called.

■ If the trap is an operating system trap, the values of registers A0 and D0 and the 8 
bytes stored at the address in A0.

Operating system traps pass their parameters and return the result in registers. 
Register A0 often holds the input parameter or the pointer to the parameter. The ATP 
command displays information about these registers to allow you to check parameter 
values on entry to the routine.

■ If the trap is a Toolbox trap, the value of register A7 and the 12 bytes stored beginning 
at that address.

Toolbox traps normally pass their parameters and return the result on the stack. 
Parameters are always passed in Pascal format. The ATP command shows you 
information about the top of the stack so that you can check parameter values and 
return results.

If you suspect that the call is getting bad parameters, you can set a breakpoint at the 
address specified by the PC and watch it more closely the next time you run the program.

For additional information about trap recording, see the description of the ATR 
command in this chapter.
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Example 9
The following command displays information recorded after A-trap recording was 
turned on with the ATR command:

ATP
Trap calls in the order in which they occurred
  A031 _GetOSEvent
    PC = 4080F21A  _GetMouse+00EC
    A0 = 004B67C4  0000 0000 0000 0003 D0 = 0000FFFF
  A9A0 _GetResource
    PC = 4080F278  _GetMouse+014A
    A7 = 004B65BC  0007 464B 4559 4080 F224 DB6D
  A03C _CmpString
    PC = 0002F69E  
    A0 = 00000911  4669 6E64 6572 2020 D0 = 00060006
  A025 _GetHandleSize
    PC = 0002E5C8  
    A0 = 00036050  2000 3CA4 0003 6060 D0 = 00000000
  A029 _HLock
    PC = 4080F29C  _GetMouse+016E
    A0 = 00036050  2000 3CA4 0003 6060 D0 = 20003CA4
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ATR — A-trap Record 9

DESCRIPTION

The A-trap Record command turns trap recording on and off.

SYNTAX

ATR[A] [ ON | OFF ]

A specifies that MacsBug should only record A-traps that are called from 
the application heap. If you don’t specify ON or OFF, the ATR command 
toggles between modes.

SEE ALSO

ATP

Considerations 9
You use the ATP command to display the information recorded by the ATR command.

The number of lines saved by the ATR command depends on whether the 'mxbi' 
resource is installed and whether it has been modified.

■ If the 'mxbi' resource is not installed, the ATR command records the last 16 A-traps 
encountered by the microprocessor.

■ If the 'mxbi' resource is installed, the ATR command records the last 24 A-traps 
encountered by the microprocessor by default. You can change this value by opening 
the 'mxbi' resource from ResEdit and entering a new number for “# of traps recorded.”

The information saved by the ATR command includes the trap name and the contents of 
the program counter. For operating system traps, the ATR command saves the values of 
registers A0 and D0 as well as the 8 bytes pointed to by register A0. For Toolbox traps, 
the ATR command saves the value of register A7 and the 12 bytes to which it points. 
See the ATP command for additional information about how you use these values 
in debugging.

The ATT command outputs the same information as the ATR command. However, the 
ATT command causes your program to execute much more slowly because MacsBug 
needs to copy information about each A-trap, convert it to text, and write it to the screen. 
The ATR command simply copies information about each A-trap to an internal buffer; in 
this case, it’s the ATP command that converts the information from the internal buffer to 
text displayed on the screen.

If ATR is off, the ATP command will play back information from the most recent ATR.
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Example 9
The following command turns trap recording on for A-trap calls made from the 
application heap:

ATRA
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ATSS — A-trap Step Spy 9

DESCRIPTION

The A-trap Step Spy command calculates a checksum for a specified memory range or 
for a word at a specified address before executing the specified traps. If the checksum 
value changes, the ATSS command invokes MacsBug and does not execute the A-traps.

SYNTAX

ATSS[A] [ trap [ trap ] ] [ n | expr ], addr1 [ addr2 ]

A Specifies that MacsBug should calculate a checksum only before 
executing A-traps that are called from the application heap.

trap is a trap name or number that specifies the trap to be executed. Specifying 
two traps indicates a range. If you omit this parameter, MacsBug 
calculates a checksum before executing every A-trap.

n is a hexadecimal integer specifying that MacsBug should calculate a 
checksum after every nth time the specified A-trap(s) executes.

expr specifies that MacsBug should calculate a checksum before the specified 
A-trap executes and expr is true.

addr1 specifies that MacsBug should calculate a checksum for the long word at 
addr1. If you specify addr2, MacsBug calculates a checksum for the range 
of memory defined by addr1 and addr2.

SEE ALSO

ATC, ATD, SS

Considerations 9
Checksumming is a technique used by the debugger to determine whether the contents 
of memory have changed. The debugger adds all the values in the specified memory 
range and saves the result. After one or more instructions are executed (depending 
on whether checksumming is implemented by the ATSS, CS, or SS commands), the 
debugger recalculates a sum for the same memory range and compares the new result 
to the saved result. If the values differ, MacsBug is invoked.

The ATSS command works fastest when you are calculating a checksum for addr1.

The ATSS command is much faster than the SS (Step Spy) command because it only 
checks memory before executing A-traps, whereas the SS command checks after each 
68000 instruction. You can use the ATSS command to zero in on a range of instructions 
containing the instruction that is affecting the value that concerns you. When the ATSS 
command invokes MacsBug, you know that the A-trap that is about to execute is not 
responsible for the change in value. You also know that the instruction that you are 
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looking for is either the previous A-trap or any instruction executed between the 
previous A-trap and the instruction pointed to by the PC. You can now use the SS 
command within the suspect range to find that instruction. 

Having trap recording turned on while using the ATSS command allows you to 
determine the previous A-trap call. You can also disassemble backward from the current 
PC until you find the previous A-trap.

Use the ATC command to clear actions set with the ATSS command. Use the ATD 
command to display actions set with the ATSS command.

Example 9
The following command checksums the long word at $100 on every A-trap call:

ATSS 100
Checksumming from 00000100 to 00000103
  A-Trap Spy at A000 (_Open) thru ABFF (_DebugStr) every time
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ATT — A-trap Trace 9

DESCRIPTION

The A-trap Trace command writes information to the MacsBug output buffer when-
ever the microprocessor encounters the specified A-trap, without stopping the 
current program.

SYNTAX

ATT[A] [ trap [ trap ] ] [ n | expr ]

A specifies that only information about A-traps called from the application 
heap should be written to the output buffer.

trap is a name or number specifying the trap. Specifying two traps indicates a 
range of traps. If you omit this parameter, MacsBug writes information 
about every A-trap called.

n is a hexadecimal number specifying that MacsBug should write 
information every nth time the trap is encountered.

expr specifies that MacsBug should write information when the trap is 
encountered and expr is true.

SEE ALSO

ATC, ATD

Considerations 9
The ATT command outputs the same information as the ATR command, only in more 
compact form.

The information saved by the ATT command includes the trap name and the contents of 
the program counter. 

■ For operating system traps, the ATT command saves the values of registers A0 and D0 
as well as the 8 bytes pointed to by register A0. 

Operating system traps pass their parameters and return the result in registers. 
Register A0 often holds the input parameter or the pointer to the parameter. The ATP 
command displays information about this register to allow you to check parameter 
values on entry to the routine.

■ For Toolbox traps, the ATT command saves the value of register A7 and the 12 bytes 
to which it points.

Toolbox traps normally pass their parameters and return the result on the stack. 
Parameters are always passed in Pascal format. The ATP command shows you 
information about the top of the stack so that you can check parameter values and 
return results.
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If you suspect that the call is getting bad parameters, you can set a breakpoint at the 
address specified by the PC and watch it more closely the next time you run the program.

The ATT command allows you to record information about the state of the 
microprocessor right before an A-trap executes. Unlike the ATR command, it allows you 
to record information only when the conditions you have specified for the command 
are met.

The ATT command outputs the same information as the ATR command. However, the 
ATT command causes your program to execute much more slowly because MacsBug 
needs to copy information about each A-trap, convert it to text, and write it to the screen. 
The ATR command simply copies information about each A-trap to an internal buffer; 
in this case, it’s the ATP command that converts the information from the internal buffer 
to text displayed on the screen.

Use the ATC command to clear the ATT command; use the ATD command to display 
actions set with the ATT command.

▲ W A R N I N G

Using the ATT command when you’re working with a single monitor 
and you have swapping turned on can create problems. See the SWAP 
command for additional information. ▲

Creating a Custom A-trap Trace 9

You can create a custom A-trap trace by executing the ATB command with an associated 
action. For example, if you enter

ATBA ';TD;G'

MacsBug displays all registers when the breakpoint is reached. The ATT command only 
shows information for selected registers. If you do this, you might want to log the output 
in case you exhaust the limits of MacsBug’s output buffer.

Examples 9
The following command records information about all A-traps:

ATT

A-Trap Trace at A000 (_Open) thru ABFF (_DebugStr) every time

 A02A _HUnlock         PC=4080F2A6 D0=00000000 A0=00020960 A1=0027DE84

 A972 _GetMouse        PC=4080F2E4 A7=0037FEA0 A7^=0000 09FA 0000 0001 

 A871 _GlobalToLocal   PC=4080F13E A7=0037FE98 A7^=0000 09FA 4080 F2E6 

 A8E2 _EmptyRgn        PC=003AF0EE A7=0037FE80 A7^=0038 5D00 EDA6 0000 

 A8E2 _EmptyRgn        PC=003AF0EE A7=0037FE80 A7^=0038 5BA0 01A6 0000 

 A8E2 _EmptyRgn        PC=003AF0EE A7=0037FE80 A7^=0038 5C54 01A6 0000 

 A8E2 _EmptyRgn        PC=003AF672 A7=0037FEA0 A7^=003B 8B34 EDA6 0000 

 A924 _FrontWindow      PC=003AF33E A7=0037FE6A A7^=4080 60AC 0000 0000 
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BR — Breakpoint 9

DESCRIPTION

The Breakpoint command sets a breakpoint at the specified address. When the program 
counter is equal to the specified address, MacsBug displays the debugging screen and 
you can examine the state of the microprocessor right before the instruction executes.

SYNTAX

BR addr [ n | expr ] [' ;cmd [ ;cmd  ] ...' ]

addr specifies the address of the instruction where you want to set the 
break point.

n specifies that MacsBug break after reaching the instruction n times.

expr specifies that MacsBug break when addr is reached and expr is true.

cmd specifies a command that you want MacsBug to execute after displaying 
the debugging screen.

SEE ALSO

BRC, BRD, BRM

Considerations; 9
Entering BR without any parameters is the same as using the BRD (Breakpoint Display) 
command; MacsBug displays the breakpoint table.

After you set a breakpoint, type G. The microprocessor executes until it reaches the 
specified breakpoint. 

Breakpoints remain in effect until you restart. When you no longer need the breakpoints, 
remove them with the BRC (Breakpoint Clear) command.

MacsBug stores information for breakpoints, step commands, and A-trap command 
actions in a single table. It adds new entries at the end of the table. If MacsBug displays 
the message “Entry will not fit in the table,” you need to clear some of the other actions 
before you can add the breakpoints.

If you set a breakpoint in a relocatable block, MacsBug stores the breakpoint as a handle 
to the breakpoint address. This means that if the block moves, the Memory Manager 
automatically updates the breakpoint address.
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Breakpoints are shown in disassembly displays by means of dots placed to the left of the 
instruction mnemonic. The disassembled code shown below shows two breakpoints: one 
set at the LINK instruction and one at the FindWindow routine. 

MouseDwn

+0000  373818 •*LINK   A6,#$FFF0 | 4E56 FFF0

+0004  37381C   MOVEA.L $0008(A6),A0 | 206E 0008

+0008  373820   MOVE.L  $000A(A0),-$0008(A6) | 2D68 000A FFF8

+000E 373826   CLR.W   -(A7) | 4267

+0010  373828   MOVE.L  -$0008(A6),-(A7) | 2F2E FFF8

+0014  37382C   PEA     -$0004(A6) | 486E FFFC

+0018  373830 • _FindWindow ; A92C | A92C

+001A  373832   MOVE.W  (A7)+,D0 | 301F

+001C  373834   CMPI.W  #$0001,D0 | 0C40 0001

How MacsBug Implements Breakpoints 9

When you use the BR command to break on an instruction, MacsBug replaces the 
instruction with a TRAP instruction and stores the instruction. When the microprocessor 
encounters the TRAP instruction, it generates a trap exception, which invokes MacsBug. 
MacsBug puts the original instruction back in its place and displays the debugging 
screen. You can use the S (Step) command to execute the instruction.

The only way you can go wrong in using the BR command is if you specify an address 
that points to the middle of an instruction. In this case, MacsBug follows its usual 
procedure of replacing the instruction with a TRAP instruction. However, because the 
TRAP instruction now begins in the middle of an instruction, the microprocessor might 
regard it as part of the instruction, which will probably cause an error.

Setting Breakpoints in ROM 9

When you set a breakpoint at a ROM address, the debugger cannot substitute a TRAP 
instruction for your instruction because that would require that it write to ROM, which 
is impossible. Instead MacsBug zeroes in on the instruction by executing a loop in trace 
mode: it executes one instruction and checks the value of the PC. If the PC is equal to 
the specified address, it displays the debugger screen and shows the state of the micro-
processor just before the instruction executes. If the PC is not equal to the specified 
address, MacsBug allows the instruction to execute and checks the next PC value.

This tracing process is excruciatingly slow, so you might want to use GT (Go Till) to get 
to the address of the instruction calling the A-trap, then set the breakpoint, and then use 
G (Go) until the microprocessor reaches the breakpoint. The output from the BRD 
(Breakpoint Display) command indicates whether the breakpoint implemented in trace 
(T) or step (S) mode.
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Setting Breakpoints Within a Procedure 9

If you are working within a procedure, the BRO standard macro allows you to specify 
the address of an instruction in that procedure as an offset from the beginning of the 
procedure. Thus the command

BRO 18

would set a breakpoint 18 bytes from the beginning of the current procedure and save 
you the trouble of entering an address. The BRO macro expands to BR :+.

Using the BR Command to Display Function Results 9

You can display the result of a function every time it’s called by entering the command

BR functionname ' ; MR ; DW  SP '

Whenever the breakpoint is reached, MacsBug executes the MR (Magic Return) 
command and displays the top word on the stack (the function result). Functions that 
return long words should use the command

BR functionname ' ; MR ; DL  SP '

Functions that return pointers could dereference the pointer and display the structure 
using a template; for example:

BR functionname ' ; MR ; DM SP^ templatename ' 

Examples 9
The following command sets a breakpoint at the address where the first instruction of 
the MouseDwn procedure is stored:

BR MouseDwn
Break at (00373818 MouseDwn) every time

The next command macro, which expands to BR :+, sets a breakpoint 18 bytes into the 
current procedure. In this case the current procedure is MouseDwn.

BRO 18
Break at (00373830 MouseDwn+0018) every time
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After you reach the first breakpoint, disassembling from the PC shows the following:

Disassembling from pc

MouseDwn

+0000 373818 •*LINK A6,#$FFF0 | 4E56 FFF0

+0004 37381C   MOVEA.L $0008(A6),A0 | 206E 0008

+0008 373820   MOVE.L $000A(A0),-$0008(A6) | 2D68 000A FFF8

+000 73826   CLR.W -(A7) | 4267

+001 73828   MOVE.L -$0008(A6),-(A7) | 2F2E FFF8

+0014 37382C   PEA -$0004(A6) | 486E FFFC

+0018 373830 • _FindWindow ; A92C | A92C

+001A 373832   MOVE.W (A7)+,D0 | 301F

+001C 373834   CMPI.W #$0001,D0 | 0C40 0001
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BRC — Breakpoint Clear 9

DESCRIPTION

The Breakpoint Clear command clears the breakpoint at the specified address. If you do 
not specify an address, the command clears all breakpoints.

SYNTAX

BRC [ addr  ]

addr specifies the address where you want to clear the breakpoint. If you omit 
this parameter, MacsBug clears all breakpoints. 

SEE ALSO

BR, BRD, BRM

Considerations 9
Use the BR command to set breakpoints. Use the BRD (Breakpoint Display) command to 
display current breakpoint settings.

If you don’t use the BRC command to clear breakpoints, they remain in effect until 
you restart.

Example 9
The following command clears all breakpoints:

BRC
All breakpoints cleared
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BRD — Breakpoint Display 9

DESCRIPTION

The Breakpoint Display command displays addresses where breakpoints are 
currently set.

SYNTAX

BRD

SEE ALSO

BR, BRC, BRM

Considerations 9
MacsBug implements the GT (Go Till) command by setting a temporary breakpoint. If 
you enter MacsBug by some other means and execute the BRD command, this 
breakpoint remains set and you’ll see an entry for it in the breakpoint table.

Use the BR command to set breakpoints; use the BRC command to clear breakpoints.

See the following example for an explanation of BRD output.

Example 9
MacsBug displays the information like the following in response to the BRD command:

BRD
 Breakpoint table

  Address    Module name Cur/Max or Expression  Commands
t 0040E794 R AbleMenu    every time
t 0040E778 R UseAppRes   every time
t 0040E7D4 R ABSPoint    every time
t 0040E800 R BubbleUp    every time

■ The first column contains a marker that indicates whether the breakpoint is reached in 
Trace (T) or Step (S) mode. 

■ The Address column shows the address of the instruction where the breakpoint has 
been set. The column preceding the Module Name column contains the letter R if the 
instruction is in a relocatable block. 

■ If you leave MacsBug, run your program, and then go back to examine the breakpoint 
table, do not be surprised if the addresses of instructions belonging to relocatable 
blocks have changed. 
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■ The Module Name column displays the name of the procedure in which the 
instruction belongs. (MacsBug cannot supply the name of the procedure if your 
compiler does not embed procedure names.) 

■ If you specified that MacsBug should be invoked every nth time the instruction 
executes, the Cur/Max or Expression column shows you the current value of the 
counter (Cur) and the value you specified for n (Max). If you specified that MacsBug 
implement the breakpoint when some condition is met, this column shows what that 
condition is. 

■ The Commands column lists the commands you specified should be executed 
following the breakpoint.
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BRM — Multiple Breakpoints 9

DESCRIPTION

The Multiple Breakpoints command allows you to set breakpoints using partial 
name matching.

SYNTAX

BRM  name

name is a string. MacsBug sets a breakpoint at the beginning of all routines 
whose names contain name. 

SEE ALSO

BR, BRC, BRD

Considerations 9
You can use this command for setting breakpoints on groups of related routines. This is 
useful for programs written in object-oriented languages, because you can use the name 
of an object to set breakpoints on all the object’s methods.

Use the BRC command to clear breakpoints set with the BRM command; use the BRD 
command to display information about breakpoints set with the BRM command.

If you are debugging a C++ program and need to break on a name that is qualified using 
double colons, you must enclose the string in quotation marks, since the colon has 
another meaning in MacsBug. The following command breaks on all classes that contain 
a Draw method:

BRM '::Draw'

This command breaks on all methods in the class TParseNode:

BRM 'TParseNode::'

Example 9
The following listing shows the output to the BRM command:

BRM 
 Break at 00411A14 (strcpy) every time
 Break at 00411A48 (strncpy) every time
 Break at 00411A86 (_SA_DeletePtr) every time
 Break at 00411AAE (operator new(unsigned int)) every time
 Break at 00411AF8 (operator delete(void *)) every time
 Break at 00411D04 (ostream::operator <<(const char *)) every time
 Break at 00412314 (ostream::operator <<(long)) every time
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CS — Checksum 9

DESCRIPTION

The Checksum command allows you to determine whether the contents at the specified 
address or within the specified memory range have changed. 

SYNTAX

CS [ addr [ addr ] ]

addr If you specify a single address, MacsBug checksums the long word at that 
address; if you specify two addresses, MacsBug checksums the range of
memory defined by the addresses.

SEE ALSO

SS, ATSS

Considerations 9
Checksumming is a technique used by the debugger to determine whether the contents 
of memory have changed. The debugger adds all the values in the specified memory 
range and saves the result. After one or more instructions are executed (depending 
on whether checksumming is implemented by the ATSS, CS, or SS commands), the 
debugger recalculates a sum for the same memory range and compares the new result to 
the saved result. If the values differ, MacsBug is invoked.

The Checksum command checksums a range of memory and stores the value. If you 
enter CS again without an address parameter, it checksums the same range of memory 
and compares the new value to the stored value. It then displays a message letting you 
know whether the value has changed. 

Examples 9
The following examples checksum the long word at address 9D:.

CS 9d6
Checksumming from 000009D6 to 000009D9

CS
Checksum is the same
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DB – Display Byte 9

DESCRIPTION

The Display Byte command displays the byte at the specified address.

SYNTAX

DB [ addr ]

addr specifies the address containing the byte to be displayed. If you omit
this parameter, the DB command displays the byte at the dot address.

SEE ALSO

DL, DM, DP, DW

Considerations 9
If you press Return following a DB command, MacsBug displays the next byte. MacsBug 
then sets the dot address to the address of the byte displayed.

The DB command displays four values for the specified memory location. The first 
column shows the hexadecimal value; the second column shows the unsigned decimal 
value, the third column shows the signed decimal value; and the fourth column shows 
the ASCII value, as shown in the example that follows.

Examples 9
The following example, shows the output from the command DB 910, followed by the 
output from pressing Return seven times: 

DB 910
 Byte at 00000910 = $07     #7     #7   '•'
 Byte at 00000911 = $63    #99    #99   'c'
 Byte at 00000912 = $69   #105   #105   'i'
 Byte at 00000913 = $72   #114   #114   'r'
 Byte at 00000914 = $63    #99    #99   'c'
 Byte at 00000915 = $6C   #108   #108   'l'
 Byte at 00000916 = $65   #101   #101   'e'
 Byte at 00000917 = $73   #115   #115   's'
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DH — Disassemble Hexadecimal 9

DESCRIPTION

The Disassemble Hexadecimal command converts one or more hexadecimal values to 
assembler mnemonics.

SYNTAX

DH expr ...

expr is an expression that evaluates to a hexadecimal value.

Considerations 9
For information about assembled and disassembled code, please see Chapter 3, “An 
Assembly-Language Primer.”

Examples 9
The DH command displays the address of the internal buffer it uses to disassemble code 
in the first column—you need not be concerned about this value—then displays the 
disassembled opcode:

DH 0B30 0000
Disassembling hex value
       3DD494    BTST     D5,$00(A0,D0.W) | 0B30 0000
DH 7E1E
Disassembling hex value
       3DD494    MOVEQ    #$1E,D7 | 7E1E



C H A P T E R  9

MacsBug Commands

DL — Display Long 237

DL — Display Long 9

DESCRIPTION

The Display Long command displays the long word at the specified address.

SYNTAX

DL [ addr ] 

addr specifies the address containing the long word to be displayed. If you
omit this parameter, the DL command displays the long word at the
dot address.

SEE ALSO

DB, DM, DP, DW

Considerations 9
If you press Return following a DL command, MacsBug displays the next long word. 
MacsBug then sets the dot address to the address of the (last) long word displayed.

The first column of the display shows the hexadecimal value of the long word; the 
second column shows the unsigned decimal value; the third column shows the signed 
decimal value; and the fourth column shows the ASCII value, as shown in the example 
that follows.

Examples 9
The following example shows the output from the command DL 970, followed by the 
output from pressing Return three times. After the last Return, the dot address is set 
at 97C.

DL 970
{Return}
{Return}
{Return}
Long at 00000970 = $0E436C69    #239299689    #239299689   '•Cli'
Long at 00000974 = $70626F61   #1885499233   #1885499233   'pboa'
Long at 00000978 = $72642046   #1919164486   #1919164486   'rd F'
Long at 0000097C = $696C6520   #1768711456   #1768711456   'ile '
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DM — Display Memory 9

DESCRIPTION

The Display Memory command displays memory starting from the specified address.

SYNTAX

DM [ addr [ nbytes| template | basic type ]  ]

addr specifies the address from which to start displaying memory. If you omit 
this parameter, the DM command starts the display at the dot address.

nbytes is a hexadecimal integer specifying the number of bytes to display. If you 
omit this parameter, the DM command displays 16 bytes.

template specifies the name of a template to use in formatting the display.

basic type specifies the name of a basic type to use in formatting the display.

SEE ALSO

DB, DL, DP, DW

Considerations 9
If you are displaying a low-memory global, you can type its name and MacsBug will 
expand the macro the address. For example:

DM SysResName
Displaying memory from 0AD8
 00000AD8  0653 7973 7465 6D20  2020 2020 2020 2020  •System         

The DM command displays the address at the left, followed by 16 bytes starting at that 
address. It displays the same 16 bytes in ASCII at the extreme right of the display.

Most people find it difficult to make heads or tails of straight hexadecimal code. 
Although ASCII helps, a lot of data isn’t in ASCII code. To help you through the 
hexadecimal maze, MacsBug lets you display memory using predefined templates or 
basic types. Which you use depends on what you are displaying. The basic types are 
defined in Table 9-1.
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Templates are composed of fields defined using the types shown above and other types 
that cannot be used with the DM command but are useful for building templates. You 
can use the basic types to display small chunks or memory or you can use predefined 
templates to display larger structures. 

The TMP command, described in this chapter, lists the names of all the templates that are 
currently defined. For information about creating your own templates, see “Using 
Templates to Display Memory” in Chapter 4.

Example 9
The following example uses the DM command to display information about a window 
record whose address is stored in the WindowList global. WindowRecord is the name of 
the template that formats the display of memory starting at @WindowList.

DM @WindowList WindowRecord

 Displaying WindowRecord at 002191C8
002191D8 portRect #0 #0 #300 #350 
002191E0 visRgn 002190EC -> 00222A20   
002191E4 clipRgn 002190B4 -> 00222A34   
00219234 windowKind 0008 
00219236 visible TRUE 
00219237 hilited TRUE 
00219238 goAwayFlag TRUE 
00219239 spareFlag TRUE 
0021923A strucRgn 002190B0 -> 00222A48   

Table 9-1 Basic memory display types

Type Display

Byte Display in hexadecimal

Word Display in hexadecimal

Long Display in hexadecimal

SignedByte Display in decimal

SignedWord Display in decimal

SignedLong Display in decimal

UnsignedByte Display in decimal

UnsignedWord Display in decimal

UnsignedLong Display in decimal

Boolean Display byte as TRUE (nonzero) or FALSE (0)

pString Display a Pascal string

cString Display a C string (zero-terminated)
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0021923E contRgn 002190AC -> 002192A8   
00219242 updateRgn 002190A8 -> 002192BC   
00219246 windowDefProc 080020D4 -> 20832A5C   
0021924A dataHandle 0021909C -> 002192F4   
0021924E titleHandle 02190A4 -> 002192D0 -> circles 
00219252 titleWidth 002B 
00219254 controlList 00219090 -> 00220B28   
00219258 nextWindow 00219124 -> 
0021925C windowPic NIL 
00219260 refCon 00219088 
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DP — Display Page 9

DESCRIPTION

The Display Page command displays a page (128 bytes) of memory starting from the 
specified address.

SYNTAX

DP [addr ]

addr specifies the address containing the lowest four bytes of memory 
displayed. If you omit this parameter, the DP command displays 
memory starting at the dot address.

SEE ALSO

DB, DL, DM, DW

Considerations 9
After you execute the DP command, MacsBug sets the dot address to the address of the 
first byte displayed. If you press Return, the DP command displays the next 128 bytes 
and sets the dot address to the address of the first byte of the new range.

Example 9
The following example displays memory from address 100:

DP 100

 Displaying memory from 100

  00000100  FFFF 0048 0048 0080  0013 A878 003C 06F0  •••H•H•••••x•<••

  00000110  0037 9B10 0037 9758  0027 C144 0000 2CDC  •7•••7•X•'•D••,•

  00000120  F03E C45A FFFF FFFF  FFFF FFFF 0000 0003  •>•Z••••••••••••

  00000130  0037 975A 0000 2F20  FFFF FFFF FFFF 0000  •7•Z••/ ••••••••

  00000140  0000 0000 FFEF 0000  3964 0000 0000 0000  ••••••••9d••••••

  00000150  0000 0000 0013 0003  0BAC 0604 FFFF FFFF  •••••••••••••••

  00000160  0000 0000 2F24 003A  AF46 0003 3C0A 0003  ••••/$•:•F••<•••

  00000170  0BAD 80FF 0000 0000  0000 0000 0000 0000  •••••••••••••••
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DSC — Discipline 9

DESCRIPTION

The Discipline command turns the Discipline utility on and off. You use Discipline to 
check the validity of the parameters you pass to A-traps and the values returned to your 
applications by the A-traps. 

SYNTAX

DSC[A][X] [ON | OFF ]

A specifies that Discipline only checks A-trap calls made from your 
application.

ON turns Discipline on.

OFF turns Discipline off.

X directs MacsBug to keep the Discipline error report internally and 
continue execution rather than stopping before and after every trap call 
and display Discipline messages.

Considerations 9
You must install Discipline before you can use the DSC command.

Discipline is an invaluable aid to debugging. The fact that it can report errors before they 
can affect other parts of your program and become difficult to find can save you time 
and energy. For information about how to install and use Discipline during program 
development, please see Chapter 6, “Discipline.”

Example 9
The following command turns Discipline on and specifies that Discipline only check 
A-trap calls made from your application:

DSCA ON
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DV — Display Version 9

DESCRIPTION

The Display Version command displays the version of MacsBug currently in use.

SYNTAX

DV

Example 9
DV
 MacsBug version 6.2   
 Copyright Apple Computer, Inc. 1981-1991
  CODE  Leo Baschy, Michael Tibbott, scott douglass
  TEST  Leo Baschy, Keith Nemitz
  BOOK  Joanna Bujes, Bob Anders
  PMGR  Tom Chavez



C H A P T E R  9

MacsBug Commands

244 DW — Display Word

DW — Display Word 9

DESCRIPTION

The Display Word command displays the word at the specified address.

SYNTAX

DW [ addr ]

addr specifies the address of the word you want to display. If you omit this 
parameter, the DW command displays the word at the dot address.

SEE ALSO

DB, DL, DM, DP

Considerations 9
If you press Return, the DW command displays the next word.

The DW command displays the hexadecimal value at the specified address in the first 
column; it displays the unsigned decimal value in the second column, the signed 
decimal value in the third column, and the ASCII value in the fourth column.

The DW command sets the dot address to the address of the last word shown. 

Example 9
The following example shows the output from the DW command, followed by the 
output from pressing Return twice. After the last Return, the dot address is set to 104.

DW
{Return}
{Return}
Word at 00000100 = $FFFF   #65535      #-1   '••'
Word at 00000102 = $0048      #72      #72   '•H'
Word at 00000104 = $0048      #72      #72   '•H'
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DX — Debugger Exchange 9

DESCRIPTION

The Debugger Exchange command allows you to disable user breaks.

SYNTAX

DX [ ON | OFF ]

If you do not specify ON or OFF, the DX command toggles between the two modes

Considerations 9
MacsBug defines two traps, Debugger ($A9FF) and DebugStr ($ABFF), that allow you 
to invoke MacsBug from within your program. The Debugger trap simply invokes 
MacsBug; the DebugStr trap invokes MacsBug, displays a message, and executes any 
commands you have specified. The DX command allows you to disable these user 
breaks. It saves you the work of having to remove the trap calls from your program and 
it allows you to restore them easily whenever you need to.

This command is useful when you have so many user breaks in your program that you 
are continuously dropping into MacsBug. For example, if you have placed a user break 
in a loop and you wish you hadn’t, you can disable it with the DX command without 
having to change and recompile your source program.

Even when user breaks are disabled, messages specified by DebugStr will still be 
displayed; however, MacsBug will ignore commands associated with DebugStr. The DX 
command does not affect breakpoints, exceptions, or other A-traps.

See “Invoking MacsBug From Your Source Program” in Chapter 2 for additional 
information about how to include user breaks in your program.

Example 9
The following command enables user breaks:

DX ON
 User breaks enabled



C H A P T E R  9

MacsBug Commands

246 EA – Exit to Application

EA – Exit to Application 9

DESCRIPTION

The Exit to Application command restarts the application from which MacsBug 
was invoked.

SYNTAX

EA

SEE ALSO

ES

Considerations 9
The EA command has the same effect as returning to the Finder and relaunching the 
application. If you want to return to the application at the point where you left it when 
MacsBug was invoked, use the G (Go) command.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES, 
RS, and RB. For additional information about how to select the appropriate command, 
see Chapter 2, “Getting Started.”

Example 9
EA
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ES — Exit to Shell 9

DESCRIPTION

The Exit to Shell command returns you to the Finder.

SYNTAX

ES

SEE ALSO

EA

Considerations 9
Use the ES command when you are in MacsBug because your application crashed, but 
you don’t think the system as a whole is dead. If you use this command after a crash, 
you should restart soon after because the system might have been damaged.

The ES command might not work with applications that override system traps. The ES 
command executes the ExitToShell trap, which initializes the application heap, usually 
destroying any system patches located there. 

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES, 
RS, and RB. For additional information about how to select the appropriate command, 
see Chapter 2, “Getting Started.”

Example 9
ES
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F — Find 9

DESCRIPTION

The Find command searches for a specified pattern of bytes.

SYNTAX

F[ B | W | L | P ] addr nbytes expr 

or

F addr nbytes expr | "string"

B specifies that the Find command should search for the byte 
value specified by expr.

W specifies that the Find command should search for the word 
value specified by expr.

L specifies that the Find command should search for the long word 
value specified by expr.

P specifies that the Find command should search for the lower 3 bytes 
of expr.

addr specifies the starting point of the range where MacsBug should begin the 
search. MacsBug uses the value of addr + nbytes –1 to determine the end 
point of the range. MacsBug provides a number of standard macros that 
make it easier to specify address ranges.

expr specifies the value to search for.

"string" specifies the string to search for.

Considerations 9
If you use the F command without indicating the length you are looking for (B, W, L, or 
P), MacsBug looks for the smallest unit (Byte, Word, or Long word) that will contain the 
value specified by expr. 

When it has found the pattern you specify, the Find command displays the address 
of the pattern’s first byte, 16 bytes starting at that address, and the same bytes in 
ASCII format. 

To search for the next occurrence of expr or "string", press Return. Once the Find 
command finds the specified pattern, it adds the size of the pattern to the address 
where the pattern begins and sets the dot address to that address. 
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Using the Find Command to Locate References to a Pointer 9

A specific Find command that looks for pointers (FP) is useful because in software 
releases prior to system software version 7.0, applications (and managers) sometimes 
used the high byte of the long word containing an address to pass data. For example, the 
Memory Manager used the high byte of the long word containing the address of a 
relocatable lock to specify whether the block was purgeable, locked, or a resource. This 
means that you cannot use the FL command to find every reference to an address 
because the high byte of the address can change, though the same address is being 
referenced. The FP command allows you to work around this problem by looking only 
for the lower 3 bytes and returning a 4-byte address. 

Macros for the Find Command 9

MacsBug provides a number of standard macros that you can use to specify common 
address ranges for the Find command. Table 9-2 describes these macros.

The variable TargetZone used in the Z Find commands described in Table 9-2 is defined 
as the zone currently selected by the HX command. You can use it with other MacsBug 
commands to indicate a range.

Table 9-2 Macros for the Find command

Macro Description Macro Expansion

RamF
RamFW
RamFL
RamFP

Defines RAM as the address range of 
the Find command.

Example: RamF 'Main'

F 0 BufPtr^
FW 0 BufPtr^
FL 0 BufPtr^
FP 0 BufPtr^

SysF
SysFW
SysFL
SysFP

Defines the System zone as the 
address range of the Find command.

Example: RamFW 1234

F SysZone^ (SysZone^^-SysZone^)
FW SysZone^ (SysZone^^-SysZone^)
FL SysZone^ (SysZone^^-SysZone^)
FP SysZone^ (SysZone^^-SysZone^)

ApF  
ApFW
ApFL
ApFP  

Defines the application zone as the 
address range of the Find command.

Example: ApFP 0032e232

F ApplZone^ (ApplZone^^-ApplZone^)
FW ApplZone^ (ApplZone^^-ApplZone^)
FL ApplZone^ (ApplZone^^-ApplZone^)
FP ApplZone^ (ApplZone^^-ApplZone^)

ZF
ZFW
ZFL
ZFP

Defines the zone selected by the last 
HX command as the address range 
of the Find command.
Example: ZFL 000A232B0  

F TargetZone (TargetZone^-TargetZone)
FW TargetZone (TargetZone^-TargetZone)
FL TargetZone (TargetZone^-TargetZone)
FP TargetZone (TargetZone^-TargetZone)
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Examples 9
This example uses the FP command to search for references to the pointer 022B40 in 
RAM. Note that you could also enter RamFP 022B40.

FP 0 BufPtr^ 022B40

{Return}

{Return}

Searching for xx022B40 from 00000000 to 003C06EF

 0017D14E  7002 2B40 F442 7008  C06B 0012 670E 2F2B  p•+@•Bp••k••g•/+

Searching for xx022B40 from 0017D152 to 003C06EF

 0018081E  0202 2B40 E48A 70FF  2B40 E48E 558F 486D  ••+@••p•+@••U•Hm

This example uses the F command to search for the string "Chapter 9/Commands" in the 
application heap. Note that you could enter ApF "Chapter 9/Commands" instead.

F ApplZone^ (ApplZone^^-ApplZone^) "Chapter 9/Commands"

Searching for "Chapter 9/Commands" from 0027C144 to 00379757

 0027C295  4368 6170 7465 7220  392F 436F 6D6D 616E  Chapter 9/Comman
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G — Go 9

DESCRIPTION

The Go command allows you to leave MacsBug and resume program execution.

SYNTAX

G [ addr ]

addr specifies the address where you want to resume execution of your 
program. If you omit this parameter, MacsBug resumes execution 
at the current program counter.

SEE ALSO

GT, MR

Considerations 9
If you have used any commands to execute your program after invoking MacsBug, the 
Go command (without an address specification) will resume execution of your program 
at the next instruction. If the value of the program counter has not changed since you 
invoked MacsBug, executing the Go command resumes execution at the exact point 
where MacsBug was invoked.

You can use Command-G as an alternate way of entering G. In this case, MacsBug 
ignores any commands in the current command line.

Example 9
G
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GT — Go Till 9

DESCRIPTION

The Go Till command executes your program until the program counter reaches the 
specified address.

SYNTAX

GT addr [ ';cmd [ ;cmd ] ...' ]

addr specifies an address. When the program counter is equal to this address, 
the GT command invokes MacsBug.

cmd specifies a command that MacsBug should execute when the break-
point specified by addr has been reached.

SEE ALSO

G, MR, BRD

Considerations 9
The GT command sets a temporary breakpoint at the specified address and resumes 
execution of your program until the program counter reaches that address. 

The breakpoint specified with the GT command has an entry in the breakpoint table. If 
you enter MacsBug by some other means, this breakpoint remains set and you can see an 
entry for it in the table. For example, if you use the command GT 00A602, invoke 
MacsBug before the instruction at that address is reached, and the use the BRD 
command to display information about break actions, MacsBug would show you the 
following information about the break set with the GT command:

Breakpoint table
    Address   Module name      Cur/Max or Expression  Commands
  t 0000A602 R NEWPROC            once

See the description of the BRD command for an explanation of the display.

When the GT command invokes MacsBug, it also clears the entry in the table. You can 
use the BRC command if you want to remove the breakpoint before reaching the address.

Specifying an address in ROM will cause execution to be slow because MacsBug must 
trace through each instruction until it reaches the breakpoint address. See the BR 
command for additional information.   
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Using the GT Command Within a Procedure 9

If you want to use the GT command to Go till an instruction in the current procedure, 
you can use the GTO standard macro to save yourself some work. The GTO macro 
allows you to specify the address of an instruction in the current procedure as an offset 
from the beginning of the procedure. Thus the command

GTO 18

executes the current procedure until the program counter reaches the instruction that is 
18 bytes from the current procedure and saves you the trouble of entering an address. 
The GTO macro expands to GT :+.

Example 9
The following command invokes MacsBug when the program counter reaches A602 and 
displays the long word to which A7 points:

GT A602 ';DL  A7^'
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HC — Heap Check 9

DESCRIPTION

The Heap Check command tells you whether the information in the heap zone header or 
in any of the block headers in the current heap has been corrupted. If it has, your 
application will crash.

SYNTAX

HC

SEE ALSO

ATHC, HD

Considerations 9
A common cause of damaged block headers is writing past the end of a heap block and 
over the beginning of the next one. HC is a good command to try after any crash, before 
proceeding with more commands.

The HC command checks the consistency of the current heap—that is, the heap set with 
the HX command. You can use the HZ command to determine the current heap: the HZ 
command displays the starting address of all the heaps and labels the current heap as 
TargetZone. See the HZ command for additional information. 

If the HC command returns an error message, you should run your program with ATHC 
on the next time to narrow down the range of calls that might be corrupting your heap. 
See the ATHC command for additional information.

An alternate way of narrowing down the source of heap corruption is to use the 
DebugStr trap with an argument of ';HC;G'.Sprinkle the DebugStr ';HC;G' throughout 
your program. Each time the microprocessor encounters the DebugStr routine, MacsBug 
will do a heap check. If the heap is bad, it will break and report the error. If the heap is 
OK, your program will continue to execute.

HC Error Messages 9

The HC command performs consistency checks by comparing information stored in the 
heap zone header with information stored in the header of each relocatable and 
nonrelocatable block in the heap. The “Memory Manager” chapter in Inside Macintosh, 
Volume II, provides specific detail about the information that is stored in the zone and 
block headers.

The information in the heap zone header and the block header is created and maintained 
by the Memory Manager. But the Memory Manager has no way to prevent your writing 
over information maintained in the zone header or block header. This might happen 
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either because of dangling pointers or handles that cause you to write to the wrong 
location or because you are writing beyond a block’s boundary and into the next block. 
For example, if a block contains an array of n elements and you write to the n+1 element, 
you might be writing into the next block’s header. Thus, although the HC command can 
return fairly specific information in its error messages about what header fields have 
been corrupted, the two most common causes for the inconsistencies it finds are the ones 
described above: bad handles/pointers or writing beyond a block’s boundary and into 
the header of the next block.

Note that all the heap commands check the heap as they execute; if a heap error is 
detected, they cancel the operation and return one of the error messages shown below. 
For additional information about heap zones and heap blocks, see Chapter 4, “Macintosh 
Memory Organization.”

The following list describes the HC error messages and the consistency checks that 
produce them:

■ BkLim does not agree with heap length
Walking through the heap block by block must terminate at the start of the trailer 
block, as defined by the bkLim field of the zone header.

■ Block length is bad
The block header address plus the block length must be less than or equal to the 
trailer block address. Also, the trailer block must be a fixed length.

■ Free bytes in heap do not match zone header
The cbFree field in the zone header must match the total size of all the free blocks in 
the heap.

■ Free master pointer list is bad
Free master pointers in the heap are chained together, starting with the hFstFree field 
in the zone header and terminated by a NIL pointer

■ Master pointer does not point at a block
The master pointer for a relocatable block must point at a block in the heap.

■ Nonrelocatable block: Pointer to zone is bad
Block headers of nonrelocatable blocks must contain a pointer to the zone header.

■ Relative handle is bad
The relative handle in the header of a relocatable block must point to a master pointer.

■ Zone pointer is bad
The zone pointer for the current heap (SysZone, ApplZone, or user address) must be 
even and in RAM. In addition, the bkLim field of the header must be even and in 
RAM, and must point after the header.
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To display the information maintained in the heap zone header, enter the command 

DM ApplZone ^zone
Displaying Zone at 003879E0
 003879E0 bkLim     00484FF4 ->  
 003879E4 purgePtr  00387A14 ->  
 003879E8 hFstFree  003EC5F8 ->  
 003879EC zcbFree   0003A2C4 
 003879F0 gzProc    004CD0DA ->  
 003879F4 moreMast  0040 
 003879F6 flags     0000 
 003879FE heapType  00 
 00387A08 purgeProc NIL 
 00387A0C sparePtr  4080EE4E ->  
 00387A10 allocPtr  003BC418 ->  

Example 9
HC
  The Application heap is ok
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HD — Heap Display 9

DESCRIPTION

The Heap Display command displays information about the blocks in the current heap.

SYNTAX

HD [ qualifier ]

qualifier specifies the kind of block that you want information to be displayed for. 
You can specify one of the following for qualifier:

F Free blocks

N Nonrelocatable blocks

R Relocatable blocks

L Locked blocks

P Purgeable blocks

Q Questionable blocks

RS Resource blocks

type Resource blocks of this type only

If you omit to specify a qualifier, the HD command displays information 
about all blocks in the current heap.

SEE ALSO

HC

Considerations 9
To stop and restart a heap display listing, press Return. To cancel the listing, press the 
Backspace or Delete key.

Before displaying information about the heap blocks, the HD command tells you the 
name of the current heap. At the end of the heap display, the HD command displays a 
message that tells you the number of blocks listed, the total number of bytes used, how 
many of these bytes store data, and how many free or purgeable bytes are left in the 
current heap zone. Free bytes do not necessarily represent memory that can be allocated 
to any one block, since this free space is probably fragmented.
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It is now possible to obtain a full heap dump display even if there is some partial 
damage to block headers. The HD display includes the following special symbols to 
indicate the problem:

■ An exclamation point (!) is placed in the Mastr Ptr column for a non relocatable block 
if the part of the block header containing the pointer to the heap zone has been 
damaged.

■ An exclamation point (!) is placed in front of a relocatable block’s master pointer if the 
address of the master pointer is not in the heap.

■ A question mark (?) is placed in front of a relocatable block’s master pointer if the 
master pointer does not in fact point to the start of the block.

The HD command with Q as a parameter, lists all blocks with partially damaged headers 
as just described. The error messages displayed by the HC command provide the same 
information.

If you request information about resource blocks of a particular resource type, it is not 
necessary to place quotes around the name unless you want MacsBug to distinguish 
between uppercase and lowercase characters.

If the HD command does not find the specified blocks, it displays the message “No 
blocks of this type found.”

Interpreting the Heap Display 9

Each line of the heap display gives information about one heap block. Heap blocks are 
listed in order from the lowest address to the highest address. Table 9-3 describes the 
information provided by the columns of the display.

Table 9-3 Interpreting the HD display 

Column Description

1 A dot specifies that the block cannot move. The block is either 
nonrelocatable or it is a locked relocatable block.

Start Specifies the address of the first byte of the block’s contents.

Length Shows as the addition of two operands. The first operand is the block’s 
logical size; the second operand is the padding added by the Memory 
Manager to meet other requirements. The sum of the operands is the 
block’s physical size.

Tag Indicates whether the block is free (F), nonrelocatable (N), or 
relocatable (R).

Mstr Ptr Specifies the address of the master pointer if the block is relocatable.

Lock Specifies L for locked blocks.

Prg Specifies P for purgeable blocks. 

Type Specifies the resource type name for a resource block.

continued
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If the block for which information is being displayed is in a resource, but MacsBug does 
not know the name of the resource, it displays the message “Resource not found.” This 
might happen because the resource is detached or because the block for which you are 
displaying information is not in the current TargetZone. For additional information 
about heaps and blocks, see Chapter 4, “Macintosh Memory Organization.”

Example 9
In the following example, the HX command sets the System heap as the current 
heap and the HD command displays information for FOND resource blocks in the 
System heap:

HX

The target heap is the System heap

HD FOND

 Displaying the System heap at 00001E00

     Start    Length    Tag  Mstr Ptr Lock Prg   Type    ID  File       Name

00025C54 0000003C+00 R   00001E70         FOND  0000  0002  Chicago

 0002C630 00000924+00 R   00020AD4         FOND  009C  0002  Garamond

 00043944 00000060+00 R   00020AE0       P FOND  0003  0002  Geneva

 00052848 00000902+02 R   00020A84       P FOND  0016  0002  Courier

  #4 blocks listed, which use #4836 bytes, storing #4802 bytes

  There are #220624 free or purgeable bytes in this heap

ID Specifies the resource id number for a resource block.

File Specifies the resource file reference number for a resource block.

Name Specifies the resource name for a resource block if a name has 
been assigned.

Table 9-3 Interpreting the HD display (continued)

Column Description
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HELP — Help 9

DESCRIPTION

The Help command displays information about the given command or section.

SYNTAX

HELP [ cmd | topic  ]

cmd is the name of a MacsBug command or dcmd

topic is one of the topics displayed when you just enter HELP. 

Considerations 9
If you do not specify a command or a topic, the Help command displays a list of topics 
for which it can provide help. If you then press Return, the Help command displays 
information for each topic.

Help information is contained in the 'mxbh' resource, which is approximately 10K in 
size. If you need to conserve space, you can use ResEdit to remove this resource from the 
Debugger Prefs file. This, of course, means that you can no longer access on-line help. Do 
not ever modify this resource, because the Help command expects the information in a 
particular format.

Examples 9
HELP SC
SC6 [addr [nbytes]]
   Show the calling chain based on A6 links. If no addr then the
   chain starts with A6. If addr then the chain starts at addr. If 
   no nbytes then the stack base is CurStackBase. If nbytes then 
   the stack base is addr+nbytes.

HELP LOG
LOG [pathname | Printer]
   Log all MacsBug output to a file or to an ImageWriter printer.
   LOG without parameters turns logging off.

HELP
Return shows sections sequentially. "HELP name" shows that 
section.
 Editing
 Selecting procedure names
 Expressions
 Values
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 Operators
 Flow control
 Breakpoints
 A-Traps
 Disassembly
 Heaps
 Symbols
 Stack
 Memory
 Registers
 Macros
 Miscellaneous 
 dcmds 
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HOW – Display Break Message 9

 DESCRIPTION

The Display Break Message command redisplays the break message that was displayed 
when you initially entered MacsBug.

SYNTAX

HOW

Considerations 9
The HOW command is handy if the original text has scrolled out of sight or if you want 
to record the information to a log file.

If you want to log essential information following the break message, you might want to 
define the following macro and execute it right after MacsBug is invoked:

MC totalhow 'LOG breakinfo; HOW; TD; TF; DM SP 100'

Of course, you can specify your own name for the log file. This might even be a good 
EveryTime macro; for additional information, see “Using Macros” in Chapter 8.

The macro logs the user break message, the contents of all registers, and the first 100 
bytes on the stack when MacsBug was invoked; the listing on the next page shows the 
information MacsBug displays or logs in response to this macro

Example 9
LOG breakinfo; HOW; TD; TF; DM SP 100

User break at A000A5E6

 68030 Registers

  D0 = 00000000      A0 = A000A5E4       USP  = CD3F9E97

  D1 = 00000007      A1 = 0027DE84       MSP  = E149F8FD

  D2 = FFFF457A      A2 = 0027DE84       ISP  = 0037FE74

  D3 = 00000000      A3 = 0027DE84       VBR  = 00000000

  D4 = 0027FFFF      A4 = 0027DA30       CACR = 00002101     SFC = 7

  D5 = 00280000      A5 = 003BFFD8       CAAR = EF9FDFF2     DFC = 7

  D6 = 003BFFD8      A6 = 0037FE84       PC   = A000A5E6

  D7 = 0027C2EC      A7 = 0037FE74       SR   = SmXnzvc      Int = 0

 68881/68882 FPU Registers

  FP0  = 4011 A1F74CA2 339C0EBF         3.31706394800000000e+5

  FP1  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)

  FP2  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)

  FP3  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
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  FP4  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)

  FP5  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)

  FP6  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)

  FP7  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)

         EE MC           CC QT ES AE

  FPCR = 00 00    FPSR = 00 00 02 08    FPIAR = 00000000

 Displaying memory from sp

  0037FE74  4080 F2A4 0002 0944  0000 0001 4080 F18E  @••••••D••••@•••

  0037FE84  0028 3FE0 4080 F1A0  0027 DE84 FFFF 0100  •(?•@••†•'••••••

  0037FE94  0027 DE84 003B 4584  457A 0000 000F 0000  •'•••;E•Ez••••••

.

. {display slightly abbreviated here to save space}

.

  0037FF04  43EF FFFC 2509 250E  4DEA FFFA 94FC 0010  C•••%•%•M•••••••

  0037FF14  4E90 A9F4 003C 0622  DB6D B6DB 6DB6 DB6D  N••••<•"•m••m••m

  0037FF24  B6DB 6DB6 DB6D B6DB  6DB6 DB6D B6DB 6DB6  ••m••m••m••m••m•

  0037FF34  DB6D B6DB 6DB6 DB6D  B6DB 6DB6 DB6D B6DB  •m••m••m••m••m••

  0037FF44  6DB6 DB6D B6DB 6DB6  DB6D B6DB 6DB6 DB6D  m••m••m••m••m••m

  0037FF54  B6DB 6DB6 DB6D B6DB  6DB6 DB6D B6DB 6DB6  ••m••m••m••m••m•

  0037FF64  DB6D B6DB 6DB6 DB6D  B6DB 6DB6 DB6D B6DB  •m••m••m••m••m••

 SP = $0037FE74   #3669620   #3669620   '•7•t'
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HS — Heap Scramble 9

DESCRIPTION

The Heap Scramble command turns heap scrambling on and off. When heap scrambling 
is on, the Memory Manager moves all unlocked relocatable blocks whenever the move 
is legitimate—that is, during every A-trap call that can allocate memory directly 
or indirectly.

SYNTAX

HS [ addr ]

addr specifies the starting address of the heap you want scrambled. If you omit 
this parameter, the HS command scrambles the application heap.

SEE ALSO

HC

Considerations 9
The HS command is very useful in allowing you to determine whether you have any 
dereferenced handles or to find problems that might occur when your program is 
running in very limited memory and the Memory Manager has to move blocks around a 
lot. It’s simple to use; you turn HS on and run your program.

The Memory Manager will move unlocked relocatable blocks when it encounters one of 
the following calls: NewPtr, NewHandle, ReallocHandle, SetPtrSize, or SetHandleSize. 
With the latter two, the heap is scrambled only if the block size is being increased. The 
HS command checks the heap before scrambling. If it is corrupted, MacsBug breaks and 
reports the error. See the HC command for a list of possible errors. MacsBug 
automatically turns heap scrambling off when it detects a bad heap.

Unlike the other heap commands, which take the zone currently set by the HX command 
as the target zone by default, the HS command works on the application heap by default. 
You can scramble the system heap if you specify SysZone for addr.

Example 9
HS
Scrambling heap at 0027C144
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HT — Heap Totals 9

DESCRIPTION

The Heap Totals command displays information about the current heap.

SYNTAX

HT

SEE ALSO

HD

Considerations 9
The HT command displays the following information for the current heap:

■ The total number and size for each type of block (free, relocatable, and nonrelocatable)

■ The number of locked, unlocked, and purgeable blocks

■ Totals for the heap

The HT command displays hexadecimal as well as decimal values for all totals.

The total free space listed by the HT command does not represent all the continguous 
free space available because the heap is probably fragmented. Most heaps are at least a 
bit fragmented. Use the HD command to determine the size of the largest available 
free block.

You can use the HT command to get an overall sense of the contents of your heap. Too 
many locked blocks and too few purgeable blocks might indicate that you need to put 
some time into managing your heap.

Example 9
HT
Totaling the Application heap at 00279FB8
                           Total Blocks    Total of Block Sizes
 Free                      0D1B #3355 00040954  #264532
 Nonrelocatable            000E   #14  00037924  #227620
 Relocatable               00D8  #216  00085368  #545640
   Locked                  0003    #3  0006B73C  #440124
   Purgeable and not locked000C   #12  00002D24  #11556
 Heap size                 0E01 #3585  000FD5E0  #1037792
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HX — Heap Exchange 9

DESCRIPTION

The Heap Exchange command selects the current heap.

SYNTAX

HX [ addr ]

addr specifies the address of a heap zone. If you omit this parameter, the HX
command switches from the application heap to the system heap (in a 
single-application environment) or cycles through the heaps (in a 
multiple-application environment.)

SEE ALSO

HC, HD, HT, HZ

Considerations 9
All the heap commands (except Heap Scramble) work on the heap selected by the HX 
command. When you start MacsBug, the HX command sets the application heap as the 
current heap.

If you are running in a multiple-application environment, use the HZ command to 
determine the addresses of the other heaps. See the section “Heap Management in a 
Multiple-Application Environment” in Chapter 4 for additional information.

Example 9
The following HX command selects the system heap as the current heap. The subsequent 
HZ command labels the system heap as the TargetZone because it has been selected with 
the HX command.

HX
The target heap is the System heap
HZ
 Heap zones
  24  00001E00 to 0006B41F  SysZone^  TargetZone
  24   00001FB8 to 0000248B
  24  0006B420 to 004C40DB
  24   004092C4 to 00482A53  ApplZone^  TheZone^ 
  24   0048A2CC to 004AEFF3
  24   004B62D4 to 004B7BB7
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HZ — Heap Zone 9

DESCRIPTION

The Heap Zone command lists all known heap zones.

SYNTAX

HZ [ addr ]

addr is the starting address of a heap containing embedded heaps.

SEE ALSO

HC, HD, HT, HX

Considerations 9
The Heap Zone command lists the addresses that indicate the starting and ending 
address of each heap. Note that the starting address is the address of the first byte in the 
heap zone header and the ending address is the address of the last byte of the heap zone 
trailer. The HZ command also indicates whether each heap is a 24-bit or 32-bit heap in 
the leftmost column of its display. 

The heap zone display differs depending on whether you are running in a 
single-application or multiple-application environment:

■ If you are running in a single-application environment, the list includes the system 
heap and the application heap.

■ If you are running in a multiple-application environment, the list displayed by the HZ 
command includes the system heap, a private heap within the system heap, the 
Process Manager heap, the current application heap, the Finder heap, and the heap of 
any application running in the background. This order can change with future 
software releases. 

(The Process Manager allocates a locked relocatable block in its heap for each application 
that you launch. The HZ command identifies application heaps by doing a heap check 
on each block in the Process Manager’s heap. If the block passes, it’s assumed to be 
a heap.)

The HZ display identifies embedded heaps by indenting them. For example, in the 
following output, 

Heap zones
  24  00001E00 to 0006B41F  SysZone^
  24   00001FB8 to 0000248B
  24  0006B420 to 004C40DB
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  24   004092C4 to 00482A53  ApplZone^  TheZone^  TargetZone
  24   0048A2CC to 004AEFF3
  24   004B62D4 to 004B7BB7

the heap zone from 00001FB8 to 0000248B is embedded in the system heap; the heap 
zones from 004092C4 to 00482A53, from 0048A2CC to 004AEFF3, and from 004B62D4 to 
004B7BB7 are all embedded in the Process Manager’s heap zone, which starts at 
0006B420 and ends at 004C40DB. All heap zones in this example are 24-bit.

You can use the addr parameter to the HZ command to display the heaps embedded in 
the heap starting at addr. For example: 

HZ 000573B0
 Heap zone 000573B0 and embedded heap zones
  24  000573B0 to 003B69C7
  24   00279FB8 to 003775D7  ApplZone^  TheZone^  TargetZone
  24   0037DFC0 to 003A2CAB
  24   003A9FC8 to 003AB8AF

The HZ command cannot display heap zones stored on the stack, nor does it list heap 
zones that don’t start at the beginning of a heap block.

The HZ command uses two-low memory globals and one MacsBug variable to describe 
the heaps:

■ ApplZone (low-memory global) points to the beginning of the current 
application heap.

■ TheZone (low-memory global) points to the zone currently set by the SetZone routine.

■ TargetZone (MacsBug variable) points to the zone currently set by the MacsBug 
HX command

The HZ command uses one additional MacsBug variable, UserZone, to indicate the heap 
whose address you have last specified as a parameter to the HX command.

For example, given the zones

Heap zones
 24  00001E00 to 0006B41F  SysZone^  TargetZone
 24   00001FB8 to 0000248B
 24  0006B420 to 004C40DB
 24   004092C4 to 00482A53  ApplZone^  TheZone^
 24   0048A2CC to 004AEFF3
 24   004B62D4 to 004B7BB7

If you enter the command

HX 0048A2CC

MacsBug displays this message:

The target heap is the heap at 0048A2CC
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If you now enter the HZ command once more, MacsBug displays the following 
information:

Heap zones
 24   00001E00 to 0006B41F  SysZone^
 24   00001FB8 to 0000248B
 24   0006B420 to 004C40DB
 24   004092C4 to 00482A53  ApplZone^  TheZone^
 24   0048A2CC to 004AEFF3  TargetZone  UserZone
 24   004B62D4 to 004B7BB7

The zone whose address you specified for the HX command is now also identified as 
UserZone. If you were to use the HX command without parameters to cycle through the 
heaps, the heap starting at 0048A2CC would still be identified as the UserZone, simply 
to remind you that this was the heap you were specifically interested in.

For additional information about heaps, see Chapter 4, “Macintosh Memory 
Organization.”

Example 9
The following example shows the output of the HZ command in a single-application 
environment:

HZ
Heap zones
  24   00001E00  SysZone
  24   0002D528  ApplZone  TheZone  TargetZone
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ID — Disassemble One Line 9

DESCRIPTION

The Disassemble One Line command disassembles one line, starting at the 
specified address.

SYNTAX

ID [ addr ]

addr specifies the address containing the first byte to be disassembled. If you 
do not specify addr, the ID command uses the program counter for addr.

SEE ALSO

IL, IP, IR

Considerations 9
If you press Return after executing an ID command, the next line is disassembled. The 
dot address is set to the last address used.

The ID command displays the procedure name (if any) and offset in the first column, 
followed by an address. If MacsBug does not know the procedure name, but the address 
is in a known resource, it displays the type of the resource, the number of the resource, 
the file in which the resource is stored, the name of the resource, and the offset within the 
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C 

The next two fields of the display contain the opcode and operand(s) that make up the 
instruction. An asterisk character (*) before the opcode indicates the instruction pointed 
to by the current program counter. A dot character (.) before the opcode indicates that a 
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR, 
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The 
last field shows the actual hexadecimal words of the instruction. If the instruction 
contains too many words, an ellipsis (...) is displayed. Note that you can only see this last 
field on larger screens. You can, however, always see the field by sending the output to a 
file or printer with the LOG command.

The IL, IP, and IR commands allow you to disassemble larger chunks of code.

For additional information about reading disassembled code, see Chapter 3, “An 
Assembly-Language Primer.”
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Examples 9
ID PC
Disassembling from pc
 DOSCROLL

+0000 2187F8 *LINK A6,#$FFE4 | 4E56 FFE4

ID DOSCROLL + 6
Disassembling from doscroll + 6
 DOSCROLL

+0006 2187FE MOVEA.L $000A(A6),A0 | 206E 000A
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IL — Disassemble From Address 9

DESCRIPTION

The Disassemble From Address command disassembles as many lines as you like 
starting from an address you specify.

SYNTAX

IL [ addr [ n ] ]

addr specifies the address containing the first byte you want disassembled. 
If you do not specify addr, the IL command uses the value of the 
program counter. 

n is a hexadecimal integer specifying the number of lines you want 
disassembled. If you omit this parameter, the IL command disassembles 
a half-page (64 bytes) of code.

SEE ALSO

ID, IP, IR

Considerations 9
Pressing Return disassembles the next n lines if you specified n. If you did not, the IL 
command disassembles the next half page (64 bytes) of code. The IL command sets the 
dot address to the last address used.

The IL command is the same as the IP command, except the disassembly starts at the 
address you enter, rather than being centered around that address.

The IL command displays the procedure name (if any) and offset in the first column, 
followed by an address. If MacsBug does not know the procedure name, but the address 
is in a known resource, it displays the type of the resource, the number of the resource, 
the file in which the resource is stored, the name of the resource, and the offset within the 
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C 

The next two fields of the display contain the opcode and operand(s) that make up the 
instruction. An asterisk character (*) before the opcode indicates the instruction pointed 
to by the current program counter. A dot character (.) before the opcode indicates that a 
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR, 
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The 
last field shows the actual hexadecimal words of the instruction. If the instruction 
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contains too many words, an ellipsis (...) is displayed. Note that you can only see this last 
field on larger screens. You can, however, always see the field by sending the output to a 
file or printer with the LOG command.

For additional information about reading disassembled code, see Chapter 3, “An 
Assembly-Language Primer.”

Example 9
The following IL command disassembles 10 lines starting at the starting address of the 
DOSCROLL procedure:

IL  DOSCROLL 10

Disassembling from doscroll

 DOSCROLL

 +0000 2187F8 *LINK    A6,#$FFE4                   | 4E56 FFE4

 +0004 2187FC  MOVE.L  A4,-(A7)                    | 2F0C

 +0006 2187FE  MOVEA.L $000A(A6),A0                | 206E 000A

 +000A 218802  MOVE.L  A0,D0                       | 2008

 +000C 218804  BNE.S   DOSCROLL+0010     ; 00218808| 6602

 +000E 218806  TRAP    #$0                         | 4E40

 +0010 218808  LEA     $0010(A0),A0                | 41E8 0010

 +0014 21880C  LEA     -$001C(A6),A1               | 43EE FFE4

 +0018 218810  MOVE.L  (A0)+,(A1)+                 | 22D8

 +001A 218812  MOVE.L  (A0)+,(A1)+                 | 22D8

 +001C 218814  MOVE.W  -$0016(A6),D0               | 302E FFEA

 +0020 218818  ADDI.W  #$FFF1,D0                   | 0640 FFF1

 +0024 21881C  TRAPV                            |4E76

 +0026 21881E  MOVE.W  D0,-$0016(A6)               | 3D40 FFEA

 +002A 218822  MOVE.W  -$0018(A6),D0               | 302E FFE8
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IP — Disassemble Around Address 9

DESCRIPTION

The Disassemble Around Address command disassembles a half page (64 bytes) 
centered around the specified address.

SYNTAX

IP [ addr  ] 

addr specifies the address around which instructions should be disassembled. 
If you omit this parameter, the IP command uses the value of the 
program counter.

SEE ALSO

ID, IL, IR

Considerations 9
Pressing Return disassembles the next half page (64 bytes) of code. The dot address is set 
to the first address displayed.

The IP command displays the procedure name (if any) and offset in the first column, 
followed by an address. If MacsBug does not know the procedure name, but the address 
is in a known resource, it displays the type of the resource, the number of the resource, 
the file in which the resource is stored, the name of the resource, and the offset within the 
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C 

The next two fields of the display contain the opcode and operand(s) that make up the 
instruction. An asterisk character (*) before the opcode indicates the instruction pointed 
to by the current program counter. A dot character (.) before the opcode indicates that a 
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR, 
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The 
last field shows the actual hexadecimal words of the instruction. If the instruction 
contains too many words, an ellipsis (...) is displayed. Note that you can only see this last 
field on larger screens. You can, however, always see the field by sending the output to a 
file or printer with the LOG command.

For additional information about reading disassembled code, see Chapter 3, “An 
Assembly-Language Primer.”
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Example 9

In this example, the disassembly takes place around the instruction pointed to by the 
program counter: LINK A6, #$FFE4.

IP PC

DOCIRCLE

+00CA 2187DE  _StillDown                ; A973     | A973

+00CC 2187E0   TST.B    (A7)+                         | 4A1F

+00CE 2187E2   BNE      DOCIRCLE+0014 ; 00218728 | 6600 FF44

+00D2 2187E6   MOVEA.L  (A7)+,A4                      | 285F

+00D4 2187E8   UNLK     A6                            | 4E5E

+00D6 2187EA   MOVEA.L  (A7)+,A0                      | 205F

+00D8 2187EC   ADDQ.W   #$8,A7                        | 504F

+00DA 2187EE   JMP      (A0)                          | 4ED0

DOSCROLL

+0000 2187F8   *LINK     A6,#$FFE4                     | 4E56 FFE4

+0004 2187FC   MOVE.L   A4,-(A7)                      | 2F0C

+0006 2187FE   MOVEA.L  $000A(A6),A0                  | 206E 000A

+000A 218802   MOVE.L   A0,D0                         | 2008

+000C 218804   BNE.S    DOSCROLL+0010 ; 00218808 | 6602

+000E 218806   TRAP     #$0                           | 4E40

+0010 218808   LEA      $0010(A0),A0                  | 41E8 0010

+0014 21880C   LEA      -$001C(A6),A1                 | 43EE FFE4

+0018 218810   MOVE.L   A0)+,(A1)+                   | 22D8

+001A 218812   MOVE.L   A0)+,(A1)+                   | 22D8

+001C 218814   MOVE.W   $0016(A6),D0                 | 302E FFEA
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IR — Disassemble Until End of Procedure  9

DESCRIPTION

The Disassemble Until End of Procedure command disassembles code from the 
address you specify until the end of the procedure containing the instruction at the 
specified address.

SYNTAX

IR [ addr ]

addr specifies the address when you wand disassembly to begin. If you omit 
this parameter, the IR command uses the value of the program counter.

SEE ALSO

ID, IL, IP

Considerations 9
The IR command assumes that the instruction beginning at the specified address is part 
of a procedure. The dot address is set to the specified address.

If the routine is longer than a full screen, MacsBug prompts you to press Return to 
display the next screen. The IR command is similar to the IL command, except that the 
IR command stops at the end of the routine.

The IR command displays the procedure name (if any) and offset in the first column, 
followed by an address. If MacsBug does not know the procedure name, but the address 
is in a known resource, it displays the type of the resource, the number of the resource, 
the file in which the resource is stored, the name of the resource, and the offset within the 
resource where the instruction is found; for example:

'CODE 0007 0294 Init'+0A3C  

The next two fields of the display contain the opcode and operand(s) that make up the 
instruction. An asterisk character (*) before the opcode indicates the instruction pointed 
to by the current program counter. A dot character (.) before the opcode indicates that a 
breakpoint is set at that instruction.

The comment field, the field preceded by the semicolon (;), gives the target of a JMP, JSR, 
or BSR instruction, the trap number of a trap, or the ASCII value of a DC statement. The 
last field shows the actual hexadecimal words of the instruction. If the instruction 
contains too many words, an ellipsis (...) is displayed. Note that you can only see this last 
field on larger screens. You can, however, always see the field by sending the output to a 
file or printer with the LOG command.
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For additional information about reading disassembled code, see Chapter 3, “An 
Assembly-Language Primer.”

Example 9

In the following example, the IR command is used to disassemble a routine that sets 
up menus.

IR DOSETUPMENUS

DOSETUPM

+0000  2186B2 LINK     A6,#$FFE0 | 4E56 FFE0

+0004  2186B6 SUBQ.W     #$4,A7 | 594F

+0006  2186B8 MOVE.W     #$1389,-(A7) | 3F3C 1389

+000A  2186BC _GetRMenu                 ; A9BF | A9BF

+000C  2186BE MOVE.L     (A7)+,-$0020(A6) | 2D5F FFE0

+0010  2186C2 SUBQ.W     #$4,A7 | 594F

+0012  2186C4 MOVE.W     #$138A,-(A7) | 3F3C 138A

.

. {part of output deleted to save space}

.

+002E  2186E0 _GetRMenu                 ; A9BF | A9BF

+0030  2186E2 MOVE.L     (A7)+,-$0014(A6) | 2D5F FFEC

+0034  2186E MOVE.L     -$0020(A6),-(A7) | 2F2E FFE0

+0038  2186EA CLR.W     -(A7) | 4267

+003A  2186EC _InsertMenu                 ; A935 | A935

+003C  2186EE MOVE.     -$001C(A6),-(A7) | 2F2E FFE4

+0040  2186F2 CLR.W     -(A7) | 4267

+0042  2186F4 _InsertMenu                 ; A935 | A935

+0044  2186F6 MOVE.L     -$0018(A6),-(A7) | 2F2E FFE8

+0048  2186FA CLR.W     -(A7) | 4267

+004A  2186FC _InsertMenu                 ; A935 | A935

+004C  2186FE MOVE.L     -$0014(A6),-(A7) | 2F2E FFEC

+0050  218702 CLR.W     -(A7) | 4267

+0052  218704 _InsertMenu                 ; A935 | A935

+0054  218706 _DrawMenuBar                 ; A937 | A937

+0056  218708 UNLK     A6 | 4E5E

+0058  21870A RTS | 4E75
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LOG — Log to a Printer or File 9

DESCRIPTION

The Log to a Printer or File command sends MacsBug output to the specified text file or 
to an ImageWriter via the serial port.

SYNTAX

LOG [ pathname | Printer ]

pathname specifies a partial pathname: filename, diskname:filename, or a full 
pathname: diskname:foldername:filename. If you specify filename, MacsBug 
opens the file in the current directory.

Printer specifies that you want output to be sent to an ImageWriter. The LOG 
command does not work with the LaserWriter driver, so you can’t send 
MacsBug output directly to a LaserWriter. Instead, you can send it to a file 
and then print it on a LaserWriter.

Considerations 9
You do not have to enclose pathname in quotes even though it includes colons, which 
normally specify the beginning of the current procedure in MacsBug. However, if you 
use the MC (Macro Create) command to use a macro name for a path name, you must 
enclose the pathname in quotes. See the MC command for additional information.

If the file you specify does not already exist, MacsBug creates the file as an MPW text 
file, which you can open from word-processing applications as well as from MPW. 
If the specified file already exists and is of type TEXT, the LOG command appends 
MacsBug output to the existing file.

If you log to a file while MPW Pascal is running, or while an application is running in a 
multiple-application environment, be aware that the log file will be closed when you 
leave MPW or quit the application. However, if you have not quit the application, you 
must close the file from MacsBug using the LOG command before you can open it and 
examine its contents.

You cannot log to more than one file. To turn logging off, enter LOG with no parameters.

MacsBug, by design, uses as little of the system as possible; the LOG command violates 
this design criterion. Logging may not work, depending on the state of the file system 
during your debugging session. In general, you should observe the following restrictions:

■ Do not log to file server volumes. 

■ Because logging enables interrupts briefly while executing its low-level calls, if your 
program depends on interrupts being completely disabled, you should not use the 
LOG command.

You cannot log output to an ImageWriter if you are working with MacsBug under A/UX. 
However, you can still log to a file and then print the file.
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Examples 9
LOG ATHENA:MACSBUG:FIRSTLOG

Logging to ATHENA:MACSBUG:FIRSTLOG

LOG

Closing log
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MC — Macro Create 9

DESCRIPTION

The Macro Create command creates a new macro with the given name that expands to 
the expression you specify.

SYNTAX

MC name 'expr' | expr

name specifies the name of the macro. The names FirstTime and EveryTime are 
reserved as are the names of MacsBug commands and the standard macro 
names defined by the 'mxbm' resources 100, 101, and 102.

expr specifies the expression that the macro expands to. If you specify expr, it is 
evaluated when you create the macro and that value is substituted for 
name every time you use the macro. If you specify 'expr', it is evaluated 
every time you use the macro.

SEE ALSO

MCC, MCD

Considerations 9
A macro can contain anything you can type in a command line. You can use macros to 
contain command name aliases, reference global variables, and name common 
expressions.

This MC command defines a command name alias:

MC SelectHeap HX

This MC command names an expression:

MC ReturnAdrs A6 + 4

If you use the MC command to define an alias for a pathname, you must enclose the 
pathname in quotes when you define the macro because MacsBug is confused by the 
colons in the pathname. For example:

MC mylog 'Athena:MacsBug:Newlog'

If you now use the command LOG mylog, MacsBug creates the file Newlog in the 
MacsBug folder on the disk Athena and logs MacsBug output to it.

MacsBug expands all macros before it executes the command line. This means that you 
cannot define a macro and reference it on the same line, because the reference will be 
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undefined at the time the macro is expanded. For this reason the following command 
line will generate an error; MacsBug tries to expand Save before executing the MC 
command that defines it.

MC Save CurrentA5; SL CurrentA5 Save

Using Macros to Save Values 9

Macros give you a quick way to save values. For instance, you can enter

MC save PC

to save the contents of the program counter; then, you can enter

PC = save

to restore the contents. Note that this technique does not work with floating-
point registers.

The macros you create using the MC command are only good until you shut down your 
Macintosh. You can create permanent macros using the 'mxbm' resource. The 'mxbm' 
resource also defines the macro FirstTime, which allows you to execute the commands 
you specify immediately after loading MacsBug, and the macro EveryTime, which 
allows you to define other commands that execute each time except the first time 
MacsBug is invoked. For additional information about how to create these macros using 
the 'mxbm' resource, see “Using Macros” in Chapter 8.

Use the MCC command to clear a macro. Use the MCD command to display all macros 
that match the current name. This command is handy if you want to know whether 
you’re redefining an existing macro.

Examples 9
MacsBug recalculates the value for this macro each time you use it:

MC quick 'D0+D1*3'
Macro quick will expand to 'D0+D1*3'

MacsBug calculates the value for this macro when it is defined:

MC quicker D0 + D1 * 3
Macro quicker will expand to '00000015'
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MCC — Macro Clear 9

DESCRIPTION

The Macro Clear command clears the specified macro or all macros.

SYNTAX

MCC [ name ]

name specifies the name of the macro to be cleared. If you omit this parameter, 
the MCC command clears all macros.

SEE ALSO

MC, MCD

Example 9
The following command clears the macro named “quick”:

MCC quick
quick cleared
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MCD — Macro Display 9

DESCRIPTION

The Macro Display command displays the specified macro or all macros whose names 
begin with the specified characters.

SYNTAX

MCD [ name ]

name specifies part of or a complete macro name. If you omit this parameter, 
the MCD command displays all currently defined macros. 

SEE ALSO

MC, MCC

Considerations 9
The MCD command displays all macros, whether they were defined using the 'mxbm' 
resource or the MC command.

The MCD command displays two columns: the first column lists the macro name; the 
second column contains the macro expansion (expr).

If you specify a series of characters for name, the MCD command lists all macros 
beginning with those characters. Thus, the MCD command is useful in telling you 
whether a macro name is already defined.

Use the MCC command to clear a macro. For additional information about macros, see 
“Using Macros” in Chapter 8.

Example 9
MCD apf
Macro table
 Name                    Expansion
 ApF                     F ApplZone^ (ApplZone^^-ApplZone^)
 ApFW                    FW ApplZone^ (ApplZone^^-ApplZone^)
 ApFL                    FL ApplZone^ (ApplZone^^-ApplZone^)
 ApFP                    FP ApplZone^ (ApplZone^^-ApplZone^)
 ApFontID                0984
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MR — Magic Return 9

DESCRIPTION

If you have accidentally stepped into a JSR, BSR, or trap call that you meant to step over, 
executing the Magic Return command before executing any of the subroutine or trap 
code will execute the equivalent of a GT (Go Till) command to the instruction 
immediately after the subroutine or A-trap call.

SYNTAX

MR [ param  ] 

param is an integer used by the MR command to find the address where the 
return address is stored. 

SEE ALSO

G, GT

Considerations 9
The MR command sets a temporary breakpoint at the first instruction after the call to the 
current procedure. It does this by replacing the return address on the stack with a 
MacsBug address. When the procedure returns, MacsBug gets control. It then performs 
an RTS in trace mode, breaking at the instruction after the call. The param value that 
you specify helps the MR command figure out where the return address is stored on 
the stack.

The param value you specify to the MR command depends on how far you’ve 
stepped into the procedure and whether your compiler uses the A6 register as a 
stack frame pointer:

■ If the program counter points to the LINK instruction or what is otherwise the first 
instruction of the subroutine, enter MR with no parameters. In this case the return 
address is assumed to be stored on the top of the stack. 

■ If the program counter points after the first instruction and your compiler uses A6 as 
the stack frame pointer, you should specify A6 as the parameter to the MR command. 
For example

MR  A6

If you do, the MR command looks for the return address at A6 + 4.

■ If the program counter points after the first instruction and you are not using A6 as 
the stack frame pointer, then presumably you know where you’re storing the return 
address and you can specify this address as an offset from A7. Thus, if you enter

MR 8

the MR command will look for the return address at A7 + 8.
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■ If the program counter points after the first instruction of a nested procedure, entering 
MR A6^ will set a breakpoint at the first instruction following the procedure that 
called your procedure.

Using the MR Command to Display Function Results 9

You can display the result of a function every time it’s called by entering the command

BR functionname ' ; MR ; DW  SP '

Whenever the breakpoint is reached, MacsBug executes the MR command and displays 
the top word on the stack (the function result). For functions that return long words, you 
should use the command

BR functionname ' ; MR ; DL  SP '

For functions that return pointers, you could dereference the pointer and display the 
structure using a template; for example:

BR functionname ' ; MR ; DM SP^ templatename '  

MR Error Messages 9

MacsBug checks to see that the address determined from the specified param value is a 
valid stack address and that it is a valid return address.

If the address is not in the range between A7 and CurStackBase^, MacsBug displays the 
message “This address is not a stack address.”

If the address does not immediately follow a JSR, BSR, or A-trap instruction, MacsBug 
returns the message “The address on the stack is not a return address.”

Example 9
In the following example, the USERBRK procedure is disassembled to show you that the 
program counter points after the first LINK instruction. That is, you’ve already stepped 
into the procedure.

USERBRK
+0000  0041ADCA  LINK A6,#$FFF8 | 4E56 FFF8
+0004  0041ADCE  _Debugger ; A9FF | A9FF
+0006  0041ADD0  *NOP | 4E71
+0008  0041ADD2  PEA -$0008(A6) | 486E FFF8
+000C  0041ADD6  _GetPort ; A874 | A874
+000E  0041ADD8  CLR.L -(A7) | 42A7
+0010  0041ADDA  JSR *+$0408 ; 0041B1E2 | 4EBA 0406
+0014  0041ADDE  MOVE.L (A7)+,D0 | 201F
+0016  0041ADE0  MOVE.L D0,-$0004(A6) | 2D40 FFFC
+001A  0041ADE4  UNLK A6 | 4E5E
+001C  0041ADE6  RTS | 4E75
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If you now enter the command MR A6, MacsBug displays a message that tells you where 
it set the temporary breakpoint:

Breakpoint at DOCMD+0114

After disassembling the DOCMD procedure, you’ll find that the program counter points 
to the first instruction after the call to the USERBREAK procedure—just what you expect 
the MR command to accomplish.

Disassembling from 0041AD70

 DOCMD

   +00F6  0041AD70   DC.W       $FFFC ; ???? | FFFC

   +00F8  0041AD72   JSR        $003A(A5) | 4EAD 003A

   +00FC  0041AD76   ORI.B      #$07,D1 | 0001 0007

   +0100  0041AD7A   ORI.W      #$000E,D0 | 0040 000E

   +0104  0041AD7E   ORI.B      #$10,CCR | 003C 0010

   +0108  0041AD82   ORI.B      #$18,(A4) | 0014 0018

   +010C  0041AD86   ORI.B      #$2E,(A4)+ ; '.' | 001C 002E

   +0110  0041AD8A   JSR        USERBRK ; 0041ADCA | 4EBA 003E

   +0114  0041AD8E  *BRA.S      DOCMD+0140 ; 0041ADBA | 602A

   +0116  0041AD90   JSR        SHOWATRA ; 0041ADF0 | 4EBA 005E

   +011A  0041AD94   BRA.S      DOCMD+0140 ; 0041ADBA | 6024
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RAD — Toggle Register Name Syntax 9

DESCRIPTION

The Toggle Register Name Syntax command allows you to specify the address and data 
registers in two different ways.

SYNTAX

RAD

SEE ALSO

Registers

Considerations 9
By default, MacsBug expects the actual Motorola names for the address and data 
registers. So, if you want to enter a register on the command line, for example

DM D0

you just type the name of the register. But D0 is also a valid hexadecimal number; if you 
want to enter the hex number, you must put a dollar sign in front of it; for example:

DM D0 + $D0

The RAD command allows you to select a naming convention that interprets D0 as a 
hexadecimal number. When this convention is in effect, you must put R in front of the 
register name to let MacsBug know you mean the register; for example:

DM RDO + D0

Examples 9
RAD
An and Dn numbers enabled

RAD
An and Dn numbers disabled
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RB — Reboot  9

DESCRIPTION

The Reboot command restarts the system. It unmounts the startup volume 
before restarting.

SYNTAX

RB

SEE ALSO

RS

Considerations 9
For additional information about what unmounting does, see the description of the 
UnmountVol routine in “The File Manager” chapter of Inside Macintosh, Volumes II 
and IV.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES, 
RS, and RB. For additional information about how to select the appropriate command, 
see Chapter 2, “Getting Started.”

Example 9
RB
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Registers 9

DESCRIPTION

The Registers command allows you to display the value of a register or assign a value to 
a register.

SYNTAX

registerName [ = expr | := expr ]

registerName specifies the name of a 68000, 68020, 68030/68851, or 68881 register. By 
default, MacsBug uses the Motorola names for all registers. However, you 
might prefer to use an alternate syntax. See the description of the RAD 
command for additional information.

expr is an expression whose value is assigned to the specified register. If you 
omit this parameter, the Registers command displays the current value of 
the specified register.

SEE ALSO

RAD

Considerations 9
Table 9-4 lists all registers and their names.

Table 9-4 Register names 

Microprocessor Name Function

68000 Dn
An
PC
SR
SP
SSP

Data register n
Address register n
Program counter
Status register
Stack pointer
Supervisor stack pointer

68020 ISP
MSP
VBR
SFC
DFC
CACR
CAAR

Interrupt stack pointer
Master stack pointer
Vector base register
Source function code register
Destination function code register
Cache control register
Cache address register

continued
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Examples 9
The following examples show the information MacsBug displays when you enter 
various register names:

D7
D7 = $0027C2EC   #2605804   #2605804   '•'••'

FPSR
FPSR = $00000000   #0   #0   '••••'

SP
SP = $0037FE9C   #3669660   #3669660   '•7••'

SSP
SSP = $E149F8FD   #3779721469   #-515245827   '•I••'

MSP
MSP = $E149F8FD   #3779721469   #-515245827   '•I••'

CACR
CACR = $00002101   #8449   #8449   '••!•'

68030/68851 CRP
SRP
TC
PSR

CPU root pointer
Supervisor root pointer
Translation control register
PMMU status register

68881 FPn
FPCR
FPSR
FPIAR

Floating-point data register n
Floating-point control register
Floating-point status register
Floating-point instruction address register

Table 9-4 Register names (continued)

Microprocessor Name Function
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RN — Set Reference Number 9

DESCRIPTION

The Set Reference Number command restricts symbol references to the specified file.

SYNTAX

RN [ expr ]

expr evaluates to a hexadecimal integer that specifies the file’s reference 
number. If you omit this parameter, the RN command uses the reference 
number of the current file, contained in the global variable CurMap.

SEE ALSO

SX

Considerations 9
You can use the HD command to find out the reference number of a file. Once you’ve 
specified a reference number with the RN command, subsequent symbol references are 
restricted to the file with the specified reference number.

Specifying 0 for expr restores the default situation where all symbols match.

The RN command is useful when you’re dealing with multiple files that contain the 
same symbol names. When you’re working with MPW tools, for instance, there might be 
multiple code segments with the same name.

Examples 9
In the following two examples, the RN command first restricts symbol references to file 
0294 and then restores the default condition:

RN 0294
Only symbols with a file ref num of 0294 will be shown

RN 0
All symbols will be shown
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RS — Restart  9

DESCRIPTION

The Restart command unmounts all volumes and restarts the Macintosh.

SYNTAX

RS

SEE ALSO

RB

Considerations 9
See the description of the UnmountVol routine in “The File Manager” chapter of Inside 
Macintosh, Volumes II and IV, for additional information about unmounting.

MacsBug defines a number of commands that allow you to leave MacsBug: G, EA, ES, 
RS, and RB. For additional information about how to select the appropriate command, 
see Chapter 2, “Getting Started.”

Example 9
RS
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S — Step 9

DESCRIPTION

The Step command either steps through the specified number of instructions, or traces 
through your program until the specified condition is met.

SYNTAX

S [ n | expr  ]

n is a hexadecimal integer specifying the number of instructions that you 
want to step through.

expr specifies that the microprocessor step through instructions until the 
condition specified by expr is met.

SEE ALSO

SO

Considerations 9
If you do not specify a parameter, the S command simply steps through the next 
instruction. In this case, you can also use Command-S to specify the S command. If 
you use Command-S, MacsBug ignores any commands in the command line. 

The S command traces into subroutine or A-trap calls when these are encountered. If you 
want to step over subroutine or A-trap calls, use the SO command. If you have 
unwittingly stepped into a subroutine or A-trap and want to get out, use the MR 
command. See the description of the MR command for additional information.

If you find you have entered a parameter to the S command that cannot be satisfied, use 
the ES command to terminate the tracing.

If the S command encounters a breakpoint while it is tracing through instructions, the 
break into MacsBug terminates the S command.

Note

Stepping through certain MMU instructions can cause MacsBug to hang. 
If you’re doing MMU programming, be aware that MacsBug executes 
many instructions while executing an S command and expects a valid 
memory map. ◆

For additional information about tracing, see “Using MacsBug to Control Program 
Execution” in Chapter 7.
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Example 9
The following example uses the S command to trace through five instructions:

S 5
Step (into)

_SubPt
+001C 81E74A RTS | 4E75

_GetMouse
+0012 80F140 MOVE.L (A7)+,(A7) | 2E9F
+0014 80F142 RTS | 4E75
+01B8 80F2E6 MOVEM.L (A7)+,D3/A3 | 4CDF 0808
+01BC 80F2EA UNLK A6 | 4E5E
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SB — Set Byte 9

DESCRIPTION

The Set Byte command assigns a value to bytes, starting at the specified address.

SYNTAX

SB addr value [ value ] ...

addr specifies the address where the SB command starts assigning the specified 
value to bytes.

value specifies either an expression or a string. The string must be enclosed in 
single quotes. 

SEE ALSO

SL, SW

Considerations 9
If you specify an expression for value, the low-order byte of its value is used. 

If you specify a string for value, the characters are placed in successive bytes. The string 
length is limited only by the length of the command line.

The SB command sets the dot command to the first byte set. If you press Return after 
executing an SB command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or 
SM) without causing damage, use the HD command to find out the starting address of a 
free block in the heap and then use that address as the addr parameter to the command. 
Be careful not to write beyond the boundary of the block. Even if the next block is free, 
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified 
the wrong address after executing a command that sets memory, it 
might be safest to use the RS or RB command and start over. ▲
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Examples 9
In the following examples, the SB command sets memory at the specified address, then 
pressing the Return key displays memory at that address:

SB 002B04F8 'new memory'

{Return}

Memory set starting at 002B04F8

  002B04F8  6E65 7720 6D65 6D6F  7279 0000 0000 000C  new memory••••••

SB 002B04F8 1 222 3333

{Return}

Memory set starting at 002B04F8

  002B04F8  0122 3333 6D65 6D6F  7279 0000 0000 000C  •"33memory••••••
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SC6 — Stack Crawl (A6) 9

DESCRIPTION

The Stack Crawl (A6) command lists stack frame information from the oldest to the most 
current stack frame on the stack. You can use SC as an alias for SC6.

SYNTAX

SC6 [ addr [ nbytes ]]

addr specifies the current frame address. If you omit this parameter, the SC6 
command uses A6 for addr.

nbytes addr + nbytes specifies the upper limit of the range. If you omit this 
parameter, SC6 uses CurStackBase^ for the upper limit.

SEE ALSO

SC7

Considerations 9
Information on the stack is normally arranged in units called stack frames. The use of 
stack frames allows the compiler to generate instructions that reference everything a 
routine creates and manipulates relative to one address, stored in register A6. The use of 
stack frames also allows MacsBug to determine the calling chain when one procedure 
calls another. Knowing what the calling chain is can be very useful when you’re tracking 
down a bug.

By using the optional parameters, you can display the calling chain for a private 
stack where the top of the stack is specified by addr and the stack base is specified by 
addr + nbytes.

Although most C and Pascal compilers use register A6 as the frame pointer, register A6 
is not often used as the frame pointer in assembly language or in ROM. Thus, it is not 
uncommon for SC6 to fail. But you should always try SC6 after a crash; it’s an enormous 
help if it works. If SC6 fails, try the SC7 command.

The following listing shows sample output for the SC6 command:

SC6
Calling chain using A6 links

A6 Frame Caller
0027BB5C 00218DC6 CONVERSI+0016
0027BB54 00218D2A DOMAINEV+003A
0027BB0A 00218B72 DOCLICK+0038
0027BAC4 00218AB6 DOMENUDI+002C
0027BA98 003B418A
0027B93C 0080F19E _GetMouse+0070
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The first row describes the oldest stack frame (procedure); the last row describes the 
newest stack frame (procedure). You can interpret the information in this listing 
as follows: 

1. At address 00218DC6 the procedure CONVERSI stored an instruction (JSR or BSR) 
that called the DOMAINEV procedure. 

2. At address 00218D2A the procedure DOMAINEV stored an instruction that called the 
DOCLICK procedure. 

3. At address 00218AB6 the procedure DOMENUDI stored an instruction that called an 
unnamed procedure. 

4. At address 003B418A an unnamed procedure stored an instruction that called the 
GetMouse trap. 

The value of A6 when each of the calling procedures is current is listed in the 
first column.

If MacsBug does not know the procedure name, but the address is in a known resource, 
it displays the type of the resource, the number of the resource, the file in which the 
resource is stored, the name of the resource, and the offset within the resource where the 
instruction is found; for example:

 Calling chain using A6 links
  A6 Frame   Caller
  top level 0040C910 'CODE 0001 0294 Main'+34FC
  00488A40  0040B588 'CODE 0001 0294 Main'+2174
  004889E0  0040A5C6 'CODE 0001 0294 Main'+11B2
  004888A6  0041CEB4 'CODE 0007 0294 Init'+0A3C
  00488866  004BD190
  00488832  00813C68 _DialogSelect+007C
  00488788  004BF22A
  00488770  004BF422
  00488736  0003FF5C
  004886F2  0080F19E _GetMouse+0070

For additional information on stack frames, please see “Stack Frames” in Chapter 4.

SC6 Error Messages 9

The following conditions have to be met for the SC6 command to work:

■ Register A6 or the specified addr is the address of a frame on the stack and it points 
within the range defined by register A7 and CurStackBase^. If this is not the case, the 
SC6 command returns the message “A6 does not point to a stack frame.”

■ The SC6 command makes similar assumptions about the optional parameters you 
supply. If this is not the case, MacsBug displays the message “Bad stack: stack pointer 
must be even and <= stack base.”

■ Register A7 must be even and point to the top of the stack; it must also be smaller 
than or equal to CurStackBase^. If either of these conditions is not met, the SC6 
command displays the message “Damaged stack: A7 must be even and <= 
CurStackBase.”
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Example 9
SC6
Calling chain using A6 links

A6 Frame Caller
0027BB5C 00218DC6 CONVERSI+0016
0027BB54 00218D2A DOMAINEV+003A
0027BB0A 00218B72 DOCLICK+0038
0027BAC4 00218AB6 DOMENUDI+002C
0027BA98 003B418A
0027B93C 0080F19E _GetMouse+0070

The partial disassemblies on the next page show how calls are actually made, starting 
with the DOCLICK procedure.

Disassembling from 218b72
 DOCLICK

+0024  218B5E MOVE.W (A7)+,D6 | 3C1F
+0026  218B60 MOVE.W D6,D0 | 3006
+0028  218B62 BRA DOCLICK+00B4 ; 00218BEE | 6000 008A
+002C  218B66 SUBQ.W #$4,A7 | 594F
+002E  218B68 MOVE.L -$0016(A6),-(A7) | 2F2E FFEA
+0032  218B6C _MenuSelec ; A93D | A93D
+0034  218B6E MOVE.L (A7)+,D7 | 2E1F
+0036  218B70 MOVE.L D7,-(A7) | 2F07
+0038  218B72 JSR DOMENUD ; 00218A8A | 4EBA FF16

Disassembling from 218ab6
 DOMENUDI

+0018  218AA2 SUBQ.W #$4,A7 | 594F
+001A  218AA4 MOVE.W #$1770,-(A7) | 3F3C 1770
+001E  218AA8 _GetMHandle ; A949 | A949
+0020  218AAA MOVEA.L (A7)+,A4 | 285F
+0022  218AAC MOVE.W D6,D0 | 3006
+0024  218AAE BRA DOMENUDI+007C ; 00218B06 | 6000 0056
+0028  218AB2 MOVE.W D7,D0 | 3007
+002A  218AB4 BRA.S DOMENUDI+0034 ; 00218ABE | 6008
+002C  218AB6 JSR DOABOUTD ; 00218A1C | 4EBA FF64

Disassembling from 003b418a
 No procedure name

3B4172 BEQ.S *+$0008 ; 003B417A | 6706
3B4174 ORI.B #$80,$0071(A0) | 0028 0080 0071
3B417A MOVE.L CurrentA5,-(A7) | 2F38 0904
3B417E JSR *+$39FA ; 003B7B78| 4EBA 39F8
3B4182 MOVE.L D0,D5 | 2A00
3B4184 MOVE.L D4,-(A7) | 2F04
3B4186 MOVE.L D3,-(A7) | 2F03
3B4188 MOVEA.L A2,A0 | 204A
3B418A JSR (A0) | 4E90



C H A P T E R  9

MacsBug Commands

300 SC7 — Stack Crawl (A7)

SC7 — Stack Crawl (A7) 9

DESCRIPTION

The Stack Crawl (A7) command displays a possible calling chain by listing the stack 
addresses where each caller’s return address is stored.

SYNTAX

SC7 [addr [ nbytes ] ]

addr specifies the current frame address. If you omit this parameter, the SC7 
command uses A7 for addr.

nbytes addr + nbytes specifies the upper limit of the range. If you omit this 
parameter, SC7 uses CurStackBase^ for the upper limit.

SEE ALSO

SC6

Considerations 9
If information on the stack is set up using stack frames, the SC6 command gives you 
much more reliable information about the calling chain than the SC7 command. If 
information is not set up using stack frames, use the SC7 command to display a possible 
calling chain. 

By using the optional parameters, you can display the calling chain for a private 
stack where the top of the stack is specified by addr and the stack base is specified by 
addr + nbytes.

Not all values displayed by the SC7 command are necessarily valid, and you will want 
to do some additional checking to make sure that the locations listed by the SC7 
command do indeed contain return addresses. For example, SC7 can return an invalid 
value if you execute an SC7 command just at the point where a procedure has allocated 
space for its local variables, but not initialized those variables. If an old return address is 
stored in the space allocated for one of the local variables, the SC7 command will report 
it to you as a return address, even though it is just leftover information from a procedure 
that has already finished executing.

When a JSR instruction executes, it saves the address of the following instruction on the 
stack before jumping to the new location. In the following example, before jumping to 
the DOCLICK procedure, the JSR instruction would save the address of the next 
instruction, BRA DOMAINEV+00A0, on the stack.

+0036  218D26     PEA        -$0020(A6)                     | 486E FFE0

+003A  218D2A     JSR        DOCLICK           ; 00218B3A   | 4EBA FE0E

+003E  218D2E     BRA        DOMAINEV+00A0     ; 00218D90   | 6000 0060
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When the DOCLICK routine returns with an RTS instruction, it returns to the saved 
address; in this case, it returns to the instruction at 218D2E.

The SC7 command checks the stack from A7 to CurStackBase^ for possible return 
addresses: it checks that the value is even, that it is a valid ROM or RAM address, 
and that it is the address of an instruction immediately following a JSR, BSR, or 
A-trap instruction.

SC7 Display 9

The SC7 command displays a calling chain in the same order as the SC6 command: from 
the oldest to the newest procedure called. Here is sample output from the SC7 command: 

SC7
Return addresses on the stack
 Stack Addr Frame Addr Caller

0027BB58 0027BB54 00218DC6 CONVERSI+0016
0027BB50 002182C2 DOINITRO+0032
0027BB30 0027BB2C 00218706 DOSETUPM+0054
0027BB0E 0027BB0A 00218D2A DOMAINEV+003A
0027BAFA 003B441E
0027BAC8 0027BAC4 00218B72 DOCLICK+0038
0027BAB4 003B51CA
0027BAB0 003B51C2
0027BA9C 0027BA98 00218AB6 DOMENUDI+002C
0027BA90 008119DA _NewMenu+01EC
0027BA8C 00810DA4 _DisableItem+0014
0027BA78 003B1F40

■ The first column contains the address on the stack where the return address (or what 
the SC7 command considers to be a likely candidate) is stored.

■ The second column contains the value of A6 when the procedure that is being called is 
current. With respect to the listing above, the value 27BB0A turns out to be the value 
of A6 when the DOCLICK procedure is current. 

■ The last column contains the address of a JSR or BSR instruction and, if that 
instruction is part of a procedure or A-trap, the name of the procedure or A-trap and 
the offset of the instruction within the routine. If MacsBug does not know the 
procedure name, but the address is in a known resource, it displays the type of the 
resource, the number of the resource, the file in which the resource is stored, the name 
of the resource, and the offset within the resource where the instruction is found; 
for example:

'CODE 0007 0294 Init'+0A3C 

If the SC7 command lists a frame address alongside the address of a return value, it is 
nearly certain that the address contains a genuine return value. You need only test the 
ones for which no frame address is listed.
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SC7 Error Messages 9

The SC7 command assumes that register A7 is even and points to the top of the stack 
and that it is smaller than or equal to CurStackBase^. If this is not the case, MacsBug 
displays the message “Damaged stack: A7 must be even and <= CurStackBase.”

The SC7 command makes similar assumptions about the optional parameters you 
supply. If this is not the case, MacsBug displays the message “Bad stack: stack pointer 
must be even and <= stack base.”
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SHOW — Show 9

DESCRIPTION

The Show command allows you to display any region of memory in the stack area of the 
status region, using one of several formats. By default the Show command displays the 
stack starting at the address stored in register A7 and shows any changes to the value 
of A7.

SYNTAX

SHOW [ addr | 'addr' ] [ L | W | A | LA ]

addr specifies the address from which memory is shown. If you specify 'addr', 
the specified address is evaluated each time the display is updated. If you 
specify addr, the specified address is evaluated when you execute the 
Show command and the resulting value is shown until you change 
the Show options by executing another Show command.

L specifies that memory be shown in long word format.

W specifies that memory be shown in word format.

A specifies that memory be shown in ASCII format.

LA specifies that memory be shown in combined long word and 
ASCII format.

Considerations 9
The way you specify addr (quoted or unquoted) affects only the display of the address; if 
values in the memory range displayed change, MacsBug updates the display whether or 
not addr is quoted.

Entering SHOW without parameters cycles between the four display formats. The Show 
command assumes you want information displayed starting at the last specified addr.

To restore the default display, enter

SHOW 'SP' L

The Show command is very useful, although it is undervalued and not well known. It 
puts the stack area of the MacsBug display at your disposal to display whatever value or 
values you need to keep track of as you’re debugging or testing code. 

Example 9
The following command shows routine parameters for routines using LINK instructions 
to set up the stack frame:

SHOW 'A6 + 8'
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SL — Set Long 9

DESCRIPTION

The Set Long command assigns a value to long words, starting at the specified address.

SYNTAX

SL addr value [ value ] ...

addr specifies the address where the SL command starts assigning the specified 
value to bytes.

value specifies either an expression or a string. The string must be enclosed in 
single quotes.

SEE ALSO

SB, SW

Considerations 9
If you specify an expression for value, it is evaluated to a 32-bit value. 

If you specify a string for value, the characters are placed in successive bytes. The string 
length is limited only by the length of the command line.

The SL command sets the dot command to the address of the first long word set. If you 
press Return after executing an SB command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or 
SM) without causing damage, use the HD command to find out the starting address of a 
free block in the heap and then use that address as the addr parameter to the command. 
Be careful not to write beyond the boundary of the block. Even if the next block is free, 
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified 
the wrong address after executing a command that sets memory, it 
might be safest to use the RS or RB command and start over. ▲
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Examples 9
In the following examples, the SL command sets memory at the specified address, then 
pressing the Return key displays memory at that address:

SL 002B04F8 'new set long memory'

{Return}

Memory set starting at 002B04F8

 002B04F8  6E65 7720 7365 746C  6F6E 6720 6D65 6D6F  new setlong memo

SL 002B04F8  1 222 3333

{Return}

Memory set starting at 002B04F8

 002B04F8  0000 0001 0000 0222  0000 3333 6D65 6D6F  •••••••"••33memo
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SM — Set Memory  9

DESCRIPTION

The Set Memory command assigns a value to long words, starting at the 
specified address.

SYNTAX

SM addr value [ value ] ...

addr specifies the address where the SM command starts assigning 
the specified value to bytes.

value specifies either an expression or a string. The string must be enclosed in 
single quotes.

SEE ALSO

SB, SL, SW

Considerations 9
If you specify an expression for value, the size of the assignment made is determined 
by the size of value. You can set specific assignment sizes by using the SB, SL, or SL 
commands.

If you specify a string for value, the characters are placed in successive bytes. The string 
length is limited only by the length of the command line.

The SM command sets the dot command to the address of the first long word set. If you 
press Return after executing an SM command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or 
SM) without causing damage, use the HD command to find out the starting address of a 
free block in the heap and then use that address as the addr parameter to the command. 
Be careful not to write beyond the boundary of the block. Even if the next block is free, 
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified 
the wrong address after executing a command that sets memory, it 
might be safest to use the RS or RB command and start over. ▲
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Examples 9
In the following examples, the SM command sets memory at the specified address, then 
pressing the Return key displays memory at that address:

SM 003E8BF4 'set memory'

{Return}

Memory set starting at 003E8BF4

 003E8BF4  7365 7420 6D65 6D6F  7279 019D 0000 0014  set memory••••••

SM 003E8BF4 1000 222 3333

{Return}

Memory set starting at 003E8BF4

Displaying memory from 003E8BF4

 003E8BF4  1000 0222 3333 6D6F  7279 019D 0000 0014  •••"33mory••••••

Note that if you specify the expressions used with the SB, SW, or SL commands with the 
SM command:

SM 003E8BF4 1 222 3333

MacsBug returns the error message shown below. MacsBug 6.2 implements the SM 
command differently than MacsBug 6.1.

Attempt to write the value 0222 to the odd address 003E8BF5

Warning: The command completed without using all parameters
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SO – Step Over  9

DESCRIPTION

The Step Over command steps through the specified number of instructions or until the 
specified expression is true.

SYNTAX

SO | T  [ n | expr ]

n is a hexadecimal integer specifying the number of instructions to 
step through.

expr specifies that the microprocessor step through instructions until the 
condition specified by expr is met.

SEE ALSO

S

Considerations 9
If you do not specify any parameters for the SO command, it simply steps through the 
next instruction. In that case, it might be easier to use the Command-T option, which 
accomplishes the same thing. Any commands sitting in the command line when you 
enter Command-T are ignored.

As you can see from the syntax diagram, you can use T as an alias for SO.

In general the SO command behaves exactly like the S command except that it steps over 
traps, JSRs, and BSRs, treating them like a single instruction.

If you have entered a number that cannot be reached or an expression that cannot be 
satisfied, use the ES command to terminate stepping.

When stepping over a Toolbox trap with the auto-pop bit set, MacsBug correctly returns 
to the address on the top of the stack at the time of the trap call (instead of to the address 
immediately after the trap). 

If you step over a LoadSeg trap, MacsBug will stop at the first instruction of the 
loaded segment.

Note

Stepping through certain MMU instructions can cause MacsBug to hang. 
If you’re doing MMU programming, be aware that MacsBug executes 
many instructions while executing an S command and expects a valid 
memory map. ◆
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Example 9
The following command steps through five instructions: 

SO 5
Step (over)
  No procedure name
 00A346 RTS | 4E75
  _GetMouse

+0176  80F2A4 MOVEA. (A7)+,A0 | 205F
+0178  80F2A6 _HUnlock ; A02A | A02A
+017A  80F2A8 CLR.W (A3) | 4253
+017C  80F2AA BRA.S _GetMouse+018 ; 4080F2BC | 6010



C H A P T E R  9

MacsBug Commands

310 SS — Step Spy

SS — Step Spy 9

DESCRIPTION

The Step Spy command calculates a checksum for a specified memory range or for a 
word at a specified address before executing an instruction. If the checksum value 
changes, the SS command invokes MacsBug.

SYNTAX

SS addr1 [addr2 ]

addr1 specifies that MacsBug should calculate a checksum for the long word at 
addr1. If you specify addr2, MacsBug calculates a checksum for the range 
of memory defined by addr1 and addr2.

SEE ALSO

CS, ATSS

Considerations 9
Checksumming is a technique used by the debugger to determine whether the contents 
of memory have changed. The debugger adds all the values in the specified memory 
range and saves the result. After one or more instructions are executed (depending on 
whether checksumming is implemented by the ATSS, CS, or SS commands), the 
debugger recalculates a sum for the same memory range and compares the new result to 
the saved result. If the values differ, MacsBug is invoked.

The SS command works fastest when you are calculating a checksum for addr1.

When you enter the SS command, the application begins to execute immediately. When 
the long word or memory range changes and MacsBug displays the debugging screen 
and clears the action set with the SS command. At this point, you know that the 
instruction that caused memory to change is the instruction preceding the instruction 
pointed to by the PC.

The SS command is very slow. The ATSS (A-trap Step Spy) command is much faster 
because it only checks memory before executing A-traps, whereas the SS command 
checks after each instruction. You can use the ATSS command to zero in on a range of 
instructions containing the instruction that is affecting the value that concerns you. 
When the ATSS command invokes MacsBug, you know that the A-trap that is about to 
execute is not responsible for the change in value. You also know that the instruction that 
you are looking for is either the previous A-trap or any instruction executed between the 
previous A-trap and the instruction pointed to by the PC. You can now use the SS 
command to find that instruction. 

The SS command might also be useful to slow down certain routines—such as those that 
draw to the screen—so you can see how they work.
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Example 9
The following example sets SS to checksum the long word at $9D6: 

SS 09D6
Checksumming from 000009D6 to 000009D9
Step Spy checksum was changed at 4080EF38 _BlockMove+0096
 Step Spy cleared
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SW — Set Word 9

DESCRIPTION

The Set Word command assigns a value to words, starting at the specified address.

SYNTAX

SW addr value [ value ] ...

addr specifies the address where the SW command starts assigning 
the specified value to words.

value specifies either an expression or a string. The string must be enclosed in 
single quotes. 

SEE ALSO

SB, SL, SM

Considerations 9
If you specify an expression for value, the low-order word of its value is used. 

If you specify a string for value, MacsBug places the characters in successive bytes. The 
string length is limited only by the length of the command line.

The SW command sets the dot command to the first byte set. If you press Return after 
executing an SB command, MacsBug displays the memory just set.

If you want to get some practice using any of the set memory commands (SB, SW, SL, or 
SM) without causing damage, use the HD command to find out the starting address of a 
free block in the heap and then use that address as the addr parameter to the command. 
Be careful not to write beyond the boundary of the block. Even if the next block is free, 
writing over its header will corrupt the heap.

▲ W A R N I N G

You set memory at your own peril. If you realize that you have specified 
the wrong address after executing a command that sets memory, it 
might be safest to use the RS or RB command and start over. ▲
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Examples 9
In the following examples, the SW command sets memory at the specified address, then 
pressing the Return key displays memory at that address:

SW  002B04F8  'new sw memory '

{Return}

Memory set starting at 002B04F8

 002B04F8  6E65 7720 7377 206D  656D 6F72 7920 2020  new sw memory   

SW  002B04F8  1 222 3333

{Return}

Memory set starting at 002B04F8

 002B04F8  0001 0222 3333 6E67  206D 656D 6F72 790C  •••"33ng memory•
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SWAP — Swap 9

DESCRIPTION

The Swap command controls the frequency of screen swapping between MacsBug and 
the application. The way swapping takes place depends on whether you use the same 
screen for both your application and MacsBug or one screen for MacsBug and a different 
screen for your application.

SYNTAX

SWAP

Considerations 9
If you are using the same screen for both MacsBug and your application, the SWAP 
command toggles between the following two modes:

■ It traces through the specified instructions or A-traps, displaying the MacsBug screen 
after each instruction or A-trap has finished executing.

■ It traces through the specified instructions or A-traps without displaying the 
MacsBug screen.

If you are using only one screen, you can get stuck if you choose the swapping mode and 
enter a step or trace command that includes no breakpoint. For example, if you toggle 
SWAP on and enter ATT, you will find yourself staring helplessly at a flickering screen, 
as MacsBug loops rapidly ever onward. You can stop it by pressing the NMI switch, or 
you can prevent the situation from arising in the first place by specifying a break at an 
instruction you know will execute or that you can cause to execute. For example, if 
you enter

ATT; ATB MenuKey

and then enter a command key combination that has some meaning to your application, 
you can invoke MacsBug and stop the tracing.

If you are using one screen for your application and a different screen for the MacsBug 
display, the SWAP command toggles between the following two modes:

■ It traces through the specified instructions or A-traps, displaying MacsBug output on 
the other screen after each instruction or A-trap has finished executing.

■ It traces through the specified instructions or A-traps while keeping the MacsBug 
display always visible on the other screen.

See Chapter 2, “Getting Started,” for additional information about displaying MacsBug 
on a different screen.
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Example 9
If you use a single screen, the SWAP command displays the following messages:

SWAP
Display will only be swapped at a break

SWAP
Display will be swapped after each trace or step

If you use two screens, the SWAP command displays the following messages:

SWAP
MacsBug will remain visible always

SWAP
MacsBug will only be swapped at a break
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SX — Symbol Exchange 9

DESCRIPTION

The Symbol Exchange command toggles between allowing and not allowing symbol 
names in place of addresses. 

SYNTAX

SX [ ON | OFF ]

If you omit the parameter, the SX command toggles between the two modes. The default 
setting is ON.

SEE ALSO

IL, RN

Considerations 9
By default you can use a symbol name in place of an address in specifying a command 
parameter. MacsBug also displays the addresses of disassembled instructions as offsets 
from the beginning of the procedure to which they belong. To do this, MacsBug must 
translate symbol names into addresses in the first case, or addresses into offsets from 
symbol names in the second case. Since this process can be slow, MacsBug provides a 
way to disable it. Disabling it, of course, can slow you down, since you must then specify 
all addresses as absolute addresses.

Example 9
In the following example, the IR command disassembles the DOCLICK procedure. Then 
the SX command is used to turn symbols off, and the same code is disassembled once 
again. (Only part of the procedure is shown.)

IR doclick

Disassembling from doclick

DOCLICK

   +0000  218B3A     LINK       A6,#$FFCE                        | 4E56 FFCE

   +0004  218B3E     MOVEM.L    D6/D7,-(A7)                      | 48E7 0300

   +0008  218B42     MOVEA.L    $0008(A6),A0                     | 206E 0008

   +000C  218B46     LEA        -$0020(A6),A1                    | 43EE FFE0

   +0010  218B4A     MOVE.L     (A0)+,(A1)+                      | 22D8

   +0012  218B4C     MOVE.L     (A0)+,(A1)+                      | 22D8

   +0014  218B4E     MOVE.L     (A0)+,(A1)+                      | 22D8

   +0016  218B50     MOVE.L     (A0)+,(A1)+                      | 22D8
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   +0018  218B52     SUBQ.W     #$2,A7                           | 554F

   +001A  218B54     MOVE.L     -$0016(A6),-(A7)                 | 2F2E FFEA

   +001E  218B58     PEA        -$0026(A6)                       | 486E FFDA

SX

Symbols disabled

IR 218b3a

Disassembling from 218b3a

No procedure name

           218B3A     LINK       A6,#$FFCE                        | 4E56 FFCE

           218B3E     MOVEM.L    D6/D7,-(A7)                      | 48E7 0300

           218B42     MOVEA.L    $0008(A6),A0                     | 206E 0008

           218B46     LEA        -$0020(A6),A1                    | 43EE FFE0

           218B4A     MOVE.L     (A0)+,(A1)+                      | 22D8

           218B4C     MOVE.L     (A0)+,(A1)+                      | 22D8

           218B4E     MOVE.L     (A0)+,(A1)+                      | 22D8

           218B50     MOVE.L     (A0)+,(A1)+                      | 22D8

           218B52     SUBQ.W     #$2,A7                           | 554F

           218B54     MOVE.L     -$0016(A6),-(A7)                 | 2F2E FFEA

           218B58     PEA        -$0026(A6)                       | 486E FFDA
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TD — Display CPU Registers 9

DESCRIPTION

The Display CPU Registers command displays all CPU registers in the output region of 
the MacsBug display.

SYNTAX

TD

SEE ALSO

TF, TM

Considerations 9
Since most of the registers displayed in the status region of the MacsBug screen are 
continuously updated, you can use the TD command to record values between 
commands. You can also use the TD command to display the values of special registers 
in the 68020 and 68030 that are not shown in the status region of the MacsBug display.

Use the TM command to display the contents of the 68030 MMU registers; use the TF 
command to display the contents of the 68881 registers.

For additional information about the 68020 and 68030 registers display, consult the 
appropriate Motorola manual.

Example 9
TD
68030 Registers
 D0 = 00000000 A0 = A003E9D8       USP  = C93F9E97
 D1 = 00000007 A1 = 0027DE84       MSP  = E149F8FD
 D2 = FFFF0001 A2 = 0027DE84       ISP  = 0037FE9C
 D3 = 00000000 A3 = 0027DE84       VBR  = 00000000
 D4 = 0028FFFF A4 = 0027DA30       CACR = 00002101     SFC = 7
 D5 = 00280000 A5 = 003BFFD8       CAAR = EF9FCFF2     DFC = 7
 D6 = 0038011C A6 = 0037FEAC       PC   = A003E9DA
 D7 = 0027C2EC A7 = 0037FE9C       SR   = SmXnzvc      Int = 0
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TF — Total Floating-Point Register Display 9

DESCRIPTION

The Total Floating-Point Register Display command displays all 68881 registers.

SYNTAX

TF

SEE ALSO

TD, TM

Considerations 9
The 68881 registers are not shown in the status region of the MacsBug display.

To display the 68000, 68020, or 68030 registers, use the TD command. To display the 
68030 MMU registers, use the TM command.

For additional information about the 68881 registers, consult the Motorola manual.

Example 9
TF
68881/68882 FPU Registers
 FP0  = 4011 A1F74CA2 339C0EBF         3.31706394800000000e+5
 FP1  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
 FP2  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
 FP3  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
 FP4  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
 FP5  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
 FP6  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
 FP7  = 7FFF FFFFFFFF FFFFFFFF         NAN(255)
        EE MC           CC QT ES AE
 FPCR = 00 00    FPSR = 00 00 02 08    FPIAR = 00000000
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TM — Total MMU Display 9

DESCRIPTION

The Total MMU Display command displays the MMU registers common to the 68551 
and 68030 microprocessors.

SYNTAX

TM

SEE ALSO

TD, TF

Considerations 9
The MMU registers are not shown in the status region of the MacsBug display.

You can use the TM command to determine whether a Macintosh II has a PMMU chip 
installed without opening the cover.

To display the 68000, 68020, or 68030 registers, use the TD command. To display the 
68881 registers, use the TF command.

Example 9
The following command displays the MMU registers for a Macintosh with a 68030 
microprocessor:

TM
68030 MMU Registers
 CRP = 7FFF000240800050       TC   = 80F84500
 SRP = 02480814FFFFEFC4       PSR  = EE47
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TMP — List Templates 9

DESCRIPTION

The List Templates command lists all templates that match or partially match the 
specified name.

SYNTAX

TMP [ name ]

name is a string of characters. The TMP command displays the names of all 
templates that begin with name. If you omit name, the TMP command lists 
all template names.

Considerations 9
You use templates to control the way MacsBug displays data in memory. 

You can use the names of templates defined by the 'mxwt' resource 100 to display data 
structures created and maintained by Toolbox or operating system managers. You can 
also create your own templates to display data structures created by your application. 
For additional information about the 'mxwt' resource and creating your own templates, 
see “Using Templates To Display Memory” in Chapter 4.

Example 9
The following command displays all currently loaded templates whose names begin 
with C:

TMP C
 ControlRecord
 ColorSpec
 ColorTable
 CGrafPort
 CntrlParamBlockRec
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WH — Where 9

DESCRIPTION

The Where command returns information about the location of the specified trap, 
symbol, or address.

SYNTAX

WH [ addr | trap ]

addr specifies that you want information about the location of the instruction 
at addr.

trap specifies the trap name or number whose location you want.

Considerations 9
Use the Where command after a crash to determine the procedure that's currently 
executing.

If you do not specify a parameter, the Where command uses the program counter 
for addr.

If you specify an address in ROM, the Where command looks for the preceding trap and 
displays the address of the instruction as an offset from the start of the trap. (Sometimes 
it returns the wrong trap name for ROM addresses.) 

If you specify an address in RAM, the Where command tells you if the instruction is in a 
heap block and if so, which heap block. The Where command also tells you the name of 
the routine containing the instruction at the specified address and the offset of the 
instruction from the start of the routine.

If you specify a trap name or number, the Where command tells you the corresponding 
number or name. The where command also tells you whether the code for the trap is in 
ROM or in RAM. If the code is in RAM, the trap is patched.

If the specified address is in a block header, the Where command displays that 
information. For example:

WH 0027A0F4

 Address 0027A0F4 is in the Application heap at 00279FB8 

 It is FFFFFFF8 bytes into this heap block (in the block header):

     Start    Length      Tag  Mstr Ptr Lock Prg  Type   ID   File      Name

  • 0027A0FC 00000016+02   R   0027A0F0   L       

Note that in this case the number of bytes specified in the output represents a negative 
number. In this example FFFFFFF8 is –8. A negative number is used because the heap 
block begins with the first byte of the contents region, so the header region is at a 
negative offset from the beginning of the contents region.
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Examples 9
WH 00218B3A

Address 00218B3A is in the Application heap at DOCLICK

It is 000008AE bytes into this heap block:

    Start    Length      Tag  Mstr Ptr Lock Prg  Type   ID   File      Name

 • 0021828C 00000B50+04   R   00218268   L   P   CODE  0002  0526

WH menuselect

Trap number A93D (_MenuSelect) starts at 003C02A2 in RAM

It is 0019F732 bytes into this heap block:

    Start    Length      Tag  Mstr Ptr Lock Prg  Type   ID   File      Name

   00220B70 00054FF0+00   F

WH getmouse 

Trap number A972 (_GetMouse) starts at 4080F12E in ROM
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Command Summary A

 

This appendix provides two listings of MacsBug commands: Table A-1 lists MacsBug 
commands by functional category; Table A-2  lists MacsBug commands in alphabetical 
order. The alphabetical listing also includes a description and syntax for each command.

The following conventions are used to describe MacsBug commands:

literal Plain text indicates a word that must appear in the command exactly 
as shown. Special symbols (-, §, &, and so on) must also be entered 
exactly as shown.

 

variable

 

Italics indicate a parameter that you must replace with specific 
information.

[ 

 

optional

 

  ] Brackets indicate that the enclosed elements are optional. Omit the 
brackets when you enter the command.

… An ellipsis (…) indicates that the preceding item can be repeated one or 
more times.

| A vertical bar (|) indicates an either/or choice.

Command names and file names are not sensitive to case.

For more information about each command, see Chapter 9, “MacsBug Commands.”  

 

Table A-1

 

MacsBug commands by functional category 

 

Function Commands

 

Flow control G—Go

GT—Go Till

S—Step

SO—Step Over

SS—Step Spy

MR—Magic Return

Breakpoints Br—Breakpoint

BRC—Breakpoint Clear

BRD—Breakpoint Display

BRM—Multiple Breakpoints

A-traps ATB—A-trap Break

ATT—A-trap trace

ATHC—A-trap Heap Check

 

continued

Figure A-0
Listing A-0
Table A-0
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A-traps 

 

(cont.)

 

ATSS—A-trap Step Spy

ATC—A-trap Clear

ATD—A-trap Display

ATR—A-trap Record

ATP—A-trap Playback

DSC—Discipline

Disassembly IL—Disassemble From Address

IP—Disassemble Around Address

ID—Disassemble One Line

IR—Disassemble Until End of Procedure

DH—Disassemble Hexadecimal

Stack SC6—Stack Crawl (A6)

SC7—Stack Crawl (A7)

Heap HX — Heap Exchange

HZ — Heap Zone

HD — Heap Display

HT — Heap Totals

HC — Heap Check

HS — Heap Scramble

Symbol RN — Reference Number

SX — Symbol Exchange

Memory DM — Display Memory

TMP — Display loaded templates

DP — Display Page

DB — Display Byte

DW — Display Word

DL — Display Long

SM — Set Memory

SB — Set Byte

SW — Set Word

SL — Set LongA-traps

 

continued
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MacsBug commands by functional category (continued)

 

Function Commands
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Register TD — Total Display

TF — Total Floating Point

TM — Total MMU

Macro MC — Macro Create

MCC — Macro Clear

MCD — Macro Display

Exit MacsBug RB — Reboot

RS — Restart

ES — Exit to Shell

EA — Exit to Application

MacsBug 
information

HELP — Display list of MacsBug commands

DV — Display Version

MacsBug output LOG — LOG (output to file or printer)

SHOW — Show (memory in status region)

SWAP — Swap (screen display)

Miscellaneous WH — Where

F — Find

CS — Checksum

HOW — Display break message

DX — Debugger Exchange

RAD — Toggle Register Name Syntaxcommands:summary of by 
function

 

Table A-1

 

MacsBug commands by functional category (continued)

 

Function Commands
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Table A-2

 

MacsBug commands in alphabetical order 

 

Command Syntax and description

 

ATB ATB[A] [ 

 

trap

 

 [ 

 

trap

 

 ] ]  [ 

 

n

 

 | 

 

expr

 

 ] [ ';

 

cmd

 

 [ ;

 

cmd

 

 ]...']
The A-trap Break command invokes MacsBug whenever the micro-
processor encounters the specified A-trap.

ATC ATC [ 

 

trap

 

 [ 

 

trap

 

 ] ]
The A-trap Clear command clears actions set on all the specified A-traps 
with the ATB, ATT, ATHC, and ATSS commands.

ATD ATD
The A-trap Display command displays information about all actions 
currently set with the ATB, ATT, ATHC, and ATSS commands.

ATHC ATHC[A] [ 

 

trap

 

 [ 

 

trap

 

 ] ] [ 

 

n 

 

| 

 

expr

 

 ]
The A-trap Heap Check command checks the heap before executing the 
specified A-trap. If the heap is bad, MacsBug displays the debugging 
screen and an error message.

ATP ATP
The A-trap Playback command displays the information saved while 
trap recording is on. If trap recording is turned off, the ATP command 
displays information from the most recent ATR.

ATR ATR[A] [ ON | OFF ]
The A-trap Record command turns trap recording on and off.

ATSS ATSS[A] [ 

 

trap

 

 [ 

 

trap

 

 ] ] [ 

 

n

 

 | 

 

expr

 

 ], 

 

addr1

 

 [ 

 

addr

 

2 ]
The A-trap Step Spy command calculates a checksum for a specified 
memory range or for a word at a specified address before executing the 
specified traps. If the checksum value changes, the ATSS command 
invokes MacsBug and does not execute the A-traps.

ATT ATT[A] [ 

 

trap

 

 [ 

 

trap

 

 ] ] [ 

 

n 

 

| 

 

expr

 

 ]
The A-trap Trace command writes information to the MacsBug output 
buffer whenever the mciroprocessor encounters the specified A-trap, 
without stopping the current program.

BR BR 

 

addr

 

 [ 

 

n

 

 | 

 

expr

 

 ] [' ;

 

cmd

 

 [ ;

 

cmd  

 

] ...' ]
The Breakpoint command sets a breakpoint at the specified address.  

BRC BRC [

 

 addr 

 

]
The Breakpoint Clear command clears the breakpoint at the 
specified address.

BRD BRD
The Breakpoint Display command displays addresses where breakpoints 
are currently set.

BRM BRM  

 

name

 

The Multiple Breakpoints command allows you to set breakpoints using 
partial name matching.

CS CS [ 

 

addr 

 

[ 

 

addr

 

 ] ]
The Checksum command allows you to determine whether the 
contents at the specified address or within the specified memory 
range have changed. 
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DB DB [ 

 

addr 

 

]
The Display Byte command displays the byte at the specified address.

DH DH 

 

expr 

 

...
The Disassemble Hexadecimal command converts one or more 
hexadecimal values to assembler mnemonics.

DL DL [ 

 

addr 

 

] 
The Display Long command displays the long word at the 
specified address.

DM DM [ 

 

addr 

 

[ 

 

nbytes

 

| 

 

template

 

 | 

 

basic type 

 

]  ]
The Display Memory command displays memory starting from the 
specified address.

DP DP [

 

addr

 

 ]
The Display Page command displays a page (128 bytes) of memory 
starting from the specified address.

DSC DSC[A][X] [ON | OFF ]
The Discipline command turns the Discipline utility on and off. You use 
Discipline to check the validity of the parameters you pass to A-traps 
and the values returned to your applications by the A-traps. 

DV DV
The Display Version command displays the version of MacsBug 
currently in use.

DW DW [ 

 

addr

 

 ]
The Display Word command displays the word at the specified address.

DX DX [ ON | OFF ]
The Debugger Exchange command disables user breaks.

EA EA
The Exit to Application command restarts the application from which 
MacsBug was invoked.

ES ES
The Exit to Shell command returns you to the current shell.

F F 

 

addr nbytes expr 

 

| "

 

string

 

"
F[ B | W | L | P ] 

 

addr nbytes expr 

 

The Find command searches for a specified pattern of bytes.

G G [ 

 

addr

 

 ]
The Go command allows you to leave MacsBug and resume 
program execution.

GT GT 

 

addr

 

 [ ';

 

cmd

 

 [ ;

 

cmd

 

 ] ...' ]
The Go Till command executes your program until the program counter 
reaches the specified address.
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HC HC
The Heap Check command tells you whether the information in the 
heap zone header or in any of the block headers in the current heap 
has been corrupted.  

HD HD [ 

 

qualifier

 

 ]
The Heap Display command displays information about the blocks in 
the current heap.

HELP HELP [ 

 

cmd

 

 | 

 

topic 

 

 ]
The Help command displays information about the given command 
or section.

HOW HOW
The Display Break Message command redisplays the break message that 
was displayed when you initially entered MacsBug.

HS HS [ 

 

addr 

 

]
The Heap Scramble command turns heap scrambling on and off. When 
heap scrambling is on, the Memory Manager moves all unlocked 
relocatable blocks whenever the move is legitimate—that is, during 
every A-trap call that can allocate memory directly or indirectly.

HT HT
The Heap Totals command displays information about the current heap.

HX HX [ 

 

addr

 

 ]
The Heap Exchange command selects the current heap.

HZ HZ [ 

 

addr 

 

]
The Heap Zone command lists all heap zones starting at 

 

addr

 

.

ID ID [ 

 

addr

 

 ]
The Disassemble One Line command disassembles one line, starting at 
the specified address.

IL IL [ 

 

addr

 

 [

 

n

 

] ]
The Disassemble From Address command disassembles 

 

n

 

  lines starting 
from an address you specify.

IP IP [ 

 

addr

 

 ]
The Disassemble Around Address command disassembles a half page 
(64 bytes) centered around the specified address.

IR IR [ 

 

addr

 

 ]
The Disassemble Until End of Procedure command disassembles code 
from the address you specify until the end of the procedure containing 
the instruction at the specified address.

LOG LOG [ 

 

pathname

 

 | Printer ]
The LOG command sends MacsBug output to the specified text file or to 
an ImageWriter via the serial port.

MC MC 

 

name

 

 '

 

expr

 

' | 

 

expr

 

The Macro Create command creates a new macro with the given name 
that expands to the expression you specify.
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MCC MCC [ 

 

name

 

 ]
The Macro Clear command clears the specified macro or all macros.

MCD MCD [ 

 

name

 

 ]
The Macro Display command displays the specified macro or all macros 
whose names begin with the specified characters.

MR MR [ 

 

param  

 

] 
If you accidentally stepped into a JSR, BSR, or trap call that you meant to 
step over, executing the Magic Return command before executing any of 
the the subroutine or trap code will execute the equivalent of a GT (Go 
Till) to the instruction immediately after the subroutine or A-trap call.

RAD RAD
The Toggle Register Name Syntax command allows you to specify the 
address and data registers in two different ways.

RB RB
The Reboot command restarts the system. It unmounts the startup 
volume before restarting.

Registers

 

registerName

 

 [ = 

 

expr

 

 | := 

 

expr

 

 ]
The Registers command allows you to display the value of a register or 
assign a value to a register.

RN RN [ 

 

expr 

 

]
The Set Reference Number command restricts symbol references to the 
specified file.

RS RS
The Restart command unmounts all volumes and restarts the Macintosh.

S S [ 

 

n 

 

| 

 

expr

 

  ]
The Step command either steps through the specified number of 
instructions or traces through your program until the specified 
condition is met.

SB SB 

 

addr value 

 

[ 

 

value 

 

] 
The Set Byte command assigns a value to bytes, starting at the specified 
address.

SC6 SC6 [ 

 

address

 

 [ 

 

nbytes 

 

]]
The Stack Crawl (A6)command lists stack frame information from the 
oldest to the most current stack frame on the stack. You can use SC as an 
alias for SC6.

SC7 SC7 SC7 [ 

 

address

 

 [ 

 

nbytes 

 

]]
The Stack Crawl (A7) command displays a possible calling chain  by 
listing the stack addresses where each caller’s return address is stored.

SHOW SHOW [ 

 

addr

 

 | '

 

addr

 

' ] [ L | W | A | LA ]
The Show command allows you to display any region in memory using 
one of several formats. By default the Show command displays the stack 
starting at the address stored in register A7 and shows any changes to 
the value of A7.
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SL SL 

 

addr value 

 

[ 

 

value ] ...
The Set Long command assigns a value to long words, starting at the 
specified address.

SM SM addr value [ value ] ...
The Set Memory command assigns a value to long words, starting at the 
specified address.

SO SO | T  [ n | expr ]
The Step Over command steps through the specified number of 
instructions or until the specified expression is true.

SS SS addr1 [ addr2 ]
The Step Spy command calculates a checksum for a specified memory 
range or for a word at a  specified address before executing an 
instruction. If the checksum value changes, the SS command invokes 
MacsBug.

SW SW addr value [ value ] ...
The Set Word command assigns a value to words, starting at the 
specified address.

SWAP SWAP
The Swap command controls the frequency of screen swapping between 
MacsBug and the application. The way swapping takes place depends 
on whether you use the same screen for both your application and 
MacsBug or use one screen for MacsBug and a separate screen for your 
application.

SX SX [ ON | OFF ]
The Symbol Exchange command toggles between allowing and not 
allowing symbol names in place of addresses.  

TD TD
The Display CPU Registers command displays all CPU registers in the 
output region of the MacsBug display.

TF TF
The Total Floating-Point Register Display command displays all 
68881 registers.

TM TM
The Total MMU Display command displays the MMU registers common 
to the 68551 and 68030 processors.

TMP TMP [ name ]
The List Templates command lists all templates that match or partially 
match the specified name.

WH WH [ addr | trap ]
The Where command returns information about the location of the 
specified trap, symbol, or address.

Table A-2 MacsBug commands in alphabetical order (continued)

Command Syntax and description
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Error Messages B

 

This appendix lists MacsBug error messages in alphabetical order.

 

64-bit registers not allowed in expressions

 

All expressions are evaluated as unsigned 32-bit values; floating-point registers and 
some MMU registers cannot be evaluated in this context.

 

68881 not installed

 

The TF command functions only if the system has a 68881 installed. This error also 
occurs if you try to display or set an individual floating-point register.

 

A6 does not point to a stack frame

 

The SC6 command assumes that register A6, or the parameter if specified, is the address 
of the first frame on the stack. It must point within the range specified by register A7 and 
CurStackBase.

 

Address range must be entered before comparisons

 

The CS command remembers a range of memory to checksum; subsequent CS 
commands compute the checksum and compare it against the previous value. If no 
address range has been previously specified, entering CS without parameters will 
return this message.

 

Addresses must be even

 

Any command that takes an address parameter can get one of these errors. The first is a 
68000 bus error exception, and the second is an address error exception.

 

All step points cleared

Bad stack: stack pointer must be even and <= stack base

 

This message is returned by the SC or SC7 when the stack pointer is bad.

 

BlkLim does not agree with heap length

 

Walking through the heap block by block must terminate at the start of the trailer block, 
as defined by the blkLim field of the zone header.

 

Block length is bad

 

The block header address plus the block length must be less than or equal to the trailer 
block address. Also, the trailer block must be a fixed length.

 

Count must be greater than zero

 

Any command that takes a count (such as BR or ATB) requires it to be greater than 0.

 

Damaged stack: A7 must be even and <= CurStackBase

 

The stack commands (SC6 and SC7) must have a memory range to constrain the search 
for frames or return addresses. They assume that register A7 is even and points to the 
top of the stack, and that the global variable CurStackBase points to the bottom of 
the stack.

 

Divide by zero error

 

This error is returned when an expression attempts to divide a number by zero.

Figure B-0
Listing B-0
Table B-0
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Entry will not fit in the table

 

MacsBug stores information about breakpoints, step commands, and A-trap commands 
in a single table. Note that it’s possible to receive this message while entering one type of 
action for the first time (a breakpoint for instance), since other types of actions may have 
already filled this table. 

 

Expression evaluation caused data read fault

Floating-point not allowed in expressions

Free bytes in heap do not match zone header

 

The zcbFree field in the zone header must match the total size of all the free blocks in 
the heap.

 

Free master pointer list is bad

 

Free master pointers in the heap are chained together, starting with the hFstFree field in 
the zone header and terminated by a NIL pointer.

 

Low address must be less than or equal to high address

 

The CS command requires an ordered address range.

 

Macro expansion exceeds maximum command line length

 

Macros are expanded in the command line buffer. This is a fixed-length buffer 
determined by the width of the command line on the current display.

 

MacsBug code has been changed

 

The MacsBug code has been corrupted. Reinstall MacsBug.

 

MacsBug stack overflowed

Master pointer does not point at a block

 

The master pointer for a relocatable block must point at a block in the heap.

 

MMU not installed

 

The TM command functions only if the system has a 68851 or 68030 installed. This error 
also occurs if you try to display or set an individual MMU register.

 

No blocks of this type found

 

The HD command was instructed to display only blocks of a specific kind and none 
were found.

 

Nonrelocatable block: Pointer to zone is bad

 

Block headers of nonrelocatable blocks must contain a pointer to the zone header.

 

PC is not inside a procedure

 

The “:” character can be used to represent the address of the start of the procedure 
displayed in the program counter window. If you enter “:” and no symbol information 
can be found for the program counter, this error message will be displayed.

 

Relative handle is bad

 

The relative handle in the header of a relocatable block must point to a master pointer.

 

Start of link chain does not point to a stack frame.
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Syntax error

 

This is a catch-all error message; it’s used in cases where the error is obvious given the 
context of the command. Possibilities include:

 

■

 

An expression contains a value, an operator, but no second value.

 

■

 

A nested expression does not have matching parentheses.

 

■

 

An address qualifier other than .B, .W, or .L has been given.

 

■

 

An illegal character is in the command line.

 

■

 

The ATSS command does not include an address range.

 

■

 

The format parameter for the SHOW command is other than L, W, A, or LA.

 

■

 

The F command does not have the correct number of parameters.

 

■

 

The value being assigned to a floating-point register is illegal.

 

■

 

A toggle command has been passed a parameter other than ON and OFF.

 

■

 

The HD command qualifier is not valid.

 

Templates cannot expand more than 8 levels

 

Template definitions can themselves contain template definitions, and so on. Expansion 
is limited to eight levels. Since it’s unlikely that a structure would contain this many 
levels, this message may indicate a template definition that contains a recursive path.

 

The address on the stack is not a return address

 

The MR command must know where the return address for the current procedure is 
located on the stack, since it replaces this address with an internal MacsBug address. 
MacsBug checks that the address it replaces is in fact a return address. A return address 
is defined as an address immediately following a JSR, BSR, or A-trap instruction. (All 
forms of JSR and BSR are recognized.)

 

The string passed to DebugStr is paged to disk

The template contains an unrecognized basic type

 

The field of the template currently being displayed is not a valid basic type; see the 
description of the TMP command for a list of all possible types.

 

There is no current procedure

This address is not a stack address

 

The MR command can optionally take a parameter specifying where on the stack the 
return address for the current procedure is located. This address must be even and 
within the range specified by register A7 and CurStackBase.

 

Unable to access that address

Unrecognized symbol

 

Any command that takes a symbol as parameter can receive this error if a valid symbol 
name could not be found in the heap and the name is not a valid trap name. 
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Value expected

 

Some commands will supply default parameters when no parameter is specified. This 
error can be returned by commands that require certain parameters. 

 

Zone pointer is bad

 

The zone pointer for the current heap (SysZone, ApplZone, or user address) must be 
even and in RAM. In addition, the bkLim field of the header must be even and in RAM, 
and must point after the header.
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Macintosh Error Codes C

 

This appendix lists error codes returned by the Macintosh system software. There are 
three groups of codes:  

 

■

 

“Sad Macintosh” codes are displayed if the system detects a hardware failure 
during startup.

 

■

 

System Error Handler alerts result from a fatal error and are displayed in the Bomb 
box or, if MacsBug is installed, as the first message displayed by MacsBug in the 
output region.

 

■

 

Operating system errors are returned by the system to the program; it is up to the 
program to respond to these. 

 

“Sad Macintosh” Codes C

 

“Sad Macintosh” errors are presented in two groups: one for the Macintosh Plus, 
which also includes the Macintosh 128K, 512K, and 512KE, and one for all other 
Macintosh computers.

 

Codes for the Macintosh Plus C

 

Table C-1

 

“Sad Macintosh” error codes for the Macintosh Plus 

 

ID Description

 

01

 

xxxx

 

ROM test failed

02

 

xxxx

 

RAM test (bug subtest) failed

03

 

xxxx

 

RAM test (byte write) failed

04

 

xxxx

 

RAM test (mod3 test) failed

05

 

xxxx

 

RAM test (add uniqueness) failed

0F0001 Bus error

0F0002 Address error

0F0003 Illegal instruction

0F0004 Zero divide

0F0005 Check instruction

0F0006 Trap instruction

 

continued

Figure C-0
Listing C-0
Table C-0
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“Sad Macintosh” Codes

 

Codes for Other Macintosh Computers C

 

Unlike those for the Macintosh Plus, “sad Macintosh” codes for other Macintosh 
computers consist of two eight-digit hexadecimal numbers, displayed one above 
the other. 

0F0007 Privilege violation

0F0008 Trace mode error

0F0009 Line 1010 error

0F000A Line 1111 error

0F000B Other exceptions

0F000C Nothing

0F000D NMI (interrupt button)

0F0064 Couldn’t read system file

 

Table C-2

 

“Sad Macintosh” codes for Macintosh computers except the Mac Plus 

 

ID Description

 

xxxx0001 ROM test failed

xxxxxxxx

xxxx0002 RAM test failed

xxxxxxxx

xxxx0003 RAM test failed

xxxxxxxx

xxxx0004 RAM test failed

xxxxxxxx

xxxx0005 RAM test failed

xxxxxxxx

xxxx0006 VIA1 chip failed

xxxxxxxx

xxxx0007 VIA2 chip failed

xxxxxxxx

xxxx0008 ADB failed

xxxxxxxx
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“Sad Macintosh” error codes for the Macintosh Plus (continued)

 

ID Description
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xxxx0009 MMU failed

xxxxxxxx

xxxx000A Nubus failed

xxxxxxxx

xxxx000B SCSI chip failed

xxxxxxxx

xxxx000C IWM chip failed

xxxxxxxx

xxxx000D SCC chip failed

xxxxxxxx

xxxx000E Data bus test failed

xxxxxxxx

xxxx000F Bus error

00000001

xxxx000F Address error

00000002

xxxx000F Illegal instruction error

00000003

xxxx000F Divide by zero error

00000004

xxxx000F Check instruction error

00000005

xxxx000F cpTrapCC, TrapCC, or TrapV error

00000006

xxxx000F Privilige violation 

00000007

xxxx000F Trace 

00000008

xxxx000F Line A error

00000009
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“Sad Macintosh” codes for Macintosh computers except the Mac Plus (continued)

 

ID Description
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“Sad Macintosh” Codes

 

xxxx000F Line F error

0000000A

xxxx000F Unassigned error

0000000B

xxxx000F Coprocessor protocol violation error

0000000C

xxxx000F Format exception 

0000000D

xxxx000F Spurious interrupt

0000000E

xxxx000F Trap 0-15 exception

0000000F

xxxx000F Interrupt level 1

00000010

xxxx000F Interrupt level 2

00000011

xxxx000F Interrupt level 3

00000012

xxxx000F Interrupt level 4

00000013

xxxx000F Interrupt level 5

000000014

xxxx000F Interrupt level 6

00000015

xxxx000F Interrupt level 7

00000016

xxxx000F Coprocessor BRA or SET on unordered condition

00000017

xxxx000F Coprocessor inexact result

00000018

 

continued
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“Sad Macintosh” codes for Macintosh computers except the Mac Plus (continued)

 

ID Description
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System Error Handler Alerts C

 

If these errors are reported by the “bomb box,” they are identified by an ID number in 
the lower-right corner of the box; if they are reported by MacsBug as a break message, 
they are identified by their ID number as well as an error string. This section describes 
some of the possible causes for these errors.  

xxxx000F Coprocessor divide by zero

00000019

xxxx000F Coprocessor underflow

0000001A

xxxx000F Coprocessor operand error

0000001B

xxxx000F Coprocessor operand error

0000001C

xxxx000F Coprocessor NAN

0000001D

xxxx000F MMU configuration

0000001E

xxxx000F MMU illegal operation

0000001F

xxxx000F MMU access level violation

00000020

 

Table C-2

 

“Sad Macintosh” codes for Macintosh computers except the Mac Plus (continued)

 

ID Description
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System Error Handler Alerts

 

Table C-3

 

System Error Handler alerts 

 

ID  String Description

 

1 dsBusErr Bus error: an attempt to read from or write to an address that 
doesn’t exist. For instance, if you have 2 MB of RAM in your 
Macintosh, and you try to read the byte at 3 MB, you may get a 
bus error. You may not stop at the exact instruction that contained 
the error—you could stop one or two instructions away from it. 
Because of their hardware design, the Macintosh Plus and 
Macintosh SE almost never get bus errors; instead, the nonexistent 
address is “wrapped around” to an address that does exist. What 
address that will turn out to be is difficult to predict.

2 dsAddressErr Address error: a word or long word reference to an odd address. An 
address error can be caused by two things. All machine instructions 
are an even number of bytes long, and must start on an even-
numbered address. If the PC ever gets set to an odd address, you 
will get an address error. On 68000 processors only, all word and 
long word accesses must be to even addresses (this is not true of 
single byte accesses); otherwise, your program will crash. On 68020 
and 68030 processors, word and long word accesses can be at any 
address, but they are faster if they are on even addresses.

3 dsIllInstErr Illegal instruction: the 68000 received an instruction it didn’t 
recognize. Not all hexadecimal numbers are valid machine code 
instructions. If the processor hits a value that is not a valid machine 
code instruction, you will get an illegal instruction error. The most 
likely cause of this error is that you jumped from the program code 
into a random memory location that contains garbage. A less 
common cause of this error is related to the hardware you’re using. 
Some instructions are valid on a 68020 or 68030 but not on a 68000. 
If you hit such an instruction on a Macintosh Plus or Macintosh SE, 
you will get an illegal instruction error.

4 dsZeroDivErr Zero divide: signed divide (DIVS) or unsigned divide (DIVU) with 
0 divisor was executed

5 dsChkErr Check error: check register against bounds error was executed and 
failed. Pascal compilers put in code to make sure that array indexes 
are not larger than the array itself, to prevent you from running off 
the end of the array. (Strings are just arrays, so they are checked this 
way too.) If the code the compiler puts in finds an error, it generates 
a check error. C compilers don’t do this.

6 dsOvFlowErr TrapV exception (also known as an overflow error): TRAPV 
instruction was executed and failed. Usually (but not always) this 
indicates an overflow on an operation. It is a very rare error.

7 dsPrivErr Privilege violation: the application tried to get into restricted OS 
memory. Also a very rare error.

8 dsTraceErr Trace exception: the trace bit in the status register was set 
accidentally. Another rare error.

9 dsLineAErr Line 1010 exception: the A-trap dispatcher is not working. Another 
rare error.
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10 dsLineFEr Line 1111 exception: a floating-point instruction tried to execute on 
a machine without a floating-point processor. 

11 dsMiscErr Miscellaneous exception: all other 68000 hardware exceptions. 
Cosmic rays. If it happens repeatedly, have your hardware checked.

12 dsCoreErr Unimplemented core routine. This just means that you’ve hit an 
unimplemented A-trap—that is, an A-trap number that’s not used, 
so no code exists for it.

13 dsIrqErr Spurious interrupt: the interrupt vector table entry for a particular 
level of interrupt (usually level 4, 5, 6, or 7) was NIL. Cosmic rays. If 
it happens repeatedly, have your hardware checked.

14 dsIOCoreErr I/O system error: File Manager dequeue failed.

15 dsLoadErr Segment Loader error: A GetResource call to read a segment into 
memory failed. This is caused either by a bad file or by running out 
of memory.

16 dsFPErr Floating-point error: error in the floating calculations.

17 dsNoPackErr Can’t load package 0: package 0 not present (List Manager); a 
GetResource call to load a 'PACK' resource failed. Your System file 
may be trashed, or you may be out of memory.

18 dsNoPk1 Can’t load package 1: package 1 not present. Your System file may 
be trashed, or you may be out of memory.

19 dsNoPk2 Can’t load package 2: package 2 not present (Disk Init); a 
GetResource call to load a 'PACK' resource failed. Your System 
file may be trashed, or you may be out of memory.

20 dsNoPd3 Can’t load package 3: package 3 not present (Standard File); a 
GetResource call to load a 'PACK' resource failed. Your System 
file may be trashed, or you may be out of memory.

21 dsNoPk4 Can’t load package 4: package 4 not present (SANE floating point); 
a GetResource call to load a 'PACK' resource failed. Your System file 
may be trashed, or you may be out of memory.

22 dsNoPk5 Can’t load package 5: package 5 not present (SANE transcen-
dentals); a GetResource call to load a 'PACK' resource failed. Your 
System file may be trashed, or you may be out of memory.

23 dsNoPk6 Can’t load package 6: package 6 not present (International Utilities); 
a GetResource call to load a 'PACK' resource failed. Your System file 
may be trashed, or you may be out of memory.

24 dsNoPk7 Can’t load package 7: package 7 not present (Binary-Decimal 
Conversion); a GetResource call to load a 'PACK' resource failed. 
Your System file may be trashed, or you may be out of memory.

25 dsMemFullErr Can’t allocate requested block: out of memory. This is the error the 
ROM returns when it runs out of memory deep inside itself, in 
places that are impossible to back out of
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ID  String Description



 

A P P E N D I X  C

 

Macintosh Error Codes

 

344

 

System Error Handler Alerts

 

26 dsBadLaunch Segment Loader error: a GetResource call to read code segment 0 
failed. Probably the file you double-clicked on isn’t an application 
or has been trashed.

27 dsFSErr File system map destroyed: someone attempted to access an invalid 
block. Hope you remembered to back up your disk!

28 dsStknHeap Stack overflow error: the stack grew so large that it intruded into 
the heap, thus corrupting the heap. This situation was detected by 
the stack sniffer

 

.

 

 Not all stack overflows are caught by the stack 
sniffer.

 

 You 

 

can trash the heap without getting this error, but you’ll 
crash sooner or later. One possible cause of this error is recursion 
that goes much deeper than you expect or whose stack frames are 
very large.

30 dsReinsert “Please insert the disk:” File Manager alert; request to reinsert 
off-line volume. Not an error.

31 dsNotThe1 Not the requested disk.

32 memTrbBase Memory Manager failed.

33 negZcbFreeErr ZcbFree is negative: you trashed the heap zone header.

34-53 Memory Manager errors.

40 dsGreeting “Welcome to Macintosh” greeting. Not an error.

41 dsFinderErr File named Finder couldn’t be found on the disk.

42 shutDownAlert “You may now switch off your Macintosh safely” dialog box. Not 
an error.

51 dsBadSlotInt Unserviceable slot interrupt.

81 dsBadSANEopcode Bad SANE opcode: floating-point package was given bad 
instructions.

84 menuPrgErr Menu purge error: a menu resource currently in use was purged.

85 dsMBarNFind Menu Manager error.

86 dsHMenuFindErr Menu Manager error.

87 wDEFnFnd WDEF not found: system couldn’t load the default window 
definition procedure resource.

88 cDEFnFnd CDEF not found: system couldn’t load the default control definition 
procedure resource.

98 dsNoPatch Can’t patch for particular model Macintosh: System file does not 
contain ROM patch resources for your Macintosh model. You may 
be using a system that’s older than your computer.

99 dsBadPatch Can’t load patch resource: error generated while loading the ROM 
patch resource. System file may be corrupted.

32767 dsSysErr General system error. A fatal error occurred, but the system doesn’t 
know which one.
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System Error Handler alerts (continued)

 

ID  String Description



 

A P P E N D I X  C

 

Macintosh Error Codes

Operating System Errors

 

345

 

Operating System Errors C

 

Operating system errors are presented in roughly ascending ID order and grouped 
according to manager. 

Note that the following tables include operating system errors introduced with system 
software version 7.0. These are denoted by an asterisk. It is possible that some of these 
might change with the final release of system 7.0.

 

OS Event Manager Error C

 

Serial Driver Errors C

 

Slot Manager Errors C

 

Table C-4

 

OS Event Manager error

 

ID Name Description

 

1 evtNotEnb Event not enabled at PostEvent.

 

Table C-5

 

Serial driver errors

 

ID Name Description

 

1 swOverrunErr Serial driver overrun error

16 parityErr Serial parity error

32 hwOverrunErr Serial hardware overrun

64 framingErr Serial framing error

 

Table C-6

 

Slot Manager errors 

 

ID Name Description

 

1 siInitSDTblErr Slot init dispatch table couldn’t be initialized

2 siInitVBLQsErr VBL queues for all slots couldn’t be initialized

3 siInitSPTblErr Slot priority table couldn’t be initialized

10 sdmJTInitErr SDM jump table couldn’t be initialized

11 sdmInitErr SDM couldn’t be initialized
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SCSI Manager Errors C

 

Printing Manager Errors C

 

12 sdmSRTInitErr Slot Resource Table couldn’t be initialized

13 sdmPRAMInitErr Slot PRAM couldn’t be initialized

14 sdmPriInitErr Cards couldn’t be initialized

*–32768 svTempDisable Temporarily disable card but run primary init

*–32640 svDisabled Reserve range –32640 to –32768 for Apple 
temp disables

 

Table C-7

 

SCSI Manager errors

 

ID Name Description

 

2 scCommErr Communications error (operations timeout).

3 scArbNBErr Arbitration failed during SCSIGet; bus busy.

4 scBadparmsErr Bad parameter or TIB opcode.

5 scPhaseErr SCSI bus not in correct phase for attempted operation.

6 scCompareErr SCSI Manager busy with another operation when 
SCSIGet was called.

7 scMgrBusyErr SCSI Manager busy with another operation when 
SCSIGet was called.

8 scSequenceErr Attempted operation is out of sequence, such as calling 
SCSISelect before doing SCSIGet.

9 scBusTOErr Bus timeout before data ready on SCSIRBlind and 
SCSIWBlind.

10 scComplPhaseErr SCSIComplete failed; bus not in Status phase.

 

Table C-8

 

Printing Manager errors

 

ID Name Description

 

128 iPrAbort Application or user requested abort.

–1 iPrSavPFil Saved a spool file.

 

Table C-6

 

Slot Manager errors (continued)

 

ID Name Description
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General System Errors C

 

Color Manager Errors C

 

Table C-9

 

General system errors

 

ID Name Description

 

0 noErr Success.

–1 qErr Queue element not found during deletion.

–2 vTypErr Invalid queue element.

–3 corErr Core routine number out of range.

–4 unimpErr Unimplemented core routine.

–8 seNoDB No debugger installed to handle debugger command.

 

Table C-10

 

Color Manager errors

 

ID Name Description

 

–9 iTabPurgErr From Color2Index/ITabMatch

–10 noColMatch From Color2Index/ITabMatch

–11 qAllocErr from MakeITable

–12 tblAllocErr from MakeITable

–13 overRun from MakeITable

–14 noRoomErr from MakeITable

–15 seOutOfRange from SetEntry

–16 seProtErr from SetEntry

–17 i2CRangeErr from SetEntry

–18 gdBadDev from SetEntry

–19 reRangeErr from SetEntry

–20 seInvRequest from SetEntry

–21 seNoMemErr from SetEntry
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Device Manager Errors C

 

Macintosh File System (MFS) Errors C

 

Table C-11

 

Device Manager errors

 

ID Name Description

 

–17 controlErr Driver couldn’t respond to this Control call.

–18 statusErr Driver couldn’t respond to this Status call.

–19 readErr Driver couldn’t respond to Read calls.

–20 writErr Driver couldn’t respond to Write calls.

–21 badUnitErr Driver reference number didn’t match unit table.

–22 unitEmptyErr Driver reference number specified NIL handle in unit table.

–23 openErr Requested read/write permission didn’t match driver’s 
open permission; attempt to open RAM Serial Driver failed.

–24 closErr Permission to close .MPP driver was denied.

–25 dRemovErr Tried to remove an open driver.

–26 dInstErr Drvinstall couldn’t find driver in resource file.

–27 abortErr I/O call aborted by KillIO.
Publisher has written a new edition. (Edition Mgr.)

–28 notOpenErr Can’t read, write, control, or status; driver was not opened.

–29 unitTblFullErr Unit table has no more entries.

–30 dceExtErr DCE extension error.

128 iIOAbort I/O abort error (Printing Manager).

 

Table C-12

 

MFS errors 

 

ID Name Description

 

–33 dirFulErr File directory full.

–34 dskFulErr All allocation blocks on the volume are full.

–35 nsvErr Volume not found.

–36 ioErr I/O error.

–37 bdNamErr Bad filename or volume name (perhaps zero-length).

–38 fnOpnErr File not open.

–39 eofErr Logical end of file reached during read operation.
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–40 posErr Tried to position the file pointer before the start of the 
file (read or write).

–41 mFulErr Memory full (open), or file wouldn’t fit (load).

–42 tmfoErr Too many files open.

–43 fnfErr File not found; Folder not found; Edition container not 
found; Target not found.

–44 wPrErr Volume is locked by a hardware setting.

–45 fLckdErr File is locked.

–46 vLckdErr Volume is locked by a software flag.

–47 fBsyErr File is busy; Section doing I/O.

–48 dupFNErr Duplicate filename (rename).

–49 opWrErr File already open with write permission.

–50 paramErr Error in user parameter list:

Parameters didn’t specify an existing volume (File Manager).

Bad positioning information (Disk Driver).

Bad drive number (Disk Initialization Package).

–51 rfNumErr Path reference number specifies nonexistent access path.

–52 gfpErr Error during GetFPos.

–53 volOffLinErr Volume not on-line (was ejected).

–54 permErr Not a subscriber; Software lock on file.

–55 volOnLinErr Drive volume already on-line at MountVol.

–56 nsDrvErr No such drive; specified drive number didn’t match any 
number in the drive queue.

–57 noMacDskErr Not a Macintosh disk; significant bytes are wrong.

–58 extFSErr Volume in question belongs to an external file system; 
file-system identifier is nonzero, or path reference number is 
greater than 1024.

–59 fsRnErr Problem during rename.

–60 badMDBErr Bad master directory block; must reinitialize volume.

–61 wrPermErr Write permissions error; Not a publisher.

 

Table C-12

 

MFS errors (continued)

 

ID Name Description
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Font Manager Errors C

 

Low-Level Disk Errors C

 

Table C-13

 

Font Manager errors

 

ID Name Description

 

–64 fontDecError Error during font declaration.

–65 fontNotDeclared Font not declared.

–66 fontSubErr Font substitution occurred.

 

Table C-14

 

Low-level disk errors

 

ID Name Description

 

–84 firstDskErr First of the range of low-level disk errors.

–64 lastDskErr Last of the range of low-level disk errors.

–64 noDriveErr Drive not installed.

–65 offLinErr Read/write requested for an off-line drive.

–66 noNybErr Couldn’t find 5 nibbles in 200 tries.

–67 noAdrMkErr Couldn’t find valid address mark.

–68 dataVerErr Read verify compare failed.

–69 badCksmErr Address mark checksum did not check.

–70 badBtSlpErr Bad address mark bit slip nibbles.

–71 noDtaMkErr Couldn’t find a data mark header.

–72 badDCksum Bad data mark checksum.

–73 badDBtSlp Bad data mark bit slip nibbles.

–74 wrUnderrun Write underrun occurred.

–75 cantStepErr Step handshake failed.

–76 tk0BadErr Track 0 detect does not change.

–77 initIWMErr Unable to initialize IWM.

–78 twoSideErr Tried to read second side on a one-sided drive.

–79 spdAdjErr Unable to correctly adjust disk speed.

–80 seekErr Track number wrong on address mark.

–81 sectNFErr Sector number never found on a track.

–82 fmt1Err Couldn’t find sector 0 after track format.

–83 fmt2Err Couldn’t get enough sync.

–84 verErr Track failed to verify.
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Clock Chip Errors C

 

Serial Communications Controller (SCC) Errors C

 

AppleTalk Errors C

 

Table C-15

 

Clock chip errors

 

ID Name Description

 

–85 clkRdErr Unable to read same clock value twice.

–86 clkWrErr Time written didn’t verify.

–87 prWrErr Parameter RAM written didn’t read-verify.

–88 prInitErr InitUtil found the parameter RAM uninitialized.

 

Table C-16

 

SCC errors

 

ID Name Description

 

–89 rcvrErr SCC receiver error (framing, parity, OR).

–90 breakRecd Break received (SCC).

 

Table C-17

 

AppleTalk errors

 

ID Name Description

 

*–91 eMultiErr Invalid address of table is full

–91 ddpSktErr DDP error in socket number: socket already active, not a 
well-known socket, socket table full, or all dynamic 
socket numbers in use.

–92 ddpLenErr DDP datagram or ALAP data length too big.

*–92 elenErr Packet too large or first entry of the write-data structure 
did not contain the full 14-byte header.

–93 noBridgeErr No network bridge for nonlocal send.

–94 LAPProtErr Error in attaching/detaching protocol: attach error when 
ALAP protocol type is negative, not in range, or already 
in table, or when table is full; detach error when ALAP 
protocol type isn’t in table.

–95 excessCollsns Excessive collisions on write.

–97 portInUse Driver open error; port already in use.

–98 portNotCf Driver open error; parameter RAM not configured for 
this connection.

–99 memROZErr Hard error in ROZ.

–99 memROZWarn Soft error in ROZ.
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Scrap Manager Errors C

 

Storage Allocator Errors C

 

Hierarchical File System (HFS) Errors C

 

Table C-18

 

Scrap Manager errors

 

ID Name Description

 

–100 noScrapErr Desk scrap not initialized.

–102 noTypeErr No object of that type in scrap.

 

Table C-19

 

Storage allocator errors

 

ID Name Description

 

–108 memFullErr Not enough room in heap zone.

–109 nilHandleErr Handle was NIL in HandleZone; GetHandleSize fails on 
baseText or substitution Text.

–110 memAdrErr Address was odd or out of range.

–111 memWZErr WhichZone failed (applied to free block);  GetHandleSize 
fails on baseText or substitution Text.

–112 memPurErr Tried to purge a locked or nonpurgeable block.

–113 memAZErr Address in zone check failed.

–114 memPCErr Pointer check failed.

–115 memBCErr Block check failed.

–116 memSCErr Size check failed.

–117 memLockedErr Tried to move a locked block (MoveHHi).

 

Table C-20

 

HFS errors

ID Name Description

–120 dirNFErr Directory not found.

–121 tmwdoErr No free WDCB available.

–122 badMovErr Moved into offspring error.

–123 wrgVolTypErr Wrong volume type (operation not supported for MFS).

–124 volGoneErr Server volume disconnected.

–127 fsDsIntErr Internal file system error.
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Alias Manager Error C

Menu Manager Errors C

Color QuickDraw and Color Manager Errors C

Table C-21 Alias Manager error

ID Name Description

*–128 userCanceledErr User canceled out of an operation status.

Table C-22 Menu Manager errors

ID Name Description

–126 mBarNFnd System error code for MBDF not found.

–127 hMenuFindErr Couldn’t find HMenu’s parent in MenuKey.

Table C-23 Color QuickDraw and Color Manager errors

ID Name Description

*–125 updPixMemErr Insufficient memory to update a pixmap.

*–145 noMemForPictPlaybackErr 

*–147 rgnTooBigError Region too big or complex.

*–148 pixMapTooDeepErr PixMap record is deeper than 1 bit per pixel.

*–149 mfStackErr Insufficient stack.

–150 cMatchErr Color2Index failed to find an index.

–151 cTempMemErr Failed to allocate memory for 
temporary structures.

–152 cNoMemErr Failed to allocate memory for structure.

–153 cRangeErr Range error on colorTable request.

–154 cProtectErr colorTable entry protection violation.

–155 cDevErr Invalid type of graphics device.

–156 cResErr Invalid resolution for MakeITable

–157 cDepthErr Invalid pixel depth.
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Resource Manager Errors C

Sound Manager Errors C

Table C-24 Resource Manager errors

ID Name Description

*–188 resourceInMemory Resource already in memory.

*–189 writingpastEnd Writing past end of file

*–190 inputOutOfBounds Offset or count out of bounds

–192 resNotFound Resource not found.

–193 resFNotFound Resource file not found.

–194 addResFailed AddResource failed.

–195 addRefFailed AddReference failed.

–196 rmvResFailed RmveResource failed.

–197 rmvRefFailed RmveReference failed.

–198 resAttrErr Attribute inconsistent with operation.

–199 mapReadErr Map inconsistent with operation.

Table C-25 Sound Manager errors 

ID Name Description

–200 noHardware No hardware support for the 
specified synthesizer.

–201 notEnoughHardware No more channels for the specified synthesizer.

–203 queueFull No room in the queue.

–204 resProblem Problem loading resource.

–205 badChannel Invalid channel queue length.

–206 badFormat Handle to 'snd' resource was invalid.

*–207 NotEnoughBufferSpace Insufficient memory available.

*–208 badFileFormat File is corrupt or unusable, or not AIFF 
or AIFF-C.

*–209 ChannelBusy Channel is busy.

*–210 buffersTooSmall Buffer is too small.

*–211 channelNotBusy Channel not currently used.

*–212 noMoreRealTime Not enough CPU time available

continued
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Slot Manager Errors C
Errors –290 to –320 might be generated during system initialization; if they are, they will 
be logged into the sInfo array and returned each time a call to the Slot Manager is made 
for the card that generated the error. 

Errors –330 to –351 might be generated at any time after system initialization and will 
not be logged into the sInfo array.

*–213 badParam A parameter is incorrect.

*–220 siNoSoundInHardware No sound input hardware available.

*–221 siBadSoundInDevice Invalid sound input device.

*–222 siNoBufferSpecified No buffer specified.

*–223 siNoCompletionRoutine No completion routine specified.

*–224 siHardDiskTooSlow Hard drive too slow to record.

*–225 siInvalidSampleRate Invalid sample rate.

*–226 siInvalidSampleSize Invalid sample size.

*–227 siDeviceBusyErr Sound input device is busy.

*–228 siBadDeviceName Invalid device name.

*–229 siBadRefNum Invalid reference number.

*–230 siInputDeviceErr Input device hardware failure.

*–231 siUnknownInfoType Unknown type information.

*–232 siUnknownQuality Unknown quality.

Table C-26 Slot Manager errors 

ID Name Description

–290 smSDMInitErr SDM couldn’t be initialized.

–291 smSRTInitErr Slot Resource Table couldn’t be initialized.

–292 smPRAMInitErr Slot Resource Table couldn’t be initialized.

–293 smPriInitErr Cards couldn’t be initialized.

*–299 nmTypeErr Invalid qType—must be ORD(nmType).

–300 smEmptySlot No card in this slot.

–301 smCRCFail CRC check failed for declaration data.

continued

Table C-25 Sound Manager errors (continued)

ID Name Description
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–302 smFormatErr Format of the declaration ROM is wrong.

–303 smRevisionErr Revision level of the declaration ROM is wrong.

–304 smNoDir Directory offset is NIL.

–305 smLWTsBad Long word test failed.

–306 smNosInfoArray SDM was unable to allocate memory for the 
sInfo array.

–307 smResrvErr A reserved field of the declaration ROM was used.

–308 smUnExBusErr Unexpected bus error.

–309 smBLFieldBad A valid ByteLanes field was not found.

–310 smFHBlockRdErr F-Header block could not be read.

–311 smFHBlkDispErr F-Header block could not be disposed of.

–312 smDisposePErr An error occurred during execution 
of _DisposPointer.

–313 smNoBoardsRsrc No board sResource.

–314 smGetPRErr An error occurred during execution 
of _sGetPRAMRec.

–315 smNoBoardId No board ID.

–316 smInitStatVErr InitStatus_V field was negative after Primary Init.

–317 smInitTblErr An error occurred while trying to initialize the Slot 
Resource Table.

–318 smNoJmpTbl Slot Manager jump table could not be created.

–319 smBadBoardID Board ID was wrong; reinitialize the PRAM record.

–320 smBusErrTO Bus error timeout.

–330 smBadRefID Reference ID was not found in the given list.

–331 smBadsList IDs in the given sList are not in ascending order.

–332 smReservedErr A reserved field was not zero.

–333 smCodeRevErr Revision of the code to be executed by sExec 
was wrong.

–334 smCPUErr CPU field of the code to be executed by sExec 
was wrong.

–335 smsPointerNil sPointer is NIL; no list is specified.

–336 smNilsBlockErr Physical block size of an sBlock was zero.

–337 smSlotOOBErr Given slot is out of bounds or does not exist.

continued

Table C-26 Slot Manager errors (continued)

ID Name Description
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Notification Manager Error C

Device Manager Errors C

–338 smSelOOBErr Selector is out of bounds.

–339 smNewPErr An error occurred during execution of _NewPointer.

*–340 smBlkMoveErr _BlockMove error.

–341 smCkStatusErr Status of slot is bad (InitStatus_A, V).

–342 smGetDrvrNamErr An error occurred during execution 
of _sGetDrvrName.

*–343 smDisDrvrNamErr Error occured during _sDisDrvrName.

–344 smNoMoresRsrcs No more sResources.

–345 smGetDrvrErr An error occurred during execution of _sGetDrvr.

–346 smBadsPtrErr A bad sPointer was presented to a SDM call.

–347 smByteLanesErr Bad ByteLanes value was passed to an SDM call.

*–348 smOffsetErr Offset was too big (temporary error).

–349 smNoGoodOpens No opens were successful in the loop.

–350 smSRTOvrFlErr Slot Resource Table overflow.

–351 smRecNotFnd Record not found in the Slot Resource Table.

Table C-27 Notification Manager error

ID Name Description

–299 nmTypErr Wrong queue type.

Table C-28 Device Manager errors

ID Name Description

–360 slotNumErr Invalid slot number.

–400 gcrOnMFMErr gcr format on high-density media error.

–500 rgnTooBigErr Region too big error.

–501 teScrapSozeErr Scrap item too big for text edit record.

–502 hwParamrErr bad selector for _HWPriv.

Table C-26 Slot Manager errors (continued)

ID Name Description
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Edition Manager Errors C

Process Manager Errors C

Table C-29 Edition Manager errors 

ID Name Description

*–450 editionMgrInitErr Edition Manager not inited by 
this application.

*–451 badSectionErr Not a valid SectionRecord. 

*–452 notRegisteredSectionErr Not a registered SectionRecord.

*–453 badEditionFileErr Edition file is corrupt. 

*–454 badSubPartErr Can not use sub parts in this release. 

*–460 multiplePublisherWrn A publisher is already registered for 
that container. 

*–461 containerNotFoundWrn Could not find editionContainer at this time. 

*–462 containerAlreadyOpenWrn Container already opened by this section. 

*–463 notThePublisherWrn Not the first registered publisher for 
that container.

Table C-30 Process Manager errors

ID Name Description

*–600 procNotFound No eligible process with specified process 
serial number.

*–601 memFragErr Not enough room to launch application with 
special requirements.

*–602 appModeErr Memory mode is 32-bit, but application is not 
32-bit clean.

*–603 protocolErr Application made module calls in improper order.

*–604 hardwareConfigErr Hardware configuration is not correct for call.

*–605 appMemFullErr Partition size specified in 'SIZE' resource is not big 
enough for launch.

*–606 appIsDaemon Application is background only.
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Event Manager Errors C

Memory Manager Errors C

Data Access Manager Errors C

Table C-31 Event Manager errors

ID Name Description

*–607 bufferIsSmall Buffer is too small.

*–608 noOutstandingHLE No outstanding high-level event.

*–609 connectionInValid Connection is invalid.

Table C-32 Memory Manager errors

ID Name Description

*–620 notEnoughMemoryErr Insufficient physical memory.

*–621 notHeldErr Specified range of memory is not held.

*–622 cannotMakeContinguousErr Cannot make specified range contiguous.

*–623 notLockedErr Specified range of memory is not locked.

*–624 interruptsMaskedErr Called with interrupts masked.

*–625 cannotDeferErr Unable to defer additional user functions.

Table C-33 Data Access Manager errors 

ID Name Description

*–800 rcDBNull The data item was NULL.

*–801 rcDBValue Data abailable or successfully retrieved.

*–802 rcDBError Error executing function.

*–803 rcDBBadType Next data item not of requested data type.

*–804 rcDBBreak Function timed out.

*–805 rcDBExec Query currently executing.

*–806 rcDBBadSessId Session ID is invalid.

*–807 rcDBBadSessNum Invalid session number.

*–808 rcDBBadDDev Couldn't find the specified database extension, or 
error occurred in opening database extension.

continued
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Help Manager Errors C

PPC Toolbox Errors C

*–809 rcDBAsyncNotSupp The database extension does not support 
asynchronous calls.

*–810 rcDBBadAsynchPB Invalid parameter block specified.

*–811 rcDBNoHandler There is no handler for this data type installed for 
the current application.

*–812 rcDBWrongVersion Wrong version number.

*–813 rcDBPackNotInited The InitDBPack function has not yet been called.

Table C-34 Help Manager errors

ID Name Description

*–850 hmHelpDisabled Help is not enabled.

*–853 hmBalloonAborted Mouse was moving or not in rectangle.

*–854 hmSameAsLastBalloon Menu and item are same as previous menu 
and item.

*–855 hmHelpManagerNotInited Help menu not set up.

*–857 hmSkippedBalloon Help message record specified a skip balloon.

*–859 hmUnknownHelpType Help message record contained a bad type.

*–861 hmOperationUnsupported Bad method parameter.

*–862 hmNoBalloonUp No balloon showing.

*–863 hmCloseViewActive User using Close View won’t let you 
remove balloon.

Table C-35 PPC Toolbox errors 

ID Name Description

*–900 notInitErr PPCToolBox not initialized. 

*–902 nameTypeErr Invalid or inappropriate locationKindSelector 
in locationName. 

*–903 noPortErr Unable to open port or bad portRefNum. 

*–904 noGlobalsErr The system is hosed, better restart.

continued

Table C-33 Data Access Manager errors (continued)

ID Name Description
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*–905 localOnlyErr Network activity is currently disabled. 

*–906 destPortErr Port does not exist at destination.

*–907 sessTableErr Out of session tables, try again later.

*–908 noSessionErr Invalid session reference number. 

*–909 badReqErr Bad parameter or invalid state for operation. 

*–910 portNameExistsErr Port is already open, perhaps in another 
application.

*–911 noPortTableErr User name unknown on destination machine.

*–912 userRejectErr Destination rejected the session request. 

*–915 noResponseErr Unable to contact application.

*–916 portClosedErr The port was closed.

*–917 sessClosedErrr The session has closed.

*–919 badPortNameErr PPC port record is invalid.

*–922 noDefaultUserErr No owner’s name in Network Setup Control Panel.

*–923 notLoggedInErr The default userRefNum does not yet exist. 

*–924 noUserRefErr Unable to create a new userRefNum.

*–925 networkErr An error has occured in the network; a very 
rare error. 

*–926 noInformErr PPCStart failed because destination did not have 
inform pending. 

*–927 authFailErr Unable to authenticate user at destination. 

*–928 noUserRecErr Invalid user reference number. 

*–930 badServiceMethodErr Illegal service type, or not supported. 

*–931 badLocNameErr Location name malformed. 

*–932 guestNotAllowedErr Destination port requires authentication. 

Table C-35 PPC Toolbox errors (continued)

ID Name Description



A P P E N D I X  C

Macintosh Error Codes

362 Operating System Errors

File ID Errors C

AppleTalk Name Binding Protocol (NBP) Errors C

Table C-36 File ID errors

ID Name Description

*–1300 fidNotFound File ID not found.

*–1301 fidExists File ID already exists.

*–1302 NotAFileErr Specified file is a directory.

*–1303 DiffVolErr Files on different volumes.

*–1304 catChangedErr Catalog has changed and CatPosition might be 
invalid.

*–1305 desktopDamagedErr Desktop database files are corrupted. The Finder 
will fix this, but if your application is not running 
with the Finder, use DTReset or DTDelete.

*–1306 sameFileErr Can’t exchange a file with itself.

*–1307 badFidErr File ID is dangling or doesn’t match with file 
number.

Table C-37 NBP errors

ID Name Description

–1024 nbpBuffOvr Buffer overflow in LookupName.

–1025 nbpNoConfirm Name not confirmed on ConfirmName.

–1026 nbpConfDiff Name confirmed for different socket.

*–1027 nbpDuplicate Duplicate name already exists.

–1028 nbpNotFound Name not found on remove.

–1029 nbpNISErr Error trying to open the NIS.
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AppleTalk Session Protocol (ASP) Errors C

AppleTalk Transaction Protocol (ATP) Errors C

Table C-38 ASP errors

ID Name Description

–1066 aspBadVersNum Server couldn’t support this ASP version.

–1067 aspBufTooSmall Buffer too small.

–1068 aspNoMoreSess No more sessions on server.

–1069 aspNoServers No servers at that address.

–1070 aspParamErr Parameter error.

–1071 aspServerBusy Server couldn’t open another session.

–1072 aspSessClosed Session closed.

–1073 aspSizeErr Command block is too big.

–1074 aspTooMany Too many clients.

–1075 aspNoAck No ack on attention request.

Table C-39 ATP errors 

ID Name Description

*–1096 reqFailed SendRequest failed; retry count exceeded.

–1097 tooManyReqs Too many concurrent requests.

–1098 tooManySkts Too many responding sockets.

–1099 badATPSkt Bad responding socket.

–1100 badBuffNum Bad response buffer number specified.

–1101 noRelErr No release received.

*–1102 cbNotFound Control block not found.

–1103 noSendResp AddResponse issued before SendResponse.

–1104 noDataArea Too many outstanding ATP calls.

*–1105 reqAborted Request aborted.

*–1273 errOpenDenied Open request denied by recipient.

*–1274 errDSPQueueSize Send or receive queue is too small

*–1275 errFwdReset Read terminated by forward reset.

*–1276 errAttention Attention message too long.

continued
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AppleTalk Filing Protocol (AFP) Errors C

*–1277 errOpening Attempt to open connection failed.

*–1278 errState Bad connection state for this operation.

*–1279 errAborted Request aborted by dspRemove or 
dspClose function.

*–1280 errRefNum Bad connection reference number.

*–3101 buf2SmallErr ALAP frame too large for buffer; DDP datagram too 
large for buffer.

–3102 noMPPError MPP driver not installed.

–3103 ckSumErr DDP bad checksum.

–3104 extractErr NBP couldn’t find tuple in buffer.

–3105 readQErr Socket or protocol type invalid or not found in table.

–3106 atpLenErr ATP response message too large.

–3107 atpBadRsp Bad response from ATPRequest.

–3108 recNotFnd ABRecord not found.

–3109 sktClosedErr Asynchronous call aborted because socket was 
closed before call was completed.

Table C-40 AFP errors 

ID Name  Description

–5000 afpAccessDenied AFP access denied.

–5001 afpAuthContinue AFP authorization continue.

–5002 afpBadUAM AFP bad VAM.

–5003 afpBadVersNum AFP bad version number.

–5004 afpBitmapErr AFP bit map error.

–5005 afpCantMove AFP can’t move error.

–5006 afpDenyConflict AFP deny conflict.

–5007 afpDirNotEmpty AFP directory not empty.

–5008 afpDiskFull AFP disk full.

–5009 afpEofError AFP End-0f-File error.

–5010 afpFileBusy AFP file busy.

continued

Table C-39 ATP errors (continued)

ID Name Description



A P P E N D I X  C

Macintosh Error Codes

Operating System Errors 365

SysEnvirons Errors C

–5011 afpFlatVol AFP flat volume.

•–5012 afpItemNotFound AFP item not found.

–5013 afpLockErr AFP lock error.

–5014 afpMiscErr AFP misc error. 

–5015 afpNoMoreLocks AFP no more locks.

–5016 afpNoServer AFP no server.

–5017 afpObjectExists AFP object already exists.

–5018 afpObjectNotFound AFP object no found.

–5019 afpParmErr AFP parm error.

–5020 afpRangeNotLocked AFP range not locked.

–5021 afpRangeOverlap AFP range overlap.

–5022 afpSessClosed AFP session closed.

–5023 afpUserNotAuth AFP user not authorized.

–5024 afpCallNotSupported AFP call not supported.

–5025 afpObjectTypeErr AFP object type error.

–5026 afpTooManyFilesOpen AFP too many files open.

–5027 afpServerGoingDown AFP server going down.

–5028 afpCantRename AFP can’t rename.

–5029 afpDirNotFound AFP directory not found.

–5030 afpIconTypeError AFP icon type error.

–5031 afpVolLocked Volume is Read-Only.

–5302 afpObjectLocked Object is M/R/D/W inhibited.

Table C-41 SysEnvirons errors

ID Name Description

–5500 envNotPresent SysEnvirons trap not present (System file earlier than 
version 4.1); glue returns values for all fields except 
systemVersion.

–5501 envBadVers A nonpositive version number was passed—no 
information returned.

–5502 envVersTooBig Requested version of SysEnvirons call was not available.

Table C-40 AFP errors (continued)

ID Name  Description
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Gestalt Manager Errors C

Picture Utilities Errors C

Power Manager Errors C

Table C-42 Gestalt Manager errors

ID Name Description

*–5550 gestaltUnknownErr Could not obtain the response.

*–5551 gestaltUndefSelectorErr Undefined selector.

*–5552 gestaltDupSelectorErr Selector already exists.

*–5553 gestaltLocationErr Function not in system heap.

Table C-43 Picture utilities errors

ID Name Description

*–11000 pictInfoVersionErr Wrong version of the PictInfo structure

*–11001 pictInfoIDErr Internal consistency check for PictInfoID 
is wrong

*–11002 pictInfoVerbErr The passed verb is invalid

*–11003 cantLoadPickMethodErr Unable to load the custom pick procedure

*–11004 colorsRequestedErr The number of colors requested was illegal

*–11005 pictureDataErr The picture data was invalid

Table C-44 Power Manager errors

ID Name Description

*–13000 pmBusyErr Power Manager IC stuck busy.

*–13001 pmReplyTOErr Timed out waiting to begin reply handshake.

*–13002 pmSendStartErr Power Manager IC did not start handshake.

*–13003 pmSendEndErr During send, Power Mgr did not finish handshake.

*–13004 pmRecvStartErr During receive, Power Mgr did not start handshake.

*–13005 pmRecvEndErr During receive, Power Mgr did not finish handshake.
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Procedure Names D

 

This appendix describes how a procedure must be defined in order for MacsBug to 
recognize it. 

 

Procedure Definition D

 

Whenever possible, MacsBug accepts and returns addresses as procedure names and 
offsets. MacsBug finds names by scanning relocatable heap blocks for valid procedure 
definitions. A procedure definition, in the simplest case, consists of a return instruction 
followed by the procedure’s name. 

A procedure is defined as follows:

 

■

 

LINK A6—This instruction is optional; if it is missing, the start of the procedure 
is assumed to be immediately after the preceding procedure, or at the start of the 
heap block.

 

■

 

Procedure code

 

■

 

RTS or JMP(A0) or RTD

 

■

 

Procedure name

 

■

 

Procedure constants

The procedure name can be a fixed length of 8 or 16 bytes, or of variable length. Valid 
characters for procedure names are a–z, A–Z, 0–9, underscore (_), percent (%), period (.), 
and space. The space character is allowed only to pad fixed-length names to the 
maximum length.

With fixed-length format, the first byte is in the range $20 through $7F. The high-order 
bit may or may not be set. The high-order bit of the second byte is set for 16-character 
names, clear for 8-character names. Fixed-length 16-character names are used in object 
Pascal to show class.method names instead of procedure names. The method name is 
contained in the first 8 bytes and the class name is in the second 8 bytes. MacsBug swaps 
the order and inserts the period before displaying the name.

With variable-length format, the first byte is in the range $80 to $9F. Stripping the 
high-order bit produces a length in the range $00 through $1F. If the length is 0, the next 
byte contains the actual length, in the range $01 through $FF. Data after the name starts 
on a word boundary. Compilers can place a procedure’s constant data immediately after 
the procedure in memory. The first word after the name specifies how many bytes of 
constant data are present. If there are no constants, a length of 0 must be given.

Figure D-0
Listing D-0
Table D-0
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Examples of Procedure Definitions

 

Examples of Procedure Definitions D

 

Here are some examples of valid assembly-language procedure definitions:

 

; Variable-length name with no constant data.

Proc1 PROC

LINK A6, #0

UNLK A6

RTS

DC.B $8C, 'VariableName'

DC.W $0000

ENDP

; Fixed 8-character name.

Proc2 PROC

LINK A6, #0

UNLK A6

RTS

DC.B $80 + 'F', 'ixed   '

ENDP

; Fixed 16-character name.

Proc3 PROC

LINK A6, #0

UNLK A6

RTS

DC.B $80 + 'M',  $80 + 'e', 'thod  Class   '

ENDP
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MacsBug Internals and 

 

Discipline Interface E

 

This appendix describes how MacsBug installs itself, how it forces exceptions, and how 
it interfaces with Discipline or—by extension—with any other program.

 

How MacsBug Installs Itself E

 

Support for debeuggers is provided beginning with the 128K ROM. When a system error 
or 68000 exception occurs, the ROM code examines the global variable MacJmp to obtain 
the address of the debugger’s entry point. MacJmp might contain additional informa-
tion, depending on whether you are running under a 24-bit or 32-bit Memory Manager.

If you are running under a 24-bit Memory Manager, the high-order byte of MacJmp is a 
flags byte that contains the following information: 

The lower 3 bytes of MacJmp are used to store the address of the debugger’s entry point.

If you are running under a 32-bit Memory Manager, the flags byte is moved to address 
$BFF and the long word at MacJmp becomes a full 32-bit address that points to the 
debugger’s entry point.

When a debugger installs itself, it should set bit 5 in the flags byte to indicate it is 
installed and, if it supports Discipline, it should set bit 4 as well. It must do this under 
either a 24-bit or 32-bit Memory Manager, although, as mentioned above, this informa-
tion will be stored in different locations.

 

How MacsBug Is Implemented E

 

If a debugger is installed and an exception occurs, the register set is saved in the global 
variable SEVars, and a call is made to the address in MacJmp. When the debugger 
returns, the register set is restored and execution resumes at the address in the 
program counter.

 

Bit Meaning

 

7 Set if debugger is running

6 Set if debugger can handle system errors

5 Set if debugger is installed

4 Set if debugger can support the Discipline utility

Figure E-0
Listing E-0
Table E-0
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How MacsBug Installs Itself

 

While active, MacsBug installs a bus error handler to catch any illegal memory 
references. MacsBug does not install an address error handler since it can check 
whether addresses are even before accessing them.

MacsBug itself forces two kinds of exceptions. The first is used to set breakpoints. 
MacsBug replaces the first word in an instruction with a TRAP instruction; when the 
program reaches this point, an exception is generated. The second is used in tracing 
instruction execution while single-stepping. MacsBug forces an exception by setting the 
Trace bit of the status register before executing an instruction. 

MacsBug installs its own trace exception handler when any of these conditions are true:

 

■

 

At least one ROM breakpoint is set.

 

■

 

A breakpoint was set at the PC when execution resumed. The instruction must be 
executed before the breakpoint can be reinstalled.

 

■

 

A Step command is in progress.

 

■

 

A Step Spy command is in progress.

The SO (Step Over) command steps over JSR and BSR instructions by executing the call 
with the Trace bit set, replacing the return address with an address inside MacsBug, and 
then proceeding normally. The SO command steps over a trap call by copying the trap 
instruction into MacsBug and proceeding from that point.

MacsBug installs its own A-trap exception handler when any of these conditions are true:

 

■

 

An A-trap command is active.

 

■

 

The Extended Discipline utility is enabled.

 

■

 

Heap scrambling is enabled.

 

■

 

MacsBug steps into a trap call.

The Debug and DebugStr traps do not preserve the status register (SR). These traps are 
directed to MacsBug by the dispatcher, which tosses the contents of the SR immediately 
upon entry.

Since interrupts are turned off, MacsBug gets keystrokes by polling for a keyboard 
interrupt and then calling the interrupt routine at Lvl1DT+8. MacsBug fields the event 
by temporarily installing its own PostEvent handler.

MacsBug assumes the screen buffer on a Macintosh Plus or Macintosh SE is at address 
$3FA700, accommodating external monitors that change ScrnBase. MacsBug always 
appears on the internal display.

On all Macintosh II computers, MacsBug uses the first item in the gDevList as its 
display. The device must support 1-bit mode, and the display is limited to 640 by 480 
to conserve memory.

While swapping the user and MacsBug displays on multi-bit displays, MacsBug calls 
SetMode and SetEntries (using the Control trap) to set a bit depth of 1, and a black-
and-white color table.
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How MacsBug Interfaces With Discipline E

 

Discipline is a set of routines that the debugger calls to get information before or after a 
trap call. If the parameters are bad, Discipline returns a text string. The debugger halts 
program execution and displays the message.

The address of the debugger’s entry point is stored in MacJmp. The long word preceding 
the entry point, points to a structure allocated by the debugger and filled in by both the 
debugger and Discipline. The structure contains version information, a jump table of 
Dsicipline function addresses, and a pointer to Discipline’s global data. All jump table 
addresses are 32-bit addresses. Table E-1 describes the fields of this structure.

 

Table E-1

 

Discipline and debugger information

 

Field Offset Description

 

Version 
information

+0 Debugger signature:  filled in by debugger. MacsBug sets 
this to MT.

+2 Debugger version:  filled in by debugger. MacsBug sets 
this to 1.

+3 Discipline interface version supported by debugger:  filled in 
by debugger. MacsBug sets this to 1.

+4 Discipline signature: Discipline sets this to LB.’

+5 Discipline version:  Discipline sets this to 1.

+6 Discipline interface version provided by Discipline:  
Discipline sets this to 1.

Jump table The debugger initializes jump table entries to zero; 
Discipline fills in the addresses when it is installed. If 
the CheckBeforeCall entry is set to a non-nil value, the 
debugger assumes Discipline is installed.

+8 CheckBeforeCall

+12 CheckAfterCall

+16 Configuration

Data 
pointer

+20 Discipline global data pointer:  filled in by Discipline. This 
storage location is provided by the debugger so that if 
Discipline is implemented as an INIT, it can access its data 
through this hook.
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How MacsBug Interfaces With Discipline

 

Jump Table Entries E

 

Each entry in the jump table is the address of a procedure the debugger can call. All calls 
must use Pascal calling conventions. This means the Discipline routines should pop the 
parameters from the stack. Discipline must also preserve registers D3 – D7 and A2 – A6.

Discipline should set up its own A5 and A7 world. Discipline can use a small amount of 
the debugger stack (never more than 1K) to do this.

 

Calling Discipline E

 

The debugger should provide a command to turn Discipline on or off or to configure 
Discipline. For example

DSC [ ON | OFF | 

 

text 

 

]

Typing DSC without parameters would toggle Discipline on and off. DSC with ON or 
OFF as parameters would do just that. The debugger uses the Configuration routine to 
pass a pointer to a null terminated string containing “ON,” “OFF,” or the remainder of 
the command line whenever the user enters DSC. 

The Pascal definition for the configuration routine is

 

FUNCTION Configuration (

 

parameters

 

: CStringPtr): CStringPtr;

 

The Configuration routine returns a pointer to a null terminated text string. If the result 
is not Nil, the debugger displays the text. The text can have embedded carriage returns 
to display multiple lines.

Once the user has turned Discipline on, all A-traps are routed through the debugger 
before the dispatcher is called. Before dispatching a trap, the debugger calls the 
CheckBeforeTrap function. The definition for CheckBeforeTrap is

 

FUNCTION CheckBeforeTrap (

 

trapNumber

 

:  INTEGER; 

 

registers

 

: 

Pointer; VAR  

 

resultCode

 

:  INTEGER; VAR 

 

checkAfter

 

:  

BOOLEAN): CStringPtr;

 

The CheckBeforeTrap function returns a pointer to a null terminated text string. If the 
result is not Nil, the debugger halts the program and displays the text. The text can have 
embedded carriage returns to display multiple lines. Discipline uses the 

 

resultCode 

 

parameter to indicate what it thinks is wrong with the call. A result code of zero is the 
same as a Nil result string. All other result codes are defined by Discipline.

The 

 

trapNumber 

 

passed to Discipline by the debugger should be masked with $A0FF for 
operating system traps and $ABFF for toolbox traps. The PC in the register file points to 
the trap word that was encountered.

Discipline can examine the registers by looking at the register file pointed to by the 

 

registers

 

 parameter. The register file is made up of 18 long words, with information 
ordered as shown in Table E-2.
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If the debugger can break after the trap call, it sets the 

 

checkAfter

 

 parameter to TRUE. The 
debugger should not break after the trap call if the call is made from ROM to RAM since 
this won’t work with patched traps. The debugger should also ignore the LoadSeg trap. 
If Discipline wants to check after the trap and the debugger can break, then 

 

checkAfter

 

 is 
left unchanged. If Discipline does not want to check after the trap, it must set the 

 

checkAfter

 

 parameter to FALSE.

The definition for the CheckAfterTrap function is

 

FUNCTION CheckAfterTrap (

 

trapNumber

 

:  INTEGER; 

 

registers

 

:  Pointer;

 VAR 

 

resultCode

 

:  INTEGER):  CStringPtr;

 

The parameters to this routine are the same as those to the CheckBeforeTrap function. 

 

Table E-2

 

Contents of register file

 

Offset Contents Offset Contents

 

0 D0 32 A0

4 D1 36 A1

8 D2 40 A2

12 D3 44 A3

16 D4 48 A4

20 D5 52 A5

24 D6 56 A6

28 D7 60 A7

64 PC

68 SR    (high-order word)
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24-bit addressing:  

 

A memory management 
scheme under which the microprocessor can 
access up to 24 MB of address space.

 

32-bit addressing:

 

A memory management 
scheme under which the microprocessor can 
access up to 4 GB of address space.

 

32-bit clean:

 

A program that does not use the 
high byte of an address to store data.

 

addressing mode:

 

A method used by the 
microprocessor to compute the value of 
an operand.

 

address register

 

: One of eight locations within 
the microprocessor normally used to store 
addresses. Some of these registers are used for 
specific purposes: A7 designates the top of the 
stack, A6 is used to reference items in a stack 
frame, and A5 is used to reference application 
globals and the jump table.

 

address space:

 

A range of accessible memory.  

 

assembler:

 

A language translator that converts 
a program written in assembly language (source 
code) into an equivalent program in machine 
language (object code). The opposite of a 

 

disassembler. 

 

Compare 

 

compiler.

 

  

 

assembly language:

 

A low-level programming 
language in which individual machine-language 
instructions are written in a symbolic form that’s 
easier to understand than machine language. 
Each assembly-language instruction produces 
one machine-language instruction. Because 
assembly-language programs require very little 
translation, they can be very fast. See also 

 

machine language.

 

  

 

asynchronous

 

 

 

I/O:

 

The capability to perform 
an I/O operation while its calling process 
continues to run. With synchronous I/O, the 
calling process “sleeps” until the I/O operation 
is finished.  

 

block:

 

A contiguous, page-aligned region of 
computer memory of arbitrary size, allocated by 
the Memory Manager. Also called a memory 
block. See also 

 

free block, nonrelocatable block, 
relocatable block. 

colon address:

 

A MacsBug variable that 
contains the starting address of the current 
procedure.

 

command line:

 

The area of the MacsBug 
display used to enter commands and perform 
base conversions and arithmetic calculations.

 

compiler:

 

A language translator that converts a 
program written in a high-level programming 
language (source code) into an equivalent 
program in some lower-level language such 
as machine language (object code) for later 
execution. Compare 

 

assembler. 

data register:

 

One of eight locations within the 
microprocessor normally used to store data. 

 

dcmd:

 

A code resource type that you can use to 
extend or modify the MacsBug command set. 
You can use standard dcmds, shipped with 
MacsBug, or you can write your own.

 

disassembler:

 

(1) A language translator that 
converts a machine-language program into an 
equivalent program in assembly language, which 
is easier for programmers to understand. The 
opposite of an 

 

assembler. 

 

(2) A program that 
examines data in memory and interprets it as a 
set of assembly-language instructions. Assuming 
that the data is object code, a disassembler gives 
the user the source code that could have 
generated that object code.  

 

dot address:

 

A MacsBug variable that contains 
the last address used by certain commands.

 

driver:

 

A program, usually in a System Folder, 
that lets a peripheral device and a computer send 
and receive files. Printer drivers control printers; 
a hard disk driver controls exchanges between a 
hard disk and a computer.  

 

Glossary
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effective address:

 

The address where the value 
of the operand is stored. The way to find the 
effective address depends on the addressing 
mode used.

 

error handler:

 

Code to which the 
microprocessor transfers control in the event of 
a fatal error. This could be the System Error 
Handler or a resident debugger like MacsBug if 
one is installed

 

EveryTime macro:

 

A macro that is executed 
every time but not the first time MacsBug is 
invoked. Compare 

 

FirstTime macro.

exception:

 

An error or abnormal condition 
detected by the processor in the course of 
program execution; includes interrupts and traps.  

 

exception handler:

 

A routine that gains 
control whenever an exception to normal 
processing occurs.

 

exception processing:

 

The means used by the 
microprocessor to handle unusual conditions 
caused by the hardware or by the software that 
must be addressed before normal processing 
resumes.

 

exception

 

 

 

vector:

 

The first 256 bytes of RAM 
($00 0000 through $00 00FF) as used by the 68000 
processor. These locations contain the addresses 
of routines that gain control whenever an 
exception to normal processing occurs. Excep-
tions include such events as a reset, an interrupt, 
or a trap.  

 

FirstTime macro:

 

A special initialization macro 
that loads and executes automatically when 
MacsBug loads during system startup. Compare 

 

EveryTime macro.

free block:

 

A contiguous region in the 
application or system heap that has not yet 
been allocated. 

 

glue:

 

Inline glue is code inserted at compile or 
link time to implement very simple system 
routines without going through the trap 
dispatcher. Library glue, which resides in 
interface libraries, is used to pass values to and 
receive values from register-based routines. 

 

handle:

 

A pointer to a master pointer; it 
designates a relocatable block in the heap by 
double indirection. 

 

heap:

 

The area of memory in which space is 
dynamically allocated and released on demand, 
using the Memory Manager.  

 

heap

 

 

 

zone:

 

An area of memory initialized by 
the Memory Manager for heap allocation.  

 

high memory:

 

(1) The upper limit of 
addressable memory. (2) A region in memory 
near the upper limit of addressable space. (3) A 
region near the top of RAM.

 

high-order:

 

(adj.)

 

 

 

Describes the most significant 
part of a numerical quantity. In normal 
representation, the high-order bit of a binary 
value is in the leftmost position; likewise, the 
high-order byte of a binary word or longword 
quantity consists of the leftmost eight bits. 
Compare 

 

low-order.

 

  

 

high-order byte:

 

The more significant half of a 
two-byte quantity. In the 68000 microprocessors 
used in the Macintosh family, the high-order byte 
is stored first. Compare 

 

low-order byte.

 

  

 

high-order word:

 

The more significant half of a 
long word. In normal representation, the 

 

high-order word 

 

of a long word is in the leftmost 
position. Compare 

 

low-order word

 

.

 

interrupt:

 

(1) An electronic attention-getter; a 
signal sent to the microprocessor that is intended 
to force the microprocessor to stop its current 
activity and accept input from the device that 
sent the interrupt. (2) A temporary suspension in 
the execution of a program that allows the 
computer to perform some other task, typically 
in response to a signal from a peripheral device 
or other source external to the computer. (3) An 
exception that’s signaled to the microprocessor 
by a device to notify the microprocessor of a 
change in condition of the device, such as the 
completion of an I/O request.  

 

interrupt handler:

 

A routine that services 
interrupts. A program, associated with a 
particular external device, that executes 
whenever that device sends an interrupt signal to 
the computer. The interrupt handler performs its 
tasks during the interrupt, then returns control to 
the computer so it may resume program 
execution.  
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interrupt

 

 

 

priority

 

 

 

level:

 

A number identifying 
the importance of the interrupt. It indicates 
which device is interrupting and which interrupt 
handler should be executed.  

 

interrupt switch:

 

A button marked with a 
circled V (or the word “Interrupt” on the 
Macintosh Plus). Pressing this button generates a 
level 7, non-maskable interrupt, which is why it 
is often called the NMI key. (On the Macintosh 
Plus or Macintosh SE, it can generate a level 4, 5, 
6, or 7 interrupt.) The microprocessor handles 
this interrupt by invoking MacsBug. See also 

 

interrupt.

interrupt

 

 

 

vector:

 

A pointer to an interrupt 
handler.  

 

jump table:

 

A table constructed in memory by 
the System Loader from all Jump Table segments 
encountered during a load. The Jump Table 
contains all references to dynamic segments that 
may be called during execution of the program.  

 

low memory:

 

(1) The lowest limit of address-
able memory. (2) A region in memory near 0.

 

low-order:

 

(adj.)

 

 

 

Describes the least significant 
part of a numerical quantity. In normal represen-
tation, the low-order bit of a binary number is in 
the rightmost position; likewise, the low-order 
byte of a binary word or longword quantity 
consists of the rightmost eight bits. Compare 

 

high-order.

 

  

 

low-order byte:

 

The less significant half of a 
two-byte quantity. For Macintosh computers the 
high-order byte is stored first and the low-order 
byte second. Compare 

 

high-order byte.

 

  

 

low-order word:

 

The less significant half of a 
long word. In normal representation, the 

 

low-order word 

 

of a long word is in the rightmost 
position. Compare 

 

high-order word

 

.

 

machine language:

 

The form in which 
instructions to a computer are stored in memory 
for direct execution by the computer’s micro-
processor. Each model of microprocessor (such as 
the 6502 or the 68000) has its own form of 
machine language. See also 

 

assembly language.

 

  

 

macro:

 

A name that you can substitute for an 
address, expression, or series of commands on 
the MacsBug command line.

 

NIL:

 

(adj.) Pointing to a value of 0. A memory 
handle is NIL if the address it points to is filled 
with zeros. Handles to purged memory blocks 
are NIL.  

 

nonrelocatable

 

 

 

block:

 

A block whose location 
in the heap is fixed and can’t be moved during 
heap compaction.  

 

output region:

 

The area of the MacsBug display 
used to display information in response to the 
commands you enter.

 

package:

 

A set of routines and data types that 
forms a part of the Toolbox or operating system 
and is stored as a resource. On the original 
Macintosh, all packages were disk-based and 
brought into memory only when needed; some 
packages are now in ROM.  

 

partition:

 

A locked relocatable block allocated 
for a 

 

process.

 

 The partition for an open 
application contains the application’s heap, stack, 
A5 world, and jump table.

 

patch:

 

(v.) (1) To replace one or more bytes in 
memory or in a file with other values. The 
address to which the program must jump to 
execute a subroutine is patched into memory at 
load time when a file is 

 

relocated.

 

 (2)

 

 

 

To replace a 
piece of ROM code with other, RAM-based 
system code by means of a new entry into the 
trap dispatch table. (n.) A resource of type

 

 

 

'PTCH'

 

 

 

containing the patched code.

 

  

PC region:

 

The area of the MacsBug display in 
which the address of the next instruction to be 
executed and the disassembly of that instruction 
are shown.

 

PC register:

 

A location within the 
microprocessor used to store the address of the 
next instruction to be executed.

 

pointer:

 

An item of information consisting of 
the memory address of some other item. For 
example, Applesoft BASIC maintains internal 
pointers to the most recently stored variable, the 
most recently typed program line, and the most 
recently read data item, among other things.  

 

process:

 

An open application; for example, the 
Finder, an application launched by the user, or an 
application running in the background only.
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programmer’s switch:

 

A two-pronged switch 
consisting of an interrupt switch, used to invoke 
MacsBug, and a reset switch, used to restart the 
Macintosh. See also 

 

interrupt switch.

relocatable

 

 

 

block:

 

A block that can be moved 
within the heap during compaction.  

 

stack:

 

A portion of memory that is used for 
temporary storage of operating data during 
operation of a program. The data on the stack are 
added (pushed) and removed (pulled or popped) 
in last-in, first-out (LIFO) order. 

 

stack-based

 

 

 

routine:

 

A Toolbox or operating 
system routine that receives its parameters and 
returns its results, if any, on the stack.  

 

stack

 

 

 

frame:

 

The area of the stack used by a 
routine for its parameters, return address, local 
variables, and temporary storage.  

 

status region:

 

The area of the MacsBug display 
used to display information about the system at 
the time that MacsBug is invoked.

 

status register:

 

A location within the 
microprocessor used to store information about 
the operation that has just been executed. (Also 
called the condition code register.)

 

synchronous I/O:

 

The calling process “sleeps” 
until the I/O operation is finished. Compare 

 

asynchronous I/O

 

.

 

trap

 

 

 

dispatcher:

 

The part of the operating 
system that examines a trap word to determine 
what operation it stands for, looks up the address 
of the corresponding routine in the 

 

trap dispatch 
table,

 

 and jumps to the routine.  

 

trap

 

 

 

dispatch

 

 

 

table:

 

A table in RAM containing 
the addresses of all Toolbox and operating 
system routines in encoded form.  

 

trap

 

 

 

number:

 

The identifying number of a 
Toolbox or operating system routine; an index 
into the trap dispatch table.  

 

trap

 

 

 

word:

 

An unimplemented instruction 
representing a call to a Toolbox or operating 
system routine.  

 

virtual memory:

 

A method of expanding 
available memory through the use of software 
rather than by installing additional hardware. A 
program running under virtual memory can 
access the entire logical memory of the computer 
as if it were RAM, except for blocks of memory 
reserved for the System heap, ROM, NuBus 
cards, and a resident debugger.
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Index

 

Symbols

 

* (asterisk) character 14
in disassembly display 64

: (colon) character 186
$ (dollar sign) 187
; (semicolon)

in disassembly display 64
use as command separator; 183

~ (tilde) 18

 

Numerals

 

24-bit addressing 77
32-bit addressing 77

 

A

 

absolute addressing 40
addresses

colon 186
dot address 185
exercise locating 30
expressed as offsets 185
invalid 168
return 111
specifying 184
starting of current procedure 186
storage in memory 69

addressing modes
absolute 40
address register direct 40
address register indirect 41
address register indirect with 

displacement 44
address register indirect with 

postincrement 42–43
address register indirect with 

predecrement 42–43
data register direct 40
immediate 46
implied 47
indexed indirect addressing with 

displacement 45
PC-relative 46
summary 38

address register direct 
addressing 40

address register indirect 
addressing 41

address register indirect with 
displacement addressing 44

address register indirect with 
postincrement 
addressing 42–43

address register indirect with 
predecrement 
addressing 42–43

address space 67
division of 71

AP macro 194
AppleShare 18
application partition 101
ApplLimit low-memory global 30, 

76
ApplZone low-memory global 29, 

76
arithmetic operators 186
assemblers 34
assembly-language code

reading 34
sample program 55–58
vs. source code 58

assembly-language instructions
branching 53
integer arithmetic 49
program control 50
stack frame 55
syntax 37
unimplemented 121, 122
without operands 47

assertions 166
asterisk (*) character 14

in disassembly display 64
ATB (A-trap Break) 

command 209–212
ATC (A-trap Clear) 

command 213–214
ATD (A-trap Display) 

command 215
ATHC (A-trap Heap Check) 

command 216–217
ATP (A-trap Playback) 

command 218–219

 

ATR (A-trap Record) 
command 220–221

A-traps. 

 

See also

 

 operating system 
routines

action table 139
breaking on, in a package 210
called by application 141
changing address of 124, 125
commands, dedicated to 138
displaying actions set on 215
excluding from range 213
glue. 

 

See

 

 glue
name and number of 121
name conflicting with procedure 

name 187
numbers 127
numbers and names of 140
in packages 142
patches. See patches
processing of 121–135
in a range 141
recording 220–221

ATSS (A-trap Step Spy) 
command 222–223

ATT (A-trap Trace) 
command 224–225

auto-pop bit 176
A/UX

installing MacsBug under 11
invoking Macsbug under 22

 

B

 

base conversion 27
bomb box 2
Boolean operators 186
BR (Breakpoint) command 226, 229
BRA instructions 50
branching 50
branching indicator 14, 52
BRC (Breakpoint Clear) 

command 230
BRD (Breakpoint Display) 

command 231–232
break message 15

example 25
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breakpoints
clearing 230
displaying 231
how MacsBug implements 227
inactivating user breaks 21
marker in disassembly display 64
setting 174–178

in C++ program 233
in ROM 227
from source program 21

BRM (Multiple Breakpoints) 
command 233

BR macro 194
BSR instructioncs 50
BuffPtr low-memory global 76
BufPtr low-memory global 30

 

C

 

'C++' resource' 24
calling chain 114–116
case, upper and lower iii
checksumming 234
'CODE' resource' 53
code segment 54
colon (:) character 186
Command-B command 191
Command-D 185
command line 183

buffer 13, 191
exercise using 27

editing 14, 190
entering commands 183
exercise using 28
extending 187
features of 13
insertion point 183
use for base conversion 188
use for calculations 27, 187, 188

commands
A-trap, summary of 138
cancel execution of 183
command-line editing 190
dcmd. 

 

See

 

 dcmds
disassembly, summary of 62–63
display of output of 15
entering 14, 183
expressions in 186
formatted output 198
heap, summary of 93
heap blocks 96
last address used by 185
macro. 

 

See

 

 macros

memory, summary of 70
overview 183–206
parameter types 184
pause execution of 183
program control, 

summary 174–178
referring to registers in 80
register, summary of 81
saving output of 23
specifying an address in 184
specifying parameters to 184
summary of by function 325–327
summary of macro 192
syntax conventions 184
syntax summary 327, 330–332
use of names in 187

Command-S command 293
command syntax. 

 

See

 

 notation 
conventions

Command-T command 308
Command-V command 191
compilers 34

procedure definitions 367
Condition Code register. 

 

See

 

 Status 
register

CS (Checksum) command 234
CurrentA5 low-memory global 30, 

76, 118
current GrafPort 169
CurStackBase low-memory 

global 30, 76, 106

 

D

 

data register direct addressing 40
DB (Display Byte) command 235
'dcmd' resources

DRVR 153
FILE 146
VBL 137, 138
VOL 145

dcmds
building 205
creating 200–205
debugging 206
defined 197
introduced 24
listing installed 200
restrictions on 205
standard 197
using 197

Debugger Prefs file
installing 10
updating 12
working with 23–24

Debugger routine 20, 21, 59, 245
debuggers

Discipline interface 371–373
interaction with operating 

system 4
source-level vs low-level 4
support for 369

debugging screen 13–18
output region 15
PC region 14
status region 16–18

debugging strategies 164–179. 

 

See 
also

 

 Discipline; errors
check code on all machines 167
check source code 171
creating a memory map 29
finding invalid pointers 173
symptom vs cause of crash 169
using assertions 166
using signals 166

DebugStr routine 21, 59, 245
to call Discipline 160
to display variables 177

desk accessories 152
testing with Discipline 161

device control entry (DCE) 149–150
unit table 151

Device Manager 143, 148
DevList macro 194
DH (Disassemble Hexadecimal) 

command 236, 236
disassemblers 34
disassembling

object code 236
where to start 64

disassembly display 63
Discipline 19, 156–161

configurations 160
how it works 156
installing as an application 157
installing as an INIT 157
interface 369–373
interpreting output 158
restrictions on using 161
to test start-up code 161
using from MacsBug 160

DL (Display Long) command 237
DM (Display Memory) 

command 82, 238–239
exercise using 28

dollar ($) sign 187
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dot address 185
double page fault 80
Down Arrow key 15
DP (Display Page) command 241
drive queue 144
drivers 143, 148–153

device control entry 149–150
that execute asynchronously 148
information about 153
SCSI 149
unit table 151

DrvQHdr low-memory global 144
DRVR 'dcmd' 153
drvr dcmd 197
'DRVR' resources' 148
DSC (Discipline) command 242
DSErrCode low-memory global 165
DV (Display Version) 

command 243
DW (Display Word) command 244
DX (Debugger Exchange) 

command 21, 245

 

E

 

EA (Exit to Application) 
command 246

effective address 37
equality operators 186
error codes

Sad Macintosh 337–341
System Error Handler 341

error handler 121
defined 2

error handler routines 166
error handling, overview 2
error messages

to HC Command 255
MacsBug 333–336
to the MR (Magic Return) 

command 285
operating system 345–366
to SC6 command 298
to SC7 command 302

errors
address 167
bus 170, 173
checking operating system 165
fragmented memory 171
illegal address 170
illegal instruction 170
invalid pointers 171

returned by Memory 
Manager 166

returned by Resource 
Manager 166

stack overflow 174
uninitialized variables 171

error trapping 166
ES (Exit to Shell) command 247
Esc key 18
EveryTime macro 197
exception, A-trap. 

 

See

 

 A-traps
exception handler 2
exception processing 120–123

handling interrupts 135
introduced 2

exception vector 121
exception vectors 172
expressions

in MacsBug commands 186
order of evaluation 186

 

F

 

F (Find) command 248, 250
fatal error 2
FCB (File Control Block) 145
FCBSPtr low-memory global 145
file control blocks (FCBs) 145
FILE 'dcmd' 146
file dcmd 197
File Manager 143, 147
file system 143–147

B*tree files 146
I/O queue 146
routines 147

FirstTime macro 196
'FKEY' resource 20
floating-point register 18
FSQHdr low-memory global 146
functions, displaying the results 

of 114, 228

 

G

 

G (Go) command 251
GetDrvQHdr routine 144
GetPort routine 169
GetTrapAddress routine 125
GetVCBQHdr routine 145
GG macro 193

global variables, allocating space 
for 108

glue
in-line vs. library 129
replacing A-trap 127

GS macro 55, 193
GT (Go Till) command 252–253
GTO macro 194

 

H

 

handles 95
dangling 99
finding invalid 168
NIL 99

HC (Heap Check) 
command 254–256

HD (Heap Display) 
command 257–259

HD (Heap Dump) command
interpreting the display of 96

heap blocks 93–101
format 93
free 95
header 94
kinds of 94
logical size vs physical size of 94
nonrelocatable 94
pointers and handles to 95
relocatable 95

properties of 95
purgeable 96

resource blocks 105
starting address 94
that cannot be moved 97

heaps. 

 

See also 

 

heap blocks
24-bit vs. 32-bit 104
corruption, cause of 98, 99
displaying partially 

damaged 258
embedded 104
format of 92
fragmentation 97
header 92
identifying embedded 267
in multiple-application 

environment 92, 101–105
in single-application 

enviornment 91
system 103
trailer 92

help, displaying help topics 189
HELP (Help) command 260

exercise using 26
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high-order byte 69
high-order word 69
history buffer 15
HOW (Display Break Message) 

command 262
HS (Heap Scramble) 

command 101, 264
HT (Heap Total) Command

interpreting the display 96
HT (Heap Totals) command 265
HX (Heap Exchange) command 266
HZ (Heap Zones) Command

in a multiple-application 
environement 104

HZ (Heap Zones) 
command 267–269

 

I

 

ID (Disassemble One Line) 
command 270

IJ macro 194
IL (Disassemble from Address) 

command 272–273
immediate addressing 46
indexed indirect addressing with 

displacement addressing 
mode 45

indirection operators 186, 188
INITs

debugging 3
testing with Disicipline 161

installing MacsBug 10
installation message 10
overriding for one session 10
preventing 10
under A/UX 11

instructions, stepping through 
MMU 308

instructions. 

 

See

 

 assembly-
language instructions

interrupt handler 137
interrupt mask 136
interrupts 135–138

display of interrupt level 17
interrupt handler 121
mask 136
priority levels 136
types of 136
VBL 136

interrupt switch 19
interrupt time

restrictions on code 137

VBL tasks 138
inter-segment calls 53–55
intra-segment calls 53
invoking MacsBug 18–22

from source program 21
using an 'FKEY' resource 20
using the programmer’s 

switch 19
invoking Macsbug

under A/UX 22
I/O, synchronous vs. 

asynchronous 147
IOPB template 147
IP (Disassemble Around Address) 

command 274–275
IR (Disassemble Until End of 

Procedure) command 276

 

J, K

 

JMP instructions 50
JSR instructions 50
jump table 53

location of 118

 

L

 

least significant byte 69
leaving MacsBug, summary of 

commands 22
LINK instruction 55, 111
LoadSeg routine 55
LockMemory routine 80
LOG (Log to Printer or File) 

command 4, 23, 278
use of under A/UX 22

logical address space 77
low-level debugging

defined 2
overview 2–5
reasons for 3

low-memory globals 74, 76
restrictions in using 90

low-order byte 69
low-order word 69

 

M

 

machine language 34
Macintosh file system. 

 

See

 

 file 
system

Macintosh system software, use of 
by debuggers 4

Macintosh XL 2
MacJmp low-memory global 369
macros

creating permanent 195–196
EveryTime 197
FirstTime 196
introduced 192
standard 193–195
using to save values 281

MacsBug
can’t access 172
displaying on different 

monitor 11
getting out of 22
getting started exercise 25–31
how it’s implemented 370
installing. 

 

See

 

 installing MacsBug
invoking. 

 

See

 

 invoking MacsBug
machine dependencies 2, 5
memory use by 4
new features introduced in 6.2 5
software dependencies 2

MacsBug error messages 333–336
display of 15

master pointers 95
MaxApplZone routine 174
MC (Macro Create) 

command 280–281
MC6881 floating-point 

coprocessor 2
MC68851 Memory Management 

Unit (MMU) 2
MCC (Macro Clear) command 282
MCD (Macro Display) 

command 283
MemErr low-memory global 99, 

166
memory

application’s use of 90
checksumming 178
commands that set and 

display 70
compaction and reservation 97
exercise for displaying 28
fragmentation 97, 174
high 68
holding 80
kinds of 66
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memory 

 

(continued)

 

locking 80
low 68
maps. 

 

See

 

 memory maps
overview 66
regions of 71, 76
storage convention 69
templates. 

 

See

 

 templates
units 68
use of by MacsBug 4
virtual 77–80

memory configuration marker 17
memory management

in a multiple-application 
environment 101–105

24-bit vs. 32-bit mode 17, 77
under system 7.0 76–80
virtual memory 77–80

Memory Manager
results from calls 166
use of at interrupt time 137

memory maps 71–76
exercise creating 29
using low-memory globals to 

create 74, 76
MemTop low-memory global 30, 76
microprocessors

piplining 170
processing states 120
summary of registers 289–290
supported by MacsBug 2

MMU instructions, stepping 
through 293

MMU register 18
mnemonics 35
monitors, 11
most significant byte 69
Motorola 68000 2
MR (Magic Return) 

command 113–114, 284–285
'mxbc' resource 24
'mxbi' resource

changing size of history buffer 15
changing size of PC region 14

'mxbi' resource 24
'mxbm' resource 24
'mxbm' resources 193
'mxwt' resource 24

 

N

 

names, conflicting references 187
NIL handles 99
NIL pointers 99

NMI key 19
non-maskable interrupt 19
notation conventions iii
numbers

base conversion 188
conflicting references 187
convention for display xxiii, 188
conventions about entering 184
converting 27
hexadecimal representation 69
negative 27, 48
representation of 27

 

O

 

object code
disassembling 236
vs. source code 34

operands 37. 

 

See also

 

 addressing 
modes

operating system errors 345–366
operating system routines vs. 

Toolbox routines 129
operators

in assembly language 
instructions 37

in MacsBug commands 186
optimization 3
output region 15

 

P, Q

 

packages 142
'PACK' resources 142
parameters

application 117
Pascal storage convention 111
Pascal vs. C conventions 116
VAR 117

partitions 101
Pascal compiler directive 117
patches

by INITs 126
custom 125
installing 124
multiple layers of 126
restrictions on 126
that replace old trap 124

PBGetFCBInfo low-memory 
global 145

PC register 80. 

 

See

 

 

 

also 

 

program 
counter

PC-relative addressing modes 46
physical address space 77
pipelining 170
pointers

dangling 99
dereferencing 188
finding invalid 168
finding references to 249
indirection operator 186
in low memory 28
NIL 99

pound (#) sign
pre-patching 125
printf dcmd 197, 198
procedures

listing names of 185
stepping out of 113

process 101
Process Manager 101

fragmenting its heap 103
program counter, display of 

contents 14
programmer’s switch 19

use of under A/UX 22

 

R

 

RAD (Toggle Register Name 
Syntax) command 187, 287

RB (Reboot) command 288
Register Command 289–290
registers 80–81

A0 register 113, 147
A5 register 108, 118

at interrupt time 137
points to current GrafPort 169
use of by ROM 19

A6 register 115. 

 

See

 

 stack frames
A7 register. 

 

See

 

 stack pointer
address 80
commands that display 18
conflicting name references 187
data 80
displaying and setting values 

of 289–290
display of 18
PC 80
status 81
use of by operating system 

routines 129
ResErr low-memory global 166
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ResErrProc low-memory global 166
resource chain 105
Resource Manager 148

results from calls to 166
return address 111
RN (Set Reference Number) 

command 291
ROMBase low-memory global 30, 

76
ROM calls. 

 

See

 

 A-traps
routine names, in disassembly 

display 63
routines, implementing. 

 

See

 

 stack 
frames

routine selector 142
RS (Restart) command 292
RTS macro 193

 

S

 

S (Step) command 293
SADE (Symbolic Application 

Debugging Environment) 4
SB (Set Byte ) command 295
SC (Stack Crawl) Command 171
SC6 (Stack Crawl (A6)) 

command 297–298
SC7 (Stack Crawl (A7)) 

command 300–302
ScrnBase low-memory global 76
SCSI Manager 143
Segment Loader 54
semicolon (;) character

in disassembly display 64
use as command separator 183

SetPort routine 169
SetTrapAddress routine 125
SHOW (Show) command 16, 303
signals 166
'SIZE' resource 101
SL (Set Long) command 304
SM (Set Memory) command 306
SO (Step Over) command 308

using to step over LoadSeg 
trap 55

source code
vs. assebmly language code 58
vs. object code 34

SS (Step Spy) command 310–311
stack

balance 167
display 107
management 105–117

overflow 174
pushing and popping items 107
use of in implementing 

A-traps 128–135
stack frames 55, 109–116

calling chain 114–116
defined 105

stack pointer 106. 

 

See also 

 

stack
contents of 16
display 107

stack sniffer 174
Status register, display of 17
status register 81
Strip Address routine 17
SW (Set Word) command 312
SWAP (Swap) command 314
SWAP (Swap Frequency) 

command 11, 12
SX (Symbol Exchange) 

command 316
symbol display 64
symbol dump 64
symbols

disabling display of 316
display symbols command 185
MacsBug display of 185
procedure definitions 367
restricting references to 291

SysBeep routine 171
System Error Handler 2, 4

alerts 341
System files, file control blocks 145
system routines, testing parameters 

to. 

 

See 

 

Discipline
system routines. 

 

See

 

 A-traps
system software version 7.0 76–80
SysZone low-memory global 28, 

76, 104

 

T

 

T (Step Over) command 308
TargetZone MacsBug variable 104
TD (Display CPU Registers) 

command 318
TD (Total Display) command 18
templates 81–89

with DM (Display Memory) 
command 81

exercise creating custom 87–89
IOPB 147
linked lists in 85
predefined 82

template types to define 85
use of basic types to define 84
ways to create 83

TF (Total Floating Point) 
command 18

TF (Total Floating-Point Register 
Display) command 319

theCPort macro 194
thePort macro 194
theWindow macro 194
TheZone low-memory global 104
tilde (~) character key 18
TM (Total MMU) command 18
TM (Total MMU Display) 

command 320
TMP (List Templates) 

command 82, 321
'TMPL' resource 24
tracing, custom A-trap trace 211
trap dispatcher 121, 123

defined 2
trap dispatch table 123, 140
trap recording 165

 

U

 

UNLK instruction 55, 113
UnloadSeg routine 54
unti table 151
Up Arrow key 15
user breaks, disabling 245
UserZone MacsBug variable 268

 

V

 

variables, displaying value of 177
VAR parameters 117
VBL 'dcmd' 137, 138
vbl dcmd 197
VBL Manager 137
VBLTask Record 138
VBL tasks 138
VBLTasks macro 195
VcbList macro 194
VCBQHdr low-memory global 145
vector number 121, 123
vector table 121
Vertical Blanking. 

 

See

 

 interrupts
Vertical Retrace Manager 138
virtual memory 77–80
virtual memory marker 17
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VOL 'dcmd' 145
vol dcmd 197
volume queue 144
volumes, information about 144

 

W, X, Y, Z

 

WH (Where) command 30, 126, 322
WindList macro 194
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