ADEV11 Development System for AmigaDOS
Users’s Manual

Version 1.00

A 68HCI11 cross compiler (C), assembler, linker, librarian and downloader for the Amiga
Public Domain

Stan Burton

1978 26 St. SE

Medicine Hat, Alta, CANADA
T1A 2G8

ADEV11 Development System for AmigaDOS
Command Reference

Version 1.0

PR =

HCLoad
SAsm
SDis
SLib
SLink

Table of Contents

NAME

HCLoad
SYNOPSIS

HCLoad [options] file_name
DESCRIPTION
HCLoad is a utility for downloading an S-record file to the 68HC11 EEPROM. It first
downloads a file called HCBOQOT to the ram of the device. This program is an S-record loader
that executes when loaded and receives the S-records from the specified file and programs them
into the EEPROM.
The HCBOOT file must be found in your current directory. This file is different for some
versions of the processor. Three versions are provided; one for the 68HC811, 68HC11F1 and one
for the 68HC11F1 which enables programming of the CONFIG register.
Currently, HCLoad only has one option:

-f<number>

for use where the E clock frequency of the HC11 is not 2.0000 MHz.
<number> is the E clock frequency of the HC11 in Hz.

EXAMPLE

The following line downloads the file download.sr to an HC11 with a crystal frequency of
49152 MHz (E clock = 1.2288 MHz).

HCload -f1228800 download.sr

Users Manual 1

NAME
SAsm
SYNOPSIS
SAsm [options] <srcfile> [options]
DESCRIPTION

SAsm is the assembler for the DEV11 system. It is a high level macro cross assembler for the
Motorola 6803, 6805, 68HC11 and 68HC16 families and for the Hitachi 6303 family. It is a
highly modified version of the publicly distributable DASM V2.12. The 68HC16 code
generation has not been well tested since I do not have an HC16 to test it on. If you find any
problems with it let me know (Stan).

SAsm produces a relocatable file which can be linked together (Slink) with other modules and/or
library elements to produce an executable file. Naturally this includes the ability to have
multiple segments within a module and BSS or uninitialized segments.

(C)Copyright 1987,1988 Matthew Dillon, All Rights Reserved
(C)Copyright 1992 Stan Burton, All Rights Reserved

Publicly distributable for non-profit only. Must be distributed as is, with NO CHANGES to the
documentation or code.

COMMAND LINE

srcfile: if no extension is specified in the name, .a is added
outfile: the file generated is the extension-less srcfile name with a .o extension

The following options are available:
-l[name] generate list file, if no name is specified extension-less srcfile with .Ist
extension is used
-s[name] generate symbol file, if no name is specified extension-less srcfile with
.sym extension is used
-vi# select verboseness 0-4 (default 0, see below)

0 (default) Only warnings and errors are generated

1 Segment list information is generated after each pass, Include file
names are displayed and reasons why another pass is required are
given.

2 Mismatches between program labels and equates are displayed
on every pass (usually none occur in the first pass unless you have
re-declared a symbol name).

3 Unresolved and unreferenced symbols are displayed every pass

Users Manual 2

(unsorted, sorry)
4 An entire symbol list is displayed every pass to STDOUT.
(unsorted, sorry)

-p# select number of passes 2-9 (default 2)

-d debug mode

-DSYMBOL predefine a symbol, set to 0
-DSYMBOL=EXPRESSION predefine a symbol, set to expression

Example: asm master.asm -lram:list -v3 -DVER=4

The verbose options can provide additional information about reasons for failure to assemble a
file. Part of this is the reason code:
R1,R2 reason code: R3
where R1 is the number of times the assembler encountered something
requiring another pass to resolve.
R2 is the number of references to unknown symbols which occured in
the pass (but only R1 determines the need for another pass).
R3 is a BITMASK of the reasons why another pass is required.
See the end of this document for bit designations.

-expressions, as in C. (all expressions are computed with 32 bit integers)
-no real limitation on label size, label values are 32 bits.

-complex pseudo ops, repeat loops, macros, etc....

The following special characters are used in the symbol dump:

777 unknown value

str symbol is a string

eqm symbol is an eqm macro

(r) symbol has been referenced

(s) symbol created with SET or EQM pseudo-op

LABELS and SYMBOLS

A label consists of one or more characters from the set A-Z, a-z, 0-9. The first character must be
alphabetic. There is no limit to the name length. The value the label assumes the range of a 32
bit integer.

The label will be set to the current segment counter either before or after a pseudo-op is
executed. Most of the time, the label is set before the pseudo-op is executed. The following
pseudo-op’s labels are created AFTER execution of the pseudo-op:

SEG, ALIGN

Users Manual 3

PROCESSOR MODEL

The processor model is chosen with the PROCESSOR pseudo-op and should be the first thing
you do in your assembly file. Only one PROCESSOR pseudo-op may be declared in the entire
assembly.

SEGMENTS

The SEG pseudo-op creates/sets the current segment. Segments are used to separate the various
parts of a program, for example CODE and BSS_DATA; later the linker could place the CODE
in the EPROM address range and the data at the ram address range. The use of DS or RMB
statements in a segment planned for ROM is not logical.

As aresult of the use of relocatable segments the ORG statement found in simpler assemblers is
not used; its functionality is passed to the linker.

"Uninitialized’ (.U) segments do not produce output. Therefore, output generating statements are
not allowed in these segments.

MACROS
You cannot have a macro definition within a macro definition, but can nest macro calls.

Arguments passed to macros are referenced with: {#}. The first argument passed to a macro
would thus be {1}. You should always use LOCAL labels (.name) inside macros which you use
more than once. {0} represents an EXACT substitution of the ENTIRE argument line.

GENERAL

? The other major feature in this assembler is the SUBROUTINE pseudo-op, which logically
separates local labels (starting with a dot). This allows you to reuse label names (for example, .1
.fail) rather than think up crazy combinations of the current subroutine to keep it all unique.

PSEUDOPS

INCLUDE "name"
Include another assembly file.

[label] SEG[.U] name
[label] RSEG[.U] name
This sets the current segment, creating it if neccessary. If a .U extension is
specified on segment creation, the segment is an UNINITIALIZED

Users Manual 4

segment. The .U is not needed when going back to an already
created uninitialized segment, though it makes the code more
readable.

[label] DC[.BWL] exp,exp,exp ...
[label] FDB exp,exp,exp ...
[label] FCB exp,exp,exp ...
Declare data in the current segment. The default size extension for DC is
a byte. FCB allows only byte size and FDB allows only word size.

[label] DS[.BWL] expl,filler]
[label] RMB expl[,filler]
Declare space (default filler is 0). Note that the number of bytes generated
is exp * entrysize (1,2, or 4). The default size extension for DS is
a byte. RMB allows only the size of byte. Note that the default
filler is always O.

[label] DV[.BWL] egmlabel exp,exp,exp....

This is equivalent to DC, but each exp in the list is passed through the
symbolic expression specified by the EQM label. The expression
is held in a special symbol dotdot ’..” on each call to the EQM
label.

See EQM below

[label] HEX hh hh hh..
This sets down raw HEX data. Spaces are optional between bytes. NO
EXPRESSIONS are allowed. Note that you do NOT place a $ in
front of the digits. This is a short form for creating tables
compactly. Data is always layed down on a byte-by-byte basis.

Example: HEX 1A45 45 13254F 3E12

ERR
Abort assembly.

[label] XDEF symbol,symbol,symbol
[label] PUBLIC symbol,symbol,symbol
Defines which symbols/labels are available outside of this module.

[label] XREF symbol,symbol,symbol
[label] EXTERN symbol,symbol,symbol
Declares which symbols/labels from outside modules are used in this
module.

PROCESSOR model

Users Manual

Do not quote. Model is one of: 6803,HD6303,68705,68HC11, 68HC16.
Can only be executed once, and should be the first thing
encountered by the assembler.

ECHO exp,exp,exp
The expressions (which may also be strings), are echod on the screen and
into the list file

[label] ALIGN NI, fill]
Align the current PC to an N byte boundry. The default fill character is
always 0.

[label] SUBROUTINE name
This isn’t really a subroutine, but a boundry between sets of temporary
labels (which begin with a dot). Temporary label names are
unique within segments of code bounded by SUBROUTINE:

CHARLIE subroutine
Idx #10
1 dex
bne .1
BEN subroutine
Idx #20
.qq dex
bne .qq

Automatic temporary label boundries occur for each macro level. Usually
temporary labels are used in macros and within actual subroutines
(so you don’t have to think up a thousand different names)

symbolEQU exp
The expression is evaluated and the result assigned to the symbol.

symbolEQM exp
The STRING representing the expression is assigned to the symbol.
Occurances of the symbol in later expressions causes the string to
be evaluated for each occurance. Also used in conjuction with the
DV psuedo-op.

symbolSET exp
Same as EQU, but the symbol may be reassigned later.

END [symbol]

Optional. If used with a symbol name the value of that symbol will be
Users Manual 6

entered into the output file as the starting address of the program.
May only be used once and only at the end of the file. Be careful -
if a symbol is not given and a comment without a preceding ’;’ is
used the first word of the comment will be interpreted as the
symbol.

MAC name
MACRO name
Declare a macro. lines between MAC and ENDM are the macro. You
cannot recursively declare a macro. You CAN recursively use a

macro (reference a macro in a macro). No label is allowed to the
left of MAC or ENDM.

ENDM
End of macro def. NO LABEL ALLOWED ON THE LEFT!

MEXIT
Used in conjuction with conditionals. Exits the current macro level.

[label] IFCONST exp
[label] IFD exp
Is TRUE if the expression result is defined, FALSE otherwise and NO
error is generated if the expression is undefined.

[label] IFNCONST exp
[label] IFND exp
Is TRUE if the expression result is undefined, FALSE otherwise and NO
error is generated if the expression is undefined.

[label] IF exp
Is TRUE if the expression result is defined AND non-zero. Is FALSE if
the expression result is defined AND zero. Neither IF or ELSE
will be executed if the expression result is undefined. If the
expression is undefined, another assembly pass maybe required.

[label] ELSE
ELSE the current IF.

[label] ENDIF
[label] ENDC
[label] EIF
Terminate an IF. ENDIF and EIF are equivalent.

[label] REPEAT exp
[label] REPEND

Users Manual

Repeat code between REPEAT/REPEND ’exp’ times. if exp == 0, the
code repeats forever. exp is evaluated once.

Y SET O
REPEAT 10

X SET O
REPEAT 10
DC XY

X SET X+1
REPEND

Y SET Y +1
REPEND

generates an output table: 0,01,02,0...9,0 0,11,12,1...9,1, etc...

Labels within a REPEAT/REPEND should be temporary labels with a
SUBROUTINE pseudoop to keep them unique.

The Label to the left of REPEND is assigned AFTER the loop FINISHES.

FORCED ADDRESSING MODES

[label] XXX].force] operand

XXX is some mnemonic, not necessarily three characters long. The .FORCE optional extension
is used to force specific addressing modes. Force extensions are also used with DS,DC, and DV

to determine the element size.

example: lda.z charlie

Force Description Alternate Force Extension
i implied

ind indirect word

0 implied

b byte address zd (zeropage, direct)
bx byte address indexed x

by byte address indexed y

W word address ea (extended, absolute)
1 longword (4 bytes) (DS/DC/DV)

r relative

u uninitialized (SEG)

EXPRESSIONS

Users Manual

Some operators, such as ||, can return a resolved value even if one of the expressions is not
resolved. Operators are as follows:

NOTE WELL! Some operations will result in non-byte values when a byte value was wanted.
Example: ~1 is NOT $FF, but $FFFFFFFF.
Preceding it with a < (take LSB of) will solve the problem.
ALL ARITHMETIC IS CARRIED OUT IN 32 BITS. The final result will be automatically
truncated to the maximum handleable by the particular machine language (usually a word) when
applied to standard mnemonics.

PRECEDENCE
UNARY
20 ~exp one’s complement.
20 -exp negation
20 lexp not expression (returns O if exp non-zero, 1 if exp zero)
20 <exp take LSB byte of a 16 bit expression
20 >exp take MSB byte of an expression
BINARY
19 * multiplication
19 / division
19 % mod
18 + addition
18 - subtraction
17 >> << shift right, shift left
16 > >= greater, greater equal
16 <<= smaller, smaller equal
15 == equal to. Try to use this instead of =
15 = exactly the same as == (exists compatibility)
15 1= not equal to
14 & logical and
13 A logical xor
12 | logical or
11 && left expression is true AND right expression is true
10 I left expression is true OR right expression is true
9 ? if left expression is true, result is right expression, else result is 0.
[10 ? 20] returns 20
8 (] group expressions
7 , separate expressions in list (also used in addressing mode resolution, BE
CAREFUL!
CONSTANTS

Users Manual

[expld
ascil string.

SYMBOLS

.name

name

WHY codes:

decimal

octal

binary

hex

character

character

string (NOT zero terminated if in DC/DS/DV)

the constant expressions is evaluated and it’s decimal result turned into an

holds evaluated value in DV pseudo op

represents a temporary symbol name. Temporary symbols may be reused
inside MACROS and between SUBROUTINES, but may not be
referenced across macros or across SUBROUTINESs.

current program counter (as of the beginning of the instruction).

beginning with an alpha character and containing letters, numbers, or *_’.
Represents some global symbol name.

Each bit in the WHY word (verbose option 1) is a reason (why the assembler needs to do another

pass), as follows:

0NN Bk~ WIND~=OW
—
—

— = = = \O
W N = O

14

Meaning
expression in mnemonic not resolved

expression in a DC not resolved

expression in a DV not resolved (probably in DV’s EQM symbol)
expression in a DV not resolved (could be in DV’s EQM symbol)
expression in a DS not resolved

expression in an ALIGN not resolved

777ALIGN: Normal origin not known (if in ORG at the time)

EQU: expression not resolved

EQU: value mismatch from previous pass (phase error)

IF: expression not resolved

REPEAT: expression not resolved

a program label has been defined after it has been referenced (forward
reference) and thus we need another pass

a program label’s value is different from that of the previous pass (phase
error)

Users Manual

10

NAME
SDis
SYNOPSIS

SDis <file name>

DESCRIPTION

SDis is the dis-assembler for the DEV11 system. It accepts a Motorola S-record format file and
outputs a symbolic dis-assembled file to stdout, by default the console. The output file is
assembler (SAsm) ready and would assemble to be exactly the same as the file that was
dis-assembled.

SDis is a tracking dis-assembler which means that it must have the address of an executable
instruction to start from. Normally it gets this from the SO record if your file has one. Otherwise
or if other addresses must be known, as might be the case with a monitor ROM with

many entry points, the dis-assembler asks for an address(es) to start from. A tracking
dis-assembler will not attempt to dis-assemble data; it knows the difference (but it can be
intentionally fooled).

If SDis finds a place in the file that it believes is data but does not have a label, i.e. that address is
not accessed by any of the code that it knows about, it will print out "??? no label."

Users Manual 11

NAME

slib

SYNOPSIS

slib [-a<1>] [-r<1>] [-1] [-c<1>] <library name>

<1> - one file

DESCRIPTION

Slib is the librarian for the DEV11 system. The following options are recognized by slib:

-a

Specifies an object file that will be added to the library. The -a option
may be used more than once.

Specifies a file that contains option commands to be processed by slib.
The file may be broken into lines, but each line must start with an
option. A command file can specify another command file and
more than one command file can be used. An example file might
look as shown below.

-adownload.o
-rCOWtown.o
-1

Causes a listing of the library to be sent to the console (unless redirected).
The listing includes the name of the module, its size (not the code
size), and the symbols that are available from that module. The -1
option can be used more than once.

Specifies an object module to be removed from the library. The -r option
may be used more than once.

One and only one library must be specified for each invocation of slib.

Users Manual

12

NAME

slink

SYNOPSIS

slink [FROM <1+>] [TO <1>] [WITH <1>] [LIB <1+>] [MEM <range> <1+>]

DESCRIPTION

<1> - one file
<1+> - one or more files (separated by commas)
<range> = <hex address>-<hex address>

Slink is the linker for the DEV11 system. Slink accepts keyword commands to control the
process of linking. Keywords are not case sensitive. The following keywords are recognized by

slink:

FROM

LIB

MEM

TO

WITH

Provides a list of object files that will become the root of the output file.
FROM must be used once and may be used more than once with
each use adding to the root, but you must specify at least one file
for each use.

Provides a list of library files to be scanned to resolve symbols not found
in the root files. Only the modules containing the unresolved
symbols will be included in the output file. LIB can be used more
than once.

Specifies an area of memory and provides a list of the segment names that
are to be located in that area. The linker must know where to place
every segment that is used. MEM is usually used more than once.

Specifies the output file to create. The file will be an S-record format file.
TO must be used once and only once.

Specifies a file that contains keyword commands to be processed by slink.
The file may be broken into lines, but each line must start with a
keyword. A WITH file can WITH another file and more than one
WITH file may be used. An example file might look as shown
below.

FROM download.o

TO download.sr

MEM 100-7fff EXT_RAM
MEM 8000-83ff INT_RAM
MEM 0-ff ZPAGE

Users Manual

13

MEM f{e(00-ffd5 EEPROM
MEM ffd6-ffff VECTORS

EXAMPLE

The following line invokes the linker using the command file download.sIn and creating the
linker map file download.map.

Slink MAP download.map WITH download.sln

Users Manual

14

ADEV11 Development System for AmigaDOS
Library Reference

Version 1.0

Function List

FUNCTION DESCRIPTION LIBRARY
asc2byte convert ASCII string to byte HC11.lib
find_spc find first space ’ ’ character in string HC11.lib
put_asc print out word size number (signed) HC11.lib
put_asc_sm print out byte size number (signed) HC11.lib
put_asc_u print out word size number (unsigned) HC11.lib
search search for string in string list HC11.lib
skip_spc find first non-space ’ ’ character in string HC11.lib
str_lookup find string in string list from ordinate HC11.lib

NAME
asc2byte
SYNOPSIS

IN:

b

OUT:

< W >

DESCRIPTION

pointer to string

value result

pointer to first non-numeric character
modified

not modified

asc2byte

This function converts an ASCII number in a string to a binary value. The conversion stops at
the first non-numeric character.

Library Reference

find_spc, skip_spc
NAME

find_spc
skip_spc

SYNOPSIS

(find_spc)

IN: X pointer to string

OUT: X pointer to space character or NULL
A space character or NULL
B,Y not modified

(skip_spc)

IN: X pointer to string

OuT: X pointer to non-space character
A non-space character

B,Y not modified

DESCRIPTION

These functions search through a string to find the presence or absence of a space.

Library Reference 2

put_asc, put_asc_sm, put_asc_u
NAME

put_asc
put_asc_sm
put_asc_u

SYNOPSIS

(put_asc, put_asc_u)
IN: D value to convert
OUT: D, X modified

Y not modified

(put_asc_sm)
IN: A value to convert
OUT: D,X modified
Y not modified
DESCRIPTION

These functions convert a binary number to ASCII and print it.

Library Reference 3

search, str_lookup

NAME
search
str_lookup
SYNOPSIS
(search)
IN: pointer to search string
pointer to string list
OUT: not modified

modified
ordinate of string in list or -1
not modified

W > <K <X

(str_lookup)
IN: X pointer to string list
OuT: X pointer to string

Y not modified

D modified

DESCRIPTION

These function perform inverse actions on string lists. ‘search’ searches for a string in the list
and returns its ordinal number (first string in list => 0). ‘str_lookup’ finds a string given the
ordinal number.

A string list is a linear sequence of strings terminated by a null string, for example:
DC "string0",0
DC "stringl",0
DC "string2",0
DC 0

Library Reference 4

