Chapter 3

Dynamic Shared Objects

A dynamic shared object (DSO) is an object file that’s meant to be used
simultaneously—or shared—by multiple applications (a.out files) while
they’re executing. DSOs can be used in place of archive libraries, and they
replace static shared libraries provided with earlier releases of IRIX.

Since DSOs contain shared components, using them provides several
substantial benefits. First, overall memory usage is minimized because code
is shared. Two executables that use the same DSO and that run
simultaneously will have only one copy of the shared components loaded
into memory. For example, if executable A and executable B both link with
the same DSO C, and if A and B are both running at the same time, the total
memory used is what’s required for A, B, and C, plus some small overhead.
If C was an unshared library, the memory used would be what'’s required for
A, B, and two copies of C. A related second benefit is that executables linked
with DSOs are smaller than those linked with unshared libraries because the
shared objects aren’t part of the executable file image, so disk usage is
minimized.

Yet another feature of DSOs is that they are much easier to use, build, and
debug than static shared libraries. Most of the libraries supplied by Silicon
Graphics are available as DSOs. In the past, only a few static shared libraries
have been available; most libraries were unshared.

Additionally, executables that use a DSO don’t have to be relinked if the DSO
changes; when the new DSO is installed, the executable automatically starts
using it. This feature makes it easier to update end users with new software
versions. It also allows you to create hardware-independent software
packages more easily. You can design the hardware-dependent routines
required by your application so that they have the same interface across all
platforms. Then, you create different DSOs for each of the platforms, each
DSO containing the implementation of those routines for that particular
platform. The shrink-wrapped software package can then contain all the
DSOs and is able to run on all the platforms.

47

Chapter 3: Dynamic Shared Objects

Using DSOs

48

Finally, DSOs and the executables that use them are mapped into memory
by a run-time loader, rld, which resolves external references between objects
and relocates objects at run time. (DSOs contain only position-independent
code (PIC), so they can be loaded at any virtual address at run time.) With
rld, the binding of symbols can be changed at run time at the request of the
executing program. You could use this feature to dynamically change the
feature set presented to a user of your application, for example, while
minimizing start-up time. The application could be started quickly, with a
subset of the features available and then, if the user needs other features,
those can be loaded in under programmatic control.

Naturally, some costs are involved with using DSOs, and these are explained
in the next section, “Using DSOs.” The sections after that explain how to
build and optimize DSOs and how rld works. The dso(5) reference page also
contains more information about DSOs.

* “Using DSOs” tells you how to obtain the most benefit from using
DSOs when creating your executable.

* “Taking Advantage of QuickStart” discusses an optimization you can
use to make sure that DSOs you build load as quickly as possible.

* “Building DSOs” describes how to build a DSO.

* “Runtime Linking” discusses the runtime linker, and how it locates
DSOs at runtime.

* “Dynamic Loading Under Program Control” explains the use of the
libdl library to control runtime linking.

* “Versioning of DSOs” discusses a versioning mechanism for DSOs that
allows binaries linked against different, incompatible versions of the
same DSO to run correctly.

Using DSOs is easy—the syntax is the same as for an archive (.a) library. The
following compile line creates the executable yourApp by linking with the
DSOs libyours.so and with libc.so.1:

cc yourApp.c —-o yourApp —-lyours

Using DSOs

If libyours.so isn’t available, but the archive version libyours.a is available, that
archive version is used along with libc.so.1.

You should note that there’s a significant difference between DSOs and
archive libraries in terms of what gets loaded into memory when an
application is executing. With an archive library, only the text portion of the
library that the application actually requires (and the data associated with
that text) gets loaded, not the entire library. In contrast, the entire DSO that’s
linked gets loaded. Thus, to conserve memory, don’t link with DSOs unless
your application actually needs them.

Also, you should avoid listing any archive libraries on the compile line after
you list shared libraries; instead, list the archive libraries first and then the
DSOs.

You may want to take advantage of the QuickStart optimization that
minimizes start-up times for executables. You can use QuickStart when
using or building DSOs. At link time, when an executable or a DSO is being
created, the link editor Id assigns initial addresses to the object and attempts
to resolve all references. Since DSOs are relocatable, these initial address
assignments are really only guesses about where the object will be really
loaded. At run time, rld verifies that the DSO being used is the same one that
was linked with and what the real addresses are. If the DSOs are the same
and if the addresses match the initial assignments, rld doesn’t have to
perform any relocation work, and the application starts up quickly (or
QuickStarts). When an application QuickStarts, memory use is smaller since
rld doesn’t have to read in the information necessary to perform relocations.

To determine whether your application (or DSO) is able to do a QuickStart,
use the —quickstart_info flag when building the executable (or DSO). If the
application or DSO can’t do a QuickStart, you'll be given information about
how what to do. The next section goes into more detail about why an
executable may not be able to use QuickStart.

In summary, when you use DSOs to build an executable:

* Link with only the DSOs that you need.

* Make sure that unshared libraries precede DSOs on the compile line.

» Use the —quickstart_info flag.

49

Chapter 3: Dynamic Shared Objects

Taking Advantage of QuickStart

QuickStart is an optimization designed to reduce start-up times for
applications that link with DSOs. Each time Id builds a DSO, it updates a
registry of shared objects. The registry contains the preassigned QuickStart
addresses of a group of DSOs that typically cooperate by having
nonoverlapping locations. (See “Using Registry Files” for more information
about how to use the registry when you're building a DSO.) If you compile
your application by linking with registered DSOs, your application takes
advantage of QuickStart: all the DSOs are mapped at their QuickStart
addresses, and rld won’t need to move any of them to an unused address and
perform a relocation pass to resolve all references.

Suppose you compile your application using the —quickstart_info flag, and it
fails. QuickStart may fail because:

* Your application has directly or indirectly linked with two different
versions of the same DSO, as shown in Figure 3-1. In this example,
yourApp links with libyours.so, libmotif.so, and libc.s0.1 on the compile
line. When the DSO libyours.so was built, however, it linked with
libmalloc.so, which in turn linked with [ibc.so0.1 when it was created. If
the two versions of libc.s0.1 aren’t identical, yourApp won't be able to
QuickStart.

yourApp

libyours.so libmotif.so libc.so.1

!

libmalloc.so

T

libc.so.1

Figure 3-1 An Application Linked with DSOs
* You link with a DSO that can’t QuickStart. This may occur because the

DSO wasn't registered and therefore was assigned a location that
overlaps with the location assigned another DSO.

50

Taking Advantage of QuickStart

* Your application pulls in incompatible shared objects (in a manner
similar to the example shown in Figure 3-1).

* Your application contains an unresolved reference to a function (where
it takes the address of the function).

¢ The DSO links with another DSO that can’t QuickStart.

Even if QuickStart officially succeeds, your application may have name
space collisions and therefore may not start up as fast as it should. This is
because rld has to bring in more information to resolve the conflicts. In
general, you should avoid having conflicts both because of the detrimental
effect on start-up time and because conflicts make it difficult to ensure the
correctness of an application over time.

In the example shown in Figure 3-1, you may have written your own
functions to allocate memory in libmalloc.so for libyours.so to use. If you
didn’t use unique names for those functions (instead of malloc(), for
example) the way this particular compile and link hierarchy is set up, the
standard malloc() function defined in libc.s0.1 is used instead of the one
defined in libmalloc.so. (Conflicts are resolved by proceeding through the
hierarchy from left to right and then moving to the next level. See “Searching
for DSOs at Runtime” for more information about how the runtime linker
searches for DSOs.)

Thus, it’s not a good idea to allow more than one DSO to define the same
function. Even if the DSOs are synchronized for their first release, one of
them may change the definition of the function in a subsequent release. Of
course, you can use conflicts to override function definitions intentionally,
but you should be sure you have control over what is overriding what over
time.

If you use the -quickstart_info option, Id tells you if conflicts arise. It also tells
you to run elfdump with the -Dc option to find the conflicts. See the elfdump(5)
man page for more information about how to read the output produced by

elfdump.

51

Chapter 3: Dynamic Shared Objects

Building DSOs

52

In most cases, you can build DSOs as easily as archive libraries. If your
library is written in a high-level language, such as C or Fortran, you won't
have to make any changes to the source code. If your code is in assembly
language, you must modify it to produce PIC, as described in Appendix A,
“Position-Independent Coding in Assembly Language.”

To create a DSO from a set of object files, use Id with the —shared option:

1d -shared stuff.o nonsense.o -o libdada.so

The above example creates a DSO, libdada.so, from two object files, stuff.o and
nonsense.o. Note that DSO names should begin with “/ib” and end with “.s0”,
for ease of use with the compiler driver’s —Ilib argument. If you're already
building an archive library (.a file), you can create a DSO from the library by
using the —shared and —all arguments to Id:

1d -shared -all libdada.a -o libdada.so

The —all argument specifies that all of the object files from the library,
libdada.a, should be included in the DSO.

Making DSOs Self-Contained

When building a DSO, be sure to include any archives required by the DSO
on the link line so that the DSO is self-contained (that is, it has no unresolved
symbols). If the DSO depends on libraries not explicitly named on the link
line, subsequent changes to any of those libraries may result in name space
collisions or other incompatibilities that can prevent any applications that
use the DSO from doing a QuickStart. Such incompatibilities can also lead to
unpredictable results over time as the libraries change asynchronously. To
make the archive libmine.a into a DSO, for example, and libmine.a depends on
routines in another archive, libutil.a, include libutil.a on the link line:

1d —shared —all —no unresolved lilmine.a —o likmine.so —none libutil.a

This causes the modules in libutil.a that are referenced in libmine.a to be
included in the DSO, but these modules won’t be exported. See “Controlling
Symbols to be Exported or Loaded” for more information about exported

Building DSOs

symbols. The —no_unresolved option causes a list of unresolved symbols to be
created; generally, this list should be empty to enable QuickStarting.

Similarly, if a DSO relies on another DSO, be sure to include that DSO on the
link line. For example:

1d —shared —all —no unresolved lilbtree.a —o libtree.so —lyours

This example places libyours.so in the iblist of the new DSO, libtree.so. This
ensures that libyours.so is loaded whenever an executable that uses libtree.so
is launched. Again, symbols from libyours.so won’t be exported for use by
other libraries. (You can use the —exports flag to reverse this exporting
behavior; the —hides flag specifies the default exporting behavior.)

Controlling Symbols to be Exported or Loaded

By default, to help avoid conflicts, symbols defined in an archive or a DSO
that’s used to build another DSO aren’t externally visible. You can explicitly
export or hide symbols with the —exported_symbol and —hidden_symbol
options:

—exported_symbol namel, name2, name3

-hidden_symbol name4, name5

By default, if you explicitly export any symbols, all other symbols are
hidden. If you both explicitly export and explicitly hide the same symbol on
the link line, the first occurrence determines the behavior. You can also create
a file of symbol names (delimited by white space) that you want explicitly
exported or hidden, and then refer to the file on the link line with either the
-exports_file or -hiddens_file option:

—exports_file yourFile
-hiddens_file anotherFile

These files can be used in addition to explicitly naming symbols on the link
line.

Another useful option, —delay_load, prevents a library from being loaded
until it’s actually referenced. Suppose, for example, that your DSO contains
several functions that are likely to be used in only a few instances.
Furthermore, those functions rely on another library (archive or DSO). If you

53

Chapter 3: Dynamic Shared Objects

54

specify —delay_load for this other library when you build your DSO, the
runtime linker loads that library only when those few functions that require
it are used. Note that if you explicitly export any symbols defined in a library
that the runtime linker is supposed to delay loading, the export behavior
takes precedence and the library is automatically loaded at runtime.

Note: You can build DSOs using cc. However, if you want to export
symbols/files or use —delay_load, use Id to build DSOs. .

Using DSOs With C++

To make a DSO, build the C++ objects as you would normally:

CC -c

Then type:

CC -shared -o libmylib.so <list your objects here>

For example:

CC -shared -o libmylib.so a.o b.o c.o

In this instance, the -/ and —L options to Id will work. However, most Id
options won’t work. If you want to specify other options, first determine the
options that you must pass to Id. These options include:

—init _main

-fini _fini

—-hidden_symbol _main

-hidden_symbol _fini

-hidden_symbol __head

-hidden_symbol ___endlink

Finally, link in /usr/lib/c++init.o.

Using Registry Files

You can make sure that your DSOs don’t conflict with each other by using a
QuickStart registry file. The registry files contain location information for
shared objects. When creating a shared object, you can specify a registry file

Building DSOs

to Id, and Id ensures that your shared object doesn’t conflict with any of the
shared objects listed in the registry. A registry file containing the locations of
all the shared objects provided with the system is supplied in
Jusr/lib/so_locations.

You can use two options to Id to specify a registry file: —check_registry and
—update_registry. When you invoke Id to build a shared object, with the
argument —check_registry file, Id makes sure that the new shared object
doesn’t conflict with any of the shared objects listed in file. When invoked
with —update_registry file, Id checks the registry in the same way, but when it’s
done, it writes an entry in file for the DSO being built. If file isn’t writable,
—update_registry acts like —check_registry. If file isn’t readable, both
—update_registry and —check_registry are ignored.

By exchanging registry files, providers of DSOs can avoid collisions between
their shared objects. You should probably start out with a copy of
/usr/lib/so_locations, so that your shared objects won’t conflict with any of the
standard DSOs. However, you should remember that when collisions occur
between shared objects, the only effect is slowing program startup.

Registry File Format

Three types of lines in the registry file include:

* comment lines, which begin with a pound sign (#)

» directive lines, which begin with a dollar sign ($)

» shared object specification lines, which begin with the name of a shared

object

Comment lines are ignored by Id. Directive lines and shared object
specification lines are described below.

Directive Lines

Directive lines specify global parameters that apply to all the DSOs listed in
the registry.

$text_align_size=aligh padding=pad-size
$data_align_size=aligh padding=pad-size

55

Chapter 3: Dynamic Shared Objects

56

These two directives specify the alignment and padding requirements for
text and data segments, respectively. The current default segment alignment
is 64K, which is the minimum permissible. The size value of a segment of a
DSO appearing in the registry file is calculated based on the actual section
size plus padding, and is aligned to the section align size (either the default
or the one specified by the above directive). The align values for text and
data as well as the padding values must be aligned to the minimum
alignment size (64K). If not, Id generates a warning message and aligns these
values to the minimum alignment.

$start_address=addr

This directive specifies where to start looking for addresses to put shared
objects. The default start_address is 0x6000000.

Sdata_after_text={ 1 | 0 }
In this directive, a value of one instructs the linker to place data immediately
after the text at specified text and data alignment requirements. A value of

zero (the default) allows the linker to place these segments in different
portions of the address space.

Shared Object Specification Lines

Shared object specification lines have the format:

so_name [:st = {.text | .data | $range} base_addr,padded size :] *

where:

so_name full path name (or trailing component) of a shared object

st= literal string indicating the beginning of the segment
description

.text, .data segment types: text or data

$range range of addresses that can be used

base_addr address where the segment starts

padded_size padded size of the segment

literal string indicating the end of the segment description

Runtime Linking

Runtime Linking

A shared object specification can span several lines by “escaping” the
newline character (using “\” as the last character on the line that is being
continued). The following is an example of a shared object specification line:

libc.so.1l \

:st = $range 0x5fc00000, 0x00400000:\
:st = .text 0x5fe40000, 0x000a0000:\
:st = .data 0x5fee0000, 0x00030000:

This specification instructs Id to relocate all segments of libc.so.1 in the range
0x5£c00000 to 0x5fc00000+0x0040000, and, if possible, to place the text
segment at 0x5fe40000 and the data segment at 0x5fee0000. The text segment
should be padded to 0xa0000 bytes and the data segment to 0x3000 bytes.
See /usr/lib/so_locations for examples of shared object specifications.

When building a DSO with the —check_registry or —update_registry flag, if an
entry corresponding to this DSO exists in the registry file, the linker tries to
assign the indicated addresses for text and data. However, if the size of the
DSO changes and no longer fits in the specified location, the linker searches
for another location that fits. If the $range option is specified, the linker
places the DSO only in the specified range of addresses. If there isn’t enough
room, an error is returned.

This section explains the search path followed by the run-time linker and
how you can cause symbols to be resolved at run time rather than link time.

Searching for DSOs at Runtime

When you run a dynamically linked executable, the runtime linker, 7ld,
identifies the DSOs required by the executable, loads the required DSOs, and
if necessary relocates DSOs within the process’s virtual address space, so
that no two DSOs occupy the same location.The program header of a
dynamically linked executable contains a field, the [iblist, which lists the
DSOs required by the executable.

57

Chapter 3: Dynamic Shared Objects

58

When looking for a DSO, rld searches directories in the following sequence:
1. the path of the DSO in the liblist (if an explicit path is given)

2. RPATH if it’s defined in the main executable

3. LD_LIBRARY_PATH if defined

4. the default path (/usr/lib:/lib)

RPATH is a colon-separated list of directories stored in the main executable.
You can set RPATH by using the —rpath argument to Id:

1d -o myprog myprog.c -rpath /d/src/mylib libmylib.so -lc

This example links the program against libmylib.so in the current directory,
and configures the executable such that rld searches the directory /d/src/mylib
when searching for DSOs.

The LD_LIBRARY_PATH environment variable is a colon-separated list of
directories to search for DSOs. This can be very useful for testing new
versions of DSOs before installing them in their final location. You can set the
environment variable _RLD_ROOT to a colon-separated list of directories.
The runtime linker prepends these to the paths in RPATH and the paths in
the default search path.

In all of the colon-separated directory lists, an empty field is interpreted as
the current directory. A leading or trailing colon counts as an empty field.
Thus, if you set LD_LIBRARY_PATH to:

/d/src/libl:/d/src/1ib2:

the runtime linker searches the directory /d/src/libl, then the directory
/d/src/lib2, and then the current directory.

Note: For security reasons, if an executable has its set-user-ID or
set-group-ID bits set, the runtime linker ignores the environment variables
LD_LIBRARY_PATH and _RLD_ROOT. However, it still searches the
directories in RPATH and the default path. .

Runtime Linking

Runtime Symbol Resolution

Dynamically linked executables can contain symbol references that aren’t
resolved before run time. Any symbol references in your main program or in
an archive must be resolved at link time, unless you specify the
—ignore_unresolved argument to cc. DSOs may contain references that aren’t
resolved at link time. All data symbols must be resolved at run time. If rid
finds an unresolvable data symbol at run time, it will cause the executable to
exit with an error. Text symbols are resolved only when they’re used; so a
program can run with unresolved text symbols, as long as the unresolved
symbols aren’t used.

You can force rld to resolve text symbols at run time by setting the
environment variable LD_BIND_NOW. If unresolvable text symbols exist in
your executable and LD_BIND_NOW is set, the executable will exit with an
error, just as if there were unresolvable data symbols.

Compiling with —Bsymbolic

<Default Para Font>When you compile a DSO with —Bsymbolic, the dynamic
linker resolves referenced symbols from itself first. If the shared object fails
to supply the referenced symbol, then the dynamic linker searches the
executable file and other shared objects. For example:

main—defines x
x.so—defines and uses x

If you compile x.so with —Bsymbolic on, the linker tries to resolve the use of x
by looking first for the definition in x.so0 and then by looking in main.

In FORTRAN programs, the linker allocates space for COMMON symbols
and the compiler allocates space for BLOCK DATA. The first kind of symbol
(with COMMON blocks present) appears in the symbol table as
SHN_MIPS_ACOMMON (uninitialized DATA) whereas the second kind
of symbol (with BLOCK DATA present) appears as SHN_DATA (initialized
DATA). In general, initialized data takes precedence when the dynamic
linker tries to resolve a symbol. However, with —Bsymbolic, whatever is
defined in the current object takes precedence, whether it is initialized or
uninitialized.

59

Chapter 3: Dynamic Shared Objects

60

Variables that are declared at file scope in C with —cckr are also treated this
way. For example:
int foo[1007];

is COMMON if —cckr is used and DATA if —xansi or —ansi is used.
For example:

In main:

COMMON i, j /* definition of i, j with initial values */
DATA i/1/, 3/1/

call junk

end

In x.s0:

COMMON i, 3

/* definition of i, j with NO initial values */
/* initialized by kernel to all zeros */

print *, i, J

end

When you build x.so using —Bsymbolic, this program prints:
00

When you build x.so without —Bsymbolic, this program prints:
1

Converting Libraries to DSOs

When you link a program with a DSO, all of the symbols in the DSO become
associated with the executable. This can cause unexpected results if archives
that contain unresolved externals are converted to DSOs. When linking with
a PIC archive, the linker links in only those object files that satisfy
unresolved references. If an object file in an archive contains an unresolved
external reference, the linker tries to resolve the reference only when that
object file is linked in to your program. In contrast, a DSO containing an
external data reference that cannot be resolved at run time causes the
program to fail. Therefore, you should exercise caution when converting
archives with external data references to DSOs.

Runtime Linking

For example, suppose you have an archive, mylib.a, and one of the object files
in the archive, has_extern.o, references an external variable, foo. As long as
your program doesn’t reference any symbols in has_extern.o, the program
will link and run properly. If your program references a symbol in
has_extern.o and doesn’t define foo, then the link will fail. However, if you
convert mylib.a to a DSO, then any program that uses the DSO and doesn’t
define foo will fail at run time, regardless of whether the program references
any symbols from has_extern.o.

Two possible solutions exist for this problem. The first consists of simply
adding a “dummy” definition of the data to the DSO. A data definition
appearing in the main executable preempts one appearing in the DSO itself.
This may, however, be misleading for executables that use the portion of the
DSO that needs the data, but that failed to define it in the main program. The
second solution consists of separating the routines that use the data
definition into a second DSO, and placing dummy functions for them in the
first DSO.

The second DSO can then be dynamically loaded the first time any of the
dummy functions is accessed. Each of the dummy functions must verify that
the second DSO was loaded before calling the real function (which must
have a unique name). This way, programs run whether or not they supply
the missing external data, as long as they don’t call any of the functions that
require the data. The first time one of the dummy functions is called, it tries
to dynamically load the second DSO. Programs that do not supply the
missing data fail at this point. For more information on dynamic loading, see
“Dynamic Loading Under Program Control” below.

61

Chapter 3: Dynamic Shared Objects

Dynamic Loading Under Program Control

62

IRIX provides a library interface to the runtime linker that allows programs
to dynamically load and unload DSOs. This interface is called /ibdl, and it
consists of four functions listed in Table 3-1.

Table 3-1 libdl functions

dlopen() load a DSO
dlsym() find a symbol in a loaded DSO
diclose() unload a DSO

dlerror() report errors

To load a DSO, call dlopen():

include <dlfcn.h>
void *dlhandle;

dlhandle = dlopen("/usr/lib/mylib.so", RTLD_LAZY);
if (dlhandle == NULL) {

/* couldn’t open DSO */

printf ("Error: %$s\n", dlerror());

}

The first argument to dlopen() is the pathname of the DSO to be loaded. This
may be either an absolute or a relative pathname. When you call this routine,
the runtime linker tries to load the specified DSO. If any unresolved
references exist in the executable that are defined in the DSO, the runtime
linker resolves these references on demand. You can also use dlsym() to
access symbols in the DSO, whether or not the symbols are referenced in
your executable.

When a DSO is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is
loaded. These references must be relocated before the symbols can be
accessed. The second argument to dlopen() governs when these relocations
take place.

Dynamic Loading Under Program Control

This argument can have the following values:

RTLD_LAZY Under this mode, only references to data symbols are
relocated when the object is loaded. References to functions
are not relocated until a given function is invoked for the
first time. This mode should result in better performance,
since a process may not reference all of the functions in any
given shared object.

RTLD_NOW Under this mode, all necessary relocations are performed
when the object is first loaded. This may result in some
wasted effort if relocations are performed for functions that
are never referenced. However, this option is useful for
applications that need to know as soon as an object is loaded
that all symbols referenced during execution will be
available.

To access symbols that are not referenced in your program, use dlsym():

#include <dlfcn.h>
void *dlhandle;
int (*funcptr) (int);

int i, 3j;

load DSO ...
funcptr = (int (*) (int)) dlsym(dlhandle, "factorial");
if (funcptr == NULL) {

/* couldn’t locate the symbol */

}
i = (*funcptr) (j);

In this example, we look up the address of a function called factorial() and
assign it to the function pointer funcptr.

If you encounter an error (dlopen() or dlsym() returns NULL), you can get
diagnostic information by calling dlerror(). The dlerror() function returns a
string describing the cause of the latest error. You should only call dlerror()
after an error has occurred; at other times, its return value is undefined.

To unload a DSO, call dlclose():

#include <dlfcn.h>
void *dlhandle;

load DSO, use DSO symbols
dlclose (dlhandle) ;

63

Chapter 3: Dynamic Shared Objects

Versioning of DSOs

64

The dlclose function frees up the virtual address space mmaped by the
dlopen call of that file (similar to a munmap call). The difference, however,
is that dlclose on a file that has been opened multiple times (either through
dlopen or program startup) does not cause the file to be munmaped until the
file is no longer needed by the process.

In the 5.0.1 release, a mechanism for the versioning of shared objects was
introduced for SGI-specific shared objects and executables. Note that this
mechanism is outside the scope of the ABI, and, thus, must not be relied on
for code that must be ABI-compliant and run on non-SGI platforms.
Currently, all executables produced on SGI systems are marked SGI_ONLY
to allow use of the versioning mechanism.

Versioning is mainly of interest to developers of shared objects. It may not be
of interest to you if you simply use shared objects. Versioning allows a
developer to update a shared object in a way that may be incompatible with
executables previously linked against the shared object. This is
accomplished by renaming the original shared object and providing it along
with the (incompatible) new version.

What Is a Version?

A version is part or all of an identifying version_string that can be associated
with a shared object by using the —set_version version_string option to Id(1)
when the shared object is created.

A version_string consists of one or more versions separated by colons (:). A
single version has the form:

[comment#]sgimajor.minor

where:

comment is a comment string, which is ignored by the versioning
mechanism. It consists of any sequence of characters
followed by a pound sign (#). The comment is optional.

Versioning of DSOs

sgi is the literal string sgi.

major is the major version number, which is a string of digits [0-9].
is a literal period.

minor is the minor version number, which is a string of digits

[0-9].

Follow these instructions when building your shared library:

When you first build your shared library, give it an initial version, for
example, sgi1.0. Add the option —set_version sgil.0 to the command to build
your shared library (cc —shared, Id —shared).

Whenever you make a compatible change to the shared object, create another
version by changing the minor version number (for example, sgi1.1) and add
it to the end of the version_string. The command to set the version of the
shared library now looks like —set_version “sgi1.0:5gi1.1".

When you make an incompatible change to the shared object:

1.

Change the file name of the old shared object by adding a dot followed
by the major number of one of the versions to the file name of the
shared object. Do not change the soname of the shared object or its
contents. Simply rename the file.

Update the major version number and set the version_string of the
shared object (when you create it) to this new version; for example,
—set_version sgi2.0.

This versioning mechanism affects executables in the following ways:

When an executable is linked against a shared object, the last version in
the shared object’s version_string is recorded in the executable as part of
the liblist. You can examine this using elfdump —DI.

When you run an executable, rld looks for the proper file name in its
usual search routine.

If a file is found with the correct name, the version specified in the
executable for this shared object is compared to each of the versions in
the version_string in the shared object. If one of the versions in the
version_string matches the executable’s version exactly (ignoring
comments), then that library is used.

65

Chapter 3: Dynamic Shared Objects

66

* If no proper match is found, a new file name for the shared object is
built by combining the soname specified in the executable for this shared
object and the major number found in the version specified in the
executable for this shared object (soname.major). Remember that you did
not change the soname of the object, only the file name. The new file is
searched for using rld’s usual search procedure.

For example, suppose you have a shared object foo.so with initial version
5gi10.0. Over time, you make two compatible changes for foo.so that result in
the following final version_string for foo.so:

initial_ version#sgil0.0:upgrade#sgil0.l:new_devices#sgil0.2

You then link an executable that uses this shared object, useoldfoo. This
executable specifies version sgi10.2 for soname foo.so. (Remember that the
executable inherits the last version in the version_string of the shared object.)

The time comes to upgrade foo.so in an incompatible way. Note that the major
version of foo.so is 10, so you move the existing foo.so to the file name foo.s0.10
and create a new foo.so with the version_string:

efficient_interfaces#sgill.O

New executables linked with foo.so use it directly. Older executables, like
useoldfoo, attempt to use foo.so, but find that its version (sgi11.0) is not the
version they need (sgi10.2). They then attempt to find a foo.so in the file name
f00.50.10 with version sgi10.2.

