Introduction

XX

Conventions

This guide uses the following conventions and symbols:

Courier In text the Courier font represents function names, file
names, and keywords. It is also used for command syntax,
output, and program listings.

bold Boldface is used along with Courier font to distinguish user
input from system output.

italics Words in italics represent characters or numerical values
that you define. Replace the abbreviation with the defined
value. Also, italics are used for manual page names and
commands. The section number, in parentheses, follows the

name.
[1] Brackets enclose optional items.
{} Braces enclose two or more items of which you must specify

at least one.
| The OR symbol separates two or more optional items.

A horizontal ellipsis in a syntax statement indicates that the
preceding optional items can appear more than once in
succession.

O Parentheses enclose entities and must be written as shown.

The following two examples illustrate the syntax conventions:
DIMENSION a(d) [,a(d)]
indicates that the Fortran keyword DIMENSION must be written as shown,

that the user-defined entity a(d) is required, and that one or more of a(d) can
be specified. The parentheses () enclosing d are required.

{STATIC | AUTOMATIC} v [, V]

indicates that either the STATIC or AUTOMATIC keyword must be written
as shown, that the user-defined entity v is required, and that one or more v
items can be specified.

Xix

Introduction

Xviii

Chapter 6, “Inter-Process Communication,” describes System V and
IRIX inter-process communication mechanisms.

Chapter 7, “File and Record Locking,” describes how to lock and
unlock files and parts of files from within a program.

Chapter 8, “Using Real-Time Programming Features,” describes
features available for real-time programming.

Chapter 9, “Working with Fonts,” discusses typography and font use
on Silicon Graphics computers, and describes the Font Manager library,

Chapter 10, “Internationalization,” explains how to create an
application that can be adapted for use in different countries.

Chapter 11, “Localization and Creating New Locales,” describes the
process of creating a databases of country-specific information for use
with internationalized programs.

Appendix A, “Position-Independent Coding in Assembly Language,”
describes assembly language coding techniques required by this
version of IRIX.

Appendix B, “ISO 3166 Country Names and Abbreviations,” lists
country codes for use with internationalization and localization.

Appendix C, “Changing Default Xsgi Settings,” explains how to direct
the X Window System server to use alternate keyboard mappings and
fonts.

Appendix D, “Internationalized Commands,” lists the IRIX commands
which have been internationalized.

Further Reading

The following references provide more information on internationalization:

Nye, Adrian: XIib Programming Manual for Version 11 of the X Window
System, Volume One, third edition (covers Release 4 and Release 5),
O'Reilly & Associates, ISBN 1-56592-002-3

Scheifler, Robert and Gettys, Jim: X Window System, Third Edition,
Digital Press, ISBN 1-55558-088-2

X/Open Company, Ltd.: X/Open Portability Guide, Prentice Hall, ISBN
0-13-685819-8 (Set of 7 Volumes)

Introduction

This guide discusses a variety of issues and tools involved in programming
under the IRIX™ operating system. It describes the components of the
IRIS®-4D™ compiler system, and other programming tools and interfaces.

Audience

This guide is intended for anyone who wants to program effectively under
IRIX. The material is intended as an introduction to the topics covered; more
advanced features are discussed in more detail in the relevant manual pages.
However, this guide is not an introduction to programming; there are a wide
variety of good texts available for anyone wanting to learn C, for instance,
and we do not cover such topics here. Most of our examples are written in C;
we assume a basic familiarity with that language.

Organization

This guide contains the following chapters:

* Chapter 1, “Using the Compiler System,” describes the components of
the IRIS-4D Series compiler system and explains how to use them.

* Chapter 2, “Dynamic Shared Objects,” explains how to build and use
dynamic shared objects, which replace the static shared libraries used
by previous versions of IRIX.

» Chapter 3, “Improving Program Performance,” explains how to reduce
program execution time using profiling and optimization tools.

* Chapter 4, “lex,” describes how to use the lex program generator to
develop a lexical analyzer.

* Chapter 5, “yacc,” describes the yacc program generator, a tool that
simplifies the task of developing parsers.

xvii

