Chapter 3

Profiling with prof

Improving Program Performance

This chapter explains how to reduce the execution time of your programs
using the compiler system. The techniques described here comprise only a
minor part of performance tuning; other areas which can be tuned, but
which are outside the scope of this chapter, include graphics, I/O, the kernel,
memory, and REACT (real-time) system calls. This chapter contains the
following sections:

* “Profiling with prof” describes how to use the profiler, prof.

* “Optimization” describes the compiler optimization facility and how to
use it. The section also contains examples demonstrating optimization
techniques.

Although it may be possible to obtain short-term speed increases by relying
on unsupported or undocumented quirks of the compiler system, it’s a bad
idea to do so. Any such “features” may well break in future releases of the
operating system. The best way to produce efficient code that can be trusted
to remain efficient is to follow good programming practices; in particular,
choose good algorithms and leave the details to the compiler.

Profiling produces detailed information about program execution. Use
profiling tools to find the areas of code where most of the execution time is
spent. In a typical program, a large part of the execution time is spent in
relatively few sections of code. It is a good idea to concentrate on improving
code efficiency in those sections first.

51

Chapter 3: Improving Program Performance

52

Overview of Profiling

Profiling is a three-step process that consists of compiling the source
program, executing the output, and running the profiler, prof, to analyze the
data.

The compiler system provides two kinds of profiling:

* Program counter (pc) sampling—measures the amount of execution
time spent in various parts of the program.

* Basic block counting—measures the execution of basic blocks (a basic
block is a sequence of instructions that is entered only at the beginning
and exits only at the end). Basic block counting provides statistics on
individual lines.

Running the Profiler

The profiler program, prof, converts raw profiling information to either a
printed listing or an output file for use by the compiler.

Syntax

prof [options] [pname] { [profile_filename ...] |
[pname.Addrs pname.Counts] }

options One of the keywords or keyword abbreviations shown in
Table 3-1. (Specify either the entire name or the initial
character of the option, as indicated in the table.)

pname Specifies the name of the program to be profiled. The
default file is a.out.

profile_filename Specifies one or more files containing the profile data
gathered when the profiled program executed (defaults are
explained below.) If you specify more than one file, prof
sums the statistics in the resulting profile listings.

pname.Addrs Output file produced by running pixie.

pname.Counts Output file produced by running the pixie-modified version
of the program pname.

Profiling with prof

The prof program has these defaults:

* If you do not specify profile_filename, the profiler looks for the mon.out
file; if that file does not exist, prof looks for profile input data files in the
directory specified by the PROFDIR environment variable (refer to
“Creating Multiple Profile Data Files”).

* If you do not specify profile_filename, but do specify —pixie, then prof
looks for pname.Addrs and pname.Counts and provides basic block count
information if these files are present.

Note: prof and pixie now work on programs linked with shared libraries. For
details refer to the pixie(1) manual page. .

Consider using the —merge option when you have more than one profile data
file. This option merges the data from several profile files into one file. See
Table 3-1 for information on the —merge option.

Table 3-1 Options for prof

Name Result

—c[lock] n A basic-block-counting option. Lists the number of seconds
spent in each routine, based on the CPU clock frequency #,
expressed in megahertz.

—e[xclude] Excludes information on the procedures (and their descendants)

procedure_name

—hleavy]

—i[nvocations]

—I[ines]

—mlerge] filename

specified by procedure_name. If you specify uppercase —E instead
of lowercase, prof also omits that procedure from the base upon
which it calculates percentages. This option overrides the
—include option.

A basic-block-counting option. Same as the —lines option, but
sorts the lines by their frequency of use.

A basic-block-counting option. Lists the number of times each
procedure is invoked. The —exclude and —only options described
below apply to callees, but not to callers.

A basic-block-counting option. Lists statistics for each line of
source code.

Merges the input files into filename, allowing you to specify the
name of the merged file (instead of several file names) on
subsequent profiler runs. This option is useful when using
multiple input files of profile data (normally in mon.out).

53

Chapter 3: Improving Program Performance

54

Table 3-1 (continued) Options for prof

Name

Result

—o[nly]
procedure_name

—pixie

—plrocedures]

—qluit] n

—t[estcoverage]

—z[ero]

Reports information on only the procedure specified by
procedure_name rather than the entire program. You can specify
more than one —o option. If you specify uppercase —O, prof uses
only the named procedures, rather than the entire program, as
the base upon which it calculates percentages.

Indicates that information is to be generated on basic block
counting, and that the pname.Addrs and pname.Counts files
produced by pixie are to be used by default.

Lists the time spent in each procedure.

Condense output listings by truncating unwanted lines. You can
specify n in three different ways: #, an integer, truncates
everything after n lines; n%, an integer followed by a percent
sign, truncates everything after the line containing n% calls in the
%calls column; and an integer followed by “cum%” truncates
everything after the line containing ncum% calls in the cum%
column.

A basic-block-counting option. Lists line numbers that contain
code that is never executed.

A basic-block-counting option. Lists the procedures that are
never invoked.

pc Sampling

Program counter (pc) sampling reveals the amount of execution time spent
in various parts of a program. The count includes:

* CPU time

* Memory access time

* Time spent in user routines

* Time spent in system routines

Pc sampling does not count time spent swapping or time spent accessing
external resources.

Profiling with prof

This section explains how to obtain pc sampling and provides an example
for clarification. It also explains how to create multiple profile data files.

Pc Sampling

Obtain pc sampling information by link editing the desired source modules
using the —p option and then executing the resulting program object, which
generates raw profile data.

Use the procedure below to obtain pc sampling information (refer to
Figure 3-1).

1.

Compile the program using the appropriate compiler driver. For
example, to compile a C program myprog.c:

IRIS% cc —c myprog.c
Link-edit the object file created in Step 1.
IRIS% cc —p —0 myprog myprog.o

Note: You must specify the —p profiling option during this step to obtain
pc sampling information. .

Execute the profiled program. (During execution, profiling data is
saved in the file mon.out.)

IRIS% myprog

You can run the program several times, altering the input data, to create
multiple profile data files. Use the environment variable PROFDIR as
explained later in this section.

Run the profile formatting program prof.
IRIS% prof myprog mon.out

prof extracts information from mon.out and prints it in an easily readable
format. For more information see the prof(1) manual page.

Include or exclude information on specific procedures within your program
by using the —only or —exclude profiler options (refer to Table 3-1).

55

Chapter 3: Improving Program Performance

/ progname.c /

Compile

'

Link with —p option

'

Execute program
to collect data

'

Execute prof (without
—pixie) to format data

'

Formatted listing of
profile statistics

N —

Figure 3-1 How pc Sampling Works

Data file
(mon.out)

Example

The following listing is an example of pc sampling output from a profiled
version of the ANSI C preprocessor, acpp:

56

Profiling with prof

Profile listing generated Sat Feb 23 15:00:10 1991 with:
prof acpp

* -—plrocedures] using

pc-sampling *

* sorted in descending order by total time spent in
each *

* procedure; unexecuted procedures

excluded *

Each sample covers 8.00 byte(s) for 1.1% of 0.9000 seconds

)

%time seconds cum % cum sec procedure (file)

28.9 0.2600 28.9 0.26 rescan (cccp.c)
27.8 0.2500 56.7 0.51 write (sys/write.s)
10.0 0.0900 66.7 0.60 handle_directive (cccp.c)
8.9 0.0800 75.6 0.68 read (sys/read.s)
5.6 0.0500 81.1 0.73 malloc (malloc.c)
5.6 0.0500 86.7 0.78 collect_expansion (cccp.c)
3.3 0.0300 90.0 0.81 open (sys/open.s)
2.2 0.0200 92.2 0.83 hashf (cccp.c)
2.2 0.0200 94.4 0.85 skip_if_group (cccp.c)
1.1 0.0100 95.6 0.86 main (cccp.c)
1.1 0.0100 96.7 0.87 do_define (cccp.c)
1.1 0.0100 97.8 0.88 macroexpand (cccp.c)
1.1 0.0100 98.9 0.89 skip_to_end_of_comment
(cccp.c)
1.1 0.0100 100.0 0.90 strncmp (strncmp.c)

In the above listing:
* 0.09 seconds (10.0% of execution time) was spent in handle_directive.

* 0.6 seconds (66.7% of total execution time) were spent cumulatively in
the rescan, write, and handle_directive routines.

* The name of the source file containing the handle_directive routine is
ceep.c.

57

Chapter 3: Improving Program Performance

58

Creating Multiple Profile Data Files

When you run a program using pc sampling, raw data is collected and saved
in the profile data file mon.out. To collect profile data in several files, or to
specify a different name for the profile data file, set the environment variable
PROFDIR, using the appropriate method from Table 3-2:

Table 3-2 Setting the PROFDIR environment variable

C Shell Bourne Shell

setenv PROFDIR dirname PROFDIR=dirname; export PROFDIR

Setting this environment variable places the raw profile data of each
invocation of progname in files named dirname/pid.progname. (You must create
a directory called dirname before you run the program.) pid is the process ID
of the executing program, and progname is the name of the program when
invoked.

Basic Block Counting

Basic block counting, obtained using the program pixie, measures the
execution of basic blocks. A basic block is a sequence of instructions that is
entered only at the beginning and exits only at the end. pixie takes a source
program and creates an equivalent program containing additional code that
counts the execution of each basic block.

Using pixie

Before obtaining basic block counts with prof and the —pixie option, use pixie

to translate your source program into a profiling version and generate a file
of block addresses.

Syntax
pixie in_prog_name [options]

in_prog_name Name of the input program.

Profiling with prof

options One of the keywords listed in Table 3-3. (For a complete list

of options refer to the pixie(1) manual page.)

Table 3-3 Options for pixie

Name Result

—o0 out_prog_name Specifies a name for the equivalent program. The default is to

remove any leading directory names from the in_prog_name
and append .pixie.

—bbaddrs name Specifies a name for the file of basic block addresses. The

default is to remove any leading directory names from the
in_prog_name and append .Addrs.

—[nolquiet [Permits] or suppresses messages summarizing the

binary-to-binary translation process. Default: —noquiet.

—[noltextdata Controls whether pixie puts the original text into the translated

output. This option is required to correctly translate programs
with data in the text section (for example, Fortran 77 format
statements in some compiler releases). Default: —textdata
(include original text).

Obtaining Basic Block Counts

Use the procedure below to obtain basic block counts (refer to Figure 3-2).

1.

Compile and link edit your program normally. Do not use the —p
option. For example, using the input file myprog.c:

IRIS% cc —o myprog myprog.c
The cc compiler compiles myprog.c into an executable called myprog.

Run pixie to generate the equivalent program containing
basic-block-counting code.

IRIS% pixie myprog —o myprog.pixie

pixie takes myprog and writes an equivalent program containing
additional code that counts the execution of each basic block. pixie also
generates a file called myprog.Addrs which contains the address of each
basic block. For more information, refer to the pixie(1) manual page.

Execute the file generated by pixie, myprog.pixie, in the same way you
would execute the original program.

59

Chapter 3: Improving Program Performance

60

IRIS% myprog.pixie

This program generates a list of basic block counts in a file named
myprog.Counts.

4. Run the profile formatting program prof specifying the —pixie option
and the name of the original program.

prof -pixie myprog myprog.Addrs myprog.Counts

prof extracts information from myprog.Addrs and myprog.Counts and
prints it in an easily readable format.

Note: Specifying myprog.Addrs and myprog.Counts is optional; pixie searches
by default for names having the form program_name.Addrs and
program_name.Counts. .

You can run the program several times, altering the input data, to create
multiple profile data files. See “Averaging Basic Block Count Results” later
in this section for an example.

The complete output of the —pixie option is often extremely large. Use the
—quit option with prof to restrict the size of the output. Refer to “Running the
Profiler” on page 52 for details about prof options.

Include or exclude information on specific procedures within your program
by using the —only or —exclude prof options (explained in Table 3-3). prof
timings reflect only time spent in a specific procedure, not time spent
including procedures called by that procedure. To show the time spent
including called procedures specify the —¢ option to prof.

Profiling with prof

/ progname.c /

Compile

'

Run pixie to create a
new equivalent
program

'

Execute new program
(progname.pixie) to
collect data

v

Execute prof —pixie to
format data

'

Formatted listing of
profile statistics

N —

Data files
(progname.Addrs,
progname.Counts)

Figure 3-2 How Basic Block Counting Works

Examples

The following listings are examples of basic block counting output using
prof —pixie, from a profiled version of the ANSI C preprocessor, acpp.

61

Chapter 3: Improving Program Performance

The first listing illustrates the use of the —invocations option. For each
procedure invoked, prof produces a list of the procedures that called it:

IRIS% prof —-pixie —-invocations acpp

Profile listing generated Sat Feb 23 15:00:01 1991 with:
prof -pixie -invocations acpp

—i[nvocations] using basic-block counts;

the called procedures are sorted in descending order by

*
*
*
*
* number of calls; a '?' in the columns marked '#calls'
*
* or 'line' means that data is unavailable.

*

called procedure #calls %calls from line, calling procedure

(file) :
strncmp 1112 45.22 4022 skip_if _group (cccp.c)
963 39.16 2213 handle_directive
(cccp.c)
362 14.72 3368 collect_expansion
(ccecp.c)
22 0.89 5246 lookup (cccp.c)
0 0.00 3530 do_1line (cccp.c)
0 0.00 2 parse_number (cexp.c)
0 0.00 3661 do_pragma (cccp.c)
0 0.00 3112 compare_defs (cccp.c)
0 0.00 3014 do_define (cccp.c)
0 0.00 2 parse_number (cexp.c)
malloc 1604 73.21 5690 xmalloc (cccp.c)
585 26.70 5714 xcalloc (cccp.c)
2 0.09 244 realloc (malloc.c)
0 0.00 303 setcftime (_cftime.c)
0 0.00 268 _findbuf (flsbuf.c)
0 0.00 256 realloc (malloc.c)

In the above listing:

* strncmp was called 1,112 times from line 4,022 of skip_if group.

62

Profiling with prof

* Calls from skip_if_group made up 45.22% of the calls to strncmp .

* The file ccep.c contains the source code for skip_if_group .

The following listing shows the source code lines responsible for the largest
portion of execution time produced with the —heavy option:

IRIS% prof -pixie -heavy acpp

Profile listing generated Sat Feb 23 15:00:03 1991 with:

prof -pixie -heavy acpp

* —hleavy]

counts;

using basic-block

* sorted in descending order by the number of

cycles

* executed in each line;

unexecuted lines are

excluded
procedure (file)
cum %

rescan (cccp.c)
12.80
handle_directive
18.63

rescan (cccp.c)
23.65

skip_if_ group
27.46

rescan (cccp.c)
31.24

rescan (cccp.c)
33.82

rescan (cccp.c)
36.36

rescan (cccp.c)
38.40

rescan (cccp.c)
40.34

rescan (cccp.c)
42.25

(cccp.c)

line bytes
1431 40
2291 68
1678 16
4067 68
1679 28
1429 8
1659 8
2014 92
1720 40
1721 12

cycles

940652

428379

369193

280109

277812

189746

186960

149390

143226

139773

12.

o°

80

.83

.02

.81

.78

.58

.54

.03

.95

.90

63

Chapter 3: Improving Program Performance

64

rescan (cccp.c) 1723 12 139773 1.90
44,15
handle_directive (cccp.c) 2375 72 137623 1.87
46.02
rescan (cccp.c) 1832 16 114445 1.56
47.58
handle_directive (cccp.c) 2372 20 110966 1.51
49.09
bzero (cccp.c) 5595 20 100660 1.37
50.46
collect_expansion (cccp.c) 3309 44 97100 1.32
51.78
collect_expansion (cccp.c) 3357 72 95715 1.30
53.08
rescan (cccp.c) 1428 8 94988 1.29
54.37

In the above listing:

* The most heavily used line is line 1431 in procedure rescan, compiled
from the source file cccp.c.

* Lines 1431, 2291, and 1678 executed 23.65% of the total program cycles.

* Line 1431 of cccp.c has 40 bytes of code and used 940652 cycles, which is
12.80% of the total program cycles.

The following listing, produced using the —lines option, shows the execution
time spent on each line of code, grouped by procedure:

IRIS% prof -pixie —-lines acpp

Profile listing generated Sat Feb 23 15:00:05 1991 with:
prof -pixie -lines acpp

* —1[ines] using basic-block

counts; *

* grouped by procedure, sorted by cycles executed

per *

* procedure; '?' means that line number information is
not *

*

available. *

Profiling with prof

procedure (file)
%cycles

rescan (cccp.c)
0.02

0.00

0.00

0.00

0.00

0.00

0.01

0.02

0.00

0.00

0.00

1.29

2.58

12.80

line bytes
1355 52
1360 4
1363 4
1383 4
1415 52
1416 8
1418 32
1419 64
1420 4
1424 16
1425 24
1428 8
1429 8
1431 40
1433 12
1434 12
1435 16
1438 4
1439 12
1440 4
1441 8

cycles

1495

115

115

115

230

920

1612

115

460

460

94988

189746

940652

65

Chapter 3: Improving Program Performance

66

1446 16 0
0.00

1447 12 0
0.00

In the above listing:

» The statistics describe the lines of code in procedure rescan compiled
from the source file cccp.c.

* Line 1355 in rescan contains 52 bytes of code, executed 1,495 times,
using 0.02% of the total program cycles.

* Line 1360 in rescan contains 4 bytes of code and did not execute any
recorded cycles.

You can limit the output of prof to information on only the most
time-consuming parts of the program by specifying the —quit option. You can
instruct prof to quit after a particular number of lines of output, after listing
the elements consuming more than a certain percentage of the total, or after
the portion of each listing whose cumulative use is a certain amount.

Consider the following sample listing:

calls $call cum$%

48071708 32.45 32.45 6.0090
42443503 28.65 61.10 5.3054
26457936 17.86 78.96 3.3072
20662326 13.95 92.91 2.5828
4307932 2.91 95.82 0.5385
3678408 2.48 98.30 0.4598
1573858 1.06 99.36 0.1967
362700 0.24 99.61 0.0453
279002 0.19 99.80 0.0349
251152 0.17 99.97 0.0314
30283 0.02 99.99 0.0038
13391 0.01 100.0 0.0017
2923 0.00 100.00 0.0017

Any one of the following commands will eliminate everything from the line
starting with 4307932 to the end of the listing:

prof —quit 4
prof —quit 13%
prof —-quit 92cum%

Profiling with prof

The following listing, produced with the —procedures option, shows the
percentage of execution time spent in each procedure:

IRIS% prof -pixie —-procedures acpp

Profile listing generated Sat Feb 23 15:00:01 1991 with:
prof -pixie -procedures acpp

* -—plrocedures] using basic-block

counts;

* sorted in descending order by the number of

cycles

*

* executed in each procedure;

are *
*

excluded

unexecuted procedures

7350305 cycles

cycles %cycles cum

3536769 48.
1231455 16.
684976 9.
6.17
258087 3.
3.19

453805

234150
(cccp.c)
111560
109313
101035
83969
71584
52005
50685
49438
43520
30143

el elNeolNolNoNol

12
75
32

51

.52
.49
.37
.14
.97
.71
.69
.67
.59
.41

48.
64.
74.
80.
83.
87.

88.
90.
91.
92.
93.
94.
94.
95.
96.
96.

In the above listing:

o
o

12 30755
87 1671
19 1616
36 4777
88 118
06 445
58 46
07 258
44 1348
58 124
56 309
26 91
95 114
63 634
22 75
63 63

cycles bytes
/call /line

17
18
19
17
14
17

21
18
14
13
21
27
17
18
13
16

procedure (file)

rescan

(cccp.c)

handle_directive (cccp.c)
collect_expansion (cccp.c)
skip_if_ group (cccp.c)

malloc

(malloc.c)

skip_to_end_of_comment

strncmp (strncmp.c)
do_define (cccp.c)

bzero

(ccecp.c)

skip_quoted_string (cccp.c)
macroexpand (cccp.c)

hashf

(cccp.c)

install (cccp.c)
_doprnt (doprnt.c)
xcalloc (cccp.c)

bcopy

(ccecp.c)

* The total number of program cycles is 7,350,305.

67

Chapter 3: Improving Program Performance

68

» rescan used 3,536,769 cycles, which is 48.12% of the total number of
program cycles.

* The cumulative total of all cycles used by rescan, handle_directive, and
collect_expansion is 74.19% (see column 3 of the third row).

» rescan used an average of 30,755 cycles per call and consisted of 17 bytes
of generated code per line of source text.

* The procedure rescan is in the source file cccp.c.

You can add absolute time information to the output by specifying the clock
rate, in megahertz, with the —clock option. The following listing shows the
output:

IRIS% prof —-pixie —-procedures —-clock 20 acpp

Profile listing generated Sat Feb 23 15:00:01 1991 with:
prof -pixie -procedures -clock acpp

* -—plrocedures] using basic-block

counts; *

* sorted in descending order by the number of

cycles *

* executed in each procedure; unexecuted procedures

are *

*

excluded *

7350305 cycles (0.3675 seconds at 20.00 megahertz)

)

cycles %cycles cum % seconds cycles bytes procedure (file)
/call /line

3536769 48.12 48.12 0.176 30755 17 rescan (cccp.c)
1231455 16.75 64.87 0.0616 1671 18 handle_directive

(cccp.c)

684976 9.32 74.19 0.0342 1616 19 collect_expansion
(ccecp.c)

453805 6.17 80.36 0.022 4777 17 skip_if group (cccp.c)
258087 3.51 83.88 0.0129 118 14 malloc (malloc.c)
111560 1.52 88.58 0.0056 46 21 strncmp (strncmp.c)
109313 1.49 90.07 0.0055 258 18 do_define (cccp.c)
101035 1.37 91.44 0.00 1348 14 Dbzero (cccp.c)

Profiling with prof

71584 0.97 93.56 0.0036 30 21 macroexpand (cccp.c)
52005 0.71 94.26 0.0026 91 27 hashf (cccp.c)

50685 0.69 94.95 0.0025 114 17 install (cccp.c)
49438 0.67 95.63 0.0025 634 18 _doprnt (doprnt.c)
43520 0.59 96.22 0.0022 75 13 xcalloc (cccp.c)
30143 0.41 96.63 0.0015 63 16 Dbcopy (cccp.c)

26577 0.36 96.99 0.0013 55 15 alloca (alloca.c)

The above listing contains the same information as the previous listing
except that this listing also contains the number of seconds spent in each
procedure. The profiler computes the time, in seconds, based on the machine
speed specified with the —clock option (in megahertz.) In this example the
speed specified is 20 megahertz.

Averaging Basic Block Count Results

Sometimes a single run of a program does not produce the results you
require. You can repeatedly run the version of a program created by pixie and
vary the input with each run, then use the resulting .Counts files to produce
a consolidated report.

Use the following procedure to average prof results:

1. Compile and link-edit the input file. Do not use the —p option. For
example, using the input file myprog.c:

IRIS% cc —c myprog.c
IRIS% cc —o myprog myprog.o

The cc compiler compiles myprog.c and saves the object file as myprog.o.
The second command link-edits myprog.o and saves the executable as

myprog.
2. Run the profiling program pixie.
IRIS% pixie myprog —o myprog.pixie

pixie generates the file myprog. Addrs that contains the address of each
basic block. It also generates the modified program myprog.pixie.

3. Run the profiled program as many times as desired. Each time you run
the program, pixie creates a myprog.Counts file. Rename this file before
executing the next sample run.

myprog.pixie < inputl > outputl

69

Chapter 3: Improving Program Performance

mv myprog.Counts myprogl.Counts
myprog.pixie < input2 > output2
mv myprog.Counts myprog2.Counts
myprog.pixie < input3 > output3
mv myprog.Counts myprog3.Counts

4. Create the report.
IRIS% prof —-pixie myprog myprog.Addrs myprog[123].Counts

prof takes an average of the basic block data in the myprog1.Counts,
myprog2.Counts, and myprog3.Counts files to produce the profile report.

Using pixstats

Use the pixstats command to analyze a program’s execution characteristics.
prof-generated reports ignore time spent in floating point operations and
time spent accessing memory. pixstats provides accurate floating point
information by analyzing the .Addrs and the .Counts files created through
pixie. The disadvantages to using pixstats are that it:

* Does not provide a line-by-line count

* Profiles only one .Counts file at a time (no averaging)
* Provides very little documentation

* Does not show time spent in floating point exceptions

You can also use pixstats to look for write buffer stalls and to produce
disassembled code listings.

Syntax

pixstats program [options]

program Specifies the name of the program to be analyzed.

70

Profiling with prof

options One of the keywords shown in Table 3-4

Table 3-4 Options for pixstats

Name Result

—cycle ns Assumes an 75 cycle time when

converting cycle counts to seconds.

-r2010 Uses 12010 floating point chip operation

times and overlap rules. This option is the
default.

-r2360 Uses 2360 floating point board operation

times and overlap rules.

—disassemble Disassembles and lists the analyzed object

code.

Use the following procedure to run pixstats:

1.

Compile and link edit the input file myprog.c. Do not use the —p option.
For example, using the input file myprog.c:

IRIS% cc —c myprog.c
IRIS% cc —o myprog myprog.o

The cc compiler driver compiles myprog.c and saves the object file as
myprog.o. The second command link-edits myprog.o and saves the
executable as myprog.

Run the profiling program pixie.
IRIS% pixie —o myprog.pixie myprog

pixie generates the file myprog.Addrs that contains the address of each
basic block. It also generates the modified program myprog.pixie.

Execute the file generated by pixie, myprog.pixie, in the same way you
would execute the original program.

IRIS% myprog.pixie

This program generates the file myprog.Counts which contains the basic
block counts.

Run pixstats to generate a detailed report.

71

Chapter 3: Improving Program Performance

IRIS% pixstats myprog

Example

The following example shows part of a listing generated by running pixstats
on the file acpp:

pixstats acpp:
7670434 (1.043) cycles (0.307s @ 25.0MHz)
7350710 (1.000) instructions
2351262 (0.320) basic blocks
15581 (0.002) calls
1069316 (0.145) loads
499584 (0.068) stores
1568900 (0.213) loadststores
1568932 (0.213) data bus use
686354 (0.093) partial word references
1941521 (0.264) branches
1041239 (0.142) nops
0 (0.000) load interlock cycles
319724 (0.043) multiply/divide interlock cycles (12/35 cycles)
(0.000) flops (0 mflop/s @ 25.0MHz)
(0.000) floating point data interlock cycles
(0.000) floating point add unit interlock cycles
.000) floating point multiply unit interlock cycles
(0.000) floating point divide unit interlock cycles
(0.000) other floating point interlock cycles
(0.000) 1 cycle interlocks (2 cycle stalls — not counted
in total)
0 (0.000) overlapeed floating point cycles
18400 (0.003) interlock cycles due to basic block boundary
0.272 load nops per load
0.318 stores per memory reference
0.437 partial word references per reference
3.1 instructions per basic block
3.8 instructions per branch
0.630 backward branches per branch
0.300 branch nops per branch
492 cycles per call
472 instructions per call

O O O O O o o
—
o

cycles %cycles cuns instrs c/i calls c/call name

72

Optimization

Optimization

3828673 49.9% 49.9% 3536769 1.1 115 33293 rescan
1231455 16.1% 66.0% 1231455 1.0 737 1671 handle directive
684976 8.9% 74.9% 684976 1.0 424 1616 collect expansion

In the above listing the first line shows a total of 7,670,434 cycles used by
acpp. This total includes floating point calculations. The second line shows a
total of 7,350,710 instructions. This total does not include floating point
calculations. By comparing the two totals, you can analyze floating point
versus integer calculations.

Profiling Multiprocessed Executables

You can gather both pixie and pc sampling profile data from executables that
use the sproc system call, such as POWER Fortran and POWER C
executables. Prepare and run the job using the same process as for
uniprocessed executables. For multiprocessed executables each thread of
execution writes its own separate profile data file. View these data files with
prof like any other profile data files.

The only difference between multiprocessed and regular executables is the
way in which the data files are named. When using pc sampling, the data
files for multiprocessed executables are named process_id.program_name.
When using pixie, the data files are named program_name.Countsprocess_id.
This naming convention avoids the potential conflict of all the threads
attempting to write simultaneously to the same file.

This section describes the compiler optimization facilities and explains their
benefits, the implications of optimizing and debugging, and the major
optimizing techniques.

73

Chapter 3: Improving Program Performance

74

Overview

This section contains an overview of optimization. It explains the global
optimizer, the benefits of optimization, and other general topics.

Global Optimizer

The global optimizer is a single program that improves the performance of
object programs by transforming existing code into more efficient coding
sequences. The optimizer distinguishes between C, Pascal, and Fortran
programs to take advantage of the various language semantics involved.

Silicon Graphics compilers perform both machine-independent and
machine-dependent optimizations. Silicon Graphics machines and other
machines with reduced instruction set computing (RISC) architectures
provide a better target for machine-dependent optimizations. The low-level
instructions of RISC machines provide more optimization opportunities
than the high-level instructions in other machines. Even optimizations that
are machine-independent have been found to be effective on machines with
RISC architectures. Although most optimizations performed by the global
optimizer are machine-independent, they have been specifically tailored to
the Silicon Graphics environment.

Benefits

The primary benefits of optimization are faster running programs and
smaller object code size. However, the optimizer can also speed up
development time. For example, your coding time can be reduced by leaving
it up to the optimizer to relate programming details to execution time
efficiency. You can focus on the more crucial global structure of your
program. Moreover, programs often yield optimizable code sequences
regardless of how well you write your source program.

Optimization and Debugging

Optimize your programs only when they are fully developed and debugged.
The optimizer may move operations around so that the object code does not
correspond to the source code. These changed sequences of code can create
confusion when using a debugger.

Optimization

Loop Optimization

Optimizations are most useful in program areas that contain loops. The
optimizer moves loop-invariant code sequences outside loops so that they
are performed only once instead of multiple times. Apart from
loop-invariant code, loops often contain loop-induction expressions that can
be replaced with simple increments. In programs composed of mostly loops,
global optimization can often reduce the running time by half.

Consider the source code below.

void left (a, distance)
char al]l;
int distance;

int j, length;

length = strlen(a) - distance;

for (j = 0; j < length; Jj++)
al[j] = al[j + distancel];

}

The following code samples show the unoptimized and optimized code
produced by the compiler. The optimized version (compiled with the -O
option) contains fewer total instructions and fewer instructions that
reference memory. Wherever possible, the optimizer replaces load and store
instructions (which reference memory) with the faster computational
instructions that perform operations only in registers.

Unoptimized Code

The loop is 13 instructions long and uses eight memory references.

8 for (j=0; j<length; Jj++)
sw $0, 36($sp) #3=20
ble $24, 0, $33 # length >= j
$32:
9 aljl = al[j+distancel;
1w $25, 36(S$sp) # 3
1w $8, 44 (Ssp) # distance
addu $9, $25, $8 # j+ distance
1w $10, 40(4sp) # address of a
addu $11, $10, $25 # address of a[jt+distance]
1lbu $12, 0($11) # a[j+distance]

75

Chapter 3: Improving Program Performance

addu $13, $10, $25 # address of al[j]
sb $12, 0($13) # aljl

1w $14, 36($sp) # 3

addu $15, $14, 1 # J+1

sSw $15, 36(S$sp) # J++

1w $3, 32($sp) # length

blt $15, $3, $32 # j < length

$33:

Optimized Code

The loop is 6 instructions long and uses two memory references.

8 for (j=0; j<length; j++)
move $5,$0 # 3J=0
ble $4, 0, $33 # length >= j
move $2, $le6 # address of alj]
addu $6, $16, S1 # address of a[j+distance]
$32:
9 al[j] = aljtdistance];
1lbu $3, 0($6) # al[j+distance]
sb $3, 0($2) # aljl
addu $5, $5, 1 # J++
addu $2, $2, 1 # address of next alj]
addu $6, $6, 1 # address of next a[j+distance]
blt $5, $4, $32 # j < length
$33: # address of next al[j +
distance]

Loop Unrolling

The optimizer performs loop unrolling to improve performance in two
ways:

* Reduces loop overhead.

* Increases work performed in the loop body allowing more opportunity

for optimization and register usage.

For example, the Fortran loop:

do i=1,100
sum = sum + a(i)*b (i)
enddo

76

Optimization

when unrolled four times looks like

do i=1,100,4

sum = sum + a(i)*b (i)

sum = sum + a(i+1l)*b(i+1)

sum = sum + a(i+2)*b(i+2)

sum = sum + a(i+3)*b(1i+3)
enddo

The unrolled version runs much faster than the original. Most of the increase
in execution speed is because the multiplication and addition operations are
overlapped.

The optimizer performs a similar sort of transformation, although the
optimizer does this on its own internal representation of the program, not by
rewriting the original source code.

Note: If the number of iterations of the loop is not an exact multiple of the
unrolling factor (or if the number of iterations is unknown), the optimizer
still performs this transformation even though the result is more
complicated than the original code. .

Register Allocation

The Silicon Graphics architecture emphasizes the use of registers. Therefore,
register usage has a significant impact on program performance. For
example, fetching a value from a register is significantly faster than fetching
a value from RAM. The optimizer must therefore make the best possible use
of registers.

The optimizer allocates registers for the most suitable data items, taking into
account their frequency of use and their locations in the program structure.
In addition, the optimizer assigns values to registers in such a way as to
minimize shifting around within loops and during procedure invocations.

Optimizing Separate Compilation Units

The optimizer processes one procedure at a time. Large procedures offer
more opportunities for optimization, since more interrelationships are
exposed in terms of constructs and regions. However, large procedures
require more time to optimize than smaller ones.

77

Chapter 3: Improving Program Performance

78

The uld and umerge phases of the compiler permit global optimization
among code from separate files (or “modules”) in the same compilation.
Traditionally, program modularity restricted the optimization of code to a
single compilation unit at a time rather than over the full breadth of the
program. For example, it was impossible to fully optimize calling code along
with the procedures called if those procedures resided in other modules.

The uld and umerge phases of the compiler system overcome this deficiency.
The uld phase links multiple modules into a single unit. Then, umerge orders
the procedures for optimal processing by the global optimizer, uopt.

Optimization Options

Invoke the optimizer by specifying a compiler driver, such as cc(1), with any
of the options listed in Table 3-5. Figure 3-3 shows the major processing
phases of the compiler and how the compiler —On option determines the
execution sequence.

Table 3-5 Optimization Options

Option Result

-00 No optimization. Prevents all optimizations, including the minimal
optimization normally performed by the code generator and assembler. uld,
umerge, and uopt are bypassed, and the assembler bypasses certain
optimizations it normally performs.

-01 (Default) The assembler and code generator perform as many optimizations
as possible without affecting compile time performance. Bypasses uld,
umerge, and uopt. However, the code generator and the assembler perform
basic optimizations in a more limited scope.

Optimization

Table 3-5 (continued) Optimization Options

Option Result

-02 Specifies global optimization. Optimizes within the bounds of individual
compilation units. This option executes the global optimizer (uopt) phase. uld
and umerge are bypassed, and only the uopt phase executes. It performs
optimization only within the bounds of individual compilation units.

-03 This option cannot be used to compile with DSOs; it is only available for

non-shared programs. The —non_shared option must therefore be used
whenever —O3 is used.

—-03 specifies using all optimizations, including procedure inlining. This
option must precede all source file arguments. It creates a ucode object file,
which remains a .u file, for each source file. The runtime start-up routine,
runtime libraries, and ucode versions of the runtime libraries are linked, as
well as newly created ucode object files and any ucode object files specified
on the command line. Procedure inlining is done on the resulting linked file.
This file is then compiled as usual into an executable.

The uld and umerge phases process the output from the compilation phase of
the compiler, which produces symbol table information and the program
text in an internal format called ucode. The uld phase combines all the ucode
files and symbol tables, and passes control to umerge. umerge reorders the
ucode for optimal processing by uopt. Upon completion, umerge passes
control to uopt, which performs global optimizations on the program.

Note: Refer to the cc(1), pc(1), or f77(1) manual pages, as applicable, for
details on the —O3 option and the input and output files related to this

option.

79

Chapter 3: Improving Program Performance

80

| Compilation |

-03 or -j
Ucode Link
| (uld) I—ﬁ/ .u /
Procedure Merge
| (umerge) Id—

Global Optimizer
-02 O—» (uopt)

-01 0—>| COde(ge::)mm I‘_S>/ s / Assembler File
or no optimization -« 1

| As(s;e;rak;ler W o / Assembled Object File
P — |
Y

| Link Editor |_>/ n out / Linked Object File

Figure 3-3 Optimization Phases of the Compiler

Full Optimization

This section provides examples of full optimization using the O3 option.
Although the examples are in C, you can substitute the C files and driver
command for another source language. The following examples assume that
the program foo consists of three files: a.c, b.c, and c.c.

To perform procedure merging optimizations (-O3) on all three files, enter
the following:

IRIS% cc -03 —non_shared -o foo a.c b.c c.c

Optimization

If you normally use the — option to compile the .o object file, follow these

steps:

1.
following:
IRIS% cc
IRIS% cc
IRIS% cc

Compile each file separately using the —j option by typing in the

-j a.c
-j b.c

-j c.c

The —j option produces a .u file (the standard compiler front-end output
made up of ucode; ucode is an internal language used by the compiler).
None of the remaining compiling phases are executed, as illustrated in

Figure 3-4.

C Compiler

/;
//
/;

Figure 3-4 Compiling with the —j Option

2.

i

Enter the following statement to perform optimization and complete
the compilation process.

IRIS% cc —-03 —non_shared -o foo a.u b.u c.u

Figure 3-5 illustrates the results of executing the above statement.

81

Chapter 3: Improving Program Performance

82

-03
Ucode Link
o (uld)

Y
Procedure Merge
(umerge)

Y
Global Optimizer
(uopt)

Y
Code Generator
(ugen)

Y

Assembler
(asl)

Y

Link Editor
(1d) a.out

Figure 3-5 Executing Full Optimization

Optimizing Frequently Used Modules

Compiling and optimizing frequently used modules reduces the compile
and optimization time required when the modules are called.

The following procedure explains how to compile two frequently used
modules, b.c and c.c, while retaining all the necessary information to link
them with future programs; future.c represents one such program.

1. Compile b.c and c.c separately by entering the following statements:

IRIS% cc -j b.c

Optimization

IRIS% cc -j c.c

The —j option causes the front end (first phase) of the compiler to
produce two ucode files b.u and c.u.

Using an editor, manually create a file containing the external symbols
in b.c and c.c to which future.c will refer. Each symbolic name must be
separated by at least one blank. Consider the skeletal contents of b.c and
c.c:

File b.c File c.c
foo () x ()
{ {
} }
bar () help ()
{ {
zot () }
{
struct
{
}
struct } ddata;
{
y ()
. {
} work;

In this example, future.c will call or reference only foo, bar, x, ddata, and y
in the b.c and c.c procedures. A file (named extern for this example)
must be created containing the following symbolic names:

foo bar x ddata y

The structure work, and the procedures help and zot are used internally
only by b.c and c.c, and thus are not included in extern.

If you omit an external symbolic name, an error message is generated
(see Step 4 below).

83

Chapter 3: Improving Program Performance

84

3. Optimize the b.u and c.u modules (created in Step 1) using the extern file

(created in Step 2) as follows:
IRIS% cc -03 —-non_shared -kp extern b.u c.u -o keep.o

In the —kp option, k indicates that the link editor option —p is to be
passed to the ucode loader.

Figure 3-6 illustrates Step 3.

/

[/ o /

o

Y

Ucode Link
™ e /

v (hand-created

symbol list file)
Procedure Merge
(umerge)

Y
Global Optimizer
(uopt)

\
Code Generator
(ugen)

Y

Assembler / /
(as1) 1 keep.o

Figure 3-6 Optimization Process

4.

Create a ucode file and an optimized object code file (foo) for future.c as
follows:

IRIS% cc —j future.c
IRIS% cc -03 —non_shared future.u keep.o -o foo

If the following message appears it means that the code in future.c is
using a symbol from the code in b.c or c.c that was not specified in the
file extern (go to Step 5 if this message appears.)

Optimization

zot: multiply defined hidden external (should have been
preserved)

5. Include zot, which the message indicates is missing, in the file extern
and recompile as follows:

IRIS% cc —-03 —non_shared -kp extern b.u c.u -o keep.o

IRIS% cc —-03 —non_shared future.u keep.o -o foo

Building a Ucode Obiject Library

Building a ucode object library is similar to building a coff(5) object library.
First, compile the source files into ucode object files using the compiler
driver option —j and using the archiver just as you would for coff object
libraries. Using the above example, to build a ucode library (libfoo.b) of a
source file, enter the following:

IRIS% cc —-j a.c
IRIS% cc -j b.c
IRIS% cc -j c.c

IRIS% ar crs libfoo.b a.u b.u c.u

Conventional names exist for ucode object libraries (/ibname.b) just as they
do for coff object libraries (libname.a).

Using Ucode Object Libraries

Using ucode object libraries is similar to using coff(5) object files. To load
from a ucode library, specify a —klname option to the compiler driver or the
ucode loader. For example, to load the file created in the previous example
from the ucode library (assuming libfoo.a was placed in the /usr/lib directory),
enter the following:

IRIS% cc -03 —-non_shared filel.u file2.u -klfoo —-o output
Remember that libraries are searched as they are encountered on the
command line, so the order in which you specify them is important. If a

library is made from both assembly and high-level language routines, the
ucode object library contains code only for the high-level language routines.

85

Chapter 3: Improving Program Performance

86

The library does not contain all the routines, as does a coff object library or a
DSO. In this case, specify to the ucode loader first the ucode object library
and then the coff object library or DSO to ensure that all modules are loaded
from the proper library.

If the compiler driver is to perform both a ucode load step and a final load
step, the object file created after the ucode load step is placed in the position
of the first ucode file specified or created on the command line in the final
load step.

Improving Global Optimization
This section contains coding hints recommended to increase optimizing

opportunities for the global optimizer (uopt). Apply these recommendations
to your code whenever possible.

C and Fortran Programs

The following suggestion applies to both C and Fortran programs:

Do not use indirect calls. Avoid indirect calls (calls that use routines or
pointers to functions as arguments). Indirect calls cause unknown side

effects (that is, they change global variables) that can reduce the amount of
optimization possible.

C Programs Only
The following suggestions apply to C programs only:

Return values. Use functions which return values instead of pointer
parameters.

Do while. Use do while instead of while or for when possible. For do while, the
optimizer does not have to duplicate the loop condition in order to move
code from within the loop to outside the loop.

Unions. Avoid unions that cause overlap between integer and floating point
data types. The optimizer will not assign such fields to registers.

Optimization

Use local variables. Avoid global variables. In C programs, declare any
variable outside of a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

Value parameters. Pass parameters by value instead of passing by reference
(pointers) or using global variables. Reference parameters have the same
degrading effects as the use of pointers (see below).

Pointers and aliasing. You can often avoid aliases by introducing local
variables to store the values obtained from dereferenced pointers. Indirect
operations and calls affect dereferenced values, but do not affect local
variables. Therefore, local variables can be kept in registers. The following
example shows how the proper placement of pointers and the elimination of
aliasing produces better code.

Example

In this example, because the statement *p++ = 0 might modify len, the
compiler cannot place len in a register for optimal performance. Instead, the
compiler must load it from memory on each pass through the loop.

Source Code

int len = 10;
char af[l0];

void
zero ()
{
char *p;
for (p= a; p != a + len;) *p++ = 0;

Generated Assembly Code

#8 for (p = a; p!=a + len;) # p+t+ = 0;
move $2, $4
1w $3, len
addu $24, $4, $3
beqg $24 $4 $33 # a + len != a
$32
sb $0, 0(s$2) # *p =0

87

Chapter 3: Improving Program Performance

addu $2, $2, 1 # p++

1w $25, len

addu $8, $4, $25

bne $8, $2, $32 # len + a !=p

$33:

Two methods for increasing the efficiency of this example might be: using
subscripts instead of pointers; and using local variables to store unchanging
values.

Using subscripts instead of pointers. Using subscripts in the procedure
azero (as shown below) eliminates aliasing. The compiler keeps the value of
len in a register, saving two instructions. It still uses a pointer to access a
efficiently, even though a pointer is not specified in the source code.

Source Code

void azero()

{
int i;
for (1 = 0; 1 != len; i++)
ali]l] = 0;

Generated Assembly Code

for (i = 0; 1 != len; i++) al[i]l = 0;

move $2, $0 #1i=0

beg $4, 0, $37 # len != a

la $5, a
$36:

sb S0, 0($5) # *a =0

addu $2, $2, 1 # i++

addu $5, $5, 1 # a++

bne $2, $4, $36 # i !'= len
$37:

Using local variables. Specifying len as a local variable or formal argument
(as shown below) prevents aliasing and allows the compiler to place len in a
register.

88

Optimization

Source Code

char af[l0];
void lpzero(len)

int len;
{
char *p;
for (p = a; p != a + len;) *p++ = 0;

Generated Assembly Code

#8 for (p = a; p!=a + len;) # p+t+ = 0;
move $2, $6
addu $5, $6, S4

beqg $5, $6 $33 # a + len != a
$32

sb $0, 0($82) # *p =0

addu $2, $2, 1 # pHt

bne $5, $2, $32 # a + len !=p
$33:

In the previous example, the compiler generates slightly more efficient code
for the second method.

Write straightforward code. For example, do not use ++ and -- operators
within an expression. Using these operators for their values rather than for
their side-effects, often produces bad code. For example, the following code
uses the value of n-- as a condition for the while loop, which is a convoluted
way of performing the loop while 7 is non-zero:

while (n—--) {
}

In the following code it is obvious that the loop is performed when # is
non-zero:

while (n != 0) {
n-—;

}

Use register declarations liberally. The compiler automatically assigns
variables to registers. However, specifically declaring a register type lets the

89

Chapter 3: Improving Program Performance

90

compiler make more aggressive assumptions when assigning register
variables.

Addresses. Avoid taking and passing addresses (& values). Using addresses
creates aliases, makes the optimizer store variables from registers to their
home storage locations, and significantly reduces optimization
opportunities that would otherwise be performed by the compiler.

VARARG/STDARG. Avoid functions that take a variable number of
arguments. The optimizer saves all parameter registers on entry to VARARG
or STDARG functions.

Ada® Programs
This suggestion applies to Ada programs:

Use of pragma inline. Use pragma inline to inline short subroutines and
avoid the overhead associated with procedure calls.

Improving Other Optimization

The global optimizer processes programs only when you specify the -O2 or
—-O3 option at compilation. However, the code generator and assembler
phases of the compiler always perform certain optimizations (certain
assembler optimizations are bypassed when you specify the —O0 option at
compilation).

This section contains coding hints that increase optimizing opportunities for
the other passes of the compiler.

C and Fortran Programs

The following suggestions apply to both C and Fortran programs:
* Use tables rather than if-then-else or switch statements. For example:

/* OK: */
if (1 ==1) c="1";
else ¢ = '0’;

/* More efficient: */

Optimization

c = "01"[i];

As an optimizing technique, the compiler puts the first four parameters
of a parameter list into registers where they remain during execution of
the called routine. Therefore, always declare as the first four parameters
those variables that are most frequently manipulated in the called
routine.

Use word-size variables instead of smaller ones if enough space is
available. This practice can take more space, but it is more efficient.

C Programs Only

The following suggestions apply to C programs only:

Rely on libc.so functions (for example, strcpy, strlen, stremp, beopy, bzero,
memset, and memcpy). These functions were carefully coded for
efficiency.

Use the unsigned data type for variables wherever possible (see next
bulleted item for an exception to this rule, though). There are two
reasons for this. First: since the compiler knows such a variable will
always be greater than or equal to zero, it performs optimizations that
would not otherwise be possible. Second: the compiler generates fewer
instructions for multiplying and dividing unsigned numbers by a
power of two. Consider the following example:

int i;

unsigned j;

return i/2 + j/2;

The compiler generates six instructions for the signed i/2 operation:

000000 20010002 1i rl,2
000004 0081001a div r4,rl
000008 14200002 bne rl,r0,0x14

00000c 00000000 nop
000010 03fe000d break 1022
000014 00001812 mflo r3

The compiler generates only one instruction for the unsigned j/2
operation:

000018 0005c042 srl r24,r5,1 # 3/ 2

In this example, i/2 is an expensive expression, while j/2 is inexpensive.

91

Chapter 3: Improving Program Performance

* Use a signed data type, or cast to a signed data type, for any variable
which must be converted to floating-point.

double d;

unsigned int u;

int i;

/* fast */ d = 1i;

/* fast */ d = (int)u;

/* slow */ d = u;

Converting an unsigned type to floating-point takes significantly
longer than converting signed types to floating-point; additional
software support must be generated in the instruction stream for the
former case.

92

