
1

Chapter 1

1. Using the Compiler System

This chapter contains these sections:

• “Overview” lists the components of the IRIS-4D compiler system.

• “Object File Format and Dynamic Linking” discusses the major
differences between the latest version of IRIX and previous versions.

• “Source File Considerations” explains source file naming conventions
and the procedure for including header files.

• “Compiler Drivers” lists and explains the general compiler-driver
options.

• “Linking” explains how to manually link-edit programs (using ld or a
compiler driver) and how to compile multilanguage programs. It also
describes Dynamic Shared Objects and how to link them into your
programs.

• “Debugging” explains the compiler-driver options for debugging.

• “Getting Information about Object Files” explains how to use the object
file tools to analyze object files.

• “Using the Archiver to Create Libraries” explains how to use the
archiver, ar.

Overview

The IRIS-4D compiler system consists of a set of components that enable you
to create executable programs using such languages as C, Fortran 77, and
Pascal. Table 1-1 summarizes the IRIS-4D compiler system components and
the task each performs.

2

Chapter 1: Using the Compiler System

A single program called a compiler driver (such as cc, f77, or pc) invokes the
following major components of the compiler system (refer to Figure 1-1):

• Macro preprocessor (cfe)

• Parallel analyzer (pca, pfa)

• Compiler front end (cfe, fcom, upas)

• Ucode tools (ujoin, uld, umerge)

• Optimizer (uopt)

• Code generator (ugen)

• Assembler (as1)

• Link editor (ld)

Note: C++ has a specialized driver, CC, with slightly different options from
cc, f77, and pc. Refer to the C++ Programming Guide for details. ♦

Table 1-1 Compiler System Functional Components

Tool Task Examples

Text editor Write and edit programs vi, jot, emacs

Compiler driver Compile, link, and load
programs

cc, f77, pc

Object file analyzer Analyze object files elfdump, file, nm, odump, size

Profiler Analyze program
performance

prof, pixie

Optimizer Improve program
performance

uopt

Archiver Produce object-file libraries ar

Runtime loader Link Dynamic Shared Objects
at runtime

rld

Debugger Debug programs dbx

Overview

3

You can invoke a compiler driver with various options (described later in
this chapter) and with one or more source files as arguments. All specified
source files are automatically sent to the macro preprocessor.

Note: Preprocessing is now done by cfe, but the old preprocessors (cpp for
“traditional” Kernighan & Ritchie C, or acpp for ANSI C) are still available
for non-compilation preprocessing in case you want to use them. ♦

Although the macro preprocessor was originally designed for C programs,
it is now run by default as part of almost all compilations. To prevent the
preprocessor from being run, specify the –nocpp option on the driver
command line.

If available, the parallel analyzers pca and pfa produce parallelized source
code from standard source code. The result takes advantage of multiple
CPUs (when present) to achieve higher computation rates. pca and pfa are
part of the Power C and Power Fortran packages; for more information
about these packages and how to obtain them, contact your dealer or sales
representative.

The compilers proper, often called “front ends,” translate source code into
intermediate code. The available compiler front ends are cfe (C), fcom
(Fortran 77), and upas (Pascal). ujoin, uld, umerge, and uopt comprise the
optimization subsystem of the compiler system. (For more information
about optimization and profiling, see Chapter 3, “Improving Program
Performance.”) ugen and as1 make up the code-generation subsystem of the
compiler system.

The link editor ld combines several object files into one, performs relocation,
resolves external symbols, and merges symbol table information for
symbolic debugging. The driver automatically runs ld unless you specify the
–c option to skip the linking step.

To see the various utilities a program passes through during compilation,
invoke the appropriate driver with the –v option (or +v for the C++ driver
CC).

4

Chapter 1: Using the Compiler System

Figure 1-1 Compiler System Flowchart

−O1

or no optimization

Driver
(cc, f77, or pc)

Macro Preprocessor
(cfe)

Parallel Analyzers
(pca, pfa)

Compiler Front End
(cfe, fcom, upas)

Ucode Link
(uld)

Procedure Merge
(umerge)

Optimizer
(uopt)

Code Generator
(ugen)

Assembler
(as1)

Link Editor
(ld)

Source Files

.f

.c

.p

.b

.u

.s

.o

a.out.a

Ucode Library

Assembler File

Assembled Object File

Linked Object File

−mp

−O3 or −j

−O2

−s

−c

Object File Format and Dynamic Linking

5

Object File Format and Dynamic Linking

A new object file format was adopted in IRIX version 5.0. The major
differences between the current compiler system and pre-5.0 compiler
systems are summarized below:

• The compiler system uses a new format, Executable and Linking
Format (ELF), for object files.

• The compiler system uses a new kind of shared library, the Dynamic
Shared Object (DSO).

• The compiler system creates Position-Independent Code (PIC) by
default to support dynamic linking.

Executable and Linking Format

Previous versions of IRIX used an extended version of the Common Object
File Format (COFF) for object files. The current compiler system produces
ELF object files instead. ELF is the format specified by the System V Release
4 Applications Binary Interface (the SVR4 ABI). In addition, ELF provides
support for Dynamic Shared Objects, described below. There are three
kinds of ELF object files:

• Relocatable files contain code and data in a format suitable for linking
with other object files to make a shared object or executable.

• Dynamic Shared Objects contain code and data suitable for dynamic
linking. Relocatable files may be linked with DSOs to create a dynamic
executable. At runtime, the runtime linker combines the executable and
DSOs to produce a process image.

• Executable files are programs ready for execution. They may or may
not be dynamically linked.

COFF executables will continue to run on new releases of IRIX, but the
current compiler system has no facility for creating or linking COFF
executables. COFF and ELF object files may not be linked together. To take
advantage of new IRIX features, you must recompile your code.

IRIX will execute all binaries that are compliant with the SVR4 ABI, as
specified in the System V Applications Binary Interface—Revised Edition and
the System V ABI MIPS Processor Supplement; however, binaries compiled

6

Chapter 1: Using the Compiler System

under this version of the compiler system are not guaranteed to comply with
the SVR4 ABI. The MIPS-specific version of the SVR4 ABI is referred to as the
MIPS ABI. Programs that comply with the MIPS ABI can be run on any
machine that supports the MIPS ABI.

Dynamic Shared Objects

IRIX 5.0 introduced a new kind of shared object called a Dynamic Shared
Object, or DSO. The object code of a DSO is Position-Independent Code (PIC),
which can be mapped into the virtual address space of several different
processes at once. DSOs are loaded at runtime instead of at linking time, by
the runtime loader, rld. As is true for static shared libraries, the code for
DSOs is not included in executable files; thus, executables built with DSOs
are smaller than those built with non-shared libraries, and multiple
programs may use the same DSO at the same time.

Static shared libraries are only supported under this release for the purposes
of running old (COFF) binaries. The current compiler system has no facilities
for generating static shared libraries.

Position-Independent Code

Dynamic linking requires that all object code used in the executable be
Position-Independent Code. For source files in high-level languages, you
just need to recompile to produce PIC. Assembly language files must be
modified to produce PIC; see Appendix A, “Position-Independent Coding
in Assembly Language,” for details.

Position-Independent Code satisfies references indirectly by using a Global
Offset Table (GOT), which allows code to be relocated simply by updating the
GOT. Each executable and each DSO has its own GOT.

The compiler system will now produce PIC by default when compiling
higher-level language files. All of the standard libraries are now provided as
DSOs, and therefore contain PIC code; if you compile a program into
non-PIC, you will be unable to use those DSOs. One of the few reasons to
compile non-PIC is to build a device driver, which doesn’t rely on standard
libraries; in this case, you should use the –non_shared option to the compiler
driver to negate the default option, –KPIC. For convenience, the C library

Source File Considerations

7

and math library are provided in non-shared format as well as in DSO
format (although the non-shared versions are not installed by default). These
libraries can be linked –non_shared with other non-PIC files.

When running Position-Independent Code, the global pointer is used to
point to the Global Offset Table, so you can no longer use the –G option to store
data in the global pointer region (that is, –KPIC, the default, implies –G 0).
The compiler will ignore any user-specified –G number other than zero. For
more information about this option, see the ld(1) manual page.

 Source File Considerations

This section describes conventions for naming source files and including
header files.

Source File Naming Conventions

Each compiler driver recognizes the type of an input file by the suffix
assigned to the file name. Table 1-2 describes the possible file name suffixes.

Table 1-2 Driver Input File Suffixes

 Suffix Description

.s Assembly source

.i Preprocessed source code in the language of the processing
driver

.c C source

.f Fortran 77 source

.p Pascal source

.u Ucode object file

.b Ucode object library

.o Object file

.a Object library

8

Chapter 1: Using the Compiler System

If you purchased the C++ option, refer to the C++ Programming Guide for
details about input files for the C++ driver, CC.

Examples

calc.p is an example of a Pascal program name.

When invoked as follows, f77 assumes the file tickle.i contains Fortran
statements (because the Fortran driver is specified). f77 also assumes the file
has already been preprocessed (because the suffix is .i), and therefore will
not invoke the cfe preprocessor:

f77 -c tickle.i

Header Files

Header files, also called include files, contain information about the libraries
they’re associated with. They define such things as data structures, symbolic
constants, and prototypes and parameters for the functions in the library. For
example, the stdio.h header file describes, among other things, the data types
of the parameters required by printf(). To use those definitions without
having to type them into each of your source files, you can use the #include
command to tell the macro preprocessor to include the complete text of the
given header file in the current source file. Including header files in your
source files allows you to specify such definitions conveniently and
consistently in each source file that uses any of the library routines.

By convention, header file names have a .h suffix. Each programming
language handles these files the same way, via the macro preprocessor.

Note: Do not put any code other than definitions in an include file,
particularly if you intend to debug your program using dbx. The debugger
recognizes an include file as only one line of source code, so source lines in
an include file do not appear during debugging sessions. ♦

Source File Considerations

9

Specifying a Header File

The #include command tells the preprocessor to replace the #include line
with the text of the indicated header file. The usual way to specify a header
file is with the line:

#include <filename>

where filename is the name of the header file to be included. The angle
brackets (< >) surrounding the file name tell the macro preprocessor to
search for the specified file only in directories specified by command-line
options and in the default header-file directory (/usr/include).

There is another specification format, in which the file name is given
between double quotation marks:

#include "filename"

In this case, the macro preprocessor searches for the specified header file in
the current directory first, then (if it doesn’t find the requested file) goes on
and searches in the other directories as in the angle-bracket specification.

Note: When you specify header files in your source files, the #include
keyword should always start in column 1 (that is, all the way over to the left)
to be recognized by the preprocessor. ♦

Creating a Header File for Multiple Languages

A single header file can contain definitions for multiple languages; this setup
allows you to use the same header file for all programs that use a given
library, no matter what language those programs are in. To set up a shareable
header file, create a .h file and enter the definitions for the various languages
as follows:

#ifdef _LANGUAGE_C

C definitions

#endif

#ifdef _LANGUAGE_C_PLUS_PLUS

C++ definitions

10

Chapter 1: Using the Compiler System

#endif

#ifdef _LANGUAGE_FORTRAN

Fortran definitions

#endif

and so on for other language definitions

Note: To indicate C++ definitions you must use
_LANGUAGE_C_PLUS_PLUS, not _LANGUAGE_C++. ♦

You can specify the various language definitions in any order, but you must
specify _LANGUAGE_ before the language name.

Compiler Drivers

The driver commands, such as cc, f77, and pc, call subsystems that compile,
optimize, assemble, and link-edit your programs. This section describes
driver options that can be used with any of the drivers.

Default Behavior for Compiler Drivers

At compilation time, you can select one or more options that affect a variety
of program development functions, including debugging, optimization, and
profiling facilities. You can also specify the names assigned to output files.
However, some options have default values that apply if you do not specify
the option.

When you invoke a compiler driver with source files as arguments, the
driver calls other commands that compile your source code into object code.
It then optimizes the object code (if requested to do so) and links together the
object files, the default libraries, and any other libraries you specify.

Compiler Drivers

11

Example

Given a source file foo.c, the default name for the object file is foo.o. The
default name for an executable file is a.out. So the following example
compiles source files foo.c and bar.c with the default options:

cc foo.c bar.c

This example produces two object files (foo.o and bar.o), then links those
together with the default C library libc to produce an executable called a.out.

Note: If you compile a single source directly to an executable, the compiler
will not create an object file. ♦

General Options for Compiler Drivers

Table 1-3 describes some of the command-line options for IRIS-4D compiler
drivers. Note that not all of the options work with every driver.

Note: Table 1-3 lists only the most frequently used options, not all available
options. See the cc(1), pc(1), and f77(1) manual pages for a complete list of
options. ♦

You can use the compiler system to generate profiled programs that, when
executed, provide operational statistics. To perform this procedure, use the
–p compiler option (for pc sampling information) and the pixie program (for
profiles of basic block counts). Refer to Chapter 3, “Improving Program
Performance,” for details.

In addition to the general options in Table 1-3, each driver also has options
that you normally will not use. These options primarily aid compiler

12

Chapter 1: Using the Compiler System

development work. For information about nonstandard driver options,
consult the appropriate driver manual page.

Table 1-3 General Driver Options

Option Purpose

–c Prevents the link editor from linking your program after
assembly code generation. This option forces the driver to
produce a .o file after the assembler phase, and prevents the
driver from producing an executable file.

–C (C driver only) Used with the –P or –E option. Prevents the
macro preprocessor from stripping comments. Use this option
when you suspect the preprocessor is not producing the
intended code and you want to examine the code with its
comments. Note that –C is really an option to cfe; this option
will be passed along to cfe if you specify it with cc.

–C (Pascal and Fortran drivers only) Generates code that invokes
range checking for subscripts during program execution.

–Dname[=def] Defines a macro name as if you had specified a #define in your
program. If you do not specify a definition with =def, name is
set to 1.

–E (C driver only) Runs only the macro preprocessor and sends
results to the standard output. To retain comments, use the –C
option as well. Use –E when you suspect the preprocessor is
not producing the intended code.

–Idirname Adds dirname to the list of directories to be searched for
specified header files. These directories are always searched
before the default directory, /usr/include.

–mips1 Generates code using the instruction set of the MIPS
R2000/R3000 RISC architecture. This is the default.

–mips2 Generates code using the MIPS II instruction set (MIPS I +
R4000 specific extensions). Note that code compiled with
-mips2 will not run on R2000/R3000 based machines.

–nocpp Suppresses running of the macro preprocessor on the source
files prior to processing.

Compiler Drivers

13

–non_shared Turns off the default option, –KPIC, to produce non-shared
code that thus can be linked to only a few standard libraries
(such as libc.a and libm.a) that are provided in non-shared
format, in the directory /usr/lib/nonshared. Should therefore
usually be used only when building device drivers.

–nostdinc Suppresses searching of /usr/include for the specified header
files.

–o filename Names the result of the compilation filename. If an executable is
being generated, it will be named filename rather than the
default name, a.out. If a single source file is being compiled
with –c, the object will be named filename (not, it should be
noted, filename.o; if you want the object file name to end with
.o, you should specify that in the argument to –o). Otherwise,
this option will be ignored.

–P Runs only the macro preprocessor on the files and puts the
result of each file in a .i file. Specify both –P and –C to retain
comments.

–S Similar to –c, except that it produces assembly code in a .s file
instead of object code in a .o file.

–Uname Overrides a definition of the macro name that you specified
with the –D option, or that is defined automatically by the
driver. Note that this option does not override a macro
definition in a source file, only on the command line.

–v Lists compiler phases as they are executed. Use this option to
see the default options for each compiler phase along with the
options you’ve specified.

–w Suppresses warning messages.

Table 1-3 (continued) General Driver Options

Option Purpose

14

Chapter 1: Using the Compiler System

Linking

The link editor, ld, combines one or more object files and libraries (in the
order specified) into one executable file, performing relocation, external
symbol resolutions, and all other required processing. Unless directed
otherwise, the link editor names the executable file a.out.

This section summarizes the functions of the link editor. Also described here
are how to link-edit a program manually (without using a compiler driver)
and how to compile multilanguage programs. Refer to the ld(1) manual page
for complete information on the link editor.

Invoking the Link Editor Manually

Usually the link editor is invoked by the compiler driver as the final step in
compilation (as explained in “Compiler Drivers”). If you have object files
produced by previous compilations that you want to link together, you can
invoke the link editor using a compiler driver instead of calling ld directly;
just pass the object-file names to the compiler driver in place of source-file
names. If the original source files were in a single language, simply invoke
the associated driver and specify the list of object files. (For information
about linking together objects derived from several languages, see “Linking
Multilanguage Programs.”)

There are a few command-line options to ld, such as –p, which have different
meanings when used as command-line options to cc; to pass such options to
ld through an invocation of a compiler driver, use the –Wl option to the
driver (see the manual page for details).

There are a few circumstances under which you need to invoke ld directly,
such as when you’re doing special linking not supported by compiler
drivers (such as building an embedded system). But most of the time it’s
simplest just to call a compiler driver and let it invoke ld as necessary.
Nonetheless, a summary of ld syntax is provided here in case you need it.

Linking

15

Syntax

ld options object1 [object2...objectn]

options One or more of the options listed in Table 1-4.

object Specifies the name of the object file to be link-edited.

Table 1-4 contains only a partial list of link editor options. Many options that
apply only to creating shared objects are discussed in the next chapter. For
complete information on options and libraries that affect link editor
processing, refer to the ld(1) manual page.

Table 1-4 Link Editor Options

Option Purpose

–kllibname Similar to –llibname, but the library is a
ucode library named liblibname.b.

–llibname Specifies the name of a library, where
libname is the library name. The link editor
searches for a liblibname.so (and then
liblibname.a) first in any directories
specified by –L dirname options, and then
in the standard directories: /lib, /usr/lib,
and /usr/local/lib.

–L dirname Adds dirname to the list of directories to be
searched for along with libraries specified
by subsequent –llibname options.

--m Produces a link editor memory map,
listing input and output sections of the
code, in System V format.

–M Produces a link map in BSD format,
listing the names of files to be loaded.

–nostdlib This option must be accompanied by the
–L dirname option. If the link editor does
not find the library in dirname, then it does
not search any of the standard library
directories.

16

Chapter 1: Using the Compiler System

Example

The following command tells the linker to search for the DSO libcurses.so in
the directory /lib. If it does not find that DSO, the linker then looks for
libcurses.a in /lib; then for libcurses.so in /usr/lib, then in the same directory for
libcurses.a. If it hasn’t found an appropriate library by then, it looks in
/usr/local/lib for libcurses.a. (Note that the linker will not look for DSOs in
/usr/local/lib, so don’t put shared objects there.) If found in any of those
places, the DSO or library is linked with the objects foiled.o and again.o:

ld foiled.o again.o -lcurses

Note: The –G option, which formerly allowed you to specify which data
items should be stored in the global pointer region, is no longer useful.
–KPIC, the default, implies –G 0, and the compiler will ignore any user
attempts to specify otherwise. Compiling –non_shared (to avoid –KPIC) is

–o filename Specifies a name for your executable. If
you do not specify filename, the link editor
names the executable a.out.

–s Strips symbol table information from the
program object, reducing its size. This
option is useful for linking routines that
are frequently linked into other program
objects.

–v Prints the name of each file as it is
processed by the link editor.

–Xsortbss Sorts bss symbols (this is the default in C
but not in Fortran).

–Xnobsschange Overrides defaults, eliminating all global
bss reordering.

–ysymname Reports all references to, and definitions
of, the symbol symname. Useful for
locating references to undefined symbols.

Table 1-4 (continued) Link Editor Options

Option Purpose

Linking

17

primarily useful only for creating device drivers, in which case there is no
direct linking step in which to specify a –G number. For more information,
see the cc and ld manual pages. ♦

Linking Assembly Language Programs

The assembler driver as1 does not run the link editor. To link-edit a program
written in assembly language, use one of these procedures:

• Assemble and link-edit using one of the other driver commands (cc, for
example). The .s suffix of the assembly language source file causes the
driver to invoke the assembler.

• Assemble the file using as; then link-edit the resulting object file with
the ld command.

Specifying Libraries

The link editor ld processes its arguments from left to right as they appear on
the command line. Arguments to ld can be DSOs, object files, or libraries.

When ld reads a DSO, it adds all the symbols from that DSO to a cumulative
symbol table. If it encounters a symbol that’s already in the symbol table, it
does not change the symbol table entry; so if you define the same symbol in
more than one DSO, only the first definition will be used.

When ld reads an archive, usually denoted by a file name ending in .a, it uses
only the object files from that archive that can resolve currently unresolved
symbol references. (When a symbol is referred to but not defined in any of
the object files that have been loaded so far, it’s called unresolved.) Once a
library has been searched in this way, it is never searched again; so libraries
should come after object files on the command line in order to resolve as
many references as possible. Note that if a symbol is already in the
cumulative symbol table from having been encountered in a DSO, its
definition in any subsequent library will be ignored.

Libraries and DSOs can be specified either by explicitly stating a pathname
or by use of the library search rules. To specify a library or DSO by path,
simply include that path on the command line (relative to the current
directory, or else absolute):

18

Chapter 1: Using the Compiler System

ld myprog.o /usr/lib/libc.so.1 mylib.so

Note: libc.so.1 is the name of the standard C DSO, replacing the older libc.a.
Similarly, libX11.so.1 is the X11 DSO. Most other DSOs are simply named
name.so, with no .1 at the end. ♦

To use the linker’s library search rules, specify the library with the –llibname
option:

ld myprog.o -lmylib

When the –lmylib argument is processed, ld searches for a file called
libmylib.so. If it can’t find libmylib.so in a given directory, it tries to find
libmylib.a there; if it can’t find that either, it moves on to the next directory in
its search order. The default search order is to look first in /lib, then in /usr/lib.
After looking in both of those directories, ld will look in /usr/local/lib for
archives only (DSOs should not be installed in /usr/local/lib). You can modify
these defaults by specifying the –L dir and/or –nostdlib options. Directories
specified by –L dir before the –llibname argument are searched in the order
they appear on the command line, before the default directories are
searched. If –nostdlib is specified, then –L dir must also be specified because
the default directories will not be searched at all.

If ld is invoked from one of the compiler drivers, all –L and –nostdlib options
are moved up on the command line so that they appear before any –llibname
option. For example:

cc file1.o -lm -L mydir

invokes, at the linking stage of compilation:

ld -L mydir file1.o -lm

Note: There are three different kinds of files that contain object code files:
non-shared libraries, PIC archives, and DSOs. Non-shared libraries are the
old-fashioned kind of library, built using ar from .o files that were compiled
with –non_shared. These archives must also be linked –non_shared. PIC
archives are the default in IRIX 5.0, built using ar from .o files compiled with
–KPIC (a default option); they can be linked with other PIC files. DSOs are
built from PIC .o files by using ld –shared; see Chapter 2 for details. ♦

Linking

19

When compiling multilanguage programs, be sure to specify any required
runtime libraries using the –llibname option. For a list of the libraries that a
language uses, see the corresponding compiler driver manual page.

If the link editor tells you that a reference to a certain function is unresolved,
check that function’s manual page to find out which library the function is
in. If it isn’t in one of the standard libraries (which ld links in by default), you
may need to specify the appropriate library on the command line. For an
alternative method of finding out where a function is defined, see “Finding
a symbol in an unknown library” on page 28.

Note: Simply including the header file associated with a library routine is
not enough; you also must specify the library itself when linking (unless it’s
a standard library). There is no magical connection between header files and
libraries; header files only give prototypes for library routines, not the
library code itself. ♦

Examples

To link a sample program foo.c with the math DSO, libm.so, enter:

cc foo.c -lm

To specify the appropriate DSOs for a graphics program foogl.c, enter:

cc foogl.c -lgl -lX11

Linking to Dynamic Shared Objects

This section describes how to link your source files with previously built
DSOs; for more information about how to build your own DSOs, see
Chapter 2, “Dynamic Shared Objects.”

Note: DSOs replace the older static shared libraries, which were named with
the extension _s.a. The _s.a libraries are no longer shipped with IRIX;
however, the runtime versions of those libraries, named with _s at the end
(and no .a), are still present under IRIX 5.0 for backward compatibility with
older executables that used static shared libraries. ♦

To build an executable that uses a DSO, call a compiler driver just as you
would for a non-shared library. For instance,

20

Chapter 1: Using the Compiler System

cc needle.c -lthread

links the resulting object file (needle.o) with the previously built DSO
libthread.so (and the standard C DSO, libc.so.1), if available. If there is no
libthread.so, but there is a PIC archive named libthread.a, that archive will be
used with libc.so.1, and you will still get dynamic (runtime) linking. Note
that even .a libraries now contain Position-Independent Code by default,
though it is also possible to build non-shared .a libraries that do not contain
PIC.

Linking Multilanguage Programs

When the source language of the main program differs from that of a
subprogram, use the following steps to link (refer to Figure 1-2):

1. Compile object files from the source files of each language separately by
using the –c option. For example, if the source consists of a Fortran
main program (main.f) and two files of C functions (more.c and rest.c),
use the commands:

cc -c more.c rest.c

f77 -c main.f

These commands produce the object files main.o, more.o, and rest.o.

2. Use the driver associated with the language of the main program to link
the objects together:

f77 main.o more.o rest.o

Note: The compiler drivers will supply the default set of libraries necessary
to produce an executable from the source of the associated language, but
when producing executables from source code in several languages, you
may need to explicitly specify the default libraries for one or more of the
languages used. For instructions on specifying libraries, see “Specifying
Libraries.” ♦

Debugging

21

Figure 1-2 Compilation Control Flow for Multilanguage Programs

For specific details about compiling multilanguage programs, refer to the
programming guides for the appropriate languages.

Debugging

The compiler system provides a debugging tool, dbx, which is explained in
the dbx User’s Guide. In addition, CASEVision/WorkShop™ contains
debugging tools. For information about obtaining WorkShop for your
computer, contact your dealer or sales representative.

C Preprocessor

C Front End

Code Generator

Assembler

rest.o more.o

rest.c more.c

C Preprocessor

Fortran Front End

Code Generator

Assembler

main.o

main.f

22

Chapter 1: Using the Compiler System

Before using a debugging tool, you must use one of the standard driver
options, listed in Table 1-5, to produce executables containing information
that the debugger can use.

Getting Information about Object Files

The following tools provide information on object files as indicated:

• elfdump lists the contents (including the symbol table and header
information) of an ELF-format object file.

• file provides descriptive information on the general properties of the
specified file.

• nm lists symbol table information.

• odump lists the contents of a COFF-format object file.

• size prints the size of each section of an object file (some such sections
are named text, data, and sbss). The a.out(4) manual page describes the
format of these sections.

Table 1-5 Driver Options for Debugging

Option Purpose

–g0 (Default) Produces a program object without debugging information.
Reduces the size of the program object but retains optimizations. Use
this option after you have finished debugging.

–g1 Specifies accurate, but limited, source-level debugging. This option
performs most optimizations.

–g or –g2 Specifies full source-level debugging. These options suppress
optimizations that might interfere with full debugging.

–g3 Specifies full, but inaccurate, debugging on fully optimized code. This
level of debugger output can be confusing or misleading. Specify this
option only for programs that malfunction after you optimize them.

Getting Information about Object Files

23

Listing Selected Parts of Object Files and Libraries with
elfdump

The elfdump tool lists headers, tables, and other selected parts of an
ELF-format object file or archive file.

Syntax

elfdump options filename1 [filename2..filenamen]

options One or more of the options listed in Table 1-6.

filename Specifies the name of one or more object files whose
contents are to be dumped.

For more information, see the elfdump(1) manual page.

Table 1-6 Elfdump Options

 Option Dumps

–cr Compact relocation information.

–Dc Conflict list in Dynamic Shared Objects.

–Dg Global Offset Table in Dynamic Shared Objects.

–Dl Library list in Dynamic Shared Objects.

–Dt String table entries of the dynamic symbol table in Dynamic
Shared Objects.

–f The file header.

–h All section headers in the file.

–hash Hash table entries.

–L Dynamic section in Dynamic Shared Objects.

–o Program header.

–r Relocation information.

–reg Register info.

–t Symbol table entries.

24

Chapter 1: Using the Compiler System

Determining File Type with file

The file tool lists the properties of program source, text, object, and other
files. This tool attempts to identify the contents of files using various
heuristics. It is not exact and is occasionally fooled. For example, it often
erroneously recognizes command files as C programs. For more
information, see the file(1) manual page.

Syntax

file filename1 [filename2..filenamen]

where each filename is the name of a file to be examined.

Example

Information given by file is self-explanatory for most kinds of files, but using
file on object files and executables gives somewhat cryptic output. In this
example, “MSB” indicates Most Significant Byte, also called Big-Endian;
“dynamic executable” means the executable was linked with DSO libraries;
and “(not stripped)” means the executable contains at least some symbol
table information. “Dynamic lib” indicates a DSO.

file test.o a.out /lib/libc.so.1
test.o: ELF 32-bit MSB relocatable MIPS - version 1
a.out: ELF 32-bit MSB dynamic executable (not stripped) MIPS - version 1
/lib/libc.so.1: ELF 32-bit MSB dynamic lib MIPS - version 1

Listing Symbol Table Information: nm

The nm tool lists symbol table information for object files and archive files.

Syntax

nm options filename1 [filename2..filenamen]

options One or more of the options listed in Table 1-7.

Getting Information about Object Files

25

filename Specifies the object files or archive files from which symbol
table information is to be extracted. If you do not specify a
file name, nm assumes the file is called a.out.

Table 1-7 Symbol Table Dump Options

Option Purpose

–a Prints debugging information. If used with –B, uses BSD ordering with
System V formatting.

–A Prints the listing in System V format (default).

–b Prints the value field in octal.

–B Prints the listing in BSD format.

–d Prints the value field in decimal (the default for System V output).

–e Prints only external and static variables.

–h Suppresses printing of headers.

–n Sorts external symbols by name for System V format. Sorts all symbols
by value for Berkeley format (by name is the BSD default output).

–o Prints value field in octal (System V output). Prints the file name
immediately before each symbol name (BSD output).

–p Lists symbols in the order they appear in the symbol table.

–r Reverses the sort that you specified for external symbols with the –n and
–v options.

–T Truncates characters in exceedingly long symbol names; inserts an
asterisk as the last character of the truncated name. This option may
make the listing easier to read.

–u Prints only undefined symbols.

–v Sorts external symbols by value (default for Berkeley format).

–V Prints the version number of nm.

–x Prints the value field in hexadecimal.

26

Chapter 1: Using the Compiler System

Table 1-8 defines the one-character codes shown in an nm listing. Refer to the
example that follows the table for a sample listing.

Example

This example demonstrates how to obtain a symbol table listing. Consider
the following program, tnm.c:

#include <stdio.h>

Table 1-8 Character Code Meanings

Key Description

a Local absolute data

A External absolute data

b Local zeroed data

B External zeroed data

C Common data

d Local initialized data

D External initialized data

E Small common data

G External small initialized data

N Nil storage class (avoids loading of unused external references)

r Local read-only data

R External read-only data

s Local small zeroed data

S External small zeroed data

t Local text

T External text

U External undefined data

V External small undefined data

Getting Information about Object Files

27

#include <math.h>
#define LIMIT 12
int unused_item = 14;
double mydata[LIMIT];

main()
{
 int i;
 for(i = 0; i < LIMIT; i++) {
 mydata[i] = sqrt((double)i);
 }
 return 0;
}

Compile the program into an object file by entering:

cc -c tnm.c

To obtain symbol table information for the object file tnm.o in BSD format,
use the nm –B command:

nm -B tnm.o
0000000000 T main
0000000000 B mydata
0000000000 U sqrt
0000000000 D unused_item
00000000 N _bufendtab

To obtain symbol table information for the object file tnm.o in System V
format use the nm command without any options:

nm tnm.o
Symbols from tnm.o:

[Index] Value Size Class Type Section Name

[0] | 0| |File |ref=4 |Text | tnm.c
[1] | 0| |Proc |end=3 int |Text | main
[2] | 116| |End |ref=1 |Text | main
[3] | 0| |End |ref=0 |Text | tnm.c
[4] | 0| |File |ref=6 |Text | /usr/include/math.h
[5] | 0| |End |ref=4 |Text | /usr/include/math.h
[6] | 0| |Global | |Data | unused_item
[7] | 0| |Global | |Bss | mydata
[8] | 0| |Proc |ref=1 |Text | main

28

Chapter 1: Using the Compiler System

[9] | 0| |Proc | |Undefined| sqrt
[10] | 0| |Global | |Undefined| _gp_disp

Finding a symbol in an unknown library

When ld indicates that a symbol is undefined, you can use nm to figure out
which DSO or library needs to be linked in by piping nm’s output through
appropriate greps.

Example

You’re trying to compile a program, and ld tells you that you’re trying to use
an undefined symbol:

cc prog.c -lgl
ld:
Unresolved:
XGetPixel

But you don’t know where XGetPixel is defined. So use nm to list the symbol
tables for all of the available DSOs, and filter that output to find only the
places where XGetPixel is mentioned. Then filter the result to find only the
places where XGetPixel is actually defined, as indicated by the T character
code.

nm -Bo /usr/lib/lib*.so* | grep XGetPixel | grep T
/usr/lib/libX11.so.1: 0f790ff8 T XGetPixel

Note: Some DSOs end in .so, while others end in .so.1, so we need to use
multiple wildcards to get all of them. Also, note that this command line
would have to be modified to look in PIC archives or non-shared libraries;
as written it will only look in DSOs. ♦

So now we now that XGetPixel is defined in /usr/lib/libX11.so.1, the X11 DSO;
use the –l option to tell cc to link in that library, and ld won’t complain any
more.

cc prog.c -lgl -lX11

Getting Information about Object Files

29

Listing Selected Parts of COFF Files with odump

The odump tool lists headers, tables, and other selected parts of a
COFF-format object or archive file. It is provided with this release of IRIX for
compatibility; use elfdump for ELF-format files.

Syntax

odump options filename1 [filename2..filenamen]

options One or more of the options listed in Table 1-9.

filename Specifies the name of one or more object files whose
contents are to be dumped.

For more information, see the odump(1) manual page.

Table 1-9 Odump Options

Option Dumps

–a Archive header of each object file in the specified archive library
file.

–c String table.

–d number The section numbered number, or a range of sections starting
with number and ending with the last section number available
(or the number you specify with the +d auxiliary option).

+d number All sections starting with the first section (or with the section
specified with the –d option) and ending with the section
numbered number.

–f File header for each object file in the specified file.

–F File descriptor table for each object file in the specified file.

–g Global symbols in the symbol table of an archive library file.

–h Section headers.

–i Symbolic information header.

–l Line number information.

30

Chapter 1: Using the Compiler System

Determining Section Sizes with size

The size tool prints information about the sections (such as text, rdata, and
sbss) of the specified object or archive files.

Syntax

size options [filename1 filename2..filenamen]

options Specifies the format of the listing (see Table 1-10).

–n name Information for section named name only. Use this option with
the –h, –s, –r, –l, or –t option.

–o Optional header for each object file.

–p Suppresses the printing of headers.

–P Procedure descriptor table.

–r Relocation information.

–R Relative file index table.

–s Section contents.

–t Symbol table entries.

–t index Only the indexed symbol table entry. Use the +t option with the
–t option to specify a range of table entries.

+t index Symbol table entries in a range that ends with the indexed entry.
The range begins with the first symbol table entry or with the
section that you specify with the –t option.

–v Information in symbolic rather than numeric representation.
This option may be used with any odump option except –s.

–z name, number Line number entry (or a range of entries starting at the specified
number) for the named function.

+z number Line number entries starting with the function name or line
number specified by the –z option and ending with number.

Table 1-9 (continued) Odump Options

Option Dumps

Using the Archiver to Create Libraries

31

filename Specifies the object or archive files whose properties are to
be listed. If you do not specify a file name, the default is
a.out.

Example

Below are examples of the size command and the listings they produce:

size -B -o test.o
 text data bss rdata sdata sbss decimal hex
test.o 31250 2010 40470 550 210 50 31232 7a00

size -B -d test.o
 text data bss rdata sdata sbss decimal hex
test.o 12968 1032 16696 360 136 40 31232 7a00

Using the Archiver to Create Libraries

An archive library is a file that includes the contents of one or more object
(.o) files. When the link editor (ld) searches for a symbol in an archive library,

Table 1-10 Size Options

Option Action

–A Prints data section headers in System V format.

–B Prints data section headers in Berkeley format.

–d Prints sizes in decimal (default).

–F Prints data on loadable segments.

–n Prints symbol table, global pointer, and more.

–o Prints sizes in octal.

–s Follows shared libraries, adding them as they’re encountered to the list
of files to be sized.

–V Prints the version of size that you are using.

–x Prints sizes in hexadecimal.

32

Chapter 1: Using the Compiler System

it loads only the code from the object file where that symbol was defined (not
the entire library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has the
following main functions:

• Copying new objects into the library

• Replacing existing objects in the library

• Moving objects around within the library

• Extracting individual objects from the library

The following section explains the syntax of the ar command and lists some
examples of how to use it. See the ar(1) manual page for details.

Note: ar simply strings together whatever object files you tell it to archive;
thus, it can be used to build either non-shared or PIC libraries, depending on
how the included .o files were built in the first place. If you do create a
non-shared library with ar, remember to link it –non_shared with your other
code. For information about building DSOs and converting libraries to
DSOs, see Chapter 2. ♦

Syntax

ar options [posObject] libName [object1...objectn]

options Specifies the action that the archiver is to take. Table 1-11,
Table 1-12, and Table 1-13 list the available options. To
specify more than one option, don’t use a dash or put spaces
between the options. For example, use ar ts, not ar –t –s.

posObject Specifies the name of an object within an archive library. It
specifies the relative placement (either before or after
posObject) of an object that is to be copied into the library or
moved within the library. This parameter is required when
the a, b, or i suboptions are specified with the m or r option.
The last example in “Examples,” shows the use of a
posObject parameter.

libName Specifies the name of the archive library you are creating,
updating, or extracting information from.

object Specifies the name(s) of the object file(s) to manipulate.

Using the Archiver to Create Libraries

33

Archiver Options

When running the archiver, specify exactly one of the options d, m, p, q, r, t,
or x (listed in Table 1-11). In addition, you can optionally specify any of the
modifiers in Table 1-12, as well as any of the archiver suboptions listed in
Table 1-13.

Table 1-11 Archiver Options

Option Purpose

d Deletes the specified objects from the archive.

m Moves the specified files to the end of the archive. If you want to move the
object to a specific position in the archive library, specify an a, b, or i
suboption together with a posObject parameter.

p Prints the specified objects in the archive on the standard output device
(usually the terminal screen).

q Adds the specified object files to the end of the archive. This option is
similar to the r option (described below), but is faster and does not remove
any older versions of the object files that may already be in the archive.
Use the q option when creating a new library.

r Adds the specified object files to the end of the archive file. If an object file
with the same name already exists in the archive, the new object file will
overwrite it. If you want to add an object at a specific position in the
archive library, specify an a, b, or i suboption together with a posObject
parameter. Use the r option when updating existing libraries.

t Prints a table of contents on the standard output (usually the screen) for
the specified object or archive file.

x Copies the specified objects from the archive and places them in the
current directory. Duplicate files are overwritten. The last modified date is
the current date (unless you specify the o suboption, in which case the date
stamp on the archive file is the last modified date). If no objects are
specified, copies all the library objects into the current directory.

34

Chapter 1: Using the Compiler System

Table 1-12 Archiver Modifiers

Option Purpose

c Suppresses the warning message that the archiver issues when it discovers
that the archive you specified does not already exist.

C Makes an archive compatible with pre-SVR4 IRIX.

E The default; creates an archive matching the specifications given by the
SVR4 ABI.

l Puts the archiver’s temporary files in the current working directory.
Ordinarily, the archiver puts those files in /tmp (unless the STMDIR
environment variable is set, in which case ar stores temporary files in the
directory indicated by that variable). This option is useful when /tmp (or
STMDIR) is full.

s Creates a symbol table in the archive. This modifier is rarely necessary
since the archiver updates the symbol table of the archive library
automatically. Options m, p, q, and r, in particular, create a symbol table by
default and thus do not require s to be specified.

v Lists descriptive information during the process of creating or modifying
the archive. When specified with the t option, produces a verbose table of
contents.

Using the Archiver to Create Libraries

35

Note: The a and b suboptions are only useful if the same symbol is defined
in two or more of the object files in the archive (in which case, the symbol
table shows the first definition listed in the archive). Under other
circumstances, order of object files in an archive is irrelevant (and the a and
b suboptions are useless), since ld uses the archive symbol table rather than
searching linearly through the file. ♦

Examples

Create a new library, libtest.a, and add object files to it by entering:

ar cq libtest.a mcount.o mon1.o string.o

The c option suppresses an archiver message during the creation process.
The q option creates the library and puts mcount.o, mon1.o, and string.o into it.

An example of replacing an object file in an existing library:

ar r libtest.a mon1.o

Table 1-13 Archiver Suboptions

Suboption Use with Option Purpose

a m or r Specifies that the object file being added should
follow the already-archived object file specified
by the posObject parameter on the command line.

b m or r Specifies that the object file precede the object file
specified by the posObject parameter.

i m or r Same as b.

o x Forces the last modified date of the extracted
object file to match that of the archive file.

u r Tells the archiver not to replace the existing
object file in the archive if the last modified date
indicates that the object file already in the archive
is newer (more recently modified) than the one
you’re adding.

36

Chapter 1: Using the Compiler System

The r option replaces mon1.o in the library libtest.a. If mon1.o does not already
exist in the library libtest.a, it is added.

Note: If you specify the same file twice in an argument list of files to be
added to an archive, that file will appear twice in the archive. ♦

To add a new file immediately before mcount.o in this library, enter:

ar rb mcount.o libtest.a new.o

The r option adds new.o to the library libtest.a. The b option followed by
mcount.o as the posObject causes the archiver to place new.o immediately
before mcount.o in the archive.

