
'

&

$

%

�

�

	

Week 7 1

3 The Dining Philosophers 3

Five philosophers live in a college; they spend most of

their time thinking, but occasionally become hungry.

The college has a communal dining room, with a cir-

cular table and �ve chairs. In the middle of the table

is a large bowl of spaghetti, and the table is set with

�ve plates. There are also �ve forks, one between

each pair of plates.

4

3 2

1

0

0

1

2

3

4

When a philosopher is hungry, he enters the dining

room, sits down in his chair, picks up the forks on

either side of his plate (�rst the fork on the left, then

the fork on the right), and eats. Two forks are needed

to eat spaghetti, so if one of the forks is already in use,

he has to wait. When the philosopher has �nished

eating he puts down the forks, gets up from the chair,

and leaves the dining room.

'

&

$

%

�

�

	

Week 7 2

We will model this system in CSP, and analyse its

behaviour. The relevant components are the �ve

philosophers, which we will model as processes

PHIL

0

: : :PHIL

4

, and the �ve forks, which we will

model as processes FORK

0

: : : FORK

4

.

Using the symbols � and 	 to denote addition and

subtraction modulo 5 (so that 4� 1 = 0 and 0	 1 =

4), philosopher PHIL

i

will sit in seat i and use forks

i and i � 1.

The alphabet of PHIL

i

is

�PHIL

i

= fi .sitdown; i .getup;

i .pickup.i ; i .pickup.(i � 1);

i .putdown.i ; i .putdown.(i � 1)g

In the events i .pickup.i etc. the \." is being used

purely as a symbol.

The event i .pickup.i represents PHIL

i

picking up fork

i , and so on.

We will ignore the actions of eating, thinking, and

entering and leaving the dining room.

Because the alphabets of the processes PHIL

i

are mu-

tually disjoint, there can be no direct interaction be-

tween the philosophers. The only way in which they

a�ect each other will be as a consequence of the fact

that they are competing for access to the forks.

'

&

$

%

�

�

	

Week 7 3

The relevant events for the forks are the pickup and

putdown events. FORK

i

can potentially be picked

up or put down by either PHIL

i

or PHIL

i	1

.

�FORK

i

= fi .pickup.i ; (i 	 1).pickup.i ;

i .putdown.i ; (i 	 1).putdown.ig

We will de�ne the system as a concurrent combina-

tion of the philosophers and the forks.

PHILS = PHIL

0

k PHIL

1

k PHIL

2

k PHIL

3

k PHIL

4

FORKS = FORK

0

k FORK

1

k FORK

2

k FORK

3

k FORK

4

COLLEGE = PHILS k FORKS

FORK

0

FORK

1

1.putdown.1

PHIL

0

PHIL

1

PHIL

2

PHIL

3

PHIL

4

FORK

2

FORK

3

FORK

4

0.getup

0.sitdown

1.pickup.2

1.pickup.1

1.putdown.2

'

&

$

%

�

�

	

Week 7 4

Each process PHIL

i

simply cycles through a sequence

of six events:

PHIL

i

= i .sitdown! i .pickup.(i � 1)! i .pickup.i !

i .putdown.(i � 1) ! i .putdown.i !

i .getup ! PHIL

i

Each process FORK

i

can be repeatedly picked up and

put down, but there is a choice of who picks it up:

FORK

i

=

i .pickup.i ! i .putdown.i ! FORK

i

2 (i 	 1).pickup.i ! (i 	 1).putdown.i ! FORK

i

Now we can look at the possible behaviour of COLLEGE .

Suppose all the philosophers sit down in order, and

then each one picks up the fork to his left.

What can happen next? Each PHIL

i

can only do

i .pickup.i , which requires synchronisation with FORK

i

.

However, FORK

i

has just done (i 	 1).pickup.i and

therefore can only do (i 	 1).putdown.i next. This

means that there is no possible next event for COLLEGE .

We have a deadlock.

'

&

$

%

�

�

	

Week 7 5

How can we modify COLLEGE to remove the pos-

sibility of deadlock? There are a number of obvious

but unsatisfactory ideas.

� Provide two forks for each philosopher. But if the

forks represent scarce resources, this may not be

feasible.

� Provide a single extra fork, in the middle of the ta-

ble, which can be used by any of the philosophers.

Similarly, this may not be feasible.

�Modify the de�nition of just one of the philoso-

phers, so that the forks are picked up in the oppo-

site order. This will work (although it takes some

thought to be sure) but it breaks the symmetry of

the system.

Instead we will try to control the way in which the

philosophers sit down, the idea being that if only 4

philosophers are seated at any one time, then even if

everyone picks up the left fork, one philospher will be

sitting on the left of an empty place, and can pick up

the fork to his right.

As we have seen, the behaviour of a system can be

controlled by adding another process in parallel, and

taking advantage of the fact that certain events re-

quire synchronisation.

'

&

$

%

�

�

	

Week 7 6

We can de�ne a process BUTLER with alphabet

�BUTLER = D [U ;

where

D = f0.sitdown; : : : ; 4.sitdowng

U = f0.getup; : : : ; 4.getupg;

to control the sitting down and getting up of the

philosophers. BUTLER is de�ned in terms of auxil-

iary processes BUTLER

0

; : : : ;BUTLER

4

, all with al-

phabet �BUTLER .

BUTLER

0

= x : D ! BUTLER

1

BUTLER

i

= x : D ! BUTLER

i+1

2 y : U ! BUTLER

i�1

1 6 i 6 3

BUTLER

4

= y : U ! BUTLER

3

BUTLER = BUTLER

0

The notation in the second line is shorthand for

BUTLER

i

= z : (D [U)! P(z)

where

P(z) = BUTLER

i+1

if z 2 D

= BUTLER

i�1

if z 2 U :

Now we can de�ne

NEWCOLLEGE = COLLEGE k BUTLER

4

Convince yourself that NEWCOLLEGE does not

deadlock. How formal can you be?

'

&

$

%

�

�

	

Week 7 7

We could consider checking the entire state space of

the system, to discover whether or not it can dead-

lock. Since each philosopher has 6 states and each

fork has 3 states, the total number of possible states

of COLLEGE is 6

5

� 3

5

, or about 1:8 million. Since

the e�ect of BUTLER is to restrict the number of

states, this is also a limit on the number of states

of NEWCOLLEGE . Systems of this complexity are

within the scope of current software tools such as

FDR.

