<& The Cyclic Scheduler &

Suppose there are a number of processes which we
need to control. Each process can be started by a
start event and uses a finish event to indicate that
it has finished. Suppose also that we want to start
the processes in order, returning to the first when the
last has been started; when a process has finished it
can be started again, but only when its turn comes
round.

We will define a scheduler, which uses start and finish
events to control the processes. The scheduler will be
implemented as a collection of cells (processes), each
of which communicates with one of the processes be-
ing controlled, and also with other cells.

The next slide has a diagram of the case where there
are 6 processes to control. & denotes addition mod-
ulo the number of processes.

The idea is that each cell waits for a signal on the ¢
channel to its left, which means that the process to
its left has been started. Then the cell starts its own
process, and sends a signal on the ¢ channel to its
right, to tell the next cell that it can start its process.
Also, each cell has to wait for its process to do finish
before starting it again.

_

(Week 7 Lecture 2

finish.i

c.(i® 1)

start.i

\

In order to start everything off, one cell must begin

by starting its process instead of waiting.
STARTCELL, = starti — c.(i® 1) —
(finish.i — c.i — STARTCELL,
O c.i — finish.i — STARTCELL;)

The other processes wait for c.i
WAITCELL; = c.i — STARTCELL,

It is convenient to define
CELLy = STARTCELL,
CELL, = WAITCELL;

and then

0gi<n
SCHED = (||{start.i,finish.i,c.i,c.(iEB)

{ci|0< i< n}

(1 >0)

CELL;) \

_

(Week 7 Lecture 2

_

There are three properties which we would like to
verify for the scheduler. The first is that for each
i, the events start.i and finish.i happen alternately,
beginning with start.i. The second is that the events
start.0, ..., start.(n-1) happen in the correct cyclic
order. The third is deadlock-fredom.

For the first property, we can define a process speci-
fying alternation of start and finish for each cell:

ALT; = start.i — finish.i — ALT;

and combine them in parallel to produce a specifica-
tion for the scheduler as a whole.

ALTSPEC = ||

0<i<n
{start.i.finish.i}
In this parallel combination the alphabets are all dis-
joint, and no synchronisation is required. It is simply
an independent parallel combination of the ALT pro-
cesses.

ALT,

The specification
ALTSPEC C; SCHED
can be checked with FDR.
For the second property, define
CYCLE; = start.i — CYCLE;; (0< i< n)
and specify
CYCLE(€ SCHED \ {finish.i | 0 < i < n}.

(Week 7 Lecture 2

