
'

&

$

%

�

�

	

Week 4 1

3 Traces 3

A trace of a process is a �nite sequence of events, rep-

resenting the behaviour of the process up to a certain

point in time. Traces are written as comma-separated

sequences of events, enclosed in angle brackets: for

example, hcoin; choc ; coini. This is a trace of the

recursive version of VM .

Example: hopen; closei and hopen; close; openi are

traces of DOOR .

(DOOR = open ! close ! DOOR)

Example: hstaines; poundi and hashford ; poundi are

traces of TICKET , and also of TICKETS .

We will only consider �nite traces.

The empty trace, containing no events, is written hi

and pronounced \empty" or \nil". It is a trace of

every process, corresponding to an observation when

no event has yet happened.

If a process is de�ned without recursion, then it only

has a �nite set of traces. For example, if

PHONE = ring ! answer ! Stop

then the only traces of PHONE are hi, hringi and

hring ; answeri.

'

&

$

%

�

�

	

Week 4 2

A recursive process, which can keep performing events

forever, has an in�nite set of traces. For example, if

CLOCK = tick ! CLOCK

then the traces of CLOCK are

hi; hticki; htick ; ticki; htick ; tick; ticki; : : :

It is important to be clear about the fact that we are

interested in potentially in�nite sets of �nite traces.

3 Operations on Traces 3

We will use various operations on traces, and a num-

ber of facts or laws about them. Most of the laws

are rather obvious.

3 Concatenation 3

The �rst operation is concatenation, also called cate-

nation. It joins traces together into longer traces:

ha

1

; : : : ; a

m

i b hb

1

; : : : ; b

n

i = ha

1

; : : : ; a

m

; b

1

; : : : ; b

n

i:

Example: hcoin; choci b hchoci = hcoin; choc ; choci.

Concatenation is associative, and the empty trace is

a unit, i.e.

s b (t b u) = (s b t) b u

hi b s = s = s b hi

'

&

$

%

�

�

	

Week 4 3

The following laws are useful:

s b t = s b u if and only if t = u

s b u = t b u if and only if s = t

s b t = hi if and only if s = hi and t = hi

If n is a positive integer, then t

n

is de�ned to be n

copies of the trace t concatenated together. t

n

can

be de�ned recursively by

t

0

= hi

t

n+1

= t b t

n

:

3 Functions on Traces 3

Suppose f is a function which maps traces to traces.

f is said to be strict if f (hi) = hi, and distributive if

f (s b t) = f (s) b f (t).

In fact, any distributive function is strict: if f is dis-

tributive then

f (s) b hi = f (s)

= f (s b hi)

= f (s) b f (hi)

and so f (hi) = hi.

If f is distributive then its action on traces can be

put together from its action on single-event traces:

f (ha

1

; : : : ; a

n

i) = f (ha

1

i b : : : b ha

n

i)

= f (ha

1

i) b : : : b f (ha

n

i):

'

&

$

%

�

�

	

Week 4 4

3 Restriction 3

The expression t�A denotes the trace t when re-

stricted to events in the set A. t�A consists of t

with all events outside A omitted.

Example: hstart ; exercise; exercise; endi�fstart; endg =

hstart ; endi.

hstart ; exercise; exercise; endi�fstart; exerciseg =

hstart ; exercise; exercisei.

Restriction is distributive and therefore strict:

hi�A = hi

(s b t)�A = (s�A) b (t�A):

The e�ect of restriction on single-event traces is clear:

hx i�A = hx i if x 2 A

hx i�A = hi if x 62 A

Two other facts:

s�fg = hi

(s�A)�B = s�(A \ B)

'

&

$

%

�

�

	

Week 4 5

3 Head and Tail 3

If s is a non-empty trace, its �rst event is denoted s

0

and the trace consisting of all events after the �rst is

denoted s

0

.

Neither hi

0

nor hi

0

is de�ned.

Example: hcoin; choci

0

= coin.

hcoin; choci

0

= hchoci.

A few facts:

(hx i b s)

0

= x

(hx i b s)

0

= s

s = hs

0

i b s

0

3 Star 3

If A is a set of events, the set A

�

is the set of all

�nite traces, including hi, containing events from A.

Example:

fa; bg

�

= fhi; hai; hbi; ha; ai; ha; bi; hb; ai; hb; bi; : : :g

'

&

$

%

�

�

	

Week 4 6

3 Ordering 3

A trace s is a pre�x of a trace t if there is some

extension u of s such that s b u = t . We then write

s 6 t .

Example:

ha; b; ci 6 ha; b; c; di

hi 6 ha; bi

3 Length 3

The length of the trace t is denoted #t .

Example: #ha; bi = 2, #hi = 0.

3 Traces of a Process 3

In general a process has many di�erent possible be-

haviours, and we do not know in advance which traces

will be generated by a particular execution. However,

we can determine in advance the set of all possible

traces of a process P . This set is written traces(P).

Examples: traces(Stop) = fhig.

traces(coin ! Stop) = fhi; hcoinig.

'

&

$

%

�

�

	

Week 4 7

traces(CLOCK) = fhi; hticki; htick ; ticki; : : :g

= ftickg

�

We can now systematically write down de�nitions of

traces(P) for processes P constructed from the op-

erators we have seen so far. We already know the

de�nition for Stop:

traces(Stop) = fhig:

traces(a ! P) is constructed from traces(P) by the

addition of a as an initial event:

traces(a ! P) = fhig[fhai b t j t 2 traces(P)g:

Notice the addition of the trace hi, which must always

be a trace of any process.

The de�nition of traces(a ! P j b ! Q) is similar,

taking account of the two possible �rst events:

traces(a ! P j b ! Q) = fhig

[fhai b t j t 2 traces(P)g

[fhbi b t j t 2 traces(Q)g:

Also similarly, we can give a general de�nition of

traces(x : A! P(x)).

traces(x : A! P(x))

= fhig

[fhai b t j a 2 A; t 2 traces(P(a))g:

'

&

$

%

�

�

	

Week 4 8

A few facts about traces:

hi 2 traces(P), for any P .

If s b t 2 traces(P) then s 2 traces(P).

traces(P) � (�P)

�

.

Describing the set of traces of a recursive process is

more complicated. Suppose we have the de�nition

X = F (X)

where F (X) is a guarded expression. Guardedness

means that we know at least the possible �rst events

of F (X). In fact, they are the same as the possible

�rst events of F (Stop).

Example: If X = a ! X then we know that X

can do a �rst, and this is the same �rst event as in

a ! Stop.

Depending on the form of F (X), we may know more

than just the �rst event.

Example: If X = a ! b ! X j c ! X we know

that X can either do a then b, or c, so we know that

ha; bi and hci are traces of X . They are also traces

of a ! b ! Stop j c ! Stop.

We can discover some traces of X by looking at

F (Stop). For the traces corresponding to running

through F twice, we need to look at F (F (Stop)).

'

&

$

%

�

�

	

Week 4 9

Example: If X = a ! X we also have

X = a ! a ! X

so ha; ai is a trace of X .

If X = a ! b ! X j c ! X we also have

X = a ! b ! (a ! b ! X j c ! X)

j c ! (a ! b ! X j c ! X)

So ha; b; ai, ha; b; ci, hc; a; bi etc. are traces of X .

In general we can de�ne iteration of F :

F

0

(X) = X

F

n+1

(X) = F (F

n

(X))

and then, for X = F (X), we have

traces(X) =

[

n>0

traces(F

n

(Stop))

= traces(Stop) [traces(F (Stop))

[traces(F (F (Stop))) [: : :

Of course, all this only makes sense if F (X) is guarded.

Writing down the set of traces of a recursive process

in a compact form is a little challenging. For example,

if X = a ! b ! X , then traces(X) contains

not only ha; bi, ha; b; a; bi, ha; bi

3

and so on, but

also the intermediate traces ending in a. One way to

describe traces(X) is:

traces(X) = ft j for some n, t 6 ha; bi

n

g

'

&

$

%

�

�

	

Week 4 10

3 Traces and Diagrams 3

There is a connection between the transition diagram

of a process, and its traces. For example, recall the

process TICKETS de�ned by

MACHINE = on ! TICKETS

TICKETS = staines ! pound ! ticket ! TICKETS

j ashford ! pound ! 1pound ! ticket ! TICKETS

j o� ! MACHINE

and its transition diagram:

o�

ashford

pound

pound

ticket

staines

ticket

pound

on

For any path through the diagram, starting from the

black state, there is a trace consisting of the sequence

of labels on the path. traces(TICKETS) is the set

of traces corresponding to all these paths, including

hi which corresponds to the empty path (i.e. simply

remaining at the starting point).

'

&

$

%

�

�

	

Week 4 11

3 Traces and Transitions 3

The operational semantics of CSP allows us to un-

wind the behaviour of a process, one event at a time.

Looking at the traces of a process gives us an overall

view. Since the traces can be extracted from a tran-

sition diagram, and labelled transitions are supposed

to capture the same information as the diagrams, we

should also be able to write down a relationship be-

tween a process' traces and its labelled transitions.

Here it is:

traces(P) = fhig

[fhai b t j P

a

-

Q ; t 2 traces(Q)g:

Later we will be de�ning new CSP operators, by means

of labelled transition rules. We will use this relation-

ship between transitions and traces to calculate the

traces of processes de�ned in terms of the new oper-

ators.

3 Exercises 3

4

Write down traces(TICKET), where TICKET is

de�ned as before by

TICKET = staines ! pound ! ticket ! Stop

j ashford ! pound ! pound ! ticket ! Stop

'

&

$

%

�

�

	

Week 4 12

3 Exercises 3

4

De�ne a process P such that

traces(P) = fhi; hai; hbi; hb; cig:

4

De�ne a process P such that ha; b; ci and ha; b; ai

are both traces of P .

4

Is there a process P such that

traces(P) = fhi; hai; ha; bi; hc; dig?

'

&

$

%

�

�

	

Week 4 13

3 Traces for Concurrency 3

traces(P

A

k

B

Q) = ft j t 2 (A [B)

�

and t�A 2 traces(P)

and t�B 2 traces(Q)g

If A = B , this de�nition reduces to

traces(P

A

k

A

Q) = ft j t 2 A

�

and t�A 2 traces(P)

and t�A 2 traces(Q)g

i.e. traces(P

A

k

A

Q) = traces(P) \ traces(Q), be-

cause if t 2 A

�

then t�A = t . This �ts in with

the earlier discussion of concurrency with the same

alphabet.

If A\B = fg then every event in a possible trace of

P

A

k

B

Q is either an event from A or an event from

B . In a trace t of P

A

k

B

Q , the events from A (i.e.

t�A) must form a trace of P , and similarly the events

from B must form a trace of Q . Any pair of traces,

one from P and one from Q , can be interleaved to

form a trace of P

A

k

B

Q .

Example: hleft; right; righti is a trace of LR and

hup; downi is a trace of UD . So

hleft; up; down; right; righti

is a trace of LR k UD .

'

&

$

%

�

�

	

Week 4 14

In general, a trace of P and a trace of Q can be used

to form a trace of P

A

k

B

Q as long as the events in

A \ B appear in the same order in both traces.

Example: hcoin; beep; choci is a trace of VM and

hcoin; shout; choci is a trace of CUST . The events

common to both alphabets (i.e. coin and choc) ap-

pear in the same order in both traces.

hcoin; beep; shout ; choci and hcoin; shout; beep; choci

are both traces of VM k CUST .

'

&

$

%

�

�

	

Week 4 15

3 Trace Equivalence 3

We have spoken vaguely of processes being equivalent

to each other | for example, a process which can do

no events is equivalent to Stop. In CSP there are

in fact several notions of process equivalence, each

of which is useful in di�erent situations. The �rst is

trace equivalence, denoted by =

t

, and de�ned by

P =

t

Q

if and only if

traces(P) = traces(Q)

Two processes are trace equivalent if they have the

same observable behaviour, as measured by traces.

Example: Consider the process

a ! Stop

fa;bg

k

fa;bg

b ! Stop:

The de�nition of traces for a parallel combination of

processes gives

traces(a ! Stop

fa;bg

k

fa;bg

b ! Stop)

= ft 2 fa; bg

�

j t�fa; bg 2 traces(a ! Stop)

and t�fa; bg 2 traces(b ! Stop)g.

i.e. traces(a ! Stop

fa;bg

k

fa;bg

b ! Stop)

= traces(a ! Stop) \ traces(b ! Stop).

'

&

$

%

�

�

	

Week 4 16

Because

traces(a ! Stop) = fhi; haig

and

traces(b ! Stop) = fhi; hbig

we get

traces(a ! Stop

fa;bg

k

fa;bg

b ! Stop) = fhig:

Therefore

a ! Stop

fa;bg

k

fa;bg

b ! Stop =

t

Stop:

'

&

$

%

�

�

	

Week 4 17

3 Re�nement and Speci�cation 3

The re�nement relationv

t

on processes is de�ned by

P v

t

Q

if and only if

traces(Q) � traces(P)

P v

t

Q is pronounced \P is re�ned by Q". The

subscript t indicates that we are working with traces

| later we will see other forms of re�nement.

P is re�ned by Q if Q exhibits at most the behaviour

exhibited by P | possibly less.

Example:

a ! b ! Stop v

t

a ! Stop

Example: For any process P , P v

t

Stop.

The main use of re�nement is in speci�cation. If

we think of P as de�ning a range of permissible be-

haviour, then the statement P v

t

Q can be read as

the speci�cation that Q 's behaviour must stay within

this range.

'

&

$

%

�

�

	

Week 4 18

3 Example 3

Recall the example of a counter moving on a board.

LR = left ! right ! LR 2 right ! left ! LR

UD = up ! down ! UD

SPEC = LR

fleft ;rightg

k

fup;downg

UD

We can now interpret SPEC as a speci�cation for pro-

cesses which might descibe movements of the counter.

Because SPEC describes exactly the behaviours which

correspond to staying on the board, the speci�cation

SPEC v

t

P

speci�es that P must describe movement within the

board | possibly restricted movement.

For example,

SPEC v

t

left ! up ! Stop

which we can check by writing down all the traces of

the process on the right and showing that they are

all traces of SPEC .

'

&

$

%

�

�

	

Week 4 19

The speci�cation

SPEC v

t

P

limits what P can do, but does not require it to do

anything. For example,

SPEC v

t

Stop:

Speci�cations which simply restrict behaviour with-

out requiring any particular behaviour are known as

safety speci�cations. They specify that nothing bad

can happen, without specifying that anything good

must happen. Stop satis�es any safety speci�cation

| doing nothing is always safe.

All speci�cations which can be expressed using trace

re�nement are safety speci�cations.

Speci�cations which require something positive to

happen are called liveness speci�cations. We will see

later how they can be expressed in CSP.

Example: If we de�ne P by

P = left ! left ! Stop

then we do not have SPEC v

t

P because

hleft; lefti 2 traces(P)

hleft; lefti 62 traces(SPEC):

