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Week 4 1

3 Traces 3

A trace of a process is a �nite sequence of events, rep-

resenting the behaviour of the process up to a certain

point in time. Traces are written as comma-separated

sequences of events, enclosed in angle brackets: for

example, hcoin; choc ; coini. This is a trace of the

recursive version of VM .

Example: hopen; closei and hopen; close; openi are

traces of DOOR .

(DOOR = open ! close ! DOOR)

Example: hstaines; poundi and hashford ; poundi are

traces of TICKET , and also of TICKETS .

We will only consider �nite traces.

The empty trace, containing no events, is written hi

and pronounced \empty" or \nil". It is a trace of

every process, corresponding to an observation when

no event has yet happened.

If a process is de�ned without recursion, then it only

has a �nite set of traces. For example, if

PHONE = ring ! answer ! Stop

then the only traces of PHONE are hi, hringi and

hring ; answeri.
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Week 4 2

A recursive process, which can keep performing events

forever, has an in�nite set of traces. For example, if

CLOCK = tick ! CLOCK

then the traces of CLOCK are

hi; hticki; htick ; ticki; htick ; tick; ticki; : : :

It is important to be clear about the fact that we are

interested in potentially in�nite sets of �nite traces.

3 Operations on Traces 3

We will use various operations on traces, and a num-

ber of facts or laws about them. Most of the laws

are rather obvious.

3 Concatenation 3

The �rst operation is concatenation, also called cate-

nation. It joins traces together into longer traces:

ha

1

; : : : ; a

m

i b hb

1

; : : : ; b

n

i = ha

1

; : : : ; a

m

; b

1

; : : : ; b

n

i:

Example: hcoin; choci b hchoci = hcoin; choc ; choci.

Concatenation is associative, and the empty trace is

a unit, i.e.

s b (t b u) = (s b t) b u

hi b s = s = s b hi
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Week 4 3

The following laws are useful:

s b t = s b u if and only if t = u

s b u = t b u if and only if s = t

s b t = hi if and only if s = hi and t = hi

If n is a positive integer, then t

n

is de�ned to be n

copies of the trace t concatenated together. t

n

can

be de�ned recursively by

t

0

= hi

t

n+1

= t b t

n

:

3 Functions on Traces 3

Suppose f is a function which maps traces to traces.

f is said to be strict if f (hi) = hi, and distributive if

f (s b t) = f (s) b f (t).

In fact, any distributive function is strict: if f is dis-

tributive then

f (s) b hi = f (s)

= f (s b hi)

= f (s) b f (hi)

and so f (hi) = hi.

If f is distributive then its action on traces can be

put together from its action on single-event traces:

f (ha

1

; : : : ; a

n

i) = f (ha

1

i b : : : b ha

n

i)

= f (ha

1

i) b : : : b f (ha

n

i):
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Week 4 4

3 Restriction 3

The expression t�A denotes the trace t when re-

stricted to events in the set A. t�A consists of t

with all events outside A omitted.

Example: hstart ; exercise; exercise; endi�fstart; endg =

hstart ; endi.

hstart ; exercise; exercise; endi�fstart; exerciseg =

hstart ; exercise; exercisei.

Restriction is distributive and therefore strict:

hi�A = hi

(s b t)�A = (s�A) b (t�A):

The e�ect of restriction on single-event traces is clear:

hx i�A = hx i if x 2 A

hx i�A = hi if x 62 A

Two other facts:

s�fg = hi

(s�A)�B = s�(A \ B)



'

&

$

%

�




�

	

Week 4 5

3 Head and Tail 3

If s is a non-empty trace, its �rst event is denoted s

0

and the trace consisting of all events after the �rst is

denoted s

0

.

Neither hi

0

nor hi

0

is de�ned.

Example: hcoin; choci

0

= coin.

hcoin; choci

0

= hchoci.

A few facts:

(hx i b s)

0

= x

(hx i b s)

0

= s

s = hs

0

i b s

0

3 Star 3

If A is a set of events, the set A

�

is the set of all

�nite traces, including hi, containing events from A.

Example:

fa; bg

�

= fhi; hai; hbi; ha; ai; ha; bi; hb; ai; hb; bi; : : :g
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Week 4 6

3 Ordering 3

A trace s is a pre�x of a trace t if there is some

extension u of s such that s b u = t . We then write

s 6 t .

Example:

ha; b; ci 6 ha; b; c; di

hi 6 ha; bi

3 Length 3

The length of the trace t is denoted #t .

Example: #ha; bi = 2, #hi = 0.

3 Traces of a Process 3

In general a process has many di�erent possible be-

haviours, and we do not know in advance which traces

will be generated by a particular execution. However,

we can determine in advance the set of all possible

traces of a process P . This set is written traces(P).

Examples: traces(Stop) = fhig.

traces(coin ! Stop) = fhi; hcoinig.
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Week 4 7

traces(CLOCK ) = fhi; hticki; htick ; ticki; : : :g

= ftickg

�

We can now systematically write down de�nitions of

traces(P) for processes P constructed from the op-

erators we have seen so far. We already know the

de�nition for Stop:

traces(Stop) = fhig:

traces(a ! P) is constructed from traces(P) by the

addition of a as an initial event:

traces(a ! P) = fhig[fhai b t j t 2 traces(P)g:

Notice the addition of the trace hi, which must always

be a trace of any process.

The de�nition of traces(a ! P j b ! Q) is similar,

taking account of the two possible �rst events:

traces(a ! P j b ! Q) = fhig

[ fhai b t j t 2 traces(P)g

[ fhbi b t j t 2 traces(Q)g:

Also similarly, we can give a general de�nition of

traces(x : A! P(x )).

traces(x : A! P(x ))

= fhig

[ fhai b t j a 2 A; t 2 traces(P(a))g:
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Week 4 8

A few facts about traces:

hi 2 traces(P), for any P .

If s b t 2 traces(P) then s 2 traces(P).

traces(P) � (�P)

�

.

Describing the set of traces of a recursive process is

more complicated. Suppose we have the de�nition

X = F (X )

where F (X ) is a guarded expression. Guardedness

means that we know at least the possible �rst events

of F (X ). In fact, they are the same as the possible

�rst events of F (Stop).

Example: If X = a ! X then we know that X

can do a �rst, and this is the same �rst event as in

a ! Stop.

Depending on the form of F (X ), we may know more

than just the �rst event.

Example: If X = a ! b ! X j c ! X we know

that X can either do a then b, or c, so we know that

ha; bi and hci are traces of X . They are also traces

of a ! b ! Stop j c ! Stop.

We can discover some traces of X by looking at

F (Stop). For the traces corresponding to running

through F twice, we need to look at F (F (Stop)).
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Week 4 9

Example: If X = a ! X we also have

X = a ! a ! X

so ha; ai is a trace of X .

If X = a ! b ! X j c ! X we also have

X = a ! b ! (a ! b ! X j c ! X )

j c ! (a ! b ! X j c ! X )

So ha; b; ai, ha; b; ci, hc; a; bi etc. are traces of X .

In general we can de�ne iteration of F :

F

0

(X ) = X

F

n+1

(X ) = F (F

n

(X ))

and then, for X = F (X ), we have

traces(X ) =

[

n>0

traces(F

n

(Stop))

= traces(Stop) [ traces(F (Stop))

[ traces(F (F (Stop))) [ : : :

Of course, all this only makes sense if F (X ) is guarded.

Writing down the set of traces of a recursive process

in a compact form is a little challenging. For example,

if X = a ! b ! X , then traces(X ) contains

not only ha; bi, ha; b; a; bi, ha; bi

3

and so on, but

also the intermediate traces ending in a. One way to

describe traces(X ) is:

traces(X ) = ft j for some n, t 6 ha; bi

n

g
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Week 4 10

3 Traces and Diagrams 3

There is a connection between the transition diagram

of a process, and its traces. For example, recall the

process TICKETS de�ned by

MACHINE = on ! TICKETS

TICKETS = staines ! pound ! ticket ! TICKETS

j ashford ! pound ! 1pound ! ticket ! TICKETS

j o� ! MACHINE

and its transition diagram:

o�

ashford

pound

pound

ticket

staines

ticket

pound

on

For any path through the diagram, starting from the

black state, there is a trace consisting of the sequence

of labels on the path. traces(TICKETS ) is the set

of traces corresponding to all these paths, including

hi which corresponds to the empty path (i.e. simply

remaining at the starting point).
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Week 4 11

3 Traces and Transitions 3

The operational semantics of CSP allows us to un-

wind the behaviour of a process, one event at a time.

Looking at the traces of a process gives us an overall

view. Since the traces can be extracted from a tran-

sition diagram, and labelled transitions are supposed

to capture the same information as the diagrams, we

should also be able to write down a relationship be-

tween a process' traces and its labelled transitions.

Here it is:

traces(P) = fhig

[ fhai b t j P

a

-

Q ; t 2 traces(Q)g:

Later we will be de�ning new CSP operators, by means

of labelled transition rules. We will use this relation-

ship between transitions and traces to calculate the

traces of processes de�ned in terms of the new oper-

ators.

3 Exercises 3

4

Write down traces(TICKET ), where TICKET is

de�ned as before by

TICKET = staines ! pound ! ticket ! Stop

j ashford ! pound ! pound ! ticket ! Stop
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Week 4 12

3 Exercises 3

4

De�ne a process P such that

traces(P) = fhi; hai; hbi; hb; cig:

4

De�ne a process P such that ha; b; ci and ha; b; ai

are both traces of P .

4

Is there a process P such that

traces(P) = fhi; hai; ha; bi; hc; dig?
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Week 4 13

3 Traces for Concurrency 3

traces(P

A

k

B

Q) = ft j t 2 (A [ B)

�

and t�A 2 traces(P)

and t�B 2 traces(Q)g

If A = B , this de�nition reduces to

traces(P

A

k

A

Q) = ft j t 2 A

�

and t�A 2 traces(P)

and t�A 2 traces(Q)g

i.e. traces(P

A

k

A

Q) = traces(P) \ traces(Q), be-

cause if t 2 A

�

then t�A = t . This �ts in with

the earlier discussion of concurrency with the same

alphabet.

If A\B = fg then every event in a possible trace of

P

A

k

B

Q is either an event from A or an event from

B . In a trace t of P

A

k

B

Q , the events from A (i.e.

t�A) must form a trace of P , and similarly the events

from B must form a trace of Q . Any pair of traces,

one from P and one from Q , can be interleaved to

form a trace of P

A

k

B

Q .

Example: hleft; right; righti is a trace of LR and

hup; downi is a trace of UD . So

hleft; up; down; right; righti

is a trace of LR k UD .
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Week 4 14

In general, a trace of P and a trace of Q can be used

to form a trace of P

A

k

B

Q as long as the events in

A \ B appear in the same order in both traces.

Example: hcoin; beep; choci is a trace of VM and

hcoin; shout; choci is a trace of CUST . The events

common to both alphabets (i.e. coin and choc) ap-

pear in the same order in both traces.

hcoin; beep; shout ; choci and hcoin; shout; beep; choci

are both traces of VM k CUST .
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Week 4 15

3 Trace Equivalence 3

We have spoken vaguely of processes being equivalent

to each other | for example, a process which can do

no events is equivalent to Stop. In CSP there are

in fact several notions of process equivalence, each

of which is useful in di�erent situations. The �rst is

trace equivalence, denoted by =

t

, and de�ned by

P =

t

Q

if and only if

traces(P) = traces(Q)

Two processes are trace equivalent if they have the

same observable behaviour, as measured by traces.

Example: Consider the process

a ! Stop

fa;bg

k

fa;bg

b ! Stop:

The de�nition of traces for a parallel combination of

processes gives

traces(a ! Stop

fa;bg

k

fa;bg

b ! Stop)

= ft 2 fa; bg

�

j t�fa; bg 2 traces(a ! Stop)

and t�fa; bg 2 traces(b ! Stop)g.

i.e. traces(a ! Stop

fa;bg

k

fa;bg

b ! Stop)

= traces(a ! Stop) \ traces(b ! Stop).
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Week 4 16

Because

traces(a ! Stop) = fhi; haig

and

traces(b ! Stop) = fhi; hbig

we get

traces(a ! Stop

fa;bg

k

fa;bg

b ! Stop) = fhig:

Therefore

a ! Stop

fa;bg

k

fa;bg

b ! Stop =

t

Stop:
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Week 4 17

3 Re�nement and Speci�cation 3

The re�nement relationv

t

on processes is de�ned by

P v

t

Q

if and only if

traces(Q) � traces(P)

P v

t

Q is pronounced \P is re�ned by Q". The

subscript t indicates that we are working with traces

| later we will see other forms of re�nement.

P is re�ned by Q if Q exhibits at most the behaviour

exhibited by P | possibly less.

Example:

a ! b ! Stop v

t

a ! Stop

Example: For any process P , P v

t

Stop.

The main use of re�nement is in speci�cation. If

we think of P as de�ning a range of permissible be-

haviour, then the statement P v

t

Q can be read as

the speci�cation that Q 's behaviour must stay within

this range.
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Week 4 18

3 Example 3

Recall the example of a counter moving on a board.

LR = left ! right ! LR 2 right ! left ! LR

UD = up ! down ! UD

SPEC = LR

fleft ;rightg

k

fup;downg

UD

We can now interpret SPEC as a speci�cation for pro-

cesses which might descibe movements of the counter.

Because SPEC describes exactly the behaviours which

correspond to staying on the board, the speci�cation

SPEC v

t

P

speci�es that P must describe movement within the

board | possibly restricted movement.

For example,

SPEC v

t

left ! up ! Stop

which we can check by writing down all the traces of

the process on the right and showing that they are

all traces of SPEC .
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Week 4 19

The speci�cation

SPEC v

t

P

limits what P can do, but does not require it to do

anything. For example,

SPEC v

t

Stop:

Speci�cations which simply restrict behaviour with-

out requiring any particular behaviour are known as

safety speci�cations. They specify that nothing bad

can happen, without specifying that anything good

must happen. Stop satis�es any safety speci�cation

| doing nothing is always safe.

All speci�cations which can be expressed using trace

re�nement are safety speci�cations.

Speci�cations which require something positive to

happen are called liveness speci�cations. We will see

later how they can be expressed in CSP.

Example: If we de�ne P by

P = left ! left ! Stop

then we do not have SPEC v

t

P because

hleft; lefti 2 traces(P)

hleft; lefti 62 traces(SPEC ):


