
'
&

$
%

�

�
	

Week 3 1

3 Interaction 3

Up to now we have described simple processes in iso-

lation. Although we have often assumed that our

processes might be placed in some environment and

expected to interact with it | for example, there

should be a customer who will use the ticket machine

| this environment has not been made explicit.

We will now see how to take two (or more) processes

and force them to interact with each other. Interac-

tion between two processes means that they simul-

taneously perform events; an event thus becomes a

joint activity in which two (or more) processes may

participate.

When placing processes in parallel so that they can

interact, it is important to specify which events they

are supposed to be interacting on, or sharing. This is

where alphabets (interfaces) come into play.

If the interfaces of processes P and Q are A and B

respectively, then the process

P

A

k

B

Q

is a parallel combination of P and Q .

'
&

$
%

�

�
	

Week 3 2

In this combination, P can only perform events in A,

Q can only perform events in B , and any events in

the intersection of A and B require synchronisation

between P and Q .

The interface of P should contain at least all the

events used in the de�nition of P , and similarly for

the interface of Q .

Example: Consider processes representing a vending

machine, and a customer:

VM = coin ! (choc ! Stop j to�ee ! Stop)

CUST = coin ! choc ! Stop

with �VM = �CUST = fcoin; choc ; to�eeg = A.

The process VM

A

k

A

CUST models the interaction of

the customer with the machine. How does it behave?

Any event done by VM

A

k

A

CUST must be an event

which is done simultaneously by both VM and CUST .

At the �rst step, both VM and CUST can do the

event coin. We therefore expect VM

A

k

A

CUST to

do coin. Subsequently, VM and CUST enter new

states which continue to interact.

'
&

$
%

�

�
	

Week 3 3

After the event coin, VM becomes

choc ! Stop j to�ee ! Stop

and CUST becomes

choc ! Stop:

Synchronisation is still required for all events, and

therefore only choc can happen. The choice between

choc and to�ee in VM is resolved in favour of choc .

After the event choc , both processes become Stop,

so the system becomes Stop

A

k

A

Stop, which cannot

do anything else.

We can draw a transition diagram for VM

A

k

A

CUST .

VM

A

k

A

CUST

(choc ! Stop j to�ee ! Stop)

A

k

A

choc ! Stop

coin

?

Stop

A

k

A

Stop

choc

?

'
&

$
%

�

�
	

Week 3 4

In this example, both VM and CUST continued to

the end of their potential behaviour. This may not

happen in general: if we change the de�nition to

CUST = coin ! Stop

then after the event coin we get

(choc ! Stop j to�ee ! Stop)

A

k

A

Stop

and nothing further can happen. Although one of

the processes could do either choc or to�ee, both of

these events require synchronisation with the other

process; but because Stop cannot do anything, syn-

chronisation is not possible.

Example: Recall the de�nition of STUDENT :

STUDENT = year1 ! (pass ! YEAR2

j fail ! STUDENT)

YEAR2 = year2 ! (pass ! YEAR3

j fail ! YEAR2)

YEAR3 = year3 ! (pass ! graduate ! Stop

j fail ! YEAR3)

We will now explicitly state that the alphabet is

�STUDENT = fyear1 ; year2 ; year3 ;

pass; fail ; graduateg

which we will abbreviate to S .

'
&

$
%

�

�
	

Week 3 5

Suppose that the student has a generous parent, who

buys a present every time the student passes the ex-

ams.

PARENT = pass ! present ! PARENT

Again we explicitly de�ne the alphabet:

�PARENT = fpass; presentg = P :

Notice that the event pass now has two di�erent in-

terpretations. For the student it means passing the

exams, but for the parent it means seeing the student

pass the exams.

We can now consider the parallel combination of the

student and the parent:

STUDENT

S

k

P

PARENT :

Synchronisation is required for the event pass, which

is the only event in both alphabets. The other events

can happen independently.

The behaviour of this system will be explored in the

lab session.

'
&

$
%

�

�
	

Week 3 6

3 More Processes 3

Any number of processes can be put in parallel, by

using the k operator repeatedly.

Example: Suppose the student has a tutor who is

annoyed by failure.

TUTOR = fail ! shout ! TUTOR

�TUTOR = ffail ; shoutg = T

We can add the tutor to the system consisting of the

student and the parent.

(STUDENT

S

k

P

PARENT)

S[P

k

T

TUTOR

As before, pass must be synchronised between STUDENT

and PARENT . Also, fail (which is the only event in

both S [P and T) must be synchronised between

STUDENT

S

k

P

PARENT and TUTOR .

We know that fail events come from STUDENT not

PARENT , so in e�ect this means that pass must

be synchronised between STUDENT and PARENT ,

and fail must be synchronised between STUDENT

and TUTOR .

'
&

$
%

�

�
	

Week 3 7

3 More Synchronisation 3

Some parallel combinations require some events to be

synchronised between more than two processes.

Example: If a student completes the degree pro-

gramme without failing at all, then the college awards

a prize.

COLLEGE = fail ! Stop j pass ! C1

C1 = fail ! Stop j pass ! C2

C2 = fail ! Stop j pass ! prize ! Stop

�COLLEGE = fpass; fail ; prizeg = C

Now we can consider combinations of STUDENT

with any or all of PARENT , TUTOR and COLLEGE .

If we combine everything:

((STUDENT

S

k

P

PARENT)

S[P

k

T

TUTOR)

S[P[T

k

C

COLLEGE

then pass must be synchronised between STUDENT ,

PARENT and COLLEGE , and so on.

'
&

$
%

�

�
	

Week 3 8

Consider the processes PASS (\passenger") and TICKETS ,

both with alphabet

A = fashford ; staines; feltham; ticket; poundg

de�ned by

PASS = ashford ! pound !

(ticket ! PASS

j pound ! ticket ! PASS)

j feltham ! pound ! ticket ! Stop

TICKETS = staines ! pound !

ticket ! TICKETS

2 ashford ! pound ! pound !

ticket ! TICKETS

4

What is the behaviour of TICKETS

A

k

A

PASS?

Draw a transition diagram.

Given a transition diagram, it is possible to de�ne

a process, without using the parallel operator, which

has the same transition diagram.

4

Do this for TICKETS

A

k

A

PASS .

