
'
&

$
%

�



�
	

Week 2 1

3 CSP 3

We have considered a system in which processes in-

teract by means of shared variables, but this is not

the only possible way for a system to be constructed.

Processes might send messages to each other, or one

process might broadcast messages to all other pro-

cesses, or there might be other possibilities.

CSP (Communicating Sequential Processes) is a lan-

guage which allows concurrent systems to be de-

scribed in a more fundamental and abstract way. It

was developed at the University of Oxford during the

1980s, principally by C. A. R. Hoare.

CSP describes processes | objects or entities which

exist independently, but may communicate. During

its lifetime, a process may perform (engage in, do)

various events or actions. These events are the visi-

ble parts of the behaviour of the process. In di�erent

systems, events correspond to di�erent physical ac-

tivities, but CSP treats them in a uniform way. As we

will see, various styles of inter-process communication

can be built up from the idea of events.

'
&

$
%

�



�
	

Week 2 2

3 Processes and Events 3

Example: When describing a simple vending ma-

chine, which sells chocolates, we may be interested in

the events coin, representing insertion of a coin into

the machine, and choc , representing the appearance

of a chocolate.

Example: To describe a more complex vending ma-

chine, which sells two sizes of chocolate and gives

change, we might need the events in the set

fin1p; in2p; small ; large; out1pg:

Notice that we make no distinction between events

caused by the machine and events caused by the user

of the machine. We will see later how to represent

the machine and the user as separate processes.

The set of events which a process may use is called

its alphabet or interface. The alphabet of a process

P is written �P .

Example: To describe a lecture as a process LECT ,

we might decide that

�LECT = fstart; end ; exerciseg:



'
&

$
%

�



�
	

Week 2 3

3 Events and Interfaces 3

During the lifetime of a process, each event in the

interface may occur once, many times, or not at all.

Which events we decide to include in the interface of a

process depends on which aspects of its behaviour we

are interested in. If we only care about the beginnings

and ends of lectures, we might decide that

�LECT = fstart; endg:

For the moment, we will not normally de�ne the inter-

face of a process separately; it will be de�ned implic-

itly by the events which appear in the process def-

inition. Later it will become important to specify

interfaces in advance.

3 Process Behaviour 3

The simplest possible behaviour is to do nothing. The

process which does nothing is written Stop.

The simplest way of constructing non-trivial processes

is by means of pre�xing, which allows events to occur

in sequence. If P is a process and a is an event, then

a ! P

is a process which can perform the event a and then

behave like the process P .

'
&

$
%

�



�
	

Week 2 4

Example: De�ning

VM = coin ! Stop

gives a vending machine which accepts a coin but

then does nothing else.

VM = coin ! (choc ! Stop)

gives a machine which works, but only once.

VM = Stop

is a broken machine which cannot even accept a coin.

The expressions P ! Q and a ! b, where P ;Q

are processes and a; b are events, are not allowed.

Pre�xing is only used with an event and a process.

In expressions such as a ! (b ! P), the brackets

are usually omitted.

When we de�ne a CSP process, we are only describing

the relative order of events; nothing is said about

timing. It is not possible for two or more events to

occur simultaneously.

Example: If LECT = start ! end ! Stop then

we have captured the fact that a lecture begins and

ends, but not the fact that a set time elapses in be-

tween.



'
&

$
%

�



�
	

Week 2 5

3 Recursion 3

Using Stop and pre�xing we can only construct pro-

cesses which always stop after a �nite number of

events. Very often we are interested in processes

which run forever. To describe them we need re-

cursive de�nitions.

Example: To describe a clock, we are only interested

in the fact that it ticks, so we just need one event

tick . We can de�ne

CLOCK = tick ! CLOCK :

The process CLOCK can perform the tick event re-

peatedly. Substituting for CLOCK on the right hand

side of the de�nition gives

CLOCK = tick ! tick ! CLOCK

= tick ! tick ! tick : : :

Example: We can de�ne a vending machine which

does not stop after one transaction:

VM = coin ! choc ! VM

'
&

$
%

�



�
	

Week 2 6

4

What is the di�erence between the recursive def-

initions we have seen so far, and a typical recur-

sively de�ned function in C++ or ML?

In CSP we can de�ne a collection of processes by

mutual recursion, such as

VM = coin ! VM PAID

VM PAID = choc ! VM :

Example: If we de�ne

LECT = start ! INLECT

INLECT = exercise ! INLECT

then we have a never-ending lecture in which you

can't even go to sleep.



'
&

$
%

�



�
	

Week 2 7

3 Choice 3

So far we have only de�ned processes which perform

a single sequence of events, either just once or re-

peatedly. We also want to describe systems which

may have alternative behaviours, perhaps determined

by their environment.

If P , Q are processes and x , y are distinct events,

then

x ! P j y ! Q

is a process which can either do the event x and then

behave like P , or do the event y and then behave like

Q .

This is pronounced \x then P choice y then Q", or

sometimes \x then P or y then Q"

Example: A ticket machine sells tickets to Staines,

for one pound, or Ashford, for two pounds. We

can describe it as a process TICKET , with interface

fstaines; ashford ; pound ; ticketg.

TICKET =

staines ! pound ! ticket ! Stop

j ashford ! pound ! pound ! ticket ! Stop

'
&

$
%

�



�
	

Week 2 8

We can combine choice with recursion, for example

to de�ne a more useful ticket machine:

TICKETS =

staines ! pound ! ticket ! TICKETS

j ashford ! pound ! pound ! ticket ! TICKETS

Some choices in a recursive process may lead to ter-

mination:

TICKETS =

staines ! pound ! ticket ! TICKETS

j ashford ! pound ! pound ! ticket ! Stop

We can also de�ne choices with more than two alter-

natives:

x ! P j y ! Q j : : : j z ! R:

Note that we cannot write P j Q for processes P and

Q . We can only use j in conjunction with a collection

of distinct pre�xes. This is to ensure that situations

such as x ! P j x ! Q cannot arise.

Example: Suppose the ticket machine needs to be

turned on before use, and can be turned o� after any

transaction.

MACHINE = on ! TICKETS

TICKETS =

staines ! pound ! ticket ! TICKETS

j ashford ! pound ! pound ! ticket ! TICKETS

j o� ! MACHINE



'
&

$
%

�



�
	

Week 2 9

Suppose we want to model a lecture as a process

LECT with alphabet fstart; end ; exerciseg, as be-

fore.

4

De�ne LECT so that a lecture starts, may contain

any number of exercises, and may eventually end.

We can model the career of an undergraduate as a

process STUDENT with alphabet

fyear1 ; year2 ; year3 ; pass; graduateg:

A simple de�nition of an ideal degree programme is

STUDENT = year1 ! pass ! year2 ! pass !

year3 ! pass ! graduate ! Stop:

4

Add an event fail to the alphabet of STUDENT ,

and modify the de�nition so that a student can

fail at any point and repeat a year.

When discussing choice, we have ignored the question

of how a choice is made | we have simply listed al-

ternative possibilities. Later we will be able to distin-

guish between choices made by a process and choices

made by the environment in which it is placed.

'
&

$
%

�



�
	

Week 2 10

3 Menu Choice 3

There is another notation for choice, known as menu

choice. If A is a set of events, and for each event x

in A there is a process P(x ), then

x : A! P(x )

(pronounced \x from A then P of x") is a process

which can do any of the events in A and then become

the appropriate P(x ).

Example: Suppose we de�ne a collection of pro-

cesses with alphabet N :

COUNTDOWN

0

= 0 ! Stop

COUNTDOWN

1

= 1 ! COUNTDOWN

0

.
.
.

COUNTDOWN

n

= n ! COUNTDOWN

n�1

.
.
.

we can then de�ne

COUNTDOWN = x : N ! COUNTDOWN

x

which allows the starting point of the countdown to

be chosen.

Think of this de�nition as

x : N ! P(x )

where, for each x 2 N , P(x ) = COUNTDOWN

x

.



'
&

$
%

�



�
	

Week 2 11

Menu choice subsumes all the operations we have

seen so far. The choice

a

1

! P

1

j a

2

! P

2

j : : : j a

n

! P

n

can be written

x : A! P(x )

where A = fa

1

; : : : ; a

n

g and for each i , P(a

i

) = P

i

.

The pre�xing construction

a ! P

can be written

x : A! P(x )

where A = fag and P(a) = P . Stop can be written

x : fg ! P(x )

where no de�nition for P(x ) needs to be supplied.

It will sometimes be useful to think of Stop, pre�x-

ing and choice in this way, as special cases of menu

choice.

'
&

$
%

�



�
	

Week 2 12

3 Transition Diagrams 3

It is sometimes useful to view processes pictorially.

For example, the process coin ! choc ! Stop can

be represented by this diagram:

coin choc

Such diagrams are called state transition diagrams

or just transition diagrams. Each circle represents a

state of the process; in this example, the states are

coin ! choc ! Stop, choc ! Stop, and Stop.

Each arrow represents an event which the process

may do when in a certain state.

Choices are represented by multiple arrows (with dif-

ferent labels) from a single state.

Example: The transition diagram for the process

1TICKET is

1pound

ashford

1pound

1pound

ticket

staines

ticket

A state with no arrows leaving it corresponds to Stop.



'
&

$
%

�



�
	

Week 2 13

The transition diagram for a recursive process is cyclic.

For example,

VMS = coin ! choc ! VMS

has this diagram:

choc

coin

A larger example: the process MACHINE .

pound

on

o�

pound

pound

ashford

ticket

staines

ticket

'
&

$
%

�



�
	

Week 2 14

Problems with transition diagrams include:

� Very large diagrams are hard to draw (and some

processes have an in�nite number of states, which

is even worse).

� Di�erent diagrams can be drawn for the same pro-

cess, for example:

coin

coin

choc

choc

Later we will introduce a mathematical theory of pro-

cess equivalence, with a collection of algebraic laws.

However, it is still useful to talk about process states

and transitions, as a way of de�ning process opera-

tors.


