
CS375: Concurrent Programming

'
&

$
%

�

�
	

Week 1 Lecture 1 2

3 Who am I? 3

Dr Simon Gay

(but you can call me Simon)

My o�ce is McCrea 113. I'm generally happy to re-

ceive casual visitors, especially if my door is open, but

if I'm busy you might not get much time. If you want

some guaranteed time, email me to make an appoint-

ment | my address is S.Gay@dcs.rhbnc.ac.uk

My research interests include

� Semantics of programming languages

� Concurrency theory

� Type systems for concurrent programming

so the material of this course is fairly close to my

heart.

'
&

$
%

�

�
	

Week 1 Lecture 1 3

3 What's it all about? 3

Concurrent systems | made up of independent but

communicating components | are all around us. Fa-

miliar examples include:

� The network of bank cash machines

� The internet

� The network of \Switch" machines

� The components of a PC

� The telephone system

Understanding, designing and building concurrent sys-

tems is a major challenge for computer science. The

problems involved are in a di�erent league from the

problems of sequential programming, and a system-

atic approach is essential.

This course aims to equip you with some of the the-

ory, tools and techniques needed to understand and

analyse concurrent systems, and to enable you to take

a systematic approach to designing your own.

'
&

$
%

�

�
	

Week 1 Lecture 1 4

3 What will we do? 3

Despite the title, this course does not involve large

amounts of programming in the usual sense | it's not

like CS220, for example. We'll be concentrating on

techniques for modelling, analysing and understand-

ing concurrent systems. We will begin by looking at

some concurrent programs, experimenting with them,

and understanding why they do or do not work cor-

rectly. Then we will learn CSP, which is a theoretical

notation or language for modelling concurrent sys-

tems. CSP is supported by various software tools

which enable systems to be analysed and debugged,

and we will use two in particular | ProBE and FDR

| to assist in learning CSP and also to perform anal-

yses of the systems which we consider.

When we look at concrete programs, they will be

written in Pascal-FC, a language which is convenient

for teaching as it supports a range of concurrent pro-

gramming features and styles. Pascal-FC runs on the

departmental server tartan, and is also available for

PC systems. Previous knowledge of Pascal is not nec-

essary, as it is easy to acquire a reading knowledge

of Pascal-FC, and the Pascal-FC programming which

we do will be limited to relatively small modi�cations

of existing programs.

'
&

$
%

�

�
	

Week 1 Lecture 1 5

3 Aims 3

� To give an appreciation of the range of applica-

tions of concurrent and distributed systems, and

the bene�ts of concurrency.

� To demonstrate that concurrent systems are com-

plex and that systematic techniques are needed for

analyzing and reasoning about them.

� To introduce CSP as a theory of concurrent sys-

tems and as a framework for speci�cation and

analysis.

� To use the CSP tools ProBE and FDR to gain

practical experience of modelling and analysing

concurrent systems in CSP.

'
&

$
%

�

�
	

Week 1 Lecture 1 6

3 Programme 3

There are three timetabled hours of teaching per week:

1000{1200 on Monday and 1000-1100 on Thursday.

The second hour of Monday's session will be a prac-

tical class.

Day Time Place Type

Monday 1400{1500 McCrea 336 Lecture

Tuesday 1600{1700 McCrea 103 Lab session

Friday 1100{1200 McCrea 219 Lecture

I will often ask questions during lectures, so stay

awake! Also, you are encouraged to ask questions

as we go along. If there's something you don't un-

derstand, it's almost certain that several other stu-

dents also don't understand it, so you will be doing

everyone a service by asking.

Copies of the lecture slides for each lecture will be

distributed at the beginning of the lecture. I will also

put the slides onto the departmental web server, with

a link from the department home page. Assessed or

unassessed problem sheets will also be available via

the web.

'
&

$
%

�

�
	

Week 1 Lecture 1 7

3 Assessment 3

� 80% by exam, 20% by coursework (4 courseworks,

5% each)

� Dates for setting and handing in of coursework are

in the course de�nition.

� If you want comments on your coursework, hand

in two copies.

'
&

$
%

�

�
	

Week 1 Lecture 1 8

3 Books and Software 3

The following books are recommended:

� Concurrent and Real Time Systems: The CSP Ap-

proach, S. Schneider, Wiley, ISBN 0-471-62373-3

� Communicating Sequential Processes, C. A. R.

Hoare, Prentice-Hall, ISBN 0-13-153289-8

� Theory and Practice of Concurrency, A. W. Roscoe,

Prentice-Hall, ISBN 0-13-674409-5

All of them should be in the campus bookshop. You

need at most one, and in fact you should be able to

get by with just the course notes.

The book on CSP by Hinchey and Jarvis is not rec-

ommended, as it contains many serious technical er-

rors.

Pascal-FC, ProBE and FDR are installed on the de-

partmental server tartan. There is also an imple-

mentation of Pascal-FC for PCs, which I will put in

the ftp area. Several example programs and some

documentation are included with the distribution.

'
&

$
%

�

�
	

Week 1 Lecture 1 9

3 The Ornamental Gardens 3

We will use the following scenario, taken from the

book \Concurrent Programming" by Burns & Davies,

to illustrate some problems in concurrent program-

ming.

An ornamental garden is open to the public, and en-

try is controlled by two turnstiles. We are required

to produce a computer system which will count the

number of visitors entering the garden.

We will attempt to produce a solution to this problem,

with the following features.

� The program will consist of two independent parts,

or processes. Each process will handle one of

the turnstiles. The two processes will run con-

currently, i.e. simultaneously or in parallel.

� A global variable, which both turnstiles can access,

will record the number of visitors.

We will suppose that 20 visitors enter through each

turnstile, and just think about the overall counting.

The program is written in Pascal-FC.

'
&

$
%

�

�
	

Week 1 Lecture 1 10

program gardens1;

var
count: integer;

process turnstile1;

var
loop: integer;

begin

for loop := 1 to 20 do

count := count + 1

end; (* turnstile1 *)

process turnstile2;

var
loop: integer;

begin

for loop := 1 to 20 do

count := count + 1

end; (* turnstile2 *)

begin

count := 0;

cobegin

turnstile1;

turnstile2

coend;

writeln('Total admitted: ',count)

end.

'
&

$
%

�

�
	

Week 1 Lecture 1 11

3 Processes in Pascal-FC 3

The unit of execution in the Pascal-FC system is the

program. Within one program, it is possible to acti-

vate several processes in parallel. The Pascal-FC run-

time system deals with communication between these

processes. Here is an outline of a typical Pascal-FC

program:

program OUTLINE;

process P;

begin

...

end;

process Q;

begin

...

end;

begin

cobegin

P;

Q

coend

end.

'
&

$
%

�

�
	

Week 1 Lecture 1 12

Points to note:

� cobegin P; Q coend causes the processes P and

Q to be executed in parallel.

� The order of the processes within cobegin ...

coend is unimportant.

� cobegin ... coend cannot be nested. The

parallel processes must be declared using process

| they cannot be arbitrary statements.

� There can be a sequential series of statements be-

fore or after cobegin ... coend. There can

be several cobegin ... coend blocks in se-

quence (or indeed none at all).

We are not going to comprehensively study the Pascal-

FC language; instead, we will plunge in and look at

examples, which can then be copied and modi�ed.

Language features will be discussed as necessary.

A few points about Pascal syntax, for now:

� Slightly more verbose than C++. For example,

begin ... end around blocks instead of f...g.

� Variables are declared as in:

var

i : integer;

x : array [1..10] of real;

'
&

$
%

�

�
	

Week 1 Lecture 1 13

� In Pascal-FC, identi�ers are case-insensitive.

� There is a distinction between functions, which

return results, and procedures, which do not. For

example:

procedure MyProc(x:integer);

begin

...

end;

function MyFun(x:integer):boolean;

begin

...

return(true);

end;

� The syntax for conditionals, for loops, while

loops, repeat loops etc. is di�erent from C++,

and more verbose.

'
&

$
%

�

�
	

Week 1 Lecture 1 14

3 Examples 3

Pascal-FC:

function Factorial(n:integer):integer;

var
i,p:integer;

begin

p := 1;

for i := 1 to n do

p := p * i;

return(p);

end;

C++:

int Factorial(int n)

{

int p = 1;

for (int i = 1; i <= n; i++)

p = p * i;

return(p);

}

'
&

$
%

�

�
	

Week 1 Lecture 1 15

Pascal-FC:

procedure PrintFactorial(n:integer);

var
p:integer;

begin

p := 1;

while n > 0 do

begin

p := p * n;

n := n - 1

end;

writeln(p);

end;

C++:

void PrintFactorial(int n)

{

int p = 1;

while (n > 0)

{

p = p * n;

n = n - 1;

}
cout << p << "\n";

}

'
&

$
%

�

�
	

Week 1 Lecture 1 16

Pascal-FC:

procedure PrintFactorial(n:integer);

var
p:integer;

begin

p := 1;

repeat

p := p * n;

n := n - 1

until n = 0;

writeln(p);

end;

C++:

void PrintFactorial(int n)

{

int p = 1;

do

{

p = p * n;

n = n - 1;

}
while (n > 0);

cout << p << "\n";

}

'
&

$
%

�

�
	

Week 1 Lecture 1 17

Pascal-FC source �les are normally called something.pfc

and they are compiled and executed by

pfc program.pfc

There is no separate compilation phase | Pascal-FC

programs are compiled into an intermediate form and

then interpreted.

The pfc command is /usr/local/pasfc/bin/pfc

so you will probably want to add

export PATH=$PATH:/usr/local/pasfc/bin

to your .bashrc �le.

There is some online documentation in the directory

/CS/ftp/pub/CS375/PascalFCdocumentation

The language reference manual is

lrm.ps

and the user guide for the system is

sun ug.ps

To view either of these documents, type (e.g.)

ghostview lrm.ps

from within the correct directory.

'
&

$
%

�

�
	

Week 1 Lecture 1 18

The book \Concurrent Programming" by G. Burns

and A. Davies (published by Addison Wesley) de-

scribes Pascal-FC and covers a range of topics in

concurrent programming, including some CSP. Most

of the programs discussed in Burns & Davies can be

found in

/usr/local/pasfc/ex

but you will need to copy them into your own direc-

tory before running them.

There is a very simple Pascal-FC program in

/CS/ftp/pub/CS375/test.pfc

which you can use to check that you are able to use

the Pascal-FC system. The �rst practical class takes

you through the process of logging in to tartan and

running the test program.

