
'
&

$
%

�



�
	

Week 1 Lecture 2 1

3 Ornamental Gardens Output 3

Recall that the program gardens1 has a global vari-

able and two concurrent processes. Each process in-

crements the variable 20 times. When both processes

have �nished, the �nal value of the variable is dis-

played.

We might have expected that the displayed value

would be 40, and indeed this was our intention |

the program is supposed to be counting the visitors

entering the gardens through both gates.

However, running the program produced unexpected

results. The �nal total was di�erent nearly every

time. The expected output of 40 might have ap-

peared a few times, but usually the result was less

than 40, and in some cases it was even less than 20.

What is going on?

'
&

$
%

�



�
	

Week 1 Lecture 2 2

3 The Multiple Update

Problem 3

The Ornamental Gardens illustrates the multiple up-

date problem. To understand it, we need to consider

how the instruction

count := count + 1

is executed. If the hardware could execute this in-

struction as a single, indivisible (or atomic) action,

the program would work correctly, because

� if running on a single processor, as in Pascal-FC,

only one instruction can be executed at a time

� if running on multiple processors, the hardware

would normally ensure that simultaneous accesses

to the same memory location take place in one

order or another.

However, executing count := count + 1means ex-

ecuting the following separate steps:

1. load the value of count from memory into a reg-

ister

2. increment the value in the register

3. return the new value to memory, updating count



'
&

$
%

�



�
	

Week 1 Lecture 2 3

Suppose that count has the value 5, and turnstile1

and turnstile2 are both ready to do count :=

count + 1. One possible sequence of steps is as

follows.

1. T1 loads count from memory, getting 5

2. T2 loads count from memory, getting 5

3. T2 increments this value to 6

4. T1 increments this value to 6

5. T2 stores 6 in count

6. T1 stores 6 in count

so the overall e�ect is that one increment has been

lost. Any number of increments can be lost in this

way | for example, between step 1 and step 4, T2

could do count := count + 1 any number of times,

and the e�ect of all of them would be lost when T1

reached step 6.

We need some way of making count := count +

1 (or in general, an arbitrary block of code) appear

to be an atomic action, so that it is not subject to

interference. A piece of code which needs to appear

atomic is called a critical section or critical region.

One example of a critical region is a piece of code

which modi�es a shared variable.

'
&

$
%

�



�
	

Week 1 Lecture 2 4

3 Mutual Exclusion 3

If two (or more) processes contain critical sections

which would interfere if executed in an overlapping

way, then we need to ensure mutual exclusion | it

must be impossible for two processes to be in their

critical sections simultaneously.

In the early days of concurrent programming (the

early 1960s) it was not known whether it was possible

to implement mutual exclusion purely in software, by

suitable use of shared variables, or whether special-

purpose hardware and additional programming lan-

guage features would be required.

Eventually, however, mutual exclusion algorithms were

developed. The �rst was discovered by Dekker in

1968. We will now look at a later algorithm, devel-

oped by Peterson in 1981.

Some of you might have come across Peterson's al-

gorithm in the Operating Systems course last year.

Dekker's and Peterson's algorithms are for mutual

exclusion between two processes.



'
&

$
%

�



�
	

Week 1 Lecture 2 5

3 Shared Variables 3

We will make the following assumptions about how

shared variables work.

� If two processes simultaneously read a shared vari-

able, there is no interference and both processes

get the current value.

� If two processes simultaneously update a shared

variable, then the variable gets one value or the

other, not a mixture of the two (but we don't

know which value it will be).

� If a shared variable is updated and read simulta-

neously, then the process reading the variable gets

either the old value or the new value, not a mix-

ture of the two (but we don't know which value it

will be).

'
&

$
%

�



�
	

Week 1 Lecture 2 6

3 Mutual Exclusion Algorithms 3

The general form of a mutual exclusion algorithm is

that each process will protect access to its critical

section by executing an entry protocol before entering

it, and a corresponding exit protocol when leaving.

Thus a skeleton process de�nition is

process P;

begin

repeat

entry protocol;

critical section;

exit protocol;

non-critical section;

forever

end;

Typically, the non-critical section is much longer than

the critical section. This means that the processes

can execute independently for most of the time, and

only occasionally need to coordinate their actions.

Such processes are said to be loosely coupled. In our

examples, however, we will ignore the non-critical sec-

tions. We will also assume that a process cannot fail

in its critical section or in its entry and exit protocols.



'
&

$
%

�



�
	

Week 1 Lecture 2 7

3 Requirements 3

We can state some natural requirements for a mutual

exclusion algorithm, in order to rule out unacceptable

solutions. (For example, one way to guarantee mu-

tual exclusion is to never execute one of the processes

at all, but this is obviously unsatisfactory!)

1. At any given time, at most one process should be

in its critical section.

2. If both processes are competing for entry into their

critical section, the decision as to which should

succeed cannot be postponed inde�nitely.

3. If one process is in its non-critical section and the

other process requests entry into its critical sec-

tion, the request should succeed.

'
&

$
%

�



�
	

Week 1 Lecture 2 8

3 Peterson's Algorithm 3

program peterson;

(* Peterson's two-process mutual exclusion algorithm *)

var
count, turn : integer;

flag1, flag2: boolean;

process turnstile1;

var loop: integer;

begin

for loop := 1 to 20 do

begin

(* entry protocol *)

flag1:= true; (* announce intent to enter *)

turn:= 2; (* give priority to other process *)

while flag2 and (turn = 2) do

null;

(* end of entry protocol *)

(* critical section *)

count := count + 1;

(* end of critical section *)

(* exit protocol *)

flag1:= false

(* end of exit protocol *)

end

end;

process turnstile2; (* similar *)



'
&

$
%

�



�
	

Week 1 Lecture 2 9

begin (* program *)

count := 0;

(* initialise variables for Peterson's algorithm *)

turn := 1;

flag1 := false;

flag2 := false;

(* start the processes *)

cobegin

turnstile1; turnstile2

coend;

writeln('Total admitted: ',count)

end.

The complete program is

/CS/ftp/pub/CS375/peterson.pfc

You can try it out (remember to copy it into your own

directory �rst) and see that the result is 40 every time.

'
&

$
%

�



�
	

Week 1 Lecture 2 10

3 Do we trust it? 3

If peterson is executed several times, the result al-

ways seems to be 40. But how can we be sure that

it really will be 40 every time, given that we have

already seen that the result of a concurrent program

might vary from run to run? There are three possi-

ble ways of convincing ourselves that Peterson's al-

gorithm is correct.

1. Execute the program many more times, until we

are satis�ed that we have seen a representative

sample of executions (whatever that means!).

2. Produce a mathematical proof that our 3 require-

ments are satis�ed.

3. Execute the program in some non-standard way,

which guarantees to test all possible execution se-

quences.

Approach 1 is obviously not completely satisfactory,

because we can never be sure that we have seen

enough executions.



'
&

$
%

�



�
	

Week 1 Lecture 2 11

Approach 2 is ideal in principle, but it is possible to

make mistakes in mathematical proofs (and indeed

the original published proof of correctness of Lam-

port's \bakery algorithm", another mutual exclusion

algorithm, contained errors, although the algorithm

was in fact correct and the proof was later corrected).

We will look at approach 3 later in the course, by con-

structing a model of Peterson's algorithm in CSP and

analysing it with the FDR tool. We can be very con-

�dent in the result, but as we will see, this approach

might not work for large systems.


