in

COLLABORATORS

TITLE :
in
ACTION NAME DATE SIGNATURE
WRITTEN BY October 9, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

in i

Contents

1 in 1
.1 TheWebfor Music e 1
1.2 Whatand Why o L 1
1.3 Distribution e 3
1.4 Getting Started L e e e e e e 4
1.5 PrerequiSites L e e 4
1.6 Drawing Diagrams e e 5
1.7 Overview of Master SCreen ot i e e e e 7
1.8 Control Buttons and ACtions L e e e e 7
1.9 Project Menu e e 10
1.10 Other Menus e e 11
1.11 Temporary Windows o i o e e e e e e e e e e e e e e 11
1.12 Saving and Loading Configurations e 11
1.13 CLICommand Line e e 12
1.14 Startup Scriptand Icons e e 13
LIS Concepts . . . o o v i e e e e e e 14
1.16 Travellingthe Web L o e 16
1.17 Package Componentsttt e e e e e e e e e 17

in 1/18

Chapter 1

In

1.1 The Web for Music

The Web for Music

1993 October

Contents:

What and Why
Distribution
Getting Started
Prerequisites
Drawing Diagrams

Brief Overview of Master Screen

The Control Buttons and their Actions
The Project Menu

Other Menus

Temporary Windows

Saving and Loading Configurations

CLI Command Line for the Web

Startup Script and Icons

Concepts

Travelling the Web
Package Components

1.2 What and Why

in 2/18

What and Why

‘The Web’ is a general environment for building up complex functions
from simple elements, using a graphic ‘block-diagram’ metaphor. This
version applies the scheme to the manipulation of MIDI events. (To be
useful, it naturally needs a MIDI interface on your computer —-- see
Prerequisites .) The current set of modules is devoted exclusively
to ‘real time’ performance (no recording or playback). In addition,
‘System Exclusive’ message sequences are at the moment just discarded.
Many more modules —-- to handle areas such as these -- are planned, but
this is a first release!

You will probably be able to take best advantage of this package if

you have some kind of multitimbral, multichannel MIDI setup. Development
of these particular modules has undoubtedly been considerably affected by
my own current equipment -- just a single YPR-20 Electronic Piano. This
can handle up to twelve simultaneous notes (total) over up to five
channels, each with its own voice; in multitimbral mode it seems to be
quite intelligent about dropping early notes when it reaches its limit,
rather than blocking new ones. On the other hand, it doesn’t have such
‘Synth’ facilities as keyboard split.

With these modules I can nicely supplement the basic repertoire of

my setup with things like keyboard split (multichannel if desired)

and ‘fattened’ sounds —-- adding layers, transposing notes, and delaying
them. I can split a MIDI stream into multiple paths (perhaps segregated
by key range or function) and do different operations on these, combining
them at the end to drive the several channels of my instrument. Also,

the ‘Instrument’ module that plays the Amiga’s internal four sound channels
—-— with the collection of 8SVX instrument samples I have acquired —-- makes
a nice enhancement to my basic set of piano sounds. Although there are
only a dozen types of element so far, multiple instances of them can be
combined in quite complex ways.

As your setup will surely be quite different from mine, I suggest

experimentation... Let me know if you find any really cool things
you can do! (Also I'd be grateful for suggestions on other useful
modules. There’s a lot I want to do, but I'm sure I haven’t thought

of all the possibilities.)

A fuller outline of the concepts behind the Web is elsewhere in this
guide (Concepts), but briefly:

Using the Web’s graphic interface. you can link instances of different
types of elements into an overall configuration that performs complex
operations on the data passing through it. The element functions may be
quite limited in number, and individually fairly primitive, but are
designed to be good building blocks for the more complex functions.

The ‘Web’ itself is a a configuration management program that gives the
user the interactive ‘block-diagram’ interface; it manages all the various
‘Modules’, which are themselves individual -- and semi-independent --
programs that provide for all the actual handling of MIDI events. Modules
usually have their own ‘Control Panels’ in addition to the Web interface
itself. Note the distinction between ‘Modules’ and ‘Elements’: you only

in 3/18

start up one instance of each module program, but this can manage as many
elements of that type (‘blocks’ in the diagram) as you wish. Yet another
component is the ‘Traveller’, which is responsible for carrying data
between the elements; one Traveller process is created for each path
(linear chain of elements) in the configuration.

Startup of all these components is normally done by a supplied script,

invoked by an icon. Custom icons can be used to start with a specific
configuration loaded (though you must create these yourself with the
usual WorkBench tools). Startup Script and Icons

For a gquick introduction to running the MusicWeb, look at Getting Started

1.3 Distribution

Distribution

This suite of programs and its documentation is copyright, all rights
reserved. It 1is ShareWare —- xnotx Public Domain. If you find it
useful, xpleasex show your appreciation of the effort that has gone
into it by an appropriate donation —-- at least $US35 is suggested.

This package is freely distributable, however, provided that it is
kept intact as initially provided, and that no charge is made for its
distribution aside from that necessary to cover duplication and other
reasonable overheads.

Future developments will depend to a major extent on a positive
reaction to this release, so please don’t freeload...

On the other hand, if you feel that the package is not worth the
suggested amount in its current form, let me know about that too.

Any and all comments will be taken into account. (And donations
of any amount will be gratefully accepted!)

Contact:
Pete Goodeve
3012 Deakin St #D
Berkeley, CA 94705
USA
phone: (510) 848-2092

Internet: petelviolet.Berkeley.edu

4/18

1.4 Getting Started

Getting Started

A full discussion of prerequisites and operation is in other sections of
this guide, but if you want to try it out immediately, provided that you
are running version 2.04 (or later) of the operating system and have the
supplied package available with all its components in some directory of
your system (if it’s on floppy, having this in a drive will do), Jjust
follow these steps below. To do any more than look at it, you will of
course also need a standard MIDI interface connected to the serial port
of your machine. Depending on your setup, you may also have to match the
MIDI channels, in some of the more complex example configurations, to
your instrument.

Double-click on the ‘Install Libs’ icon. This will copy the required
library file (‘ppipc.library’ -- size about 3K) to your ‘LIBS:’ directory.
(This only has to be done once, the very first time you run. It will
remain in place unless you rebuild your System disk or otherwise delete
it.)

Double-click on ‘MIDI DEMO’. This will start the Web Master and all
the supplied modules, then load a trivial configuration. KeyofC Demo
You may play with this as you desire, but you will want to look to the
other sections of this Reference for further explanations. To bring in
one of the other demo diagrams, first use the ‘New’ item (to clear the
screen), and then ‘Load Config’, from the ‘Project’ menu; you will get
a file requester from which you can choose another configuration.

For more on the Demo configurations, see: Guide to the Examples
To close down the Web when you are done, use the ‘QUIT’ item of the
‘Project’ menu. This shuts everything down, removing all components from

memory (except the ppIPC library —-- which obeys the usual automatic
flushing behaviour) .

1.5 Prerequisites

Prerequisites

The purpose of this package is to manipulate MIDI events, so one basic
requirement is a MIDI interface box plugged into the Serial Port of your
Amiga. Any of the available makes should work fine.

The Web program and associated modules need the 2.0 environment or later,
and ppipc.library must be available in ‘LIBS:’. In the package there is
an icon (‘Install Libs’) that will copy this special library to LIBS: for

you, or you may do it yourself. (It is in the ‘Libs’ subdirectory.)
The system should run on any Amiga. It will. however, not show its full
speed potential on a basic 68000 machine (!). The minimum memory needed

has not been directly checked, but it probably should run in 1MB.

in 5/18

The Web Music system comprises quite a number of component parts (see
Package Components) but if all directories are present as supplied
and in their correct relationship, and you use the ‘Run_WEB’ icon

(or the associated CLI script), everything should get started properly.
The system should be runnable from floppy, hard disk, or RAMdisk.

A caution for those of you who habitually run Enforcer in the background:
avoid the habit when using the MusicWeb! Not that you should get any hits
—-— by all means run it to verify that the Web is behaving properly, but
expect a few missed and stuck notes while you are doing so. I don’t

know the reason, but I regard it as an incompatibility rather than a bug.
(:=)) No other incompatibilities are known (except the obvious ones, such
as other programs that would want access to the Serial Port, which will

be locked out properly if they obey the rules).

1.6 Drawing Diagrams

Drawing Diagrams

The effect the Web has on MIDI data passing through it is determined

by the configuration diagram cuurently built on the screen. This may
have been read from an existing Configuration File, or you may construct
it directly in the window. Whatever its source, it is never immutable:
you can rebuild part or all of it at any time -- even while data is
flowing [although in the present case it may be tough to do this, with
one hand on the mouse while the other is playing your MIDI Keyboard...!].
Of course you can also save the current diagram and parameters to a file,
for use at another time.

Configurations are built up from a limited set of basic elements. 1In
general you can place as many elements of a desired type in the diagram
as you wish. In the present system, only ‘MIDI In’ and ‘MIDI Out’ are
restricted to single instances. The placed elements are linked together
in the sequence that you want to have the data follow; a linear chain

of such elements forms a ‘Path’. The head element of the path must be

a ‘Source’ to provide the data that will flow. Paths can be branched off
from other paths (forming an independent processing chain) in which case
the branch point is itself a source for one of the two forks (arbitrarily
chosen; the original path continues on down the other fork).

Different types of elements may have different connections allowed.

The majority of them are ‘Filters’ at which data arrives, is processed,
and is passed on. These have only one output connector, but inputs

may be attached to any or all of the other three sides; all incoming data

is merged onto the single output link. (If there is no output attached,
that filter is the end of that path.) ‘Sources’ only have the output
connector; data comes from elsewhere —-- such as the Serial Port in the case
of ‘MIDI In’. A third category is ‘Multiconnector’: these are elements in

which each connection has a distinct function; they may be both a Filter
and a Source, have multiple outputs, or whatever the function decrees.
Inputs cannot be merged at a Multiconnector element; this must be done, if
desired, at an earlier point in the path.

6/18

Each element you place in a diagram is given a unique default name at that
time (shown when you click on it in ‘Select’ mode, and in its control
panel). If you’re going to keep the diagram around, you will probably
want to change it to something more mnemonic (again using ‘Select’).

For detailed instructions on how to build diagrams, refer to other
sections, but you may be able to determine most of what you need to know
by playing with the supplied demo configurations. As a single example of
the innumerable possibilities, consider constructing a ‘keyboard split’
that feeds two different MIDI channels. The ‘best’ way to proceed 1is
entirely a matter of personal preference: for example, you could place all
the elements first, then link them in the desired way, or you could start

by placing the ends of the main path (MIDI In and Out), linking these -- so
you can check that your MIDI system is working —-- and then elaborating into

the desired configuration by inserting the required elements and branches.
We’1ll take the first course here.

First click on the ‘Place’ button and select 'MIDI In’ from the list on
the right of the screen; click on the desired spot —-- preferably to the
left side —-- to place that element. Select 'MIDI Out’ and place it
well to the right. Select ‘Key Range’ and place two instances, one
above the other, a little to the right of ‘MIDI In’; then place two
instances of ‘Set Channel’ to the right of these. Now click on the
‘output knob’ of 'MIDI In’; you will see the mode switch automatically
to ‘Link’. Then click on the left side of the top ‘Key Range’ element;
a link will be drawn between the two points. In the same way, link

the output of that ‘Key Range’ to the input of the top ‘Set Channel’,
and the output of that to 'MIDI Out’ (use the top side of this, if

you like). Then go back to the first link you made, and click
somewhere along it: a marker to show the branch point should appear;
link this to the lower ‘Key Range’ and then complete the rest of that
path as before, ending up on a different side of ‘MIDI Out’.

This completes the basic configuration, but you need some parameter
settings to make it work. Change the mode to ‘Param’ by clicking on that
button, then click on the first ‘Key Range’ element; its control panel
will pop up. Move the panel to some convenient part of the screen so

it won’t be obscured and click on the other ‘Key Range’ to get its
control panel as well; you can open the ‘Set Channel’ panels at the

same time if you like. Returning to the first ‘Key Range’, move its

‘Low limit’ slider to, say, 60 (middle C); this will allow it to pass
middle C and all notes above. Set the ‘High Limit’ slider on the xotherx

‘Key Range’ to 59 (all notes below middle C). Set the top ‘Set Channel’
to some MIDI channel recognized by your instrument, and the lower one
to another channel. Now you should have your split keyboard.

From that point, you can elaborate it as you like, with still other
parallel paths, maybe with delays in them and so on. However it is
much easier to do it that to try to describe it it words, so I suggest
you go ahead and play. Look at the supplied demo configurations for
ideas.

in 7/18

1.7 Overview of Master Screen

Brief Overview of the Master Screen

The buttons on the right represent the running modules, those at the
bottom the operations that can be performed. There is a ‘Project’ menu
that contains a fairly standard set of choices: ‘New’, ‘Load Config’,
‘Save Config’, ‘About’, and ‘QUIT’. Project Menu

(The ‘Direction’ Menu over on the right-hand side is not one you are
ever likely to need, but it can be used to change the orientation of
future elements to be placed on the screen. (Elements cannot be rotated
once placed.) There is also a ‘Modules’ menu which is also not
particularly useful in the system as it stands.) Other Menus

Each module appears as a button on the right-hand panel. Clicking on one
of these will select that module for relevant operations, such as ‘Place’
or ‘Insert’. The name on the button is often not quite the same as the
filename of the Module it represents (the program ‘MIDILink’ supplies
both the 'MIDI In’ and 'MIDI Out’ buttons, for example). MIDI Modules

An operation mode selected from the lower buttons remains in effect until
another is picked —-- except for a couple, like ‘Cancel’, that are
momentary (and the particular case of ‘Place’ and ‘Link’, which can flip
automatically between each other according to where the user clicks on the
diagram.). A description of each button’s function is in Control Buttons

Other windows will appear on the Web Master screen as well in the course of

a session. In ‘Select’ mode, clicking on a part of the diagram causes the
appearance of one or two temporary panels: one gives information about the
item that was selected, the other -- if present -- presents a selection

of possible actions to be taken on that item. Most modules, too, have
Parameter Control Panels, which can be displayed for an element by
selecting in ‘Param’ mode or using the ‘Param’ action in ‘Select’;
these will remain until explicitly closed.

1.8 Control Buttons and Actions

The Control Buttons and their Actions

Place When this button is engaged, an instance of the
current module (determined by whichever of the
right-hand panel buttons is selected) will —-
if possible —-- be placed in the main window at
any point at which the (left-hand) mouse button
is clicked.

This is the default initial mode if no file

was specified in the command line.

If, after placing an element, you click on an

output connector (see ‘Link’), the system will
switch automatically into ‘Link’ mode. As described
next, you can also switch back automatically into

8/18

Link

Insert

Param

Replace

Elide

Delete

CUT Link

‘Place’ mode.

In this mode, elements (instances of modules)
already placed on the screen may be connected

into a chain by data paths. Click first on the
"output connector" (small dot on the right hand

side of the element, usually), and then on one

of the sides other than the output of the element
you wish to connect it to. If you click on
intermediate (empty) points in the window between
these two actions, the path will pass through those
points as well.

You may also begin a new path from an intermediate
point on another (making a ‘Branch’); simply click
first on the desired branch point rather than on an
output connector. (This action will be refused if
the ‘MIDIBranch’ program is not running.)

If, instead of clicking on an output connector or an
existing link to start a path, you click on an empty
area of the window, the system will switch into ‘Place’
mode and an instance of the current element will be
placed at that point.

This is similar to ‘Place’, except that the element
can only be inserted into an already existing path.
A single click at the desired point in the path will
insert a new instance of the selected module there.

In this mode, clicking on any element that has a
control (‘Parameter’) panel will bring that panel up.
This panel remains on the screen until explicitly
closed. (The screen element the panel refers to will
remain highlighted while the panel is visible.

In this mode, clicking on an element will, if
*possiblex, replace it with an instance of the
currently selected module. It will fail if the

two elements are not compatible (trying to replace
a filter in a data path with a source, for example).

Is essentially the reverse of ‘Insert’. Clicking
on an element in a path will remove it but leave
the path intact. It can, of course, only operate
on elements that have exactly one input and one
output connected. (Or, for convenience, on elements
that aren’t connected at all.)

Clicking on an element will remove that element
stogether+ with any flow links currently connected to
it (unless one of these links itself cannot be removed,
in which case the diagram will not be changed).

Click on the flow you wish to remove. (For
compatibility with earlier versions, you may instead
click twice —- first on the connector at one end of

the path then on the other.)
Note that you cannot remove a link that leads to a

9/18

Restore Link

Move

Route

Select

Branch: you must delete one of the branch links first.

[‘Momentary action’ button] *Ifx neither of the
elements previously connected by the last link you cut
has been moved or replaced in the meantime, clicking

this button will restore the connection. (This button
may be used at any time -- the current mode remains
unchanged.)

Click on an element you wish to move, then on

the new position you wish it to have. Any data
paths connected to the element will be suitably
readjusted (to the program’s satisfaction, at any
rate! You may want to re-route them yourself).
You can move branch points too.

Allows you to specify points you wish a given
existing path to be adjusted to follow. Click

first on the output connector that is the source

of the path, then on the points, in order, that

you want it to go through, then finally on the
(existing) input connection of that path.

Note that you cannot change either of the connection
points themselves with this command; this can only
be done by cutting and re-Linking.

In this mode, you can click on any part of the diagram
to bring up an information window about that point; the
window remains visible until you either select another
item or click on some empty space (or ‘CANCEL').

The contents of the information window depend on
whether you have clicked on an element, a connecting
link, a connection point, or a branch point. (The
selected diagram element is highlighted.)

If the selected item is an element, its current name
is shown within a string gadget, which you may edit

as you desire; a unique default name is initially
assigned by the program (‘SRCn’, ‘FLTn’, or ‘ELEMn’

as appropriate). (This name will be stored when a
configuration file is saved. It is also passed to

the modules for their own use —-- they normally display
that name in any associated control panels or other
windows.)

If appropriate, a window of applicable buttons will
also pop up; the button labels correspond to mode
selections in the main control panel, but only affect
the selected item.

Buttons available when a placed element is selected
are some or all of:

‘Param’, ‘Move’, ‘Elide’, ‘Delete’

Buttons for inapplicable operations are suppressed,
except for ‘Param’ (because this is managed by the

10/18

CANCEL

1.9 Project Menu

The Project Menu

New

Load Config

Save Config as...

Save Params...

module itself).

A selected Link, <can be ‘Cut’ (if this is possible).
A selected BranchPoint can be ‘Move’d.

For a connector on a normal source or filter, only
an information panel appears, but if it is a multi-
connector element, you will also get a panel of
buttons designating the possible choices for that
connection (with the current choice highlighted) .

‘Select’ mode is engaged initially if a file was
specified in the command line (as is actually the
case with both demos).

This button will abort any uncompleted action, such
as a Link, Move or Route. It will NOT undo any
operation you have actually completed. (The program
does not currently have an UNDO as such. Sorry.)

Clears any current configuration from the screen.

Brings up a standard File Requester to select a
previously saved Configuration File for loading.
It does not clear the screen first; you will
normally have to use ‘New’ if a configuration
already is on-screen, unless you are loading
parameters only.

After loading a file, the mode is automatically
set to ‘Select’, because this is virtually always
what you want to do at that point.

(See Saving and Loading Configurations

Brings up a Standard File Requester to specify

a file into which the configuration is to be saved.

The resulting Configuration File contains full
information about all the elements in the diagram
—-— position, connections and current parameters.
(See Saving and Loading Configurations

Allows current control settings of selected
elements to be saved. When this item is selected,
a ‘Done’ window will appear; click on the elements
you wish to record, then on the ‘Done’ button to
write the file (a file requester will appear).

A second click on an element will remove it from
the set; clicking ‘Cancel’ (either in the window
or the main button) will abort the operation. The
file can be read in ‘over’ an existing diagram
(with matching elements) to change their settings.

11/18

(See Saving and Loading Configurations

About Web Version and Copyright information (same as initial
panel) .

QUIT Web Shuts down any running configuration and exits the
program.

1.10 Other Menus

Other Menus

The ‘Set Dir’n’ Menu

UP Determines the direction in which the output side
DOWN of placed elements will face. The default is ‘RIGHT’.
LEFT (You shouldn’t need to bother with this. Inserted
RIGHT elements for example automatically choose a suitable
direction. You can’t rotate an already placed item.)

The ‘Modules’ Menu

Close Current (At present the only entry) Removes the module
represented by the currently selected button in
the module window. Although the button will
immediately disapper from the window, the module
program itself will not terminate until all the
active instances have also been deleted.

(This information is only here for completeness.
You are very unlikely to need this menu.)

1.11 Temporary Windows

Temporary Windows

If you move a temporary window (such as the message panel or the ‘Select’
information window) to another location while it is open, the next time

it pops up it will again be at the new location. (This also mostly applies
to windows managed by the modules themselves, such as parameter panels.)

1.12 Saving and Loading Configurations

Saving and Loading Configurations

A Configuration File is a text file that describes the sequence of steps
needed to recreate a diagram, together with any parameter settings for

in 12/18

individual module instances.

A configuration that is being read expects all the modules that it needs
to be running. If the read operation encounters a request to place

an element whose module is not yet running, it displays the message
"Waiting for Module xxxx", and waits for this to register itself. If the
module is not already on its way in, you have the choice of either giving
an appropriate CLI command or icon-click to start that module, or aborting
the whole load by clicking ‘CANCEL’. The Brancher process is treated here
just like any other module. (You should never have to worry about this

if you start from one of the supplied icons, as these always initiate all
the available modules.)

A Load operation will also abort if there is any conflict between the
file being loaded and what is already on the screen. Such conflicts
include overlapping an already existing element or having the same name
as an existing one. You will want to clear the screen (‘'New’ in the
Project Menu) before reading a fresh configuration. (In the general
case, it is possible for more than one configuration to be in the system
at a time; however a MIDI diagram will usually have both ‘MIDI In’ and
‘MIDI Out’, and there can only be one of each of these, so individual
configurations will xalwaysx conflict.)

There is a particular type of Configuration file (produced by ‘Save
Params...’, see below) that only contains parameter settings for
elements already in the diagram. This of course has the reverse
restriction to the above: an error will be flagged if elements of the
specified names are xnot* on screen already.

The ‘Load’ and ‘Save As...’ menu operations use a standard ASL File
Requester for selection. You will be queried if you try to save a
file of the same name as an existing one: a panel will pop up to
give you the choice of overwriting, choosing a new name, or aborting.

Each invocation of the requester remembers the context from the previous
time. The Web command line option ‘DIR’ may be used to specify the initial
default directory for the requester. For this version, the initial default
is ‘CONFIGURATIONS’. (This is set by the startup script; if you prefer a
different path, you can easily change it there.). CLI Command Line

A subspecies of configuration file, generated by the ‘Save Params...’
menu item, contains only parameter settings for specific named elements.
The resulting file is a Configuration File without any position or
connection information —-— just the parameters of the selected elements.
This is intended to be read when a diagram containing those elements

is already in place, to change the settings of some or all of them.

1.13 CLI Command Line

CLI command line for the Web

The Web can be invoked from the CLI with command-line parameters.

The switch parameter ‘LACE’ (or ‘INTERLACE’ or ‘-i’) sets Interlace mode

in 13/18

for the Web screen.

The parameter ‘DIR dirname’ sets the initial directory for configuration
files.

Any configuration files named in the line (optional keyword ‘FILE’) will be
read immediately on start up. (More than one name can appear, but there
will probably be conflicts between elements in the files unless all but

the first are just parameter settings.)

Two other keywords are recognized, but they are for more specialized use.
‘TRAV’ controls the number of Travellers that will be started for each
Source element; don’t use it unless you are in an experimental frame

of mind. ‘TPRI’ set the task priority at which Traveller processes

will be started. The startup script for the Music Web uses this to
ensure that events get processed rapidly, but giving them the high
priority currently used lets you create a configuration that can lock
out user control of the machine. See Travelling the Web for

more details.

There are no tooltypes recognized by Web as yet. In most cases anyway you
will probably want to start the whole environment —-- with its modules —- as

a unit, so a script is recommended (‘Run_WEB’ is supplied). Use Xicon or
iconX to run that script from the Workbench. Startup Script and Icons

1.14 Startup Script and Icons

The Startup Script and Icons

Because so many components must be running for the Web to function,
the only reasonable way to start it up is with a command script. You
will probably usually invoke this from an icon (via the Xicon tool
——or even IconX if you prefer), but it may equally well be run with

a Shell command. It is a standard AmigaDOS script.

The standard script ‘Run_WEB’ is provided for normal use, but you
can modify it or create an alternative if your needs are different.
It will have to be extended for instance if new modules are added.
There is nothing particularly tricky about it, but there are perhaps
a few points that should be mentioned.

Three command-line parameters have been allowed for; these are passed on
to the Web itself. This number is arbitrary but should be enough for most
use. Typical parameters you might want are ‘LACE’ (provided here in the
icon invocations) and an initial configuration file.

The first action of the script is to make the all-important ‘Traveller’
resident, so that instances of it may be quickly activated as required.
Then the Web itself is run, with an initial directory specified, and

a Traveller priority setting of 30. ©Note that this RUN command has

a continuation line; this of course will be executed when the Web
terminates, and is a short script (‘End_Services’) that cleans things
up by removing Traveller from residence and sending ‘QUIT’ messages to
the utilities that are not shut down automatically with the Web.

in 14/18
After this, the required modules are simply started in sequence. The
only special action is taken for ‘MIDILink’ -- the MIDI interface itself

—— which is run at a high priority of 31.

The supplied icons use Xicon to invoke the Run_WEB script, because the
options available from that program are useful (for example the same
script can be used by multiple icons with suitable command parameters),
but IconX will also work if you prefer. To ensure that it is available,
Xicon is included in the ‘C’ subdirectory of the package. You can adjust
this if you already have it elsewhere.

You may want to use the Workbench menu item ‘Icons>Information’ to
examine or change the controlling ToolTypes of thes icons. You may
need to look up Xicon documentation (not included, but widely available)
but briefly:

‘MODE=nowindow|noscript’ means 1) don’t open a window for console
messages; and 2) don’t look for an attached file as the script to run.
(You should always include the ‘noscript’ part because of the next
ToolType, but the ‘nowindow’ is optional.)

‘EXECUTE=run_WEB LACE’ (or some variant) means perform the Shell
command ‘execute run_WEB LACE’, thus invoking that script with that
parameter.

The ‘MIDI DEMO’ icon simply adds the ‘KeyofC’ filename to the command line
to give you that as an initial screen. It also xdoes* provide a window
so that you can see things happening to some extent.

(The ‘Install Libs’ icon has a much more involved ToolTypes sequence
that will not be dealt with here.)

1.15 Concepts

Concepts

There are many situations in which a user would like to be able to
build up combinations of simple basic functions to perform more complex
operations on data. It would be very convenient to be able to put the
basic modules together and change them around "on the fly", even while
data is being processed.

The Web is a graphic environment that gives a user the ability to

do just this. This version is designed to work exclusively on MIDI
data, but with different sets of basic modules there are many other
areas to which it might be applied. With other modules incorporated,
the Web is also presently in use for Scientific Data Acquisition and
Processing.

Rather than being a single program, the Web should be thought of as

a configurable, easily extensible suite of programs for the integrated
management of operations on data. The one invariant is the Web Master
control program, giving the user a visual "flow diagram" representation of

in 15/18

the configuration that he or she can manipulate with ease —-- even while
data is flowing.

The underlying concept is of a series of data processing elements,
beginning with a data ‘source’ -- here for example, ‘MIDI In’ -- and
subsequent ‘filters’ that act on the data. The elements are connected
by paths along which the data flows; each element takes some specific
action with respect to the data, then passes it along the path (perhaps
modified, perhaps not).

A path may be more elaborate than just beginning at a source and passing
through some filters in straight sequence. It may contain branches, where
the data flow is duplicated into separate streams. More than one stream
may converge on an element: filters can accept several input connections,
although the data output from a simple filter all flows on through a single
path. (*MIDI Out’ is Jjust another filter, with the restriction that there
can only be one in a configuration; multiple paths may converge on it,
however.)

In addition to the simple Sources and Filters exemplified by most of the
modules here, it is possible for a single element to have multiple input
and output connections, each with a different function. ‘MIDIDelay’ 1is

a module of this kind.

Naturally the system takes full advantage of the Amiga’s multitasking:
several flow paths can be working on their own data simultaneously.

On the other hand, the design is such as to avoid unnecessary

task-switching; typically a single process handles most of the

data manipulation algorithms that are chained into one path (see
Travelling the Web). [It is probably worth pointing out that only the

Amiga has this capability to handle real time data with multiple tasks

so efficiently. This system is unlikely to be ported to any of its
competitors...]

The data to be processed is purely the concern of the Modules ‘plugged

in’ to the Web. The Master program itself has no interest in, or control
over, the data format: it solely determines the paths over which the data
will flow. The only inherent assumption is that the data can be maintained
as ‘packets’ in some way, so that each ‘station’ on a path can work on a
packet at a time. There is complete freedom as to what form a packet
should take, and what may happen to it on its travels. Each piece of data
that is flowing has an identifier specifying its nature that travels with
it; quite different types of data can flow along the same path and be
treated properly —-- or ignored, as appropriate —-- by the filters that they
encounter.

Although the modules included here are directed toward a particular
application, the system is designed to be adaptable to a wide range

of needs. ‘Source’ or ‘Sampler’ modules can be written to acquire data
from any available source that can connect to the Amiga; output of data to
any suitable destination could also easily be arranged. The packet

structure is also totally flexible, and can be designed to suit the
purpose.

(You may by chance think you notice a slight kinship with the design of
a certain other unique music environment for the Amiga. In fact, though,
the more generalized block-diagram approach of the Web gives quite a

16/18

different set of capabilities from those of B&P, and was truthfully not
inspired by the other. [Though I'm not averse to adopting a few ideas...!]
The Web principle was originally developed for general data management, in
particular scientific data processing, and this application is a natural
extension. On the other hand, because it is more general, it probably
will never approach some of B&P’s areas of excellence.)

1.16 Travelling the Web

Travelling the Web

In the ‘Concepts’ section, data was referred to as being ‘passed’ from
element to element. In actual fact the data doesn’t move. There is a
separate process —-- known as the ‘Traveller’ -- associated with each path
that manages the packet, calling functions from the modules to operate

on it in the sequence specified by the path itself. Any necessary changes
are made to the data in place, without copying or moving it. For most
Filters the Traveller calls the function directly, without any task switch.
Where this isn’t possible, the Traveller sends a message to the module to
request the function.

There is (in the normal mode) one Traveller created for each Source
or Branch in the configuration, with that process serving all the other
elements chained into the path from that source.

The reason for this approach is of course speed. It is far faster than
any mechanism that would involve copying the data from element to element.
Where necessary, for example at branch points, data does still have to

be copied, but the need for this is minimized.

There are some consequences of the ‘Traveller’ concept that you should be
aware of, to avoid misconceptions. In the usual case there is just one
Traveller process for each complete, linear path. For this to ‘circulate’
properly, the path must have a Source, where the data is placed in the
packet, and a Termination —-- an element with no output connected serves
this purpose. The Traveller takes each new packet from the Source along
the complete path, visiting each element in turn, finally returning to

the Source when it finishes at the termination point. You can’t have any
circularity in the path, because then the Traveller will simply keep going
forever, never returning to its Source for new data. Actually, things
aren’t quite as bad as this, because the Traveller has a ‘cut-out’ that
will break a loop if it continues too long, but you can still get odd
effects when buffers in some of the modules get filled to overflowing.

If you do get such a loop circulating, you can Jjust cut one of its links
to break it. Things may take a few seconds to come back to normal if
the output buffer has overflowed or something, but you should be able

to recover.

The ‘circulating Traveller’ problem does xnotx apply to loops where
data is buffered in some element and transferred to another Traveller
to continue. The ‘Delay’ element does exactly this -- storing the

MIDI events internally before tossing them out again at a later time --
so if you loop from the ‘Delayed’ output of the element back to an

17/18

earlier point in the path, data will happily cycle around. Forever.
You do have the ‘Cutout’ button to use when you get tired of this,
but it still is probably not a particularly practical pastime. May
be fun to play with for a while, though. (The Delay element actually
works a little better if it runs at high priority too, but it is then
so efficient that it is easy to totally lock up a loop with it; if
you’re willing to risk this, change the startup script suitably.)

1.17 Package Components

Package Components

Whatever modules are in the set (Sources, Filters and so on) certain
program files must be available for the Web system to function. One

is the main ‘Web’ program itself, which is normally started at the
beginning of a session and remains running until the end. Then there is
the ‘Traveller’ program, which performs all the data-transfers along the
links of the Web, and must be available —-- either as a resident module, or
in the path for the CLI from which Web was invoked -- while Web is running.
Things will start up faster -- and memory consumption will be xmuchx less —-—
if it is made resident; one Traveller process is started (automatically)
for each Source element in the Web. Thirdly a program is required to
manage the forking of data at branch points; this should be started when
other modules are, before any configuration is built or loaded; a custom
version is used here (‘MIDIBranch’) to handle the demanding speed
requirements of MIDI events. Underlying the whole thing of course is the
‘ppIPC’ protocol (ppipc.library), details of which can be found elsewhere
(Fish 290 or on amiNet) .

For details of the modules refer to The MIDI Modules

The Web program should be started first, followed by the brancher and
all the modules; the order of these is unimportant, except that it will
be reflected in the ordering of the buttons on the Master Screen. The
Traveller need not be started, provided it is present: the Web invokes
these processes as needed.

When the Web Master is eventually shut down, all the Module and Traveller
processes also terminate. If the Traveller module has been made resident
(and you don’t use the standard scripts, which remove it at the end) you
may clear it from memory with the usual ‘RESIDENT traveller REMOVE’.

The standard (shell) script ‘run_Web’ (used by all the icons) performs
all these required startups properly, and, when the Web is terminated,
calls a sub-script ‘End_Services’ to remove the Traveller from residence
and otherwise tidy up. This is the most convenient way of starting the
system, but the components can be started directly and individually if
preferred, provided that the sequence of startup is observed. scripts

A few example configuration files are included in the package (directory
‘CONFIGURATIONS’) but you will no doubt quickly want to create others

suited to your needs.

Some convenience icons (with Xicon as their Tool) are also present.

18/18

‘Install Libs’ should be used once initially to place ‘ppipc.library’
in your LIBS: directory (unless you have done this yourself).

Don’t be confused when you look in the main directory: the executable
icons (.info files) don’t necessarily have an associated program or
data file of the same name; Xicon allows commands and script files

to be invoked directly from ToolTypes within the icon.

‘MIDI DEMO’ runs the system (via startup script) and loads a simple
configuration, so you can try things out; you can try others in the
set via the ‘New’ and ‘Load Config’ menu items. ‘Run_WEB’ just invokes
the standard startup script without any initial configuration: load
the one you want, or build your own.

By the way, unlike the Web in the Scientific Data Demo distributed

a while back, this is not a ‘limited’ version (you can save configurations
for example). However, it #*isx restricted to use only with the MIDI
modules: it will not work with the others.

	in
	The Web for Music
	What and Why
	Distribution
	Getting Started
	Prerequisites
	Drawing Diagrams
	Overview of Master Screen
	Control Buttons and Actions
	Project Menu
	Other Menus
	Temporary Windows
	Saving and Loading Configurations
	CLI Command Line
	Startup Script and Icons
	Concepts
	Travelling the Web
	Package Components

