
in

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY October 9, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 The MIDI Modules . 1

1.2 MIDI In . 2

1.3 MIDI Out . 2

1.4 Loudness (MIDI volume) . 2

1.5 Set MIDI Channel . 3

1.6 Message Filter (blocks specified event categories) . 3

1.7 Key Filter (block specified notes of scale) . 3

1.8 Key Range limiting . 4

1.9 Transpose notes . 4

1.10 Block System Messages . 4

1.11 Join Streams . 4

1.12 Delay Events . 4

1.13 Amiga Audio `Instrument’ (plays 8SVX IFF files) . 5

1.14 Monitor MIDI Events . 6

1.15 Ancillary Modules . 7

1.16 8SVX Instrument Files . 7

in 1 / 9

Chapter 1

in

1.1 The MIDI Modules

The following modules are available in the Music Web. The name in
brackets is the actual filename of the module (in the MODULES
subdirectory). All the modules except ‘MIDI In’ and ‘Delay’ are
standard ‘Filters’ with a straight-through data path; they can accept
up to three input path connections, but the packets that arrive on them
will all emerge from the common output connector. ‘MIDI In’ is a ‘Source’,
with a single output connector only. ‘Delay’ is a multiconnector element
-- see its description.

* Read events (‘messages’) from MIDI In and supply them to a Web path
MIDI In

* Send events arriving on a Web path to MIDI Out
MIDI Out

* Change Volume of MIDI ‘Note On’ events
Loudness

* Set all (channel-specific) events on the path to selected channel
Set Channel

* Filter out (block) selected types of MIDI events
Msg Filter

* Filter out selected notes of the scale
Key Filter

* Pass only the selected Keyboard note range
Key Range

* Transpose all notes up or down a specified number of semitones
Transpose

* Block all ‘System’ type MIDI events (hex code Fx)
Block Sys Msg

* Join up to three Web paths into one
Join

* Generate a delayed version of an incoming event stream
Delay

* Play the amiga’s audio as a MIDI instrument (using 8SVX voice)
Instrument

* Monitor (display in a screen panel) events on a path
Monitor MIDI

Element ‘Control Panels’ are opened by clicking on the element while
in ‘Param’ mode, or choosing ‘Param’ from the ‘Select’ mode panel

in 2 / 9

(see Control Buttons in the Reference.GUIDE). Each panel has a default
position in which it will appear (and will overlay other instances of the
same panel if not moved). If you move it to a different part of the screen
it will remain there, even if closed and reopened.

Remember that each module is a separate program that must be run (normally
by the startup script) for the Web to be able to access it. For more
information on the relation of Modules to the Web as a whole, please
refer to the main Reference.GUIDE .

* Some modules not shown in the buttons (MIDIBranch, FileReq, Load8SVX)
should also be running: Ancillary modules

1.2 MIDI In

MIDI In [MIDILink]

Converts MIDI messages (‘Events’) arriving at the
Serial Port into Web packets for processing by other
elements. It is obviously the first element in a
configuration. Also, only one instance may be placed
at a time (unlike most other elements of which there
may be many instances). Both this and ‘MIDI Out’ are
actually in one module. It has no control panel.
This revision does not yet handle ‘System Exclusive’
MIDI messages (Sorry -- but my present setup doesn’t
generate them...) Any SysEx sequences that arrive
will be ignored (untested).

1.3 MIDI Out

MIDI Out [MIDILink]

Converts (relevant) Web packets arriving on an input
path to MIDI messages which it sends out the Serial
Port. As with ‘MIDI In’, only one instance may exist
at a time, but more than one path (up to three) may
converge on it -- and of course still other paths
may have merged earlier in the diagram. Like other
‘Filters’ it has an output connector, so potentially
it need not be the last element in the chain either;
at the moment, about the only element that you could
meaningfully connect beyond it is the ‘Monitor’.
‘MIDI Out’ is with ‘MIDI In’ in a single module, and
has no control panel.

1.4 Loudness (MIDI volume)

in 3 / 9

Loudness [Loudness]

Reduces the volume of Note events passing through it
according to the slider setting in its control panel.
‘128’ means no effect, ‘1’ means that all notes will
be reduced to minimum volume. No volume is ever brought
down to zero unless it is already there, because you
usually don’t want played notes ever to *completely*
disappear.

1.5 Set MIDI Channel

Set Channel [SetChan]

Sets the MIDI channel of all (relevant) events passing
through it to that set in its control-panel slider.
It does this regardless of the channel they might have on
arrival. If you want it to apply only to certain channels
or events, you should filter that path to contain only
those events beforehand. (However, the current set does
not contain a Channel Filter! With a single MIDI event
source (i.e. keyboard) it isn’t really needed, but it
might make sense in more complex setups.)

1.6 Message Filter (blocks specified event categories)

Msg Filter [MsgFilter]

Blocks events of specified categories from proceeding
further along that path. There is a button for each
class of MIDI message in its control panel. When a
button is ‘checked’ that class of message is blocked.
Be aware that "Note Off" is a special case, as there
are two conventions for this (a ‘Note Off’ message
class or a ‘Note On’ with a volume of 0). This filter
treats both these as "Note Off".

1.7 Key Filter (block specified notes of scale)

Key Filter [KeyFilter]

Blocks Note events corresponding to particular keys
within the octave from proceeding further along the
path. There is a button for each of the twelve notes
in the octave; ‘checked’ means blocked. Each button
applies to all octaves equivalently; you can achieve
other effects by combining with the ‘Key Range’ filter,
say, in multiple parallel paths.
Events other than notes are always passed unaffected.

in 4 / 9

1.8 Key Range limiting

Key Range [KeyRange]

Sets upper and lower limits to Note events that will be
passed. The values set in the two sliders on the
control panel refer to MIDI note numbers (60 being
middle C). Use complementary settings in parallel
paths to create a simple keyboard split; multiple
and overlapping ‘splits’ may also be useful.
Events other than notes are always passed unaffected.

1.9 Transpose notes

Transpose [Transpose]

Shifts Note events up or down by the number of semitones
specified by its slider. The range is plus or minus
two octaves (24 notes). Be aware that you may go off
the end of your instrument’s range with large shifts;
the result might be ugly, pleasant, or just silence...
(If the shift would go outside the MIDI range of 0..127,
the original will be left unchanged.)

1.10 Block System Messages

Block Sys Msg [NoSysMes]

This is a simple way of blocking out unneeded ‘System’
MIDI messages from a path when you aren’t concerned with
them. In many setups these can be quite frequent (‘Clock’
or ‘Active Sense’ events for instance) and could create
an unnecessary load on a multipath configuration. There’s
no control panel -- just place it in a path if you want its
effect.

1.11 Join Streams

Join [Joiner]

A ‘null’ filter that simply lets you merge paths when
it would be inconvenient to do so on any particular type
of filter. It has very little load on activity.

1.12 Delay Events

in 5 / 9

Delay [MIDIDelay]

A multiconnector element that generates copies of
arriving events after a specified delay. It has a
single input connection, and two outputs. The default
output is a Source of delayed events; the other is just
the continuation output for input events so that they may
be fed to other elements as well.
Short delays can be used to ‘fatten’ sounds (provided that
your instrument supports multiple voicing of the same note,
or you can feed it to a different channel); longer ones can
give you ‘multiple beats’.
Two particular points: only *one* immediate path may be
connected to the input (any merging must be done on filters
earlier in the path), and delayed events are *copies* of
the originals, so both are available for further use (e.g.
merging).
Delay is specified by the control panel slider in 600ths of
a second, up to one second. ‘Cutout’ disables the delayed
events if selected (the originals continue as usual).
Normally, ‘System’ messages are *not* copied to the delayed
stream: if for some reason you should need these, select
‘Sys Mes Too’.
[If you have a lot of delay elements in a configuration,
you might want to raise the module’s process priority when
started (to about 30), though in most cases -- unless
perhaps on a slower machine -- this won’t be necessary.
If you do this, beware of locking yourself out with a
zero-delay loop!]

1.13 Amiga Audio `Instrument’ (plays 8SVX IFF files)

Instrument [MIDI_Instr]

This element lets you play the Amiga’s own audio channels
as a MIDI-controlled instrument (or instruments -- you
can have several elements active at once, subject to the
hardware-imposed overall maximum of four simultaneous
separate sounds). You need an 8SVX IFF file as the
source of the instrument’s voice; this can be loaded by
clicking on the ‘New...’ button, which invokes a file
requester through which you can specify the file you want.
(Note that two ‘server’ modules -- FileReq and Load8SVX
-- must be running, otherwise the request will not work.)
The module responds to Note On and Note Off messages, and
also to ‘Sustain pedal’ messages (MIDI Controller 64) if
the ‘Sustain’ gadget is set to ‘Pedal’. If the gadget is
set ‘Off’, pedal messages are ignored, and notes are
silenced by Note Off events; if ‘On’, Note Off messages
are ignored as well -- effecting a permanent Sustain
[this is just the thing for percussion, which sounds ugly
if cut off abruptly, but you probably don’t want to use
it with instruments that repeat indefinitely!]. If, for
this or other reasons, you get a ‘stuck note’, clicking

in 6 / 9

‘Shut Up!’ will turn off all sounding notes (in that
instrument).

As only four voices can be sounded at once, the module
must make decisions as to which ones. The rule followed
here is simply to discard the oldest (regardless of
instrument) when a new sound needs to be added and there
is no free channel. Channels are not tied to a particular
instrument: any channel may be used for a note as it
becomes available.

If the instrument voice in use is unable to play high
octaves (a function of how the file was recorded), the
module will shift those notes down one or more octaves
into the playable range. If you find this objectionable,
insert a suitable Key Range limiter into the preceding
path to silence those notes altogether.

(The module makes no attempt to play samples longer
than those that can be handled directly by the Audio
Device, as an instrument file will usually be well
within this restriction. The limit is 128K each for
the oneshot and repeat parts.) At present, it ignores
any ATAK and RLSE chunks the instrument may provide.
Certain purported ‘instrument’ files may not follow
proper conventions, and therefore may not get played
as they are intended to be. See 8SVX for more...

This module accepts an optional startup command line
parameter (most do not) to specify the default directory
in which instrument files are stored.

1.14 Monitor MIDI Events

Monitor MIDI [MIDIMon]

This element lets you observe the MIDI events passing
through it (provided that they don’t come faster that
it can handle). Its panel has no control gadgets --
just displays of the attributes of arriving events.
The bottom line gives a complete numeric breakdown of
the event (number of bytes and their contents in decimal
and hex). The two left hand displays above it show a
more human-oriented description of event types. The lower
of these is devoted solely to ‘Active Sense’ messages,
showing when these are arriving; all the other displays
ignore these, so that they don’t get overwritten before
you can read them. (My setup does not generate ‘Clocks’
-- I guess these will have the same problem...)
The upper display shows the class of messages other than
these. The two displays to the right of these are devoted
only to note events, showing note number and volume
respectively.

in 7 / 9

1.15 Ancillary Modules

Ancillary Modules
=================

There are a few other modules besides the Web itself and the visible MIDI
modules that must be running for a complete system. (And don’t forget
that the Traveller module must be resident for any messages at all to
flow!) Package Components Travelling the Web

MIDIBranch is the module that manages branch points in the diagram;
you will not be able to place them if it is not running.
(It is not quite the same as the ‘standard’ Web Brancher,
as it is adapted to speed the processing of MIDI events.)
This module should be included in the Web startup script.

FileReq is a server that provides a standard File Requester (only
for the Instrument module currently). Having this as a
separate module prevents a traffic jam when you open
a requester.
This module should be included in the Web startup script.

Load8SVX is the server that actually reads an 8SVX file into
memory on request from Instrument (or other modules
later). [The current version does *not* know about
packed sound files; this is an omission, but I haven’t
yet actually encountered any packed ones...]
This module should be included in the Web startup script.

1.16 8SVX Instrument Files

8SVX ‘Instruments’
====================

The 8SVX ‘Instrument’ format seems to be a very confusing one
-- not least to those who have previously implemented players
for such files! Both the Sequencer and Sampler software I own
-- both of which shall remain anonymous here -- make a complete
mess of it. So far I’ve only found DMCS 2.0 (I have the demo)
that seems to get it right. As a result you may well have some
supposed ‘instrument’ samples that won’t play properly. This
outline may help you to understand any problems.

The main components of an 8SVX file are its ‘header’ and ‘body’.
(There are also ‘attack’ and ‘release’ segments, which may be
included, but they don’t seem to be respected much at the moment
-- even by DMCS... the demo samples have them, but produce no
detectable effect. I won’t discuss them further.) The body
contains blocks of waveform data for one or more octave ranges
of the instrument; the header describes this data so that it can
be played at the correct pitch and so on.

in 8 / 9

The waveform data is a representation of the sound produced by
the original instrument, sampled at a specific rate to produce a
sequence of numeric values; if these are played back at the same
rate, you get (a reasonable facsimile of) the original note. If
you play the sample back at a different appropriate rate you’ll
get another note; hence the computer can generate a complete
musical scale from just one block of data.

To decide at exactly what rate you need to play it back to get
the desired note, all you really need to know is the number of
samples for each cycle of the fundamental frequency. You know the
cycles per second for the note you want to produce (e.g. 261.6 Hz
for middle-C) so the playback rate will just be this times the
number of samples per cycle. A proper Instrument file should
therefore have this information in its header. [And the above
nameless Sampler software give the user no means of supplying
this -- my reaction to this discovery is probably best left
to the imagination...]

So what’s this about ‘octave ranges’? Why can’t we just use one
original sample and produce all the notes we want? Well, there
are two problems, only one of which is really solved by the 8SVX
scheme. The one that *isn’t* is that a real instrument probably
produces a different waveform for each note -- not just the same
mix of frequencies shifted up or down a bit. The ultimate sample
format would probably have one waveform for each individual note
of the instrument’s range (as I believe a lot of synths in fact do)
but this would be pretty heavy on memory. A reasonable compromise
is to have one sample block for each octave, and to restrict the
range for each to just its own octave. This *can* be done with
8SVX but there are other restrictions, which I won’t go into, that
may make it difficult to do. [Especially with the software I have
seen...] Nevertheless, some available instrument files seem to
have a good sound over their range, and probably do it properly.

The other part of the problem is that if we record a note at a
certain sample rate, to play it an octave higher we have to use
a playback rate twice as fast. If the original sample rate is
adequate to give good quality we won’t be able to increase it
all that far before we run into the harware limits of the machine.
To go any higher we need another set of data with a more suitable
sampling rate. So, typically we will provide a series of samples,
each of which can take over from the previous one as the playback
rate reaches its limit. In 8SVX these samples must be an octave
apart, and each must be exactly half the size of the one preceding.
Often each is produced simply by chopping out every alternate value
from the preceding block.

One thing 8SVX doesn’t explicitly specify is which octave range
should be played at which physical octave -- say relative to
middle-C. You *could*, if you wanted, play a waveform with two
sample per cycle at middle-C, using a slow enough rate; you wouldn’t
get much tone-colour, though! However, it turns out -- given the
system clock rate and audio limits of the Amiga -- that there is
a convenient set of ‘standard’ playback rates for the notes of the
scale; using these, middle-C and its octave (octave 5 of the MIDI

in 9 / 9

range) have 32 samples per cycle, and hence a 2 samples-per-cycle
waveform will play at MIDI octave 9.

On this basis, and assuming that the most detailed sample possible
should be used for a note, you can make a suitable choice of octave
data. This is what MIDI_Instr does. However, both the sequencer
and sampler I have make other idiosyncratic choices -- a flute
can end up sounding quite like an accordion!

One thing I do not yet do is take any account of the *original*
sample rate (available in the header). It is possible for the
basic sample to have been recorded at a higher rate than the
‘standard’ playback base rate, so that it is never quite played
at the original fidelity. It should be possible to have a scheme
that extends the set of playback rates in such a case.

The remaining point you should probably be aware of is the difference
between ‘one-shot’ and ‘sustained’ instruments. The waveform data
can have two parts (either of which may be missing): an initial
‘oneshot’ section that is sounded just once when the key is struck,
and a ‘repeat’ section that will cycle continuously as long as the
key is held down (or while ‘sustain’ is on if that feature is enabled).
Things like drum and piano sounds normally only have a oneshot part,
while an organ will certainly have a repeat part but might not bother
with a oneshot. Electric guitars need the oneshot, but usually also
have an indefinite sustain using a repeat.

For the best effect, you should choose the ‘Sustain’ mode to suit the
instrument. Drums sound far better if every beat is allowed to run to
completion, so Sustain should be ‘On’. Pianos of course should have
the ‘Pedal’ mode set, but even guitars with repeat sections sound good
with a judicious use of pedal. For proper simulation of organs and the
like, Sustain should be off, but again occasional use of the pedal may
be attractive.

+ + + + +

	in
	The MIDI Modules
	MIDI In
	MIDI Out
	Loudness (MIDI volume)
	Set MIDI Channel
	Message Filter (blocks specified event categories)
	Key Filter (block specified notes of scale)
	Key Range limiting
	Transpose notes
	Block System Messages
	Join Streams
	Delay Events
	Amiga Audio `Instrument' (plays 8SVX IFF files)
	Monitor MIDI Events
	Ancillary Modules
	8SVX Instrument Files

