
nono&PrintyesWINMACRO26/08/94



WinMacro

WinMacro is a standalone companion program included in the WinBatch package, which lets you create macro files 
and "attach" them to the control menu of any Windows application.    These macros can then be executed, either by 
selecting them from the control menu, or through the use of a "hotkey."    WinMacro also has the ability to "record" 
keystrokes, which can later be "played back" virtually anywhere in the Windows environment.

Table of Contents

Starting WinMacro
Macro Definition Files
Hotkeys
Recording Keystrokes
WinMacro Example
Unrecordable Areas
SendKey



Starting WinMacro

You can run WINMACRO.EXE just like any other Windows program, using your favorite Windows-program-
starting method (keyboard, mouse, Program Manager, File Manager, MS-DOS Executive, Command Post, File 
Commander, WinBatch, etc.).    However, if you will be using WinMacro on a regular basis, you may wish to have it 
load automatically when you start up Windows.    You can do this by adding WINMACRO.EXE to the Program 
Manager Startup group.    Drag and drop the exe or copy the current WinMacro icon into the Startup group.    
Consult your Microsoft Windows manual for more information.

WinMacro starts up as an icon, and remains active until you either close it or end your Windows session (whichever 
comes first).



Macro Definition Files

WinMacro definition (WDF) files are plain ASCII files which you create and edit.    They must have a WDF 
extension, and they must be located in the same directory as WINMACRO.EXE.    A WDF file contains any number 
of definition lines, each of which represents an individual command.    Each line has the following format:

Title [\ optional hotkey] : program to be executed

Title is the name which will appear on the application's control menu to identify the command.    The hotkey is 
optional; if it is included, it must be preceded by a backslash (\).    This is followed by a colon (:), and then the 
program which should be executed when the command is selected, with any required parameters.    This can be any 
Windows or DOS EXE, COM, PIF, or BAT file, and you must include the appropriate file extension.    If the 
program isn't located either in the current directory or on your DOS path, you must include a path specification for 
it.    To run a WinBatch file, run WINBATCH.EXE, with the name of the WBT file as a parameter.

Let's create a WinMacro definition file, named GLOBAL.WDF:

Run Notepad : notepad.exe
Play Solitaire \ ^F9 : winbatch.exe solitare.wbt

(This second line assumes that you have created SOLITARE.WBT as part of the WIL tutorial.    If not, just substitute 
any WBT file name).

GLOBAL.WDF is a special file name.    When WinMacro starts up, it looks for this file.    If present, WinMacro 
loads it, and attaches its contents to the control menu of every window currently running, as well as any windows 
that may subsequently be opened (the control menu, also known as the system menu, is the menu that you access 
by pressing Alt-Space, or by clicking the little box which appears at the left side of the title bar of almost all 
application windows).

Go ahead and start up WinMacro, then access the control menu of any open window.    You should see that the two 
commands in your GLOBAL.WDF file have been attached to the control menu, and both are now available for your 
use.    You can run these user-defined commands by selecting them from the menu.    In addition, because you have 
defined a hotkey for the "Play Solitaire" command, you can run it from any window by pressing Ctrl-F9.



Hotkeys

You can assign a hotkey to any WinMacro definition line.    A    hotkey consists of the Ctrl key plus any letter (A - Z) 
or function (F1 - F16) key.    In addition, you can optionally use the Alt and Shift keys:

Key         Char
Ctrl     ^
Alt     !
Shift     +

Here are some examples of valid key combinations:

Hotkey Equivalent keystrokes
^F5 Ctrl-F5
^!F5 Ctrl-Alt-F5
^+F5 Ctrl-Shift-F5
^!+F5 Ctrl-Alt-Shift-F5
^D Ctrl-D
^!D Ctrl-Alt-D
^+D Ctrl-Shift-D
^!+D Ctrl-Alt-Shift-D

In addition to GLOBAL.WDF, you can create application-specific WinMacro definition files.    They have the form 
progname.WDF, where "progname" is the name of the application's COM or EXE file.    So, if you wanted to have 
a WDF file which would apply only to Notepad, you would name it NOTEPAD.WDF.    Its contents would be 
attached only to Notepad's control menu, and its hotkeys would be active only when Notepad was the active 
window.    WinMacro loads application-specific WDF files after GLOBAL.WDF, so if you have, for example, a 
NOTEPAD.WDF file, it's contents will be attached to Notepad's control menu in addition to (not instead of) 
GLOBAL.WDF.    If you define the same hotkey in GLOBAL.WDF and NOTEPAD.WDF, the one in 
NOTEPAD.WDF will apply.

If you edit a WDF file while WinMacro is running, and want to see the changes reflected in the current menus, select 
About/Reload from the WinMacro icon's menu.    All windows will be updated.



Recording Keystrokes

Another feature of WinMacro is the ability to record keystrokes to a file, which can be played back at a later time.    
To do this, make sure that WinMacro is running, and then type Ctrl-Shift-Home from any window, or select Begin 
Macro Record from the WinMacro icon's menu.    WinMacro will present you with a menu of existing WBM files. 
If you want to overwrite an existing file, select its name from the menu; otherwise, enter a name for the file you 
wish to create in the edit box (a WBM extension will automatically be added), and press the Enter key or click on 
the OK button.    At this point, the icon will begin flashing, indicating that you are in record mode.

Once you are in record mode, every keystroke you type will be recorded to your WBM file.    Mouse movement and 
mouse clicks are not recorded.    To end record mode, type Ctrl-Shift-End from any window, or click on the 
flashing WinMacro icon and select End Macro Record from the menu.    The icon will stop flashing.

Once you have created a WBM keystroke macro file, you can assign it to a hotkey in a WDF file, using the steps 
outlined above.    You use WinBatch to run WBM files, the same way you do with WBT files.



WinMacro Example

Let's create a macro for Solitaire which will cycle to the next deck back design (sound familiar?).    First, WinMacro 
should be running.    Next, start up Solitaire, and make sure that it is the current window.    Now, activate keystroke 
record mode, as outlined above, and name the file SOLITARE.WBM.    Once the WinMacro icon begins flashing, 
we're ready to record.    Enter the following series of keystrokes:

Alt-G
C
Cursor right
Space
Enter

And end record mode.    Now, create a WinMacro definition file named SOL.WDF, containing the following entry:

Change deck design \ ^C : winbatch.exe solitare.wbm

Finally, select About/Reload from the WinMacro icon's menu.    Your new command is now available from the 
Solitaire control menu, or simply by typing Ctrl-C when the Solitaire window is active.
WBM files

If you look at a WBM file, you will see that it is nothing more than a series of one or more SendKey statements.    
For example, the SOLITARE.WBM file that we just created looks something like this:

; Recorded Macro D:\WINDOWS\BATCH\SOLITARE.WBM
SendKey(`!gc{RIGHT} {ENTER}`)
; End Recorded Macro

If you glance back at the SOLITARE.WBT file which appears at the end of the Tutorial section of the WIL 
Reference Manual, you will find a line which looks amazingly like the middle one above (~ has the same meaning 
as {ENTER}).    This demonstrates that WBM files are simply WBT files in disguise.

So, why do we use different extensions for the two types of files?    Consider, if you will, that a WBT file is a 
standalone program, which can be run from the Program Manager or File Manager.    It starts up whatever other 
programs it needs, does its work, and cleans up after itself.    A WBM file, on the other hand, is only a program 
fragment.    When called, it sends a sequence of keystrokes to the active window, but it neither knows nor cares what 
window that may happen to be.    In Solitaire, Alt-G selects the Game menu; in another program, it may trigger the 
Goodbye function.    Needless to say, WBM files should be played back only in the window where they were 
recorded, and the easiest way to ensure this is to attach them to application-specific WDF files, as we have done 
here with Solitaire.    That's why we distinguish them from regular WBT files.

However, because SendKey is a perfectly respectable WinBatch function  and because WinMacro does generate 
SendKey statements  it is quite useful to be able to record a WBM file, and later incorporate it into a full-fledged 
WinBatch file.    Suppose that we had a one-line WinBatch WBT file like this:

RunZoom("sol.exe", "")

and we wanted to follow that with a SendKey statement to change the deck design every time the file was run.    
Instead of laboring over the WinBatch manual to find the cryptic symbols necessary to accomplish such a feat, we 
could simply use the WinMacro record feature to create a WBM file, as we did above, and then paste the resulting 
SendKey statement into the WinBatch WBT file:

RunZoom("sol.exe", "")
SendKey(`!gc{RIGHT} {ENTER}`)



You can also use your favorite editor to remove any accidental keystrokes you make when you are recording a 
WBM file.



Unrecordable Areas

WinMacro is unable to record keystrokes entered in Windows' System Modal Dialog Boxes.    These include the 
dialog boxes in the MS-DOS Executive window, as well as dialog boxes generated by severe system errors.    By the 
same token, WinBatch cannot play back keystrokes in these types of dialog boxes.



SendKey 
Sends keystrokes to the currently active window.

Syntax:
SendKey(char-string)

Parameters:
(s) char-string string of regular and/or special characters.

Returns:
(i) always 0.

Note1:    SendKey will send keystrokes to the currently active window.    For many applications, the related 
functions, SendKeysChild, SendKeysTo or SendMenusTo may be better alternatives. 

This function is used to send keystrokes to the active window, just as if they had been entered from the keyboard.    
Any alphanumeric character, and most punctuation marks and other symbols which appear on the keyboard, may be 
sent simply by placing it in the "char-string".        In addition, the following special characters, enclosed in "curly" 
braces, may be placed in "char-string" to send the corresponding special characters:

Key SendKey equivalent

~ {~} ; This is how to send a ~
! {!} ; This is how to send a !
^ {^} ; This is how to send a ^
+ {+} ; This is how to send a +
Alt {ALT}
Backspace {BACKSPACE} or {BS}
Clear {CLEAR}
Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER} or ~
Escape {ESCAPE} or {ESC}
F1 through F16 {F1} through {F16}
Help {HELP}
Home {HOME}
Insert {INSERT} or {INS}
Left Arrow {LEFT}
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Space {SPACE} or {SP}
Tab {TAB}
Up Arrow {UP}

To enter an Alt, Control, or Shift key combination, precede the desired character with one or more of the following 
symbols:

Alt !
Control ^
Shift +



To enter Alt-S:
SendKey("!s")

Note2: You should, in general, use lower-case letters to represent Alt-key combinations and other menu shortcut 
keys as that is the normal keys used when typing to application.    For example    "!fo" is interpreted as Alt-f-o, as one 
might expect.    However    "!FO" is interpreted as Alt-Shift-f-o, which is not a normal keystroke sequence.
To enter Ctrl-Shift-F7:

SendKey("^+{F7}")

You may also repeat a key by enclosing it in braces, followed by a space and the total number of repetitions desired.

To type 20 asterisks:

SendKey("{* 20}")

To move the cursor down 8 lines:

SendKey("{DOWN 8}")

Examples:
; start Notepad, and use *.* for filenames
Run("notepad.exe", "")
SendKey("!fo*.*~")

In those cases where you have an application which can accept text pasted in from the clipboard, it will often be 
more efficient to use the ClipGet function:

Run("notepad.exe", "")
crlf = StrCat(Num2Char(13), Num2Char(10))
; copy some text to the clipboard
ClipPut("Dear Sirs:%crlf%%crlf%")
; paste the text into Notepad (using Ctrl-v)
SendKey("^v")

A WIL program cannot send keystrokes to its own WIL Interpreter window.

Note3:    If your SendKey statement doesn't seem to be working (e.g., all you get are beeping noises), you may need 
to place a WinActivate statement before the SendKey statement to insure that you are sending the keystrokes to the 
correct window, or you may try using the SendKeysTo    or SendKeysChild function.

See Also:
SendKeysTo, SendKeysChild, SendMenusTo, KeyToggleSet, SnapShot, WinActivate (All found in main 

Wil Documentation)




