
Expressions.hyper

Expressions.hyper ii

COLLABORATORS

TITLE :

Expressions.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY December 6, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Expressions.hyper iii

Contents

1 Expressions.hyper 1

1.1 Expressions (Mon Nov 2 20:00:22 1992) . 1

1.2 Expressions : Commands used in this tutorial . 1

1.3 Expressions : Functions used in this tutorial . 2

1.4 Expressions : Introduction . 2

1.5 Expressions : Simple integers . 2

1.6 Expressions : Expressions . 3

1.7 Expressions : String pointers . 4

1.8 Expressions : Names . 6

1.9 Expressions : Functions . 9

1.10 Expressions : Library functions . 9

1.11 Expressions : The list operator . 10

1.12 Expressions : Assignment . 11

1.13 Expressions : The group operator . 12

1.14 Expressions : Strings . 13

1.15 Expressions : Expressions and debugging . 14

1.16 Expressions : Some useful functions . 14

Expressions.hyper 1 / 16

Chapter 1

Expressions.hyper

1.1 Expressions (Mon Nov 2 20:00:22 1992)

Contents:
Introduction
Simple integers
Expressions
String pointers
Names
Functions
Library functions
The list operator
Assignment
The group operator
Strings
Expressions and debugging
Some useful functions

Various:
Commands used in this tutorial
Functions used in this tutorial
Back to main contents

1.2 Expressions : Commands used in this tutorial

disp Display integer
exec Go to the ExecBase list
help Ask for help
list Show a list (tasks, libraries, message ports, ...)
loadfd Load a fd file
memory List memory
print Print a string
remvar Remove a variable
scan Ask input
task Go to the task list
void Evaluate the arguments given

Expressions.hyper 2 / 16

1.3 Expressions : Functions used in this tutorial

alloc Allocate memory
cols Ask the number of columns in logical window
eval Evaluate string
free Free memory
if Conditional evaluation
lines Ask the number of rows in logical window

1.4 Expressions : Introduction

PowerVisor has a very powerful expression evaluator. Before you continue
reading this file make sure you have mastered the basic features of
PowerVisor (read Getting Started first).

First start PowerVisor (if it is not already in memory).

PowerVisor has two basic types: strings and integers. Sometimes these two
types collide a bit. In this tutor file I will make you more comfortable
with all the features PowerVisor has in this regard.

All commands and functions in PowerVisor expect integers and/or strings
as their arguments. You can use expressions everywhere.

1.5 Expressions : Simple integers

First we have decimal integers :

< disp 5 <enter>
> 00000005 , 5

< disp 1236 <enter>
> 000004D4 , 1236

< disp -100 <enter>
> FFFFFF9C , -100

But not (can you see why ?) :

< disp 01236 <enter>
> 00001236 , 4662

This last notation is used for hexadecimal numbers :

< disp 01A <enter>
> 0000001A , 26

< disp $1a <enter>
> 0000001A , 26

You can see that PowerVisor has two ways to notate a hexadecimal number.
PowerVisor interpretes ’0<number>’ as a hexadecimal number because this is

Expressions.hyper 3 / 16

very convenient if you ’snap’ (see Snapping away) a hex number from the
PowerVisor screen. Such a number almost always contains some leading
zeroes.

Note that in the current version of PowerVisor the following command :

< disp 1A <enter>

does not give an error :

> 00000001 , 1

This is in fact a bug and it will be solved in a later version of
PowerVisor.

1.6 Expressions : Expressions

You can use more complex expressions :

< disp 5+5 <enter>
> 0000000A , 10

< disp 1+(5*9)-(3&5) <enter>
> 0000002D , 45

Note that you cannot use spaces in expressions.

You can use the following binary operators. The list is from high to
low priority :

* / % multiply, integer divide, remainder
+ - add, subtract
<< >> left shift, right shift
> < >= <= integer comparisons
!= == not equal to, equal to
& bitwise and
^ bitwise xor
| bitwise or
&& logical and
|| logical or

There are also some unary operators :
- negation
! logical not
~ bitwise not

* contents operator
& address operator (explained later)
: list operator (explained later)
@ special operator (for debugging)
linenumber operator (for debugging)

You can also use brackets.
Some examples :

< disp 5+(9-(7*(5/(3+~1)))) <enter>

Expressions.hyper 4 / 16

> FFFFFFEB , -21

Note that you MUST close all brackets.

The contents operator needs some more examples :

< disp *4 <enter>
> 07E007E4 , 132122596

(This is the pointer to execbase)

< disp *4.b <enter>
> 00000007 , 7

< disp *4.w <enter>
> 000007E0 , 2016

< disp *(2+2).l <enter>
> 07E007E4 , 132122596

The syntax of the * operator is:
’*’<expression>[’.’ (’b’ | ’w’ | ’l’)]

’b’, ’w’ and ’l’ are the size indicators (b = byte, w = word, l = long).
If you do not specify ’.’, PowerVisor assumes long mode. This operator
checks for illegal addresses :

< disp *5 <enter>
> Odd address error !

On the 68000 processor you cannot read a long at an odd address.
PowerVisor will always give this error even if you have a 68020/68030
processor.

1.7 Expressions : String pointers

A string pointer is NOT a string, it is an integer. When you use a string
pointer, PowerVisor will allocate a temporary space for this string and
give you the address.

String pointers (and strings for that matter) support the following
operators :

\ the quote operator
\<hex digit><hex digit>

is replaced by the ascii character
\(<expression>)

is replaced by the string representation
of the <expression>

\(<expression>,<formatstring>)
is replaced by <expression> formatted like
<formatstring>. <formatstring> is a C-style
(printf) formatting string. Use %ld for
integers, %lx for hexadecimal integers, %s
for strings and %c for characters

\n
newline (equivalent to \0a)

Expressions.hyper 5 / 16

\01
normal attributes for this line. The occurence
of this character in an output string causes the
current line to have the normal attributes
(colours)

\02
hilight the current line. The occurence of this
character in an output string causes the hilighting
of the current line

\03
inverse video for the current line. The occurence
of this character in an output string causes the
current line to be output in inverse video. Note
that inverse video and hilight are the same if
the PowerVisor screen is only one bitplane (nofancy
mode)

\04
hilight and inverse video together. If the
PowerVisor screen is only one bitplane these two
cancel each other, so this will be equivalent to
\01

\<anything else>
is simply equivalent to <anything else>. This
is useful for quotes (like " and ’) and for
the backslash \

· the ’strong quote’ operator
·<end char> various characters of all sorts <end char>

To type the dot use <alt>+8. Most users will
probably never need this operator. It is useful
in aliases if you want to take away ALL special
interpretations of characters. The ONLY thing
that will stop the parsing of the string is the
<end char>.
The salias alias is an example of an alias
using the strong quote.

Example :

< disp "Hello" <enter>
> 07E50E52 , 132451922

< memory 07E50E52 10 <enter>
> 07E50E52: 68656C6C 6F0007E2 1010 Hello.....

PowerVisor remembers the last 10 strings and string pointers (all in one
pool) before it frees them. This means that you can only use 10 string
pointers in one command at the same time.
If you want a permanent string pointer you can use the alloc() function.

The next example illustrates the use of the contents operator (*) and
a string pointer :

< disp *("Hello"+1).b <enter>
> 00000065 , 101

Expressions.hyper 6 / 16

(101 is the ascii value for ’e’).

Look at the following example :

< memory "Left\41\42\43Right" 16 <enter>
> 07EC98A2: 4C656674 41424352 69676874 000007EC LeftABCRight....

The ’\’ notation is useful for unprintable characters (and untypable).
After the ’\’ follow two hexadecimal digits. If the first character
following the ’\’ is not a hexadecimal digit the first ’\’ is ignored :

< memory "Left\Right" 10 <enter>
> 07E5C0BA: 4C656674 5C526967 6874 Left\Right

< memory "Left\"Right" 10 <enter>
> 07E5C0BA: 4C656674 22526967 6874 Left"Right

There is one extra feature that you have with quoting. Consider the
following example :

< memory "Left\(4+5)Right" 16 <enter>
> 07E31A72: 4C656674 39526967 68740000 00000000 Left9Right......

The expression between the two brackets can be as complex as you wish.
You can use variables, functions, ...
You can use an optional format string directly after the expression
(include some white space of course). Use standard C-formatting
conventions :

< memory "Left(4+5,%02ld)Right" 16 <enter>
> 07E31A72: 4C656674 30395269 67687400 00000000 Left09Right.....

< memory "Left(65,%lc)Right" 16 <enter>
> 07E31A72: 4C656674 41526967 68740000 00000000 LeftARight......

1.8 Expressions : Names

Names are probably the most difficult things in the PowerVisor parsing
language. They can be almost everything. I think examples are the best
way to illustrate their purpose :

< task <enter>
< list <enter>

> Task node name : Node Pri StackU StackS Stat Command Acc
> ---
> ConClip Process : 07E60410 00 242 4000 Wait sys:c/ConCl(02) -
> RexxMaster : 07E6AA48 04 162 2048 Wait (00) -
> « IPrefs » : 07E59568 00 862 3500 Wait PROC -
> ClickToFront : 07E75210 15 398 4096 Wait PROC -
> PowerSnap 1.1 by Nic: 07E9B630 05 102 2000 Wait PROC -
> PowerVisor.task : 07E7B4F0 00 82 4096 Wait TASK -
> WB_2.x : 07E0FF38 0A 130 2400 Wait PROC -
> DF0 : 07E15910 0A 130 2400 Wait PROC -

Expressions.hyper 7 / 16

> ...

< disp powervisor <enter>
> 07E7B4F0 , 132625648

In this case we used a name (’powervisor’) as an abbreviation for an
element in the current list. We could also have written :

< disp POWERvi <enter>

or

< disp ’Powervisor.’ <enter>

or

< disp power <enter>

The last command is correct but it is ambiguous in this case since there
are two names in the current list beginning with ’power’. When this is the
case the first match is used (PowerSnap 1.0 in this case).

Important to remember is that when we use names for this purpose the
following rules apply :

- you may use quotes (if you want to include spaces for example)
- the searching is case insensitive
- you can use abbreviations, i.e. you need not give the full name

Consider the following example :

< powervisor=5 <enter>

< disp powervisor <enter>
> 00000005 , 5

< disp ’powervisor’ <enter>
> 07E7CBE0 , 132631520

< disp powerviso <enter>
> 07E7CBE0 , 132631520

< disp powervisor1 <enter>
> 07E7CBE0 , 132631520

We have created a variable ’powervisor’ with value 5. The name ’powervisor’
has now lost it’s meaning as an abbreviation for an element in the current
list. Note that we can still use ’powerviso’ and ’powervisor.’ for the
element in the current list.
So we see that the following rules apply for variables :

- you can’t use quotes for variable names (if you do it is interpreted
as an element in the current list)

- variable names can’t be abbreviated
- variable names are case insensitive

When you use quotes you force interpretation of the current list. There

Expressions.hyper 8 / 16

is a shorter and better way to do this (also see The list operator) :

< disp :powervisor <enter>
> 07E7CBE0 , 132631520

Now we remove the created variable :

< remvar powervisor <enter>

There is still a third way to interprete names. But it is at this moment
not appropriate to give examples. A name can also be a symbol
for the current debug task (see Debugging). The rules for symbol names
are :

- you can use quotes
- symbol names are case sensitive
- no abbreviations are possible

In case of ambiguity observe the following order of checking :

- PowerVisor will first check if it is a variable
- If it is not a variable, PowerVisor will check if it is a library

function (see later)
- If it is not a library function it could be a symbol for the

current debug task
- If it is not a symbol PowerVisor will search the current list

If you use quotes for the name, PowerVisor will skip the variable testing
and only test if it is a library function, a symbol or a list element.
If you use the ’:’ operator (see above) PowerVisor will only search the
current list.

Warning! A name is strictly a sequence of characters. If you want to
use special operators like the quote operator you should normally use
strings (with single quotes). In most cases PowerVisor will not complain
when you use a quote operator or something else in a name, but remember
that the result is not always satisfactory. Problems can occur when
you use the name in complex expressions containing functions and groups.
If you use the quote operator in that case, the chances are high that
PowerVisor will get confused. You can get a error message like :

’Your brackets are really out of order !’
even if your brackets may seem allright to you.

The following is an illegal example :

< a=alloc(s,’ testing ’) <enter>

< d if(1,{print test\(a,%s)it\n},2) <enter>
> Your brackets are really out of order !

You should type :

< d if(1,{print ’test\(a,%s)it\n’},2) <enter>
> test testing it
> 07EECDA8 , 133090728

Expressions.hyper 9 / 16

1.9 Expressions : Functions

Functions are a special form of variables. Internally they are almost the
same. Type :

< help functions <enter>

> General functions
> -----------------
> ALLOC : allocate memory LASTMEM : give last memory
> FREE : free memory LASTFOUND : last search address
> REALLOC : reallocate memory PEEK : peek value in structure
> GETSIZE : give size of memoryblock APEEK : peek address
> ISALLOC : is memory a pv-block ? STSIZE : get structure size
> KEY : returns pressed key RFCMD : refresh command
> QUAL : qualifier for last key RFRATE : refresh rate
> GETCOL : get logical col width GETLWIN : current logical window
> GETROW : get logical row height GETERROR : get error of routine
> TOPPC : get debug win top pc TAGLIST : get current tag list
> BOTPC : get debug win bottom pc EVAL : evaluate argument string
> ISBREAK : check if breakpoint IF : conditional evaluation
> GETDEBUG : get current debug ptr CURLIST : current list
> GETX : get the current x coord COLS : get max nr of cols
> GETY : get y coord LINES : get max nr lines
> GETCHAR : get the current char BASE : get first listelem

Since functions are so much like variables the same evaluation rules apply
to them (see Names). You must use the full name
(no abbreviations). The only exception is that you must use brackets after
the function name even if there are no arguments.

Some examples :

< disp lines(main)
> 00000035 , 53

This means that I have 53 lines on my PowerVisor screen.
(See lines() for more complete information about this function).
’main’ is the argument for the function.

The following is incorrect (There is a space between ’lines’ and
’(main)’) :

< disp lines (main)
> You must use brackets with functions !

1.10 Expressions : Library functions

PowerVisor has the very powerful capability to execute library functions.
You only need to load the corresponding fd-file (in the fd2.0 or fd1.3
subdirectory) :

< loadfd exec :fd2.0/exec_lib.fd <enter>

Expressions.hyper 10 / 16

or

< loadfd libs:exec :fd2.0/exec_lib.fd <enter>

> New functions: 0000007E,126

PowerVisor will then know how to call all functions from the exec library.

You can now use all the exec library functions as if they were normal
PowerVisor functions :

< disp typeofmem(100000) <enter>
> 00000303 , 771

< disp openlibrary("exec.library",0) <enter>
> 07E007E4 , 132122596

The following rules for library functions apply :

- you MUST use brackets even if there are no arguments (like functions)
- you MUST close the brackets for the library function arguments. This

means that if you use an expression as an argument you must close the
brackets for this expression as well

- you cannot use abbreviations for library functions
- library function names are case insensitive
- you can use quotes (for example to skip variable parsing, this is

needed for the ’input’ library function in dos.library since there
is a built-in ’input’ variable in PowerVisor)

1.11 Expressions : The list operator

Example :

< exec <enter>
< list <enter>

> SoftVer : 00CF | LowMemChkSum : 0000 | ChkBase : F81FF81B
> ColdCapture : 00000000 | CoolCapture : 00000000 | WarmCapture : 00000000
> SysStkUpper : 07E02248 | SysStkLower : 07E00A48 | MaxLocMem : 00200000
> DebugEntry : 00F82E28 | DebugData : 00000000 | AlertData : 00000000
> MaxExtMem : 00000000 | ChkSum : A366 | ThisTask : 07E7B418
> IdleCount : 000CC6E6 | DispCount : 0005444A | Quantum : 0004
> Elapsed : 0004 | SysFlags : 0000 | IDNestCnt : FF
> TDNestCnt : F4 | AttnFlags : 0017 | AttnResched : 0000
> ResModules : 07E00428 | TaskTrapCode : 07E80AE6 | TaskExceptCod: 00F83A9C
> TaskExitCode : 00F823D0 | TaskSigAlloc : 0000FFFF | TaskTrapAlloc: 8000
> VBlankFreq : 32 | PowerSupplyFr: 32 | KickTagPtr : 00000000
> KickCheckSum : 00000000 | RamLibPrivate: 07E1F470 | EClockFreq : 000AD303
> CacheCtrl : 00002919 | TaskID : 00000001 | PuddleSize : 00000000
> MMULock : 00000000 |

We are now in the execbase structure list.

< disp quantum <enter>
> 00000004 , 4

Expressions.hyper 11 / 16

The same rules apply as for normal list element searching (see the Names
section).

If there are possible ambiguities you can use the ’:’ operator.

< disp :quantum <enter>
> 00000004 , 4

If you want to change the quantum variable you can use the ’&’ operator
(This operator is only supported for lists of this type (exec, graf, intb,
...)) :

< disp &exec:quantum <enter>
> 07E00904 , 132122884

This operator returns the address of the quantum variable in the exec base
list.

You can now use this address to change the variable (also see
Assignment) :

< *&exec:quantum.w=16 <enter>

You can also use the list name before the operator (useful if you are in
another current list) :

< d exec:quantum <enter>
> 00000004 , 4

1.12 Expressions : Assignment

We have already used assignment a few times. We used it to assign a value
to a variable, and we used it (in the previous section) to assign a value
to a memory location. Here are some more examples :

< a=4 <enter>
< b=5 <enter>
< disp a+b <enter>
> 00000009 , 9

< var100=100 <enter>
< var100=var100+var100 <enter>
< disp var100+var100 <enter>
> 00000190 , 400

In this form we use assignment to assign a value to a variable.

You may put spaces round the ’=’ symbol (but remember that in general you
still can’t uses spaces in expressions) like this :

< a = 4 <enter>

One more example :

Expressions.hyper 12 / 16

< mem=alloc(n,100) <enter>
< *mem=$11111111 <enter>
< *(mem+4).w=$2222 <enter>
< *(mem+6).b=$33 <enter>

< memory mem 16 <enter>
> 07E7761A: 11111111 22223300 00000000 00000000""3.........

< void free(mem) <enter>

With the alloc() function we allocated 100 bytes of memory. (The ’n’
argument means the next argument is a number. Then we fill this memory
with some values. With the memory command we display them.
After that we use the free() function to free our allocated memory. Note
that PowerVisor will automatically free memory allocated with ’alloc’ when
PowerVisor quits.

1.13 Expressions : The group operator

Sometimes it is conveniant to group several commands together. You can do
just this with the group operator. You can use the group operator in two
different ways. As a command or as a function. Here are some examples :

Using the group operator as a command :

< {disp 3;disp 5;disp 7} <enter>
> 00000003 , 3
> 00000005 , 5
> 00000007 , 7

< {{disp 1;{{disp 2};disp 3};disp 4};disp 5} <enter>
> 00000001 , 1
> 00000002 , 2
> 00000003 , 3
> 00000004 , 4
> 00000005 , 5

< {a=2;b=3;disp a*b} <enter>
> 00000006 , 6

You can see that the sole purpose of this operator is to allow you to
give more than one command on the commandline. This can be very useful
when some command expects another command as an argument (for example
the refresh command).

You can also use the group operator as a function :

< disp {a=4}*2 <enter>
> 00000008 , 8

This command will first assign 4 to ’a’ and then execute ’disp 4*2’.

< disp {a=4;temp=a*7;void temp+temp*(temp/4)} <enter>
> 000000E0 , 224

Expressions.hyper 13 / 16

The void command simply evaluates all it’s arguments. It does not
display anything.

< disp {disp 1}+2 <enter>
> 00000001 , 1
> 00000003 , 3

When the group operator is used as a function, it is the last executed
command in this group that determines the return value. The return value
is different for each command. Look at Command Reference for more
details.

1.14 Expressions : Strings

All previous sections covered integers. PowerVisor also uses strings. A
string is very easy. When a command expects a string, almost everything
is correct. Some examples :

< print Hello <enter>
> Hello

< print Hello\0a <enter>
> Hello

Notice the difference between these two commands. If you do not explicitely
ask for a <enter> at the end of the line you will not get one. ’\0a’ is the
linefeed character (you can also use ’\n’).

< print ’Hello\n’ <enter>
> Hello

< print 5+6 <enter>
> 5+6

< print Complete rubbish <enter>
> Complete

< print ’Complete rubbish’ <enter>
> Complete rubbish

< print ’Complete rubbish <enter>
> Complete rubbish

< print "Complete rubbish" <enter>
> Complete rubbish

< print ’a\nb\nc\nd\n’ <enter>
> a
> b
> c
> d

< print Hello\ you <enter>
> Hello you

Expressions.hyper 14 / 16

< print ’Hello you’ <enter>
> Hello you

Strings are very versatile. Even the notation for string pointers (double
quotes) is accepted.

You can also use the backquote operator :

< a="Hello there\n" <enter>
< print a <enter>
> a

< print \(a,%s)\n <enter>
> Hello there

Strings (like string pointers) also support the special integer quoting
feature :

< a=1 <enter>
< print ’Testing \(a) \(2,%03ld) \(11+11+11,%04lx) \(65,%lc) !\n’ <enter>
> Testing 1 002 0021 A !

< print ’First string : \("Second string",%6.6s).\n’ <enter>
> First string : Second.

1.15 Expressions : Expressions and debugging

If you are debugging a program (see the Debugging chapter for more
information) you can also ask the contents of a register with the ’@’
operator. The following registers are possible : @d0..@d7, @a0..@a6, @sp,
In addition to the ’@’ operator you can also use the ’#’ operator. This
operator returns the address of the given linenumber in the currently
loaded source. You can only use this operator when you are debugging.

1.16 Expressions : Some useful functions

You can make conditional expressions using the if() function. Here is an
example :

< a=2 <enter>
< disp if(a==2,1000+5,2000) <enter>
> 000003ED , 1005

A very complex example :

< disp if(a==3,{disp 3*3;void 1},if(a==2,{disp 2*2;void 1},0))
> 00000004 , 4
> 00000001 , 1

This completely useless command computes the square of the variable ’a’,
but only if ’a’ is equal to 2 or to 3. It also prints the value 1 if ’a’
is equal to 2 or to 3, and 0 if it isn’t.

Expressions.hyper 15 / 16

I think some detailed explanation can be useful here :-)

The disp command takes it’s first argument and prints it.
This argument is equal to :

if(a==3,{disp 3*3;void 1},if(a==2,{disp 2*2;void 1},0))

The first thing that is evaluated is the ’if’ function. The ’if’
function has three arguments :

one number :
a==3

and two other expressions :
{disp 3*3;void 1}
if(a==2,{disp 2*2;void 1},0)

If ’a’ is equal to 3 the first string is taken and evaluated.

This results in evaluation of the following expression :

{disp 3*3;void 1}

This is a group expression (see The group operator). The group
operator executes all the commands in it and returns as a result the
result from the last executed command. This results in the execution
of :

disp 3*3

and

void 1

So 9 is printed on the screen and 1 is returned as a result from
the group operator (the void command simply evaluates all it’s
arguments).

So the result of the first ’if’ function is 1 (but 9 is already
printed). This result is printed. So you have 9 and 1 as output.

! End evaluation !

If ’a’ is not equal to 3 the second string is taken and evaluated.

This results in evaluation of the following string :

if(a==2,{disp 2*2;void 1},0)

This is again an ’if’ expression and is evaluated analogous.

If you happen to have an expression in a string (this could be a string
typed in by the user) you can evaluate it using the eval() function :

Ask for input (scan returns a pointer to a string. We can also find this
pointer in the predefined constant ’input’) :

Expressions.hyper 16 / 16

< scan <enter>

Type an expression :

????< 10+5 <enter>

See if the string is really correct :

< print \(input,%s)\n <enter>
> 10+5

Evaluate it :

< disp eval(input) <enter>
> 0000000F , 15

or you can of course type :

< disp eval("10+5") <enter>
> 0000000F , 15

	Expressions.hyper
	Expressions (Mon Nov 2 20:00:22 1992)
	Expressions : Commands used in this tutorial
	Expressions : Functions used in this tutorial
	Expressions : Introduction
	Expressions : Simple integers
	Expressions : Expressions
	Expressions : String pointers
	Expressions : Names
	Expressions : Functions
	Expressions : Library functions
	Expressions : The list operator
	Expressions : Assignment
	Expressions : The group operator
	Expressions : Strings
	Expressions : Expressions and debugging
	Expressions : Some useful functions

