
Debug.hyper

Debug.hyper ii

COLLABORATORS

TITLE :

Debug.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY December 6, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Debug.hyper iii

Contents

1 Debug.hyper 1

1.1 Debugging (Tue Nov 3 14:38:07 1992) . 1

1.2 Debugging : Commands used in this tutorial . 1

1.3 Debugging : Functions used in this tutorial . 2

1.4 Debugging : Introduction . 2

1.5 Debugging : Loading a program . 2

1.6 Debugging : Two example sessions . 2

1.7 Debugging : Starting the first session . 3

1.8 Debugging : Tracing . 6

1.9 Debugging : Starting the second session . 12

1.10 Debugging : Breakpoints . 14

1.11 Debugging : Some theory . 18

1.12 Debugging : Resident breakpoints . 19

1.13 Debugging : The ’fdebug’ command . 19

1.14 Debugging : Sourcelevel debugging . 19

1.15 Debugging : Using the PortPrint feature . 20

1.16 Debugging : Using the tag system and fd-files . 21

1.17 Debugging : Summary of all commands . 21

Debug.hyper 1 / 25

Chapter 1

Debug.hyper

1.1 Debugging (Tue Nov 3 14:38:07 1992)

Contents:
Introduction
Loading a program
Two example sessions
Tracing
Breakpoints
Some theory
Resident breakpoints
The ’fdebug’ command
Sourcelevel debugging
Using the PortPrint feature
Using the tag system and fd-files
Summary of all commands

Various:
Commands used in this tutorial
Functions used in this tutorial
Back to main contents

1.2 Debugging : Commands used in this tutorial

addtag Give a type to some memory region
break Control breakpoints
debug Control debug tasks
disp Display integer
dnexti scroll to next instruction
dprevi scroll to previous instruction
drefresh Refresh debug display
dscroll Scroll in debug display
dstart Set start programcounter in debug display
duse Set the default debug task
dwin Open/close ’Debug’ logical window
info Ask information about a structure or node
list List structures
loadfd Load fd-file

Debug.hyper 2 / 25

prefs Set preferences
source Load source files for sourcelevel debugger
struct Make and manage structures
symbol Control symbols
trace Control tracing
unasm Disassemble memory
with Temporarily set the default debug task

1.3 Debugging : Functions used in this tutorial

botpc Get the programcounter at the bottom of the display
toppc Get the programcounter at the top of the display

1.4 Debugging : Introduction

I don’t think that you will be surprised if I tell you that PowerVisor can
even debug programs :-) This file explains how you should do this. It also
explains how you can make life easier with a fully customized
fullscreen debugger. PowerVisor is a very powerful debugger. For example,
you can debug multiple tasks at the same time.

Note that PowerVisor is not really a source level debugger, although
you can load the source (even for C programs). The source will also follow
the current programcounter. In future I plan more support for local and
global variables in C. Stack backtracing would also be nice.

Note that the PowerVisor debug system works much better in the AmigaDOS 2.0
version. This is because AmigaDOS 2.0 has some nice features making life a
lot easier for the programmer. I’m sorry for all AmigaDOS 1.3 users.
The examples below work on AmigaDOS 1.3, 2.0 and 3.0.

Warning! Only the master instance of PowerVisor can debug programs! All
slave instances (instances of PowerVisor started when there was already an
instance of PowerVisor running) cannot debug.

1.5 Debugging : Loading a program

There are several ways to load a program. The method you chooses depends on
what you really need. The debug command is provided by PowerVisor to
control the debug tasks (or debug nodes). All the debug nodes can be found
in the ’dbug’ list. With the ’debug’ command you can load a program, you
can unload a program and you can do other things as well.

1.6 Debugging : Two example sessions

Debug.hyper 3 / 25

The following two items are for the first example session. Note that we
do not use the fullscreen debugger in this example. Use of the fullscreen
debugger is explained in the next session. It is recommended that you type
each command as it appears here. Note that the output given here assumes
that you have all preferences set to default values (use ’mode shex’,
’prefs dmode f’ and ’prefs debug 5 1’ if you are not sure that the default
values are used, see prefs and mode).

Starting session one
Tracing

I have prepared another program so you can see the power of PowerVisor.
In this session we are going to make you used to breakpoints and some
other advanced features of the trace command. We are also going to use
the fullscreen debugger (Note that I will explain later how you can
customize this fullscreen debugger to your wishes and how you can use
the ’db’ script to do this for you).

Starting sessions two
Breakpoints

1.7 Debugging : Starting the first session

’debug n’ is the recommended way to load a program (with the debug
command). ’debug n’ waits for the next program that is started and
interrupts it before the first instruction is executed. To do this,
’debug n’ patches the Dos LoadSeg function. Example :

< debug n <enter>

PowerVisor waits for you to start the program you want to debug. You
can start this program from the WorkBench (click on the icon) or you
can start it from the Cli or Shell. I have provided an example program
with a resident breakpoint (see Resident breakpoints).
You can find this program in the ’Examples’ subdirectory.

CLI< examples/buggyprogram <enter>
or
CLI< run examples/buggyprogram <enter>

(Note! Only use ’run’ when ’run’ is resident or a built-in shell command,
in other words: don’t use ’run’ when ’run’ itself must be loaded from disk
with ’loadseg’. You probably don’t want to debug ’run’ :-) ’run’ is always
resident in AmigaDOS 2.0)

(Note! When PowerVisor is waiting for a program you must be careful not
to use any other program (that is already running) that might use LoadSeg
for some other purpose. Fonts, for example, are loaded using LoadSeg)

(Note! You can interrupt ’debug n’ with <esc>)

’debug n’ is the best way to load a debug task because the program runs
in exactly the same environment as the environment you get when you simply
run the program.

Debug.hyper 4 / 25

Allright, we have now loaded the program in memory.

< list dbug <enter>
> Debug task : Node Task InitPC TD ID Mode SMode TMode
> ---
> Background CLI : 07EA7A58 07EF8FA8 07EAA7D8 FF FF NONE WAIT NORM

Most of this information is rather technical and is not very interesting at
this moment. ’InitPC’ is interesting though. Let’s disassemble some
instructions with unasm :

< u 07EAA7D8 <enter>
or
< unasm 07EAA7D8 <enter>

> 07EAA7D8: 7200 MOVEQ.L #0,D1
> 07EAA7DA: 7064 MOVEQ.L #$64,D0
> 07EAA7DC: 5281 ADDQ.L #1,D1
> 07EAA7DE: 51C8 FFFC DBF D0,$7EAA7DC
> 07EAA7E2: 6100 0010 BSR $7EAA7F4
> 07EAA7E6: 6708 BEQ $7EAA7F0
> 07EAA7E8: 6100 0022 BSR $7EAA80C
> 07EAA7EC: 6100 0046 BSR $7EAA834
> 07EAA7F0: 7000 MOVEQ.L #0,D0
> 07EAA7F2: 4E75 RTS
> 07EAA7F4: 203C 0000 0064 MOVE.L #$64,D0
> 07EAA7FA: 7200 MOVEQ.L #0,D1
> 07EAA7FC: 2C78 0004 MOVEA.L (4),A6
> 07EAA800: 4EAE FF3A JSR ($FF3A,A6)
> 07EAA804: 41FA 0042 LEA ($7EAA848,PC),A0
> 07EAA808: 2080 MOVE.L D0,(A0)
> 07EAA80A: 4E75 RTS
> 07EAA80C: 7000 MOVEQ.L #0,D0
> 07EAA80E: 7201 MOVEQ.L #1,D1
> 07EAA810: 7402 MOVEQ.L #2,D2

Well, this is our program. But there are symbol hunks in our program.
’debug n’ does not automatically load them (’debug l’ does, but this
command will be explained later). You can load symbols with the
symbol command :

< symbol l examples/buggyprogram <enter>

< u 07EAA7D8 <enter>
> StartProgr7200 MOVEQ.L #0,D1
> 07EAA7DA: 7064 MOVEQ.L #$64,D0
> loop 5281 ADDQ.L #1,D1
> 07EAA7DE: 51C8 FFFC DBF D0,loop
> 07EAA7E2: 6100 0010 BSR Sub1
> 07EAA7E6: 6708 BEQ theend
> 07EAA7E8: 6100 0022 BSR Sub2
> 07EAA7EC: 6100 0046 BSR Sub3
> theend 7000 MOVEQ.L #0,D0
> 07EAA7F2: 4E75 RTS
> Sub1 203C 0000 0064 MOVE.L #$64,D0
> 07EAA7FA: 7200 MOVEQ.L #0,D1

Debug.hyper 5 / 25

> 07EAA7FC: 2C78 0004 MOVEA.L (4),A6
> 07EAA800: 4EAE FF3A JSR ($FF3A,A6)
> 07EAA804: 41FA 0042 LEA (Block,PC),A0
> 07EAA808: 2080 MOVE.L D0,(A0)
> 07EAA80A: 4E75 RTS
> Sub2 7000 MOVEQ.L #0,D0
> 07EAA80E: 7201 MOVEQ.L #1,D1
> 07EAA810: 7402 MOVEQ.L #2,D2

You can show all symbols with the ’symbol’ command :

< symbol s <enter>
> StartProgram : 07EAA7D8 , 132818904
> loop : 07EAA7DC , 132818908
> theend : 07EAA7F0 , 132818928
> Sub1 : 07EAA7F4 , 132818932
> Sub2 : 07EAA80C , 132818956
> Sub3 : 07EAA834 , 132818996
> Block : 07EAA848 , 132819016

The two values on the right of each symbol are the same. The only
difference is that the left one is hexadecimal and the right one is
decimal.

Because we have loaded the symbols for the current debug task we can use
the symbols in expressions. Here are some examples :

Disassemble 5 instructions starting with ’StartProgram’ (note that symbols
are case sensitive) :

< u StartProgram 5 <enter>
> StartProgr7200 MOVEQ.L #0,D1
> 07EAA7DA: 7064 MOVEQ.L #$64,D0
> loop 5281 ADDQ.L #1,D1
> 07EAA7DE: 51C8 FFFC DBF D0,loop
> 07EAA7E2: 6100 0010 BSR Sub1

Show the distance between subroutine 2 and subroutine 1 :

< d Sub2-Sub1 <enter>
> 00000018,24

You can do many other things with the ’symbol’ command but ’symbol l’ and
’symbol s’ are sufficient at this moment.

There is still one thing we should do :

< loadfd exec fd:exec_lib.fd <enter>

With the loadfd command PowerVisor loads all the library function
definitions in memory. That way PowerVisor will know how to show a library
function when one is encountered while tracing. You do not have to load
fd-files, but it is certainly very easy. I have the four big fd-files
(’exec.library’, ’graphics.library’, ’intuition.library’ and ’dos.library’)
permanently loaded in memory (I have put four ’loadfd’ commands in the
s:PowerVisor-startup file).

Debug.hyper 6 / 25

See the Using the tag system and fd-files section for more
information about fd-files and the VERY useful tag system in combination
with debugging (with this system PowerVisor will show names for offsets
in structures instead of numbers)!

Continue this session : Tracing
Go to session menu : Two examples sessions

1.8 Debugging : Tracing

Now we can start tracing with trace :

< trace i <enter>
or
< tr i <enter>
> ---
> D0: 00000001 D1: 01FAA9F5 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07ED3A1C A1: 07EF9D28 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 00F906D2
> PC: 07EAA7D8 SP: 07EFCBFC SR: 0010
> 00000000: 0000 0000 ORI.B #0,D0
>
> StartProgr7200 MOVEQ.L #0,D1
> 07EAA7DA: 7064 MOVEQ.L #$64,D0
> loop 5281 ADDQ.L #1,D1
> 07EAA7DE: 51C8 FFFC DBF D0,loop
> 07EAA7E2: 6100 0010 BSR Sub1

(tr i : give ’I’nformation)
This command shows where we are. No actual tracing is done. The registers
are shown and the five first instructions. The program counter points to
the second instruction in this output. The first instruction is always
equal to the previous executed instruction. Initially it is initialized to
address 0. Note that you can change the format of this output with the
’prefs dmode’ and ’prefs debug’ commands (See the prefs command
and the Installing PowerVisor chapter in general).

Now we are really going to trace one instruction :

< tr <enter>
> ---
> D0: 00000001 D1: 00000000 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07ED3A1C A1: 07EF9D28 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 00F906D2
> PC: 07EAA7DA SP: 07EFCBFC SR: 0014
> StartProgr7200 MOVEQ.L #0,D1
>
> 07EAA7DA: 7064 MOVEQ.L #$64,D0
> loop 5281 ADDQ.L #1,D1
> 07EAA7DE: 51C8 FFFC DBF D0,loop
> 07EAA7E2: 6100 0010 BSR Sub1
> 07EAA7E6: 6708 BEQ theend

Debug.hyper 7 / 25

In the register display you can see that ’d1’ now has the value 0.
’StartProgr’ is now the previous instruction. The programcounter now points
to the instruction ’moveq.l #$64,d0’.

Trace six instructions at once :

< tr n 6 <enter>
> ---
> D0: 00000062 D1: 00000003 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07ED3A1C A1: 07EF9D28 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 00F906D2
> PC: 07EAA7DE SP: 07EFCBFC SR: 0000
> loop 5281 ADDQ.L #1,D1
>
> 07EAA7DE: 51C8 FFFC DBF D0,loop
> 07EAA7E2: 6100 0010 BSR Sub1
> 07EAA7E6: 6708 BEQ theend
> 07EAA7E8: 6100 0022 BSR Sub2
> 07EAA7EC: 6100 0046 BSR Sub3

(tr n : trace ’N’umber instruction)
We are now in the loop.

To step over the loop we can use the following instruction :

< tr o <enter>
> ---
> D0: 0000FFFF D1: 00000065 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07ED3A1C A1: 07EF9D28 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 00F906D2
> PC: 07EAA7E2 SP: 07EFCBFC SR: 0000
> 07EAA7DE: 51C8 FFFC DBF D0,loop
>
> 07EAA7E2: 6100 0010 BSR Sub1
> 07EAA7E6: 6708 BEQ theend
> 07EAA7E8: 6100 0022 BSR Sub2
> 07EAA7EC: 6100 0046 BSR Sub3
> theend 7000 MOVEQ.L #0,D0
> Breakpoint...

(tr o : trace ’O’ver)
’tr o’ places a breakpoint after the current instruction and then executes
until the breakpoint is encountered. You can trace over every instruction
with this command, but you can’t use it in ROM-code since PowerVisor can’t
put a breakpoint in ROM (don’t worry ! there are solutions to this problem,
we will see them later on).

We step into the subroutine ’Sub1’ with :

< tr <enter>
> ---
> D0: 0000FFFF D1: 00000065 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07ED3A1C A1: 07EF9D28 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 00F906D2

Debug.hyper 8 / 25

> PC: 07EAA7F4 SP: 07EFCBF8 SR: 0000
> 07EAA7E2: 6100 0010 BSR Sub1
>
> Sub1 203C 0000 0064 MOVE.L #$64,D0
> 07EAA7FA: 7200 MOVEQ.L #0,D1
> 07EAA7FC: 2C78 0004 MOVEA.L (4),A6
> 07EAA800: 4EAE FF3A JSR ($FF3A,A6)
> 07EAA804: 41FA 0042 LEA (Block,PC),A0

Trace another three instructions :

< tr n 3 <enter>
> ---
> D0: 00000064 D1: 00000000 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07ED3A1C A1: 07EF9D28 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA800 SP: 07EFCBF8 SR: 0004
> 07EAA7FC: 2C78 0004 MOVEA.L (4),A6
>
> 07EAA800: 4EAE FF3A JSR (AllocMem,A6)
> 07EAA804: 41FA 0042 LEA (Block,PC),A0
> 07EAA808: 2080 MOVE.L D0,(A0)
> 07EAA80A: 4E75 RTS
> Sub2 7000 MOVEQ.L #0,D0

Thanks to the loaded fd-file you can now see that this function is actually
the Exec AllocMem. We do not want to run through the complete rom function
so we trace over the call with :

< tr t <enter>
> ---
> D0: 07EFCE90 D1: 00002F48 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07E00000 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA804 SP: 07EFCBF8 SR: 0010
> 07EAA800: 4EAE FF3A JSR ($FF3A,A6)
>
> 07EAA804: 41FA 0042 LEA (Block,PC),A0
> 07EAA808: 2080 MOVE.L D0,(A0)
> 07EAA80A: 4E75 RTS
> Sub2 7000 MOVEQ.L #0,D0
> 07EAA80E: 7201 MOVEQ.L #1,D1
> Breakpoint...

(tr t : ’T’race over BSR or JSR sorry, couldn’t find a better
character)
’tr t’ looks similar to ’tr o’. The big difference is that ’tr t’ works
only for ’BSR’ and ’JSR’ instructions. And what is more important : ’tr t’
works in ROM-code. If ’tr t’ is used for an instruction other than ’BSR’ or
’JSR’ it is analogous to ’tr’ (simple singlestep).

We can see that the AllocMem function had success (I hope this is really
the case) because ’d0’ contains the address of the newly allocated memory.

We continue tracing until the next change of program flow happens :

Debug.hyper 9 / 25

< tr b <enter>
> ---
> D0: 07EFCE90 D1: 00002F48 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07EAA848 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA80A SP: 07EFCBF8 SR: 0010
> 07EAA808: 2080 MOVE.L D0,(A0)
>
> 07EAA80A: 4E75 RTS
> Sub2 7000 MOVEQ.L #0,D0
> 07EAA80E: 7201 MOVEQ.L #1,D1
> 07EAA810: 7402 MOVEQ.L #2,D2
> 07EAA812: 7603 MOVEQ.L #3,D3

(tr b : trace until ’B’ranch)
’tr b’ traces until a change of program control happens. This means that
tracing will stop always at the following instructions :

JMP
JSR
BRA
BSR
RTE
RTD
RTR
RTS
TRAP

and tracing will stop at the following instructions if the brach would
succeed :

Bcc
DBcc

Go out this subroutine :

< tr <enter>
> ---
> D0: 07EFCE90 D1: 00002F48 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07EAA848 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA7E6 SP: 07EFCBFC SR: 0010
> 07EAA80A: 4E75 RTS
>
> 07EAA7E6: 6708 BEQ theend
> 07EAA7E8: 6100 0022 BSR Sub2
> 07EAA7EC: 6100 0046 BSR Sub3
> theend 7000 MOVEQ.L #0,D0
> 07EAA7F2: 4E75 RTS

< tr <enter>
> ---
> D0: 07EFCE90 D1: 00002F48 D2: 00002EE0 D3: 07ED3A1C
> D4: 00000001 D5: 00000001 D6: 01FAA08F D7: 07EAA7D4
> A0: 07EAA848 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA7E8 SP: 07EFCBFC SR: 0010

Debug.hyper 10 / 25

> 07EAA7E6: 6708 BEQ theend
>
> 07EAA7E8: 6100 0022 BSR Sub2
> 07EAA7EC: 6100 0046 BSR Sub3
> theend 7000 MOVEQ.L #0,D0
> 07EAA7F2: 4E75 RTS
> Sub1 203C 0000 0064 MOVE.L #$64,D0

We suspect nothing bad in ’Sub2’ so we simply trace over it :

< tr t <enter>
> ---
> D0: 00000000 D1: 00000001 D2: 00000002 D3: 00000003
> D4: 00000004 D5: 00000005 D6: 00000006 D7: 00000007
> A0: 07EFCE90 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA820 SP: 07EFCBF8 SR: 0010
> 07EAA7E8: 6100 0022 BSR Sub2
>
> 07EAA820: 4AFC ILLEGAL
> 07EAA822: 20C0 MOVE.L D0,(A0)+
> 07EAA824: 20C1 MOVE.L D1,(A0)+
> 07EAA826: 20C2 MOVE.L D2,(A0)+
> 07EAA828: 20C3 MOVE.L D3,(A0)+
> Illegal instruction !

There is something wrong ! This is called a resident breakpoint. You can
put resident breakpoints in a program using the ’ILLEGAL’ instruction.
PowerVisor will automatically stop at such places (See
Resident breakpoints for more info).

Skip over the instruction with :

< tr s <enter>
> ---
> D0: 00000000 D1: 00000001 D2: 00000002 D3: 00000003
> D4: 00000004 D5: 00000005 D6: 00000006 D7: 00000007
> A0: 07EFCE90 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA820 SP: 07EFCBF8 SR: 0010
> 07EAA820: 4AFC ILLEGAL
>
> 07EAA822: 20C0 MOVE.L D0,(A0)+
> 07EAA824: 20C1 MOVE.L D1,(A0)+
> 07EAA826: 20C2 MOVE.L D2,(A0)+
> 07EAA828: 20C3 MOVE.L D3,(A0)+
> 07EAA82A: 20C4 MOVE.L D4,(A0)+

(’tr s’ : ’S’kip instruction)
Now we have something special. Since we used the ’tr t’ command to trace
over the subroutine ’Sub2’ we have created a breakpoint after the
’BSR Sub2’ instruction. But if we would look after the ’BSR Sub2’
instruction we would find no breakpoint (we will see later how PowerVisor
shows breakpoints in the disassembly display). This is because the ’tr t’
command works in a special way to make sure that you can use it in ROM-code
too. Here follows an explanation of what has happened :

Debug.hyper 11 / 25

You typed ’tr t’ to skip ’BSR Sub2’ some time ago.
PowerVisor performs a ’tr’ to trace the ’BSR’ instruction.
Now the top of the stack contains the returnaddress for the ’BSR’
instruction, this is the address of the instruction after ’BSR Sub2’.
PowerVisor replaces the address on the stack with another address.
This address points to a private breakpoint. Since this private
breakpoint is always in RAM, there is no problem setting this
breakpoint. When the subroutine returns (with ’RTS’) later on (this
has not happened at this moment), it will not return to the
instruction after the ’BSR’ but to the breakpoint in RAM. PowerVisor
will trap this and set the programcounter of the task to the right
address: this is the instruction after the ’BSR Sub2’.

It would be different if you hade used ’tr o’ instead of ’tr t’.
’tr o’ would put a breakpoint directly after the ’BSR Sub2’. This
will ofcourse not work if the ’BSR’ is in ROM since a breakpoint is
in fact an ILLEGAL instruction.

But since the routine ’Sub2’ was interrupted (the ’ILLEGAL’ instruction
caused this). The private breakpoint has not been encountered yet and
the value on the stack is still the wrong value. We can make use of this
feature and simply continue the ’tr t’ where it left of with :

< tr g <enter>
> ---
> D0: 00000000 D1: 00000001 D2: 00000002 D3: 00000003
> D4: 00000004 D5: 00000005 D6: 00000006 D7: 00000007
> A0: 07EFCEB0 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA7EC SP: 07EFCBFC SR: 0010
> 07EAA822: 20C0 MOVE.L D0,(A0)+
>
> 07EAA7EC: 6100 0046 BSR Sub3
> theend 7000 MOVEQ.L #0,D0
> 07EAA7F2: 4E75 RTS
> Sub1 203C 0000 0064 MOVE.L #$64,D0
> 07EAA7FA: 7200 MOVEQ.L #0,D1
> Breakpoint...

(’tr g’ : trace ’G’o)
The ’tr g’ command simply executes the program until a breakpoint is
encountered.
Note that it would make no difference if you would trace the program step
by step. At one moment you would encounter the private breakpoint. Simply
tracing over this breakpoint will return to the correct place in the
program.

We step into ’Sub3’ :

< tr <enter>
> ---
> D0: 00000000 D1: 00000001 D2: 00000002 D3: 00000003
> D4: 00000004 D5: 00000005 D6: 00000006 D7: 00000007
> A0: 07EFCEB0 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA834 SP: 07EFCBF8 SR: 0010
> 07EAA7EC: 6100 0046 BSR Sub3

Debug.hyper 12 / 25

>
> Sub3 203C 0000 0040 MOVE.L #$40,D0
> 07EAA83A: 227A 000C MOVEA.L (Block,PC),A1
> 07EAA83E: 2C78 0004 MOVEA.L (4),A6
> 07EAA842: 4EAE FF2E JSR ($FF2E,A6)
> 07EAA846: 4E75 RTS

< tr <enter>
> ---
> D0: 00000040 D1: 00000001 D2: 00000002 D3: 00000003
> D4: 00000004 D5: 00000005 D6: 00000006 D7: 00000007
> A0: 07EFCEB0 A1: 07EFCE90 A2: 07E0CEA4 A3: 07EAA7D4
> A4: 07EFCC00 A5: 00F906DE A6: 07E007D8
> PC: 07EAA83A SP: 07EFCBF8 SR: 0010
> Sub3 203C 0000 0040 MOVE.L #$40,D0
>
> 07EAA83A: 227A 000C MOVEA.L (Block,PC),A1
> 07EAA83E: 2C78 0004 MOVEA.L (4),A6
> 07EAA842: 4EAE FF2E JSR ($FF2E,A6)
> 07EAA846: 4E75 RTS
> Block 07EF CE90 BSET D3,($CE90,A7)

We see that something is wrong. We have allocated 100 bytes of memory
($64) but we are only going to free 64 bytes ($40). This is clearly
a bug and should be fixed. But to prevent memory loss we are going to
continue anyway. We simply change the ’d0’ register :

< d @d0 <enter>
> 00000040 , 64

< @d0=100 <enter>

You see how we can look at registers and change their values.

We are not interested in the rest of the program. We simply let it go :

< tr g <enter>
> Program quits !

The program has stopped.

Some important ’trace’ commands have been explained. There are a lot more.
Some of the other ’trace’ commands will be used in the following example.
Refer to the documentation for trace for the other features.

Go to session menu : Two examples sessions

1.9 Debugging : Starting the second session

We are now going to load the program using ’debug l’ (see debug .
Normally this is not the recommended way since this instruction does not
perfectly emulate a Cli or WorkBench. But this does not matter for our
little program. Note that the AmigaDOS 2.0 version of PowerVisor perfectly
creates a CLI, so ’debug l’ is a perfectly good way to load a program if
you have AmigaDOS 2.0 and you want a CLI environment for your program.

Debug.hyper 13 / 25

< debug l examples/buggyprogram2 <enter>

The symbols are automatically loaded by ’debug l’ :

< symbol s <enter>
> StartProgram : 07EADCC0 , 132832448
> Long : 07EADCCE , 132832462
> recur : 07EADCE0 , 132832480
> theend : 07EADCEC , 132832492

Open the fullscreen debugger display with dwin
and prefs :

< dwin <enter>
< prefs dmode n <enter>

The ’prefs dmode’ command is used to disable the output on the ’Main’
logical window you normally get after each trace. All the output goes
automatically to the ’Debug’ logical window if it is open (but if you
set ’prefs dmode f’ as it is default you will get output in the ’Debug’
logical window AND on the ’Main’ logical window. This is probably not
as intended).

Drag the horizontal bar between the ’Main’ logical window and the
’Debug’ logical window so that all the five instructions of the disassembly
are visible.

The following keys can be used :

<ctrl>+<NumPad Up> (attempt) to scroll to the previous
instruction

<ctrl>+<NumPad Down> to scroll to the next instruction
<ctrl>+<NumPad Left> to decrease the top visible instruction

address with 2
<ctrl>+<NumPad Right> to increase this address with 2
<ctrl>+<NumPad PgUp> to decrease this address with 20
<ctrl>+<NumPad PgDn> to increase this address with 20
<ctrl>+<NumPad 5> to set this address equal to the program-

counter

Using these keys you can scroll through your code (try it).

Press :

< <ctrl>+<NumPad 5>

To go back to the programcounter.
(Note that you can also use the dscroll and dstart commands to scroll
through your program).

The fullscreen debugger display looks almost the same as the output from
the trace command in the earlier section. The differences are :

- There is an indicator of what the task is doing.
NONE the task is waiting for PowerVisor instructions
TRACE the task is tracing

Debug.hyper 14 / 25

FLOWT the task is flow-tracing (’trace qf’, ’trace rf’,
’trace cf’, ...) (only for 68020 or higher)

ROUT the task is in routine trace mode (’trace qr’,
’trace rr’, ...)

EXEC the task is executing

- The top instruction (except for the previous instruction indicator)
is not always equal to the instruction at the programcounter. The
programcounter is indicated by the hilighted line.

- The ’previous instruction’ is only updated when the programcounter
makes a jump out of the current displayed instructions.

Continue this session : Breakpoints
Go to session menu : Two examples sessions

1.10 Debugging : Breakpoints

First a simple breakpoint :

Lets put a breakpoint in the ’Long’ subroutine with break :

< u Long <enter>
> Long 7000 MOVEQ.L #0,D0
> 07EADCD0: 7201 MOVEQ.L #1,D1
> 07EADCD2: 7402 MOVEQ.L #2,D2
> 07EADCD4: 7603 MOVEQ.L #3,D3
> 07EADCD6: 7804 MOVEQ.L #4,D4
> 07EADCD8: 7A05 MOVEQ.L #5,D5
> 07EADCDA: 7C06 MOVEQ.L #6,D6
> 07EADCDC: 7E07 MOVEQ.L #7,D7
> 07EADCDE: 4E75 RTS
> recur 5280 ADDQ.L #1,D0
> 07EADCE2: 0C80 0000 00C8 CMPI.L #$C8,D0
> 07EADCE8: 6E02 BGT theend
> 07EADCEA: 61F4 BSR recur
> theend 4E75 RTS
> 07EADCEE: 0000 07EA ORI.B #$EA,D0
> 07EADCF2: DD08 ADDX.B -(A0),-(A6)
> 07EADCF4: 0000 0000 ORI.B #0,D0
> 07EADCF8: 07E2 BSET D3,-(A2)
> 07EADCFA: 68A0 BVC $7EADC9C
> 07EADCFC: 0002 004C ORI.B #$4C,D2

< break n 07EADCD2 <enter> (Note ! Use the equivalent address!)
or
< b n 07EADCD2 <enter>

> 00000001,1

(’b n’ : ’N’ormal breakpoint)
The output from this command is the breakpoint number. PowerVisor can have
as many breakpoints as memory permits. Breakpoints are always refered to
with their number.

Debug.hyper 15 / 25

With the info command you can now ask more information about the
breakpoints :

< l dbug <enter>
> Debug task : Node Task InitPC TD ID Mode SMode TMode
> ---
> examples/buggyprogra: 07EADB90 07ED5840 07EADCC0 FF FF NONE WAIT NORM

< info dbug:’examples/buggyprogram2’ dbug <enter>
or
< i db:examp db <enter>

> Debug task : Node Task InitPC TD ID Mode SMode TMode
> ---
> examples/buggyprogra: 07EADB90 07ED5840 07EADCC0 FF FF NONE WAIT NORM
>
> Node Number Where UsageCnt Type Condition
> ---
> 07EBA168 1 07EADCD2 0 N

We can see that there is one breakpoint defined with number 1 and position
07EA77DA. It has not been used yet and it is a normal (N) breakpoint.
(’Condition’ is explained later).

Lets have a look at the disassembly with unasm :

< u Long 20 <enter>
> Long 7000 MOVEQ.L #0,D0
> 07EADCD0: 7201 MOVEQ.L #1,D1
> 07EADCD2: 4AFC MOVEQ.L #2,D2 >1
> 07EADCD4: 7603 MOVEQ.L #3,D3
> 07EADCD6: 7804 MOVEQ.L #4,D4
> 07EADCD8: 7A05 MOVEQ.L #5,D5
> 07EADCDA: 7C06 MOVEQ.L #6,D6
> 07EADCDC: 7E07 MOVEQ.L #7,D7
> 07EADCDE: 4E75 RTS
> recur 5280 ADDQ.L #1,D0
> 07EADCE2: 0C80 0000 00C8 CMPI.L #$C8,D0
> 07EADCE8: 6E02 BGT theend
> 07EADCEA: 61F4 BSR recur
> theend 4E75 RTS
> 07EADCEE: 0000 07EA ORI.B #$EA,D0
> 07EADCF2: DD08 ADDX.B -(A0),-(A6)
> 07EADCF4: 0000 0000 ORI.B #0,D0
> 07EADCF8: 07E2 BSET D3,-(A2)
> 07EADCFA: 68A0 BVC $7EADC9C
> 07EADCFC: 0002 004C ORI.B #$4C,D2

The breakpoint is the instruction with the ’>1’ appended.

Now we start the program and see where it ends with trace :

< tr g <enter>
> Breakpoint...

(Notice that we no longer get the complete output on ’Main’. All output
is in the ’Debug’ logical window)

Debug.hyper 16 / 25

The breakpoint has been encountered. Since it is a normal breakpoint it
is not removed.

< i db:examp db <enter>
> Debug task : Node Task InitPC TD ID Mode SMode TMode
> ---
> examples/buggyprogra: 07EADB90 07ED5840 07EADCC0 FF FF NONE WAIT NORM
>
> Node Number Where UsageCnt Type Condition
> ---
> 07EBA168 1 07EADCD2 1 N

Now we see that the usage counter has incremented.

We make two new breakpoints :

< b t 07EADCDA <enter>

< b c recur ’@d0==100’ <enter>

< i db:exam db <enter>
> Debug task : Node Task InitPC TD ID Mode SMode TMode
> ---
> examples/buggyprogra: 07EADB90 07ED5840 07EADCC0 FF FF NONE WAIT STEP
>
> Node Number Where UsageCnt Type Condition
> ---
> 07EBA288 3 07EADCE0 0 C @d0==100
> 07EB5B60 2 07EADCDA 0 T
> 07EBA168 1 07EADCD2 1 N

(’b t’ : ’T’emporary breakpoint)
(’b c’ : ’C’onditional breakpoint)
’b t’ makes a temporary breakpoint. This is a breakpoint that only breaks
once. ’b c’ makes a conditional breakpoint. Conditional breakpoints are
very powerful as you will see in the following demonstration.

< tr g <enter>
> Breakpoint...

The breakpoint breaks and is immediately removed.

< tr g <enter>
> Breakpoint...

The conditional breakpoint breaks because ’d0’ is equal to 100. A
conditional breakpoint is a very powerful way to control your program. The
breakpoint condition can be as complex as you wish (with the exception that
you can’t use the group operator) and you can refer to all registers
like @pc, @sr, @sp, @d0 to @d7 and @a0 to @a7.

We remove the breakpoint with :

< b r 3 <enter>

(’b r’ : ’R’emove breakpoint)

Debug.hyper 17 / 25

Now we are going to put a breakpoint just after the ’BSR’ instruction :

< u StartProgram <enter>
> StartProgr6100 000C BSR Long
> 07EADCC4: 7000 MOVEQ.L #0,D0
> 07EADCC6: 6100 0018 BSR recur
> 07EADCCA: 7000 MOVEQ.L #0,D0
> 07EADCCC: 4E75 RTS
> Long 7000 MOVEQ.L #0,D0
> 07EADCD0: 7201 MOVEQ.L #1,D1
> 07EADCD2: 4AFC MOVEQ.L #2,D2 >1
> 07EADCD4: 7603 MOVEQ.L #3,D3
> 07EADCD6: 7804 MOVEQ.L #4,D4
> 07EADCD8: 7A05 MOVEQ.L #5,D5
> 07EADCDA: 7C06 MOVEQ.L #6,D6
> 07EADCDC: 7E07 MOVEQ.L #7,D7
> 07EADCDE: 4E75 RTS
> recur 5280 ADDQ.L #1,D0
> 07EADCE2: 0C80 0000 00C8 CMPI.L #$C8,D0
> 07EADCE8: 6E02 BGT theend
> 07EADCEA: 61F4 BSR recur
> theend 4E75 RTS
> 07EADCEE: 0000 07EA ORI.B #$EA,D0

We see that there is still another breakpoint present in the ’Long’
subroutine. Remove it with :

< b r 1 <enter>

We make the new breakpoint :

< b n 07EADCCA <enter>
> 00000001,1

Now we execute until we reach that breakpoint :

< tr g <enter>
> Breakpoint...

And we start all over again by setting the programcounter back to the
start of the program :

< @pc=StartProgram <enter>

Now we are ready to demonstrate yet another powerful feature which looks a
bit like conditional breakpoints : conditional tracing.

< tr c ’@d0==100’ <enter>

(’tr c’ : ’C’onditional tracing)
’tr c’ singlesteps the program until the condition is true. The difference
with the conditional breakpoint is that the breakpoint only checks the
condition when the breakpoint is passed. With conditional tracing the
condition is checked after each instruction. Conditional tracing is
of course much slower.

Debug.hyper 18 / 25

Note that for this simple expression you could have used the following
command :

< tr q ’@d0==100’ <enter>

(’tr q’ : ’Q’uick conditional tracing)
’tr q’ works almost the same as ’tr c’. The difference is that it is faster
(because it compiles the expression to machinecode) but you are more
limited with the conditional expression. See the trace command for
more info about this feature.

If you have a 68020 or higher you can also use the ’tr cf’ or ’tr qf’
commands. These commands are a lot faster but less accurate.

Remove the debug task from memory with the debug command :

< debug u <enter>

This command removes all breakpoints and unloads the program. It is best
to always use this command in conjunction with ’debug l’. You can also
use ’debug r’ to remove all breakpoints and stop debugging. After ’debug r’
the debug program will simply continue as if nothing has happened. This
has two disadvantages : It is possible that the program is buggy and will
crash. In that case it is not wise to use ’debug r’. PowerVisor will also
not be able to unload the program from memory. This means that you
will loose some memory (you == your Amiga :-)
’debug r’ is more useful in conjunction with the ’debug n’ command (and
also with the ’debug c’ command which can be used to catch a task).
You can also use ’debug f’ (see the ’CommandRef’ file for more info).

Close the debug logical window with :

< dwin <enter>

Go to session menu : Two examples sessions

1.11 Debugging : Some theory

When you issue a trace command to PowerVisor, the trace command will
return immediately. This means that when the trace could take a long time,
you will still be able to use PowerVisor for other commands. For example,
when you are tracing conditionally, PowerVisor will do absolutely nothing.
The debug task does everything until the condition becomes true. The debug
task will then send a signal to PowerVisor and PowerVisor will update the
debug display.

The conditional trace command is one of the trace commands that uses
singlestep mode for tracing. This is slow but sometimes the only way to
trace something. The ’go’ trace command (’tr g’) is another trace command.
This trace command uses execute mode for tracing. The task runs at full
speed until a breakpoint is encountered. It is possible that you want
singlestep mode for the ’tr g’ command too. For example, you could use this
to see how a program runs. Since the program runs a bit slower you will be
able to see much better what happens at each step. To use singlestep mode

Debug.hyper 19 / 25

with the ’tr g’ command you must use ’tr gt’ (’t’ for trace). Many tracing
commands have these two versions.

If you have a 68020 or higher you can also use flow mode for tracing.
In this mode the task is stopped everytime a change of programflow occurs.
This is a lot faster (compared with singlestep mode) but less accurate
because there are fewer samplepoints. In general this is not so bad.
’tr r’, ’tr g’, ’tr c’ and ’tr q’ can use this mode (append a ’f’ after
the command letter).

You can also use routine trace mode instead of singlestep mode or flow
mode. In this mode PowerVisor will not leave the current routine. All
instructions in the routine are singlestepped while BSR and JSR calls
are executed at full speed. Append ’r’ to the trace command if you want
routine trace mode.

See the trace command for more info about all possible trace commands
and modes.

Note that you can interrupt the tracing if you like with ’tr h’ or
’tr f’.

Some commands (like ’tr u’ and ’tr o’ (explained later)) make a private
breakpoint. A private breakpoint is a breakpoint with number 0. This
breakpoint is automatically cleared when another breakpoint with number 0
is about to be created, or when the breakpoint breaks.

1.12 Debugging : Resident breakpoints

You can set resident breakpoints in your programs by including an ’ILLEGAL’
instruction at the right place. When you want to use them you must make
sure that PowerVisor is started and that you use ’mode patch’ (see
mode). Otherwise the results will not be very satisfactory. After

that you simply start your program (from the ’Shell’ or ’Workbench’)
(Note! Don’t use ’debug n’ in PowerVisor). When the program collides with
the resident breakpoint, PowerVisor will trap the crash. You have now made
a crash node. You can than use ’debug t’ with the crash node or with the
crashed task to start debugging at the ’ILLEGAL’ instruction.

1.13 Debugging : The ’fdebug’ command

To make life easier s/PowerVisor-startup defines an alias that you can
use to initialize the fullscreen debugger. This alias uses the ’db’
script to open the debug logical window and to initialize some
keys. See the Alias Reference chapter for more information about the
fdebug alias.

1.14 Debugging : Sourcelevel debugging

Debug.hyper 20 / 25

If you want you can load the source for the debug task you are tracing.
PowerVisor will automatically follow this source, even when you switch
to a routine in another file. See the source command
for more information.

1.15 Debugging : Using the PortPrint feature

You can use the powervisor.library in your own programs to put
several sorts of information on the PowerVisor screen. Note that
the output from these library functions appears on the master PowerVisor
screen (the slaves are ignored).

Look at ’pptest.asm’ for an example.
The following library functions are available :

PP_InitPortPrint()
This function initializes the msgport for you. You need only
do this once. The result you get in d0 is the pointer to the
replyport (or null if no success). Use this pointer in all
following commands.

PP_StopPortPrint(a0)
Clear the msgports for portprint. You need only do this once.
a0 is the pointer to the replyport (the result from InitPortPrint).

PP_ExecCommand(a0,a1,a2,d0)
This routine is provided for the use of the addfunc command, but
you are free to use it for your own purposes.
a0 is the pointer to the replyport. a1 is a pointer to data (may
be 0), a2 is a pointer to a commandstring that you want to execute.
d0 is the size of the data (may be 0). When you call this routine
PowerVisor will first make a copy of your data. PowerVisor will
then execute the command (note ! PowerVisor will execute it, the
calling task will only wait until PowerVisor is ready). The command
that is executed will get the pointer to the copy of the data in
the ’rc’ variable. You can return a result from this command (using
the void command for example). This result will be returned
in d0.

PP_DumpRegs(a0)
Dump all registers on the PowerVisor screen.
a0 is the pointer to the replyport.

PP_Print(a0,a1)
Print one line of text on the PowerVisor screen.
a0 is the pointer to the replyport.
a1 is the pointer to the text to print.
Note that the replyport may be null for this call. Also note that
this means that your program will not wait for PowerVisor to answer
the message. This means that if you use this function again soon
after the first call you will only see the results of the last call

PP_PrintNum(a0,d0)
Print a number on the PowerVisor screen.
a0 is the pointer to the replyport.
d0 is the number to print.
Note that the replyport may be null for this call. Also note that
this means that your program will not wait for PowerVisor to answer
the message. This means that if you use this function again soon

Debug.hyper 21 / 25

after the first call you will only see the results of the last call
PP_SignalPowerVisor(a0,d0)

Internal function to send a signal to PowerVisor. At this moment
this function is only used by the memory protection system when a
bus error occurs.
a0 is the pointer to the replyport.
d0 is the signal number (1 for bus error, 2 for bus error with

freeze (not supported yet))
Note that the replyport may be null for this call. Also note that
this means that your program will not wait for PowerVisor to answer
the message. This means that if you use this function again soon
after the first call you will only see the results of the last call

1.16 Debugging : Using the tag system and fd-files

The disassembly used for the debug display (either with the ’trace i’
command or with the fullscreen debugger) is a bit smarter than the normal
disassembly with the unasm command.

First you have fd-files.
PowerVisor will use all loaded fd-files so that JSR and JMP instructions
relative to a6 will be disassembled with the correct library name instead
of a number. This feature makes debugging a LOT easier. Use the loadfd
command to load fd-files.

The second feature makes use of the tag system and structures. In the
Looking At Things chapter you can find all information about this

system. Especially the addtag and struct commands are very useful.
With these two commands you can add and define structures so that
PowerVisor will be able to use the name of an offset in a structure
instead of a number when disassembling for the debug task (it needs a
debug task because the registers must have a contents so that PowerVisor
knows to which structure the instruction points).

1.17 Debugging : Summary of all commands

Here follows a summary of what you can do with all debug commands :
(the following commands are used : break , debug ,
drefresh , dscroll , dstart , duse ,
dwin , symbol , source , trace , dnexti ,
dprevi and with)

break n <address> Set ’N’ormal breakpoint.
The breakpoint is not removed after breaking

break t <address> Set ’T’emporary breakpoint.
The breakpoint is removed after breaking

break p <address> Set ’P’rofile breakpoint
This breakpoint never breaks. It only increments
the usagecounter. You can use it to see if a
certain routine is much used

break a <address> <timeout>

Debug.hyper 22 / 25

Break ’A’fter <timeout> passes.
The breakpoint is removed after breaking

break c <address> <condition>
’C’onditional breakpoint. This breakpoint breaks
when the condition is true. The breakpoint is not
removed after breaking

break r <breakpoint number>
Remove a breakpoint

debug n Wait for ’N’ext prorgram
debug c Wait for next task
debug l <filename> ’L’oad a program and load symbols

This command also creates a CLI structure if you
use the AmigaDOS 2.0 version of PowerVisor

debug t <task>|<crash node>
Take an existing task or crash node and make
a debug node for it. With this command you can
in theory debug any task in the system (be
careful though)

debug f Remove the current debug node and freeze the
debug task

debug f <debug node> Remove the specified debug node and freeze the
corresponding task. Use this command if you are
debugging multiple programs at the same time.
You can find all debug nodes in the ’dbug’ list

debug r Remove the current debug node. The debug task
will continue executing at the programcounter

debug r <debug node> Remove the specified debug node
debug u Remove the current debug node. The debug task

will be stopped and the program will be unloaded.
debug u <debug node> Same as ’debug u’ but for a specified debug node.
debug d <name> Create a dummy debug node with name <name>

You can’t use this node for debugging but you
can use it to create symbols

debug q 0 Cleanup everything when the current debug task
quits. This is default

debug q 1 Prevent the current debug task from quiting.
This is useful in combination with the profiler
(see prof) and the resource tracker (see
track)

drefresh Refresh the debug display
dscroll <offset> Scroll <offset> bytes up in the fullscreen

debugger. Negative values are allowed. <offset>
will be made a multiple of two

dstart <address> Set the start of the debug logical window
dnexti Scroll to the next instruction
dprevi Attempt to scroll to the previous instruction
duse <debug node> Set the default debug node. This is useful when

you are debugging multiple tasks at the same time.
dwin Open/Close ’Debug’ logical window
symbol l <filename> [<hunkaddress>]

Load the symbols for the current debug task.
If you give <hunkaddress>, PowerVisor will load the
symbols for the given hunks. This is extremely
useful when you have created a dummy debug task.
Note that <hunkaddress> is 4 more than the number
given in the hunklist with the hunks command.
Note that <hunkaddress> is not optional when you

Debug.hyper 23 / 25

are loading symbols for a dummy debug task.
symbol c Clear all symbols for the current debug node
symbol t Remove all temporary symbols for the current debug

node (temporary symbols start with a dot ’.’ or
contain only digits and end with a ’$’)

symbol a <symbolname> <value>
Add a symbol to the list of symbols

symbol r <symbolname>
Remove a symbol from the list of symbols

symbol s List all symbols for the current debug node
source l <filename> [<hunkaddress>]

Load the source for the current debug task.
If you give <hunkaddress>, PowerVisor will load the
source for the given hunks. This is extremely
useful when you have created a dummy debug task.
Note that <hunkaddress> is 4 more than the number
given in the hunklist with the hunks command.
Note that <hunkaddress> is not optional when you
are loading the source for a dummy debug task

source w <address> Use this command to see in which source file and
on which line a specific address is located

source t <tab size> Set the tab size used for the source display. The
default tab value is 8

source s Show all sources for the current debug task
source r Redisplay the source in the ’Source’ logical window
source c Clear all sources and unload them
source g <line> Move the source to a specific line
source a <address> Display the right source at the right linenumber

for <address>
source h <hold mode> Set (1) or unset (0) hold mode for the source

logical window. The source logical window will not
follow the program counter in hold mode

trace Trace one instruction (singlestep mode)
trace n <number> Trace <number> instructions (singlestep mode)
trace nr <number> The same as ’trace n’ but use routine trace mode
trace nf <number> Trace <number> changes of program flow. This

command uses flow mode (only 68020 or higher)
trace b Trace until the next change of program flow

(singlestep mode)
trace t Trace over JSR or BSR. IF the instruction is

not a BSR or JSR this command is analogous to
’trace’ (execute mode)

trace j Trace until a library ROM function is about
to be called with JMP ...(a6) or JSR ...(a6).
(singlestep mode)

trace jf Like ’trace j’ but use flow mode (68020 or higher
only)

trace jr Like ’trace r’ but use routine trace mode
trace r <register> Trace until a specified register is changed.

Register can be d0-d7, a0-a6 or sp.
(singlestep mode)

trace rf <register> Same as ’trace r’ but use flow mode (68020
or higher only).
(flow mode)

trace rr <register> Same as ’trace r’ but use routine trace mode
trace u <address> Trace until programcounter is equal to <address>.

This command works by setting a private

Debug.hyper 24 / 25

breakpoint (number 0) at <address>. This command
only works when <address> is not in ROM
(execute mode)

trace ut <address> Trace until programcounter is equal to <address>.
No breakpoint is set by this command. <address>
can be in ROM
(singlestep mode)

trace o Trace over the current instruction. This command
is analogous to ’trace u’ with <address> equal
to the instruction following the current
instruction
(execute mode)

trace ot Trace over the current instruction.
This version can be used in ROM
(singlestep mode)

trace c <condition> Trace until <condition> is true
(singlestep mode)

trace cf <condition> Same as ’trace c’ but use flow mode (68020
or higher only)
(flow mode)

trace cr <condition> Same as ’trace c’ but use routine trace mode
trace q <condition> Trace until <condition> is true

This command is faster (compared with ’trace c’)
but the condition string is more limited (see
trace)

(singlestep mode)
trace qf <condition> Same as ’trace q’ but use flow mode (68020

or higher only)
(flow mode)

trace qr <condition> Same as ’trace q’ but use routine trace mode
trace s Skip instruction
trace i Do not trace. Show the current registers and

instructions (obsolete in the fullscreen debugger)
trace g Trace until a breakpoint is encountered (note that

all previous trace commands also stop when a
breakpoint is encountered)
(execute mode)

trace gt Trace until a breakpoint is encountered
(singlestep mode)

trace gf Same as ’trace g’ but use flow mode (68020
or higher only)
(flow mode)

trace gr Same as ’trace g’ but use routine trace mode
trace p Profile tracing

(singlestep mode)
trace pf Profile tracing (68020 or higher only)

(flow mode)
trace pr Same as ’trace p’ but use routine trace mode
trace z <adr> <len> Trace until the checksum for the given range

changes. <adr> and <len> are converted to longword
alligned values
(singlestep mode)

trace zr <adr> <len> Like ’trace z’ but use routine trace mode
trace zf <adr> <len> Like ’trace z’ but use flow mode
trace h Interrupt the tracing or executing of the

current debug task
trace f Interrupt the tracing or executing of the

Debug.hyper 25 / 25

current debug task as soon as this task
is in ready state

with <debug node> <command>
Temporarily set the current debug node and execute
<command>. This is useful for example, if you are
debugging with multiple programs at the same time
and you want to have a look at the symbols or
registers of the other program

	Debug.hyper
	Debugging (Tue Nov 3 14:38:07 1992)
	Debugging : Commands used in this tutorial
	Debugging : Functions used in this tutorial
	Debugging : Introduction
	Debugging : Loading a program
	Debugging : Two example sessions
	Debugging : Starting the first session
	Debugging : Tracing
	Debugging : Starting the second session
	Debugging : Breakpoints
	Debugging : Some theory
	Debugging : Resident breakpoints
	Debugging : The 'fdebug' command
	Debugging : Sourcelevel debugging
	Debugging : Using the PortPrint feature
	Debugging : Using the tag system and fd-files
	Debugging : Summary of all commands

