
Scripts.hyper

Scripts.hyper ii

COLLABORATORS

TITLE :

Scripts.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY December 6, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Scripts.hyper iii

Contents

1 Scripts.hyper 1

1.1 Scripts (Mon Nov 2 20:19:34 1992) . 1

1.2 Scripts : Commands used in this tutorial . 1

1.3 Scripts : Functions used in this tutorial . 2

1.4 Scripts : Introduction . 2

1.5 Scripts : PowerVisor scripts . 2

1.6 Scripts : ARexx scripts . 3

1.7 Scripts : Machinelanguage scripts . 6

1.8 Scripts : Making ML-scripts resident . 7

Scripts.hyper 1 / 7

Chapter 1

Scripts.hyper

1.1 Scripts (Mon Nov 2 20:19:34 1992)

Contents:
Introduction
PowerVisor scripts
ARexx scripts
Machinelanguage scripts
Making ML-scripts resident

Various:
Commands used in this tutorial
Functions used in this tutorial
Back to main contents

1.2 Scripts : Commands used in this tutorial

assign Assign to a variable for use in ARexx
attach Attach a command to a key (make a macro)
awin Open/close ’Rexx’ logical window
cleanup Free all memory allocated with ’alloc’
front Bring PowerVisor to the front
go Jump to memory
hide Hide output from ARexx script
list List a list
load Load a file in memory
pvcall Call PowerVisor internal function
remattach Remove a macro
remvar Remove a variable
resident Make a ML-script resident
rx Start an ARexx script
script Start a script
string Convert a PowerVisor string pointer to an ARexx string
sync Synchronize ARexx with PowerVisor
unhide Unhide output from ARexx script
unresident Remove a resident ML-script
unsync Undo synchronization of ARexx with PowerVisor
vars Show all variables

Scripts.hyper 2 / 7

void Evaluate expressions

1.3 Scripts : Functions used in this tutorial

alloc Allocate memory
eval Evaluate string
free Free memory
if Conditional evaluation

1.4 Scripts : Introduction

This tutor file explains everything (or almost everything at least) that
there is to know about scripts for PowerVisor. This is already quite a lot.
ARexx scripts, PowerVisor scripts and machinelanguage scripts are all
explained here.

1.5 Scripts : PowerVisor scripts

PowerVisor scripts are the simplest. A PowerVisor script is simply a bunch
of PowerVisor commands put after each other. You can’t do special things
in scripts like goto’s, subroutines, if-then-else structures,
There are a few things that must be noted though :

- You can put comments in your script files by putting a ’;’ in front
of the line (you may put spaces in front of the ’;’)
Note that you can’t put comments after a command, unless you are
sure that the command will ignore the extra argument (most commands
ignore everything after the last argument they need, but there
are exceptions)

; this is a comment

- The quit command works different in scripts. The ’quit’ command
stops the script. (PowerVisor will not quit)

- The script command does not work in scripts. You can’t recursively
execute scripts

You can start a script with the ’script’ command.

The recommended place for scripts is the s:pv subdirectory but PowerVisor
will first try the current directory. When a script is located in the
current directory or in the s:pv directory you need not specify the full
pathname.

There is one exception. The PowerVisor-Startup script always resides
in the s: directory. This is the script that is executed everytime
you start PowerVisor. The standard PowerVisor-startup script provided
with this release of PowerVisor defines some aliases (extra commands)
and makes some macros (key attachements) for you.

Scripts.hyper 3 / 7

There are some commands and functions present in PowerVisor that can
be used from the PowerVisor commandline but are more useful in scripts.
Two of these functions are if() and eval() . They are explained more
fully in the Expressions chapter.

Of course, commands like print and locate are also more useful in
scripts.

For a fully documented script example, look at Source/mkeys.explained.
This script installs a memory viewer. Don’t be alarmed at the apparent
complexity of this script (well, you may alarm yourselves a bit, because
it is a complex example :-), once you got the feeling you will find it
rather easy to use scripts in general.

If you use variables in your script it is recomended that you put
an underscore (’_’) in front of your variable. That way you minimize
the chances for variable collision with user variables. If you are
ready with the variable use remvar to remove it.

1.6 Scripts : ARexx scripts

For more complex scripts you can use ARexx. With ARexx you can interface
PowerVisor to all other programs that use ARexx. If you want you could even
write an ARexx script to debug programs from within your favorite editor,
or edit files from within PowerVisor :-)

The PowerVisor ARexx port is called ’REXX_POWERVISOR’ or
’REXX_POWERVISOR.<num>’ if you are running a slave instance of PowerVisor
(see the arexxport() function for more info).
This port is the default ARexx port if your script is started from
PowerVisor. But if you want to make global scripts (scripts that can be
started from anywhere, like the Shell or an editor) you must use :

ARexx< address rexx_powervisor

before you issue any PowerVisor command.

You can of course also use :

ARexx< address rexx_powervisor ’some powervisor command’

(Note that an ARexx script always starts with a comment /* ... */)

Almost all PowerVisor commands can be used from within an ARexx script.
There are some differences compared with the commandline :

- You can’t use abbreviations for commands, you must always type the
full commandname

- You can’t use prefixes like ’-’ and ’~’ before a command. (’~’ is
not useful). If you want to hide output (’-’), you must use the
hide command provided for that purpose

- The quit command does not work
- You get some new commands (assign , hide , unhide , sync ,

string , async and front) (explained below). These commands

Scripts.hyper 4 / 7

also work on the PowerVisor commandline but are not very useful there
- Functions are called the same way as commands. The result is put

in the ’result’ variable (if you use ’options results’ in
the ARexx script)

- Note that some commands and functions return a string instead of
a number when called from ARexx (See the Command Reference
and Function Reference chapters for all commands and functions
returning strings)

You can use the rx command to start an ARexx script. This command
starts the script asynchronous. This means that while the script is
running you can still use PowerVisor commands. If you want to disable
this feature you can use the sync command from within the ARexx
script. This command synchronizes PowerVisor with the ARexx script.
You will not be able to use the PowerVisor commandline. When the
ARexx script is ready, it should call async . If the ARexx script
forgets the ’async’ command, you will not be able to use PowerVisor
anymore. You can solve this by sending the command ’async’ from
the Shell (with the ’rx’ shell command) :

Shell< rx "address rexx_powervisor async" <enter>

Note that the default file extension for PowerVisor ARexx scripts
is ’.pv’. You do not need to type this extension when you use the
PowerVisor ’rx’ command.

When you execute a PowerVisor command or function from within ARexx
and there is an error (or the command is interrupted) you can
examine the returncode (the ’rc’ variable). ’rc’ will contain
0 if there was no error or the PowerVisor error code if there was
an error. You can find all PowerVisor error codes listed with the
geterror() function.

Because you can’t use the ’-’ prefix to hide output for a command there
is another way to hide output. The hide and unhide commands are
provided for this. After ’hide’ all output from the ARexx commands is
hidden (as if there was a ’-’ in front of the commandline).
’unhide’ restores this situation. Note that you must use ’unhide’ otherwise
you might confuse yourselves when you use other ARexx scripts.

Normally the output for the ARexx scripts goes to the current logical
window (’Main’ or ’Extra’). If you open the ’Rexx’ logical window with
awin , all the ARexx output will go to that logical window.

The front command brings the PowerVisor screen to the front.

Normally you would use ’rx’ to start ARexx scripts. But you can also
use this command to start ARexx commands from within PowerVisor :

< rx ’disp 3+4’ <enter>
> 00000007 , 7

or something more useful :

< rx ’address command dir’ <enter>

Scripts.hyper 5 / 7

CLI> ...

And the directory appears on the shell output window. You can thus use
the ’rx’ command to start cli commands from within PowerVisor.

If you have a pointer to a string in PowerVisor and you want to convert
this pointer to a real ARexx string you can use the ’string’ command to
do that.

The last extra command for ARexx is assign . With this command you
can assign something to a PowerVisor variable.
For example, the following ARexx script :

file< /* */
file< address rexx_powervisor
file< a=1
file< assign ’a=2’
file< disp a
file< disp ’a’

Will have as output :

< rx file <enter>
> 00000001 , 1
> 00000002 , 2

You should understand why
a=1

is not the same as
assign ’a=1’

The first command assigns 1 to the ARexx variable ’a’. This variable
is not directly accessable from within PowerVisor.

The second command assign 1 to the PowerVisor variable ’a’. This variable
is not directly accesable from within the ARexx script. You can ask the
value of PowerVisor variables with void :

ARexx< options results
ARexx< a=1
ARexx< assign ’a=2’
ARexx< ’void a’
ARexx< var1=result
ARexx< ’void’ a
ARexx< var2=result

Note ! var1 will be equal to 2, but var2 will be equal to 1. Can you
explain why?

s:pv/ShowAscii.pv, s:pv/PrintMode.pv and s:pv/PrintHist.pv are three ARexx
script examples that you can examine.
s:pv/Assem.pv is a small assembler. This is also a good example but it is
rather large.

Scripts.hyper 6 / 7

1.7 Scripts : Machinelanguage scripts

The following explanation is rather technical. Most PowerVisor users will
probably never write machinelanguage scripts.

Machinelanguage scripts or ML-scripts are normal AmigaDOS executable files.
In practice these can be programmed in several languages (like C), but
for naming conventions we call them ML-scripts.

You can execute ML-scripts the same way as normal PowerVisor scripts :
with the script command. PowerVisor will automatically check if the
script is a machinelanguage script by reading the first four bytes.
AmigaDOS executable files always begin with the same four bytes.

Example :

< script execfile 10 <enter>

will execute the file ’execfile’ and give 10 as the first argument
to the machinelanguage script.

When a ml-script gets executed some registers contain predefined
information :

a0 A pointer to the rest of the commandline (to ’10’ in the
previous example)

a1 Is the pointer to the ’rc’ variable. You can use this pointer
to store results or to get some value. The ’rc’ variable is a
longword

a2 Is the pointer to the PVCallTable. This is a table with
routines for you to use. See the The wizard corner chapter
for more information about the PVCallTable and the pvcall
command

You can put the returnvalue in d0. This returnvalue will be the result of
the ’script’ command.

If you are serious about writing ML-scripts in C or machinelanguage you
should look in the PVDevelop subdirectory. This directory contains all
include files and libraries useful for developing ML-scripts.

This is really all there is to machinelanguage scripts. But you should
read the The wizard corner chapter if you really want to make more
advanced ML-scripts. Source/SearchHist.asm is an example ML-script. This
script can be installed on a key to provide a history search utility (Note
that this is already done in the standard PowerVisor-startup file provided
with this release of PowerVisor).
The Source subdirectory contains some other examples (in C and
machinelanguage) for ML-scripts. All compiled and assembled forms of these
scripts are in the s:pv subdirectory. The C examples are written for
SAS/C (or Lattice). If you have another compiler (like Aztec-C) you will
probably have to change some things. I’m not sure if you will be able to
use the stubs (in the PVDevelop directory) for non-SAS/C compilers. But
since the source of the stubs is provided it should not be difficult to
addapt them to your needs.

Scripts.hyper 7 / 7

1.8 Scripts : Making ML-scripts resident

If you want you can make ML-scripts resident in memory. This is certainly
a lot faster if you use diskdrives and if the script is big.

You can use the resident command to make ML-scripts resident. Here
follows an example :

< _a={-resident s:pv/SearchHist} <enter>
< attach ’go \(_a)’ 04c 2 e <enter>
< attach ’go \(_a)’ 04c 1 e <enter>
< remvar _a <enter>

These four commands install the ’SearchHist’ ML-script on the shift-arrow
up key. When these four commands are executed you can search in the
PowerVisor history buffer with this key (This sequence of commands can
be found in the PowerVisor-startup file).

The first command (’resident’) loads the ML-script into memory and assigns
the pointer to the code to the ’_a’ variable (I assume here that you know
how the group operator works. See the Expressions chapter if you
don’t know it).

Using the attach command we attach the go command to the shift-arrow
up key (we make a macro). Note that when ’attach’ parses the command
string it will replace \(_a) with the contents of the variable ’_a’.
This is the pointer to the code of the ML-script. You may ask why we
didn’t use the variable instead of the value of the variable? This is
because we can know remove the variable since the value of the variable
is burned in the macro string.

The last command removes the variable.

The ’go’ command works very analogous to the script command. The only
difference is that the script must be located in memory instead of a
file. The register conventions are the same.

Now you can use <shift>+<up> to search in the history buffer. The text
at the left of the cursor in the stringgagdet will remain unchanged. The
script will search all lines beginning with this text.

You can use unresident to remove a loaded file. All resident files
are also automatically removed when PowerVisor quits.

	Scripts.hyper
	Scripts (Mon Nov 2 20:19:34 1992)
	Scripts : Commands used in this tutorial
	Scripts : Functions used in this tutorial
	Scripts : Introduction
	Scripts : PowerVisor scripts
	Scripts : ARexx scripts
	Scripts : Machinelanguage scripts
	Scripts : Making ML-scripts resident

