Technicallnfo.hyper

Technicallnfo.hyper

COLLABORATORS
TITLE :
Technicallnfo.hyper
ACTION NAME DATE SIGNATURE
WRITTEN BY December 6, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Technicallnfo.hyper

Contents

1 Technicallnfo.hyper

1.1 Technical Information (Mon Nov 2 20:20:05 1992)

1.2 Technical Information :
1.3 Technical Information :
1.4 Technical Information :

1.5 Technical Information :

Introduction
Commandline parsing
Hold mode

Expression parsing .

Technicallnfo.hyper

Chapter 1

Technicallnfo.hyper

1.1 Technical Information (Mon Nov 2 20:20:05 1992)

Contents:
Introduction
Commandline parsing
Hold mode
Expression parsing

Various:
Back to main contents

1.2 Technical Information : Introduction

This file contains some technical info and details about PowerVisor that
can be important to people writing scripts. If you are unsure about some
special feature you may find it here.

1.3 Technical Information : Commandline parsing

This section contains very detailed information about commandline parsing.

The following steps happen when a command string is parsed. This parsing
happens whenever a command is entered or for commands that are executed
as arguments for other commands (like for , to , with , ...).

- Skip spaces

— Check for the comment character (’;’ by default)
If it is a comment, the rest of the commandline is ignored and
the parsing is stopped (0 is returned)

— Checks if there is an output suppressor (’'-' by default)
If there is one, the output to the current logical window is
disabled.

- Skip spaces

— See if the command is an alias and if it is, replace the command
string with the alias string. All ’'[]’ symbols in the alias string

Technicallnfo.hyper

are replaced with the rest of the commandline after the original
command

- Skip spaces

— Check for the comment character (’;’ by default)
If it is a comment, the rest of the commandline is ignored and the
parsing is stopped (0 is returned)

— Checks if there is an output suppressor (’'-’ by default)
If there is one, the output to the current logical window is disabled

- Skip spaces

— See if there is a '{’ (command group). If there is we start parsing
each individual command in this group (seperated by ’;’) with the
algorithm described here. Note that comments do not work in groups
except when the comment appears in the alias string. After parsing
each individual command in the group, we stop the current parsing
(we return the result code of the last command in the group)

— If there is no '{’ we check if the command is an assignment.
If it is we perform the assignment and stop the parsing (we return
the assigned value)

- If we are still here, we have a normal command

- Skip spaces

— See if the command exists. If it does not exist we generate a
"Syntax Error’

- If the command is empty we simply continue the last memory listing
(or disassembly)

— If the first argument of the command is a ’?’ we get the commandline
template and show it (0 is returned if successful)

— Finally we come to execute the command (the result of this command
is returned)

The situation is a bit different for the command typed in on the
commandline (the stringgadget). BEFORE the above algorithm is executed,
the following additional steps are called

- Set the starting page for the current logical window to 0. This means
that we will get ’'-MORE-’ when a full page of output has passed

- Skip spaces

— Check if there is a feedback suppress character in front of the line
("~" by default). If there is, we remove it from the commandline
and skip the following step

- Feedback the command on the current logical window (show the command
as it was typed in)

— Display the ’'-BUSY-’ prompt

- Skip spaces

— Check if there is a quick-execute char (’\’ by default) in front of
the commandline. When there is one we skip the following step and
skip the last step of this procedure

— Check if there is a ’'Pre’ command to execute. A 'Pre’ command is
a command that is executed everytime the user enters a command (See
The wizard corner for more information). If there is a ’'Pre’
command it is executed (with the previous procedure for parsing)

- If the previous ’'Pre’ command failed (if it was executed) we
stop further parsing

— Use the previous procedure for parsing to parse the rest of the
commandline

— (This step is also skipped if the quick-execute char is present)
Check if there is a ’'Post’ command to execute. A ’"Post’ command is
a command that is executed AFTER execution of the commandline

Technicallnfo.hyper

3/6

(See The wizard corner for more information). If there is a ’"Post’
command it is executed (with the previous procedure for parsing

From these two procedures you can draw some conclusions

— Alias expansion is only done once. This means that you can’t use
an alias in an alias. However, when you use this second alias
in a group operator, it will be converted. For example

alias disp 'print []’
alias print ’disp []’

will simply redefine ’'print’ to mean ’'disp’ and ’'disp’ to mean
"print’.
alias disp ' {print [1}’
alias print ’{disp []}’

will cause an infinite loop when you call any of these two commands.
This is because alias expansion is done again for each command in
a group. PowerVisor checks for stackoverflow so don’t worry.

- If you want more prefix operators on the same commandline you have
to observe the following order

1.4 Technical Information : Hold mode

While in hold mode, PowerVisor only waits for the hot key signal and for
a crash. All other signals are ignored until the window is back again.

Starting with version 1.15BR, PowerVisor also checks for ARexx signals. So
you can use the ARexx port while PowerVisor is in hold mode. However, there
is currently one problem: when PowerVisor was on it’s own screen before
hold mode was selected (with the hold command), there may be a crash

when you return from hold mode with the front command used from

within ARexx. You can safely use this feature if the PowerVisor window is
on the Workbench for example. This bug will be solved as soon as I can

find it.

1.5 Technical Information : Expression parsing

Default operator priorities (you can change them with the pvcall
command) . Note that these priorities are the same as used in standard C.

Priorities between 1 and 10 are supported (1 is low priority)

Op Function Default priority

* Multiply 10
/ Divide 10

Technicallnfo.hyper

4/6

Her

(@]

Modulo

Add

Subtract

Left shift
Right shift
Greater than
Less than
Greater or equal
Less or equal
Not equal
Equal

And

Xor

Or

Logical and
Logical or

RN W 0oy Jd JdJJ 00 00w o

are some remarks for expression evaluation

Decimal integers always start with a non-zero digit

Hexadecimal integers start with a zero digit or with 'S’

String pointers always start with double quotes ’'"’

'=r,’~" and ’!’ are unary operators. The element directly after

the operator is evaluated and the operator is applied.

This means that these unary operators have the highest priority
possible. Unary operators are ALWAYS evaluated first.

The ’"«x’ operator is also a unary operator. The same comments

as for the normal unary operators apply here. The only difference

is the dot ’.’ that may appear after the evaluated element.

The ’:’ operator expects two string arguments (these string arguments
do not support the "\’ operator). The first argument (before

the ’":’) 1is the list name. If you omit this argument the current list
is used. The second argument (after the ’":’) is the list element.

If you omit this argument the first element in the list with a name
is used.

The '&’ operator. After the '&’ operator follows a ’:’ operator.

The '@’ operator. The following '@’ elements are supported

do ... d7
a0 ... a6
Sp
pcC

The ’'#’ operator. After the ’'#’ operator follows an integer
(line number)
A group operator ’{’ is evaluated by executing all commands in
the group. The result of the group is the result of the last
command in the group.
The group operator is disabled when you use the expression evaluator
from within a debug task.
A normal string starting with a single quote ’'''.
The following steps are used to evaluate a string starting with
a quote
— The first thing to do is to check if the string is a symbol in
the current debug task. This check is case sensitive.
No abbreviations are possible.
— If the previous check failed we check if the string is an
abbreviation for an element in the current list.

Technicallnfo.hyper

5/6

This check is case insensitive.
— Otherwise an error is generated
A name. This is a sequence of characters starting with a alphanumeric
character or an underscore ’'_'.
The following steps are used to evaluate the name
- First we check if the name is a variable or a function.
This check is case insensitive. No abbreviations are possible.
— If the previous check failed we check if the name is a
loaded library function (with loadfd). This check is case
insensitive. No abbreviations are possible.
— Otherwise we continue with the evaluation for strings with
a single quote.

Here follows the syntax for PowerVisor expressions

<name> 1is a syntaxical element

[]
{}
|

O

indicate optional items

repeat the items 1 or more times
choose between several items
group items

1is used for the ascii value of a character
\ all items after this operator are excluded from the list
before this operator (the "all-except’ operator)
indicate a range
<expression> ::= <element> [<operator> <expression>]
<element> ::= <integer> | <unary operator> | <brackets> |
<list operator> | <list address operator> | <group> |
<line number operator>
<integer> ::= <hexadecimal int> | <decimal int> | <variable> |
<function> | <string pointer> | <debug symbol> |
<current list element> | <register> | <library function>
<hexadecimal int> ::= (0’ | ’$") [{<hex-digit>}]
<decimal int> ::= ("17 727 |37 |74 |57 |76 |["T7 |78 179") [{<dec-digit>}]
<variable> = <name>
<function> ::= <name> ’ (’ [<expression>
[{<whitespace> <expression> }]] ")’
<debug symbol> ::= <name> | <string>
<current list element> ::= <name> | <string>
<library function> ::= <name> '’ ('’ [<expression>
[{<whitespace> <expression> }]] ’)’
<register> ::= '@’ (('d’"|’D’) (<dec-digit> \ ('8"179")) |
("a’ |"A") (<dec—-digit> \ ("8’ ["9")) | ’'sp’ | 'pc’ | ’'sr’)
<unary operator> ::= <negation> | <logical not> | <bitwise not> |

<address operator>

<negation> ::= ’'-' <element>

Technicallnfo.hyper

<logical not> ::= '"!’ <element>

<bitwise not> ::= ’'~’ <element>

<address operator> ::= ’'x’ <element> [’'.’ ('b"|’'w [’"1")]

<line number operator> ::= '#’ <element>

<list operator> ::= [<name>] ’':’ [<name> | <string>]

<list address operator> ::= &’ <list operator>

<group> ::= "{’ [{<command>}] [’}']

<command> ::= [<prefix operator>] ((<name> [{<expression>|<string>|
<name>}]) | <assignment>)

<prefix operator> ::='"-" | ’;’

<assignment> ::= (<name> | <register> | <address operator>) ’'='
<expression>

<brackets> ::= '’ (! <expression> [’)']

<name> ::= (’_’ |<alphachar>) [{’_’|<alphachar>|<dec-digit>}]

<string> ::= ’’’ [{<string-char>|<quote operator>|<strong quote>}] [''']

<string pointer> ::= "’ [{<stringptr-char>]|<quote operator>|

<strong quote>}] ['"']

<quote operator> ::= '\’ (<integer quote>|<char quote>)

<strong quote> ::= -’ <endchar> {#<x>} <endchar>

<char quote> ::= <hex-digit> <hex-digit>

<integer quote> ::= '’ (/! <expression> [<whitespace> <formatstring>] ')’

<formatstring> ::= {#<x> \ ’)’}

<alphachar> ='a’|['A" "' |'B"|...|"z"|"Z’

<hex-digit> ::= <dec-digit>|’a’|'b"|'c’"|"d"|"e’ |"£"|"A"|'B'|’'C’' |’'D’ |
IEIlIFI

<deC*dlglt>Z:= IOIIIlI|I2I|131‘I4I|I5I|I6I|I7I|I8I|191

<whitespace> ::= "' 7 [’,’ |[#9

<stringptr-char> ::= #<x> \ (/\"|'""")

<string-char> ::= #<x> \ ("\"|""")

<x> ::= 1..255

	TechnicalInfo.hyper
	Technical Information (Mon Nov 2 20:20:05 1992)
	Technical Information : Introduction
	Technical Information : Commandline parsing
	Technical Information : Hold mode
	Technical Information : Expression parsing

