Indent

Format C Code

Edition 1.00, for Indent Version 1.7
February 1993

Joseph Arceneaux
Jim Kingdon

Copyright (©) 1989, 1992, 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated
in a translation approved by the Foundation.

Chapter 1: The indent Program 1

1 The indent Program

The indent program changes the appearance of a C program by inserting or deleting whitespace.
It can be used to make code easier to read. It can also convert from one style of writing C to another.

indent understands a substantial amount about the syntax of C, but it also attempts to cope

with incomplete and misformed syntax.

In version 1.2 and more recent versions, the GNU style of indenting is the default.

1.1 Invoking indent
As of version 1.3, the format of the indent command is:

indent [options] [input-files]
indent [options] [single-input-file] [-o output-file]

This format is different from earlier versions and other versions of indent.

In the first form, one or more input files are specified. indent makes a backup copy of each file,
and the original file is replaced with its indented version. See Section 1.2 [Backup files], page 3, for

an explanation of how backups are made.

In the second form, only one input file is specified. In this case, or when the standard input is

used, you may specify an output file after the ‘-0’ option.

To cause indent to write to standard output, use the ‘~st’ option. This is only allowed when
there is only one input file, or when the standard input is used.

If no input files are named, the standard input is read for input. Also, if a filename named ‘-’

is specified, then the standard input is read.

As an example, each of the following commands will input the program ‘slithy_toves.c’ and

write its indented text to ‘slithy_toves.out’

2 indent: Indent and Format C Program Source

indent slithy_toves.c -o slithy_toves.out
indent -st slithy_toves.c > slithy_toves.out
cat slithy_toves.c | indent -o slithy_toves.out

Most other options to indent control how programs are formatted. As of version 1.2, indent
also recognizes a long name for each option name. Long options are prefixed by either ‘==’ or
‘+’.1 In most of this document, the traditional, short names are used for the sake of brevity. See

Appendix A [Option Summary], page 15, for a list of options, including both long and short names.

Here is another example:

indent -br test/metabolism.c -185

This will indent the program ‘test/metabolism.c’ using the ‘~br’ and ‘~185’ options, write
the output back to ‘test/metabolism.c’, and write the original contents of ‘test/metabolism.c’
to a backup file in the directory ‘test’.

Equivalent invocations using long option names for this example would be:

indent --braces-on-if-line --line-length185 test/metabolism.c
indent +braces-on-if-line +line-lengthl185 test/metabolism.c

If you find that you often use indent with the same options, you may put those options into a
file called ¢.indent.pro’. indent will first look for ‘. indent.pro’ in the current directory and use

‘.indent.pro’ and use that

that if found. Otherwise, indent will search your home directory for
file if it is found. This behaviour is different from that of other versions of indent, which load both

files if they both exist.

Command line switches are handled after processing ‘.indent.pro’. Options specified later
override arguments specified earlier, with one exception: Explicitly specified options always override
background options (see Section 1.3 [Common styles], page 3). You can prevent indent from reading

an ‘.indent.pro’ file by specifying the ‘-npro’ option.

1“4’ is being superseded by ‘--’ to maintain consistency with the POSIX standard.

Chapter 1: The indent Program 3

1.2 Backup Files

As of version 1.3, GNU indent makes GNU-style backup files, the same way GNU Emacs does.
This means that either simple or numbered backup filenames may be made.

Simple backup file names are generated by appending a suffix to the original file name. The
default for the this suffix is the one-character string ‘~’ (tilde). Thus, the backup file for ‘python.c’

9

would be ‘python.c™’.

Instead of the default, you may specify any string as a suffix by setting the environment variable
SIMPLE_BACKUP_SUFFIX to your preferred suffix.

Numbered backup versions of a file ‘momewraths’ look like ‘momewraths.c.~23~’, where 23 is the
version of this particular backup. When making a numbered backup of the file ‘src/momewrath.c’,
the backup file will be named ‘src/momewrath.c.” V™’ where V is one greater than the highest

version currently existing in the directory ‘src’.

The type of backup file made is controlled by the value of the environment variable VERSION_CONTROL.
If it is the string ‘simple’, then only simple backups will be made. If its value is the string
‘numbered’, then numbered backups will be made. If its value is ‘numbered-existing’, then num-
bered backups will be made if there already exist numbered backups for the file being indented;
otherwise, a simple backup is made. If VERSION_CONTROL is not set, then indent assumes the

behaviour of ‘numbered-existing’.

Other versions of indent use the suffix ‘.BAK’ in naming backup files. This behaviour can be
emulated by setting SIMPLE_BACKUP_SUFFIX to ‘.BAK’.

Note also that other versions of indent make backups in the current directory, rather than in
the directory of the source file as GNU indent now does.

1.3 Common styles

There are several common styles of C code, including the GNU style, the Kernighan & Ritchie
style, and the original Berkeley style. A style may be selected with a single background option,
which specifies a set of values for all other options. However, explicitly specified options always

override options implied by a background option.

4 indent: Indent and Format C Program Source

As of version 1.2, the default style of GNU indent is the GNU style. Thus, it is no longer
neccessary to specify the option ‘-gnu’ to obtain this format, although doing so will not cause an
error. Option settings which correspond to the GNU style are:

-nbad -bap —nbbb -nbc -bl -bli2 -c33 -cd33 -ncdb -nce
-cli0 -cpl -di2 -nfcl -nfca -i2 -ipb -1p -pcs -psl -cs
-nsc -nsob -nss -ts8 -d0 -ciO -178

The GNU coding style is that preferred by the GNU project. It is the style that the GNU
Emacs C mode encourages and which is used in the C portions of GNU Emacs. (People interested
in writing programs for Project GNU should get a copy of The GNU Coding Standards, which also
covers semantic and portability issues such as memory usage, the size of integers, etc.)

The Kernighan & Ritchie style is used throughout their well-known book The C Programming
Language. It is enabled with the ‘~kr’ option. The Kernighan & Ritchie style corresponds to the
following set of options:

-nbad -bap -nbbb -nbc -br -c33 -cd33 -ncdb -ce -ci4
-cli0 -cp33 -d0 -dil -nfcl -nfca -i4 -ip0 -175 -1p
-npcs -npsl -nsc -nsob -nss -ts8 -cs

Kernighan & Ritchie style does not put comments to the right of code in the same column at
all times (nor does it use only one space to the right of the code), so for this style indent has

arbitrarily chosen column 33.

The style of the original Berkeley indent may be obtained by specifying ‘-orig’ (or by specify-
fying ‘--original’, using the long option name). This style is equivalent to the following settings:

-nbap -nbad -nbbb -bc -br -c33 -cd33 -cdb -ce -ci4
-cli0 -cp33 -d4 -dil6 -fcl -fca -i4 -ip4 -175 -1p
-npcs -psl -sc -nsob -nss -ts8 -ncs

1.4 Blank lines

Various programming styles use blank lines in different places. indent has a number of options
to insert or delete blank lines in specific places.

Chapter 1: The indent Program)

The ‘-bad’ option causes indent to force a blank line after every block of declarations. The
‘-nbad’ option causes indent not to force such blank lines.

The ‘~bap’ option forces a blank line after every procedure body. The ‘-nbap’ option forces no
such blank line.

The ‘-bbb’ option forces a blank line before every block comment. A block comment is one
which starts in column one when formatting of such comments is disabled, or one with - or *
immediately following the /*. The ‘-nbbb’ option does not force such blank lines.

The ‘-sob’ option causes indent to swallow optional blank lines (that is, any optional blank
lines present in the input will be removed from the output). If the ‘-nsob’ is specified, any blank
lines present in the input file will be copied to the output file.

For example, given the input

char *foo;

char x*bar;

/* This separates blocks of declarations. */
int baz;

indent -bad produces

char *foo;

char *bar;

/* This separates blocks of declarations. */
int baz;

and indent -nbad produces

char *foo;

char *bar;

/* This separates blocks of declarations. */
int baz;

The ‘-bap’ option forces a blank line after every procedure body.

6 indent: Indent and Format C Program Source

For example, given the input

int
foo ()
{
puts("Hi");
}
/* The procedure bar is even less interesting. */
char *
bar ()
{
puts("Hello");
}

indent -bap produces

int
foo ()
{
puts ("Hi");
}
/* The procedure bar is even less interesting. */
char *
bar ()
{
puts ("Hello");
}

and indent -nbap produces

int
foo ()
{
puts ("Hi");
}
/* The procedure bar is even less interesting. */
char *
bar O
{
puts ("Hello");
}

No blank line will be added after the procedure foo.

Chapter 1: The indent Program 7

1.5 Comments

Comments are no longer formatted by default as of version 1.2. This can be enabled with the
‘~fca’ option. Doing so will cause newlines in the comment text to be ignored and the line will be
filled up to the length of a line (which can be modified with ‘-1’). When formatting is enabled,
blank lines indicate paragraph breaks.

The ‘-fc1’ option enables the formatting of comments which begin in the first column. The
‘-nfcl’ option disables the formatting of first column comments. When comment formatting is

disabled, overall comment indentation may still be adjusted.

The indentation of comments which do not appear to the right of code is set by the ‘-d’ option,
which specifies the number of spaces to the left of the surrounding code that the comment appears.
For example, ‘-d2’ places comments two spaces to the left of code; ‘-d0’ lines up comments with
the code. The ‘-cdb’ option controls whether the ‘/*’ and ‘*/’ are placed on blank lines. With
‘—cdb’, comments look like this:

/*
* this is a comment

*/

With ‘-ncdb’, comments look like this:

/* this is a comment */

‘-cdb’ only affects block comments, not comments to the right of code. The default is ‘-ncdb’.

Comments which appear on the same line as code are placed to the right. The column in which
comments on code start is controlled by the ‘~c’ option. The column in which comments to the
right of declarations start is controlled by the ‘-cd’ option. By default, they start in the same
column as comments to the right of code, which is column 33. The column number for comments
to the right of ‘#else’ and ‘#endif’ statements is controlled by the
a line extends past the comment column, the comment starts further to the right, and the right

¢

-cp’ option. If the code on

margin may be automatically extended in extreme cases.

If the ‘-sc’ option is specified, ‘*’ is placed at the left edge of all comments. For example:

8 indent: Indent and Format C Program Source

/* This is a comment which extends from one line
* onto the next line, thus causing us to consider
* how it should continue. */

instead of

/* This is a comment which extends from one line
onto the next line, thus causing us to consider
how it should continue. */

1.6 Statements

The ‘-br’ or ‘-bl’ option specifies how to format braces.
The ‘-br’ option formats braces like this:

if (x> 0) {
X——;

}

The ‘-bl’ option formats them like this:

if (x > 0)
{
x==;

}

If you use the ‘-bl’ option, you may also want to specify the ‘-bli’ option. This option specifies
the number of spaces by which braces are indented. ‘-bli2’, the default, gives the result shown
above. ‘~b1i0’ results in the following:

if (x > 0)
{
x==;

}

Chapter 1: The indent Program 9

If you are using the ‘~br’ option, you probably want to also use the ‘-ce’ option. This causes
the else in an if-then-else construct to cuddle up to the immediately preceding ‘}’. For example,

with ‘-br -ce’ you get the following:

if (x> 0) {

X3
} else {

fprintf (stderr, "...something wrong?\n");
}

With ‘~br -nce’ that code would appear as

if (x> 0) {
x=-;
}
else {
fprintf (stderr, "...something wrong?\n");
}

The ‘-cli’ option specifies the number of spaces that case labels should be indented to the right

of the containing ‘switch’ statement.

‘-ss’ option will cause a

If a semicolon is on the same line as a for or while statement, the
space to be placed before the semicolon. This emphasizes the semicolon, making it clear that the

body of the for or while statement is an empty statement. -nss disables this feature.

The ‘-pcs’ option causes a space to be placed between the name of the procedure being called
and the ‘C (for example, puts ("Hi") ;. The ‘-npcs’ option would give puts("Hi") ;).

If the ‘-=cs’ option is specified, indent puts a space after a cast operator.

The ‘-bs’ option ensures that there is a space between the keyword sizeof and its argument.

In some versions, this is known as the ‘Bill_Shannon’ option.

10 indent: Indent and Format C Program Source

1.7 Declarations

By default indent will line up identifiers, in the column specified by the ‘-di’ option. For
example, ‘-di16’ makes things look like:

int foo;
char *bar;

Using a small value (such as one or two) for the ‘-di’ option can be used to cause the indentifiers
to be placed in the first available position, for example

int foo;
char x*bar;

The value given to the ‘-di’ option will still affect variables which are put on separate lines from

their types, for example ‘-di2’ will lead to

int
foo;

If the ‘~bc’ option is specified, a newline is forced after each comma in a declaration. For

example,

With the ‘-nbc’ option this would look like

int a, b, c;

The ‘-psl’ option causes the type of a procedure being defined to be placed on the line before

the name of the procedure. This style is required for the etags program to work correctly, as well
as some of the c-mode functions of Emacs.

Chapter 1: The indent Program 11

If you are not using the ‘-di1’ option to place variables being declared immediately after their
type, you need to use the ‘-T’ option to tell indent the name of all the typenames in your program
that are defined by typedef. ‘-T’ can be specified more than once, and all names specified are
used. For example, if your program contains

typedef unsigned long CODE_ADDR;
typedef enum {red, blue, green} COLOR;

you would use the options ‘~T CODE_ADDR -T COLOR’.

1.8 Indentation

One issue in the formatting of code is how far each line should be indented from the left
margin. When the beginning of a statement such as if or for is encountered, the indentation

¢ ¢

level is increased by the value specified by the ‘-i’ option. For example, use ‘-i8’ to specify an
eight character indentation for each level. When a statement is continued from a previous line,
it is indented by a number of additional spaces specified by the ‘-ci’ option. ‘-ci’ defaults to O.
However, if the ‘-~1p’ option is specified, and a line has a left parenthesis which is not closed on
that line, then continuation lines will be lined up to start at the character position just after the
left parenthesis. This processing also applies to ‘[’ and applies to ‘{’ when it occurs in initialization

lists. For example, a piece of continued code might look like this with ‘-nlp -ci3’ in effect:

pl = first_procedure (second_procedure (p2, p3),
third_procedure (p4, p5));

With ‘-1p’ in effect the code looks somewhat clearer:

pl = first_procedure (second_procedure (p2, p3),
third_procedure (p4, p5));

indent assumes that tabs are placed at regular intervals of both input and output character
streams. These intervals are by default 8 columns wide, but (as of version 1.2) may be changed by
the ‘-ts’ option. Tabs are treated as the equivalent number of spaces.

12 indent: Indent and Format C Program Source

The indentation of type declarations in old-style function definitions is controlled by the ‘~ip’
parameter. This is a numeric parameter specifying how many spaces to indent type declarations.
For example, the default ‘~ip5’ makes definitions look like this:

char *

create_world (x, y, scale)
int x;
int y;
float scale;

For compatibility with other versions of indent, the option ‘-nip’ is provided, which is equivalent
to ‘=ip0’.

ASCII C allows white space to be placed on preprocessor command lines between the character
‘4" and the command name. By default, indent removes this space, but specifying the ‘-1ps’
option directs indent to leave this space unmodified.

1.9 Miscellaneous options

To find out what version of indent you have, use the command indent -version. This will
report the version number of indent, without doing any of the normal processing.

The ‘=v’ option can be used to turn on verbose mode. When in verbose mode, indent reports
when it splits one line of input into two more more lines of output, and gives some size statistics
at completion.

1.10 Bugs

The "-troff" option is strongly deprecated, and is not supported. A good thing for someone to
do is to rewrite ‘indent’ to generate TeX source as a hardcopy output option, amoung other things.

Chapter 1: The indent Program 13

1.11 Copyright

The following copyright notice applies to the indent program. The copyright and copying
permissions for this manual appear near the beginning of this document.

Copyright (c) 1989, 1992 Free Software Foundation

Copyright (c) 1985 Sun Microsystems, Inc.

Copyright (c) 1980 The Regents of the University of California.

Copyright (c) 1976 Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms are permitted

provided that the above copyright notice and this paragraph are

duplicated in all such forms and that any documentation,

advertising materials, and other materials related to such

distribution and use acknowledge that the software was developed

by the University of California, Berkeley, the University of Illinois,

Urbana, and Sun Microsystems, Inc. The name of either University

or Sun Microsystems may not be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

14

indent: Indent and Format C Program Source

Appendix A: Option Summary 15

Appendix A Option Summary

Here is a list of all the options for indent, alphabetized by short option. It is followed by a
cross key alphabetized by long option.

‘~bad’
‘~-blank-lines-after-declarations’
Force blank lines after the declarations.
See Section 1.4 [Blank lines], page 4.
‘“pap’
‘--blank-lines-after-procedures’
Force blank lines after procedure bodies.
See Section 1.4 [Blank lines], page 4.
‘~bbb’
‘~-blank-lines-after-block-comments’
Force blank lines after block comments.
See Section 1.4 [Blank lines], page 4.
pe’
‘~-blank-lines-after-commas’
Force newline after comma in declaration.
See Section 1.7 [Declarations]|, page 10.
“p1’
‘~~braces-after-if-line’
Put braces on line after if, etc.
See Section 1.6 [Statements], page 8.
‘~blin’
‘--brace-indentn’
Indent braces n spaces.
See Section 1.6 [Statements|, page 8.
pr’
‘--braces-on-if-line’
Put braces on line with if, etc.
See Section 1.6 [Statements|, page 8.
e
‘--comment-indentationn’
Put comments to the right of code in column n.
See Section 1.5 [Comments|, page 7.

16 indent: Indent and Format C Program Source

‘—cdn’

‘~—declaration-comment-columnn’
Put comments to the right of the declarations in column n.
See Section 1.5 [Comments|, page 7.

‘—cdb’

‘——comment-delimiters-on-blank-lines’
Put comment delimiters on blank lines.

See Section 1.5 [Comments|, page 7.

(_Ce7

‘-—cuddle-else’

Cuddle else and preceeding ‘}’.

See Section 1.5 [Comments|, page 7.
‘~cin’
‘~-—continuation-indentationn’

Continuation indent of n spaces.

See Section 1.6 [Statements|, page 8.
‘~clin’
‘--case-indentationn’

Case label indent of n spaces.

See Section 1.6 [Statements|, page 8.
‘_Cpn’
‘--else-endif-columnn’

Put comments to the right of ‘#else’ and ‘#endif’ statements in column n.

See Section 1.5 [Comments|, page 7.

(_CS7

‘--space-after-cast’
Put a space after a cast operator.
See Section 1.6 [Statements], page 8.
C_'bs7
‘--blank-before-sizeof’
Put a space between sizeof and its argument.
See Section 1.6 [Statements|, page 8
‘~dn’
‘-—line-comments-indentationn’

Set indentation of comments not to the right of code to n spaces.
See Section 1.5 [Comments|, page 7.

Appendix A: Option Summary

‘—-din’
‘~—declaration-indentationn’
Put variables in column n.
See Section 1.7 [Declarations]|, page 10.
‘—fcl’
‘——format-first-column-comments’
Format comments in the first column.
See Section 1.5 [Comments|, page 7.
‘~fca’
‘——format-all-comments’

Do not disable all formatting of comments.
See Section 1.5 [Comments|, page 7

C_gnu7
‘-—gnu-style’
Use GNU coding style. This is the default.
See Section 1.3 [Common styles], page 3.
‘—in’

‘——indent-leveln’

Set indentation level to n spaces.

See Section 1.8 [Indentation], page 11.
‘_ipn’
‘-—parameter-indentationn’

Indent parameter types in old-style function definitions by n spaces.
See Section 1.8 [Indentation], page 11.

(_kr7
‘-—k-and-r-style’
Use Kernighan & Ritchie coding style.
See Section 1.3 [Common styles|, page 3.
“1n’
‘--line-lengthn’
Set maximum line length to n.
See Section 1.5 [Comments], page 7.

4 bl

_1p
‘-—continue-at-parentheses’

Line up continued lines at parentheses.
See Section 1.8 [Indentation], page 11.

18 indent: Indent and Format C Program Source

c_lps7
‘--leave-preprocessor-space’
Leave space between ‘#’ and preprocessor directive. See Section 1.8 [Indentation],
page 11.
‘-nbad’

‘—~—no-blank-lines-after-declarations’

Do not force blank lines after declarations.
See Section 1.4 [Blank lines], page 4.
‘-nbap’
‘-—no-blank-lines-after-procedures’

Do not force blank lines after procedure bodies.
See Section 1.4 [Blank lines], page 4.

‘—nbbb’
‘-—no-blank-lines-after-block-comments’
Do not force blank-lines after block comments.

See Section 1.4 [Blank lines|, page 4.
‘-nbc’
‘~—no-blank-lines-after-commas’

Do not force newlines after commas in declarations.
See Section 1.7 [Declarations]|, page 10.

‘-ncdb’

‘——no-comment-delimiters-on-blank-lines’
Do not put comment delimiters on blank lines.
See Section 1.5 [Comments|, page 7.

‘-nce’

‘~—dont-cuddle-else’

Do not cuddle } and else.
See Section 1.6 [Statements], page 8.

‘-ncs’
‘--no-space-after-casts’

Do not put a space after cast operators.
See Section 1.6 [Statements|, page 8.

‘-nfcl’

‘—~—dont-format-first-column-comments’

Do not format comments in the first column as normal.
See Section 1.5 [Comments|, page 7.

Appendix A: Option Summary

‘-nfca’

‘~—dont-format-comments’

Do not format any comments.
See Section 1.5 [Comments|, page 7.

(_nip7
‘-—no-parameter-indentation’

Zero width indentation for parameters.
See Section 1.8 [Indentation], page 11

(_n1p7
‘-—dont-line-up-parentheses’

Do not line up parentheses.
See Section 1.6 [Statements|, page 8.

‘-npcs’

‘--no-space-after-function-call-names’

Do not put space after the function in function calls.
See Section 1.6 [Statements|, page 8.

‘-npsl’
‘-—dont-break-procedure-type’

Put the type of a procedure on the same line as its name.
See Section 1.7 [Declarations]|, page 10.

‘-nsc’
‘~—dont-star-comments’

Do not put the ‘*’ character at the left of comments.
See Section 1.5 [Comments|, page 7.

‘-nsob’

‘--leave-optional-blank-lines’

Do not swallow optional blank lines.
See Section 1.4 [Blank lines], page 4.

‘-nss’
‘-—dont-space-special-semicolon’

Do not force a space before the semicolon after certain statements. Disables ‘-ss’.
See Section 1.6 [Statements|, page 8.

-nv

‘-—no-verbosity’

Disable verbose mode. See Section 1.9 [Miscellaneous options|, page 12.

20 indent: Indent and Format C Program Source

‘~orig’
‘-—original’
Use the original Berkeley coding style.
See Section 1.3 [Common styles], page 3.
‘-npro’

‘-—ignore-profile’
Do not read ¢.indent.pro’ files.
See Section 1.1 [Invoking indent], page 1.

‘~pcs’

‘-—space-after-procedure-calls’
Insert a space between the name of the procedure being called and the ‘(.
See Section 1.6 [Statements|, page 8.

‘~psl’

‘-—procnames-start-lines’
Put the type of a procedure on the line before its name.
See Section 1.7 [Declarations]|, page 10.

L_SC7

‘~-start-left-side-of-comments’
Put the ‘*’ character at the left of comments.
See Section 1.5 [Comments|, page 7.
‘~sob’
‘-—swallow-optional-blank-lines’
Swallow optional blank lines.
See Section 1.4 [Blank lines|, page 4.

(_SS7

‘-—space-special-semicolon’

On one-line for and while statments, force a blank before the semicolon.

See Section 1.6 [Statements], page 8.
gt
‘--standard-output’

Write to standard output.

See Section 1.1 [Invoking indent], page 1.
=T’ Tell indent the name of typenames.

See Section 1.7 [Declarations]|, page 10.
‘~tsn’
‘-—tab-sizen’

Set tab size to n spaces.

See Section 1.8 [Indentation], page 11.

Appendix A: Option Summary

g
‘——verbose’

Enable verbose mode.

See Section 1.9 [Miscellaneous options|, page 12.

‘~version’

Output the version number of indent.

See Section 1.9 [Miscellaneous options|, page 12.

Options’ Cross Key

21

Here is a list of options alphabetized by long option, to help you find the corresponding short

option.

--blank-lines-after-block-comments
--blank-lines-after—commas
--blank-lines-after—declarations
--blank-lines-after-procedures
--braces-after-if-line
--brace-indent

--braces-on-if-line
-—case-indentation
-—comment-delimiters-on-blank-lines
-—comment-indentation
-—continuation-indentation
--continue-at-parentheses
-—-cuddle-else
-—declaration-comment-column
-—-declaration-indentation
--dont-break-procedure-type
-—dont-cuddle-else
-—dont-format-comments
-—dont-format-first-column-comments
--dont-line-up-parentheses
--dont-space-special-semicolon
-—dont-star-comments
--else-endif-column
-—format-all-comments

—-—format-first-column-comments

-bbb

-bad

-cin

-ce
—-cdn
-din
-npsl
-nce
-nfca
-nfcl
-nlp
-nss
-nsc
-cpn
-fca
-fcl

22

--gnu-style

--ignore-profile

--indent-level

--k-and-r-style
--leave-optional-blank-lines
--line-comments-indentation
--leave-preprocessor-space
--line-length
--no-blank-lines-after-block-comments
--no-blank-lines-after-commas
--no-blank-lines-after-declarations
--no-blank-lines-after-procedures
--no-comment-delimiters-on-blank-lines
--no-space-after-casts
--no-parameter-indentation
-—no-space-after-function-call-names
--no-verbosity

--original

—--parameter-indentation
—--procnames-start-lines
--space-after-cast
--space-after-procedure-calls
—--space-special-semicolon
--standard-output
--start-left-side-of-comments
--swallow-optional-blank-lines
-—-tab-size

—--verbose

indent: Indent and Format C Program Source

-gnu
-npro
-in
-kr

-nsob

-1ps
-1n
-nbbb
-nbc
-nbad
-nbap
-ncdb
-ncs
-nip

-npcs

-orig
-ipn
-psl
-cs
-pcs
-ss
-st
-sc
-sob
-tsn

-V

Index

Index

--blank-after-sizeof L 9
--blank-lines-after-block-comments 5
--blank-lines-after-commas 10
--blank-lines-after-declarations................ 5
--blank-lines-after-procedures.................. 5
--brace-indentn........... il 8
--braces-after-if-line........... 8
--braces-on-if-line............. ol 8
--case-indentationnl 9
--comment-delimiters-on-blank-lines............ 7
--comment-indentationn.............. 7
--continuation-indentationn.................... 11
--continue-at-parentheses....................... 11
——cuddle-elsettt 8
--declaration-comment-columnn. 7
--declaration-indentationn 10
--dont-break-procedure-type 10
--dont-cuddle-else...............coiiiiiiiiii., 8
--dont-format-comments, 7
--dont-format-first-column-comments............ 7
--dont-line-up-parentheses 11
--dont-space-special-semicolon.................. 9
--dont-star-commentsi i, 7
-—else-endif-columnno, 7
--format-all-commentsccooiuiiiiinn... 7
--format-first-column-comments.................. 7
——gnu-style. 3
—-ignore-profile........... it 2
—-indent-leveln............coiiuuuiiiiiiiinnnnnn. 11
——k-and-r-style..........l 4
--leave-optional-blank-lines.................... 5
-—leave-preprocessor—Space 12
--line-comments-indentationn.................... 7
—-line-lengthn................... i 7
--no-blank-lines-after-block-comments.......... 5
--no-blank-lines-after-commas.................. 10
--no-blank-lines-after-declarations............ 5

--no-blank-lines-after-procedures 5

23
--no-comment-delimiters-on-blank-lines......... 7
--no-parameter-indentation 11
--no-space-after-casts.................. 9
--no-space-after-function-call-names........... 9
——no-verbosity.............. . 12
——original ... 4
——output-file 1
--parameter-indentationn................. 11
--procnames-start-lines......................... 10
——YemoVe—pPreproCceSSOr—SPaACEouueenn... 12
--space-after-cast................ ..o 9
--space-after-procedure-calls................... 9
--space-special-semicolon........................ 9
—-standard-output...........c.ccoiiiiiiiii... 1
--star-left-side-of-comments 7
--swallow-optional-blank-lines.................. 5
—=tab-sizen.......... i 11
SoVEIDOSE . L 12
Sbad. . 5
Tbap . 5
Sbbb. 5
She. 10
2 P 8
“blin. ..o 8
DT 8
TS 9
SCAD . 7
SCAD . 7
O et 8
SCIM. 11
—clin. .. 9
=2 4 7
B > 7 N 7
o T PP 9
T 8
SAIn. 10
SAD 7
1 <3 P 7
e 12 TP 7

24

TEIUL 3
7 T 11
1 o 4 TP 11
e < 4
2 PP 7
s« T 11
B <= PP 12
“nbad. .. 5
“mbap...... 5
SNbbb. . 5
TG 10
-nedb. . 7
TIIC S 9
-nfcl. 7
SnfCA. 7
£ 1 P 11
TR D 11
TS 12
TIPCS . 9
TIPTO . o et 2
TIPSl 10
TIESC 7
TISOD . L 5
R <1 T 9
TIV e e e e 12
S0 e 1
SOTA . 4
TP S 9
TS L 10
B 7
TBOD L 5
=1 T PPN 9
= 72 1
e 10
777 4 N 11
Y 12
SVETSIOM . oot 12

indent: Indent and Format C Program Source

B

Beginning indent........... oo il 1
Berkeley style... ..o 4
Blank lines ... 4

C

CoOmIMENtS . oottt 7

E

etags requires ‘-psl’......... ... i 10

G

GNUstyle.. ... 3

I

Initialization file, 2

Invoking indent i 1

K

Kernighan & Ritchie style.................... 4

L

Long options, use of........... ..o i 2

@)

Original Berkeley style............... 4
Output File Specification 1

S

Standard Qutput ... 1
Starting indent.............eeiiiiiir i 1

T

Typenames ... 10

U

Using Standard Input........... 1

Table of Contents

1 The indent Program.................................. 1
1.1 InvoKing indent..........oouuiiinii ettt 1
1.2 Backup Files 3
1.3 Common styles. 3
1.4 Blank nes. e 4
1.5 COommentsoon 7
1.6 Statements.ot 8
1.7 Declarationsoioiiim i 10
1.8 Indentationoiiiii 11
1.9 Miscellaneous optionsueiiiii i 12
110 BUES . ettt 12
111 Copyright . ..o 13
Appendix A Option Summary 15

ii

indent: Indent and Format C Program Source

