
Macintosh
Sample Code Notes

Developer Technical Support
#13: OOPTESample

Written by: Keith Rollin

Versions: 1.00 April 1989
1.1 February 1990

Components: BuildOOPTESample February 1, 1990
MOOPTESample.p February 1, 1990
OOPTESample.make February 1, 1990
TECommon.h February 1, 1990
TESampleGlue.a February 1, 1990
TESample.r February 1, 1990
UApplication.p February 1, 1990
UApplication.inc1.p February 1, 1990
UDocument.p February 1, 1990
UDocument.inc1.p February 1, 1990
UTEDocument.p February 1, 1990
UTEDocument.inc1.p February 1, 1990
UTESample.p February 1, 1990
UTESample.inc1.p February 1, 1990

__

The build process for OOPTESample is entirely automated. All you need to do is run the
BuildOOPTESample script. BuildOOPTESample is a variation on the BuildProgram script that
comes standard with MPW. It creates a folder to contain the intermediary object files, and then calls
Make with the file OOPTESample.make. Make’s output is executed with the final application
OOPTESample as the result.
__

OOPTESample is an example application that demonstrates how to initialize the commonly used
Toolbox managers, operate successfully under MultiFinder, handle desk accessories, and create, grow,
and zoom windows. It demonstrates fundamental TextEdit toolbox calls and TextEdit automatic
scrolling, and it shows how to create and maintain scroll bar controls.

This version of TESample has been substantially reworked in Object Pascal to show how a “typical”
object-oriented program could be written. To this end, what was once a single source code file has
been restructured into a set of classes which demonstrate the advantages of object-oriented
programming.

There are four main classes in this program. Each one of these has an interface (.p) file and an
implementation (.inc1.p) file, and is compiled into its own separate UNIT.

The TApplication class does all of the basic event handling and initialization necessary for Macintosh
Toolbox applications. It maintains a list of TDocument objects and passes events to the correct
TDocument class when appropriate.

#13: OOPTESample of 21

The TDocument class does all of the basic document handling work. TDocuments are objects that are
associated with a window. Methods are provided to deal with update, activate, mouse-click, key-
down, and other events. Some additional classes which implement a linked list of TDocument objects
are provided.

The TApplication and TDocument classes together define a basic framework for Macintosh
applications, without having any specific knowledge about the type of data being displayed by the
application’s documents. They are a (very) crude implementation of the MacApp application model,
without the sophisticated view hierarchies or any real error handling.

The TESample class is a subclass of TApplication. It overrides several TApplication methods,
including those for handling menu commands and cursor adjustment, and it does some necessary
initialization. Note that we only need to override nine methods to create a useful application class.

The TEDocument class is a subclass of TDocument. This class contains most of the special-purpose
code for text editing. In addition to overriding most of the TDocument methods, it defines a number
of additional methods which are used by the TESample class to get information on the document state.

This program consists of four segments. “Main” contains most of the code, including the MPW
libraries and the main program. “Initialize” contains code that is used only once, or rarely, and can be
unloaded after the event loop is completed. “%A5Init” is automatically created by the Linker to
initialize globals for the MPW libraries and is unloaded right away. “%_MethTables” is a fake
segment used by Object Pascal to maintain object relationships.

Toolbox routines do not change the current port. In spite of this, in this program we use a strategy of
calling _SetPort whenever we want to draw or make calls which depend on the current port. This
precaution makes us less vulnerable to bugs in other software which might alter the current port (such
as the bug (feature?) in many desk accessories which changes the port when there is a call to
_OpenDeskAcc). Hopefully, this also makes the routines from this program more self-contained,
since they don’t depend on the current port setting.

This program does not maintain a private scrap. Whenever a cut, copy, or paste occurs, we import or
export from the public scrap to TextEdit’s scrap right away, using the TEToScrap and
TEFromScrap routines. If we did use a private scrap, the import or export would be in the activate
or deactivate event and suspend or resume event routines.

#13: OOPTESample of 22

