
Coding for Multiple Platforms 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Coding for Multiple Platforms

One of the attractions that VisualWorks offers is the seamless way in which it is portable
across multiple platforms. In this module we provide examples of good implementation
practice for platform–independence including an example of the way in which the
VisualWorks user interface widgets can be used to provide platform–specific dialog
boxes.

1. Discovering the Platform
There are three message expressions which may be used to discover the platform on
which the VisualWorks image started. (They are described in Table 1.) NOTE: If you start
VisualWorks on a server and use X to open windows on a client, VisualWorks will inform
you that it is running on the server: this may cause some peculiarities.

The last of these is the most useful as it returns a Symbol. The information can be used
in two ways:1

1. to install classes appropriately at start–up (e.g., the method install in class
OSHandle)

2. to switch between platform–specific methods (or classes) at run–time

Ex 1. Evaluate the expressions in Table 1.

2. Files
Instances of a subclass of class Filename represent individual files and directories and
provides a convenient mechanism for manipulating files. However, you should always
direct messages to class Filename to maintain portability. Two of these are described
briefly in Table 2.

1. It is also useful when using ENVY to create an application line–up

Message Expression Description Example Result

OSHandle currentPlatformID A String identifying the platform,
possibly including a description of
the OS version.

'mac MacOS V7.11'

Screen default platformName A String identifying the platform 'Mac'

OSHandle currentOS A Symbol identifying the platform
— one of (#unix #mac #os2 #win32)

#mac

Table 1: Discovering the Platform

Coding for Multiple Platforms 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Class Filename is an abstract superclass; its platform–specific classes provide most of
the implementation. The class hierarchy is as follows:

Filename
MacFilename
PCFilename

FATFilename
HPFSFilename
NTFSFilename

UnixFilename

The classes are briefly described in Table 3.

The use of multiple classes to represent files on different platforms overcomes two
problems:

1. Different platforms have different I/O protocols

2. Different platforms have different conventions regarding file names, path
separators, etc.

Ex 2. To discover how the subclasses of Filename provide platform independence,
examine the method that provides the ability to file–out a class using a Browser
menu.

separator return the Character used to separate components of
the path name, e.g. one of $/, $:, $\.

maxLength return the maximum allowed length for a filename
on the current platform

Table 2: Filename messages

MacFilename adds behavior to interpret file access dates, access
folders and interpret Volume information

PCFilename adds behavior specific to the PC platform. An
abstract superclass.

FATFilename adds behavior specific to the MS–DOS platform, i.e.
8.3 filenames

HPFSFilename adds behavior specific to IBM platforms, i.e. long
filenames

NTFSFilename adds behavior specific to NT platforms, i.e. long
filenames

UnixFilename adds behavior specific to the UNIX platform, e.g.,
interpreting file access dates and file protection

Table 3: Filename subclasses

Coding for Multiple Platforms 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

3. Hardcopy
The Settings Tool should be used to select the appropriate form of printing suitable for
each platform. For example, in Fig.1, we have selected the options suitable for a
Macintosh connected to a non–Postscript printer.

The top two buttons allow you to choose whether Document–based printing will be
via PostScript or (on MS–Windows platforms only) Host printer drivers. If Host Printing
is selected on a non–Windows platform, VisualWorks will default back to PostScript at
print time.

The lower buttons allow you to choose how text view hardcopy is processed —
either by the Document classes (that provide text emphasis, etc.) or as raw text.

For most arrangements Postscript Printing and Document Printing should be
selected. However, there are two bugs reported in the release notes:

1. Postscript printing does not work on Windows NT 3.5.1 (does work on 3.5.0).

Figure 1: Printing Setup

Coding for Multiple Platforms 4

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

2. Host printing does not work on Windows NT.

4. Text
The appearance of textual output, whether on the screen or on paper, relies on two kinds
of object: a String (the content) and a Font (to render it). Both are represented by classes
that are specific to their platforms.

4.1. String
A String is a fixed–length sequence of Character objects. Class String (and class Text) is a
subclass of CharacterArray. There are many implementation–specific subclasses of String
corresponding to the way in which strings are handled. The class hierarchy is as follows:

String
ByteEncodedString

ByteString
ISO8859L1String
MacString
OS2String

ByteEncodedString is the common superclass for all classes of String that encode
Characters as bytes and for which there is a one–to–one mapping between bytes and
Characters.

When you include a String literal in a message expression, or create a new string by
sending the message new (or new:) to String class, an instance of ByteString is created. For
example, if you inspect the literal:

'How long is a piece of String?'

an Inspector will open displaying its class as ByteString (Fig.2). So, for most purposes
the programmer is not aware of the platform–specific subclasses. However, if you retrieve
the ascii contents of a file, you will find that the class of string returned is specific to the
platform. For example, evaluating the code below (on a Macintosh) results in the
Inspector illustrated in Fig.3:

| file stream |
file := 'string.ex' asFilename.
stream := file readStream.
[stream contents inspect] valueNowOrOnUnwindDo: [stream close]

The class comments of the platform–specific subclasses are provided in Table 4.

Ex 3. Which method determines the subclass of String to be used?

4.2. Fonts
The text attributes applied to an instance of Text (i.e., the symbols used to control character
style) and others such as line grid (the vertical distance between the top of one line of text
and the next), baseline (the vertical distance between the top of a line and the baseline of

Coding for Multiple Platforms 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
that line) and tab stops are controlled by an instance of TextAttributes. (The baseline is the
line from which a font’s ascent and descent are measured — see also Fig.4)It has two
parts:

• The attributes that apply to an entire text, such as line spacing and margins;

Figure 2: A ByteString

Figure 3: A MacString

Coding for Multiple Platforms 6

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
• An instance of CharacterAttributes (see below) for the basic font descriptions such as

emboldening that can be applied to a character.

VariableSizeTextAttributes is a subclass of TextAttributes that sets it gridding and default
font size at system start–up, so as to cope with changes in pixel size. There is a single
instance provided, known as #systemDefault.

Ex 4. Evaluate the first few examples from Font-Tutorial .

CharacterAttributes is a class which represents a mapping from character styles to
fonts. Character styles describe visual properties that a group of characters in the text
should have. These properties may be as specific as the pixel size of the font to be used,
or they may be as general as a symbol. A CharacterAttributes has two parts:

• a dictionary of the attributes such as boldness or underlining which are used to
modify the base font;

• an instance of FontDescription which specifies the properties of the base font.

ISO8859L1String the subclass of String that encodes Characters into
bytes according to the ISO 8859 standard. This
standard is the one adopted by both the MS–
Windows and X–Windows environments.

MacString the subclass of String that encodes Characters into
bytes according to the standard suggested by newer
fonts such as Helvetica and Times on the Macintosh.
This encoding is the standard under MacOS Version
7.0.

OS2String the subclass of String that encodes Characters into
bytes according to the IBM standard code.

Table 4: Platform–Specific String Subclasses

Figure 4: The difference between line grid and baseline

Line grid

Baseline

A largish amount of
text, sufficient to cover
three whole lines.

Coding for Multiple Platforms 7

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

A FontDescription1 is a device–independent font representation, which invokes
approximately the same font on different platforms. Several parameters can be set which
influence the choice of a platform–specific font. Some of the parameters are listed below:

To retrieve the names of the instances of FontDescription that describe the available
fonts in your environment, inspect the following:

Screen default defaultFontPolicy availableFonts collect: [:i | i name]

Alternatively, the following message expression returns the names of the available
fonts (in a platform–specific description):

1. in some methods mistakenly referred to asFontQuery

boldness: aNumber 0 < aNumber < 1; 0.5 is normal. When specifying a
FontDescription, you must at least include boldness

color: aPaint

encoding: aString e.g., 'iso8859–1', 'mac', 'symbol'. Not recommended for
machine–independence.

family: aString e.g., 'times', 'courier', etc. Not recommended for
machine–independence.

fixedWidth: aBoolean

italic: aBoolean

manufacturer: aString e.g., 'adobe', 'itc'. This is only available for some
platforms. N.B. Multiple vendors may release
similar versions of the same font that look quite
different.

name: aString The name of the font in the format expected by the
operating system, possibly including wildcards. Not
recommended for machine–independence.

outline: aBoolean

pixelSize: anInteger Sizes of 8, 10, 12, 14, 18 and 24 are typically
supported.

serif: aBoolean Ignored if family or name has been specified.

setWidth: aNumber 0<aNumber<1. 0.5 is normal.

shadow: aBoolean

strikeout: aBoolean

underline: aBoolean.

Table 5: Font Description

Coding for Multiple Platforms 8

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Screen default listFontNames

An example of creating a font:

| charStyle font textStyle |
"first create the FontDescription"
font := FontDescription new

fixedWidth: false;
serif: true;
color: ColorValue gray;
boldness: 0.5;
pixelSize:24.

"now use the FontDescription to create a CharacterAttributes"
charStyle := CharacterAttributes defaultQuery: font.
"finally, use the characterAttributes in the creation of the TextAttributes"
textStyle := TextAttributes characterAttributes: charStyle.

Ex 5. Try the last example in Font-Tutorial .

When some text is rendered on the screen (or any other graphics device), a “real”
font must be chosen that matches the FontDescription of the text. The abstract class
DeviceFont represents an approximation of a FontDescription on a graphics device. It has
multiple subclasses as shown below, and described in Table 6.

DeviceFont
PostScriptPrinterFont
ScreenFont

MacFont
MSWindowsFont

OS2Font
XFont

PostScriptPrinterFont represents the font to render text on a PostScript
printer.

ScreenFont represents a host font in terms of what capabilities
the host GUI actually supplies.

MacFont is a subclass of ScreenFont with specific protocol for
supporting the Mac’s font capabilities

MSWindowsFont is a subclass of ScreenFont with specific protocol for
supporting the font capabilities of MS–Windows.

OS2Font differs from MSWindowsFont only in terms of the
default encoding which is expected for fonts.

XFont is a subclass of ScreenFont with specific protocol for
supporting the X font interface

Table 6: Font classes

Coding for Multiple Platforms 9

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Ex 6. Which method determines VisualWorks’ preferred font class?

5. User Interface

5.1. Fonts and Unbounded Widgets
Those widgets that contain a label (especially, Action Button, Check Box, Label and Radio
Button) should be given position properties that are “unbounded”. This means that their
extent will change to accommodate the size of their textual label. Thus if the widget’s label
is changed programmatically, its bounds will change to reflect the size of its label. The
Position page of the Properties Tool displays two icons in its lower left (Fig.5). The upper

icon should be selected for widgets that require four boundaries, the lower for those that
are unbounded. By default, the Check Box, Label and Radio Button widgets are
unbounded.

Figure 5: The Properties Tool Position Page

Coding for Multiple Platforms 10

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

In the previous section we described how to create a new font description. The font
of a widget can be specified using the Details page of the Properties Tool or
programmatically. However, to ensure platform–independence this should be avoided
and System font should be used as this will use a font that matches the platform’s system
font (when available).

5.2. Look and Feel
An instance of UIBuilder is responsible for building the widgets in a Canvas. Each widget
is described by a widget specification, represented as an instance of a class such as
ActionButtonSpec. The UIBuilder has an instance variable policy which is an instance of some
subclass of UILookPolicy. It is this object that performs the real work of building the widget.
The sequence of messages is as follows:

1. the application model asks its builder (an instance of UIBuilder) to add a widget
specification (i.e., to build it and add it to the Canvas)

2. the UIBuilder asks the widget specification to add itself to the UIBuilder’s policy

3. the widget specification sends a message to the policy asking it to build a widget
based using the specification to describe the widget’s properties and using the
UIBuilder to provide the widget’s bindings (See “Bindings” on page 14 of the
“Models” module.)

Class UILookPolicy has a subclass for each GUI platform plus its own
DefaultLookPolicy. The class hierarchy is as follows:

UILookPolicy
CUALookPolicy
DefaultLookPolicy
MacLookPolicy
MotifLookPolicy
Win3LookPolicy

The appropriate policy can be selected in three ways:

1. when the image starts the appropriate policy is selected based on the current
platform. (See the method named defaultPolicySelector in LookPreferences class.)

2. By using the UI Look page of the Settings Tool.

3. By sending the message defaultPolicyClass: to UIBuilder class. The argument should
be a subclass of UILookPolicy.

5.3. Dialogs
In the “Window Operations” module we described several pre–built dialog boxes. For
example, if we evaluate the following expression in an image that was started on a
Macintosh, a dialog box will appear as illustrated in (Fig.6).

Coding for Multiple Platforms 11

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Dialog
confirm: 'This operation will stop the world spinning.\Do you wish to continue?'

withCRs
initialAnswer: false

However, if we use the Settings Tool to change the look–and–feel policy to be MS–
Windows, evaluating the same message expression will result in a dialog box as
illustrated in Fig.7.

From these illustrations, we can see that the widgets of each dialog box have been
built according to their respective policy descriptions (contained in classes MacLookPolicy
and Win3LookPolicy, respectively). However, the appearance of both dialogs is incorrect
according to each platform’s User Interface Guidelines.1 (For example, Fig.8 illustrates a
dialog box from the Macintosh.)

So, we need to create the correct dialog box for each platform, adhering to the
specified look–and–feel policies of those platforms. Both the Apple and Microsoft
guidelines describe three dialogs (Apple calls each one an “Alert” whereas Microsoft calls
it a “Message Box”. The three kinds of dialog box are described by Apple in Table 9, and
by Microsoft in Table 8.

1. Apple, 1992,Macintosh Human Interface Guidelines, Addison–Wesley, Reading, Mass. Microsoft, 1992,
The Windows™ Interface, An Application Guide, Microsoft Press.

Figure 6: Macintosh “Confirm” Dialog Box

Figure 7: MS–Windows “Confirm” Dialog Box

Coding for Multiple Platforms 12

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
As you can see, there are great similarities between the descriptions in the Tables.

Hopefully, you can see also that these map fairly closely to existing messages in
Dialog class, described in Table 9.

The table also contains the new messages that we have implemented in VisualWorks
by extending the protocol of Dialog class. In addition, we have created one more dialog
box, called “Ask”, which is not described by either set of Guidelines, but is provided as a
means of obtaining typed used input. It is equivalent to the request: message in

Figure 8:

Note Provides information about situations that have no
drastic effects. The user usually responds by
pressing the OK button.

Caution Calls attention to an operation that may have
undesirable results if it’s allowed to continue. The
user is given the choice to cancel

Stop Calls attention to a serious problem that requires the
user to choose from alternative courses of action

Table 7: Apple Alerts

Information Provides information about results of commands.
Offers no user choices; user acknowledges message
by clicking the OK button.

Warning Alerts user to an error condition or situation that
requires user decision and input before proceeding,
such as an impending action with potentially
destructive, irreversible consequences

Critical Informs user of serious system–related or
application–related problem that must be corrected
before work can continue with the application.

Table 8: Microsoft Message Boxes

Coding for Multiple Platforms 13

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

enDialog class. The only other difference between the dialog boxes provided by Apple and
Microsoft is that Microsoft Message Boxes have a window label showing the name of the
application to which the window belongs.

To use these platform–specific dialog boxes, you should send messages to
Dialog class; however their implementation is provided by classes MacDialog and
Win3Dialog. The mechanism relies on the policy classes described above, for example:

1. the message caution:initialAnswer: is sent to Dialog class

2. Dialog class re–directs the message to the current look policy

3. the look policy re–directs the message to its preferred platform dialog class (e.g.,
MacDialog class)

4. the platform dialog class builds the dialog box, opens it and waits for user input

5. the result of user input is returned to the original sender of the message (1 above)

So, for example, evaluating the message

Dialog
caution: 'This operation will stop the world spinning.\Do you wish to continue?'

withCRs
initialAnswer: false

on a Macintosh platform (under the Mac look–and–feel) will result in the dialog box
illustrated in Fig.9. Whereas under the MS–Windows look–and–feel, it will appear as
illustrated in Fig.9. Note the location and sequence of the Action Button widgets.

Ex 1. Browse classes MacDialog and Win3Dialog. Experiment with the examples.

Ex 2. How would you extend the classes to provide a dialog for file specification
(saving or opening)?

Apple Microsoft Existing Dialog
message New Message

Note Information warn: note:

Caution Warning confirm: caution:initialAnswer:

Stop Critical choose:… stop:labels:values:default:

request: ask:initialAnswer:

Table 9: Dialog class messages

Coding for Multiple Platforms 14

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

enFigure 9: Macintosh “Caution” Dialog Box

Figure 10: MS–Windows “Caution” Dialog Box

