
Notebook Widget 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Notebook Widget

The Notebook widget is the most complex widget, and hence often overlooked as a user
interface widget. In this module we describe how to create a complex notebook widget,
by providing an example and exercises.

1. Introduction
The Notebook widget is a composite widget containing a Subcanvas and up to two rows
of tabs. The model for each row of tabs is an instance of SelectionInList — its list is often a
collection of Symbols. The aspect for each row of tabs is specified in the Properties Tool
(see Fig.1). One row is known as Major and the other as Minor. The inner area of a
Notebook widget is a Subcanvas whose specification can be modified at run–time.

The most complex use of the Notebook widget is to change the Subcanvas based on
the tab selection. However, we’ll start with something simpler: using the major tab
selection to control the contents of a Dataset widget.

Figure 1: Notebook Properties

Notebook Widget 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

2. Major Tabs
The Notebook, in common with all VisualWorks widgets, is specified using the Properties
Tool. The minimum requirements is to specify the Major aspect: the message that is sent
to the application model to return an instance of SelectionInList.

Ex 1. Open a new Canvas and add a Notebook widget. Give it a Major aspect of
#majorKeys and an ID property of #notebookID. Install the Canvas in a new class
named TradeBrowser, then use the Definer to create the model for the Notebook.
Create an instance of your new class to ensure that it works.

The contents of the tabs are usually instances of Symbol or String. For this example,
we will display the names of traders in the tabs.

Ex 2. Browse BondTrade class to discover how to retrieve a random collection of
instances of BondTrade. Add an initialize method to class TradeBrowser, which
causes the tabs to display the names of traders. Note that selecting a tab has no
effect.

Initially, the inner area of the Notebook widget (the Subcanvas) is unassigned and
no tab is selected. To display an initial Subcanvas, add a postOpenWith: method to assign
the Subcanvas and possibly set the tab selection.

A Subcanvas is assigned by sending the following message to the Subcanvas widget:

client: aModel spec: aSpec

where aSpec is the Canvas specification to be used and aModel is an instance of the
class in which it is defined.

To programmatically select one of the row of tabs, set the selection of its
SelectionInList model using the selection: or the selectionIndex: message.

Ex 3. Open a new Canvas, and add a Dataset widget to it. Specify its properties so
that it can display (read–only) the attributes of a BondTrade. Install the Canvas
in class TradeBrowser (giving it the name #tradeSpec), and use the Definer to
create its models. Add a postOpenWith: method to class TradeBrowser, causing
the Dataset widget to be displayed when the application is first opened. The
Dataset widget should display all of the instances of BondTrade that you
accessed in Ex.2.Similarly, add a message expression to the method so the first
tab is selected.

Usually you want to trigger some behavior when a tab is selected. This may be
achieved by using the onChangeSend:to: message, sent to the selectionIndexHolder of the
SelectionInList. The message is usually sent in the initialize method:

selectionIndexHolder onChangeSend: #changedTab to: self

where changedTab is the name of the message to be sent when the tab selection is
changed. In our example, we wish to change the contents of the Dataset. However, this
technique can also be used to replace the Subcanvas, add or remove minor key tabs.

Notebook Widget 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Ex 4. Add the appropriate message expressions to the initialize method of class
TradeBrowser (and any other methods you think necessary), so that when a tab
is selected the Dataset contains the appropriate instances of BondTrade are
displayed for the selected Trader.

3. Minor Tabs
Minor tabs may be associated with individual major tabs. For example, selecting a major
tab might cause a new set of minor tabs to appear. Alternatively, minor tabs may represent
another dimension of information for the Subcanvas.

In this example, we’ll associate the minor tabs with the selected major tab: the minor
tabs will display the locations of the trades associated with a selected major tab (i.e., a
selected trader).

Ex 5. Modify the properties of the Notebook widget so that it specifies a Minor
aspect: #minorKeys. Re–install the Canvas and use the Definer to modify the
class definition and create an accessing method for the new aspect.

Ex 6. Modify the initialize method of class TradeBrowser (and add any other necessary
methods) so that when a major tab is selected, the minor tabs display the
possible locations for that trader. Similarly when a minor tab is selected, the
Dataset widget should only contain instances of BondTrade appropriate to the
selected trader at the selected location.

4. Changing the Subcanvas
It’s occasionally useful to use a different Canvas for each major (or minor) tab. For
example, rather than having multiple overlapping windows, the Notebook widget can be
used to provide many interfaces in one location. (However, this prevents the user from
viewing two interfaces simultaneously!)

Ex 7. File–in Notebook4Example from the online examples directory. Browse the
class and experiment with the tabs. Which method does all the work?

