
Drag and Drop 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Drag and Drop

In this module, we describe how to use the Drag and Drop framework and provide
examples of its use. Drag and Drop is a new addition in VisualWorks 2.5. A good example
of the use of Drag and Drop features is in the VisualWorks tools themselves, the Launcher,
browsers and file list. The Drag and Drop version of the tools may be filed in from
extras/tooldd.st

1. Introduction
To use the Drag and Drop mechanism it’s necessary to identify one or more widgets as a
drop source (a widget offering data to be dragged) and/or a drop target (a widget that will
receive data). Currently, only the List widget may act as a drop source. All widgets may
act as a drop target (except for Dataforms), including a window.

2. Defining Widget Properties
The properties for a Drop Source are defined in the Properties Tool as shown in Fig.1.

Figure 1: Drop Source Properties

Drag and Drop 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

The widget will send the message selector specified by its Drag Ok property to its
application whenever the user presses the <select> mouse button and moves the cursor
in the bounds of the widget. The message is sent to the application model to determine if
the drag operation should proceed from this widget. Hence the method corresponding to
the message selector must return a Boolean.

If the drag operation proceeds, the message selector specified by the Drag Start
property is sent to the application model. The corresponding method must create an
instance of DragDropManager — it takes responsibility for managing the drag operation.

As the cursor enters a widget, the widget is queried by the DragDropManager to
discover if the dragged data can be dropped on it. The DragDropManager queries the
widget by sending it the message selector specified by the widget’s Drop Target Entry
property (see Fig.2). The method corresponding to the selector should return an
effect symbol which identifies a cursor shape (see section 4.1).

Similarly, the selectors defined by the Over and Exit properties are sent when the
cursor is over, or has just exited, the window or widget. The corresponding methods
should also return an effect Symbol.

Lastly, when the mouse is released, the message defined by the Drop selector is sent.
Typically, the method corresponding to the message will accept the dragged data (after
verifying that the data is acceptable) and return an effect Symbol.

Figure 2: Drop Target Properties

Drag and Drop 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

NOTE: Although the Properties Tool does not enforce it, all the selectors mentioned
above must end with a colon.

3. Defining Drop Source Methods
For the Drag and Drop operation to begin, both the Drag Ok and Drag Start properties
must be specified. The message selectors defined by these properties are sent to the
application model at the very beginning of the drag operation. In this section, we describe
how to implement the methods corresponding to those message selectors. Note that both
selectors should end with a colon, since the widget’s controller is passed as an argument
to the message.

3.1. Drag OK
This method must return true or false. If it returns true the framework will start the drag
operation. In the following example method, a message expression checks that a List
widget has a selection:

sampleWantsToDrag: aController
^self draggableList selection notNil

3.2. Drag Start
This method is responsible for creating an instance of DragDropManager. However, a
DragDropManager relies on two other objects: an instance of DragDropData and an instance
of DropSource.

• An instance of DragDropData holds the data that is to be dragged.

• An instance of DropSource defines the cursor shapes available during the drag
operation

A DragDropManager is usually created as follows:

DragDropManager withDropSource: aDropSource withData: aDragDropdata

where aDropSource is a new instance of DropSource and aDragDropdata is an instance
of DragDropData which has been initialized with information about the source of the drag
operation.

Class DragDropdata provides several instance variables — they are described in
Table 1.

key A key which labels the drop. May be queried by
potential targets to determine suitability

contextWindow The current window

contextWidget The current widget (view or controller)

contextApplication The current application model

Table 1: Instance Variables of class DragDropData

Drag and Drop 4

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

An example method corresponding to a Drag Start message selector is as follows:

doItemDrag: aController
"Drag the selected item from the list "

| aDataSource aDragDropManager aDragDropData |
"Instantiate a new instance of DragDropData to handle data"
aDragDropData:= DragDropData new.
"Set the key, contextWindow, contextWidget and contextApplication
instance variables"
aDragDropData key: #itemMove.
aDragDropData contextWindow: self builder window.
aDragDropData contextWidget: aController.
aDragDropData contextApplication: self.
"Set up the client data"
aDragDropData clientData: IdentityDictionary new.
aDragDropData clientData at: #item put: self sampleList selection.
aDragDropData clientData at: #color put: self sampleList selection color.
"Instantiate a new DropSource"
aDataSource := DropSource new.
"Instantiate a new DragDropManager using the DropSource
and the DragDropData from above"
aDragDropManager:= DragDropManager

withDropSource: aDataSource
withData: aDragDropData.

"Let the DragDropManager take over"
aDragDropManager doDragDrop.

4. Defining Drop Target Methods
The Drop Target properties are shown in Fig.2. For a widget1 to act as a target for a drag
operation, its Drop property must be specified to be the name of a method that
implements the desired response when a drop occurs in that widget. In addition, the
presence of a Drop property causes the interface builder (a UIBuilder) to provide the widget
with an instance of ConfigurableDropTarget. The presence of this object indicates to the
DragDropManager that the widget is a drop target.

1. The description that follows is also applicable to a window.

clientData Anything — usually an instance of IdentityDictionary
with key–value pairs of information specific to this
drag operation.

Table 1: Instance Variables of class DragDropData (Continued)

Drag and Drop 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

The remaining properties (Entry, Over, and Exit) may be used to specify the names of
methods that provide visual feedback to the user when the cursor traverses a widget. For
example, they might change the shape of the cursor or the appearance of the widget.
However, they are not strictly necessary.

Each of the selectors specified by these properties must end with a colon. When the
DragDropManager sends a message to the widget’s application model, it includes an
instance of DragDropContext as the argument to the message. An instance of
DragDropContext is produced by the DragDropManager as a combination of its
DragDropData, its DropSource and the widget’s ConfigurableDropTarget.

4.1. Drag Enter
If a widget specifies a message selector for its Entry property, the DragDropManager will
send the selector to its application as soon as the cursor enters the bounds of the widget.
It is the responsibility of this method return an effect Symbol — a Symbol that identifies the
cursor shape to be used. The default effects are shown in Table 2.

The choice of cursor shape should be based on whether or not the widget will accept
the dragged data. The typical way for a method to determine if it should accept the data
is to send the message key to the DragDropContext argument. The message will return the
key of its DragDropData. The method below is an example of a method that corresponds
to an Entry selector:

widgetDragEnter: aDragContext
^aDragContext key == #itemMove

ifTrue: [#dropEffectCopy]
ifFalse: [#dropEffectNone]

4.2. Drag Over
The message selector specified by a widget’s Over property is sent to the application
immediately after the message specified for the Entry property, and then every time the
cursor moves within the widget’s bounds. Like the method defined for the Entry property,

#dropEffectCopy Indicates that the data will be copied if it is dropped
on this widget.

#dropEffectMove Indicates that the data will be moved if it is dropped
in this widget (i.e., it will be removed from its
source widget).

#dropEffectNone Indicates that it is not possible to drop the data in
this widget.

#dropEffectNormal The “normal” cursor shape.

Table 2: Effect Symbols

Drag and Drop 6

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

this method should return an effect Symbol to indicate whether or not the data may be
dropped in this widget.

4.3. Drag Exit

This message specified by the Exit property is send when the cursor is dragged out of the
bounds of the widget (with the <select> button pressed). Typically, the corresponding
method will return the effect Symbol #dropEffectNone to indicate that the data has not been
dropped.

4.4. Drop

This method is responsible for implementing the action to be taken when a drop occurs
in a widget, i.e., when the user releases the <select> mouse button. The method has access
to an instance of DragDropContext that is the argument to the method, which can be
interrogated to determine whether to accept the dragged data and, if so, how to deal with
it.

If the data is acceptable, the method should request the DragDropData from the
DragDropContext argument. It does this by sending it the message sourceData; this in turn
may be sent the message clientData to access the variable of the same name. For example:

widgetDrop: aDragContext

| dict |
aDragContext key == #itemMove

ifFalse:[^#dropEffectNone].

dict := aDragContext sourceData clientData.
dict keysAndValuesDo: [:k :v |

Transcript cr;
show: k printString;
tab;
show: v printString].

The method should return an effect Symbol for the DragDropManager to return to the
Drag Start method (see section 3.2) that initiated the drag operation.

Ex 1. (This exercise continues with the version of BondEntry that you built during the
“Review of Application Model Framework” module.) Add a graphical Label
widget to the Bond Entry window to serve as a “drop” target for an instance of
BondTrade. Make the List widget a drop source such that an instance of
BondTrade may be dragged from the List widget, onto the Label widget, with
the effect of populating all of the entry widgets with the value of the BondTrade.

