Processes and Concurrency 1

Processes and Concurrency

This module explores the features available in Smalltalk for the expression of
concurrency. It introduces classes Process and ProcessorScheduler. Classes to support
various synchronization operations, including Semaphore, SharedQueue and critical
sections are explored though the use of examples and exercises. Class Delay is also
considered. This module concludes by describing how instances of class Promise may be
used to provide background tasks.

1. Introduction

VisualWorks supports multiple independent processes. These are lightweight processes, as
they share a common address space (object memory). Each instance of class Process
represents a sequence of actions which can be performed by the virtual machine,
concurrently with other processes. However, the current implementations do not support
genuine parallelism, but timeslice (at the bytecode level — see the description of
bytecodes later).

We already know that blocks are used to implement a wide range of control
constructs. Blocks are also used as the basis for creating Processes in Smalltalk. The
simplest way to create a Process is to send a block the message fork. For example, selecting
and executing the expression:

[Transcript cr; show: 100 factorial printString] fork

creates an instance of class Process containing a block which will display the
factorial of 100 in the Transcript. The new Process is added to the list of scheduled
Processes. This Process is runnable (i.e. scheduled for execution) immediately, and will
start executing as soon as the current Process (i.e., the one controlling the window
manager) releases control of the processor.

We can create a new instance of class Process which is not scheduled by sending the
newProcess message to a block:

| aProcess |
aProcess := [Transcript cr;
show: 100 factorial printString] newProcess

The Process is not actually runnable until it receives the resume message:
aProcess resume

A Process can be temporarily stopped using the suspend message. A suspended
Process can be restarted later using the resume message. The terminate message is used
when a Process is no longer required; once a Process has received the terminate message,
it cannot be restarted.

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 2

It is also possible to create and evaluate a Process containing a block with any
number of arguments.

| aProcess |
aProcess :=
[:first :second |
Transcript cr; show: (first raisedTo: second) printString]
newProcessWith: #(2 20).
aProcess resume.

The example above creates a Process which, when it runs, will display 1048576 (220)
in the Transcript.

Thus, a Process may be in one of five states:
suspended,

waiting,

runnable,

running, or

o M L D

terminated.

States 1 & 2 are similar: the difference between them is that a suspended Process may
be restarted with the resume message, whereas a waiting Process cannot be restarted until
it receives permission from a semaphore (see later).

The five messages that are of interest in forcing a Process to make a transition from
one state to another are suspend, terminate, and resume, sent to a Process, and wait and
signal, sent to a Semaphore (the former acts on the active Process). The state transition
diagram (Fig.1) shows how these affect a Process.

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 3

new
suspended

resume

runnable

scheduled
by VM

terminate

*sent to a Semaphore

Figure 1: Process States

2. Priorities

Smalltalk supports prioritized Processes, so that we can create Processes of high priority
which run before other Processes of lower priority. Eight priorities have names assigned
to them, described in Table 1 below.

Priorit
y

100 timingPriority Used by Processes that are
dependent on real time. For
example, Delays (see later).

Name Purpose

08 highlOPriority Used by time—critical 170
Processes, such as handling
input from a network.

90 lowlOPriority Used by most I/0
Processes, such as handling
input from the user
(keyboard, pointing device,
etc.).

Table 1: Smalltalk Priorities

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 4

70 userinterruptPriority Used by user Processes
desiring immediate service.
Processes run at this level
will pre-empt the window
scheduler and should,
therefore, not consume the
Processor forever.

50 userSchedulingPriority Used by Processes
governing normal user
interaction. Also the priority
at which the window
scheduler runs.

30 userBackgroundPriority Used by user background
Processes.
10 systemBackgroundPriority Used by system background

Processes. Examples are an
optimizing compiler or
status checker.

1 systemRockBottomPriority The lowest possible priority.

Table 1: Smalltalk Priorities (Continued)

We can create a runnable Process with specified priority using the forkAt: message.
The argument is an integer, but should be obtained by sending a message to Processor
(described later), for example:

[Transcript cr; show: 100 factorial printString]
forkAt: Processor userBackgroundPriority.

Alternatively, we can use the priority: message to change the priority of an existing
Process. For example, in the code below we create two Processes: process1 and process?2,
which are given priorities 10 and 98 respectively. Note that process1 is resumed before
process2. The result on the Transcript is shown in Fig.2.

| processl process?2 |

Transcript clear.

processl := [Transcript show: ' first'] newProcess.
processl priority: Processor systemBackgroundPriority.
process2 .= [Transcript show: ' second’] newProcess.
process2 priority: Processor highlOPriority.

processl resume.

process2 resume.

The default Process priority (and the priority at which expressions are evaluated using
the user interface) is userSchedulingPriority (50). The scheduling algorithm used is
described in detail later.

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 5

.EI I=—————————= lisuallllorks EI_HEi

File Browse Tools Changes Database Window Help ||

QE wE®

second firsk

 j— | 3

Figure 2: The result of evaluating the message expressions above.

Ex 1. Try some examples of creating simple Processes using the fork and newProcess
messages sent to blocks. You may like to display trace messages in the System
Transcript.

Ex 2. Browse class Process. Try using the resume, suspend and terminate messages on

a Process created using the newProcess (0r newProcessWith:) message sent to a
block.

Ex 3. Browse class BlockClosure to see how the fork and newProcess methods are
implemented.

Ex 4. Modify the priorities in the code above so that the priority of each process is
a. lessthan 50

b. greater than 50

3. Scheduling Processes

Class ProcessorScheduler manages the runnable Processes. As the virtual machine has
only one processor, its single instance is represented by a single global variable Processor.
We have already come across the use of the variable as the receiver of messages to return
an appropriate priority.

The active Process (the one actually running) can be identified by the expression
Processor activeProcess
This can be controlled by suspend or terminate messages.

The processor is given to the Process having the highest priority. When the highest
priority is held by multiple Processes, the active Process can give up the processor,
moving itself to the back of the queue of quiescent Processes at that priority, with the
expression Processor yield. Otherwise it will run until it is suspended or terminated before

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 6

giving up the processor, or preempted by a higher priority Process. However, a Process
that is “pushed to the back of the queue” will regain control before a Process of a lower
priority (see Fig.3).

Processor (ProcessorScheduler) Process

activeProcess nextLink nil

quiescentProcessLists suspendedContext

priority

Array (indexed

by priority) myList
100
99
Process Process
98 .
firstLink
| lastLink
|
50 Process
! firstLink
| lastLink
3
5 Process Process
firstLink
lastLink

Figure 3: Process Queues

For example, in the code below, the first forked Process contains a Processor yield
expression which causes it to be pushed to the back of the queue, thus allowing the second
forked Process to run.

| process1 process?2 |
Transcript clear.
processl := [Transcript cr; show: ' first:1'.

Processor yield.

Transcript cr; show: 'first:2'] newProcess.
process2 := [Transcript cr; show: ' second’] newProcess.
processl resume.
process2 resume

Apart from these two messages (activeProcess and yield), most application
programmers will never use ProcessorScheduler directly.

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 7

The scheduling is actually performed by the virtual machine. Note that the
scheduling algorithm interrupts Processes with a low priority to run Processes with a
higher priority, but will not preempt a Process to run one at the same priority.

Ex 5. Browse the class ProcessorScheduler. Note the instance protocol which answers
various scheduling priorities.

Ex 6. Try altering the priority of your Processes created earlier. You may need to
include Processor yield expressions to prevent one Process from blocking others
at the same priority level.

Try not to create Processes which run for ever at high priority levels — such
Processes are very difficult to stop!

Ex 7. The standard scheduler does not provide for preemption within a priority
level, but does allow higher priority Processes to preempt lower priority
Processes. Can you think of a way to mimic truly preemptive Processes by
adding a single Process to the system? What are the disadvantages?

Sketch how to implement a scheduler entirely in Smalltalk based on the
facilities provided by the virtual machine.

4. Synchronization using Semaphores

So far, we have shown how we create independent Processes using Smalltalk. However,
for realistic applications, we expect that there will be some interaction between Processes:
these Processes will have references to some objects in common, and such objects may
receive messages from several Processes in an arbitrary order. This may lead to
unpredictable results.

To illustrate this, consider a class Counter, with one instance variable count:

Object subclass: #Counter
instanceVariableNames: 'count’
classVariableNames: "
poolDictionaries: "
category: 'Processes—Experiments’

On creation, the count instance variable is set to 0 by an initialization method in the
instance protocol:

reset
count:=0

The ‘instance creation’ class protocol method used is:

new
Asuper new reset

Instance protocol methods are also provided to read the count instance variable, and
to increment this variable.

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency

count
count

increment
count :=count+ 1

Now, suppose we create two Processes, which can both send messages to the same
instance of Counter. The first Process repeatedly sends the message increment; the other
Process is of a lower priority and sends the message count, checks whether the result is 9
or greater, and if it is then prints it on the Transcript, then resets the count to zero (using
the reset message). Note that the two Processes are not synchronized.

| counter |
counter := Counter new.

Processl :=[| delay |
delay := Delay forMilliseconds: 40.

[counter increment.
delay wait] repeat] newProcess.

Process2 :=[| delay |
delay := Delay forMilliseconds: 40.

[[currentCount|
currentCount := counter count.
currentCount >= 9
ifTrue:[Transcript cr;
show: currentCount printString.

counter reset].
delay wait] repeat] newProcess.
Process2 priority: Processor userBackgroundPriority.

Process1 and Process?2 are global variables. The use of Delay is described later in the
module.
The two Processes may be started using:

Processl1 resume.
Process2 resume.

The result may appear as in Fig.4 (depending on the amount of user interface
activity).
The Processes may be terminated by evaluating the following expressions.

Process1 terminate

Process?2 terminate
Ex 8. Implement the class Counter and type in and evaluate the example code. Start
both Processes and examine the Transcript. Explain its behavior.
Ex 9. Now move the cursor around the screen and manipulate the windows. What
do you notice abut the sequence of numbers in the Transcript? Can you explain
it?

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 9

SI=———————— llisualllorks =————PI-

File Browse Tools Changes Database YWindow Help

| »EE @

|

<=

Figure 4. Two Processes sharing one object

In the example above, the sequence of numbers displayed in the Transcript appears
non—-deterministic. Fortunately in Smalltalk there is a class, called Semaphore, which is
used to synchronize multiple Processes.

5. Semaphores

A Semaphore is an object used to synchronize multiple Processes. A Process waits for an
event to occur by sending the message wait to a Semaphore. Another Process then signals
that the event has occurred by sending the message signal to the Semaphore. The Process
waiting for the signal will not proceed until one is sent. For example,

| sem |
Transcript clear.
sem := Semaphore new.
[Transcript show: 'The '] fork.
[Transcript show: 'quick .
sem wait.
Transcript show: 'fox ".
sem signal] fork.
[Transcript show: ‘brown .
sem signal.
sem wait.
Transcript show: 'jumps over the lazy dog'; cr] fork

gives the following result (Fig.5).

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 10

=S[[I=—————— llisuallllorks EEEI
File Browse Tools Changes Database YWindow Help ||

ElQC] »H% @

The quick Brovwn fox jumps over the a2y dog

Figure 5: Synchronization using a Semaphore

A Semaphore will only release as many Processes from wait messages as it has
received signal messages. When a Semaphore receives a wait message for which no
corresponding signal has been sent, the Process sending the wait is suspended. Each
Semaphore maintains a linked list of suspended Processes, and releases them on a first-in
first—out basis (see Fig.6).

suspended processes

Process Process

firstLink
lastLink

excessSignals

Figure 6: A Semaphore

If a Semaphore receives a wait from two or more Processes, it resumes only one
Process for each signal it receives from the Process it is monitoring.

Unlike a ProcessorScheduler, a Semaphore pays no attention to the priority of a
Process, queuing Processes in the order in which they waited on the Semaphore.

Ex 10. Repeat Ex.5 using a Semaphore to provide simple synchronization between two
Processes.

In the exercise above, a Semaphore is used to “hand-off” from one process to another,
effectively forcing the processes to be serialized. However, a Semaphore can also be used
to guard a critical region of code. For example, consider class Orderltem below:

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 11

Object subclass: #Orderltem
instanceVariableNames: 'price quantity '
classVariableNames: **
poolDictionaries: "
category: 'Semaphore Examples'

Whenever an instance of this class receives a price: or quantity: message, it prints out
its current amount on the Transcript, using the method printAmount, below:

printAmount
| amount |
Transcript cr; show: 'Price:', price printString.
Transcript show: ', ".
Transcript show: 'Quantity:' , quantity printString.
Transcript show: '=", (amount := self amount) printString.
Transcript space; show: '(', (amount = (price * quantity)) printString ,)’

Note that the printAmount method sends the receiver the message amount. Now, let’s
create two Processes, similar to the Counter example earlier:

| orderltem delayl delay2 random |
orderltem := Orderltem new.
random := Random new.
orderltem price: (random next * 100) truncated + 1; quantity: (random next * 100)
truncated + 1.
delayl := Delay forMilliseconds: 350.
delay?2 := Delay forMilliseconds: 660.
Processl =
[| price |
price := (random next * 100) truncated + 1.
orderltem price: price.
delayl wait] repeat] newProcess.
Process2 =
[| quantity |
quantity := (random next * 100) truncated + 1.
orderltem quantity: quantity.
delay2 wait] repeat] newProcess.
Process1 priority: Processor userBackgroundPriority.
Process2 priority: Processor userBackgroundPriority - 2.

When the Processes are resumed, the Transcript displays the results of the
computation (Fig.7) — note the “false” entry.

(The amount method has been designed to support the example. However, it is not
unusual to find methods that are as compute—intensive.)

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 12

S[I=————— lisualllorks

File Browse Tools Changes Database Window Help

EIIF%J {2

Price: %8, Guannt}f B1=4698 {rus),

Price:17, Quantiby:81=1 377 (rugiQuantiby:81=1377=1377
Price 86, Cuantiby:81=0966 (Trus) (Falze)

Price 98, Cuantiby:81=6156 (rus)

Price: 76

3

=

Figure 7: The result of two Processes accessing one instance of Orderltem

A Semaphore is frequently used to provide mutual exclusion from a “critical region”
of code. This is supported by the instance method critical:. The block argument is only
executed when no other critical blocks sharing the same Semaphore are evaluating. A
Semaphore for mutual exclusion must start out with one extra signal, otherwise the critical
section will never be entered. A special instance creation method is provided:

Semaphore forMutualExclusion

Ex 11. Modify class Orderltem to ensure that the details it displays on the Transcript are
always correct. (Hint: consider the use of a Semaphore and a critical region.)

6. Delays

Instances of class Delay are used to cause a real time delay in the execution of a Process.
An instance of Delay will respond to the message wait by suspending the active Process for
a certain amount of time. The time for resumption of the active Process is specified when
the Delay is created.

The resumption time can be specified relative to the current time with the messages
Delay forMilliseconds: aninteger and Delay forSeconds: aninteger. Delays created in this way
can be sent the message wait again after they have finished a previous delay. Examples:

Delay forSeconds: 10
Delay forMilliseconds: 350

Once created, an instance of Delay causes the active Process to be suspended when it
receives the message wait. Thus, the expressions:

| minuteWait |
minuteWait := Delay forSeconds: 60.
minuteWait wait.

suspend the active Process for a minute. This could also be expressed as:

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 13

(Delay forSeconds: 60) wait

The resumption time can also be specified at an absolute time with respect to the
system’s millisecond clock with the message Delay untilMilliseconds: aninteger. Delays
created in this way cannot be sent the message wait repeatedly.

Ex 12. Use a Delay to implement a simple clock which prints the current time in the
Transcript every few seconds. You may want to use the expression:

Transcript cr; show: Time now printString

Ex 13. Browse class Delay. Explain how Semaphores and critical regions are used to
implement this class.

Ex 14. Add a class method to class Delay which creates an instance of Delay that will
wait until a specified time. Call the method untilTime:, and ensure that it
produces the correct behavior when the following expression is evaluated:

(Delay untilTime: (Time readFrom: '14:15' readStream)) wait.
Screen default ringBell

7. Shared Queues

When it’s necessary to match the output of one Process with the input of another, it’s
important to ensure that the Processes are synchronized. This synchronization may be
achieved using an instance of class SharedQueue, which provides synchronized
communication of arbitrary objects between Processes. (SharedQueue uses Semaphores to
achieve its synchronization.)

An object is added to a SharedQueue from a Process by sending the message nextPut:
(with the object as argument) and retrieved by another Process sending the message next.
If no object has been added to the queue when a next message is sent, the Process
requesting the object will be suspended until an object is available. For example, in the code
below, a forked Process puts integers into a SharedQueue which are then retrieved in a
repeat loop:

| queue |
queue := SharedQueue new.
[| delay |
delay := Delay forSeconds: 1.
1 to: 100 do:[:i | queue nextPut: i.
delay wait]] fork.
[Transcript cr; show: queue next printString] repeat

Ex 15. (Hard) Attempt a Smalltalk representation of “Dijkstra’s Dining Philosophers
problem’:

Five philosophers spend their lives eating and thinking. The philosophers
share acommon circular table surrounded by five chairs, each belonging to one
philosopher. In the centre of the table, there is a bowl of rice and the table is laid

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 14

with five chopsticks. When a philosopher thinks, he or she does not interact
with any colleagues.

From time to time, a philosopher gets hungry and tries to pick up the two
chopsticks that are closest (the chopsticks that are between the philosopher and
his or her left and right neighbors). A philosopher may only pick up one
chopstick at a time. Obviously, a philosopher cannot pick up a chopstick that is
already in the hand of a neighbor. When a hungry philosopher has both
chopsticks at the same time, he or she eats without releasing the chopsticks.
After eating enough, the philosopher puts down both chopsticks and starts
thinking again.

The suggested solution represents each chopstick as a Semaphore, using the wait
and signal messages. This guarantees that no two philosophers use the same
chopstick simultaneously. The suggested solution is also asymmetric; an odd
philosopher picks up the left chopstick first, then the right chopstick, while an
even philosopher picks up the right chopstick first.

It is suggested that each philosopher is represented by an instance of class
Philosopher. The problem could be a class DiningPhilosophers, with the
philosophers and the chopsticks are maintained in instance variables.

You may want to display tracing messages in the System Transcript. How
could you introduce some indeterminacy into the solution, given the way the
Smalltalk scheduler handles Processes of the same priority?

(The problem presented here is loosely based on the one originally proposed
for Little Smalltalk, presented in Tim Budd’s book “A Little Smalltalk”, pp.
116—121.)

8. Promises

Class Promise provides a means of evaluating a block in a concurrent Process. An instance
of Promise can be created by sending the message promise to a block. For example:

[10000 factorial] promise

This message creates an instance of Promise, causing the block to be evaluated in a
new Process. Alternatively, the message promiseAt: may be used to control the priority of
the Process created.

The result of the block can be accessed by sending the message value to the Promise.
For example, the following message expressions will print the factorial of 1000 in the
Transcript:

| promise |
promise := [1000 factorial] promise.
Transcript cr; show: promise value printString

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Processes and Concurrency 15

However, it’s important to note that if the block has not completed evaluation, then
the Process that attempts to read the value of a Promise (by sending it the message value)
will wait until the Process evaluating the block has completed. Not surprisingly, Promise
achieves this concurrency control by using a Semaphore. A Promise may be interrogated
to discover if the process has completed by sending it the message hasValue, for example:

| promise delay |
promise := [1000 factorial] promiseAt: Processor userBackgroundPriority.
delay := Delay forMilliseconds: 100.
[promise hasValue]
whileFalse:[Transcript show: '.".
delay wait].
Transcript cr; show: promise value printString

You should also note that it’s not possible to terminate a Promise!

Ex 16. Browse class Promise and implementors of the promise message. Draw a
diagram describing the way in which the class uses a block and a Semaphore to
provide concurrency control.

Ex 17. Implement a subclass of Promise (called Pledge, say), which extends the
functionality of Promise so that it is possible to terminate its Process.

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

	Processes and Concurrency
	1. Introduction
	1. suspended,
	2. waiting,
	3. runnable,
	4. running, or
	5. terminated.
	Figure 1: Process States

	2. Priorities
	Table 1: Smalltalk Priorities (Continued)
	Figure 2: The result of evaluating the message exp...
	Ex 1. Try some examples of creating simple Process...
	Ex 2. Browse class Process. Try using the resume, ...
	Ex 3. Browse class BlockClosure to see how the for...
	Ex 4. Modify the priorities in the code above so t...
	a. less than 50
	b. greater than 50

	3. Scheduling Processes
	Figure 3: Process Queues
	Ex 5. Browse the class ProcessorScheduler. Note th...
	Ex 6. Try altering the priority of your Processes ...
	Ex 7. The standard scheduler does not provide for ...

	4. Synchronization using Semaphores
	Figure 4: Two Processes sharing one object
	Ex 8. Implement the class Counter and type in and ...
	Ex 9. Now move the cursor around the screen and ma...

	5. Semaphores
	Figure 5: Synchronization using a Semaphore
	Figure 6: A Semaphore
	Ex 10. Repeat Ex.5 using a Semaphore to provide si...

	Figure 7: The result of two Processes accessing on...
	Ex 11. Modify class OrderItem to ensure that the d...

	6. Delays
	Ex 12. Use a Delay to implement a simple clock whi...
	Ex 13. Browse class Delay. Explain how Semaphores ...
	Ex 14. Add a class method to class Delay which cre...

	7. Shared Queues
	Ex 15. (Hard) Attempt a Smalltalk representation o...

	8. Promises
	Ex 16. Browse class Promise and implementors of th...
	Ex 17. Implement a subclass of Promise (called Ple...

