Subcanvasses 1

Subcanvasses

The Subcanvas widget provides one means of reusing visual entities, such as commonly
used layouts, etc. Visual Reuse is just as important as code reuse. In this module we
demonstrate how to reuse visual components through use of class DateModel.

1. Visual Reuse

There are three techniques for achieving visual reuse using the Subcanvas widget
1. Inheritance
2. Reuse of a Canvas specification
3. Embedding one application inside another

We’ll look at each in turn. However, before going any further, let’s look at the
interface we wish to reuse. Class DateModel provides a simple user interface for the user
to enter a Date. In this module we will explore how to reuse that interface in the BondEntry
application.

Ex 1. Browse class DateModel. Experiment with an instance of it by sending the class
the message open.

2. Inheritance

The first technique for achieving visual reuse is inheritance. In the case of the BondEntry
application, we could change its superclass to be class DateModel, and thus gain access to
DateModel’s behavior and instance variables. A Subcanvas widget may be used to access
the Canvas specification of DateModel. In Fig.1the specification that is being reused is
named #dateSpec.

Ex 2. Change the definition of class BondEntry so that its superclass is DateModel.
Add a Subcanvas widget to reuse the dateSpec Canvas in DateModel.

At first sight, this approach appears to be very successful. However, it does have two
drawbacks:

1. As the example shows, there is little other justification for creating BondEntry as a
subclass of DateModel. It’s a very bad example of inheritance.

2. An inherited Canvas specification cannot be used more than once in the same
Canvas. For example, BondEntry could not have two Subcanvas widgets that both
used the dateSpec Canvas of DateModel, because both would reference the same
instance variables.

1. It's a good idea to file—out claBsndEntry before changing its definition — we’ll be needing it later.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Subcanvasses 2

=0 Properties Tool on: Bond Entry =ia—=—015
SubCanvas T|'|-|-h

Basics
Hame: 'Eétails
Class: Ef}lgr

Pasition

Canvas: | fdalelpec Drop Target
1D:

Aty | Cancel | Ay & Close Py | Pk |

Figure 1: Visual Reuse via inheritance

3. Reuse of a Canvas Specification

Using this technique, the Subcanvas widget is used to embed one Canvas inside another
—i.e. size, location and other properties for each widget. The name of the class containing
the Canvas must also be specified in the Properties Tool (see Fig.2). The model for each
widget has to be provided by the class that is reusing the Canvas.

For example, if we revert to our original definition of class BondEntry, we could reuse
the dateSpec Canvas of DateModel by creating a Subcanvas widget and giving it the
properties in Fig.2. However, we also have to modify class BondEntry so that it provides
models and behavior expected by the properties of the widgets in the embedded Canvas.

Ex 3.

Revert to your original version of BondEntry and create a Subcanvas widget
with the properties specified above.! Use the Definer to add any necessary
instance variables. Modify the class (adding methods as necessary) so that the
widget works correctly.

1. You may have to file—in thgondEntry class that you filed—out before Ex.2.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Subcanvasses 3

= Froperties Tool on: Bond Entry §_g§|
SubCanyas Tﬂ'l'h

Basics
Name: Details
Class: #DateMode| Efﬂﬂl’

Pasikion

Canvyas: #dakeSpec 'iI'lrn::-p Target
1D:

Aty | Cancel | Ay & Close Py | Pk |

Figure 2. Visual Reuse via an Embedded Canvas

4. Embedding one Application inside another

This technique implies that a class and its Canvas specification is embedded in some other
Canvas. It requires an additional property Name, which specifies the selector which will
return an instance of the class which contains the Canvas specification (see Fig.3). This
instance is then the receiver of the aspect messages defined by the widgets in the Canvas
specification.

Ex 4. Revert back to your original version of BondEntry and create a Subcanvas
widget with the properties described above. Use the Definer to create the
appropriate instance variable. You should find that the widget now works as
expected.

5. Visual Reuse — Summary

If a Symbol is specified for the Name property of a Subcanvas widget, the Definer will
create an instance variable with that name and initialize it to be an instance of the class
providing the Subcanvas. When the UlBuilder looks for the models of the widgets within
the Subcanvas, it sends their aspect messages to this instance rather than the instance of

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Subcanvasses 4

=] Froperties Tool on: Bond Entry ———m
SubCanvas Tﬂ'l'h

Basics
NHame: FdabeMode | Fre
Class: #Daketods| Efﬂﬂl’

Position

Canvas: #dakeSpec 'iI'lrn::-p Target
1D:

Aty | Cancel | Ay & Close Py | Pk |

Figure 3: Visual Reuse via an Embedded Application

the application model class. Therefore, each model in the class containing the Subcanvas
must be of the appropriate class for the Canvas (e.g., an instance of ValueHolder).

If the Name property is not specified, the UlBuilder will send the aspect messages
defined in the widgets to an instance of the Canvas class — which in practice often means
replicating all of the instance variables from the Subcanvas class to the Canvas class.

Overall, it is much easier and much more preferable to achieve visual reuse by
embedding applications, one inside another. This approach avoids the cumbersome
inheritance described in section 2 and the unnecessary duplication of effort identified in
section 3.

6. Special Menu Options

When painting, the Subcanvas widget provides the <operate> menu with an extra item
named special with the following options: create sub application , paint sub application
browse sub application and extract contents . The “sub application” refers to the class that
provides the Subcanvas. It is possible to paint a Subcanvas when the class and its Canvas
has not yet been defined. The create sub application menu option then creates a new class

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Subcanvasses

on which to install the Canvas.
Table 1.

The remaining menu options behave as described in

paint sub application

opens a Subcanvas for editing. If the sub application
class has just been created, the Canvas is blank; if it
already existed, the Canvas is opened displaying its
widgets.

browse sub application

opens a Browser on the Subcanvas class.

extract contents

removes the Subcanvas wrapper, leaving the its
components as separate parts of the new Canvas.
This removes all trace of the other sub application
class.

Table 1: Special Menu options for the Subcanvas Widget

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

