Review of Application Model Framework 1

Review of Application Model
Framework

The VisualWorks Canvas mechanism provides an application framework on top of MVC.
This module first differentiates between application models and domain models as they
pertain to the frameworks. We then discuss how to connect a widget to its underlying

model, along with a review of the dependency mechanism as utilized within the Canvas
mechanism via the notification property or the more generic onChangeSend:to: message.

This module also provides a review of the ApplicationModel class, including the
method that should be subclassed: preBuildWith:, postBuildWith:, etc.

1. Models

When designing an application, it’s useful to distinguish two kinds of model (see Table 1).

A Domain Model Consists of behavior required for some application
domain along with information needed to carry out
the behavior. This model often persists beyond the
lifetime of the users’ interaction and typically
includes a complex object structure that may be used
by a number of different applications. For example,
in a financial application, the model may contain
objects pertaining to securities or trades.

An Application Model | Consists of behavior that is required to support the
user’s interaction along with information needed to
carry out the behavior. For example, the information
in the model may represent a selection in a list, or the
contents of a paste buffer.

Table 1: Different kinds of Model

It is relatively straightforward to create a new domain model, since an instance of
any Smalltalk class may take the role, although it will usually be a subclass of Model. In
the case of an application model however, it’s almost always necessary to create a bespoke
class. The internal structure of the class — in terms of its instance variables — is usually
represented by instances of those classes in the ValueModel class hierarchy described
elsewhere. These are the objects that represent the selection in a list, the entry in a text
field, the value of a slider, or the boolean value of a button, and so on.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 2

1.1. Class VValueModel

The abstract class ValueModel epitomizes the idea of a holder class — one that references
a value of some sort. ValueModel is an abstract class whose concrete subclasses provide
direct access to some kind of enclosed object, named its value. ValueModel provides its
subclasses with default behavior for accessing an object (via the value message) and a
means of specifying an object (via the corresponding value: message). When an instance
of some subclass of ValueModel receives a value: message, its dependents are sent the
message update: #value.

ValueHolder is a concrete subclass of ValueModel that epitomizes the approach
described above. It provides an instance variable (called value) to reference the object
received as the argument to a value: message. An instance of ValueHolder is often used to
act as an intermediary for another object, such as a Boolean or a String, that does not
behave like a model. To create an instance of ValueHolder, send it the message with:, passing
the initial value as its argument. For example:

ValueHolder with: (Employee named: 'Jane Doe’)

Additionally, for your convenience, three other instance creation messages are
available, described in Table 2.

newBoolean | the value is initialized to false

newFraction | the value is initialized to 0.0

newsString the value is initialized as an empty String, i.e. "

Table 2: ValueHolder instance creation messages

Instances of ValueHolder serve as the models for most VisualWorks widgets. More
complex widgets — such as the List, DataSet, Notebook and Table widgets — have
sophisticated models which make use of class ValueHolder. This means the interface
between widget and model is clear, concise and consistent across the entire VisualWorks
framework. The way in which a widget communicates with a ValueHolder may be
described thus:

1. A widget sends value to its model to get the value to display
2. A widget sends value: to its model to change its value

3. A widget updates when it receives an update: #value message from its model.

1.2. Class ApplicationModel

The abstract class ApplicationModel is the class intended to be the superclass of almost all
application models (just as Model is intended to be the superclass for all domain models).
It defines behavior to open, close and co-ordinate windows.

The “design” for a window is created by “painting” on a “Canvas”, and is called a
“Canvas specification”. The Canvas specification is stored as a class method in the
application model class, and is usually given the selector #windowSpec. Previously, we

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework

discussed the difference between an application model and a domain model. Using a
Canvas, the definition of the application model is largely unchanged, except that perhaps
it includes more functionality than might be the case in a traditional MV C application.

In brief, the iterative process for developing or modifying a Canvas is as follows:

Open a new or existing Canvas.
Drag widget icons from the “Palette” to an appropriate place on the Canvas.

Enter “properties” for each widget. These properties include color, layout and font,
etc., as well as an aspect message selector that is sent to the application model to
return the model for the widget. Properties are entered using the “Properties Tool”
which is divided into pages.

Install the Canvas — this creates a Canvas specification method in an application
model class determined by the programmer. If the class has not yet been defined,
a class definition dialog will appear.

Use the “Definer” Tool to create instance variables and instance methods in the
application model class corresponding to the models and methods expected to be
found. (Optional.)

Write supporting code (for example, the message selector sent by an Action
Button).

Test the Canvas, by opening the window.

If you look at some of the methods in the ‘interface opening’ protocol of

ApplicationModel, you will see that they merely contain comments, with no method body.
These are the methods that are frequently implemented in application—specific subclasses
of ApplicationModel. To be able to make the most of the framework provided by
ApplicationModel, we need to know the sequence of messages that are sent when a new
application window is opened. The message sequence is as follows:

1.

The application model class is sent the message open (or openWithSpec: aSpec if the
Canvas specification method is not named #windowSpec).

The application model class is sent the message new. The corresponding method
creates a new instance of itself and sends it the message initialize. Thus, subclasses
of ApplicationModel frequently implement initialize. The instance is sent the message
openlinterface: aSpec where aSpec is the name of the Canvas specification to be
opened. This is the key message in the window opening process (Fig.1).

An instance of UIBuilder is created and assigned to the instance variable builder. One
important attribute of a UIBuilder is its “look policy” — representing the “look-
and-feel” of the window to be opened. By default, a UlBuilder is instantiated with
the default look policy for the image — represented by its class variable
DefaultPolicyClass.

The method preBuildWith: aBuilder is sent to the application model instance. Here,
aBuilder is the instance of UIBuilder created above. Hence, if you wish your
application to do something before constructing the widgets (e.g. changing the

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 4

=]

Method Browser on ApplicationModel =i——05]

hd

openlnbeface:

hd

openinterface: aSymbol =

"Open the Applicationbiodel's user interface, using the specification
narmed.”

| s |

Buildet = self buildsrClass new.

Builder source: self.

sped = self class intetface Speckor asymbol.

self preBuildyith: builder.

Self
bk Uetindow: self defaultwindowClassOrtil
Spec Sped
Builder: builder.

Buildet add: spedc.

self postBuildyith: builder.

Eruildet windos nods]: self.

Builder opentithExtent: spec window bounds exbent.

“Gel the window initially built before letfing the application maode

altet the stale of things. Otherwise, we could get muliple, unnecessany
redisplay events.”

Euildet window displayPendinglnyalidalkion,

self posiOpeni¥ith: builder.

“Euilder 1 1

e

Figure 1: The openinterface: method

look policy, or specifying “bindings” (module “Models”: See “Bindings” on
page 14.), you should re-implement this method in your application model class.

The Canvas specification is added to the instance of UIBuilder by sending it the
message add: aSpec. In Fig.2, we can see that the method add: in class UlBuilder
causes the message addSpec: aSpec to be sent to itself, which in turn (Fig.3) sends
the message addTo: self withPolicy: policy to the method argument. Here, self refers
to the instance of UIBuilder, and policy to its instance variable representing an
instance of a subclass of UlLookPolicy.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 5

=[1=—————= UlBuilder Class Browser =—————[HI=

LB uildler EER A
) addCollection:

(®) instance (O class addCollectionRecyclingSpecs:

— addspedc:

inikialize-releass B

ACCESSIng |

adding

trinding & i
add: aSpec had

"Resel cumrent internzl skake and build within the cumrent composibe
according ko aSpec”

self startMewComponent.
Selfaddspec aspec.
“Wraper

Figure 2: Adding a Canvas Spec to a UlBuilder (1)

6. Subsequently, a window is created, views are inserted, controllers are attached to
views and models are assigned. The instance of UIBuilder now has access to its
window and a collection of instantiated widgets.

7. Before the window is opened on the screen, the instance of the application model
is sent the message postBuildWith: aBuilder. This offers the programmer another
opportunity to intervene (e.g., to reference widgets and send messages to them).

8. The model of the window is assigned to be the instance of the application model.
9. The UIBuilder opens the window it has built.

10. Finally, before returning the instance of UIBuilder, the message
postOpenWith: aBuilder is sent to the application model instance. This is the last
method that a subclass of ApplicationModel might implement.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework

=0 UlBuilder Class Browser =————[HI=

UEuilder add: H
) addCollection:

(®) instance (O class addCollectionRecyclingSpecs:

- [add S e

inikialize-releass B

ACCESSIng |

adding

trinding & vy

hd

addSpec: aspec
FesCeiver's policy”

Spedc =aspec.

CAppea | b aSpec o add ksl L in turn will ordinarily appeal b the

aSpec addTo: s&lf withPolicy: palicy

Figure 3: Adding a Canvas Spec to a UlBuilder (2)

Table 3 summarizes the methods that you are likely to implement.

initialize

The initialize method should contain initialization
code that does not require an instance of UlBuilder.
For example, table and list initialization,
dependency set-ups.

preBuildWith: aBuilder

At this stage we have an instance of UlBuilder, but
nothing has yet been built. This is the stage to
override the “bindings” (module “Models”: See
“Bindings” on page 14.) or to set the “look-and-
feel” policy e.g.

aBuilder policy: MacLookPolicy new

postBuildWith: aBuilder

At this stage, the UlIBuilder has finished building the
window and its components, and is ready to open it.
All the “bindings” have been determined. This is the
stage to modify components (see below).

Table 3: Summary of methods

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 7

postOpenWith: aBuilder | At this stage, the UlIBuilder has access to the window
which it has just opened. This is the stage to create
connections between windows (see later).

Table 3: Summary of methods (Continued)

It’s important to note that if you implement any of these methods in a subclass of
ApplicationModel, you should always begin them by inheriting the behavior of the
superclass (e.g., super initialize). This will ensure that you inherit the default behavior
provided by ApplicationModel.

Ex 1. Browse the methods described above in class ApplicationModel.

Ex 2. Implement the four methods listed above in your application model class with
self halt in the method body. Test the application and at each halt, examine the
state of the application model and its UlBuilder.

In addition to class ApplicationModel described above, VisualWorks provides three
more abstract superclasses which are used to represent different kinds of application. All
four are described in Table 4.

Vlsual_\No_rks Abstract Superclass Comment
Description
Application ApplicationModel Basic application model behavior
Dialog SimpleDialog Modal dialog application model
Data Form LensDataManager Application Model for database
windows, holding query specifications
as well as window specifications.
Database Application | LensMainApplication Database Application root class,
holding main window specification,
data model specification and database
connection.

Table 4: Generic Applications

The application model class that contains your Canvas specification will be a
(possibly indirect) subclass of one of the abstract superclasses described in the table, and
become the application model for the application. All windows opened from the
application will emulate the default look-and-feel specified in the Settings Tool unless
specifically overridden.

2. Models for Widgets

The model for a particular widget is determined by sending the selector specified in the
widget’s aspect property to the instance of the application model class in which its Canvas

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 8

isinstalled. For example, the widget defined in Fig.4 would send the selector userName to
the instance of the application model class in order to get the value to be displayed in that
widget.

Eiaes Properties Tool on: Unlabeled Canvas =—[2I=
Input Field ™
Basics
= # TIIIII
Aspeck: LSett-arme ST
Menu: '*'»'flzlxlidati-:}n
Notification
ID: LLL
Color
T E': Strin ju— I
P 9 Pasition
Formak: — 'Dr-::-p Target

Ay | Cancel | Ay & Close Presy | texk |

Figure 4: Properties Tool showing Aspect property

Dividers, Boxes and VisualRegions need no model — they are merely decorative.
Action Buttons and graphic Labels reference an instance of the application model class as
their model. Check Boxes, Radio Buttons, Input Fields, Text Editors, Menu Buttons,
Combo Boxes and Sliders all expect an instance of ValueHolder (or an instance of a class
that behaves like ValueHolder) as their model.

A List widget expects an instance of SelectioninList as its model. The widget has an
extra property to specify that the user may select more than one item from the list; in
which case its model should be an instance of MultiSelectioninList.

A DataSet widget also has a SelectioninList as its model. The widget additionally
requires properties to be defined for each of its columns. These properties are used to
identify the appropriate aspect of each row that is to be displayed by each column.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 9

A Table widget requires the most complex model of all, an instance of Tablelnterface.
Instances of Tablelnterface contain much information on the presentation of the table (e.qg.
the width, format and label for each column). In addition, TableInterface has an instance
variable — selectioninTable — that references an instance of SelectioninTable. (This class
provides similar behavior to SelectioninList.) The class has two instance variables:
tableHolder and selectionIindexHolder that contain respectively a table (either an instance of
TwoDList or TableAdaptor) and an instance of Point.

A Subcanvas does not have a model per se — it is merely a collection of other widgets
according to the layout and definition of some other Canvas. Each of those widgets will
have a model according to the above guidelines. A Notebook widget has a Subcanvas and
a SelectioninList model for its tabs.

A View Holder Widget must define its own model (if necessary) according to the
needs of the particular subclass of VisualPart used.

Ex 3. Create a Canvas on a new application class called ‘BondEntry’. Include the
following Input Fields: ‘Symbol’ (Symbol), ‘Quantity’ (Number), ‘Price’
(FixedPoint) and ‘Trader’ (String).

Ex 4. Add three more widgets to your Canvas: ‘Description’ (Text widget); and
‘Type’ (two Radio Buttons with choices ‘Govt.’ and ‘Corp.’). Set one of the
Radio Buttons to be the initial choice.

3. Dependencies

Following the MV C paradigm, a model uses the dependency mechanism to notify its
views that it has changed. Views and controllers have direct access to each other and to
their model, but the model has no direct knowledge of its views. Using a Canvas does not
alter this paradigm. Part of a UIBuilder’s task when transforming a window specification
into a windowy, is to set up the dependencies. It does a good job! Everything is done for
you. That is part of the beauty of requiring all models to be polymorphic with ValueModel,
VisualWorks knows just what to expect.

Because the underlying models all have ValueModel behavior, the developer can take
advantage of some additional ValueModel methods. For example,

onChangeSend: aSelector to: anObject

This method creates an instance of DependencyTransformer that watches for update
messages coming from the receiver, and sends aSelector to anObject when one is received.
This saves the developer from having to implement an update: method in the class of
anObject. It further limits the update traffic because anObject will only receive update
messages from those instances of ValueModel in which it has registered an interest. These
dependency connections are often specified in the initialize method of the application
model class. These dependencies may be created at any time, but a convenient place to set
them is within the application model class’s initialize method.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework

10

Additionally, the Properties Tool includes a Notification page for each widget
(Fig.5). This page defines notification selectors which are sent to the application model
when a particular event occurs. The events handled are widget Entry, widget Change and
widget Exit. Once again, you have the option of having the widget controller passed in as
an argument (the message selector should end with a colon) from which you may request
the controller’s editValue (the current text entry in the widget).

E[I=== Properties Tool on: Unlabeled Canvas —=2
Input Field h
-Action On ,EaSICS
Details
Eniry: . Validation
Change: Nc-'til‘i-::atic:n
Exit: ey
Position
'iIII:rn::-p Target
Ay | Cancel | Ay & Close Prey | flexk |

Figure 5: The Properties Tool Notification Page

The sequence of notification messages are sent according to Table 5.

Widget gains focus

entry notification

Widget changes value without losing
focus

change notification

Widget changes value while
simultaneously losing focus (possibly
via <CR> or <tab>)

change notification

exit notification

Table 5: Notification Messages

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 11

Widget loses focus exit notification

Table 5: Notification Messages (Continued)

The two different approaches to setting dependencies are user event based
(notification properties) versus Model event based (onChangeSend:to:). Notification
property selectors are only triggered by user actions. Therefore, no widget change event
will be triggered if the model for an Input Field is changed programmatically. Using
onChangeSend:to: ensures that the dependency mechanism is triggered any time the
model for a widget is changed, whether programmatically or via user input.

Other differences between the two approaches include:

= The notification property selectors can watch for widget entry and exit events as well
as change events. However, this approach can only trigger behavior in the widget’s
application model.

= onChangeSend:to: is a generic dependency aide. It can be sent to any object
responding to ValueModel protocol, and can trigger behavior in any object.

We noted above that instances of ValueHolder may be changed by sending them the
message value:. Remember that changing the contents of a ValueHolder automatically
causes its dependents to update. Therefore, any widget with a ValueHolder as its model
will update when that ValueHolder changes. Occasionally two or more widget’s models
are interdependent such that changing one causes the other to update, which in turn
causes the first to update and so on..., causing a dependency loop. To change an instance
of ValueHolder without notifying any dependents use the message setValue:, rather than
value:

Ex 5. Add aread-only, fixed point Input Field widget called ‘amount’ to display the
total amount (price * quantity) for the bond trade. Use the change notification
property on each of the ‘quantity’ and ‘price’ Input Fields to update ‘amount’
whenever either or them changes.

Ex 6. Replace the notification property of the price Input Field with an
onChangeSend:to: message in the application model’s initialize method.

Ex 7. BondEntry is an application model, built to handle application logic and user
input. In a real application, it would be manipulating a domain model. File in
class BondTrade from BondTrade.st to be the domain model. Add an Action
Button labelled ‘Add Trade’ that transfers the values in the widgets to an
instance of BondTrade and then prints its attributes in the Transcript, (Use the
expression Transcript show: aBondTrade printString.). Once completed, the
widgets should be automatically reset. (In a later module, we will see how to
avoid the transfer step.)

Ex 8. Add another Action Button labelled ‘Clear’, which clears the current values of
the widgets.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Review of Application Model Framework 12

Ex 9.

Ex 10.

Ex 11.

Ex 12.

Ex 13.

Ex 14.

Replace the ‘Trader’ Input Field with a Menu Button containing pre—defined
choices: Donald, Goofy and Mickey.

Add a Menu Bar to the window (called bondEntryMenu) with one menu title
‘Entry’, containing items ‘Add’ and ‘Clear ‘to mimic the functions already
provided by the Action Buttons.

Using the enhanced menu editor, modify the bondEntryMenu menu so that the
items ‘Add’ and ‘Clear’ have shortcut keys ‘A’ and ‘C’, respectively.

Place a List widget on the Canvas and add some methods so that the ‘Add
Trade’ Action Button adds the instance of BondTrade to the List widget.

Add a second Menu to the Menu Bar called ‘List’ with items ‘Sort Down’ and’
Sort Up’ to sort the items in the List widget according to their symbol. Give the
menu items the shortcut keys ‘D’ and ‘U’, respectively. Use an instance of
SequenceableCollectionSorter to sort the list, for example:

(SequenceableCollectionSorter on: aList using: [:X :y | X <=y]) sort

Add a Combo Box widget to the Canvas to enter the location with choices:
‘Buenos Aires’, ‘London’, ‘New York’ and ‘Tokyo’. Modify the ‘Add Trade’
operation so that the BondTrade is informed of its location, and modify the
‘Clear Trade’ operation to reset the value of the new widget.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

