
Weak References 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Weak References

Most object references in VisualWorks are strong. If there is a chain of strong references to
an object from one of the system roots (e.g., the system dictionary, Smalltalk), then the
garbage collector will not reclaim the object. However, if the object is only reachable via
one or more chains with at least one weak reference in them, then it will be reclaimed.
Weak references can only appear (directly) in instances of WeakArray (not even in
instances of a subclass).

1. WeakArray
A WeakArray is similar to a plain Array, except that all the indexable instance variables
contain weak references. When the garbage collector finds that the last references to an
object reside in one or more WeakArrays, it reclaims the object, and sets the instance
variables that used to refer to the object to 0. It also initiates a sequence that allows
finalization to take place (i.e., actions which cleanup after an object has died).

2. Finalization
In addition to zeroing the appropriate element of the WeakArray, the WeakArray is added
to an internal VM queue known as the finalization queue, and a Semaphore (stored in the
FinalizationSemaphore class variable of WeakArray) is sent the message signal. Signalling the
Semaphore wakes up the FinalizationProcess (another class variable) that has waited on the
Semaphore. This uses another primitive to take the first WeakArray from the finalization
queue, and then sends it the message changed: #ElementExpired.

Each WeakArray maintains a list of dependents (in the dependents instance variable),
and when it receives changed:, it broadcasts update: to its dependents. It is up to the
dependents to take the appropriate finalization action. Note that this occurs after the
object has died, and hence can no longer be accessed. This means that the finalization has
to be planned in advance!

Once a dependent has been informed, it will usually nil out the instance variable of
the WeakArray which used to refer to the late object. A special method,
forAllDeadIndicesDo:, is provided to assist with this. This iterates over all the indexes that
have recently expired, passing each to the block argument. It is written in such a way that
it is guaranteed each expiry will only appear once, even in the presence of concurrent
activity (see Fig.1).

As an example, consider class Finalizer, defined as a subclass of Object. It has one
method, as below:

update: anAspect with: aParameter from: aSender
Transcript cr; show: anAspect printString; tab; show: aSender printString

Weak References 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en
The following code creates an instance of Menu, and places it as the sole element of

a WeakArray. An instance of Finalizer is then added as a dependent of the WeakArray. The
Menu is then sent the message startUp (causing it to appear on the screen). After the user
has selected the menu option, the Menu disappears, and an Inspector is opened on the
WeakArray.

| menu weakArray |
menu := Menu labels: 'Press me and I die!'.
weakArray := WeakArray with: menu.
weakArray addDependent: Finalizer new.
menu startUp.
weakArray inspect

Because there are no other strong references to the Menu, its place in the WeakArray is
zeroed out, and the WeakArray is sent a changed: message. The Finalizer, as a dependent of
the WeakArray, receives an update:with:from: message, which it responds to according to the
method shown above. (Note that in order for this example to work, the WeakArray must
outlive the Menu — hence the Inspector.)

Figure 1: Finalization

VM

WeakArray

Finalization
Process

1 Set ref to 0

1 signal

0 wait

3
changed:

4 update: #Ele…
dependents

5 finalize

#Element
Expired

2 awaken

Finalization
Semaphore

Weak References 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Ex 1. Try the example above. Leave the menu on the screen for a variety of different
periods of time before making a selection, and observe the delay between the
menu disappearing and the message appearing in the Transcript. What’s the
reason for the variation?

3. WeakDictionary
Common uses of finalization involve a WeakDictionary. This is an IdentityDictionary with
weak references for its values. It also maintains a shallow copy of each value to use as an
executor. When the real value dies, its shallow copy is sent the message finalize.

For example, class FamilyMember is defined below:

Object subclass: #FamilyMember
instanceVariableNames: 'name '
classVariableNames: ''
poolDictionaries: ''
category: 'Weak References'

It has methods name and name: to access the instance variable. In addition, it has the
method finalize, thus:

finalize
Transcript cr; show: name, ' has died'

In the code below, an Array is created containing four instances of the class. The Array
is used to populate an instance of WeakDictionary, using the names of the FamilyMembers
as the keys. When an Inspector is opened on the WeakDictionary, the FamilyMembers no
longer have any strong references, hence the shallow copy of each (maintained by the
WeakDictionary) is sent the message finalize, causing their name to be written to the
Transcript.

| array weakDictionary |
array := Array

with: (FamilyMember new name: 'Jan')
with: (FamilyMember new name: 'Alex')
with: (FamilyMember new name: 'Sam')
with: (FamilyMember new name: 'Hillary').

weakDictionary := WeakDictionary new.
array do: [:f | weakDictionary at: f name put: f].
weakDictionary inspect

HandleRegistry is a subclass of WeakDictionary used for recording handles on external
entities (windows, files, etc.).

Ex 2. Implement class FamilyMember and experiment with the example code.

Ex 3. Browse class WeakArray, WeakDictionary, WeakKeyAssociation and HandleRegistry.
Investigate where they are used.

