
Miscellaneous Tricks 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Miscellaneous Tricks

In this module we explain several tricks that we have found of use to the advanced
VisualWorks developer. These include: multiple dispatching, the perform: message, the
become: message, the doesNotUnderstand: message, and using nil as a superclass to build
an Encapsulator. The module contains a description of each trick, combined with examples
and exercises.

Miscellaneous Tricks 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Double Dispatching

Occasionally, behavior is required which is dependent on the classes of more than one
object, e.g. a + b, or messages to display items on a GraphicsContext.

2 + 4.0

2 + 4

4.0 + 2

4.0 + (2/3)

aGraphicsContext display: aLine at: 100@100.
aGraphicsContext display: aText at: 10@10

In such cases, double dispatching can be used to choose the right method.

1. General Approach
In addition to the general message foo:, a special case version is made for each possible
kind of argument, fooClass1:, fooClass2: etc.

Then, in each of those classes, foo: invokes the message naming that class, reversing
the receiver and argument. Example (from class Integer):

+ aNumber
^aNumber sumFromInteger: self

This technique is used extensively in the arithmetic methods in the ArithmeticValue
hierarchy, and in the display:at: method in class GraphicsContext. However, it does give rise
to several problems:

• For n classes, n2 classes are required. For triple dispatching (dispatching on two
arguments), n3!

• The method selectors appear clumsy for non–commutative operators and triple
dispatching (example from class Integer):

- aNumber
^aNumber differenceFromInteger: self

• The flow of evaluation is difficult to follow, as methods are scattered across several
classes.

Miscellaneous Tricks 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

The perform: primitive

The perform: primitive(s) can be used to dynamically determine the selector used in a
message.

It is used in “pluggable” classes which can be customized to different objects.

On the whole, perform: can be replaced with blocks. For example, assume that a class
contains a method doUsing:, as follows:

doUsing: aSymbol
^bar perform: aSymbol

Then if the message doUsing: #doThis is sent to an instance of that class, it is more or
less equivalent to an alternative implementation using a block argument:

doUsing: aBlock
^aBlock value: bar

using the message expression doUsing: [:x | x bar]

 When choosing between the two approaches, consider the following points:

• There is little to choose between them in terms of performance.

message # message
arguments

perform: 0

perform:with: 1

perform:with:with: 2

perform:with:with:with: 3

perform:withArguments: any number
(in Array)

Table 1: Theperform: messages to send messages indirectly

Example using perform Equivalent message

x perform: #foo x foo

x perform: #foo: with: y x foo: y

x perform: #foo:bar:baz:
withArguments:
(Array with: y with: z with: w)

x foo: y bar: z baz: w

Table 2: Some examples ofperform:

Miscellaneous Tricks 4

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

• Use of either makes code harder to understand (e.g., tracing through Browsers is
trickier, and requires understanding of the data flow), hence use with discretion.

• Blocks can be more flexible, using local context if necessary.

• Blocks are better when the code to be executed is not obviously associated with one
object (use of local context).

• A block is usually created during an initialization phase, and hence cannot be
modified directly in the Debugger when it is being evaluated.

The only essential use of perform: is in a doesNotUnderstand: method (if deciding to
proceed). See Fig.1.

Ex 1. What is the effect of this code (save your image before trying it!)? Can you
explain what happens?

Figure 1: Using perform:withArguments: in doesNotUnderstand:

Miscellaneous Tricks 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

| a |
a := Array with: #perform:withArguments: with: nil.
a at: 2 put: a.
Smalltalk perform: a first withArguments: a

(Due to Eliot Miranda)

Ex 2. Add a value: method to class Symbol which uses the receiver as the argument to
a perform: message sent to the method argument. Test the code using the
following expression:

#size value: Smalltalk

Similarly, add a value:value: method, which takes its second argument as the
second argument to perform:with: message. Test the code using the following
expression:

#at: value: Smalltalk value: #Processor

Miscellaneous Tricks 6

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

The become: primitive

The become: primitive exchanges the identities of the receiver and argument. For
example, after

| a b c |
a := 3@4.
b := Rectangle fromUser.
c := a.
a become: b.

a and c refer to a Rectangle, b refers to a point.

Transcript show: a printString ; cr.
Transcript show: c printString.
b x: 3.

See Fig.2

Figure 2: The effects of using become:

a b c

x
y

3
4

origin
corner

Point Rectangle

BEFORE

a b c

x
y

3
4

origin
corner

Point Rectangle

AFTER a become: b

Miscellaneous Tricks 7

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

1. Existing uses of become:
1. To grow collections (in method changeCapacityTo:). Remember to redefine

copyEmpty: when subclassing collections!

2. Mutating objects after class changes (e.g., when an instance variable has been
removed).

3. Updating old instances recovered using BOSS.

Note that become: cannot be used for immediate objects (SmallIntegers and Characters
in VisualWorks). VisualWorks also provides a primitive to change the class of an object:
changeClassToThatOf: (in Object; see comment in method for restrictions).

2. Good reasons not to use become:
1. Dangerous and confusing. Hard to reason about. Don’t use become: on system

objects or pseudo–variables.

Figure 3: Growing an object

newSelf

before grow

self

tally
1
2
3

tally
1
2

4

self

after grow tally
1
2
3
4

Miscellaneous Tricks 8

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

2. Not in the spirit of object–oriented programming, because the argument is not sent
a message.

Always ensure that any use of become: with self is always the last expression in a
method (to avoid potentially dangerous accesses to instance variables).

Ex 3. (For C/C++ programmers) Add methods inc and dec (to mimic ++ and --) to
Number, to allow you to increment and decrement numbers. What are the
restrictions? Why is this not a good idea?

Miscellaneous Tricks 9

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Encapsulators

Name (which is awful!) was introduced in: Encapsulators: A New Software Paradigm in
Smalltalk-80, by Geoffrey A. Pascoe, OOPSLA’86, ACM, pp.341–6. The basic idea of an
encapsulator (aka a proxy, or surrogate) is that it sits in front of another object, passing
messages through, but also performing some other function.

An example application might be an encapsulator to log messages to the Transcript.

1. Implementation in VisualWorks
An encapsulator understands no messages except:

• doesNotUnderstand:, which is used to capture every message, interrogate it somehow,
and then forward it the encapsulated object (using perform:), and

• those messages used for its own operation (which should be unique to that class).

This is usually achieved by setting the encapsulator class’s superclass to nil (like
Object) — crude, but it works! When attempting this, you will get a notifier warning you
that a class is being defined with a nil superclass — proceed through this. Also, it is not
possible to redefine the structure of a class (e.g., the number of instance variables) if it has
no superclass.

2. Possible problems
Errors—Much of the system (e.g., the debugger) depends on messages like printOn:

and class working. If the encapsulator is faulty, and these do not work, things will
go badly wrong, perhaps requiring a restart of the system. While debugging the
encapsulator, make it a subclass of Object. Note that VisualWorks adds some
methods (like class) automatically when the superclass is set to nil.

Incomplete encapsulation—If the encapsulated object passes a reference to itself to
another object, or returns a reference to itself, then messages may reach the object
bypassing the encapsulator. This is even more likely if the encapsulator is created
well after the encapsulatee. The use of become: may help to capture references, but
beware of attempting to encapsulate system objects in this way!

Primitive failure— Some primitives will fail if an argument is not of a specific class
(e.g., primitive addition between integers). In this case an encapsulator will not
work.

Ex 4. (Easy) File in MessageTracer.st , browse the implementation, and try the
examples.

Miscellaneous Tricks 10

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Ex 5. (Moderate) Build an encapsulator class Lazy that encapsulates a block. When
the encapsulator receives a message, it should evaluate the block, holding on to
the result object, and passing the message and all future messages on to the
result object. For example,

f := [100 factorial] lazyValue.

should build the encapsulator, but the factorial should only be computed when
f is later sent a message, e.g.:

Transcript show: f printString

Ex 6. (Harder) Build a similar class Future that commences evaluation of the block
immediately, and in parallel (by sending the block fork). Should a message
arrive before evaluation of the block has completed, suspend the sending
process, and forward the message when the block has exited. (See Writing
Concurrent Object-Oriented Programs using Smalltalk-80, by Trevor P. Hopkins
and Mario I. Wolczko, Computer Journal, 32:4, 1989, pp.341–50, for a
description of the future evaluator.)

	Miscellaneous Tricks
	Double Dispatching
	1. General Approach

	The perform: primitive
	Table 1: The perform: messages to send messages in...
	Table 2: Some examples of perform:
	Figure 1: Using perform:withArguments: in doesNotU...
	Ex 1. What is the effect of this code (save your i...
	Ex 2. Add a value: method to class Symbol which us...

	The become: primitive
	Figure 2: The effects of using become:
	1. Existing uses of become:
	1. To grow collections (in method changeCapacityTo...
	Figure 3: Growing an object
	2. Mutating objects after class changes (e.g., whe...
	3. Updating old instances recovered using BOSS.

	2. Good reasons not to use become:
	1. Dangerous and confusing. Hard to reason about. ...
	2. Not in the spirit of object–oriented programmin...
	Ex 3. (For C/C++ programmers) Add methods inc and ...

	Encapsulators
	1. Implementation in VisualWorks
	2. Possible problems
	Ex 4. (Easy) File in MessageTracer.st, browse the ...
	Ex 5. (Moderate) Build an encapsulator class Lazy ...
	Ex 6. (Harder) Build a similar class Future that c...

