
Models 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Models

This module describes the classes whose instances can be used as models for VisualWorks
widgets. We begin by describing class ProtocolAdaptor, whose subclasses provide the
behavior to “adapt” Domain Models. We then examine two other subclasses of
ValueModel: BufferedValueHolder and BlockValue. In addition, we describe how a UIBuilder
uses bindings to determine the model to be used for each widget.

The module ends with a description of some classes prepared by the authors that
exploit the techniques described.

1. Adaptors
So far, we have seen how instances of ValueHolder are used as the models for most widgets.
For example, each of the Input Field widgets for the BondEntry application has a model
that is an instance of ValueHolder. These instances are represented as instance variables in
class BondEntry — price, trader, etc.

However, this approach can be cumbersome and inefficient — we have seen how the
‘Add Trade’ operation required us to take the value of each widget’s model (an instance
of ValueHolder) and pass it as an argument in a message sent to an instance of BondTrade.
It would have been preferable to use an instance of BondTrade as the model for the
widgets, thus allowing them to communicate directly with their domain model.
However, remember that a widget expect its model to respond to value and value:
messages — not the sort of behavior we would expect of an instance of BondTrade.

What we need then, is a way of communicating with a domain model in which the
messages coming from a widget are translated into messages understood by the domain
model. Class ProtocolAdaptor offers exactly this kind of solution.

1.1. Class ProtocolAdaptor
Class ProtocolAdaptor is an abstract class that is a subclass of ValueModel. It provides the
following behavior when it receives a message from a widget (value or value:)

1. It translates that message into a new message that is understood by a domain
model (its subject)

2. It sends that new message to its subject

VisualWorks calls this procedure “adaption”. The concrete subclasses of
ProtocolAdaptor provide different forms of adaption: aspects, indices and slots (they are
described later in this module). The relationship between a widget, a ProtocolAdaptor and
a domain model is illustrated in Fig.1.

One of the complications introduced by the ProtocolAdaptor approach is how to
manage dependency. The ValueHolder approach is straightforward: each widget is a
dependent of its model; when an instance of ValueHolder is sent the message value:, all of

Models 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
its dependents are sent an update message. Class ProtocolAdaptor conforms to this
approach (see Fig.2), but introduces the following complexity: when a ProtocolAdaptor

receives a value: message should it always update its dependents? — Or should its subject
have responsibility for sending update messages?

The answer to this question depends on the context in which a ProtocolAdaptor is
used. Therefore, ProtocolAdaptor allows the programmer to select which option is
appropriate by providing an instance variable subjectSendsUpdates (a Boolean).

Figure 1: Using a ProtocolAdaptor

Figure 2: Dependency Relationship between a widget and a ProtocolAdaptor

ProtocolAdaptor

Input Field Widget

Domain Model

model

subject

ProtocolAdaptor

Input Field Widget

Domain Model

model

subject

dependents

Models 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

If subjectSendsUpdates is false (the default), then a ProtocolAdaptor will update its
dependents whenever it receives a value: message. Conversely, if subjectSendsUpdates is
true, it adds itself as a dependent of its subject and intercepts its subject’s update
messages, redirecting them to the dependents of the ProtocolAdaptor (see Fig.3).

Thus, we can see that a ProtocolAdaptor fulfils our requirement to avoid using
instances of ValueHolder as the models for widgets. Furthermore, it provides a means of
changing the subject being adapted. This is useful, for example, when an Input Field
widget is displaying some aspect of an item in a List widget; selecting an item in the List
widget should cause the Input Field widget to reflect the change in the List widget. To
achieve this, a ProtocolAdaptor can obtain its subject from its subject channel, usually an
instance of class ValueHolder (but potentially any subclass of ValueModel). In this
arrangement, the ProtocolAdaptor is itself a dependent of its subject channel (see Fig.4). If
the ValueHolder representing the subject channel receives the message value: then its
dependents (including the ProtocolAdaptor) are sent an update message.

In summary then, ProtocolAdaptor introduces three instance variables, described in
Table 1.

Figure 3: Dependency Relationship between a Domain Model and a ProtocolAdaptor

ProtocolAdaptor

Input Field Widget

Domain Model

model

subject

dependents

dependents

Models 4

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
The methods available to create an instance of a subclass of ProtocolAdaptor are

shown in Table 2.

Figure 4: The use of a Subject Channel

subject The object being adapted.

subjectChannel A ValueModel whose value is the subject.

subjectSendsUpdates A Boolean determining update behavior

Table 1: ProtocolAdaptor instance variables

subject: aSubject Sets the subject to aSubject. subjectSendsUpdates
defaults to false.

subject: aSubject
sendsUpdates: aBoolean

Sets the subject to aSubject, and subjectSendsUpdates
to aBoolean.

subjectChannel: aValueHolder Sets subjectChannel to aValueHolder, sets subject to the
value of aValueHolder and defaults
subjectSendsUpdates to false.

subjectChannel: aValueHolder
sendsUpdates: aBoolean

Sets subjectChannel to aValueHolder, sets subject to the
value of aValueHolder, and subjectSendsUpdates to
aBoolean.

Table 2: Instance creation methods for Subclasses of ProtocolAdaptor

ProtocolAdaptor

Input Field Widget

Domain Model

model

subject

dependents

dependents

ValueModel

subject channel dependents

Models 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

1.2. AspectAdaptor
An instance of AspectAdaptor adapts a particular aspect of an object to behave like a
ValueModel. It does this through the use of two instance variables (each of which should
be a Symbol), described in Table 3.

Once and instance of AspectAdaptor has been created, its instance variables can be
specified using one of the two messages described in Table 4.

If we return to our BondEntry application, we could use an instance of AspectAdaptor
in the following manner:

(AspectAdaptor subject: aBondTrade sendsUpdates: true) forAspect: #price.

This adaptor sends the message price to the instance of BondTrade (represented by
aBondTrade) whenever it receives a value message from the widget. It sends the message
price: to aBondTrade whenever it receives a value: message from the widget. Because
subjectSendsUpdates is specified as true, the adaptor will send the message update: #value
to the widget whenever it receives an update: #price message from aBondTrade. The price:
method in class BondTrade should contain the message expression self changed: #price.

Alternatively, if the BondTrade class was implemented differently, we might have to
use the expression:

(AspectAdaptor subject: aBondTrade) accessWith: #price assignWith: #setPrice.

This adaptor will send the message price to aBondTrade when it receives value from
the widget. It will send setPrice: to aBondTrade when it receives value: from the widget.
Because the expression does not specify subjectSendsUpdates, it will default to false and
so the adaptor will not send update: #value to the widget if it receives an update: #price
from its subject. However, it will send update: #value to the widget whenever it sends
setPrice: to its subject.

getSelector This is the selector sent to the subject when the
adaptor is sent a value message.

putSelector This is the selector sent to the subject with a
parameter when the adaptor is sent a
value: aParameter message. It is assumed to take a
single argument.

Table 3: Instance Variables of AspectAdaptor

forAspect: anAspect both the getSelector and putSelector are assigned to be
anAspect

accessWith: anAspect
assignWith: anAspect2

the getSelector is assigned to be anAspect and the
putSelector is assigned to be anAspect2

Table 4: Specifying the getSelector and putSelector

Models 6

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

1.3. IndexedAdaptor
IndexedAdaptor is similar to AspectAdaptor except that its instances adapt a single index of
the subject rather than an aspect of the subject. It achieves this by re–directing the
messages value and value: messages as at: and at:put:, respectively. For example, an
instance of IndexedAdaptor would be used if you wanted the fourth element of a
sequenceable collection to behave like a ValueModel.

Class IndexedAdaptor introduces one additional instance variable, index, which
specifies the integer index of the subject that the IndexedAdaptor is adapting. The index is
specified with the message:

forIndex: anInteger

For example, the following message expression creates an IndexedAdaptor whose
subject is the sixth element of the sequenceable collection contained within aValueHolder.

(IndexedAdaptor subjectChannel: aValueHolder sendsUpdates: true) forIndex: 6.

If we now send the message value to the instance of just created, then it is equivalent
to the adaptor evaluating the following expression:

aValueHolder value at: 6.

Alternatively, we could send the adaptor the message value: anObject, which is
translated by the adaptor as:

aValueHolder value at: 6 put: anObject.

Because the original instance creation expression specified subjectSendsUpdates to be
true, this adaptor will not notify its dependents automatically when it receives a value:
message. Its dependents will only be updated if the sequenceable collection receiving the
at: anIndex put: anObject message evaluates the following expression after receiving the
at:put: message:

self changed: #at: with: anIndex

1.4. Slot Adaptor
Class SlotAdaptor is similar to its superclass IndexedAdaptor except that it re–directs value
and value: messages as instVarAt: and instVarAt:put:, respectively. It is very rarely used.

1.5. Using An Adaptor
If a Canvas has an Input Field widget whose aspect property is#field1, the Definer will:

1. create an instance variable called field1

2. Add an accessing method (called field1) to return (and possibly initialize) the
instance variable

However, if you wish to use one of the subclasses of ProtocolAdaptor, you have a
number of options:

Models 7

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Option 1
1. Use the Definer to create the instance variable called field1 and the method to access

it (but not initialize it).

2. Add an initialize method which assigns field1 to be an instance of a subclass of
ProtocolAdaptor.

Option 2
1. Create no instance variables

2. Create an accessing method which returns a new instance of a subclass of
ProtocolAdaptor.

Each time a widget is built by an instance of UIBuilder, it sends the widget’s aspect
message to the application model. However, the aspect message is never sent again by the
UIBuilder, so it is not necessary to assign the adaptor to an instance variable unless we need
to send it messages from within the application.

1.6. Communication between a Widget, an Adaptor and a Domain Model
To demonstrate the way in which a widget, an adaptor, and a domain model
communicate together, let us return to the example of the BondEntry application. In
particular, we will look at the widget whose aspect is #price. We will follow option 1
described above, and assume that the initialize method of BondEntry contains the following
message expression:

price := (AspectAdaptor subject: aBondTrade) forAspect: #price

Note: because subjectSendsUpdates was not specified, it has defaulted to false. You
should also assume that the price: method is implemented in class BondTrade as follows:

price: aPrice
price := aPrice.
self changed: #price

When building the window, the UIBuilder will have created a relationship as
illustrated in Fig.5.

Let us run through some possible scenarios:

The Input Field widget requires the current price
1. the widget sends the message value to the adaptor

2. the adaptor sends the message price to aBondTrade

3. aBondTrade returns its price to the adaptor

4. the adaptor returns the price to the widget

The user has typed a new value (96.3) in the Input Field widget
1. the widget sends the message value: 96.3 to the adaptor

2. the adaptor sends the message price: 96.3 to aBondTrade

Models 8

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
3. aBondTrade sends itself the message changed: #price. However, because

subjectSendsUpdates is false the adaptor is not a dependent of aBondTrade, thus the
adaptor does not receive an update message

4. because subjectSendsUpdates is false the adaptor sends the message update: #value
to its dependents (including the widget)

Some other object sends the messageprice: to aBondTrade
1. aBondTrade sends itself the message changed: #price. However, because

subjectSendsUpdates is false the adaptor is not a dependent of aBondTrade, thus the
adaptor does not receive an update message

Rather than using the instance creation message subject:, we could have used
subject:sendsUpdates:, as follows

price := (AspectAdaptor subject: aBondTrade sendsUpdates: true) forAspect: #price

When building the window, the UIBuilder will have created a relationship as
illustrated in Fig.6, with the following ramifications:

The user has typed a new value (96.3) in the Input Field widget
1. the widget sends the message value: 96.3 to the adaptor

2. the adaptor sends the message price: 96.3 to aBondTrade

3. aBondTrade sends itself the message changed: #price. Because subjectSendsUpdates
is true, the adaptor is a dependent of aBondTrade, thus the adaptor receives an
update: #price message

4. the adaptor sends the message update: #value to its dependents (including the
widget)

Figure 5: Communication between Widget, Adaptor and Domain Model (1)

AspectAdaptor
(#price)

Input Field Widget

aBondTrade

model

subject

dependents

Models 9

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en
Some other object sends the messageprice: to aBondTrade

1. aBondTrade sends itself the message changed: #price. Because subjectSendsUpdates
is true the adaptor is a dependent of aBondTrade, thus the adaptor receives an
update: #price message

2. the adaptor sends the message update: #value to its dependents (including the
widget)

The moral of the story is: if subjectSendsUpdates is true, the mutator method (e.g., price:)
in the domain model should send a changed: message for the update to propagate back to
the widget. If subjectSendsUpdates is false, a changed: expression in the mutator method
will be ignored by the adaptor, but the adaptor will notify its dependents whenever it
changes the domain model with the putSelector. The latter option will not catch changes
made to the object by other sources. We recommend that if you are building your own
domain models, you include changed: messages and use the …sendsUpdates: true variants
of the instance creation messages for subclasses of ProtocolAdaptor.

Ex 1. File–in the version of class BondEntry that you completed at the end of the
module “Review of Application Model Framework”. Modify class BondEntry to
use instances of AspectAdaptor as the models of the Input Field widgets, rather
than ValueHolder.

2. BufferedValueHolder
If we use the adaptors described above, some aspect of the domain model is modified
whenever the user changes the contents of a widget. There are occasions when it would
be useful to be able to “buffer” the value in the widget before changing the underlying
domain model, for example when the application model wishes to validate user input. At

Figure 6: Communication between Widget, Adaptor and Domain Model (2)

AspectAdaptor
(#price)

Input Field Widget

aBondTrade

model

subject

dependents

dependents

Models 10

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

first sight this requirement seems to lead us back to using instances of ValueHolder as
models for the widgets, copying them to the domain model as required.

Fortunately, VisualWorks provides a class to do this for us — it’s called
BufferedValueHolder. It is a subclass of ValueHolder and introduces three instance variables,
as described in Table 5.

The subject of a BufferedValueHolder is usually an AspectAdaptor, created thus:

BufferedValueHolder
subject: ((AspectAdaptor

subjectChannel: aValueHolder
sendsUpdates: true) forAspect: #anAspect)

triggerChannel: self triggerChannel.

As an explanation of how a BufferedValueHolder operates, let us return to the
BondEntry application (built using instances of AspectAdaptor). Let’s say the user has
entered a price in the Input Field widget whose aspect is #price. If the user enters a new
value for the price of a BondTrade, then as soon as the cursor leaves the widget its model
is sent a value: message, with the price as the argument. As we have seen above, this
eventually causes the message selector price: to be sent to the instance of BondTrade,
modifying its instance variable.

However, if we were to use an instance of BufferedValueHolder in place of the
AspectAdaptor, the user’s new value would be held by the BufferedValueHolder (using the
instance variable value) and go no further. The only way of forcing the BufferedValueHolder
to send a value: message to its subject is to send a message to its triggerChannel, i.e.,

triggerChannel value: true

The buffer value may be discarded by sending the message value: false to the
triggerChannel. This causes the BufferedValueHolder to send the message value to its subject,
to retrieve its current value. By using the same object to represent the triggerChannel for all
instances of BufferedValueHolder, we can coordinate updates to the domain model.

When an instance of BufferedValueHolder is initialized, its value is NotYetAssigned (a
class variable). When it is provided with a new subject, its value is re–initialized to
NotYetAssigned and it is made a dependent of the subject.

value inherited from its superclass this contains the current
buffered value as seen by the widget.

subject an instance of some subclass of ValueModel whose
value is the object being edited.

triggerChannel an instance of some subclass of ValueModel whose
value is a Boolean.

Table 5: BufferedValueHolder instance variables

Models 11

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

2.1. Communication between a Widget, a BufferedValueHolder
and a Domain Model
To demonstrate the way in which a widget, a BufferedValueHolder, and a domain model
communicate together, let us return to the example of the BondEntry application. Again,
we will look at the widget whose aspect is #price following on from section 1.6. on page
7. This time, assume that BondEntry has an instance variable named trigger (initialized as
ValueHolder newBoolean) and that the initialize method of BondEntry contains the following
message expression:

price := BufferedValueHolder
subject: ((AspectAdaptor subject: aBondTrade) forAspect: #price)
triggerChannel: trigger.

When building the window, the UIBuilder will have created a relationship as
illustrated in Fig.5.

Let us run through some possible scenarios:

The Input Field widget requires the current price
1. the widget sends the message value to the BufferedValueHolder

2. if the value of the BufferedValueHolder is NotYetAssigned

• BufferedValueHolder sends the message value to its subject (the adaptor)

Figure 7: Communication between Widget, BufferedValueHolder and Domain Model

AspectAdaptor
(#price)

Input Field Widget

aBondTrade

model

subject

dependents

BufferedValueHolder

subjectdependents

Models 12

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

• the adaptor returns its value (the price of aBondTrade) to the BufferedValueHolder

• the BufferedValueHolder returns the price to the widget

3. if the value of the BufferedValueHolder is not NotYetAssigned

• the BufferedValueHolder returns its value to the widget

The BufferedValueHolder receives an update message from its subject:
1. if the value of the BufferedValueHolder is NotYetAssigned

• it redirects the update message to its dependents (including the widget)

The BufferedValueHolder receives an update message from its triggerChannel
1. if the value of the BufferedValueHolder is NotYetAssigned

• do nothing

2. if the value of the BufferedValueHolder is not NotYetAssigned and the value of
triggerChannel is true

• the BufferedValueHolder sends a value: message to its subject. The argument is the
value of the BufferedValueHolder.

3. if the value of the BufferedValueHolder is not NotYetAssigned and the value of
triggerChannel is false

• set the value of the BufferedValueHolder to NotYetAssigned

4. In either case, BufferedValueHolder sends its dependents the message update: #value

Like instances of AspectAdaptor, instances of BufferedValueHolder may be used
wherever a ValueHolder is expected — as the model for a simple widget, or as part of the
model for a more complex widget.

Ex 2. Modify class BondEntry to use instances of BufferedValueHolder as the models for
the widgets. The contents of the widgets should not flush through to the
BondTrade until the Add button is pressed. The Clear button should behave as
before. All the models should use the same trigger channel so that Add
operation updates the values in the BondTrade atomically.

3. BlockValue
You may have noticed that the widget displaying the calculated amount does not require
either an AspectAdaptor or a BufferedValueHolder. A ValueHolder still suffices. Remember
that its value is derived from the value of two other widgets, in fact we could say that its
value depended on the values of two other objects (both of which are instances of
BufferedValueHolder). Would it be great if there was an object that exhibited this behavior?

Fortunately, VisualWorks provides a class to meet this need — BlockValue. As a
subclass of ValueModel, an instance of BlockValue may be used as the model for a widget.
An instance of BlockValue encapsulates a block and a sequenceable collection of its
arguments. The arguments are usually instances of ValueHolder, but they may be an

Models 13

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

instance of any subclass of ValueModel. If one of its arguments changes (indicated by
sending itself a changed: message), the block is re–evaluated (either immediately or when
the BlockValue next receives a value message — see below), and all the dependents of the
BlockValue are sent an update message.

Because BlockValue is a subclass of ValueModel, it must understand the messages
value and value:. When a BlockValue receives a value message it returns the value of the
block. However, sending the message value: to a BlockValue will result in an error.
Therefore, any widget which uses a BlockValue as a model must be read only.

A BlockValue caches the value of its block in an instance variable named cachedValue
— it is this object that is returned when a BlockValue receives the message value.

Its instance variable eagerEvaluation determines whether or not the block should be
evaluated immediately. If eagerEvaluation is false, the block is not evaluated until the
BlockValue receives the message value.

BlockValue provides several instance creation messages giving control over the
arguments, block and eagerEvaluation. They are described in Table 6.

3.1. BlockValue and Dependencies
An instance of BlockValue is a dependent on each of its arguments. When any of those
arguments change, BlockValue resets its cachedValue and notifies its dependents that it has
changed.

• If eagerEvaluation is true, it resets its cachedValue to the result of the re–evaluated
block.

• if eagerEvaluation is false, it resets its cachedValue to UnassignedValue (a class
variable).

When a dependent of an instance of BlockValue (a widget for example), asks it for its
value, it

• returns cachedValue if cachedValue is not equal to UnassignedValue.

block: aBlock
arguments: aCollection

creates a new instance of BlockValue with its block
assigned to aBlock and its arguments as aCollection.
Its instance variable eagerEvaluation defaults to true
so that the BlockValue recalculates a new cachedValue
whenever one of its arguments changes.

with: aBlock creates a new instance of BlockValue with its block to
aBlock and arguments to an empty OrderedCollection.
The instance variable eagerEvaluation again defaults
to true.

withEager: aBlock same as with: aBlock except that eagerEvaluation is set
to false which means that the BlockValue is not
recalculated until it receives the message value.

Table 6: BlockValue instance creation messages

Models 14

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

• assigns the result of re–evaluating the block into cachedValue and returns
cachedValue if the current cachedValue is equal to UnassignedValue.

Ex 3. Replace the model for the amount Input Field widget with a BlockValue whose
arguments are the models for quantity and price. You should remove the
dependency and change notification property which previously triggered the
recalculation of amount.

4. Bindings
An instance of UIBuilder uses bindings to determine where to find aspects, actions etc. The
default is to use what is returned from sending a message of the same name to the
application model. The default can be overridden by sending a UIBuilder one of the
messages in Table 7. This is usually done in the preBuildWith: method of the application
model class. The argument to the at: keyword of each message is the Symbol expected by
a UIBuilder (e.g. the aspect for most widgets, the action property for an Action Button, etc.).
The put: argument is what should be used for the binding, e.g. a variable, an adaptor, a
BlockValue, etc.

The at: argument does not necessarily have to be a Symbol that the UIBuilder
recognizes from the canvas. An arbitrary Symbol may be put into the UIBuilder’s binding
dictionary and accessed through the UIBuilder at a later stage.

Ex 4. Remove all of the instance variables from class BondEntry that represent
widgets’ models and use the bindings of the UIBuilder instead.

Ex 5. Remove the addTrade and clearTrade methods from BondEntry, replacing them
with blocks in the UIBuilder. (This means that the operations will no longer be
available from the menu bar.)

aspectAt: put: Used for widget aspects. Put argument must return
an instance of some subclass of ValueModel.

actionAt: put: Used for action buttons to override what action will
take place. Expects a block.

labelAt: put: Overrides textual labels.

subCanvasAt: put: Overrides Subcanvas specs

visualAt: put: Overrides visual labels

menuAt: put: Overrides the menu to be used.

Table 7: Bindings

Models 15

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

5. Controlling Widgets
One of the topics that crops up in building user interfaces is the means by which the
visibility and ‘enablement’ of widgets is controlled in VisualWorks. The existing approach
is best described using a simple example: the ‘Login’ dialog box by which a user connects
to a database application.

A Login dialog box typically consists of the following four widgets: an Input Field
for the user’s user–id, an Input Field for the user’s password, an Action Button to
terminate the dialog (usually labelled ‘Cancel’), and an Action Button to accept the dialog
(usually labelled ‘OK’). Every time we have implemented this or a similar dialog box, it
has been necessary to disable the OK button until the user has entered some characters in
the password Input Field (and a user–id). This is achieved by ‘watching’ the model of the
password Input Field. When informed that the value of the model has changed, a
message must be sent to the ‘OK’ Action Button requesting that it enable or disable itself
as appropriate. This solution is implemented by using the onChangeSend:to: message —
often included in a message expression such as:

self passwordField onChangeSend: #changedPassword to: self.

in the initialize or preBuildWith: method of the class that is responsible for opening the
dialog box. The method corresponding to the changedPassword message is the one
responsible for enabling or disabling the ‘OK’ button, for example

changedPassword
"The value of the password input field has changed,
so enable/disable the OK button"

| widget |
widget := (self builder componentAt: #acceptButtonID).
self passwordField value isEmpty

ifTrue: [widget disable]
ifFalse: [widget enable]

We assume that many of you will recognize this pattern, and you’ll be tired with the
repetitiveness of constructing such methods. However, we could solve the problem quite
elegantly if there was an object to represent the relationship between the model of the
Input Field and the Action Button widget. Unfortunately VisualWorks doesn’t provide
one, so we’ve made our own: Class WidgetAdaptor.

An instance of class WidgetAdaptor represents a dependency between an instance of some
subclass of ValueModel (such as the model that represents an Input Field, a Check Box or
a set of radio buttons) and an instance of SpecWrapper1. Hence, an instance of
WidgetAdaptor can be used to control the visibility or ‘enablement’ of a widget depending
on the value of an instance of some subclass of ValueModel.

1. An instance of classSpecWrapper provides a wrapper around the view that represents the widget.

Models 16

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

As an example, consider class WidgetAdaptorExample1. Fig.8 shows the window for
the class whilst it was painted—it has two Input Fields, two Check Boxes and an Action
Button.

The left Check Box controls the ‘enablement’ of the left Input Field widget; the right
Check Box controls the visibility of the right Input Field widget; and the Action Button is
enabled only if there are characters in both Input Fields.

Note that the ‘OK’ Action Button is specified to be initially disabled and also to be
the default button; the right Input Field widget is specified to be initially invisible; and
the left Input Field widget is specified to be initially disabled.

The most interesting method in the example class is postBuildWith:. It creates
connections from the Check Boxes to the Input Field widgets, and from the Input Fields
to the ‘OK’ Action Button widget.

Figure 8: The painted appearance of the window for class WidgetAdaptorExample1

Models 17

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

postBuildWith: aBuilder
"Set up the dependencies so that the widgets can be updated
when the state of my input field aspects change (which they
will do whenever a key is pressed as continuousAccept is set
to true). Note that I don't need to keep a handle on the
WidgetAdaptors, this has its downside, since it's hard to trace
dependencies without hundreds of Inspectors"

super postBuildWith: aBuilder.
(aBuilder componentAt: #inputFieldRightID) widget controller continuousAccept:

true.
(aBuilder componentAt: #inputFieldLeftID) widget controller continuousAccept:

true.
WidgetAdaptor showWidget: (aBuilder componentAt: #inputFieldRightID)

for: self show.
WidgetAdaptor enableWidget: (aBuilder componentAt: #inputFieldLeftID)

for: self enable.
WidgetAdaptor enableWidget: (aBuilder componentAt: #acceptID)

for: (BlockValue block: [:left :right | left isEmpty not and: [right isEmpty not]]
arguments: (Array with: self inputFieldLeft with: self inputFieldRight))

Fig.9 shows the appearance of the window when in use.

Ex 6. Browse class WidgetAdaptor and experiment with WidgetAdaptorExample1.

6. Gates
Following on from class WidgetAdaptor example, we can see that it describes the way in
which business rules are sometimes written:

Figure 9: The runtime appearance of the window for class WidgetAdaptorExample1

Models 18

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

if <my state is such–and–such>
then <something useful>

else <something equally useful>

However, we often require the rule to be dynamic so that the “if…then…else”
becomes a “when…do…otherwise”. For example, in the window above one of the rules
is:

when <the check box is checked>
do <show the widget>

otherwise <hide the widget>

Sometimes the pre–condition is expressed in more complex terms, such as:

when <the left input field is not empty>
AND <the right input field is not empty>

do <enable the ‘OK’ button>
otherwise <disable the ‘OK’ button>

Let’s explore these rules with a business example — the foreign exchange (FX) spot
currency market. All you need to know is that traders are given sales orders to sell or buy
at specified FX rates. An example might be ‘buy £10million against the dollar when the
sterling/dollar exchange rate is 1.56’. An order is fulfilled when a trader executes a
transaction that matches the order.

Modelled as an object, an order therefore has a property representing the FX rate at
which it becomes ‘completable’ (i.e. 1.56). It also has a property that describes the FX
currency pair (i.e. sterling/dollar). However, some orders are not this simple — varieties
include the “if–done” order and the “linked” order.

An if–done order is an order that is related to another order (its parent) in such a way
that the if–done order becomes active if and only if the parent order is fulfilled. Such a
relationship expresses a trading scenario. For example, a “take profit” scenario might be
to sell sterling/dollar at 1.58, then if done buy sterling/dollar at 1.53, i.e. sell high, buy low.

A linked order is one of a group of orders, of which one and only one should be
fulfilled. For example, an order to sell sterling/dollar at 1.56 might be linked with an
order to buy dollar/mark at 1.39 — a scenario used by a trader who is short on dollars.
Hence a linked order is fulfilled either if it is itself fulfilled or one of the orders to which
it is linked is fulfilled.

An FX trading application should inform traders when an order becomes
‘completable’ — i.e. for a simple order, when the FX rate for the order matches the FX rate
of the market (give or take a certain margin). Hence ‘completable’ could be modelled as
a property of the order, with a value of true or false. We could make the order object a
dependent of the market feed object and ensure that the ‘completable’ property is
updated when market FX rate changes. Similarly, the application should only display
those orders that have yet to be fulfilled — once an order is fulfilled is should no longer
appear on the traders’ screens.

Models 19

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

However, to describe the ‘completable’ property of more complex orders it is
necessary to introduce an extra level of sophistication. For example, the if–done order is
completable if and only if its parent order is fulfilled and the FX rate for the order matches
the FX rate of the market (i.e. the sterling/dollar FX rate has dropped to 1.53). Conversely,
the linked sterling/dollar order is fulfilled if it or the dollar/mark order is fulfilled.

So, how can we represent these logic dependencies?

There are already some real physical objects that mimic these logic relationships —
electronic gates, such as ‘and’ gates, ‘or’ gates, etc. Gates provide one model in which the
output of a gate is the logical conjunction or disjunction of its inputs. By producing a
Smalltalk implementation of a gate, we can achieve the goal of being able to combine
boolean objects logically.

Rather than produce a whole slew of gate objects, we have built three classes:
AndGate, OrGate and Inverter. Instances of the first two classes take two ‘inputs’, each of
which should be an instance of some subclass of ValueModel; instances of class Inverter
only take one ‘input’, similarly defined. So as to make it relatively easy to create new
instances, I’ve added the convenience methods and:, or: and inverted to class ValueModel —
hence the programmer should never need to reference the gate classes by name.

Instances of each of these three classes can be combined to produce sophisticated
relationships. For example, we have produced a simple example to demonstrate one of
the two rules of De Morgan’s theorems:

(XÊorÊY)ÊnotÊ=Ê(XÊnot)ÊandÊ(YÊnot).

Models 20

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Spe
cim

en

Fig.10 illustrates the example: the upper Check Boxes represent (XÊorÊY)Ênot , and
the lower Check Boxes represent (X not) and (Y not) , using the imagery of gates
and inverters to depict their relationships. The models of the X and Y Check Boxes are

each implemented as instances of class ValueHolder containing a Boolean, and the
remaining Check Box models are implemented as gates or inverters as appropriate.

Furthermore, a gate or inverter may be used as the model of a WidgetAdaptor. Hence,
gates and inverters provide a simple mechanism to control the visibility and behavior of
all VisualWorks widgets, yet with very little code. The implementation described here
consists of four classes (WidgetAdaptor, AndGate, OrGate and Inverter), an abstract
superclass (Gate) and additional methods in class ValueModel. In all, this comprises 15
methods (four class, 11 instance), totalling 26 lines of code.

Ex 7. Browse the gate classes described above and experiment with classes
DeMorganExample, LogicExample and WidgetAdaptorExample2.

Ex 8. Use a WidgetAdaptor to ensure that the user cannot press the ‘Add Trade’ button
of the Bond Entry application until its ‘Price’ and ‘Quantity’ Input Fields are
completed (i.e., its amount is greater than 0). (Hint: this is easier if you work
from the version of class BondEntry at the end of the module “Review of
Application Model Framework”.)

Figure 10: Using Gates and Inverters

