Metaclasses 1

Metaclasses

This module considers the implementation of the class structure within Smalltalk, and
introduces the Metaclass concept. Classes such as ClassDescription and Behavior are
explored. The concepts here are widely misunderstood, possibly because of the tongue—
twisting terminology used; an attempt is made to clear away the confusion in this
modaule. (It’s also worth saying that some of the ideas presented here can be difficult to
understand, and in practice, you need to know almost nothing about metaclasses to use
the system effectively.)

1. Recap of terminology
= Every object is an instance of a class

= Every class (except Object) has a superclass

Example: 3@4 is an instance of Point. Point is a subclass of Object (indirectly, via classes

ArithmeticValue and Magnitude). See Fig.1.

subclass of

instance of

Figure 1: Instance vs. Subclass

To define things more precisely: an object is a class if and only if it can create instances
of itself. There are two fundamental mechanisms which can create objects: the primitive
methods new and new: defined in Behavior (basicNew and basicNew: are aliases for these).
Any object that understands these messages (and eventually executes the definitions in
Behavior) is a class.

Although you’re not supposed to create instances of abstract superclasses, there’s
nothing to stop you doing so if you really want to.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Metaclasses 2

Final note: the names of instance variables begin with a lowercase letter, while those
of classes begin with an uppercase letter. Additionally, the first letter of a method selector
is usually lowercase. Example: class is either an instance variable, or a selector, whereas
Class is a class.

2. Why do we have classes and metaclasses?

In Smalltalk-72 classes were not objects. The users of Smalltalk-72 (at Xerox only) found
this a problem: you couldn’t send messages to classes, lack of orthogonality, etc.

In Smalltalk—76 classes became objects. Applying the rule that every object must be
an instance of a class, this meant that classes had to be instances of something: Class.
Class, being able to create classes, was itself a class, an instance of itself in fact — Fig.2.
(This is the situation in Little Smalltalk.)

subclass of

instance of

Figure 2: Smalltalk-76

3. So What’s The Problem?

As the researchers at Xerox used the system they found that initializing objects was a little
painful: If all classes are instances of Class, they all behave identically. This means that
there is no class/instance distinction in the browser, and that the only way to create
objects is by:

1. Sending new or new: to the class, then
2. Sending an initialization message to the created instance.
For example, creating and initializing a Point was done by:

Point new x: 4y: 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Metaclasses 3

A common source of bugs was to forget to initialize the newly created object, or
initialize it incorrectly. Clearly, it is desirable that the instance creation messages either:

1. Perform the correct initialization automatically, or
2. Insist that appropriate parameters be supplied.

For example, browsing the instance creation category of messages that can be sent to
Point, you see only x:y: and not new. This is as it should be.

4. The Solution: Metaclasses

If Point is to be able to respond to x:y:, while Object is not, then Point and Object cannot be
instances of the same class. The solution adopted in Smalltalk—80 was to have every user-
defined class the sole instance of another class, termed its metaclass. Every metaclass is of
course an instance of a class, but as all metaclasses behave identically they are instances

of the same class, called Metaclass. (Pay attention to the case of the first letter, and to the

font used!)

Note: all objects can be sent the message class to find out what their class is. So just
as (3@4) class responds with Point, Point class responds with its metaclass. However, since
metaclasses are system-generated, and in one-to-one correspondence with the user-
defined classes, they are not named directly, but always via their related class. So when
you print Point class, the answer is Point class!

Following the argument further, Metaclass must also be an instance of a class. Noting
that Metaclass is a class with multiple instances, it follows that Metaclass is an instance of
its metaclass, and that its metaclass, like all the other metaclasses, is an instance of
Metaclass itself. By now you’re probably totally confused, so it’s time for a diagram! (See

Fig.3.)
Object class

subclass of

Point class

Metaclass

(Metaclass class '

instance of

Figure 3: Metaclasses

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Metaclasses 4

In summary, we have

(3@4) class == Point "Point class is the metaclass of Point"
Point class class == Metaclass
Metaclass class class == Metaclass

5. So what do | care?

You may well ask. As far as most development is concerned, you needn’t care. The
creation of metaclasses is hidden so well by the programming environment that you
needn’t be aware of it. The only thing you need be aware of is that just as a class specifies
the behavior of its instances in its instance methods, the behavior of the class itself (the
class methods) is specified by its metaclass.

6. And for my next trick...

So far we have only been talking about instance relationships: 3@4 is an instance of Point,
Point is an instance of its metaclass, its metaclass is an instance of Metaclass, etc. But earlier
we said that all classes except Object have a superclass. What is the superclass of Point, its
metaclass, Metaclass and its metaclass? (Hint: you can find out the superclass of a class by
sending it the message superclass; or take a look at Fig.4)

In general if X is a subclass of Y, then X class is a subclass of Y class. While it would
have been perfectly feasible to build the system in such a way that every metaclass was a
direct subclass of Object, building it this way means that class methods are inherited using
a parallel hierarchy.

7. Can’t see the wood for the trees?

This means that there are two, parallel hierarchies: one for the (user-defined) classes, and
one for their metaclasses. But the only class that has no superclass is Object, so what is the
superclass of Object class?

Because all the instances of the metaclasses are classes, it makes sense to concentrate
classness into one class, Class, and make that the superclass of Object class. (See Fig.4.)
Furthermore, because classes and metaclasses are very similar, Class and Metaclass are
both subclasses of an abstract class, Behavior. Behavior provides all the protocol for making
new instances, while an intermediate class, ClassDescription provides extra protocol used
by the programming environment: class comments, for example; see Fig.5.

8. Some interesting properties

1. All objects, including classes and metaclasses, are instances of classes that have
Object as their ultimate superclass. This means that all objects respond to the
messages defined in Object.

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Metaclasses 5

Object class

subclass of

Point class

Metaclass

(Metaclass class '

instance of

Figure 4: The superclass of Object class ?

2. All classes and metaclasses are instances of classes that have Behavior and
ClassDescription in their superclass chain. This means that new is only defined in
one place, and that all classes and metaclasses have protocol to support the
programming environment.

3. If an instance method is defined in the “connecting bridge” (Behavior,
ClassDescription), then it is also available as a class method.

Thus the problems seem to have been solved. The solution has a certain amount of
elegance to it, but has been criticized for being complex and confusing. This is probably
due to the tongue-twisting terminology used, and the lack of suitable explanatory
material in the textbooks (it’s all there, but it’s complicated).

Various authors have proposed going back to the situation in Smalltalk-76 (i.e., all
classes are instances of Class), and other alternatives have also been suggested. It is
doubtful that any will be adopted, but it remains to be seen whether anyone can come up
with a better solution.

9. Some useful protocol in Behavior

There are many methods defined in class Behavior, but the most useful ones are to be
found in the following protocols: ‘accessingclasshierarchy’, ‘accessingmethoddictionary’,

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Metaclasses

(ClassDescription '
Behavior
Class

Object class

subclass of Metaclass

Point class

(Metaclass class '
instance of

Figure 5: The Actual Hierarchy

‘accessinginstancesandvariables’, ‘testing class hierarchy’, and
‘testingmethoddictionary’. These include:

subclasses

returns an instance of class Set

the receiver.

allSubclasses

and their subclasses, and so on.

allSelectors returns a Set of all the selectors to
which instances of the receiver will
respond.

allinstances returns a Set of all the instances of the
receiver in the image.

instanceCount returns the number of instances of the

receiver in the image.

Table 1: Useful Behavior protocol

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

containing all the direct subclasses of

returns an OrderedCollection of the
direct subclasses, and their subclasses,

Metaclasses 7

somelnstance returns an arbitrary instance of the
receiver, or nil if there are no instances
in the image.

inheritsFrom: aClass returns true if the receiver is a subclass

(direct or indirect) of aClass.

canUnderstand: aSelector returns true if instances of the receiver

respond to aSelector.

whichClassIncludesSelector: aSelector | returns the class in which the response

to the message aSelector is found.

Ex 1.

Ex 2.

Ex 3.
Ex 4.

Table 1. Useful Behavior protocol (Continued)

Browse classes Class, Metaclass, ClassDescription and Behavior. You might also
like to try inspecting an instance of a metaclass (i.e. a class), by sending the
inspect message to a class of your choice. For example:

Point inspect
Metaclass inspect

You might also like to try exploring the class and metaclass hierarchies using
the class and superclass messages. For example, what is the result of the
following expressions?

42 class superclass class class superclass

Metaclass superclass class superclass superclass class

You should be able to work out the expected result from Fig.5.
Try some of the methods defined in class Behavior.

Metaclass and Metaclass class are instances of each other. Can you think of a
way to create a pair of objects that are instances of each other? What about
making an object that is an instance of itself? Can you envisage any uses for
such objects?

10. Class instance variables

Any class may have class variables. A class variable is accessible to the class methods, the
instance methods (i.e., by the class’s instances), and also by any subclasses and their
instances. All of these classes and instances access the same variable.

However, it is occasionally desirable to have a class variable which is not shared by
subclasses; each subclass has a different variable. This is possible in VisualWorks by
noting that each class is the sole instance of its metaclass. Thus, by adding extra instance
variables into the specification of the metaclass, the class can have its own private
variables. Class instance variables are only accessible in the class methods of the class;

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

Metaclasses 8

they are not accessible in the instance methods. If you browse references to the variables
(using the “instance variables” menu item when the class methods have been selected)
you will see that they cannot be modified outside the class.

The use of class instance variables is little understood, mainly because there are few
examples of their use in VisualWorks. As its name suggests, a class instance variable is an
instance variable for a class. At first this may seem a little confusing, but you should
remember that every object is an instance of some class, thus every class is also an instance
of some class. We have seen earlier that instance variables are inherited by classes,
similarly, class instance variables are inherited.

It’s important to distinguish between the use of a class variable and a class instance
variable. For example, suppose class Persian inherits from class Cat. If Cat has a class
variable, then Persian has the exact same class variable and value, i.e. if an instance of
Persian modifies it, then instances of all subclasses of Cat will refer to that new value.

On the other hand, if Cat has a class instance variable, then all subclasses of Cat
(including Persian) have their own copy of that variable and therefore can have their own
private values.

Although there are not many examples of the use of class instance variables in
VisualWorks, there is one which is a good example: class UlLookPolicy. This class is an
abstract superclass for classes that emulate the “look—-and-feel” of various window
managers; its subclasses provide specific emulation for Macintosh, Windows, Motif, or
MS-Windows. It introduces three class instance variables: systemAttributes,
systemWidgetAttributes and useSystemFontOnWidgets. Each of its subclasses initialize these
variables in their respective class initialize methods to provide class—specific values. It is
important to note that the class instance variables can only be accessed by class methods.

Ex 5. Open a Hierarchy Browser on class UlLookPolicy. Browse references to the class
instance variables mentioned above. Where are they initialized?

Ex 6. Open a Browser on all those classes that contain class instance variables. Hint:
The following code returns true if the receiver has a class instance variable.

acClass class instvVarNames isEmpty not

© Bernard Horan, Laura Hill and Mario Wolczko, 1996. All rights reserved.

