
Lecture 15: System & Magnitude Classes
 Overview

 Shared Object Protocols
 Messages implemented for all objects

 3 Classes
 Magnitude Classes

 Numbers & characters
 Collection Classes

 Lists, Arrays, and Dictionaries
 Streams

 Text, Files, and Sockets
 Shared Object Protocols

 3 messages that can be applied to an object relating to its class
 class finds out what class an object belongs to

 #(this is an array) class  Array
 Similar to class are:

 isKindOf: aClass returns true if aClass is a parent class of the reciever
 #(this is an array) isKindOf: Collection  true

 ismemberOf: aClass returns true if the receiver is an instance of aClass.
 #(this is an array) isMemberOf: Collection  false

 isSequenceable returns Boolean value depending on whether the receiver is
created from a subclass of SequenceableCollecetion
 #(this is an array) isSequenceable  true.
 (Bag with: 'this' with: 'is' with: 'a' with: 'bag') isSequenceable

 false
 NOTE: class SequenceableCollection is called class IndexedCollection in

smalltalk express, and isSequenceable is not available
 respondsToArithmetic: returns Boolean

 respondsToArthithmetic is implemented using the more general message,
respondsTo: aSymbol, testing the symbols #+, #-, #*, and #/

 Comparing objects
 ==, ~~ CANNOT be overridden
 =, ~= CAN be overridden
 isNil, notNil

 Example: how to test and compare objects.
 Suppose we want to write a method that takes a set, and creates a dictionary. The

dictionary stores the sorted list of members, the median, and the mean.

compileStats: aSet
|aDictionary sum setSize|
aDictionary := Dictionary new.
(aSet isKindOf: Set)

ifFalse: [self notify: 'warning, argument is not a kind of
class Set'. ^nil].

aSet class == SortedCollection
ifTrue: [aDictionary at: 'Set' put: aSet]
ifFalse:

[| aNewSet |
aNewSet := SortedCollection new.
aNewSet addAll: aSet.
aDictionary at: 'Set' put: aNewSet].

(aDictionary at: 'Set') do:
[:x | x respondsToArithmetic

ifFalse: [
self notify: 'Not numeric set'.
^nil]].

setSize := (aDictionary at: 'Set') size.

1

aDictionary at: 'median' put: ((aDictionary at: 'Set') at:
((setSize/2) rounded)).

sum := 0.
(aDictionary at: 'Set') do: [:x | sum := sum + x].
aDictionary at: 'mean' put: ((sum/ setSize) asFloat).
^aDictionary.

 Set(7, 12, 3, 9, 55) would result in the following dictionary

 4 basic subclasses of the Magnitude class
 Char

 Similar to char in C, basic class can be treated similarly to number
 ArithmeticValue

 Superclass for all numerical classes
 Date

 Very different from C style of date & time, comparable and human readable
 Time

 Very different from C style of date & time, comparable and human readable
 Methods provided for comparison

 aMagnitude between: oneMagnitude and: anotherMagnitude (range
comparison)

 aMagnitude max: anotherMagnitude (max of the two magnitudes)
 aMagnitude min: anotherMagnitude (min of two magnitudes)
 aMagnitude hash
 <, <=, >, >=

 Example: More methods for complex numbers
abs

“Returns the absolute value of a complex number”
^(self realPart squared + self imaginaryPart squared)sqrt

< aComplex

2

“Returns True if the reciever is less than aComplex”
aComplex isKindOf: Complex

ifTrue: [^self abs < aComplex abs]
ifFalse: [^self error: ‘Not a complex number’].

max: aComplex
“Returns the greater value of aComplex and the receiver”
self < aComplex

ifTrue: [^aComplex]
ifFalse: [^self].

= aComplex
“Returns True if the receiver is equal to aComplex”
aComplex isKindOf: Complex

ifTrue: [
^self realPart=aComplex realPart and: [

self imaginaryPart = aComplex imaginary
part]]

ifFalse: [^self error: ‘Not a complex number’]

hash
“hashes the absolute value of the reciver”
^self abs hash.

 Partial Hierarchy

 Type Conversion
 Converting to strings

 To produce a string representation of an object use:
 objectName printString

| aTruck |
aTruck := (Truck new) withSpeed: 5.
(aTruck printString) inspect.

3

 objectName storeString

| aTruck |
aTruck := (Truck new) withSpeed: 5.
(aTruck storeString) inspect.

 To produce the string representation of a number, the above can be used, or more
specialized methods may be used
 anInteger printStringRadix: aRadix (used for base aRadix representation)

| anInteger |
anInteger := 255.
(anInteger printStringRadix: 16) inspect.

4

 anInteger storeStringRadix: aRadix

| anInteger |
anInteger := 255.
(anInteger storeStringRadix: 16) inspect.

 Converting strings to numbers
 Requires streams to get strings from

 This topic will be discussed in a later lecture.
 Ex: Number readFrom: (ReadStream on: aStream)

 Type Conversion
 Conversion is automatic and transparent
 Conversion in direction integer -> fraction -> float to maintain accuracy
 To explicitly do conversion use following methods

 asInteger
 asFraction

 asRational in VisualWorks
 asFloat
 asCharacter (integers only)

5

| anInteger aFloat aList|
anInteger := 85.
aFloat := 3.25.
aList := List new.
aList add: anInteger asInteger.
aList add: anInteger asRational.
aList add: anInteger asFloat.
aList add: anInteger asCharacter.
aList add: aFloat asInteger.
aList add: aFloat asRational.
aList add: aFloat asFloat.
aList inspect.

 Truncation, floor, ceiling and remainders
 Truncation done through quo: method

 11 quo: 5 => 2
 11 quo: -5 => -2

 floor ceiling done though // operator
 11 // 5 => 2
 11 // -5 => -3

 ceiling done through \\ operator
 11 \\ 5 => 3
 11 \\ -5 => -2

 remainder is done through rem: method
 11 rem: 5 => 1
 11 rem: -5 => -1

 Mathematical Operations
 Smalltalk provides basic subset of functions including

 Trigonometry functions: sin, cos, arcSin, arcCos
 Natural exponents and logarithms (exp and ln)
 Exponents and logarithms
 gcd and lcd
 Ex:

55 gcd: 30  5
6 lcm: 10  30
0.523599 sin  0.5
6 exp  403.429
2.718284 ln  1
6 raisedTo: 3  216
25 log: 5  2

 Date and Time
 Simple protocol for referencing and converting times & dates
 Creating an time or date object

6

 Use now method for creating the current time
 currentTime := Time now.

 Use today method for creating the current date
 currentDate := Date today.

 You can create an object with both current date and time
 rightNow := Date dateAndTimeNow.
 rightNow := Time dateAndTimeNow

 Can create any time or date easily
 aDate := Date newDay: aDayOfTheYearInteger year: aYearInteger

 Time and Date Conversions
 Timing execution and delays

 Smalltalk provides a simple way to time the execution of a loop

| block1 block2 ms1 ms2 |
block1 := [100 timesRepeat: [Time now. Date today]].
ms1 := Time millisecondsToRun: block1.

block2 := [100 timesRepeat: [Time dateAndTimeNow]].
ms2 := Time millisecondsToRun: block2.

 Smalltalk includes a similar class Delay. The Delay class is useful for creating timers.
Timers can be used to update clocks or send messages regularly.
 Delay should be used with the wait method
 The following shows a simple clock, which writes to the Transcript.

[[true] whileTrue:
[Transcript show: (Time now printString).
(Delay forSeconds: 1) wait]] fork.

7

Lecture 16: The Collection Classes
 Smalltalk’s optimized Collection classes

 Unlike C, Smalltalk provides optimized classes for most types of collections
 There are three types of Collections

 Not keyed
 Example: Bag

 Keyed by integer
 Example: Array, List, OrderedCollection

 Keyed by value
 Example: Set, Dictionary

 For most situations, one of 5 types will suffice
 SortedCollection

 Sorts elements when inserted
 Example returns SortedCollection (‘a’ ‘b’ ‘c’)

| aSortedCollection |
aSortedCollection := SortedCollection new.
aSortedCollection add: 'c'.
aSortedCollection add: 'a'.
aSortedCollection add: 'b'.
aSortedCollection inspect.

 List
 Most flexible, keeps elements in the order in which they were added.
 Lists can be sorted.
 Elements can be inserted anywhere
 Example returns List ('a' 'b' 'c')

| aList aSortedList|
aList := List new.
aList add: ‘c’.
aList add: ‘b’.
aList add: ‘a’.
aSortedList := aList sort.

 Array
 Does not require adding, removing, or sorting elements
 Example returns #(‘d’ ‘b’ ‘c’)

| anArray |
anArray := Array new.
anArray at: 1 put: ‘a’.
anArray at: 2 put: ‘b’.
anArray at: 3 put: ‘c’.
anArray at: 1 put: ‘d’.

 Set
 Discards duplicate elements
 Does not support replacing elements
 Example

 aSet  Set (‘a’ ‘b’)
 aList  List (‘a’ ‘b’ ‘a’)

| aList aSet |
aList := List new.
aList add: 'a'.
aList add: 'b'.
aList add: 'a'.
aSet := Set new.
aSet addAll: aList.

 Dictionary
 New Concept to C programmers: Dictionary

8

 Otherwise known as Associated Hashtable
 Add keys and values, and reference values through keys
 Useful for global variables
 Possible to associate keys with any kind of object
 Ex:

| aThesaurus aCollection |
aCollection := Bag new.
aCollection add: 'big'.
aCollection add: 'enormous'.
aCollection add: 'huge'.
aThesaurus := Dictionary new.
aThesaurus at: 'large' put: aCollection.
aThesaurus at: 'small' put: 'little'.

 Partial Hierarchy

 Iteration (what you can do with collections)
 Iterate over a collection

 do: []
 Ex: (sum  15)

| sum aCollection |
aCollection := Bag new.
aCollection add: 3.
aCollection add: 5.
aCollection add: 7.
sum := 0.
aCollection do: [:x | sum := sum + x].

 reverseDo: []
 Ex: (OrderedCollection(c b a))

| aReverseCollection aOrderedCollection |
aOrderedCollection := OrderedCollection new.
aOrderedCollection add: #a.

9

aOrderedCollection add: #b.
aOrderedCollection add: #c.
aReverseCollection := OrderedCollection new.
aOrderedCollection reverseDo:

[:x | aReverseCollection add: x].

 collect: []
 Useful to Create new collections from existing ones
 Ex: (Bag(25 25 25… 0 0 0))

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.2 do: [:x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers collect:
 [:x | x asInteger].

 Iterate over a collection and return a subset
 select: []

 Ex: (retuns only integers between 1 & 25 as floats)

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.5 do: [:x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers select:
 [:x | (x // 1) asFloat = x].

 reject: []
 Ex: (returns only integers between 1 & 25 as floats)

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.5 do: [:x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers reject:
 [:x | (x // 1) asFloat ~= x].

 Find occurrences of an object within the collection
 detect: []

 Ex: #(a 'abc' 3 4 5) detect: [:x | x isInteger].  3
 Ex: #(a 'abc' 3 4 5) findFirst: [:x | x isFloat]

ifNone[nil]  nil
 findFirst: []

 Ex: #(a 'abc' 3 4 5) findFirst: [:x | x isInteger].  3
 findLast:

 Ex: #(a 'abc' 3 4 5) findLast: [:x | x isInteger].  5
 Perform special operations

 inject: into: []
 For using temp variables and initializing them outside the block
 Ex: set the temp variable to 100

#(1 2 3) inject:100 into: [:x :y | x := x + y].  106
 with: do: []

 takes one object from the receiver and one from the argument
 Ex: (result aBag= #(‘aA’ ‘cC’))

| aBag |
aBag := Bag new.
#('a' 'b' 'c') with: #('A' 'Z' 'C') do:
 [:x :y | x asUpperCase = y

10

 ifTrue: [aBag add: (x,y)]].

11

Lecture 17: An example using the Collection Classes
 Matrices are not provided by the collection classes, but can be added very easily. We will

demonstrate the Collection classes by creating a Matrix class.
 The class should provide methods to add, multiply, and transpose matrices and scalars

together.
 The matrix will be represented in row-major order, through a collection of rows, where each

row is an ordered collection. To accomplish this, the matrix needs only two variables to keep
count on the number of rows and columns

 The Class definition is straight forward

OrderedCollection variableSubclass: #Matrix2D
instanceVariableNames: 'numrows numcols '
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-Matrix2D'

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Matrix2D
class instanceVariableNames: ''!

 The instance creation method creates a 2 dimensional matrix sized according to the
arguments, and initializes all elements to 0.0. Note that the matrix is represented by
aNumber1 OrderedCollections.

!Matrix2D class methodsFor: 'instance creation'!

rows: aNumber1 cols: aNumber2
"Creates a 2D matrix of size aNumber1 X aNumber2 and
 initializes all elements to 0."

| matrix |
matrix := self new.
1 to: aNumber1 do: [:i | | temp |

temp := OrderedCollection new.
1 to: aNumber2 do: [:j | temp addLast: 0.0].

matrix addLast: temp].
matrix setrows: aNumber1 cols: aNumber2.
^matrix! !

 The methods for accessing the matrix are straight forward as well, and are used only for
getting elements and setting elements.

!Matrix2D methodsFor: 'accessing'!

at: anArray put: aNumber
"Place an element (aNumber) in the row and column
 specified by anArray in the receiver."

(self at: (anArray at: 1)) at:(anArray at:2) put:aNumber.!

atRow: aNumber1
"Return an ordered collection from row aNumber1of the receiver."

^(self at: aNumber1).!

atRow: aNumber1 put: anOrderedCollection
"Puts an OrderedCollection into the matrix as a row.”

super at: aNumber1 put: anOrderedCollection.!

12

atRow: aNumber1 atCol: aNumber2
"Return an element from row aNumber1, column aNumber2
 in the receiver."

^(self at: aNumber1) at: aNumber2.!

atRow: aNumber1 atCol: aNumber2 put: aNumber3
"Place an element (aNumber3) in row aNumber1, column aNumber2
 in the receiver."

(self at: aNumber1) at: aNumber2 put: aNumber3.!

cols
"Returns the number of cols in the matrix."

^numcols.!

readAt: anArray
"Returns an element from the row and column
 specified by anArray in the receiver."

^(self at: (anArray at: 1)) at:(anArray at:2).!

rows
"Returns the number of rows in the matrix."

^numrows.!

setrows: aNumber1 cols: aNumber2
"Sets the size of the matrix."

numrows := aNumber1.
numcols := aNumber2.! !

 To illustrate the access methods, we will create a 2x2 identity matrix with the code
below. Recall an identity matrix is one which the top left to bottom right diagonal has
1 as the values of its elements, and all other values are 0.

| matrix1 |
matrix1 := Matrix2D rows: 2 cols: 2.
matrix1 at: #(1 1) put: 1.
matrix1 at: #(1 2) put: 0.
matrix1 at: #(2 1) put: 0.
matrix1 at: #(2 2) put: 1.
matrix1 writeToTranscript.

13

 The method writeToTranscript, as used above prints each row, an element at a time.

writeToTranscript
"Writes the matrix to the Transcript."

Transcript show: ' ';cr.
1 to: (self rows) do: [:i |

Transcript show: ' '; tab.
1 to: (self cols) do: [:j |

Transcript show:
(self atRow: i atCol: j) printString; tab.

].
Transcript show: ' ';cr.

].

 Although mathematical operations may appear to be complicated, the operations to be
applied to the matrices are simple Collection manipulations.

 For the operation examples, the following matrices will be used. The code to create them
is also shown below.

| matrix1 matrix2|
matrix1 := Matrix2D rows: 2 cols: 2.
matrix1 at: #(1 1) put: 1.
matrix1 at: #(1 2) put: 2.
matrix1 at: #(2 1) put: 3.
matrix1 at: #(2 2) put: 4.
Transcript show: 'Matrix1'.
matrix1 writeToTranscript.
matrix2 := Matrix2D rows: 2 cols: 2.
matrix2 at: #(1 1) put: 5.
matrix2 at: #(1 2) put: 6.
matrix2 at: #(2 1) put: 7.
matrix2 at: #(2 2) put: 8.
Transcript show: 'Matrix2'.
matrix2 writeToTranscript.

 matrixAdd: aMatrix adds aMatrix to the receiver and returns the sum of the two. A check is
done to make sure both matrices are the same size

matrixAdd: aMatrix
"Adds the receiver and aMatrix, that is, Receiver + aMatrix."

14

| matrix |
((numrows == (aMatrix rows)) & (numcols == (aMatrix cols)))
ifFalse:

[Transcript nextPutAll:
'matrixAdd - bad matrix size' ;endEntry.

^nil.].
matrix := Matrix2D rows: numrows cols: numcols.
1 to: numrows do: [:row |

1 to: numcols do: [:col |
matrix atRow: row atCol: col put:

((self atRow: row atCol: col) +
 (aMatrix atRow: row atCol: col)).

].
].
"Returns a new matrix"
^matrix

 Below is an example of adding two matrices.

Transcript show: 'matrix1 + matrix2'.
(matrix1 matrixAdd: matrix2) writeToTranscript.

15

 matrixMult: aMatrix multiplies the receiver and aMatrix and returns the product. A check
is done to make sure the number of rows in the receiver is equal to the number of columns in
aMatrix (rule of matrix multiplication).

 Recall the product of two matrices is as follows:

 The following code implements the equation above:

matrixMult: aMatrix
"Multiplies the receiver and aMatrix, that is, Receiver *

aMatrix."

| nrows ncols matrix sum |
nrows := self rows.
ncols := self cols.
(ncols == (aMatrix rows))
ifFalse: [Transcript nextPutAll:

'matrixMult - bad matrix size' ;endEntry.
 ^nil.].

matrix := Matrix2D rows: nrows cols:(aMatrix cols).

1 to: (aMatrix cols) do: [:k |
1 to: nrows do: [:i |

sum := 0.
1 to: ncols do: [:j |

sum := sum + ((self atRow: i atCol: j) *
(aMatrix atRow: j atCol: k)).

].
matrix atRow: i atCol:k put: sum.

]
].
^matrix

16

 Below is an example of multiplying two matrices.

Transcript show: 'matrix1 * matrix2'.
(matrix1 matrixMult: matrix2) writeToTranscript.

 The methods to add and multiply scalars are very similar to the matrixAdd: method, but
even simpler.

scalarAdd: aNumber
"Adds aNumber to each element of the receiver."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [:row |

1 to: ncols do: [:col |
matrix atRow: row atCol: col put:

(self atRow: row atCol: col) + aNumber.
].

].
^matrix

scalarMult: aNumber
"Multiplies each element of the receiver by aNumber."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [:row |

1 to: ncols do: [:col |
matrix atRow: row atCol: col put:

(self atRow: row atCol: col) * aNumber.
].

].
^matrix

17

 Below is an example of multiplying a scalar and a matrix.

Transcript show: '3 * matrix1'.
(matrix1 scalarMult: 3) writeToTranscript.

 The Transpose exchanges rows and columns.

transpose
"Returns the transpose of the receiver."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [:row |

1 to: ncols do: [:col |
matrix atRow: row atCol: col put:

(self atRow: col atCol: row).
].

].
^matrix

 Below is an example of transposing matrix.

Transcript show: 'matrix1 Transposed'.
(matrix1 transpose) writeToTranscript.

18

 Vectors are easily represented through the implementation of the Matrix class we have
demonstrated, since a vector is nothing more than a single row of a matrix.

 Recall the product of a vector and a matrix is a vector as follows:

 The following code will create a vector and multiply it by matrix1

vector1 := Matrix2D rows:1 cols:2.
vector1 at: #(1 1) put: 1.
vector1 at: #(1 2) put: 10.
Transcript show: 'vector1'.
vector1 writeToTranscript.
Transcript show: 'vector1 * matrix1'.
(vector1 matrixMult: matrix1) writeToTranscript.

19

Lecture 18: The Stream Classes
 Streams

 Streams provide basic communication between the Virtual machine and the system
 Types of streams

 Semaphores
 Sockets
 Files
 stdin & stdout

 IMPORTANT: The programmer must close all open streams. Smalltalk will not close
them for you, as in most compiled languages. The operating system has a limit on the
number of open streams, and will quickly run out if the streams are not closed

 Important methods for all Streams
 Accessing

 next returns the next object in the stream
 next: anInteger returns the next anInteger number of objects
 contents returns all of the objects in the collection
 close closes the stream
 Ex:

| aStream anObject |
aStream := ReadStream on: #('A' 'B' 'C' 'D').
anObject := Bag new.
anObject add: aStream next.
anObject add: (aStream next: 2).
anObject add: aStream contents.
aStream close.
anObject inspect.

 Writing
 nextPut: anObject places anObject in the stream so that it is the next accessible

 Ex: Generate & write the alphabet to a stream

| aStream|
aStream := WriteStream on: (String new).
65 to: 90 do: [:aNumber | aStream nextPut: aNumber
asCharacter].
aStream close.
aStream inspect.

20

 nextPutAll: aCollection puts the contents of aCollection into the stream.
 Example: Putting the number 1->10 into a Stream

| aStream aCollection |
aCollection := Array new:10.
1 to: 10 do: [:aNumber | aCollection at: aNumber put:
aNumber].
aStream := ReadWriteStream on: (Array new: 10).
aStream nextPutAll: aCollection.
aStream close.
aStream inspect.

 Example: Different way to get the same results. Which is the safer way? Which is
the more “elegant” way?

| aStream aCollection |
aCollection := Array new: 10.
aStream := PositionableStream on: (aCollection).
1 to: 10 do: [:aNumber | aCollection at: aNumber put: aNumber].
aStream close.
aStream inspect.

 Important methods for Positionable Streams
 Accessing

 position returns the position in the stream
 peek returns the next object without advancing the position
 reset resets the position in the stream

21

 skip: anInteger skips anInteger positions in the stream
 Ex:

| aStream anObject |
anObject := 'This is a single String'.
aStream := ReadWriteStream on: (String new).
aStream nextPutAll: anObject.
aStream reset.
aStream skip: 2.
(aStream peek) inspect.

 Important methods for ReadStreams
 Instance Creation

 ReadStream on: aCollection
 All other positionable stream methods and general methods will work except for ones

which write (such as at:put: methods)
 Important methods for WriteStreams

 Instance Creation
 WriteStream on: aCollection

 Accessing
 flush write all unwritten information to the stream

 Good “book-keeping” habit to do before closing streams or saving images.
 Similar to ReadStream, can access all methods of more general streams, but cannot

read from streams
 Important methods for External and File Streams

 Instance creation
 2 step process- make the filename, then apply the method to the filename. For the

entire list of possible methods, refer to LaLonde, or the system browser under
Filename->stream creation.

| aStream aFilename |
aFilename := Filename named: ‘yourfile.txt’.
aStream := aFilename writeStream.

 Accessing
 nextNumber: n returns the next n bytes in the stream
 nextString returns the next String from the stream.
 skipwords: nWords advances the position nWords number of words (2 bytes, not to

be confused with strings)
 wordPosition returns the position in words
 wordPosition: wp advances the position to wp in words

 Writing
 nextPut: anObject places anObject in the stream so that it is the next accessible
 nextPutAll: aCollection puts the contents of aCollection into the stream.

22

 Example, writing to a file.

| aStream aFilename |
aFilename := Filename named: 'temp.txt'.
aFilename delete.
aStream := aFilename readWriteStream.
1 to: 20 by: 5 do: [:aPosition |

aStream wordPosition: aPosition.
aStream nextPut: $D].

aStream close.

 Common Mistakes
 Writing a collection to a stream is not the same as writing the contents of the

collection.
 Example: What is wrong with this? Shouldn’t we see the number 2 instead of ‘nil’?

No, the first object is the collection, the second object is the end of the stream.

| aStream aCollection |
aCollection := Array new: 10.
aStream :=ReadWriteStream on: (aCollection).
1 to: 10 do: [:aNumber | aCollection at: aNumber put: aNumber].
aStream reset.
(aStream peek) inspect.

23

 Hierarchy

24

Lecture 19: Matrix Example using Streams
 Recall the Matrix example. Now, rather than getting the matrix from standard in, we will read

the matrix from a file. To maintain simplicity, we will keep the rules strict, but to allow for
flexibility we will intelligently get the dimensions of the matrix. The rules of the file are as
follows:
 One matrix to a file
 The matrix must be complete. That is, all rows must contain the same number of

elements
 The matrix will start with ‘[‘ and end with ‘]’.
 Each row will be separated by a carriage return
 Each element will be separated by white space (tabs, cr’s, spaces).
 No element may be negative

 So, using these rules, a 3x3 identity matrix would be represented as below:

[1 0 0
0 1 0
0 0 1]

 We need two methods, one to read from a file, and one to write to a file. We will add these
methods to the Matrix2D class.

 The read method, fromFile: aMatrix is and instance creation method (like new). The
method follows a simple parsing algorithm:

Get characters until ‘[‘;
rowCount = 1;
Get nextString;

If nextString = ‘\n’
increase rowCount;
add Collection to Matrix
reset Collection to nil

If nextString is a number then add it to Collection

 This method accomplishes this by reading one character at a time, building up a string to be
converted into numbers.

 Since we don’t know how big the matrix will be, we can’t store the elements immediately into
the matrix. Instead, each row is read into an OrderedCollection.

 Once the OrderedCollection object is built, the addLast: method is called to add the
OrderedCollection object to the matrix. The number of rows is then incremented.

 The following code implements the method as discussed above

fromFile: aName
"Creates a 2D matrix from a file of the name aName"

| aStream aFilename aString aChar aCollection aMatrix|
aFilename := Filename named: aName.
aStream := aFilename readStream.
aChar := aStream next.

"Create the Matrix"
aMatrix := Matrix2D rows:0 cols:0.

"eat up everything until the open bracket"
[aChar = $[]

whileFalse: [aChar := aStream next].
"matrix has started"
aCollection := OrderedCollection new.
aString := String new.

25

[aChar = $]]
 whileFalse: [

aChar := aStream next.
aChar asInteger = 13 "cr"

ifTrue: [
aString size > 0
 ifTrue: [
 aCollection add:

(aString asNumber).
 aString := String new.
].
aMatrix addLast: aCollection.
aMatrix setrows: (aMatrix rows + 1)

cols: (aCollection size).
aCollection := OrderedCollection new.

].
aChar isSeparator "any white space"
ifTrue: [
aString size > 0

ifTrue: [
aCollection add:
 (aString asNumber).
aString := String new.

]
].

(aChar isDigit)
ifTrue: [aString := aString,

(aChar digitValue printString)].
].
aStream close.

"Add the last one, since the ']' was on the last line"
aMatrix addLast: aCollection.
aMatrix setrows: (aMatrix rows + 1)

cols: (aCollection size).
aCollection := OrderedCollection new.

^aMatrix

 The method to write the matrix to a file is considerably more simple. A ‘[‘ is written, then
each row is written as characters, then a ‘]’ is written.

writeToFile: aName
"Writes the matrix to the file aName. The format is

such that fromFile: can be called to read it back
into a matrix."

| aStream aFilename|
aFilename := Filename named: aName.
aStream := aFilename writeStream.

aStream nextPut: $[.
1 to: (self rows) do: [:row |

1 to: (self cols) do: [:col |
((self atRow: row atCol: col) printString)

do: [:char |
aStream nextPut: char

].
aStream nextPut:$. "space"

].
row = (self rows)

ifFalse: [
aStream nextPut: 13 asCharacter. "cr"].

26

].
aStream nextPut: $].
aStream close.

 To illustrate the use of the new file methods, we will read two matrices from text files
(“matrix1.txt” and “matrix2.txt”), then multiply them together. Their product will be written to a
file (“matrix3.txt”). Below is a screen capture of the two input text files.

 The code below will now multiply the matrices together and write the product to a file. The
code also reads the output file back in and prints it to the Transcript as a form of visual sanity
check.

| matrix1 matrix2|
matrix1 := Matrix2D fromFile: 'matrix1.txt'.
Transcript show: 'matrix1'.
matrix1 writeToTranscript.
matrix2 := Matrix2D fromFile: 'matrix2.txt'.
Transcript show: 'matrix2'.
matrix2 writeToTranscript.
(matrix1 matrixMult: matrix2) writeToFile: 'matrix3.txt'.
Transcript show: 'From file: matrix3'.
(Matrix2D fromFile: 'matrix3.txt') writeToTranscript.

27

 The code results in the output file

28

	Lecture 15: System & Magnitude Classes
	Overview
	Shared Object Protocols
	4 basic subclasses of the Magnitude class
	Methods provided for comparison
	Example: More methods for complex numbers
	Partial Hierarchy
	Type Conversion
	Truncation, floor, ceiling and remainders
	Mathematical Operations
	Date and Time

	Lecture 16: The Collection Classes
	Smalltalk’s optimized Collection classes
	Partial Hierarchy
	Iteration (what you can do with collections)

	Lecture 17: An example using the Collection Classes
	Lecture 18: The Stream Classes
	Streams
	Important methods for all Streams
	Important methods for Positionable Streams
	Important methods for ReadStreams
	Important methods for WriteStreams
	Important methods for External and File Streams
	Common Mistakes
	Hierarchy

	Lecture 19: Matrix Example using Streams

