
Lecture 15: System & Magnitude Classes
 Overview

 Shared Object Protocols
 Messages implemented for all objects

 3 Classes
 Magnitude Classes

 Numbers & characters
 Collection Classes

 Lists, Arrays, and Dictionaries
 Streams

 Text, Files, and Sockets
 Shared Object Protocols

 3 messages that can be applied to an object relating to its class
 class finds out what class an object belongs to

 #(this is an array) class  Array
 Similar to class are:

 isKindOf: aClass returns true if aClass is a parent class of the reciever
 #(this is an array) isKindOf: Collection  true

 ismemberOf: aClass returns true if the receiver is an instance of aClass.
 #(this is an array) isMemberOf: Collection  false

 isSequenceable returns Boolean value depending on whether the receiver is 
created from a subclass of SequenceableCollecetion
 #(this is an array) isSequenceable  true.
 (Bag with: 'this' with: 'is' with: 'a' with: 'bag') isSequenceable 

 false
 NOTE: class SequenceableCollection is called class IndexedCollection in 

smalltalk express, and isSequenceable is not available
 respondsToArithmetic: returns Boolean

 respondsToArthithmetic is implemented using the more general message, 
respondsTo: aSymbol, testing the symbols #+, #-, #*, and #/

 Comparing objects
 ==, ~~ CANNOT be overridden
 =, ~= CAN be overridden
 isNil, notNil

 Example: how to test and compare objects.
 Suppose we want to write a method that takes a set, and creates a dictionary. The 

dictionary stores the sorted list of members, the median, and the mean.

compileStats: aSet
|aDictionary sum setSize|
aDictionary := Dictionary new.
(aSet isKindOf: Set)

ifFalse: [self notify: 'warning, argument is not a kind of 
class Set'. ^nil].

aSet class == SortedCollection
ifTrue: [ aDictionary at: 'Set' put: aSet]
ifFalse:

[ | aNewSet |
aNewSet := SortedCollection new.
aNewSet addAll: aSet.
aDictionary at: 'Set' put: aNewSet].

(aDictionary at: 'Set') do:
[:x | x respondsToArithmetic

ifFalse: [
self notify: 'Not numeric set'.
^nil]].

setSize := (aDictionary at: 'Set') size.
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aDictionary at: 'median' put: ((aDictionary at: 'Set') at: 
((setSize/2) rounded)).

sum :=  0.
(aDictionary at: 'Set') do: [ :x | sum := sum + x].
aDictionary at: 'mean' put: ((sum/ setSize) asFloat).
^aDictionary.

 Set( 7, 12, 3, 9, 55) would result in the following dictionary

 4 basic subclasses of the Magnitude class
 Char

 Similar to char in C, basic class can be treated similarly to number
 ArithmeticValue

 Superclass for all numerical classes
 Date

 Very different from C style of date & time, comparable and human readable
 Time

 Very different from C style of date & time, comparable and human readable
 Methods provided for comparison

 aMagnitude between: oneMagnitude and: anotherMagnitude (range 
comparison)

 aMagnitude max: anotherMagnitude (max of the two magnitudes)
 aMagnitude min: anotherMagnitude (min of two magnitudes)
 aMagnitude hash
 <, <=, >, >=

 Example: More methods for complex numbers
abs

“Returns the absolute value of a complex number”
^(self realPart squared + self imaginaryPart squared)sqrt

< aComplex
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“Returns True if the reciever is less than aComplex”
aComplex isKindOf: Complex

ifTrue: [^self abs < aComplex abs]
ifFalse: [^self error: ‘Not a complex number’].

max: aComplex
“Returns the greater value of aComplex and the receiver”
self < aComplex

ifTrue: [^aComplex]
ifFalse: [^self].

= aComplex
“Returns True if the receiver is equal to aComplex”
aComplex isKindOf: Complex

ifTrue: [
^self realPart=aComplex realPart and: [

self imaginaryPart = aComplex imaginary 
part ]]

ifFalse: [^self error: ‘Not a complex number’]

hash
“hashes the absolute value of the reciver”
^self abs hash. 

 Partial Hierarchy

 Type Conversion
 Converting to strings

 To produce a string representation of an object use:
 objectName printString

| aTruck |
aTruck := (Truck new) withSpeed: 5.
(aTruck printString) inspect.
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 objectName storeString

| aTruck |
aTruck := (Truck new) withSpeed: 5.
(aTruck storeString) inspect.

 To produce the string representation of a number, the above can be used, or more 
specialized methods may be used
 anInteger printStringRadix: aRadix (used for base aRadix representation)

| anInteger |
anInteger := 255.
(anInteger printStringRadix: 16) inspect.
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 anInteger storeStringRadix: aRadix

| anInteger |
anInteger := 255.
(anInteger storeStringRadix: 16) inspect.

 Converting strings to numbers
 Requires streams to get strings from

 This topic will be discussed in a later lecture.
 Ex: Number readFrom: (ReadStream on: aStream)

 Type Conversion
 Conversion is automatic and transparent
 Conversion in direction integer -> fraction -> float to maintain accuracy
 To explicitly do conversion use following methods

 asInteger 
 asFraction 

 asRational in VisualWorks
 asFloat
 asCharacter (integers only)
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| anInteger aFloat aList|
anInteger := 85.
aFloat := 3.25.
aList := List new.
aList add: anInteger asInteger.
aList add: anInteger asRational.
aList add: anInteger asFloat.
aList add: anInteger asCharacter.
aList add: aFloat asInteger.
aList add: aFloat asRational.
aList add: aFloat asFloat.
aList inspect.

 Truncation, floor, ceiling and remainders
 Truncation done through quo: method

 11 quo: 5 => 2
 11 quo: -5 => -2

 floor ceiling done though // operator
 11 // 5 => 2
 11 // -5 => -3

 ceiling done through \\ operator
 11 \\ 5 => 3
 11 \\ -5 => -2

 remainder is done through rem: method
 11 rem: 5 => 1
 11 rem: -5 => -1

 Mathematical Operations
 Smalltalk provides basic subset of functions including

 Trigonometry functions: sin, cos, arcSin, arcCos
 Natural exponents and logarithms (exp and ln)
 Exponents and logarithms
 gcd and lcd
 Ex: 

55 gcd: 30  5
6 lcm: 10  30
0.523599 sin  0.5
6 exp  403.429
2.718284 ln  1
6 raisedTo: 3  216
25 log: 5  2

 Date and Time
 Simple protocol for referencing and converting times & dates
 Creating an time or date object

6



 Use now method for creating the current time
 currentTime := Time now.

 Use today method for creating the current date
 currentDate := Date today.

 You can create an object with both current date and time
 rightNow := Date dateAndTimeNow.
 rightNow := Time dateAndTimeNow

 Can create any time or date easily
 aDate := Date newDay: aDayOfTheYearInteger year: aYearInteger

 Time and Date Conversions
 Timing execution and delays

 Smalltalk provides a simple way to time the execution of a loop

| block1 block2 ms1 ms2 |
block1 := [100 timesRepeat: [Time now. Date today]].
ms1 := Time millisecondsToRun: block1.

block2 := [100 timesRepeat: [Time dateAndTimeNow]].
ms2 := Time millisecondsToRun: block2.

 Smalltalk includes a similar class Delay. The Delay class is useful for creating timers. 
Timers can be used to update clocks or send messages regularly. 
 Delay should be used with the wait method
 The following shows a simple clock, which writes to the Transcript.

[[true] whileTrue:
[Transcript show: (Time now printString).
(Delay forSeconds: 1) wait]] fork.
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Lecture 16: The Collection Classes
 Smalltalk’s optimized Collection classes

 Unlike C, Smalltalk provides optimized classes for most types of collections
 There are three types of Collections

 Not keyed
 Example: Bag

 Keyed by integer
 Example: Array, List, OrderedCollection

 Keyed by value
 Example: Set, Dictionary

 For most situations, one of 5 types will suffice
 SortedCollection

 Sorts elements when inserted
 Example returns SortedCollection (‘a’ ‘b’ ‘c’)

| aSortedCollection |
aSortedCollection := SortedCollection new.
aSortedCollection add: 'c'.
aSortedCollection add: 'a'.
aSortedCollection add: 'b'.
aSortedCollection inspect.

 List
 Most flexible, keeps elements in the order in which they were added.
 Lists can be sorted.
 Elements can be inserted anywhere
 Example returns List ('a' 'b' 'c') 

| aList aSortedList|
aList := List new.
aList add: ‘c’.
aList add: ‘b’.
aList add: ‘a’.
aSortedList := aList sort.

 Array
 Does not require adding, removing, or sorting elements
 Example returns #(‘d’ ‘b’ ‘c’)

| anArray |
anArray := Array new.
anArray at: 1 put: ‘a’.
anArray at: 2 put: ‘b’.
anArray at: 3 put: ‘c’.
anArray at: 1 put: ‘d’.

 Set
 Discards duplicate elements
 Does not support replacing elements
 Example

 aSet  Set (‘a’ ‘b’)
 aList  List (‘a’ ‘b’ ‘a’)

|  aList aSet |
aList := List new.
aList add: 'a'.
aList add: 'b'.
aList add: 'a'.
aSet := Set new.
aSet addAll: aList.

 Dictionary
 New Concept to C programmers: Dictionary
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 Otherwise known as Associated Hashtable
 Add keys and values, and reference values through keys
 Useful for global variables
 Possible to associate keys with any kind of object
 Ex:

| aThesaurus aCollection |
aCollection := Bag new.
aCollection add: 'big'.
aCollection add: 'enormous'.
aCollection add: 'huge'.
aThesaurus := Dictionary new.
aThesaurus at: 'large' put: aCollection.
aThesaurus at: 'small' put: 'little'. 

 Partial Hierarchy

 Iteration (what you can do with collections)
 Iterate over a collection

 do: []
 Ex: (sum  15)

| sum aCollection |
aCollection := Bag new.
aCollection add: 3.
aCollection add: 5.
aCollection add: 7.
sum := 0.
aCollection do: [ :x | sum := sum + x]. 

 reverseDo: []
 Ex: (OrderedCollection(c b a) )

| aReverseCollection aOrderedCollection |
aOrderedCollection := OrderedCollection new.
aOrderedCollection add: #a.
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aOrderedCollection add: #b.
aOrderedCollection add: #c.
aReverseCollection := OrderedCollection new.
aOrderedCollection reverseDo: 

[:x | aReverseCollection add: x].

 collect: []
 Useful to Create new collections from existing ones
 Ex: (Bag(25 25 25… 0 0 0) )

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.2 do: [ :x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers collect:
        [ :x | x asInteger].

 Iterate over a collection and return a subset
 select: []

 Ex: (retuns only integers between 1 & 25 as floats)

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.5 do: [ :x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers select:
        [ :x | (x // 1) asFloat  =  x].

 reject: []
 Ex: (returns only integers between 1 & 25 as floats)

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.5 do: [ :x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers reject:
        [ :x | (x // 1) asFloat  ~=  x].

 Find occurrences of an object within the collection
 detect: []

 Ex: #(a 'abc' 3 4 5) detect: [:x | x isInteger].  3
 Ex: #(a 'abc' 3 4 5) findFirst: [:x | x isFloat]

ifNone[nil]  nil
 findFirst: []

 Ex: #(a 'abc' 3 4 5) findFirst: [:x | x isInteger].  3
 findLast:

 Ex: #(a 'abc' 3 4 5) findLast: [:x | x isInteger].  5
 Perform special operations

 inject: into: []
 For using temp variables and initializing them outside the block
 Ex: set the temp variable to 100

#(1 2 3) inject:100 into: [:x :y | x := x + y].  106
 with: do: []

 takes one object from the receiver and one from the argument
 Ex: (result aBag= #( ‘aA’ ‘cC’))

| aBag |
aBag := Bag new.
#('a' 'b' 'c') with: #('A' 'Z' 'C') do:
    [:x :y | x asUpperCase = y
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        ifTrue: [aBag add: (x,y)]]. 
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Lecture 17: An example using the Collection Classes
 Matrices are not provided by the collection classes, but can be added very easily. We will 

demonstrate the Collection classes by creating a Matrix class.
 The class should provide methods to add, multiply, and transpose matrices and scalars 

together.
 The matrix will be represented in row-major order, through a collection of rows, where each 

row is an ordered collection. To accomplish this, the matrix needs only two variables to keep 
count on the number of rows and columns

 The Class definition is straight forward

OrderedCollection variableSubclass: #Matrix2D
instanceVariableNames: 'numrows numcols '
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-Matrix2D'

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Matrix2D 
class instanceVariableNames: ''!

 The instance creation method creates a 2 dimensional matrix sized according to the 
arguments, and initializes all elements to 0.0. Note that the matrix is represented by 
aNumber1 OrderedCollections. 

!Matrix2D class methodsFor: 'instance creation'!

rows: aNumber1 cols: aNumber2
"Creates a 2D matrix of size aNumber1 X aNumber2 and
 initializes all elements to 0."

| matrix |
matrix := self new.
1 to: aNumber1 do: [ :i | | temp |

temp := OrderedCollection new.
1 to: aNumber2 do: [ :j | temp addLast: 0.0 ].

matrix addLast: temp ].
matrix setrows: aNumber1 cols: aNumber2.
^matrix! !

 The methods for accessing the matrix are straight forward as well, and are used only for 
getting elements and setting elements.

!Matrix2D methodsFor: 'accessing'!

at: anArray put: aNumber
"Place an element (aNumber) in the row and column
 specified by anArray in the receiver."

(self at: (anArray at: 1)) at:(anArray at:2) put:aNumber.!

atRow: aNumber1
"Return an ordered collection from row aNumber1of the receiver."

^(self at: aNumber1).!

atRow: aNumber1 put: anOrderedCollection
"Puts an OrderedCollection into the matrix as a row.”

super at: aNumber1 put: anOrderedCollection.!
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atRow: aNumber1 atCol: aNumber2
"Return an element from row aNumber1, column aNumber2
 in the receiver."

^(self at: aNumber1) at: aNumber2.!

atRow: aNumber1 atCol: aNumber2 put: aNumber3
"Place an element (aNumber3) in row aNumber1, column aNumber2
 in the receiver."

(self at: aNumber1) at: aNumber2 put: aNumber3.!

cols
"Returns the number of cols in the matrix."

^numcols.!

readAt: anArray
"Returns an element from the row and column
 specified by anArray in the receiver."

^(self at: (anArray at: 1)) at:(anArray at:2).!

rows
"Returns the number of rows in the matrix."

^numrows.!

setrows: aNumber1 cols: aNumber2
"Sets the size of the matrix."

numrows := aNumber1.
numcols := aNumber2.! !

 To illustrate the access methods, we will create a 2x2 identity matrix with the code 
below. Recall an identity matrix is one which the top left to bottom right diagonal has 
1 as the values of its elements, and all other values are 0.

| matrix1 |
matrix1 := Matrix2D  rows: 2 cols: 2.
matrix1 at: #(1 1) put: 1.
matrix1 at: #(1 2) put: 0.
matrix1 at: #(2 1) put: 0.
matrix1 at: #(2 2) put: 1.
matrix1 writeToTranscript.
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 The method writeToTranscript, as used above prints each row, an element at a time.

writeToTranscript
"Writes the matrix to the Transcript."

Transcript show: ' ';cr.
1 to: (self rows) do: [ :i |

Transcript show: ' '; tab.
1 to: (self cols) do: [ :j |

Transcript show: 
(self atRow: i atCol: j) printString; tab.

].
Transcript show: ' ';cr.

].

 Although mathematical operations may appear to be complicated, the operations to be 
applied to the matrices are simple Collection manipulations.

 For the operation examples, the following matrices will be used. The code to create them 
is also shown below.

| matrix1 matrix2|
matrix1 := Matrix2D  rows: 2 cols: 2.
matrix1 at: #(1 1) put: 1.
matrix1 at: #(1 2) put: 2.
matrix1 at: #(2 1) put: 3.
matrix1 at: #(2 2) put: 4.
Transcript show: 'Matrix1'.
matrix1 writeToTranscript.
matrix2 := Matrix2D  rows: 2 cols: 2.
matrix2 at: #(1 1) put: 5.
matrix2 at: #(1 2) put: 6.
matrix2 at: #(2 1) put: 7.
matrix2 at: #(2 2) put: 8.
Transcript show: 'Matrix2'.
matrix2 writeToTranscript.

 matrixAdd: aMatrix adds aMatrix to the receiver and returns the sum of the two. A check is 
done to make sure both matrices are the same size

matrixAdd: aMatrix
"Adds the receiver and aMatrix, that is, Receiver + aMatrix."
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| matrix |
( (numrows == ( aMatrix rows)) & (numcols == ( aMatrix cols)) )
ifFalse: 

[ Transcript nextPutAll: 
'matrixAdd - bad matrix size' ;endEntry.

^nil. ].
matrix := Matrix2D rows: numrows cols: numcols.
1 to: numrows do: [ :row |

1 to: numcols do: [ :col |
matrix atRow: row atCol: col put: 

((self atRow: row atCol: col) +
 (aMatrix atRow: row atCol: col)).

].
].
"Returns a new matrix"
^matrix

 Below is an example of adding two matrices.

Transcript show: 'matrix1 + matrix2'.
(matrix1 matrixAdd: matrix2) writeToTranscript.
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 matrixMult: aMatrix multiplies the receiver and aMatrix and returns the product. A check 
is done to make sure the number of rows in the receiver is equal to the number of columns in 
aMatrix (rule of matrix multiplication).

 Recall the product of two matrices is as follows:

 The following code implements the equation above:

matrixMult: aMatrix
"Multiplies the receiver and aMatrix, that is, Receiver * 

aMatrix."

| nrows ncols matrix sum |
nrows := self rows.
ncols := self cols.
(ncols == ( aMatrix rows))
ifFalse: [ Transcript nextPutAll: 

'matrixMult - bad matrix size' ;endEntry.
 ^nil. ].

matrix := Matrix2D rows: nrows cols:(aMatrix cols).

1 to: (aMatrix cols) do: [ :k |
1 to: nrows  do: [ :i |

sum := 0.
1 to: ncols do: [ :j | 

sum :=  sum + ((self atRow: i atCol: j) *
(aMatrix atRow: j atCol: k)).

].
matrix atRow: i atCol:k put: sum.

]
].
^matrix
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 Below is an example of multiplying two matrices.

Transcript show: 'matrix1 * matrix2'.
(matrix1 matrixMult: matrix2) writeToTranscript.

 The methods to add and multiply scalars are very similar to the matrixAdd: method, but 
even simpler.

scalarAdd: aNumber
"Adds aNumber to each element of the receiver."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [ :row |

1 to: ncols do: [ :col |
matrix atRow: row atCol: col put: 

( self atRow: row atCol: col ) + aNumber.
].

].
^matrix

scalarMult: aNumber
"Multiplies each element of the receiver by aNumber."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [ :row |

1 to: ncols do: [ :col |
matrix atRow: row atCol: col put: 

( self atRow: row atCol: col ) * aNumber.
].

].
^matrix
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 Below is an example of multiplying a scalar and a matrix.

Transcript show: '3 * matrix1'.
(matrix1 scalarMult: 3) writeToTranscript.

 The Transpose exchanges rows and columns.

transpose
"Returns the transpose of the receiver."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [ :row |

1 to: ncols do: [ :col |
matrix atRow: row atCol: col put: 

( self atRow: col atCol: row ).
].

].
^matrix

 Below is an example of transposing matrix.

Transcript show: 'matrix1 Transposed'.
(matrix1 transpose) writeToTranscript.
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 Vectors are easily represented through the implementation of the Matrix class we have 
demonstrated, since a vector is nothing more than a single row of a matrix.

 Recall the product of a vector and a matrix is a vector as follows:

 The following code will create a vector and multiply it by matrix1

vector1 := Matrix2D rows:1 cols:2.
vector1 at: #(1 1) put: 1.
vector1 at: #(1 2) put: 10.
Transcript show: 'vector1'.
vector1 writeToTranscript.
Transcript show: 'vector1 * matrix1'.
(vector1 matrixMult: matrix1) writeToTranscript.
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Lecture 18: The Stream Classes
 Streams

 Streams provide basic communication between the Virtual machine and the system
 Types of streams

 Semaphores
 Sockets
 Files
 stdin & stdout

 IMPORTANT: The programmer must close all open streams. Smalltalk will not close 
them for you, as in most compiled languages. The operating system has a limit on the 
number of open streams, and will quickly run out if the streams are not closed

 Important methods for all Streams
 Accessing

 next returns the next object in the stream
 next: anInteger returns the next anInteger number of objects
 contents returns all of the objects in the collection
 close closes the stream
 Ex:

| aStream anObject |
aStream := ReadStream on: #('A' 'B' 'C' 'D').
anObject := Bag new.
anObject add: aStream next.
anObject add: (aStream next: 2).
anObject add: aStream contents.
aStream close.
anObject inspect.

 Writing
 nextPut: anObject places anObject in the stream so that it is the next accessible

 Ex: Generate & write the alphabet to a stream

| aStream|
aStream := WriteStream on: (String new).
65 to: 90 do: [:aNumber | aStream nextPut: aNumber 
asCharacter].
aStream close.
aStream inspect.
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 nextPutAll: aCollection puts the contents of aCollection into the stream.
 Example: Putting the number 1->10 into a Stream

| aStream aCollection |
aCollection := Array new:10.
1 to: 10 do: [ :aNumber | aCollection at: aNumber put: 
aNumber].
aStream := ReadWriteStream on: (Array new: 10).
aStream nextPutAll: aCollection.
aStream close.
aStream inspect.

 Example: Different way to get the same results. Which is the safer way? Which is 
the more “elegant” way?

| aStream aCollection |
aCollection := Array new: 10.
aStream := PositionableStream on: (aCollection).
1 to: 10 do: [ :aNumber | aCollection at: aNumber put: aNumber].
aStream close.
aStream inspect.

 Important methods for Positionable Streams
 Accessing

 position returns the position in the stream
 peek returns the next object without advancing the position
 reset resets the position in the stream
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 skip: anInteger skips anInteger positions in the stream
 Ex:

| aStream anObject |
anObject := 'This is a single String'.
aStream := ReadWriteStream on: (String new).
aStream nextPutAll: anObject.
aStream reset.
aStream skip: 2.
(aStream peek) inspect.

 Important methods for ReadStreams
 Instance Creation

 ReadStream on: aCollection
 All other positionable stream methods and general methods will work except for ones 

which write (such as at:put: methods)
 Important methods for WriteStreams

 Instance Creation
 WriteStream on: aCollection

 Accessing
 flush write all unwritten information to the stream

 Good “book-keeping” habit to do before closing streams or saving images.
 Similar to ReadStream, can access all methods of more general streams, but cannot 

read from streams
 Important methods for External and File Streams

 Instance creation
 2 step process- make the filename, then apply the method to the filename. For the 

entire list of possible methods, refer to LaLonde, or the system browser under 
Filename->stream creation.

| aStream aFilename |
aFilename := Filename named: ‘yourfile.txt’.
aStream := aFilename writeStream.

 Accessing
 nextNumber: n returns the next n bytes in the stream
 nextString returns the next String from the stream.
 skipwords: nWords advances the position nWords number of words (2 bytes, not to 

be confused with strings)
 wordPosition returns the position in words
 wordPosition: wp advances the position to wp in words

 Writing
 nextPut: anObject places anObject in the stream so that it is the next accessible
 nextPutAll: aCollection puts the contents of aCollection into the stream.
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 Example, writing to a file.

| aStream aFilename |
aFilename := Filename named: 'temp.txt'.
aFilename delete.
aStream := aFilename readWriteStream.
1 to: 20 by: 5 do: [ :aPosition | 

aStream wordPosition: aPosition.
aStream nextPut: $D].

aStream close.

 Common Mistakes
 Writing a collection to a stream is not the same as writing the contents of the 

collection.
 Example: What is wrong with this? Shouldn’t we see the number 2 instead of ‘nil’? 

No, the first object is the collection, the second object is the end of the stream.

| aStream aCollection |
aCollection := Array new: 10.
aStream :=ReadWriteStream on: (aCollection).
1 to: 10 do: [ :aNumber | aCollection at: aNumber put: aNumber].
aStream reset.
(aStream peek) inspect.
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 Hierarchy
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Lecture 19: Matrix Example using Streams
 Recall the Matrix example. Now, rather than getting the matrix from standard in, we will read 

the matrix from a file. To maintain simplicity, we will keep the rules strict, but to allow for 
flexibility we will intelligently get the dimensions of the matrix. The rules of the file are as 
follows:
 One matrix to a file
 The matrix must be complete. That is, all rows must contain the same number of 

elements
 The matrix will start with ‘[‘ and end with ‘]’.
 Each row will be separated by a carriage return
 Each element will be separated by white space (tabs, cr’s, spaces).
 No element may be negative 

 So, using these rules, a 3x3 identity matrix would be represented as below:

[ 1 0 0
0 1 0
0 0 1 ]

 We need two methods, one to read from a file, and one to write to a file. We will add these 
methods to the Matrix2D class.

 The read method, fromFile: aMatrix is and instance creation method (like new). The 
method follows a simple parsing algorithm:

Get characters until ‘[‘;
rowCount = 1;
Get nextString;

If nextString = ‘\n’
increase rowCount;
add Collection to Matrix
reset Collection to nil

If nextString is a number then add it to Collection

 This method accomplishes this by reading one character at a time, building up a string to be 
converted into numbers.

 Since we don’t know how big the matrix will be, we can’t store the elements immediately into 
the matrix. Instead, each row is read into an OrderedCollection.

 Once the OrderedCollection object is built, the addLast: method is called to add the 
OrderedCollection object to the matrix. The number of rows is then incremented.

 The following code implements the method as discussed above

fromFile: aName
"Creates a 2D matrix from a file of the name aName"

| aStream aFilename aString aChar aCollection aMatrix|
aFilename := Filename named: aName.
aStream := aFilename readStream.
aChar := aStream next.

"Create the Matrix"
aMatrix := Matrix2D rows:0 cols:0.

"eat up everything until the open bracket"
[ aChar = $[ ]

whileFalse: [ aChar := aStream next]. 
"matrix has started"
aCollection := OrderedCollection new.
aString := String new.
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[ aChar = $] ]
  whileFalse: [

aChar := aStream next.
aChar asInteger = 13 "cr"

ifTrue: [
aString size > 0
  ifTrue: [
    aCollection add: 

(aString asNumber). 
    aString := String new.
  ].
aMatrix addLast: aCollection.
aMatrix setrows: (aMatrix rows + 1)

cols: (aCollection size).
aCollection := OrderedCollection new.

].
aChar isSeparator "any white space"
ifTrue: [
aString size > 0

ifTrue: [
aCollection add: 
  (aString asNumber). 
aString := String new.

]
].

(aChar isDigit)
ifTrue: [aString := aString, 

(aChar digitValue printString)].
].
aStream close.

"Add the last one, since the ']' was on the last line"
aMatrix addLast: aCollection.
aMatrix setrows: (aMatrix rows + 1) 

cols: (aCollection size).
aCollection := OrderedCollection new.

^aMatrix

 The method to write the matrix to a file is considerably more simple. A ‘[‘ is written, then 
each row is written as characters, then a ‘]’ is written.

writeToFile: aName
"Writes the matrix to the file aName. The format is 

such that fromFile: can be called to read it back 
into a matrix."

| aStream aFilename|
aFilename := Filename named: aName.
aStream := aFilename writeStream.

aStream nextPut: $[.
1 to: (self rows) do: [ :row |

1 to: (self cols) do: [ :col |
((self atRow: row atCol: col) printString) 

do: [ :char |
aStream nextPut: char

].
aStream nextPut:$ . "space"

].
row = (self rows)

ifFalse: [
aStream nextPut: 13 asCharacter. "cr"].
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].
aStream nextPut: $].
aStream close.

 To illustrate the use of the new file methods, we will read two matrices from text files 
(“matrix1.txt” and “matrix2.txt”), then multiply them together. Their product will be written to a 
file (“matrix3.txt”). Below is a screen capture of the two input text files.

 The code below will now multiply the matrices together and write the product to a file. The 
code also reads the output file back in and prints it to the Transcript as a form of visual sanity 
check.

| matrix1 matrix2|
matrix1 := Matrix2D fromFile: 'matrix1.txt'.
Transcript show: 'matrix1'.
matrix1 writeToTranscript.
matrix2 := Matrix2D fromFile: 'matrix2.txt'.
Transcript show: 'matrix2'.
matrix2 writeToTranscript.
(matrix1 matrixMult: matrix2) writeToFile: 'matrix3.txt'.
Transcript show: 'From file: matrix3'.
(Matrix2D fromFile: 'matrix3.txt') writeToTranscript.
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 The code results in the output file
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