
Roel
and
lec-

ects or
wer
tp://
OO Design with Smalltalk a
Pure Object Oriented
Language and Environment

About the exercises

The exercises developped in the following lessons have been originally written by
Wuyts and Koen De Hondt from University of Brussels.I heavily extended them
thanks them for sharing them with me. You can find all the information relative to the
ture at University of Bern at http://www.iam.unibe.ch/@@

About me

Dr. Stéphane Ducasse
Room 101
Email: ducasse@iam.unibe.ch
WWW: http://www.iam.unibe.ch/~ducasse/

Feel free to come and ask questions about the lectures and possible student proj
DiplomatArbeit. You can send email, I will reply but it is always better to have an ans
in front of a browser. The last versions of theses files will be available at ht
www.iam.unibe.ch/~ducasse/

Learning Objectives

At the end of this lecture you should be able to
• Read Smalltalk code and understand it
• Interact with the environment and find information
• Understand some basic library element
• Define your own classes
• Apply some elementary OO design guidelines

44

ture
will
sys-

ch of
piec-
xer-
will

ring
estions
e excit-
pters
should
How do you will get evaluated?

The most important question is how will you get evaluated for this lecture. As this lec
is not obligatory and is a special lecture, there will be no final exam. However, you
have to prove that you made your exercises and that you know how to interact with the
tem. This means that at the end of the lecture I will personaly take some time with ea
the attendee and ask him to find some information with VisualWorks or explain some
es of code. The questions that I will ask will be exactly at the same level that the first e
cises. So for those that will effectively open VisualWorks and do the exercises, there
be no problems. For the other ones, I think that they will not obtain the lecture.

How do we will proceed?

You will have to do the following exercises at home or during your free time and du
the exercises sessions. Do the exercises of the first 4 chapters alone and ask me qu
during the first exercises session. Pay attention that the exercises at the end are mor
ing that the first stupid ones. I will start the exercises considering that the first 4 cha
have been worked. So you can ask me questions on the previous chapters but you
at least have tried before.

Outline of the exercises

2. Interacting with the VisualWorks Smalltalk Environment
3. Objects and expressions
4. Viewing, creating and editing classes
5. Defining protocols and methods
6. A Basic LAN Application
7. Fundamentals on the Semantics of Self and Super
8. Object Responsibility and Better Encapsulation
9. The Question of Class Responsibility
10. Hook and Template Methods
11. Extending the LAN Application
12. VisualWorks Application Building
13. Lesson 10: More about Applications
14. Building an Interface for the LAN Application
15. Building a Dialog and Originating Packets

55

nce
velop
om-
ossi-
ing a

lling

ou-
les,
Where to get VisualWorks or Squeak?

You can get a full but non-commercial version of VisualWorks 3.0 athttp://www.object-
share.com/vwnc/. Several versions are available: PC, Linux and Mac. The only differe
between a non-commercial version and a commercial one is that you should not de
software that you sell with the non-commercial version. Moreover, you cannot load c
mercial parcels (byte-code) into a non-commercial virtual machine. The inverse is p
ble i.e. you can distribute code developed with the non-commercial to person us
commercial version.

For Squeak go to http://www.squeak.org/
Register, download and install the version. If you have any kind of problem for insta
VisualWorks, just ask and do not wait not the end of the lecture for that.

Some Conventions

Throughout the exercises I will use italic text (like this) for text you have to type and c
rier (like that) to refer all the Smalltalk entities (class names, instance variab
methods).

6 Interacting with the VisualWorks Smalltalk Environment6 Interacting with the VisualWorks Smalltalk Environment

code,
this
velop
tive

This

ries
state

the
be in

and
-code
he im-
m like
d dis-
one

your
if the
Chapter 1

Interacting with the
VisualWorks Smalltalk
Environment

1.1 Meaning of the files

In Smalltalk, the source code of classes and methods is translated to Smalltalk-byte
which is then interpreted and executed by the Smalltalk Virtual Machine. (Note that
is an approximation because Smalltalk dialects were also the first languages to de
Just in Time compilation, i.e. a method is compiled into byte-codes but also into na
code that is executed directly on the processor.)

When looking at VisualWorks Smalltalk, there are three important files:
• visual.sou (ASCII): contains the textual code of the initial classes of the system.

file is never changed. It is only read, never written.
• visual.im (Binary): contains byte code of all the objects of the system, the libra

and the modifications you made. This file is your personal file representing the
of your system after every action you make.

• visual.cha (ASCII): contains all the modifications made in the image-file and all
new source code since this was created (cha is for changes). This file should
sync with the .im file. This file is useful to restore the state after an image crash.

There are several implications to consider: You need to have write access to the .im
.cha files. The .sou file is shared by all the users to save space. The VM being a byte
stack machine does not need to have the source code to work, only the byte-code (t
age) suffices. However you as a programmer need to read the code. In case of proble
“source code not found”, the system automatically disassembles the byte-code an
play it instead of the source code. That’s why if the browser shows you code like the
displayed below containing t1 t2 … instead of normal variable names, do not save
image and check if the source code is reachable by the system (look into the settings
variable VISUALWORKS points to the right directory).

accept: t1
" ***This is decompiled code.***
This may reflect a problem with the configuration of your image
and its sources and changes files.

Starting up 7Starting up 7

rst

al

r. Let
t the

s: the
dow
since
The
cher
n we
Please refer to the documentation and the settings tool for help
in

setting up the proper source code files."

self send: t1.
^self

1.2 Starting up

On Macintosh, to open an image:
• Drag the file 'visual.im' on the virtual machine to start the image if this is the fi

time, or double click on it.
• If you want to start your own image, just double click on it or drag it over the virtu

machine.

On Solaris: you should invoke the virtual machine passing it an image as paramete
us imagine that VisualWorks has been installed in the directory visualworks and tha
virtual machine is called vw you will have to type

visualworks/bin/vw visualworks/image/visual.im
Then after you can specify your own image visualworks/bin/vw myvisual.im

After opening the image, and thus starting a Smalltalk session, you see two window
VisualWorks launcher (with menu, buttons and a transcript), and a Workspace win
(the one containing the copyright message). You can iconize or close this last one,
we do not need it for the moment. Associated with the Launcher is the Transcript.
Transcript is the widget that displays the information of the system below the Laun
toolbar. In the displayed Launcher the Transcript displays the feedback we get whe
save an image. We will see later on how you can put your own messages there.

8 Interacting with the VisualWorks Smalltalk Environment8 Interacting with the VisualWorks Smalltalk Environment

ing
im-

(and
y it.
o cre-

you

s the
was
e used

w or

t or a
ext,
s.
ract

keys
The Launcher is the starting point for working with your environment and for the open
of all the programming tools that you might need. To begin we will first create a fresh
age.

1.3 Creating your own image

The first time you started with the default image. This image is used by all the users
you if you want to restart with a clean image in the future), so you should not modif
Note that you may not have the right to do write access es with this image. We need t
ate your own image. We do so by saving the default image.
We are going to create a new image for this lesson.

• Select ‘Save As...’ in the file-menu
• When the system prompts you for the name for the new image, give the name

want for your image.
• Have a look at the Transcript and note what it says.

1.4 About the mouse

The Smalltalk Development Environment of which VisualWorks is a descendant wa
first application to use multiple overlapping windows and a mouse, back in 72 when it
created. It extensively uses three mouse buttons that are context sensitive and can b
everywhere throughout Smalltalk:

• The left mouse button is the select button: you can select text, select the windo
part of the window where you want to type text.

• The middle button is the operate button: once you have selected a piece of tex
window, this button allows you to interact, to operate on it. Depending of the cont
you can for example, copy, paste or undo some text, or compile, format method

• The right button is the window button: this button has the responsibility to inte
with the windowing system. You can iconify, resize, relable, close windows.

On a Macintosh, where only one button is available, you have to use some keyboard
together with pressing your mouse button:

• The select button is the mouse button pressed alone.
• For the operate button, press the button while holding the alt-key pressed.
• For the window button, press the button while holding the apple-key pressed.

About the mouse 9About the mouse 9

ere-
ulate

se-
eping

rd by
es),
dou-

ce of
our

rted

ings

sual,
tions

utton,
1.4.1 Selecting text and doing basic text manipulations

One of the basic manipulations you do when programming is working with text. Th
fore, this section introduces you to the different ways you can select text, and manip
these selections.

The basic way of selecting text is by clicking in front of the first character you want to
lect, and dragging your mouse to the last character you want in the selection while ke
the button pressed down. Selected text will be highlighted.

Exercise 16:

Select some parts of text in theTranscript .
Hints: There is a faster way to select a piece of text. You can also select a single wo
double clicking on it. When the text is delimited by '' (single quotes), "" (double quot
() (parentheses), [] (brackets), or {} (braces), you can select anything in between by
ble clicking just after the first delimiter.

Exercise 17:

Try these new selection techniques.

Now we have a look at the text operations offered by the mouse menu. Select a pie
text in theTranscript and bring on the operate menu. Note that you have to keep y
mouse button pressed to keep seeing the window.

Exercise 18:

Copy this piece of text and paste it after your selection. Afterwards cut the newly inse
piece of text.

Exercise 19:

See if there is an occurrence of the word visual in the Transcript. Note that to find th
in a text window, there is no need to select text. Just bring up the operate menu.

Exercise 20:

Replace the word visual with C++ using the replace operation (if it does not contain vi
add this word or replace something else). Take your time and explore the different op
of the replace operation.

Exercise 21:

Bring up the operate menu, but don't select anything yet. Press and hold the shift b
and select paste in the operation menu. What happens?

10 Interacting with the VisualWorks Smalltalk Environment10 Interacting with the VisualWorks Smalltalk Environment

di-
nd to
ace.

ork-
win-
tion

alt-
s any

peri-
basic

pect

ation

do
sult.
text.
For

you
-

1.5 Opening a WorkSpace Window

We will now open a workspace window, a text window much like theTranscript , you
use to type text and expressions and evaluate them. To open a workspace:

• Select the tools menu in the Launcher
• From the Tools menu, select Workspace
• Or you can click on the workspace icon:

You will see a framing rectangle (with your mouse in the upper left corner), that in
cates the position where the Workspace will open. You can move your mouse arou
change the position. Click one time once you have found a good spot for your Worksp

Now your mouse is in the bottom right corner, and you can adjust the size of the W
space. If you click once more, once you have given it the size you like, the Workspace
dow appears. This is the basic way of opening any kind of VisualWorks applica
window. Experiment with it until you feel comfortable with it.

1.5.1 The Window menu

To resize a window on the Macintosh, click in the lower right corner while holding the
button (option). On a PC or Sun, you resize VisualWorks windows the same way a
other window.

Once you have opened your Workspace window, bring up the window menu, and ex
ment with it. Note that this menu is the same for each window, and contains the very
window manipulations.

1.6 Evaluating Expressions

In the operate menu you will see the next three different options do it, print it and ins
for evaluating an expression and getting the result:

• do it: evaluates the current selection, and does not show any result of the evalu
result. For example, if you evaluate the following expressionBrowser open us-
ing do it the system will open a class browser but it will not show you a result. We
it when we are interested only by the side effects of an expression and not its re

• print it: prints the result of the evaluation of your selection just after the selected
The result is automatically highlighted, so you can easily delete it if you want to.
example if you select and evaluate the expressionBrowser open , the system will
open a class browser and will print the result of the expression in our example
will obtain the stringan UIBuilder . It is important to notice that the displayed re

Evaluating Expressions 11Evaluating Expressions 11

print-
ion

in a
not

ector
ed by

ALLY

ve
eval-
n

e left
in-
sult is a string. The system obtains such a string by sending the messageprint-
String to the result. The same effect can be obtained by sending the message
String explicitly to the result of the expression evaluation. “Printing” the express
Browser open is equivalent to do it the expressionBrowser open print-
String .

• inspect it: opens an inspector on the result of the evaluation. Inspecting works
similar way that printing an expression. The main difference is that the result is
printed in the current window but open an inspector. The system obtains an insp
by sending the message inspect to the result. The same effect can be obtain
sending the message inspect explicitly. Inspecting the expressionBrowser open
is equivalent to “do it” the expressionBrowser open inspect .

The distinction between these three operations is essential, so check that you RE
understand their differences.

Exercise 22:

select 3, bring up the operate menu, and select print it.

Exercise 23:

print the result of 3+4

Exercise 24:

TypeDate today and print it. Afterwards, select it again and inspect it. You should ha
a window similar as the one below. Such a window is an inspector on the result of the
uation of the expressionDate today (the expression tells to VisualWorks to create a
object containing the current date). This inspector window consists of two parts: th
one is a list view containingself (a pseudo variable containing the object you are
specting) and the instance variables of the object, in this caseday andyear . On the right
is an edit field showing the value of the currently selected variable.

12 Interacting with the VisualWorks Smalltalk Environment12 Interacting with the VisualWorks Smalltalk Environment

own

, and

with

tool.
es the
t but
you

ndent

?
on
bjects

e, and

each

Tran-
• Click onself in the inspector. What do you get? Does it resemble the result sh
by Date today printString ?

• Selectday . What do you get? Now change this value, bring up the operate menu
select and accept it (menu operation). Click again onself . Any difference?

• In the inspector edit field (right field), type the following:self weekday , select it
and print it. This causes the messageweekday to be sent toself (i.e. the date ob-
ject that we are currently inspecting) and the result to be printed. Experiment
other expressions like:
self daysInMonth
self monthName
Close the inspector when you are finished.

Note. It is really important to be clear about the fact that an inspector is a debugging
In this sense it directly accesses and shows the internals of an object, thus it violat
encapsulation principle. An inspector does not use the public interface of an objec
uses the reflective capabilities of Smalltalk to access object internals. That’s why
should be aware that some of the information that an inspector shows is strictly depe
on the private internal representation of the inspected object.

• What hypothesis can you elaborate on the way dates are internally represented
• Check the interface of theDate class in particular the instance creation protocol

the class side. Do you agree with us that there is a difference between the way o
are represented and their public interface defined in terms of behavior?

Exercise 25:

Type in the Workspace the following expression:Time now, and inspect it. Have a look
atself and the instance variables. Browse the interface of the classTime .

Exercise 26:

Type in the Workspace the following expression:Time dateAndTimeNow . This tells
VisualWorks to create an object representing both today's date and the current tim
open an inspector on it. Select the itemself in the inspector. [Note thatself is an object
called an Array. It holds on to two other objects (elements 1 and 2). You can inspect
element to get either the time or the date object.

1.7 Using the System Transcript

We have already seen that theTranscript is a text window at the bottom of the
Launcher where the system shows you important information. You can also use the
script yourself as an inexpensive user interface.

Using the System Transcript 13Using the System Transcript 13

l
w be-
ou
e to

to the

ics of
If you have a Workspace open, place it so that it does not cover theTranscript . Other-
wise, open one and take care of where you put it. Now, in the Workspace, type:

Transcript cr.
Transcript show: 'This is a test'.
Trancript cr.

Select these 3 lines and “do it” them.

This will cause the string This is a test to be printed in theTranscript , preceded and
followed by a carriage return. Note that the argument of theshow: message was a litera
string (you see this because it is contained in single quotes). This is important to kno
cause the argument of theshow: method always has to be a string. This means that if y
want any non-string object to be printed (like a Number for example), you first hav
convert it to a string by sending the messageprintStrin g to it. For example, type in
the workspace the following expression and evaluate it:
Transcript show: 42 printString, 'is the answer to the Universe'.
Note here that the comma is used to concatenate the two strings that are passed
show: message42 printStrin g and'is the answer to the Universe' .

Exercise 27:

Experiment on your own with different expressions.
Transcript cr ; show: ‘This is a test’ ; cr

Explain why this expression gives the same result that before. What is the semant
‘;’?

14 Objects and expressions14 Objects and expressions

tiating

e that
imply

tation

tation

tation
Chapter 2

Objects and expressions
This lesson is about reading and understanding Smalltalk expressions, and differen
between different types of messages and receivers.
Note that in the expressions you will be asked to read and evaluate, you can assum
the implementation of methods generally corresponds to what their message names
(i.e. 2 + 2 = 4).

Exercise 28:

For each of the Smalltalk expressions below, fill in the answers:

3 + 4

What is the receiver object?
What is the message selector?
What is/are the argument(s)?
What is the result returned by evaluating the expression, what is the string represen
of the result?

Date today
What is the receiver object?
What is the message selector?
What is/are the argument(s)?
What is the result returned by evaluating the expression, what is the string represen
of the result?

#(calvin hates suzie) at: 2 put: ‘loves’
What is the receiver object?
What is the message selector?
What is/are the argument(s)?
What is the result returned by evaluating the expression, what is the string represen
of the result?

Exercise 29:

What kind of object does the literal expression'Hello, Dave' describe?

Exercise 30:

What kind of object does the literal expression#Node1 describe?

Exercise 31:

What kind of object does the literal expression#(1 2 3) describe?

Exercise 32:

What can one assume about a variable namedTranscript ?

Using the System Transcript 15Using the System Transcript 15

valuat-

pres-
Exercise 33:

What can one assume about a variable namedrectangle ?

Exercise 34:

Examine the following expression :
| anArray |
anArray := #('first' 'second' 'third' 'fourth').
^anArray at: 2

What is the resulting value when it is evaluated (^ means return)?

Exercise 35:

Remember that the precedence rules are the following, the greater precedence is e
ed prior to the lower.

Unary > binary > keywords
() > Unary

Which sets of parentheses are redundant with regard to evaluation of the following ex
sions:

((3 + 4) + (2 * 2) + (2 * 3))

(x isZero)
ifTrue: [....]

(x includes: y)
ifTrue: [....]

Exercise 36:

Guess what are the results of the following expressions:

6 + 4 / 2
1 + 3 negated
1 + (3 negated)
2 raisedTo: 3 + 2
2 negated raisedTo: 3 + 2

Exercise 37:

Examine the following expression:
25@50
What type of message is being sent?
What is the message selector?
What is the receiver object?
What is the resulting value (use VisualWorks for this)?

16 Objects and expressions16 Objects and expressions

lltalk

lltalk

lltalk

tion.

hod

rence
Exercise 38:

Examine the following expression and write down the sequence of steps that the Sma
system would take to execute the following expression:

Date today daysInMonth

Exercise 39:

Examine the following expression and write down the sequence of steps that the Sma
system would take to execute the following expression:

Transcript show: (45 + 9) printString

Exercise 40:

Examine the following expression and write down the sequence of steps that the Sma
system would take to execute the following expression:

5@5 extent: 6.0 truncated @ 7

Exercise 41:

In lesson 1 we saw how to write strings to theTranscript , and how the message
printString could be sent to any non-string object to obtain a string representa
Now write a Smalltalk expression to print the result of34 + 89 on theTranscript .
Test your code!

Exercise 42:

Examine the block expression
|anArray sum |
sum := 0.
anArray := #(21 23 53 66 87).
anArray do: [:item | sum := sum + item].
^sum

What is the final result of sum?
How could this piece of code be rewritten to use explicit array indexing (with the met
at:) to access the array elements? Test your version. Rewrite this code usingin-
ject:into:

Exercise 43:

Evaluate the following expressions and elaborate a hypothesis regarding the diffe
between identity and equality between strings and symbols.

‘lulu’ = ‘lulu’
‘lulu’ == ‘lulu’
#lulu = #lulu
#lulu == #lulu

Using the System Transcript 17Using the System Transcript 17

rning
le to
es:,
heck

rkMa-
ange
reen
Exercise 44:

Understanding the common protocol shared by all the collections is a key point in lea
of Smalltalk and will help to write fast, simple and elegant code. You should be ab
identify and use the following methods: do:, collect:, detect:, reject:, select:, includ
isEmpty, size and inject:into:. Guess the results of the following expressions and c
them by evaluating them.

Knowing thatColorValue constantNames returns the following val-
ue
#(#black #blue #brown #chartreuse #cyan #darkCyan #darkGray #darkGreen #da
genta #darkRed #olive #gray #green #lightYellow #lightGray #magenta #navy #or
#orchid #paleGreen #pink #purple #red #royalBlue #salmon #lightCyan #springG
#veryDarkGray #veryLightGray #white #yellow)

Guess the result of the following expressions:

ColorValue constantNames size

ColorValue constantNames includes: #turqoise

ColorValue constantNames select: [:each| each size = 4]

ColorValue constantNames detect: [:each| each size = 4]

ColorValue constantNames reject: [:each| each size = 4]

ColorValue constantNames collect: [:each| each asString]

ColorValue constantNames do: [:each | Transcript show: each ;cr]

ColorValue constantNames
inject: ''
into: [:final :current| final , current asString]

18 Viewing, creating and editing classes18 Viewing, creating and editing classes

s sys-
ough
l save
e vis-

l you
ds (see
t field

000
oses
es and

od pro-
Chapter 3

Viewing, creating and
editing classes
This lesson will show you the use of the System Browser to browse through the clas
tem, to define a class, and to save this class to file. In the first part, we will browse thr
some classes. In the second part, we will create our first class. In the third part, we wil
it. For this lesson you need to work on your own image, so first start a new image (us
ual.im), and save it under a different name (for example, lesson).

From the Browse menu in the Launcher, open a Class Browser. This is the basic too
use to find classes, browse their code, and implement your own classes and metho
the screen dump below). A class browser is composed by four list views and one edi
below.

3.1 Looking at existing classes

A Smalltalk environment like VisualWorks contains more than 1500 classes and 8
methods. To ease navigation in this huge amount of information, the system prop
some means to organise and navigate through it. The idea is to categorize the class
the methods into groups or folders named class categories for the classes and meth

Looking at existing classes 19Looking at existing classes 19

age se-

(from

lected

r, Lan,

yed
to the

s de-
, it is

that
n is

pro-

se
or Im-
se-

four
ders and
u op-
eth-

t and
ould
d or to

, then
tocols for the methods. Please note that these elements do not possess any langu
mantics and are just a way to organize the information.

The Class Browser consists of four lists on top and of an edit space. The four lists are
left to right):

• The category list displays groups of classes (= categories). In the picture, the se
class category is ‘Lan-Simulation’.

• The class list shows the classes in a selected category. In the picture, FileServe
Node and Packet are the classes classified into the category ‘Lan-Simulation’.

• The protocol list shows groups of methods (= protocols) in a class. In the displa
browser the protocol named sending/receiving groups all the methods related
packet acceptation and sending.

• The method list shows the methods of the selected protocol.
The contents of the edit field that spans the whole lower part of the window change
pending on the current selection you make in the lists. Initially, with nothing selected
empty. In the previous screenshot it displays the current selected method.

How to Browse?

One of the predominant impressions when one starts to program with Smalltalk is
there is too much information available. The truth behind this is that all the informatio
potentially available. However:

• You do not have to know all the classes and all the methods before starting to
gram.

• The environment is there to help you to find the information you are looking for. U
the method senders and implementors (menu operate on the method list pane,
plementors of the Browse Menu) to quickly identify which classes implement the
lected method and which methods callthe selected method.

A good way to read this information is to consider the class browser as a book: The
panes representing the sections, subsections and subsubsections, the method sen
implementors function as the cross-references and index, the explain function (men
erate on the edit field) as a first aid. Moreover you do not have to read the body of the m
od to use it, normally reading the first line containing the method name and argumen
the comments explaining what the purpose of the method is should suffice. You sh
only read a method body as your last chance to understand the purpose of the metho
understand how the programmer implemented the functionality.

Illustration of Browsing

Let us consider the following example that first creates an empty ordered collection
adds 35 to it.

20 Viewing, creating and editing classes20 Viewing, creating and editing classes

ous
ning
iour.

-

If you inspect the result you will get 35 and not the collection. This is one of the fam
Smalltalk library legacy. One way to solve this behaviour is to add a new line contai
ordColl . However imagine that we want to understand why we have such a behav

|ordColl|
ordColl := OrderedCollection new: 5.
ordColl add: 35.

After browsing the classOrderedCollection you should be able to obtain the fol
lowing situation:

Looking at existing classes 21Looking at existing classes 21

e-
ded.
d the

the
the

the
le on

to un-

e is
liver
ode is

hen
lop-
u nor-
our

tem-
hows

-
f-
Reading the comments of the methodadd: clearly suffices to explain the described b
havior:add: does not return the receiver (the collection) but the argument being ad
However imagine that such a comment would not exist. In this case, you can now rea
method body and understand that the result ofadd: is the one ofaddAll: . So reading
now the methodaddAll: you obtain the same situation: the comments define well
behaviour of the method. Again reading quickly through the code allows us to identify
expected behaviour: The return value is the added element.

This is just a simple illustration of the power of the ability to read the code. Since ALL
environment and ALL the entities of the system are just objects, their code is availab
line. This means that you can for example read the code of all the objects you want
derstand or extend.

An important clarification. A lot of programmers are afraid by the fact that all the cod
available. Especially for their product they think that this is dangerous to openly de
the code they are producing. They are right. The main point here is that the source c
only present in the development environment and not in the running executable. W
you sell a product developed in Smalltalk, first lot of the code implementing the deve
ment environment is removed (debugger, compiler, parser, editor…) and second yo
mally only delivers an executable consisting of a VM and the byte code of y
application, not its source code.

3.1.1 senders and implementers

We will begin with selecting a category calledGraphics-Geometry . When you do
that the content of the edit field will be updated to present you a class-template. This
plate is used when you want to create classes (we will do so later on). The class list s
the classes in the selected category.

Exercise 45:

Now select the classPoint . The edit field shows the definition of the classPoint . Note
how the template is filled in. Try to understand the structure of this class.

• Ask for all the references to this class
• Ask for all references to the instance variablex

• Ask for all the senders of the methodx

• Ask for the comment of the classPoint

You can now select the protocol calledaccessing . The edit field updates again, to ena
ble you to add a method to the classPoint in the selected protocol. Have a look at the di

22 Viewing, creating and editing classes22 Viewing, creating and editing classes

their

dis-
any

you
freely
arcel
s and

r

ol
t this
pro-
ferent protocols and their methods. Select methods in the method list, and look at
code. Begin in theaccessing protocol, and try to understand what is going on.

Exercise 46:

Every list in the upper half of the class browser has its own operation menu that is
played if you press the operation button on a list. Do this for the four lists, and try out
commands that you do not fully understand (do not remove anything).

Exercise 47:

What are the superclasses ofArray ?

Exercise 48:

Who references (by name) the classByteArray ?

Exercise 49:

How many instance variables does an instance of classLuminanceBasedColor-

Policy have?

Exercise 50:

Using the method sender and implementor functionality describe step by step how
would rename a method such that other methods that once used it can still do? A
available tool, the Refactoring Browser that you can load (menu Tools item Load P
Named), does all these steps automatically for you. It contains a lot more refactoring
is a really good browser. Try it.

Exercise 51:

Find at least 3 classes that implement the methodat:

Exercise 52:

Can I compare instances of the classDate with the> and< operators? Give reasons fo
your answer.

Exercise 53:

Go to the classFixedPoint , and locate the protocol double dispatching. This protoc
contains the methods for a technique called double dispatching. Try to figure out wha
technique is all about and what it solves. To do so, look at where the methods of this
tocol are used.

Looking at existing classes 23Looking at existing classes 23

s

meth-

he
Exercise 54:

Find all the classes implementingifTrue:ifFalse:

Exercise 55:

Evaluate and explain the differences between the two following expressions:

0 to: 10 by: 2 do:
[:i | Transcript show: I printString ; cr]

(0 to: 10 by: 2) do:
[:i | Transcript show: I printString ; cr]

Hint: Find the methodto:by:do: and the methodto:by: defined inInteger.

Exercise 56:

Print the following expressions and explain why the result is different.

Array with: 1 with: 2 with: 3
Array with: 1 ; with: 2 ; with: 3

Exercise 57:

Find the methodfactorial and reimplement it usinginject :into :

Exercise 58:

Check using a hierarchy browser which subclasses ofMagnitude are abstract classes.
Check especially the comments. You can also check all the sender ofsubclassRe-
sponsibility

Exercise 59:

Search the implementors of->
Inspect the expressions :

#lulu->23
23->34

Exercise 60:

• Write an expression that returns the subclasses ofCollection class.
• Using only public methods of the classBehavior, find the expression that return

the number of methods defined in one class.

Exercise 61:

(for the wild and foolish) Find the methodbrowseAllSelect :
Using this method write an expression that opens a browser showing all the unary
ods.

Hint: look in theCompiledMethod class or its superclasses how we can know t
number of arguments of a method.

24 Viewing, creating and editing classes24 Viewing, creating and editing classes

sible

he re-

oing
going

of the

class
sure
Browser browseAllSelect: [:method | method]

Exercise 62:

Inspect the following expression: #(calvin hates suzie) at: 1 + 1 put: #loves
The result is not what we expected, how do you explain that? Find the method respon
for such an unexpected behaviour.
Propose (yourself) a solution, so that the array (the receiver) is returned instead of t
sult of the message.

3.2 Creating your own class

In this part we will create our first class in a category of our own. The steps we are g
to take are the same every time you create a class, so memorize them well. We are
to create a classSimpleCounter in a category calledDemoCounter .

Step 1: Creating a category

Just add a new category by selecting the item choice, add category on the left pane
browser.

Step 2: Creating a class

Creating a class requires the following five steps that consist basically of editing the
definition template to specify the class you want to create. Before you begin, make
that only the categoryDemoCounter is selected.

2525

that
ad,
of the

rts

s of

use.

ect
• Superclass Specification. First, replace the wordNameOfSuperclass with the
wordModel . This is to specify the superclass of the class you are creating. (Note
Model is the superclass used for objects that will play a model role in a MVC tri
see future lessons. So, for your other classes you should type the superclass
class that you are creating).

• Class Name. Next, fill in the name of your class by replacing the wordNameOf-
Class with the wordSimpleCounter . Take care that the name of the class sta
with a capital and that you do not remove the # sign in front ofNameOfClass .

• Instance Variable Specification. Then, fill in the names of the instance variable
this class. We need one instance variable calledcounterValue . You add it by re-
placing the words instVarName1 and instVarName2 with the wordcounterVal-
ue .. Take care that you leave the string quotes!

• Class Variable Specification. Now you can fill in any class variables you may
Since we need none, remove the wordsClassVarName1 andClassVarName2 ,
leaving an empty string (i.e. 2 single quotes ’’).

• Compilation. That’s it! We now have a filled-in class definition for the classSim-
pleCounter . To add it to the system, we still have to compile it. Therefore, sel
the accept option from the operate menu. The classSimpleCounter is now com-
piled and added to the system.

26 Viewing, creating and editing classes26 Viewing, creating and editing classes

-

t is a
your

s the
nt to

ate op-
As we are good citizens, we giveSimpleCounter a class comment by selecting com
ment from the operate menu of the class list. Give this comment:

SimpleCounter is a concrete class which supports incrementing and
decrementing a counter.

Instance Variables:
counterValue <Integer>

Select accept to store this class comment in the class.

Filing the category out on disk

To be able to load your class next week, we now create a so-called file-out. A file-ou
text file that contains method and/or class definitions, and that you can use to load
classes and/or methods in an image.

To create the file-out: Select the categoryDemoCounter and select file-out from the op-
erate menu. Give a filename (for example 'democounter.st'). The system now write
textual representation of all the classes in the selected category to this file. If you wa
just save one class, one protocol or even a single method, you can use the appropri
erate menu item on the element you want to save.

2727

ods.
v-

n and
nt.

atego-
eed
ith,
e in
Chapter 4

Defining protocols and
methods
This lesson will show how to use the System Browser to add protocols and meth
Therefore, we will use the classSimpleCounter created before, and add some beha
iour. We will also test this class. If you saved your image at the end of the last lesso
you can restart it, just read the following to learn how to fill in code into your environme

4.1 Filing in Smalltalk code

At the end of the previous lesson we created a file-out containing the classes in the c
ry DemoCounter . To import these classes in the environment we are working, we n
to perform a file-in operation. To do so, we will use a tool called the File List. To start w
open this tool (it's under Tools, in the VisualWorks Launcher). You can click on the fil
icon. You get something like this:

There are three important parts in this window:

28 Defining protocols and methods28 Defining protocols and methods

ou
nt
Us-
op-

get a
n a

list
ory,
n.
sion
u file

tatis-

s by
riables
e var-
lways
riable

up of
ation
ram-
and

nd a

ly
e

ccess
• On the top you have an edit field that allow you to specify in which directory y
want to look for your files and which files you want to filter. For example if you wa
to see all the files with the extension .st in the directory called Macintosh HD:
er:Stef: just type: Macintosh HD:User:Stef:*.st. Note that you can also open an
erate menu in the edit field on top. The last menu item is volumes. Select this to
list with the file volumes of your computer (partitions on a PC, hard disks o
Mac,…). Select the volume your files are on. When you have done that, the file
will contain the files and directories of that volume. To change to a specific direct
select the directory in the list, bring up the operate menu, and select new patter

• The middle part of the window display the list of the files that match the expres
contained into the top edit field. You can select a file then using the operate men
in it.

• The bottom subwindow is a text viewer, displaying either the contents or some s
tics of the selected file.

Exercise 63:

If you do not have the image containing the definition of the classDemoCounter , file-in
the file you have created in the previous lesson.

4.2 Creating and testing methods

The class we have defined has one instance variable,counterValue . Remember that
in Smalltalk, everything is an object and that the only way to interact with an object i
sending it messages. Therefore, there is no mechanism to access the instance va
from outside. What you can do is define messages that return the value of the instanc
iable of a class. Such methods are called accessors, and it is common practice to a
define and use them. We will start to create an accessor method for our instance va
counterValue .

Remember that every method belongs to a protocol. These protocols are just a gro
methods without any language semantics, but convey important navigation inform
for the reader of your class. Although protocols can have any name, Smalltalk prog
mers follow certain conventions for naming these protocols. If you define a method
are not sure what protocol it should be in, first go through existing code and try to fi
fitting name.

An important remark: Accessors can be defined in protocols‘accessing’ or ‘pri-
vate’ . Use the‘accessing’ protocol when a client object (like an interface) real
needs to access your data. Use‘private’ to clearly state that no client should use th
accessor. Again this is purely a convention. There is no way in Smalltalk to enforce a

Creating and testing methods 29Creating and testing methods 29

ovide

in a
, cre-
s-
ple.

a. An
you,
d if it

select-
set

ays a

alled
tance

hod.:
rights like private in C++. To emphasize that objects are not just data structure but pr
services that are more elaborated than just accessing data, put your accessors in a‘pri-
vate’ protocol. As a good practice if you are not sure first define your accessors
‘private’ protocol and once some clients really need access to some specific data
ate a new protocol‘accessing’ and move your method there. Note that this discu
sion does not seem to be very important in the context of this specific simple exam
However, this question is central to the notion of object and encapsulation of the dat
important side effect of this discussion is that you should always ask yourself when
as a client of an object, are using an accessor if the object is really well defined an
does not need extra functionality.

Exercise 64:

Decide in which protocol you are going to put the accessor forcounterValue

We now create the accessor method for the instance variable counterValue. Start by
ing the classDemoCounter in a browser, and make sure the class/instance switch is
to instance.

Create a new protocol. Select the newly created protocol. Then the edit field displ
method template laying out the default structure of a method.

Replace the template with the following method definition. This defines a method c
counterValue, taking no arguments, having a method comment and returning the ins
variable counterValue. Then choose accept in the operate menu to compile the met

30 Defining protocols and methods30 Defining protocols and methods

ting

essage
(the
eate

utator
client.
n sets

unter-
tance
eval-

used
counterValue
^counterValue

After having written the text, you can now test your new method by typing and evalua
the next expression in a workspace:

SimpleCounter new counterValue

This expression first creates a new instance of SimpleCounter, and then sends the m
counterValue to it to retrieve the current value of counterValue. This should return nil
default value for noninitialised instance variables; at the end of this lesson we will cr
instances where counterValue has a reasonable default initialisation value).

Exercise 65:

Another method that is normally used besides the accessor method is a so-called m
method. Such a method is used to change the value of an instance variable from a
For example, the next expression first create a new SimpleCounter instance and the
the value ofcounterValue to 7:

SimpleCounter new counterValue: 7

This mutator method does not currently exist, so as an exercise write the method co
Value: such that, when invoked on an instance of SimpleCouter, the counterValue ins
variable is set to the argument given to the message. Test your method by typing and
uating the expression above.

Exercise 66:

Implement the following methods in the given protocols:

Now test the methods increment and decrement. Note that the method printOn: is
when you do print it or click on self in an inspector.

protocol methods
operations increment

 self counterValue: self counterValue + 1
operations decrement

 self counterValue: self counterValue – 1
printing printOn: aStream

 super printOn: aStream.
 aStream nextPutAll: ' with value: ', self counterValue printString.
 aStream cr.

Creating and testing methods 31Creating and testing methods 31

the

,

ce by
-

it.

un-

c

4.2.1 Adding an instance creation method

When we create a new instance of the classSimpleCounter using the messagenew,
we would like to obtain an instance well initialized. To do so, we need to override
methodnew to add a call to an initialization method (invoking aninitialize method
is a very common practice! Ask for the senders ofinitialize). Notice thatnew is al-
ways sent to a class. This means we have to define thenew method on the class side. To
define an instance creation method like the methodnew you should be on the class side
so set the class/instance switch on class.

Define a new protocol calledinstance creation , and implement the methodnew
as follows:

new
"Create and return an initialized instance of SimpleCounter"

|newInstance|
newInstance := super new.
newInstance initialize.
^ newInstance

This code returns a new and well initialized instance. We first create a new instan
calling the normal creation method (super new), then we assign this new created in
stance into the temporary variable callednewInstance . Then we invoke the initialize
method on this new created instance via the temporary variable and finally we return

Note that the previous method body is strictly equivalent to the following one. Try to
derstand why they are equivalent.

new
"Create and return an initialized instance of SimpleCounter"

^ super new initialize

4.2.2 Adding an instance initialization method

Now we have to write an initialization method that sets a default value to thecounter-
Value instance variable. However, as we mentioned theinitialize message is sent
to the newly created instance. This means that theinitialize method should be de-
fined at the instance side as any method that is sent to an instance ofSimpleCounter
like increment anddecrement . Theinitialize method does not have specifi

32 Defining protocols and methods32 Defining protocols and methods

ible to

class

ing
s.

class

s (like

tances
ses that

-

and predefined semantics; it is just a convention to name the method that is respons
set up the instance variable default values.

Therefore at the instance side create a protocolinitialize-release , and create fol-
lowing method (the body of this method is left blank. Fill it in!

initialize
"set the initial value of the counterValue to 0"

...

Remark. As we already mentionned, theinitialize method is not automatically in-
voked by the methodnew. We had to override the methodnew to call theinitialize
method. This a weakness of the Smalltalk libraries, so you should always check if the
that you are creating inherits from anew method that implements the call to theini-
tialize method. It is a good practice to add such a calling structure (new calling in-
itialize) in the root of the your class hierarchy. This way you share the call
structure and are sure that theinitialize method is always called for all your classe

Now create a new instance of classSimpleCounter . Is it initialized by default? The
following code should now work without problem:

SimpleCounter new increment

Another instance creation method

To be sure that you have really understood the distinction between instance and
methods, define now a different instance creation method namedwithValue: that giv-
en an integer argument returns an instance ofSimpleCounter with the specified value.
The following expression should return 20.

(SimpleCounter withValue: 19) increment ; counterValue

4.2.3 A Difficult Point

Let us just think a bit! To create a new instance we said that we should send message
new andbasicNew) to a class. For example to create an instance ofSimpleCounter
we sent new to SimpleCounter. As classes are also objects in Smalltalk, they are ins
of other classes that define the structure and the behavior of classes. One of the clas
represents classes as objects is Behavior. Browse the classBehavior . In particular, Be-
havior defines the methodsnew andbasicNew that are responsible of creating new in
stances.

Creating and testing methods 33Creating and testing methods 33

one

If you did not redefine thenew message locally to the class ofSimpleCounter , when
you send the messagenew to the class SimpleCounter, the new method executed is the
defined inBehavior .

34 A Basic LAN Application34 A Basic LAN Application

et-
pro-
s. We

g
take

he
nto a
e. A
d re-
ol be-

of
Chapter 5

A Basic LAN Application
In the following lesson we will work on an application that simulates a simple LAN n
work. The purpose of this lesson is to create a basis for further lessons on writing OO
grams. It will use the knowledge of previous lessons for creating classes and method
will create several classes for simulating the LAN:Packet ,Node,Workstation , and
PrintServer . We start with the simplest version of a LAN then during the followin
exercises we will add new requirements and modify the proposed implementation to
them into account.

5.1 Creating the Class Node

The classNode will be the root of all the entities that form a LAN. This class contains t
basic behavior common for all nodes. The responsibility of a node is to be inserted i
network, which is basically a linked list of nodes, so a Node should know its next nod
node should be uniquely identifiable with a name. This is its responsibility to send an
ceive packets of information. We chose to represent the name of a node by a symb
cause symbols are unique in Smalltalk and the next node by a node object.

Exercise 67:

Create a new categoryLAN, and create a subclass ofModel calledNode, with two in-
stance variables:name andnextNode . (We ask you to create Node as a subclass

Node inherits fromModel

Collaborators:Node andPacket

Responsibility:

name (aSymbol) returns the name of the node

hasNextNode tells is a node has a next node

send: aPacket sends a packet to the following node

accept: aPacket receives a packet and treat it. Per default send it to
the following node

Creating the Class Node 35Creating the Class Node 35

node

tors to
ts

you

or

on
de

-
o

ent to a
e-

this
Model because in the future lessons you will create a user interface for a LAN and a
will play the role Model of a Model-View-Controller triad).

Exercise 68:

Create accessors and mutators for the two instance variables. Document the muta
inform users that the argument passed toname: should be a Symbol, and the argumen
passed tonextNode : should be a node. Define them in a‘private’ protocol.
Note that a node is identifiable via its name. Its name is part of its public interface, so
should move the method name from the‘private’ protocol to the‘accessing’
protocol.

Exercise 69:

Define a method calledhasNextNode that returns whether the node has a next node
not.

Exercise 70:

Create an instance methodprintOn: that puts my class name and my name variable
the argument,aStream . Include my next node's name ONLY if there is a next no
(Hint: look at the methodprintOn: from previous lesson, and consider thatname in-
stance variable is a symbol andnextNode a node).

Printing aNode should result in the following:

(Node new name: #Node1 ; nextNode: (Node new name: #PC1)) printString

Node named: Node1 connected to: PC1

Exercise 71:

Create a class methodnew and an instance methodinitialize . Make sure that a new
instance ofNode created with thenew method usesinitialize (see previous les-
son). Leaveinitialize empty for the moment (it is difficult to give meaningful de
fault values for thename andnextNode of Node. However, subclasses may want t
override this method to do something).

Exercise 72:

A node has two basic messages to send and receive packets. When a packet is s
node, the node has toaccept: the packet, and send it on. Note that with this simple b
havior the packet can loop infinitely in the LAN. We will propose some solutions to
issue later. To implement this behavior, add a protocol ‘send-receive’ , and imple-

36 A Basic LAN Application36 A Basic LAN Application

ent

o the
ad-

-
rs
-

ment the following two methods, for which we only give the selector and the comm
(and some partial code):

Node>>accept: thePacket
"Having received the packet, send it on. This is the

default behavior My subclasses will probably override me to do
something special"

…

Node>>send: aPacket
"Precondition: self have a nextNode"
"send a packet to my following node"
Transcript show:

self name printString,
' sends a packet to ',
self nextNode name printString;cr.
…

5.2 Creating the Class Packet

A packet in an object representing an information that is sent from node to node. S
responsibilities of this object is to allow us to define the originator of the sending, the
dress of the receiver and the contents.

Exercise 73:

In the categoryLAN, create a subclass ofObject calledPacket , with three instance
variables:contents , addressee and originator . Create accessors and muta
tors for each of them in the‘accessing’ protocol (in that particular case the accesso
represents the public interface of the object). Theaddressee is represented as a sym
bol, the contents as a string and the originator has a reference to a node.

Packet inherits fromObject

Collaborators:Node

Responsibility:

addressee returns the addressee of the node to which the packet is sent.

contents describes the contents of the message sent.

originator references the node that sent the packet.

Creating the Class Workstation 37Creating the Class Workstation 37

on

ate
, but
the
treat

e

e.

copy
e reuse
cur-
Exercise 74:

Define the methodprintOn : aStream that puts a textual representation of a packet
its argumentaStream .

5.3 Creating the Class Workstation

A workstation is the entry point for new packets onto the LAN network, it can origin
packet to other workstations, printers of file servers. Since it is kind of a network node
provides additional behavior, we will make it a subclass of Node. That way, it inherits
instance variables and methods defined in Node. Moreover, a workstation have to
packets that are destinated to it in a special way.

Exercise 75:

In the categoryLAN, create a subclass ofNode calledWorkstation without instance
variables.

Exercise 76:

Define the methodaccept: aPacket so that if the workstation is the destination of th
packet, the following message is written into theTranscript . Note that if the packets
are not addressed to the workstation they are sent to the next node of the current on

(Workstation new name: #Mac ; nextNode: (Printer new name: #PC1)) accept: (Packet new
addressee: #Mac)

A packet is accepted by the Workstation Mac

Hints. To implement the acceptation of packet addressed to other node, you could
and paste the code of the Node class. However this is a bad practice, decreasing th
of code and the “Say it only once” rules. It is better to invoke the default code that is
rently overriden by using super.

Workstation inherits fromNode

Collaborators:Node, Workstation andPacket

Responsibility: (the ones of node)

originate: aPacket sends a packet.

accept: aPacket does some actions on packets send to
the workstation (printing in the transcript). For the other pack-
ets just send them to the following nodes.

38 A Basic LAN Application38 A Basic LAN Application

n
be

Of
the

e

Exercise 77:

Write the body for the methodoriginate: that is responsible for inserting packets i
the network in the method protocol ‘send-receive’. In particular a packet should
marked with its originator and then sent.

Workstation>>originate: aPacket
"This is how packets are inserted into the network. This is a likely method to be

rewritten to permit packets to be entered in various ways. Currently, I assume that someone
else creates the packet and passes it to me as an argument."

...

5.4 Creating the class LANPrinter

Exercise 78:

Having only nodes and workstations provide only limited functionality of a real LAN.
course, we would like to do something with the packets that are travelling around
LAN. Therefore, you will create a classLanPrinter here, a special node that receiv
packets addressed to it and print them (on theTranscript). Note that we named it this
way becausePrinter already exists in the system. Write this class.

LanPrinter inherits fromNode

Collaborators:Node andPacket

Responsibility:

accept: aPacket if the packet is addressed to the printer,
prints the packet contents else sends the packet to the following
node

print: aPacket prints the contents of the packet (into the
Transcript)

Simulating the LAN 39Simulating the LAN 39

d find
-

5.5 Simulating the LAN

Implement the following two methods on the class side of the classNode, in a protocol
calledexamples . But take care the code presented has some bugs that you shoul
and fix! As you will notice creating a LAN is boring. We will fix that in the future by pro
posing a NetworkManager class.

simpleLan
"Create a simple lan"
"self simpleLan"

|mac pc node1 node2 igPrinter|
"create the nodes, workstations, printers and fileserver"
mac := Workstation new name: #mac.
pc := Workstation new name: #pc.
node1 := Node new name: #node1.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := Printer new name: #IGPrinter.

"connect the different nodes."
"I make following connections:

mac -> node1 -> node2 ->
igPrinter -> node3 -> pc -> mac"

mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.
pc nextNode: mac.

"create a packet and start simulation"
packet := Packet new

addressee: #IGPrinter;
contents: 'This packet travelled around to the printer IGPrinter.

mac originate: packet.

anotherSimpleLan
"create the nodes, workstations and printers"

| mac pc node1 node2 igPrinter node3 packet |
mac := Workstation new name: #mac.
pc := Workstation new name: #pc.
node1 := Node new name: #node1.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := LanPrinter new name: #IGPrinter.

40 A Basic LAN Application40 A Basic LAN Application

this
isu-

o it (just
"connect the different nodes."
"I make the following connections:

mac -> node1 -> node2 -> igPrinter -> node3 -> pc -> mac"
mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.
pc nextNode: mac.

"create a packet and start simulation”
packet := Packet new

addressee: #anotherPrinter;
contents: 'This packet travels around to the printer IGPrinter’.

pc originate: packet.

As you will notice the system does not handle loops, we will propose a solution to
problem in future lessons. To break the loop, try Ctrl-C or Ctrl-Y depending of the V
alWorks versions.

5.6 Creating of the Class FileServer

Create the class FileServer a special node that saves packets that are addressed t
display a message on theTranscript).

Table 5.1

FileServer inherits from Node

Collaborators: Node and Packet

Responsibility:

accept: aPacket if the packet is addressed to the file server save it
(Transcript trace) else send the packet to the following node

save: aPacket save a packet

self 41self 41

e

e
of the

piler.

antics
ceiver.
Chapter 6

Fundamentals on the
Semantics of Self and Super
This lesson wants you to give a better understanding ofself andsuper .

6.1 self

When the following message is evaluated:

aWorkstation originate: aPacket

The system starts to look up the methodoriginate: starts in the class of the messag
receiver:Workstation . Since this class defines a methodoriginate :, the method
lookup stops and this method is executed. Following is the code for this method:

Workstation>>originate: aPacket

aPacket originator: self.
self send: aPacket

It first sends the messageoriginator: to an instance ofPacket with as argument
self which is a pseudo-variable that represents the receiver oforiginate: method.
The same process occurs.Originator: is looked up into the classPacket . As
Packet defines a method namedoriginator:, the method lookup stops and th
method is executed. As shown below the body of this method is to assign the value
first argument (aNode) to the instance variableoriginator . Assignment is one of the
few constructs of Smalltalk. It is not realized by a message sent but handle by the com
So no more message sends are performed for this part oforiginator: .

Packet>>originator: aNode

originator := aNode

In the second line of the method originate:, the messagesend: thePacket is sent to
self . self represents the instance that receives the originate: message. The sem
of self specifies that the method lookup should start in the class of the message re
HereWorkstation . Since there is no methodsend: defined on the classWorksta-

42 Fundamentals on the Semantics of Self and Super42 Fundamentals on the Semantics of Self and Super

ethod

e both
the re-
thod ar-

kup.

ge re-

hich
e care
eiver
ced).

ksta-
hod is
tion , the method lookup continues in the superclass of Workstation: Node.Node imple-
mentssend :, so the method lookup stops and send: is invoked :

Node>>send: thePacket

self nextNode accept: thePacket

The same process occurs for the expressions contained into the body of the m
send: .

6.2 super

Now we present the difference between the use of self and super. Self and super ar
pseudo-variables that are managed by the system (compiler). They both represents
ceiver of the message being executed. However, there is no use to pass super as me
gument, self is enough for this.
The main difference between self and super is their semantics regarding method loo

• The semantics of self is to start the method lookup into the class of the messa
ceiver and to continue in its superclasses.

• The semantics of super is to start the method look into the superclass of class in w
the method being executed was defined and to continue in its superclasses.. Tak
the semantics is NOT to start the method lookup into the superclass of the rec
class, the system would loop with such a definition (see exercise 1 to be convin
Usingsuper to invoke a method allows one to invoke overridden method.

Let us illustrate with the following expression: the messageaccept: is sent to an in-
stance ofWorkstation.

aWorkstation accept: (Packet new addressee: #Mac)

As explained before the method is looked up into the class of the receiver, here Wor
tion. The method being defined into this class, the method lookup stops and the met
executed.

Workstation>>accept: aPacket

(aPacket addressee = self name)
ifTrue:[Transcript show: 'Packet accepted', self name asString]
ifFalse: [super accept: aPacket]

Imagine that the test evaluates to false. The following expression is then evaluated.

super 43super 43

ing

man-
d was

nu-

od so
eiver

ith the
super accept: aPacket

The methodaccept: is looked up in the superclass of the class in which the contain
methodaccept: is defined. Here the containing method is defined intoWorkstation
so the lookup starts in the superclass ofWorkstation : Node. The following code is ex-
ecuted following the rule explained before.

Node>>accept: aPacket

self hasNextNode
ifTrue:[self send: aPacket]

Remark. The previous example does not show well the vicious point in the super se
tics: the method look into the superclass of class in which the method being execute
defined and not in the superclass of the receiver class.
You have to do the following exercise to prove yourself that you understand well the
ance.

Exercise 79:

Imagine now that we define a subclass ofWorkstation calledAnotherWorksta-
tion and that this class does NOT defined a methodaccept :. Evaluate the following
expression with both semantics:

anAnotherWorkstation accept: (Packet new addressee: #Mac)

You should be convinced that the semantics of super change the lookup of the meth
that the lookup (for the method via super) does NOT start in the superclass of the rec
class but in the superclass of the class in which the method containing the super. W
wrong semantics the system should loop.

44 Object Responsibility and Better Encapsulation44 Object Responsibility and Better Encapsulation

this is
its

ntrates
pro-

spec-

ges to
hows
Chapter 7

Object Responsibility and
Better Encapsulation

7.1 Reducing the coupling between classes

To be a good object you have to follow as much as possible the following rules:
• Be private. Never let somebody else play with your data.
• Be lazy. Let do other objects your job.
• Be focused. Do only one main task.

While these guidelines are not really formal, one of the main consequences is that
the responsibility of an object to provide a well defined interface protecting itself from
clients. The other consequence is that by delegating to other objects an object conce
on a single task and responsibility. We now look how such guidelines can help us to
vide better objects in our example.

7.1.1 Law of Demeter

The Law ot Demeter is a guideline that helps to design low coupled classes. The law
ifies that a method should only send messages to:

• an argument passed to it,
• an object it creates,
• self, super, or
• its class.

That you should avoid to directly access global variables and avoid to send messa
objects returned from message sends other then self. The following piece of code s
some Law complaint expressions and some violations of the Law of Demeter.

NodeManager>>declareNewNode: aNode
|nodeDescription|
(aNode isValid) “Ok passed as an argument to me”

ifTrue: [aNode certified].
nodeDescription := NodeDescription for: aNode.
nodeDescription localTime. “created it”
self addNodeDescription: nodeDescription. “I can talk to myself“
nodeDescription data “Wrong I should not know”

Reducing the coupling between classes 45Reducing the coupling between classes 45

inter-
ions.

. The

fol-

m that

node
at: self creatorKey “that this data is a dictionary”
put: self creator

As a consequence of the application of the Law of Demeter, object should define
face that offer a protected access to their internal data structure, in particular collect

The following code summarizes the only allowed possibilities:

someMethod: aParameter
self foo.
super foo.
self class foo.
self instVarOne foo.
instVarOne foo.
self classVarOne foo.
classVarOne foo.
aParameter foo.
thing := Thing new.
thing foo

7.1.2 Current situation

The interface of the packet class is really weak. It just provides free access to its data
main impact of this weakness is the fact that the clients of the classPacket like Work-
station relies on the internal coding of the Packet as shown in the first line of the
lowing method.

Workstation>>accept: aPacket

aPacket addressee = self name
ifTrue:[Transcript show: 'A packet is accepted by the Workstation ', self

name asString]
ifFalse: [super accept: aPacket]

As a consequence, if the structure of the classPacket would change, the code of its cli-
ents would have to change too. Generalizing such a bad practice would lead to syste
is badly coupled and being really difficult to change to meet new requirements.

7.1.3 Solution

This is the responsibility of a packet to say if the packet is addressed to a particular
or if it was sent by a particular node.

46 Object Responsibility and Better Encapsulation46 Object Responsibility and Better Encapsulation

ta and
ion.
Exercise 80:

• Define a method namedisAddressedTo: aNode in ‘ testing’ protocol that
answers if a given packet is addressed to the specified node.

• Define a method namedisOriginatedFrom: aNode in ‘ testing’ protocol
that answers if a given packet is originated from the specified node.

Once these methods are defined, change the code of all the clients of the classPacket to
call them. You should note that a better interface encapsulates better the private da
the way they are represented. This allows one to locate the change in case of evolut

Class Creation Responsibility 47Class Creation Responsibility 47

is the
ed.
aster
ould

ld any-
th the

well-

pro-

face.
man-

ple is
u-

ation’
Chapter 8

The Question of Class
Responsibility

8.1 Class Creation Responsibility

One of the problems with the first approach for creating the nodes and the packets
following: it is the responsibility of the client of the objects to create them well-form
For example, it is possible to create a node without specifying a name! This is a dis
for our LAN system, the node would never be reachable, and worse the system w
breaks because the assumptions that the name of a node is specified would not ho
more (insert an anonymous node in Lan and try it out). The same problem occurs wi
packet: it is possible to create a packet without address nor contents.

The solution to these problems is to give the responsibility to the objects to create
formed instances. Several variations are possible:

• When possible, providing default values for instance variable is a good way to
vide well-defined instances.

• It is also a good solution to propose a consistent and well-defined creation inter
For example one can only provide an instance creation method that requires the
datory value for the instance and forbid the creation of other instances.

8.1.1 Applying to the class Packet

We investigate the two solutions for the Packet class. For the first solution, the princi
that the creation method (new) should invoke an initialize method. Implement this sol
tion. Just remember thatnew is sent to classes (class method) and thatinitialize is
sent to instances (instance method). Implement the method new in a ‘instance cre
protocol and initialize in a ‘initialize-release’ protocol.

Packet class>>new
…

Packet>>initialize
…

48 The Question of Class Responsibility48 The Question of Class Responsibility

ator
rst

de-

new
The only default value that can have a default value is contents, choose

contents = ‘no contents’.

Ideally if each LAN would contain a default trash node, the default address and origin
would point to it. We will implement this functionality in a future lesson. Implement fi
your own solution.

8.1.2 Say Something Only Once

Note that with this solution it would be convenient to know if a packet contents is the
fault one or not. For this purpose you could provide the methodhasDefaultCon-
tents that tests that. You can implement it in a clever way as shown below:

Instead of writing:

Packet>>hasDefaultContents

^ contents = ‘no contents’

Packet>>initialize
…
contents := ‘no contents’
…

You apply the rule ‘Say only once’ and avoid to duplicate the information. We define a
method that returns the default content and use it as shown below:

Packet>>defaultContents

^ ‘no contents’

Packet>>initialize

…
contents := self defaultContent
…

Packet>>hasDefaultContent

^contents = self defaultContents

Defining a Creation Interface. 49Defining a Creation Interface. 49

nts
r part

t. For
ss. De-

ovide
n the
itial-
fault-
d that
nce.
e in-
With this solution, we limit the knowledge to the internal coding of the default conte
value to only one method. This way changing it does not affect the clients nor the othe
of the class.

8.2 Defining a Creation Interface.

We now apply the second approach by providing a better interface for creating packe
this purpose we define a new creation method that requires a contents and an addre
fine two class methods namedsend:to : and to: in the classPacket (protocol‘in-
stance creation’) that creates a newPacket with a contents and an address.

Packet class>>send: aString to: aSymbol
....

Packet class>>to: aSymbol
....

Class methods for sharing default values.

For the method to:, the contents of the packet is not defined.There are two ways to pr
a default value: (a) you let the initialize method defining the default value as shown i
previous section or (b) you can invoke send:to: with the default value (Note that the in
ize method should not be called). Moreover, you should consider that the method de
Contents as you implemented it in the previous section is an instance method an
while you are implementing the method to: you do not have already created an insta

The solution to this problem is to define two methods defaultContents one at th
stance level and the other at the class level as follow:

Packet class>>defaultContents

^ ‘no contents’

Packet>>defaultContents

^self class defaultContents

Packet class>>to: aSymbol
^self send: self defaultContents to: aSymbol

Exercise 81:

Implement this solution

50 The Question of Class Responsibility50 The Question of Class Responsibility

nted a
tance
pro-

next

ec-

t let a
ral an-
ent to
.

g the
8.2.1 Applying to the Class Node

Now apply the same techniques to the class Node. Note that you already impleme
similar schema that the default value in the previous lessons. Indeed by default ins
variable value is nil and you already implemented the method hasNextNode that to
vide a good interface.

Exercise 82:

Define a class method namedwithName: in the classNode (protocol ‘instance
creation’) that creates a new node and assign its name.

Node class>>withName: aSymbol
....

Define a class method namedwithName:connectedTo: in the classNode (protocol
‘instance creation’) that creates a new node and assign its name and the
node in the LAN.

Node class>>withName: aSymbol connectedTo: aNode
....

Note that if to avoid to duplicate information, the first method can simply invoke the s
ond one.

8.3 Forbidding the Basic Instance Creation

One the last question that should be discussed is the following one: should we or no
client create an instance without using the constrained interface? There is no gene
swer, it really depends on what we want to express. Sometimes it could be conveni
create an uncompleted instance for debugging or user interface interaction purpose

8.3.1 Forcing client to use the right method

Let us imagine that we want to ensure that no instance can be created without callin
methods we specified. We simply redefine the creation methodnew so that it will raise an
error.

Rewrite thenew method of the classNode andPacket as the following:
Node class>>new

self error: ‘you should invoke the method... to create a ...’

Forbidding the Basic Instance Creation 51Forbidding the Basic Instance Creation 51

just

d se-
de-
ormal
good
ds to
tained.

t be
However, you have just introduced a problem: the instance creation methods you
wrote in the previous exercise will not work anymore, because they callnew, and that call-
ing results in an error! Propose a solution to this problem.

8.3.2 Avoid to call super on a different selector

A first solution could be the following code:

Node class>>withName: aSymbol connectedTo: aNode

^ super new initialize name: aSymbol ; nextNode: aNode

However, even if the semantics permits such a call using super with a different metho
lector than the containing method one, it is a bad practice. In fact it implies an implicit
pendency between two different methods in different classes, whereas the super n
use links two methods with the same name in two different classes. It is always a
practice to invoke the own methods of an object by using self. This conceptually avoi
link the class and its superclass and we can continue to consider the class as self con

basicNew to the rescue!

The solution is to rewrite the method such as:

Node class>>withName: aSymbol connectedTo: aNode

^ self basicNew initialize name: aSymbol ; nextNode: aNode

In Smalltalk there is a convention that all the methods starting with ‘basic’ should no
overridden. basicNew is the method that always returns a newly created instance.

Exercise 83:

Browse all the methods starting with ‘basic*’ and limit yourself toObject andBehav-
ior.

Exercise 84:

Do the same for the instance creation methods in classPacket .

52 The Question of Class Responsibility52 The Question of Class Responsibility

class

en we
e may
er val-
ethod

prob-

the
this

cade
nd
8.4 Protecting yourself from your children

The following code is a possible way to define an instance creation method for the
Node.

Node class>>withName: aSymbol

^ self new name: aSymbol

We create a new instance by invoking new, we assign the name of the node and th
return it. One possible problem with such a code is that a subclass of the class Nod
redefine the method name: (for example to have a persistent object) and return anoth
ue than the receiver (here the newly created instance). In such a case invoking the m
withName: on such a class would not return the new instance. One way to solve this
lem is the following:

Node class>>withName: aSymbol

|newInstance|
newInstance := self new.
NewInstance name: aSymbol.
^newInstance

This is a good solution but it is a bit too verbose. It introduces extra complexity by the
extra temporary variable definition and assignment. A good Smalltalk solution for
problem is illustrated by the following code and relies on the use of theyourself mes-
sage.

Node class>>withName: aSymbol

^self new name: aSymbol ; yourself

yourself specifies that the receiver of the first message involved into the cas
(name: here and notnew) is return. Guess what is the code of the yourself method is a
check by looking in the library if your guess is right.

53 Hook and Template Methods53 Hook and Template Methods

exten-
d. In
es can
small

n of
ssage
the
ument

argu-

new
Chapter 9

Hook and Template Methods
Hook and Template methods are soem of the basic tool that a designer has to design
sible system. Template method set up the context in which hook methods will be calle
this context hook methods represent customizable entry points that future subclass
specialize while being sure to be invoked in a coherent context. Here we present a
scenario to show you how template and hook methods talk to each other.

9.1 Studying a famoos couple

The Smalltalk class library contains lot of hooks that allows an easy customizatio
the proposed behavior. For example every object knows how to respond to the me
printString by returning a string. Such a behavior is implemented in the following way:
method printString is a template method that creates a stream which is passed as arg
of the printOn: hook method. printString is the method called when you do a print it.

Object>>printString
"Answer a String whose characters are a description of the receiver."

| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
^aStream contents

Per default the printOn: method defined on the class Object writes in the stream
ment the concatenation of ‘an’ or ‘a’ and the class name of the receiver.

Object>>printOn: aStream
"Append to the argument aStream a sequence of characters
that describes the receiver."

| title |
title := self class name.
aStream nextPutAll:

((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).
aStream print: self class

As Object is the root of the inheritance hierarchy, any class can simply sepcify a
printOn: without having worry about the template method.

54 Hook and Template Methods54 Hook and Template Methods

es the

erify
Example of hook methods

For example the class Array specializes the printOn: method is the following way:

Array>>printOn: aStream
"Append to the argument, aStream, the elements of the Array
enclosed by parentheses."

| tooMany |
tooMany := aStream position + self maxPrint.
aStream nextPutAll: '#('.
self do: [:element |

aStream position > tooMany
ifTrue:

[aStream nextPutAll: '...(more)...)'.
^self].

element printOn: aStream]
separatedBy: [aStream space].

aStream nextPut: $)

The class False has only one instance false so the specialization is rather simple.

False>>printOn: aStream
"Print false."

aStream nextPutAll: 'false'

The class Behavior that represents a class extends the default hook but still invok
default one.

Behavior>>printOn: aStream
"Append to the argument aStream a statement of which
superclass the receiver descends from."

aStream nextPutAll: 'a descendent of '.
superclass printOn: aStream

Exercise 85:

Ask all the implementers of the hook method printOn: and browse some of them. V
that there is only one printString method defined in the system.

55 Hook and Template Methods55 Hook and Template Methods

c-

cific

type
l its
9.2 Designing our own hook/Template couple

Current Situation

A possible way to print aNode is the following one (the first line is the call and the se
ond line the resulting string).

(Node withName: #Node1 connectedTo: (Node new name: #PC1)) printString

Node named: Node1 connected to: PC1

A straightforward way to implement theprintOn: method on the classNode is the fol-
lowing code:

Node>>printOn: aStream

aStream nextPutAll: 'Node named: ', self name asString.
self hasNextNode

ifTrue:[aStream nextPutAll: ' connected to: ', self nextNode name]

However, with such an implementation the printing of all kinds of nodes is the same.

New Requirements

To help in the understanding of the LAN we would like that depending on the spe
class of node we obtain a specific printing like the following ones:

(Workstation withName: #Mac connectedTo: (LanPrinter withName: #PC1) printString

Workstation Mac connected to Printer PC1

(LanPrinter withName: #Pr1 connectedTo: (Node withName: #N1) printString

Printer Pr1 connected to Node N1

However the do not want to duplicate the same code in all the subclasses of Node.

Exercise 86:

• Define the method typeName that returns a string representing the name of the
of node in the ‘printing’ protocol. This method should be defined in Node and al
subclasses.

(LanPrinter withName: #PC1) typeName
‘Printer’

(Node withName: #N1) typeName
‘Node’

56 Hook and Template Methods56 Hook and Template Methods

tion

put

be-
thod
hat
the
meth-
avior.
• Define the method simplePrintString on the class Node to provide more informa
about a node as show below:

(Workstation withName: #Mac connectedTo:
(LanPrinter withName: #PC1)) simplePrintString

‘Workstation Mac’

(LanPrinter withName: #PC1) simplePrintString
‘Printer PC1’

• Then modify the printOn: method of the class Node to produce the following out

(Node withName: #Mac connectedTo: (LanPrinter new name: #PC1))
‘Node Mac connected to Printer PC1’

The methodtypeName is a hook method. It allows the subclasses to specialize the
havior of the superclass, here the printing of a all the different kinds of nodes. The me
simplePrintString , even if in our case is rather simple, is a template method t
specifies the context in which hook methods will be called and how they will fit into
template method to produce the expected result. Note that for abstract classes hook
ods can be abstract too, one other case the hook method can propose a default beh

57 Extending the LAN Application57 Extending the LAN Application

ing so,

will

tor of

orig-
by

dy re-
in the

ep-
ique
of all
e can

node,
om-
of the
one
epted

es are
Chapter 10

Extending the LAN
Application
This lesson uses the basic LAN-example and adds new classes and behaviour. Do
the design is extended to be more general and adaptive.

10.1 Handling Loops

When a packet is sent to an unknown node, it loops endlessly around the LAN. You
implement two solutions for this problem.

Solution1.

The first obvious solution is to avoid that a node resends a packet if it was the origina
the packet that it is sent. Modify theaccept: method of the classNode to implement
such a functionality.

Solution 2.

The first solution is fragile because it relies on the fact that a packet is marked by its
inator and that this node belongs to the LAN. A ‘bad’ node could pollute the network
originate packets with a anonymous name. Think about different solutions.

Among the possible solutions, two are worth to be further analyzed:
• Each node keeps track of the packets it already received. When a packet alrea

ceived is asked to be accepted again by the node, the packet is not sent again
LAN. This solution implies that packet can be uniquely identified. Their current r
resentation does not allow that. We could imagine to tag the packet with a un
generated identifier. Moreover, each node would have to remember the identity
the packets and there is no simple way to know when the identity of treated nod
be removed from the nodes.

• Each packet keeps track of the node it visited. Every time a packet aarrived at a
it is asked if it has already been here. This solution implies a modification of the c
munication between the nodes and the packet: the node must ask the status
packet. This solution allows the construction of different packet semantics (
could imagine that packets are broadcasted to all the nodes, or have to be acc
twice). Moreover once a packet is accepted, the references to the visited nod

58 Extending the LAN Application58 Extending the LAN Application

ation

alled
t.

cket

the

nto
simply destroyed with the packet so there is no need to propagate this inform
among the nodes.

We propose you to implement the second solution so that the classPacket provides the
following interface (the new responsibilities are in bold).

New instance variable.

A packet needs to keep track of the nodes it visited. Add a new instance variable c
visitedNodes in the classPacket. We want to collect the visited nodes in a se
Browse the classSet and its superclass to find the function you need.

• Initialize the new instance variable. Modify the initialize methods of the class Pa
so that the visitedNodes instance variable is initialized with an empty set.

• Node Acceptation Methods. In a protocol named ‘node acceptation’, define
methodisAcceptableBy : andhasBeenAcceptedBy :.

• Test if your implementation works by sending a ‘bad’ node with a bad originator i
the LAN.

Packet inherits fromObject

Collaborators:Node

Responsibility:

addressee returns the addressee of the node to which the packet is sent.

addressee returns the addressee of the node to which the packet is sent.

contents describes the contents of the message sent.

originator references the node that sent the packet.

isAddressedTo: aNode answers if a given packet is addressed to the specified
node.

isOriginatedFrom: aNode answers if a given packet is originated from the
specified node.

hasBeenAcceptedBy: aNode tells a packet that it has been accepted by a given
node.

isAcceptableBy: aNode answers if a packet is acceptable by a node

59 Extending the LAN Application59 Extending the LAN Application

ave to
. We
.

d ini-
ewly

ject

by the
t node

If a
e in the
sible
ry to

ackets
after-

ds of
to
r this

e, we
ntro-
10.2 Introducing a Shared Initialization Process

As you noticed, each time a new class is created that is not a subclass of Node we h
implement a new method whose the only purpose was to call the initialize method
want to habe such a behavior specified only once and shared by all our Lan classes

Define a class LanObject that inherits form Object, implements an instance metho
tialize and a class method new that automatically calls the initialize method on the n
created object and retrun it.

Then make all the classes that previously inherited from Object inherit from LanOb
and check and remove if necessary if the unnecessary new methods.

10.3 Broadcasting and Multiple Addresses

Up to now, when a packet reaches a node it is addressed to, the packet is handled
node and the transmission of the packet is terminated (because is not sent to the nex
in the network). In this exercise, we want you to provide facilities for broadcasting.
node handles a packet that is broadcasted, the packet must be sent to the next nod
LAN instead of terminating the connection. For example, broadcasting makes it pos
to save the contents of the same packet on different fileservers of the LAN. First t
solve this problem, and implement it afterwards.
In the current LAN, a packet only has one addressee. This exercise wants to add p
that have multiple addressees. Propose a solution for this problem, and implement it
wards.

10.4 Different Documents

Suppose we have several kinds of documents (ASCII and Postscript) and two kin
LANPrinter in the LAN (LANASCIIPrinter and LANPostscriptPrinter). We then want
make sure that every printer prints the right kind of document. Propose a solution fo
problem.

10.5 Logging Node

We want to add a logging facility: this means each time a packet is sent from a nod
want to identify the node and the packet. Propose and implement a solution. Hint: i
duce a new subclass ofNode betweenNode and its subclasses and specialize thesend :
method.

60 Extending the LAN Application60 Extending the LAN Application

matic
uld be

ver in-
an in-

fonc-
10.6 Automatic Naming

The name of a node have to be specified by its creator. We would like to have an auto
naming process that occurs when no name are specified. Note that the names sho
unique. As a solution we propose you to use a counter, as this counter have to last o
stance creations but still does not have any meaning for a particular node we use
stance variable of the class node.
Note that the NetworkManager could also be the perfect object to implement such a
tionality.
We also would like that all the printer names start with Pr. Propose a solution.

Workstation Mac connected to Printer PC

10.7 Introducing a Lan Manager

@@

61 Extending the LAN Application61 Extending the LAN Application

62 VisualWorks Application Building62 VisualWorks Application Building

tools.
re,

with
le the

res to
ica-

the
utton

they
t input,
these
Chapter 11

VisualWorks Application
Building
So far, you have been introduced to the basic OOP concepts and basic VisualWorks
This lesson will give an introduction to building applications in VisualWorks. Therefo
we will create a simple user-interface for our SimpleCounter application.

11.1 Model-View-Controller

As explained in the lecture, VisualWorks extensively uses the MVC paradigm, mixed
a dependency mechanism. In this lesson we will present the basic use of MVC, whi
following lessons will further explore this, and the dependency mechanism.

Specs for the Application

Now we create a very simple application that introduces the basic tools and procedu
follow when developing a VisualWorks application. This is the interface for the appl
tion we are going to develop:

When the application opens, the input field will display 0. When the user clicks
increment button, this value should be incremented by 1. Clicking the decrement b
will decrement the value with one.

11.2 ApplicationModel

As told before, everything in Smalltalk is an object. So are applications you create:
are instances that know how to open, view, update and change themselves, accep
... So, creating an application consists of creating a class that knows how to do all

63 VisualWorks Application Building63 VisualWorks Application Building

lica-
alled

eby
ned
will

oils

veral
re are

for-

ment

s for

out.
things. Luckily, there is already a framework defined that you can use to build app
tions. The basic class you are going to build will therefore be a subclass of a class c
ApplicationModel. ApplicationModel already

• defines basic application behavior (opening, running, closing, minimizing, …)
• can open an application interface.

Our application subclass will have to implement
• the actual interface to be opened,
• behavior specific for your application,
• glue code, to glue together the models and View/Controllers.

Basically, our application class will thus implement application specific code, ther
linking the views/controllers used in the interface with the domain model. As explai
in the lecture, models and view/controllers do not know each other directly, but
each talk to the applicationModel that actually glues everything together.

Building an application (i.e. constructing a subclass of ApplicationModel) thus b
down to two steps:

• building the interface
• programming the applicationModel

11.3 Building the interface

Now we will need to build the interface as pictured above. An interface contains se
widgets (user interface elements), in this case an input field and two buttons. The
several kinds of widgets:

• data widgets (gather/display input): let the user enter information, or display in
mation

• action widgets (invoke operations): buttons or menus, e.g. to increment or decre
the counter

• static widgets (organise/structure the interface): labels identifying other widget
the user.

You build an interface by creating a visual specification of the contents and the lay
To do so, there are several steps to be taken:

• 1. opening a blank canvas,
• 2. painting the canvas with widgets chosen from a Palette,
• 3. setting properties for each widget and applying them to the canvas,
• 4. installing the canvas in an application model.

64 VisualWorks Application Building64 VisualWorks Application Building

en a
her, or
will

and

uild.

ove.
ce),

the
s.
get is

se-

elect
e to

can be
Step 1: opening a blank canvas

A canvas is the place where you visually edit the interface of the application. To op
blank canvas, use the canvas button (as shown above) on the VisualWorks Launc
select New Canvas in the Tools menu of the VisualWorks Launcher. VisualWorks
open a window containing an unlabeled canvas, a Canvas Tool, and a palette:

• the canvas tool provides you with the basic operations to build/install/define
open your application.

• the palette contains predefined widgets to use on the canvas.
• the unlabeled canvas is a visual representation for the window we are going to b

Step 2: painting the canvas

We will now paint the widgets such that our interface looks like the one pictured ab
Basically this comes down on selecting widgets on the palette (by clicking them on
and putting them on the canvas (by clicking once again).

First, we will put an input field on our canvas. To do so, follow these steps:
• verify that the single-selection button on the palette is active (it should look like

picture above). This enables you to paint a single copy of a widget on the canva
• note that, when you select a widget on the palette, the name of the selected wid

shown in the indicator field at the bottom of the palette.
• select the Input Field widget by clicking it once (if you select the wrong widget,

lect other widgets until the indicator field displays Input Field).
• paint the input field by moving the mouse pointer to the canvas and clicking the s

button once, positioning the widget, and clicking the select button a second tim
place it on the canvas.

Once widgets are painted on the canvas, there are several editing operations that
performed:

• to select a widget: click it once

65 VisualWorks Application Building65 VisualWorks Application Building

get,

(the

idget

/copy

here
tically
ly se-

nd po-

e a va-
is ref-
eld

tool,
rties

ailable

icking
ng to a
but-
that

he

to
page,
• to deselect a widget: hold down the shift button while clicking on the selected wid
or click somewhere outside the widget

• to resize a widget: select the widget, click on one of the handles of the widget
black squares at the outside of the widget) and resize it.

• to move a widget: select it, press the select button between the handles of the w
and move it

• to cut/copy a widget: select the widget, bring up the operate menu and select cut
in the edit menu

• to paste a widget (once you have cut/copied it): bring up the operate menu anyw
on a canvas, and select paste from the edit menu. The pasted widget is automa
placed at the same position as the widget that is cut/copied, and is automatical
lected. You can now move it to another position.

Exercise 87:

Copy the one button widget that is currently on the canvas to make a second one, a
sition the two buttons according to the picture of the application.

Step 3: setting and applying properties of widgets

We now have painted widgets, and are ready to set their properties. Properties defin
riety of visual attributes, the nature of the data they use or display, and how that data
erenced by the application. We will now specify the different properties for our input fi
and buttons.

To display a widget’s properties, we use the so-called Properties Tool. To open this
select the input field and click the Properties button on the Canvas Tool. The prope
tool opens, and we are now ready to examine and change the properties that are av
for an input field.

The properties are always arranged in a notebook, containing several pages. By cl
a tab of such a page, you select that page. Note that a Properties Tool does not belo
particular canvas, or a particular widget. For example, if you now select one of the two
tons, the Properties Tool will change to allow you to view/change the properties for
widget.

We will now fill in the properties for the input field. Select the input field widget on t
canvas. Go to the Basics page. Type in the aspect field: counterValue (always start aspect
names with a small letter), and select Number in the type box. Apply these changes
the widget by pressing the apply button. You can now select the Details page. On this
mark the check box Read-Only. Also apply these changes too.

66 VisualWorks Application Building66 VisualWorks Application Building

d that
eld.
t the

dg-
sage

ppli-

ppli-
the ap-
s a
Just to be a little bit less blind.

The symbol that you typed in the aspect field corresponds to the selector of a metho
we will create after. This method will return the model corresponding to the input fi
Here as you will see the model will be value holder on the Number. This means tha
valueHolder on a number will be the model (of the MVC pattern) for the inputField wi
et. The model of the InputField will be a ValueHolder, a basic object that send the mes
update to its dependent when it receives the message value:.

Exercise 88:

Set and apply the following properties for the left button:

The symbol associated with the Action button is the selector of a method of the a
cation model that will be invoked when the button is pressed.

Exercise 89:

Set and apply these properties for the right button:

Step 4 : Installing the canvas on an application model

At any time in the painting process, you can save the canvas by installing it in an a
cation model. Installing a canvas creates an interface specification, which serves as
plication’s blueprint for building an operational window. An interface specification i

Page Property Setting

Basics Label increment

Action increment

Be Default checked

Page Property Setting

Basics Label decrement

Action decrement

Be Default unchecked

67 VisualWorks Application Building67 VisualWorks Application Building

rned
Note
ting a

.

and
win-
at an

odel
p as
he in-
.
here
the
e are
tion
ss.

to the
te that

d data

re just
ing is
description of an interface. Each installed interface specification is stored in (and retu
by) a unique class method in the application model by default named windowSpec.
that a same interface specification can be save with different names, more interes
same set of widget can be saved in different positions under different method name

You can think of a canvas as the VisualWorks graphical user interface for creating
editing an interface specification. Whereas a canvas is a graphical depiction of the
dow’s contents and layout, an interface specification is a symbolic representation th
application model can interpret.

To install a canvas:

• click Install... in the canvas tool
• a dialog box comes up where you have to provide the name of the application m

and the class method in which to install the canvas. Provide SimpleCounterAp
class name. Leave windowSpec (the default name of the class method where t
terface specification is stored) as name of the selector. Press OK when finished

• since your application model does not exist yet, you get another dialog box w
you have to provide some information concerning your application model. Leave
name of the class, but provide DemoCounter as name for the category. Since w
creating a normal application (and not a dialog box or so), choose the applica
check box. Note that VisualWorks then fills in ApplicationModel as supercla
Leave this and select OK. Select a second time OK to close the first dialog box.

The canvas is now installed on the class SimpleCounterApp. Open a browser, go
category DemoCounter, select the class switch to see the class methods, and no
there is a method windowSpec in a protocol called ‘interface specs’.

11.4 Programming the application model

As said in previous section, we now have to program our application model to:
• specify the interface’s appearance and basic behavior,
• supplement the application’s basic behavior with application-specific behavior.
As said before there are several kinds of widgets: static widgets, action widgets an

widgets. Each of these kinds of widgets needs special programming care.

Static Widgets

These are widgets like labels and separators that have no controller since they a
used to display something, and do not accept any kind of user input. No programm
required in the application model for this kind of widgets.

68 VisualWorks Application Building68 VisualWorks Application Building

uilt.
tton),
imple-
e Ac-
utton
l when

e the
rop-

n to the

el for

ata to

:
ect
with

alue
mes-
ave

d the

with
o cre-
hich

button
ate
Action Widgets

An action widget delegates an action to the application model from which it was b
Thus, when a user activates an action widget (for example, clicking the increment bu
a message is sent by the widget to our application model (an instance of the class S
CounterApp). What message is sent is defined in the properties of the widget, in th
tion field on the Basics page. Since we have defined the action property of the left b
to be increment, this means that a message increment is sent to the application mode
the user presses the increment button.

Data Widgets

A data widget is designed to use an auxiliary object called a value model to manag
data it presents. (The value model play the M of the MVC pattern. This means that it p
agates an update message to its dependent, the widget.) Thus, instead of holding o
data directly it delegates this task to a value model:

• when a data widget accepts input from a user, it sends this input to its value mod
storage,

• when a data widget needs to update its display, it asks its value model for the d
be displayed.

The basic way to set up this interaction between a widget and its value model is by
• telling a widget the name of its value model (in our input field we filled in the asp

field on the basics page with counterValue, telling the widget to use a message
this name to access its value model in the application model.

• programming the application model such that it is able to create and return this v
model. For example, since we have provided counterValue as name for of the
sage that will be used by the input field widget to access its valueModel, we will h
to provide this message in the class SimpleCounterApp.

Defining stub methods, and opening the application

As was said in the beginning, the application model is the glue for the models an
views/controllers. This means we have to implement:

• methods for every data widget to let the widget access its value model,
• methods that perform a certain action and that are triggered by action widget.

Luckily, VisualWorks helps us with this step by generating stub-methods, methods
a default implementation that can then be changed to provide the desired behavior. T
ate such methods, we have to fill in the properties for every widget on our canvas (w
we have done in previous steps), and then we use the define property.

To define properties: deselect every widget on the canvas, and select the define
on the canvas tool. A list will come up with all the models where the system will cre

69 VisualWorks Application Building69 VisualWorks Application Building

gen-

have

ton on
d any

again.
some

d that
tions

lue-
d al-
ject).
reover
time the

field
tore
t (a

nly
nows
r ap-

rated
stub methods for. Leave all the models selected and press OK. The system will now
erate the stub methods.

Note that often it is better to write by yourself the code generated, because you can
the control of the way the value model are created and accessed.

We now have a basic application that we can open. To do so, select the Open but
the canvas tool.. You now can click on the buttons, but since we have not yet provide
actions, the default action happens (which is to do nothing).

Go to your browser again, and deselect the class SimpleCounterApp, and select it
Set the switch to instance, and you will notice that the generation process added
methods:

• two methods in the action protocol: increment and decrement,
• a method counterValue in a protocol aspects.

11.4.1 About value models

In previous section we explained that a data widget holds on to a value model, an
this value model actually holds the model. A data widget performs two basic opera
with its value model:

• ask the contents of the value model using the value message,
• set contents of the value model using the value: message.

VisualWorks provides a whole hierarchy of different value models in the class Va
Model and its subclasses. The simplest is ValueHolder: it wraps any kind of object, an
lows to access it using value (to get the stored object) and value: (to set the ob
Sending the message asValue to that object creates a valueholder on an object. Mo
using a valueHolder ensure that its dependents receive the message update:, each
value model receives value:.

In our application, we have an input field that should display a number. The input
is a data widget, so it has to hold on to a value model. This value model will actually s
a number. Note that the Model-View-Controller principle tells us that the data widge
view-controller pair) should not know its model directly. Therefore, the input field o
knows that it has to send counterValue to the application model, and the model k
nothing (since it is wrapped in a value model). This means that we have to program ou
plication model so that it provides the correct mapping.

If you look at the implementation of the method counterValue (a stub method gene
by the define command), you will see the following piece of code:

70 VisualWorks Application Building70 VisualWorks Application Building

val-
is al-
input

he
class
counterValue
"This method was generated by UIDefiner. Any edits made here
may be lost whenever methods are automatically defined. The
initialization provided below may have been preempted by an
initialize method."

^counterValue isNil
ifTrue:[counterValue :- 0 asValue]
ifFalse:[counterValue]

This code implement a lazzy initialization of the value model. This means that if the
ueModel (counterValue) is defined, it is created, stored and return. If the valueModel
ready defined, it is just simply return. Note that this is the method that is sent by the
field to access its value model.

Note such kind of lazzy initialization can be replaced by the following methods:

SimpleCounterApp>>initialize
super initialize.
counterValue := 0 asValue.

SimpleCounter>>counterValue
^ counterValue

The following code only works if the initialize method is automatically invoke when t
application model is created. This is the case because the class ApplicationModel
defines a class method new as follows.

ApplicationModel>>new
^super new initialize

Exercise 90: 2:

Provide the implementation for increment and decrement, and test it.

71 Lesson 10: More about Applications71 Lesson 10: More about Applications

ding.

nents.
acing

nds.
sets

t. Note
field

t the

mid-
Chapter 12

Lesson 10: More about
Applications
This lesson uses lesson 8 as basis, and explains some extras about application buil

12.1 Outlining

On the canvas tool you see a line of buttons as below, that is used to line out compo
The first 6 are used to align them with other widgets, the middle 4 are used to equal sp
between widgets, and the last two are concerned with equalling heights and widths.

Exercise 91:

Use these alignment tools to properly align your application

12.2 Making the widget’s positions relative

A handy feature is to set up the size and position of the widgets relative to window bou
You make widgets relative using the Position page in their properties. The proportion
the percentage (between 0 and 1) for the relative position; the offset uses this as star
that 0 means left or top and 1 means right or bottom. For example, to say to our input
that it should at all times keep 10 pixels from the left and right border, we would se
first (L) and the third (R) positions to:

L 0 10
R 1 -10

To make sure that our left button keeps ten from the left side, and keeps ten from the
dle of the window, we use:

L 0 10
R 0.5 -10

Likewise, for the other button:
L 0.5 10
R 1 -10

Exercise 92:

Make the components relative, and resize your application…

72 Lesson 10: More about Applications72 Lesson 10: More about Applications

o put
l. In
dat-
tion

es val-
value

t use a
ophis-
tor. So,
-

l to be
two

ause,
ted !

its
sends
12.3 Changing the input field’s model

Currently, the model of our input field is a simple number. This means that we have t
more logic in our application, including behavior that one would expect in the mode
other words, there is too much logic in the application, which gives problems when up
ing/reusing this application and model. This section will therefore use our implementa
of SimpleCounter (see lessons 3 and 4) as model instead of number.

There are two major issues we have to deal with:
• 1.use a SimpleCounter instance as model instead of a number,
• 2.take care of the dependency-mechanism

12.4 Make a SimpleCounter instance the model

As explained before, the inputfield has a valueholder as model, and uses the messag
ue and value: to get/put the data from it. However, SimpleCounter has no messages
and value: but messages counterValue and counterValue:. This means we canno
simple value holder that holds the SimpleCounter instance, but have to use a more s
ticated one that translates these messages. This is done using the class AspectAdap
our input field will hold an AspectAdaptor, which will actually hold the instance of Sim
pleCounter. To use this aspectAdaptor, we have to initialize counterValue like this:

counterValue := (AspectAdaptor forAspect: #counterValue)
subject: SimpleCounter new;
subjectSendsUpdates: true

In the application model, the method counterValue is used to return the actual mode
used by the input field. Since this method uses lazy initialization, it actually performs
functions (see lesson 8):

• 1.initialize and return the value model (the ifTrue:-branch),
• 2.return the value model if it has been initialized

Exercise 93:

Adapt the implementation to use the implementation given above. Take care bec
when a user uses define… in the Canvas Tool, the counterValue method is regenera

12.5 Dependency mechanism

As explained in the lectures, in the Model-View-Controller the model does not know
dependents and does not invoked directly their update when it changes. Instead, it

73 Lesson 10: More about Applications73 Lesson 10: More about Applications

eir mod-
ter in-
ted in is
acces-
Change

pl to
unter.

on-
enu

anvas
ilt. We

ent

pt in
ut we
vas
tor or if
n ed-
ecre-
ge,

Sim-
to itself a changed message, this has as a consequence that its dependents know th
el has changed and that their update method is invoked. Our model, the SimpleCoun
stance does not send change messages… yet. Since the aspect we are interes
counterValue, we have to send a change message in the counterValue mutator (the
sor is just used to get the value, so there's no need to send a change message there).
the counterValue mutator code so it resembles the following:

counterValue: aNumber
counterValue := aNumber.
self changed: #counterValue

Test your application now. Does it work correctly ?

Exercise 94:

Adapt the implementation of increment and decrement method in SimpleCounterAp
use the increment and decrement methods that are already defined on SimpleCo
Hint: take a look at the AspectAdaptor class if necessary.

12.6 Using the builder at run-time

The builder (class UIBuilder) is the part of the User Interface Builder (UIB) that is resp
sible for constructing user interfaces from the resources (interface specification, m
specification,...). It is also responsible for helping create the user interface in the c
editing process, and it provides access to the interface after the user interface is bu
will explore this last functionality by adding extra behavior that disables the decrem
button when the value displayed is 0.

Assigning an ID to the button

To disable the button, we will need to talk to the button at run-time. The button is ke
the builder (that we can access at runtime by sending a message builder to self), b
need to give it an identifier to be able to identify it. To give it an identifier, open a can
tool on the simpleCounter canvas used in previous exercises (use the resources edi
you use the refactoring browser just look at the class method windowSpec and click o
it), open a properties tool on the decrement button and get the Basics page. Fill in #d
mentButton in the ID-field. We will use this identifier later on. Also, on the details pa
check the Initially Disabled check box. Install the new canvas and open it.

Enhancing our domain model

Exercise 95:

Write a method named isZero that returns whether counterValue equals 0 or not on
pleCounter in a protocol testing.

74 Lesson 10: More about Applications74 Lesson 10: More about Applications

g the
. It ex-
hen its
is de-

ver the

able:

o, the
OnchangeSend: to:

We now want to be notified when the value of our domain-model changes by usin
message onchangeSend: #aSymbol to: anObject that is defined on all value models
presses that we want the value model to send the message aSymbol to anObject w
value changes (note that in most of the cases we set anObject to be self). Usually th
pendency is set up in the initialize method of the application.

Exercise 96:

Set up a dependency to be notified with a message counterValueChanged whene
value of counterValue changes.

SimpleCounterApp>>initialize
....
counterValue onChangeSend: #counterValueChanged to: self

To enable or disable the button, you first have to ask the builder for it, and then send en
aBoolean to it.

Exercise 97:

Define the method counterValueChanged so that if the value of the counter is zer
decrement button is enable. Your code should contain the following expressions:

(self builder componentAt: #decrementButton) isEnabled: true

75 Building an Interface for the LAN Application75 Building an Interface for the LAN Application

d run
and
ing
Chapter 13

Building an Interface for the
LAN Application
In this exercise you will build a basic interface that allows us to more easily create an
LAN simulations. You will learn how to use some other widgets, more value models
a dialog interface. We will start with an interface for the basic LAN example (contain
Node, Workstation, PrintServer and FileServer).

13.1 Overview

This is an example of the application running:

As said before, there are several stages when developing an application
• 1.developing the domain model,
• 2.building an interface, and
• 3.programming the application model

76 Building an Interface for the LAN Application76 Building an Interface for the LAN Application

sses,
send

tly used
ns in

erties
13.2 Model

For this exercise, our domain model will be our LAN classes (Node and subcla
Packet and subclasses,…). We already have this domain model, but it doesn't
changed messages.

Exercise 98:

Adapt the class Node and Packet to send change messages. When you consisten
your mutator, this boils down to adding self changed: #nameOfMessageWithoutColo
the body of the mutators.

13.3 Building the interface

We are then ready to build the interface as displayed above and using the prop
given here:

Action Button

Basics Label: Workstation

Action: newWorkstation

Action Button

Basics Label: Node

Action: newNode

Action Button

Basics Label: PrintServer

Action: newPrintServer

Action Button

Basics Label: FileServer

Action: newFileServer

77 Building an Interface for the LAN Application77 Building an Interface for the LAN Application

n get
The last raw means that when the value of the inputField is changed, the applicatio
a notification: its method changedNode is invoked. NameMen

Action Button

Basics Label: Remove

Action: remove

ID: removeButton

List View

Basics Aspect: nodeList

Details Scroll Bars Horizontal, Verti-
cal

Bordered On

Can Tab On

Label

Basics Label: Name

Input Field

Basics Aspect: nodeName

Type: Symbol

Notification Change: changedNode

Label

Basics Label: Next Node

78 Building an Interface for the LAN Application78 Building an Interface for the LAN Application

ing
nerate
ate a
alue-

riable

the
enu.
field
Install and define the action and aspect methods of this application.

13.4 Opening the Application, and manually adding
some methods

Try to open the application. You will get an exception saying that the menu bind
#deviceNameMenu is not found. The reason is that the define process does not ge
menus, and that we have to do it manually. We will therefore have to manually cre
method deviceNameMenu (in the aspect protocol). This method should return a v
Holder containing a menu. In the beginning, this menu will be empty.

Exercise 99:

Using the inspiration of other generated aspect methods, add another instance va
and write the method deviceNameMenu.

Open your application again. Try the different buttons. Afterwards, type in first in
input field, and the press tab, return, or select accept in the input field's operate m
You should get an exception, because we asked to be notified when the input
changes with a message changedNode, but this is not generated.

Menu Button

Basics Label: <none>

Aspect: nextNode

Menu: deviceNameMenu

Details Bordered On

Notifcation Change: changedNode

Action Button

Basics Label: Originate

Action: originate

ID: originateButton

Group Box

Basics Label: Create

79 Building an Interface for the LAN Application79 Building an Interface for the LAN Application

just

id-
alue

t. Us-

cted

es of
the
list),

x: (to
ction-

with

Work-

ther-

o an
Exercise 100:

Add a method changedNode in a protocol ‘private’. For the moment let it return self,
as the other action methods do.

13.5 Programming the application model

The basic action methods

We now have to connect our interface to our domain model. We start with the list w
get, because it is the most interesting one. A list widget uses a SelectionInList v
model. SelectionInList is a value model with three instance variables:

• dependents: the dependents of the SelectionInList include at least the list widge
ers might want to become dependent to.

• listHolder: this is a ValueHolder on the list to be displayed in the list view.
• selectionIndex: this is a ValueHolder that contains the index of the currently sele

element.

This is not really important to know the instance variable. The important messag
SelectionInList are list (returns the list) , list: (to set up a list), selection (returns
current selected element), selection: (to set the current selected element of the
selectionIndex (returns the index of the current selected element) , selectionInde
set the index of the selected element), and selectionHolder (returns the sele
Holder).

Exercise 101:

Read the class comment and browse the messages listed above of SelectionInList.

We now implement the action methods to add different kinds of nodes. We start
the method newNode. In the method body:

• get the list object from your nodeList,
• ask this list to add a new Node,test it

Afterwards
• proceed and implement the messages newFileServer, newPrintServer and new

station.
• implement the method remove (nothing should happen if there is no selection, o

wise the current selection should be removed)

Connecting the name field

In the previous lesson we used an AspectAdaptor to connect our input field t

80 Building an Interface for the LAN Application80 Building an Interface for the LAN Application

input
nter-

de in
get

ction.
tNode

sub-
bject,

se’

ble)
a fo-

a fo-

date.
select

hap-
tain the

pair
value

the
ld first

the

to do
e)
instance of SimpleCounter. The AspectAdaptor did the translation between the
field (that uses value and value:) and its model (which used counterValue and cou
Value:). We now use AspectAdaptors to let several widgets share a single model.

The model of the name and nextNode widget should be the currently selected no
the nodeList. Therefore, if this selection changes, we would like both widgets to
updated, and when we fill in and accept a value, this should affect the current sele
Therefore, we should create and assign AspectAdaptors for the name and nex
aspects that both have the same subjectChannel. Note that here we will use
jectChannel instead of subject, because the model will be a valueHolder. With a su
this is the subject (i.e. some domain specific element itself).

We will again need to write an initialize method in a protocol called ‘initialize-relea
to initialize the variables:

• get the selectionHolder object from your nodeList (store it in an temporary varia
• create a new AspectAdaptor with as subjectChannel the selectionHolder, and

rAspect: of #name. Assign this to the variable nodeName.
• create a new AspectAdaptor with a subjectChannel the selectionHolder, and

rAspect: of #nextNode. Assign this to the variable nextNode.

Open your application, add some nodes, select a node. The input field should up
Change the name and select accept in the operate menu (or do tab or return). De
the node again and it should update.

Connecting the next node field

When the application is running, and you try to expand the menu button, nothing
pens. this is because the menu that is supposed to be there, and that should con
nodes to point to, is still empty. So, we still need to create this menu.

Note that menus basically contain Association's (an Association is a key/value
(look it up)), where the key is the name that is used to display in the menu, and the
is the object you get when asking for the selection. In our case, the keys will be
names of the nodes, and the values will be the nodes themselves. Now, you shou
check a class MenuBuilder that aids in creating menus:

Exercise 102:

Browse the class MenuBuilder (especially the examples at the class side).

Then, go to the method changedNode in the ‘private’ protocol:
• create a new instance of MenuBuilder, and hold it in a temporary variable
• iterate through the nodeList's list adding an Association of "item name -> item" to

MenuBuilder for each item in the list.
• set the value of DeviceNameMenu to be the menuBuilder's menu (use setValue:

this; using value: the menu button will flash each time you add or change a nod

81 Building an Interface for the LAN Application81 Building an Interface for the LAN Application

next

ins
e last
Test the implementation by creating some nodes, filling in their names and their
nodes.

Remove a device from the list. If you do this, you will notice that the menu still conta
the removed node ! Modify the remove method to send self changedNode as th
action in the method. Test your application again.

82 Building a Dialog and Originating Packets82 Building a Dialog and Originating Packets

in the
ser
igi-
forma-

n get
parate
tion
econd

ap-
ed be-
n be
in-

l the

re are
Chapter 14

Building a Dialog and
Originating Packets
In the previous exercise we build a graphical user interface to structure the nodes
LAN application. We left one thing for this exercise: the originate button. When the u
clicks the originate button, we want a dialog box to open that allows us to fill in the or
nator, addressee and contents of the packet we are going to send. Based on this in
tion, we can then start simulating.

14.1 Dialogs

Custom Dialogs are the least simple VisualWorks applications. A custom dialog ca
its resources and widgets from the main application model. Or you can create a se
application model for it, typically a subclass of SimpleDialog. Using the main applica
model provides tighter integration, since the main model does not need to query a s
model for the values that it needs.

You can configure a SimpleDialog dynamically, as we will do in this exercise. This
proach is typically used when the widget models needed by the dialog are not need
yond the lifetime of the dialog. Simple Dialogs are self-contained applications that ca
used to collect user input in a controlled way. VisualWorks helps you build the dialog
terface, but you must supply the underlying ValueModels to hold the user input unti
user selects the Accept button.

14.2 The canvas

Open a new canvas from the Launcher and paint the window shown to the right (the
two menu buttons and a text editor). Then fill in next properties:

83 Building a Dialog and Originating Packets83 Building a Dialog and Originating Packets
Menu Button

Basics Label: <none>

Aspect: originator

Menu: originatorMenu

Details Bordered On

Menu Button

Basics Label: <none>

Aspect: addressee

Menu: addresseeMenu

Details Bordered On

84 Building a Dialog and Originating Packets84 Building a Dialog and Originating Packets

lass
ce of
ll the

ed to
l).

erv-
r that
Define the aspects of the canvas.

Take care when installing the canvas: we are going to install it in our application c
(LANInterface), but under a different name than windowSpec (because the interfa
our application is stored there, and we do not want to override it, right?). Instead, ca
method originateDialogSpec.

Try to open the canvas. You will notice an exception, because the dialog is suppos
work with a SimpleDialog, not the LANInterface itself (a subclass of ApplicationMode
Close the exception and proceed to the next step.

Extending the domain models to support dynamic menus

The two menu buttons will have to show appropriate lists of workstations or outputs
ers. In fact, we would like to be able to select all nodes that can originate packets o
can do output.

Open a Browser and select the class Node
• Create a new protocol called ‘testing’.
• Add the method canOriginate that returns false.
• Add the method canOutput that returns false.

Text Editor

Basics Aspect: contents

Details Scroll Bars Vertical

Bordered On

Action Button

Basics Label: Accept

Actions: accept

Action Button

Basics Label: Cancel

Actions: cancel

85 Building a Dialog and Originating Packets85 Building a Dialog and Originating Packets

ropri-
riate
Select the class Workstation
• Create a new protocol called ‘testing’.
• Override the method canOriginate to return true.
Select the class OutputServer
• Create a new protocol called ‘testing’.
• Override the method canOutput to return true.

We can now ask every node these two questions, and they will answer what's app
ate in their case. These methods allow us to dynamically build menus of the approp
devices for the user to select when originating a new packet.

Connecting the dialog to the LANINterface

We will start by filling in the originate method. Use following implementation:

originate

| dialogModel dialogBuilder returnVal packet dialogOriginator dialogAddressee
dialogContents |

"the next three lines create ValueHolders to support the three dialog widgets"
dialogOriginator := nil asValue.
dialogAddressee := nil asValue.
dialogContents := String new asValue.

"next two lines create a new SimpleDialog object and retrieves the builder"
dialogModel := SimpleDialog new.
dialogBuilder := dialogModel builder.

"the following lines connect the widgets of the interface with the ValueHolders
created"

dialogBuilder aspectAt: #originator put: dialogOriginator.
dialogBuilder aspectAt: #addressee put: dialogAddressee.
dialogBuilder aspectAt: #contents put: dialogContents.

"the following lines ask the LANInterface for the originators and outputters menus. We
will write these next, so select proceed when VisualWorks indicates that they are new
messages."

dialogBuilder aspectAt: #originators put: self originatorsMenu.
dialogBuilder aspectAt: #addressees put: self addresseesMenu.

"the following lines open the dialog interface, originateDialog, and accept user input"
returnVal := dialogModel openFor: self interface: #originateDialog.
"returnvalue will be true if the user selected Accept, otherwise it will be false"
returnVal ifTrue: ["create a new packet, fill it in and give it to the workstation"

packet := Packet send: dialogContents value to:dialogAddressee value name.
packet originator: dialogOriginator value]

86 Building a Dialog and Originating Packets86 Building a Dialog and Originating Packets

ave to
te and
nged-

cted

really
We still have to write two messages originatorsMenu and addresseesMenu that h
dynamically create and return a menu. Write these two messages, using canOrigina
canOutput and the hints provided in previous lesson when we wrote the method cha
Node (in the section 'Connecting the next node field).

If you want, you can now experiment with other additions:
• disable the remove button, the name field or the next node field if no device is sele
• add a window menu that mimics the buttons on the interface
• catch the #closeRequest message and pop up a dialog asking the user if they

want to close
• …

87 Building a Dialog and Originating Packets87 Building a Dialog and Originating Packets

88 Building a Dialog and Originating Packets88 Building a Dialog and Originating Packets

	OO Design with Smalltalk a Pure Object Oriented Language and Environment
	About the exercises
	About me
	Learning Objectives
	How do you will get evaluated?
	How do we will proceed?
	Outline of the exercises
	Where to get VisualWorks or Squeak?
	Some Conventions
	Chapter 1
	Interacting with the VisualWorks Smalltalk Environment
	1.1 Meaning of the files
	1.2 Starting up
	1.3 Creating your own image
	1.4 About the mouse
	1.4.1 Selecting text and doing basic text manipulations
	Exercise 16:
	Exercise 17:
	Exercise 18:
	Exercise 19:
	Exercise 20:
	Exercise 21:

	1.5 Opening a WorkSpace Window
	1.5.1 The Window menu

	1.6 Evaluating Expressions
	Exercise 22:
	Exercise 23:
	Exercise 24:
	Exercise 25:
	Exercise 26:

	1.7 Using the System Transcript
	Exercise 27:

	Chapter 2
	Objects and expressions
	Exercise 28:
	Exercise 29:
	Exercise 30:
	Exercise 31:
	Exercise 32:
	Exercise 33:
	Exercise 34:
	Exercise 35:
	Exercise 36:
	Exercise 37:
	Exercise 38:
	Exercise 39:
	Exercise 40:
	Exercise 41:
	Exercise 42:
	Exercise 43:
	Exercise 44:

	Chapter 3
	Viewing, creating and editing classes
	3.1 Looking at existing classes
	How to Browse?
	Illustration of Browsing
	3.1.1 senders and implementers
	Exercise 45:
	Exercise 46:
	Exercise 47:
	Exercise 48:
	Exercise 49:
	Exercise 50:
	Exercise 51:
	Exercise 52:
	Exercise 53:
	Exercise 54:
	Exercise 55:
	Exercise 56:
	Exercise 57:
	Exercise 58:
	Exercise 59:
	Exercise 60:
	Exercise 61:
	Exercise 62:

	3.2 Creating your own class
	Step 1: Creating a category
	Step 2: Creating a class
	Filing the category out on disk

	Chapter 4
	Defining protocols and methods
	4.1 Filing in Smalltalk code
	Exercise 63:

	4.2 Creating and testing methods
	Exercise 64:
	Exercise 65:
	Exercise 66:
	4.2.1 Adding an instance creation method
	4.2.2 Adding an instance initialization method
	Another instance creation method

	4.2.3 A Difficult Point

	Chapter 5
	A Basic LAN Application
	5.1 Creating the Class Node
	Exercise 67:
	Exercise 68:
	Exercise 69:
	Exercise 70:
	Exercise 71:
	Exercise 72:

	5.2 Creating the Class Packet
	Exercise 73:
	Exercise 74:

	5.3 Creating the Class Workstation
	Exercise 75:
	Exercise 76:
	Exercise 77:

	5.4 Creating the class LANPrinter
	Exercise 78:

	5.5 Simulating the LAN
	5.6 Creating of the Class FileServer
	Table 5.1

	Chapter 6
	Fundamentals on the Semantics of Self and Super
	6.1 self
	6.2 super
	Exercise 79:

	Chapter 7
	Object Responsibility and Better Encapsulation
	7.1 Reducing the coupling between classes
	7.1.1 Law of Demeter
	7.1.2 Current situation
	7.1.3 Solution
	Exercise 80:

	Chapter 8
	The Question of Class Responsibility
	8.1 Class Creation Responsibility
	8.1.1 Applying to the class Packet
	8.1.2 Say Something Only Once

	8.2 Defining a Creation Interface.
	Class methods for sharing default values.
	Exercise 81:
	8.2.1 Applying to the Class Node

	Exercise 82:

	8.3 Forbidding the Basic Instance Creation
	8.3.1 Forcing client to use the right method
	8.3.2 Avoid to call super on a different selector
	basicNew to the rescue!

	Exercise 83:
	Exercise 84:

	8.4 Protecting yourself from your children

	Chapter 9
	Hook and Template Methods
	9.1 Studying a famoos couple
	Example of hook methods
	Exercise 85:

	9.2 Designing our own hook/Template couple
	Current Situation
	New Requirements
	Exercise 86:

	Chapter 10
	Extending the LAN Application
	10.1 Handling Loops
	Solution1.
	Solution 2.
	New instance variable.

	10.2 Introducing a Shared Initialization Process
	10.3 Broadcasting and Multiple Addresses
	10.4 Different Documents
	10.5 Logging Node
	10.6 Automatic Naming
	10.7 Introducing a Lan Manager

	Chapter 11
	VisualWorks Application Building
	11.1 Model-View-Controller
	Specs for the Application

	11.2 ApplicationModel
	11.3 Building the interface
	Step 1: opening a blank canvas
	Step 2: painting the canvas
	Exercise 87:
	Step 3: setting and applying properties of widgets
	Just to be a little bit less blind.

	Exercise 88:
	Exercise 89:
	Step 4 : Installing the canvas on an application model
	To install a canvas:

	11.4 Programming the application model
	Static Widgets
	Action Widgets
	Data Widgets
	Defining stub methods, and opening the application
	11.4.1 About value models
	Exercise 90: 2:

	Chapter 12
	Lesson 10: More about Applications
	12.1 Outlining
	Exercise 91:

	12.2 Making the widget’s positions relative
	Exercise 92:

	12.3 Changing the input field’s model
	12.4 Make a SimpleCounter instance the model
	Exercise 93:

	12.5 Dependency mechanism
	Exercise 94:

	12.6 Using the builder at run-time
	Assigning an ID to the button
	Enhancing our domain model
	Exercise 95:
	OnchangeSend: to:

	Exercise 96:
	Exercise 97:

	Chapter 13
	Building an Interface for the LAN Application
	13.1 Overview
	13.2 Model
	Exercise 98:

	13.3 Building the interface
	13.4 Opening the Application, and manually adding some methods
	Exercise 99:
	Exercise 100:

	13.5 Programming the application model
	The basic action methods
	Exercise 101:
	Connecting the name field
	Connecting the next node field

	Exercise 102:

	Chapter 14
	Building a Dialog and Originating Packets
	14.1 Dialogs
	14.2 The canvas
	Define the aspects of the canvas.
	Extending the domain models to support dynamic menus
	Connecting the dialog to the LANINterface

