
Chapter

1
Basic Concepts

In traditional programming, we start with a problem to solve. We figure out how to break the problem into

smaller parts, then each part into smaller parts still. At each stage we think about how to do things. To do

something means first doing one thing, then another, then yet another. So, we divide and conquer with an

emphasis on doing.

In the object-oriented approach, we again start with a problem to solve. We then try to figure out what

objects the system has, what their responsibility is, and how they interact. We still divide and conquer, but the

emphasis is now on objects and their interactions.

Objects
What is an object? In the real world, we can think of objects as things: an apple, a car, a person, a house. In

the world of programming, we have objects that model real world objects, and we also have objects that exist to

make our life easier, such as an input field, a text string, a collection, a number, a file, a window, or a process.

The main qualifications for an object are that it can be named and that it is distinguishable from other types of

objects. Let's look at the example of a stock that is traded on a Stock Exchange.

What are the properties of an object? An object usually has some data, and it usually has some behavior — it

can do things. Our stock object has some data: it holds the name of the stock, its symbol, the current trading

price, the number of shares traded in the most recent trade, and the total number of shares traded today. It also

has behavior: it can tell you the most recent trading price and it can accumulate the total of shares traded.

A Stock Exchange application will have many, many stock objects, one for each symbol traded on the

exchange. It will interact with the stock objects by sending them messages. For example, if it wants to know the

current price of a stock, let's say the XYX stock, it would send the price message to the XYZ stock object. In

response, the stock object looks in its data and returns the current price.

If the Stock Exchange gets information across the wire about a trade involving XYZ stock, it sends the

message traded: aCount price: aPrice to the XYZ stock object (we'll talk a lot more about messages

in Chapter 2, Messages). When the stock object receives the message, it will update its data — in this case it will

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Basic Concepts 2

update the current price, the number of shares most recently traded, and the total traded for the day. An object

consists of its data plus the messages it understands.

Our stock object consists of the data: stock name, symbol, current price, most recent trade volume, and trade

volume for the day, and the messages: stockName, symbol, price, lastTraded, totalTraded, and

traded:price: (plus a few more). The data is stored in instance variables. Each stock object has its own

copies of the instance variables, so it can store different values for price, symbol, etc.

Encapsulation
When you send the message traded: aNumberOfShares price: aPrice to a particular stock

object, it updates its instance variables price, lastTraded, and totalTraded. There is no other way to change these

variables1. No other object can see or modify our XYZ stock object's data except by sending messages. Some

messages will cause the stock object to update its data, and some messages will cause it to return the values. But

no other object can access the data directly. The data is encapsulated in the object Figure 1-1 shows a

representation of this encapsulation.

Code
(behaviors)

computeSalary
name

Data:
name
address
salary

Figure 1-1.
Encapsulation.

The fact that the data is encapsulated means that we can change the way that it is stored. As long as we retain

the public interface that we have defined — the messages to which the object responds, we can do what we like

internally. One day we might decide to store the price in dollars and cents, the next day in cents, the next day in

eighths of a dollar, and so on. As long as we also modify the way that price manipulates the data before

returning it, we have maintained the public interface despite changing the object internals.

Classes

The Class as code respository
Suppose our program makes use of two OrderedCollections — collections that store items in the order they

were added. One keeps track of phone messages that we have received but not dealt with, and the other keeps

track of things we must do — action items. Among others, we will need messages to add items to our

collections, and to get the first item from a collection.

1 Actually there is, but it involves meta-programming.

Basic Concepts 3

We don't want to write add: and first twice, once for each object. Instead, we need a mechanism to write

the code once so that it can be used by both OrderedCollections. This is where the concept of a class comes in. A

class is basically a blueprint or a template for what the object looks like: what variables it has and what messages

it understands. We define an OrderedCollection class and that’s where we write the code for add: and first.

So you can consider the OrderedCollection class to be a repository for the code that is executed when you send

these messages. Write the code once, and all OrderedCollections (in our case, the two examples above), can

execute the code.

The code is stored in a method. When an object receives a message, it executes a method with the same

name. So, we write methods and the methods are stored with the class. Figure 1-2 shows an example of an

Employee class, showing how the class acts as a template and as a code repository.

Code:
computeSalary
giveRaise

Variable definition:
name
salary

Employee Class

name = 'Joe'
salary = 50000

Instance 1

name := 'Dave'
salary = 55000

Instance 2

Figure 1-2.
The class as code repository.

The Class as factory
The next question is how our OrderedCollections are created. They don’t appear by magic after all. The

answer is that we ask the OrderedCollection class to create our two instances of an OrderedCollection. The

following code shows two instance of OrderedCollection being created and assigned to variables (:= is the

assignment operator).

phoneMessages := OrderedCollection new.
actionItems := OrderedCollection new.

So, besides being a repository for the code, the class is also a factory. Just as a car factory produces cars, an

OrderedCollection factory (class) produces OrderedCollections. The factory contains blueprints for creating

objects, and a template for what the object looks like — for the data it contains.

Now let’s step back a moment and look at the code above which creates the instances of OrderedCollection.

Notice that we send the new message to OrderedCollection. Remember that we get objects to do things by

sending them messages. It looks remarkably like the OrderedCollection class is also an object, and in fact, this is

the case. Not only are our individual instances of an OrderedCollection objects, but so is the factory that creates

them. We give the name class to the factory object, and the name instance to each object that the factory creates.

So in our example we have an OrderedCollection class which creates two instances of an OrderedCollection.

Basic Concepts 4

Because the class contains a template for individual instances of OrderedCollection, each OrderedCollection

has its own copies of the instance variables firstIndex and lastIndex. And because the class is the repository for

the code, each instance of OrderedCollection uses the code from the class.

The Class as abstractor
A class abstracts out the common behavior and common data of the objects that it creates. It provides a place

where the common behavior and common instance variables can be defined. The instance variables are simply

slots; no data is contained in them until instances of the class are created. A class is a factory with blueprints for

the instances it creates. It is also a code repository.

Inheritance
Now let’s look at another type of collection — a SortedCollection. Our action item list is better represented

by a SortedCollection because we’d prefer to have all the high priority items appear before the low priority ones.

The big difference between a SortedCollection and an OrderedCollection is that in the former the items are

sorted based on rules that you can specify. However, a lot of behavior is similar and therefore a lot of the code

should be identical. It would be a shame to have to duplicate all the OrderedCollection code for a

SortedCollection. Not only would it be a lot of work, but it would be a maintenance nightmare to also update the

SortedCollection code if you make changes to OrderedCollection.

We would like an instance of SortedCollection to use the code that is already written for OrderedCollection,

so that if the code changes, SortedCollections also get the changes. We would like to share the code where it

makes sense to share, such as finding the first or last item in the collection. We’d like to have different code

where the behavior is different, such as when adding an item to the collection. We would like a SortedCollection

to inherit the behavior of an OrderedCollection where they are similar.

Fortunately we can do this by setting up an inheritance relationship between the classes. In the Object

Oriented world, we can say that one class is a subclass of another class. So in our example, SortedCollection is a

subclass of OrderedCollection. This allows SortedCollection to inherit all the code and instance variables of

OrderedCollection. For example, if you want to loop through (iterate over) all the items in a SortedCollection,

you send it the do: message, which is defined in OrderedCollection. SortedCollection inherits the code and its

instance does exactly what an instance of OrderedCollection would do.

If you didn’t write any specific code for a SortedCollection, it would inherit everything that is written for

OrderedCollection. In fact, if we don’t change some behavior, there’s no point in having a new class at all.

Fortunately, SortedCollections do have some different behavior. There are two types of different behavior. First,

some messages need to do different things. For example, sending the add: message should add an object to the

end of an OrderedCollection, but a SortedCollection should add the object in a position based on the sorting rule

for the collection. If we do:

orderedCollection := OrderedCollection new.
orderedCollection add: 'xyz'.
orderedCollection add: 'def'.
orderedCollection add: 'abc'.

Basic Concepts 5

and inspect the collection, the strings will be ordered 'xyz', 'def', 'abc', in the order we added them. On the other

hand, if we do:

sortedCollection := SortedCollection new.
sortedCollection add: 'xyz'.
sortedCollection add: 'def'.
sortedCollection add: 'abc'.

and inspect the collection, the strings are ordered 'abc', 'def', 'xyz', in the correct sort sequence for strings. So, in a

SortedCollection we don't want to inherit our superclass's code for add:. Instead, we write our own add:

method and override the one defined in OrderedCollection.

The second way we want different behavior is to add behavior — to do something that our superclass doesn't

do. For example, we need to be able to specify the sorting algorithm that should be used by an instance of

SortedCollection. We add behavior very easily, simply by writing a new method for SortedCollection. In the

example of a sort algorithm, we write the sortBlock: method which stores the new algorithm for future

additions and also resorts the collection according to the new algorithm. Figure 1-3 shows an example of

inherited, overridden, and added methods.

add:
first
last

OrderedCollection

add:
sortBlock
sortBlock:

SortedCollection

first is inherited
last is inherited

add: is overridden
sortBlock is added
sortBlock: is added

Figure 1-3.
Inheritance.

Polymorphism
Remember the add: message that is different for OrderedCollection and SortedCollection? There are other

types of collection such as Set, Bag, and LinkedList, each of which implements its own version of add:.

What this means is that you can have a collection and not care much what type of collection it is; you simply

send it the add: message and it will add an object to itself in the appropriate way. Another example might be a

window that displays graphical objects. Rather than have the window know how to display a circle and a square,

the window would simply send a message to the graphical object (for example, graphicalObject

displayYourselfOn: self). The graphicalObject might be a square or circle, but the window doesn't

care. It simply sends the same message regardless, and relies on the graphicalObject knowing how to display

itself. In a procedural language you might write something like:

if (graphicalObject isSquare)
 displaySquare (graphicalObject)
else if (graphicalObject isCircle)
 displayCircle (graphicalObject)

Basic Concepts 6

Using polymorphism, we might simply write:

graphicalObject displayYourselfOn: self.

To use another example, we might have an Office object which sees Person objects coming in to work. One

approach would be for the Office object to ask the Person object what kind of person it is. If it is a Programmer

object, the Office object would tell it to start programming (programmer startProgramming). If it is a

Receptionist object, the Office object would tell it to answer the phones (receptionist answerPhones).

If it is a Manager object, the Office object would tell it to shuffle papers (manager shufflePapers).

This approach has the disadvantage of having a lot of code whose sole purpose is to check what type of

Person object just walked in, then having to modify this code when a new type of person is added to the

program. The better approach is for the Office object to have no interest in the type of person that walked in, and

to simply tell the person to get to work (person getToWork). If a Programmer object receives this message,

it will start programming; If a Receptionist object gets the message, it will start answering phones; if a Manager

object gets the message, it will start shuffling papers. Now when you add a new type of person object, you just

have to make sure that it responds to the getToWork message and does the appropriate thing. We have put the

responsibility where it belongs. Figure 1-4 shows an example of polymorphism.

getToWork:
Code to write
and debug
programs.

Programmer

getToWork:
Code to answer
telephones.

Receptionist

getToWork:
Code to shuffle
papers.

Manager

Office

getToWork:getToWork:
getToWork:

Figure 1-4.
Polymorphism.

This ability to have the same message understood differently by many objects means that we can get out of

decision making mode and into commanding mode. This is a fundamental difference between procedural

thinking and object-oriented thinking. Interpreting the the same message differently is called polymorphism. It

works because of the difference between a message and a method. When a message is sent to an object, the

object looks up the message name (selector in Smalltalk terms) in the list of messages it responds to. Associated

with the message selector is a method — some lines of code that will be executed. So, the same message selector

will be associated with different code for different classes.

To me, the defining feature of object-oriented programming is the ability to simply tell an object to do

something, rather than getting information then doing different things based on the information. Polymorphism

is a key part of this ability. We'll go into some explicit techniques in Chapter 28, Eliminating Procedural Code.

Basic Concepts 7

Abstract Superclasses
Now let's extend the idea of inheritance. OrderedCollection is a subclass of SequenceableCollection. Other

subclasses of SequenceableCollection include ArrayedCollection and LinkedList. OrderedCollections, Arrays,

and LinkedLists have some common behavior which has been coded in the class SequenceableCollection.

However, you can't actually create an instance of SequenceableCollection (well you can, but you'll get errors if

you try to do anything with it).

The class SequenceableCollection exists as a place to put the code that is common to the classes just

mentioned. The common behavior has been abstracted out and placed in an abstract superclass, one that should

not be instantiated — i.e., should not create instances of itself. For example, the methods copyFrom:to: and

occurrencesOf: are both written in SequenceableCollection and inherited by its subclasses.

So, an abstract superclass is a class that has no instances of itself, but which exists as a respository for

common code. The abstract superclass SequenceableCollection itself has an abstract superclass, Collection.

Collection is also the superclass for Set and Bag, collections that don't have the concept of a sequence. Collection

provides behavior that is common to all collections, such as isEmpty, collect:, do:, and includes:.

(Some of the subclasses override these methods to provide a more appropriate implementation for themselves.

However, many of the subclasses inherit the behavior directly.) Figure 1-5 shows a small part of the Collection

hierarchy.

Collection

Bag Set

Dictionary

SequenceableCollection

LinkedListOrderedCollection

SortedCollection

ArrayedCollection

Array ListCharacterArray

Figure 1-5.
The Collection hierarchy.

Summary
� Objects encapsulate data and behavior (code).

� Classes are factories that have blueprints for creating instances. They are repositories for the code that is

executed by their instances.

� Classes are arranged in an inheritance hierarchy that allows objects to inherit behavior (and code) from other

classes up their hierarchy chain.

� Work gets done by objects sending messages to other objects, telling them to do something or to return

something.

� Many different objects understand the same message but do different things when they receive the message.

That is, they execute different methods (polymorphism).

	Basic Concepts
	Objects
	Encapsulation
	Classes
	The Class as code respository
	The Class as factory
	The Class as abstractor

	Inheritance
	Polymorphism
	Abstract Superclasses
	Summary

