
Chapter 

26 
Changing Widgets at Runtime 

This chapter contains information on changing VisualWorks widgets while the application is running. For 

example, it describes how to change labels, how to disable action buttons, and how to make fields invisible. It is 

by no means a complete description of even this small aspect of VisualWorks, but it should give you some ideas 

of things you can do in your application and places to look when you want to do more. 

When we build a user interface, we place widgets on the canvas: action buttons, input fields, labels, etc. Each 

widget has a controller that handles input to the widget. The widget also has a wrapper that handles how the 

widget is presented to the user. The User Interface builder keeps track of all these wrappers, referring to them as 

components. Let's take a quick look at these four aspects of building an application. 

The builder 
Every subclass of ApplicationModel (ie, every window-based VisualWorks application) has a user-interface 

builder. This builder knows how to construct the user-interface, but, more importantly for us here, it keeps track 

of all the components of the user-interface. Within the subclass of ApplicationModel, the builder can always be 

referenced as: 

 
builder := self builder. 

Components 
The canvas that you construct consists of a group of components. The component is actually a wrapper 

around the widget that you added (such as an action button, a label, an input field, etc.) To reference one of these 

components, it has to have an ID, which you specify in the ID field in the Properties Tool. I tend to give the 

component an ID that describes the type of the widget. For example, an action button might have the ID saveAB, 

where the AB specifies that it is an action button. Similarly, an input field might have an ID of 

employeeNameIF. To get the component, our application model asks its builder for the component at the ID we 

are interested in. For example, 

 
component := self builder componentAt: #employeeNameIF. 

 
Copyright © 1997 by Alec Sharp 
 
Download more free Smalltalk-Books at: 
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html 
- European Smalltalk Users Group: http://www.esug.org 



Changing Widgets at Runtime 2
 

 
Since the component is a wrapper around a widget, you will sometimes see the above code written as: 

 
wrapper := self builder componentAt: #employeeNameIF. 
 

Components/wrappers understand how to make themselves visible and invisible, or enabled and disabled. 

You can tell them to take the keyboard focus, you can change their label strings, and you can set their colors (via 

their look preferences). We'll see examples of these later. 

Widgets 
The widget is the object that you think of when you talk about things such as action buttons, input fields, and 

labels. For active widgets such as these, the widget is actually a view, such as an ActionButtonView. The 

component is the wrapper around the widget. To get the widget, you simply send the widget message to the 

component. For example, 

 
widget := (self builder componentAt: #employeeNameIF) widget. 
 

If you inspect a widget that is a view, you'll notice that it has instance variables for its model and controller. 

Controllers 
Each widget has a controller that handles the keyboard and mouse input. In particular, for input fields, the 

controller handles the text in the field, the cursor position, and the selection. To get the controller, you send the 

controller message to the widget. For example, 

 
controller := (self builder componentAt: #employeeNameIF) widget 
controller. 
 

If you use the Properties tool to set up a notification or validation method and specify a keyword method with 

one colon, the parameter to the method will be the controller. So, rather than having to get the controller via 

something like the above, you will be passed it directly as a parameter. You can then get the new text directly 

from the controller. For example, your validation method might look like: 

 
MyClass>>validateName: aController 
 newText := aController text. 
 .... do some validation then return true or false... 
 

Another thing to be aware of in validation methods is how to discover if user input has been accepted. If you 

set up an input field to be, say, a date or time, VisualWorks will flash the field if the data is invalid, but will let 

the user proceed. To tell if the data is valid (ie, it was successfully converted), send the controller the message 

hasEditValue, which returns a Boolean (you can also send this message to the widget). For example, 

 
^aController hasEditValue 
 ifTrue: [true] 
 ifFalse:  
  [Dialog warn: 'Invalid date'. 
  false] 
 



Changing Widgets at Runtime 3
 

Before we leave the topic of validation, one thing I find frustrating about the validation mechanism is that 

there is no way to know which widget the user wants to pass focus to when you are in a validation routine. For 

example, suppose you have a field that requires valid input, such as a date field. If the user can't figure out what 

to enter and they press the Cancel key, the application still tries to validate the input. So the user can't cancel 

until they either enter valid data or blank out the field. One solution is to modify KeyboardProcessor. Add an 

instance variable called, say, controllerRequestingFocus, and a get accessor for it. In the method 

KeyboardProcessor>>requestFocusFor:, add the following line just before sending the 

requestFocusOut message to the current  consumer. 

 
controllerRequestingFocus := aController. 
 

Now, in your validation routine you can have something like the following. Each validation method may 

want to check if the cancel key has been pressed, so we break out that code into a separate method. There is an 

example of this in the file focus.st. 

 
MyApplication>>validateDate: aController  
 self cancelPressed ifTrue: [^true]. 
 ^aController hasEditValue 
  ifTrue: [true] 
  ifFalse:  
   [Dialog warn: 'Please enter a valid date'. 
   false] 
 
MyApplication>>cancelPressed 
 ^self builder keyboardProcessor controllerRequestingFocus ==  
  (self builder componentAt: #cancelAB) widget controller 

Modifying things 
Now that we have a small amount of background, we can go ahead and show the code for doing various 

runtime changes. Examples of this can be found in the file widgets.st on the diskette. This first example is 

the class WidgetAttributes. 

Enabling and Disabling 
To enable and disable a widget we send the enable and disable messages to the component. When a 

widget is disabled, it appears grayed out to indicate that it can't be used. For example,  

 
(self builder componentAt: #saveAB) enable. 
(self builder componentAt: #saveAB) disable. 

Visible and Invisible 
We make a widget visible or invisible by sending the messages beVisible and beInvisible to the 

component. For example, 

 
(self builder componentAt: #salaryIF) beVisible. 
(self builder componentAt: #salaryIF) beInvisible. 
 



Changing Widgets at Runtime 4
 

 
Figure 26-1. Dynamically modifying widget attributes. 

Changing labels 
To change the label string on a widget, we send the labelString: message to the component. For 

example, 

 
(self builder componentAt: #actionAB) labelString:  
 (mode == #edit) 
  ifTrue: ['Save'] 
  ifFalse: ['Add']. 
 

Unfortunately, getting the label string is not quite as easy. We have to get it from the widget itself via several 

message sends. For example, 

 
labelString := (self builder componentAt: #actionAB) widget label 
text asString. 

Changing selections and cursor position 
Selections and cursor position are associated with controllers, so to manipulate them we need to send 

messages directly to the controller. To make a widget be the active widget, send the takeKeyboardFocus 

message to the controller. In the case of an input field, this will also select and highlight all the text in the field. 

For example, 

 
controller := (self builder componentAt: #salaryIF) widget 
controller. 
controller takeKeyboardFocus. 
 



Changing Widgets at Runtime 5
 

If you send takeKeyboardFocus, you don't need to specifically select the text. However, you can 

alternatively select a range of characters, or position the cursor at a particular location. Here are some examples, 

 
controller selectFrom: 3 to: 5. 
 "Select and highlight from position 3 to 5" 
controller selectAt: 1. 
 "Position the cursor at the beginning" 
controller selectAt: controller text size + 1. 
 "Position the cursor at the end" 
controller find: 'and' startingAt: 1. 
 "Position the cursor before 'and' " 
controller findAndSelect: 'and'. 
 "Find the word 'and' after the current selection, and  
 highlight it" 
 

Two additional messages, select and deselect, highlight and unlighlight the selected text. They do not 

change the selection. To retrieve the currently selected text, send selection to the controller. 

Changing colors and fonts 
In the following example class, WidgetText, we look at changing colors, fonts, and emphases. This class can 

be found in the file widgets.st. 

 

 
Figure 26-2. Dynamically modifying widget text. 

 

There are several aspects to changing colors and fonts. To change colors such as the background colors and 

foreground colors of widgets, we have to get the component's look preferences (actually, the 

lookPreferences messages returns a copy of the look preferences). We then set the colors appropriately 

and give the new look preferences to the component. The lookPreferences: message tells the component 

that the look prefences have changed, so the component redisplays itself. For example,  

 
component := self builder componentAt: #saveAB. 
lookPrefs := component lookPreferences. 



Changing Widgets at Runtime 6
 

lookPrefs setForegroundColor: ColorValue green. 
component lookPreferences: lookPrefs. 
 

To change the text attribute of a widget, we create an instance of TextAttributes. We'll use a default style 

named #large, although you get more flexibility by creating an instance of TextAttributes using 

CharacterAttributes. We replace the style rather than modifying the one we have because it may be one that this 

widget shares with other widgets. If we changed the style directly, the other widgets would also get the change. 

Note that we invalidate the widget afterwards, which causes it to redisplay itself. 

 
widget := (self builder componentAt: #saveAB) widget. 
widget textStyle: (TextAttributes styledNamed: #large). 
widget invalidate. 
 

To change the text emphasis for widgets with labels, such as an action button or a label, we can do something 

like the following. We get the label text and emphasize it by passing either an array of emphases or a single 

emphasis. Then we set the label's text to be the newly emphasized text. 

 
widget := (self builder componentAt: #saveAB) widget. 
emphasis := Array 
 with: #italic 
 with: #large 
 with: #color –> ColorValue pink. 
newText := widget label text emphasizeAllWith: emphasis. 
widget label text: newText. 
widget invalidate. 
 

If we want to emphasize text in an input field, the approach is very similar, but we get the text from the 

controller rather than from the label. For example, 

 
widget := (self builder componentAt: #nameIF) widget. 
widget editText: (widget controller text emphasizeAllWith: #(#italic 
#large). 
widget invalidate. 
 

A shortcut for bold text is to send the message allBold to the text. Note that in the WidgetText class 

provided in widgets.st, the label fields have been lengthened. Without the lengthening,  the old text is not 

completely cleaned up when the text size changes to a smaller size. 

Changing Menus 
In this section, we'll take a look at three different kinds of menus: menu bars, menu buttons, and text field 

menus. For each of these menu types we want to do three different things. First, we want to replace the menu 

with a completely different menu based on some event. Second, we want to dynamically select the menu to 

present when the user goes to select a menu item. Third, we want to modify the menus, disabling menu items, 

hiding items, changing colors,  and adding items. Examples of the following can be found in 

MenuDynamicModify and MenuDynamicCreate in the file widgets.st. The first example, 

MenuDynamicModify, shows various modifications you can make to a menu. 

 



Changing Widgets at Runtime 7
 

 
Figure 26-3. Dynamically modifying menus. 

Replacing menus 
When we create a menu, we specify a method in the Menu field in the Properties Tool. Usually this method is 

invoked once by the builder, returns a menu, and is never invoked again. To make it possible to replace the 

menu, we instead specify a method that returns a ValueHolder. The ValueHolder holds a menu, and by sending 

the value: aNewMenu message to the ValueHolder, we can replace the menu completely. For example, in 

the initialize method we might have something like: 

 
initialize 
 menuButton := nil asValue. 
 inputField := String new asValue. 
 menuButtonMenuVH := self menuOne asValue. 
 inputFieldMenuVH := self menuOne asValue. 
 MenuBarVH := self class menuOne asValue. 
 

Then at any point in the program, we can install a new menu by doing the following. 

 
 menuButtonMenuVH value: self menuTwo. 
 inputFieldMenuVH value: self menuTwo. 
 MenuBarVH value: self class menuTwo. 

Modifying menus and menu items 
To modify a menu or menu item, we first need to get the menu (for the menu bar, I am assuming that we are 

modifying one of the pull-down menus). There are two basic ways to get the menu from the builder. One way 

gets it via the component: from the widget for a menu button, from the controller for a text field, and for a menu 

bar we get the submenu by specifying the main menu item, then asking for its submenu. 

 
menu := (self builder componentAt: #departmentMB) widget menu. 
menu := (self builder componentAt: #nameIF) widget controller menu. 
menu := (MenuBarVH value menuItemLabeled: 'Select') submenu. 
 



Changing Widgets at Runtime 8
 

The other way of getting the menu is via the method specified in the Menu field of the Properties Tool. If the  

method gives back a menu, then we do the first line below. If the method gives back a ValueHolder, we do the 

second line. In both cases the parameter to menuAt: is the name we specified in the Menu field of the 

Properties Tool. 

 
menu := self builder menuAt: #menuButtonMenu. 
menu := (self builder menuAt: #menuButtonMenuVH) value. 
 

Once we have the menu, we get the menu item we want to change by sending the menuItemLabeled: 

message (we can also get the item by specifying its index or the value or selector associated with the item). For 

example, 

 
menuItem := menu menuItemLabeled: 'One'. 
menuItem := menu menuItemAt: 3. 
menuItem := menu menuItemWithValue: aValueOrMethodSelector. 
 

Here are some of the changes you can make to a menu or a menu item while your application is running. 

 
menuItem disable. Disable a menu item 

menuItem enable. Enable a menu item 

menu hideItem: menuItem. Hide a menu item 

menu unhideItem: menuItem. Make visible a hidden menu item 

menu backgroundColor: ColorValue green. Change the menu color 

(menu menuItemLabeled: 'Three') color: 
ColorValue red. 

Change the color of a menu item 

menu addItemLabel: 'New Item' value: 
#someMessageSelector. 

Add a menu item to the end 

menu removeItem: (menu menuItemLabeled: 
'New Item'). 

Remove a menu item 

Creating the menu at selection time 
We can dynamically choose the menu to display when the user goes to select a menu item. Before any items 

are shown, we figure out what the menu should look like and display the newly created menu. To make this 

work, we install a block of code in the preBuildWith: method, rather than creating a method that will return 

the menu. This block of code will be executed each time the user tries to select the menu. (Note that this 

technique does not work for menu bars.) An example of this technique can be seen in the class 

MenuDynamicCreate in the file widgets.st. 

 

 
preBuildWith: aBuilder  
 aBuilder menuAt: #menuButtonMenu put: [self selectMenu]. 
 aBuilder menuAt: #inputFieldMenu put: [self selectMenu]. 
 aBuilder menuAt: #textEditorMenu put: [self selectMenu] 
 
selectMenu 
 mode == #menuOne 
  ifTrue: [^self menuOne] 
  ifFalse: [^self menuTwo] 
 



Changing Widgets at Runtime 9
 

 

Figure 26-4. 
Dynamically creating menus. 

Keyboard events and double-clicking 
All active widgets (widgets that accept keyboard input) allow you to intercept keystrokes by specifying a 

block of code as a keyboard hook. List and Table widgets also allow you to specify actions to take when the user 

double clicks a selection using a mouse. You specify the double click method in the Notification page in the 

Properties Tool. Alternatively, you can programmatically specify a block of code or a method to invoke, which 

overrides any method you specified in the Properties Tool. 

Let's look at an example using a List box (you can find the code in the file listdemo.st on the diskette). 

Create an application class called ListDemo with two instance variables, list and keyboardSelectors.  

 

 

Figure 26-5. 
The ListDemo window. 

 

We'll specify the double-click action in two ways, with a method and a block of code to execute. We'll write 

code to delete the selected item when the user presses the Delete key, and to show a dialog box when the user 

presses the right arrow key. To make the keyboard hook general, we'll record the the keys and the methods they 

should invoke in a Dictionary. We set this up during initialization. 

 
ListDemo>>initialize 
 pets := SelectionInList new. 
 pets list: #('dog' 'cat' 'mouse' 'parrot') asList. 



Changing Widgets at Runtime 10
 

 self mySetUpKeyboardSelectors 
 
ListDemo>>mySetUpKeyboardSelectors 
 keyboardSelectors := Dictionary new. 
 keyboardSelectors  
  at: Character del put: #deleteSelection; 
  at: #Right put: #expandSelection 
 

Here are the methods that will be executed when the user presses the delete key or the right arrow key. 

 
ListDemo>>deleteSelection 
 | collection index | 
 index := self pets selectionIndex. 
 index > 0 ifTrue: [self pets list removeAtIndex: index] 
 
ListDemo>>expandSelection 
 self pets selectionIndex > 0 
  ifTrue: [Dialog warn: 'Details of selection'] 
 

Now we want to specify a keyboard hook that will allows us to intercept keystrokes. We'll also specify a 

block of code that will be executed when the user double clicks on a list selection. We tell the controller about 

the keyboard hook and the controller's dispatcher about the double-click block or method. 

 
ListDemo>>postBuildWith: aBuilder  
 | listController | 
 super postBuildWith: aBuilder. 
 listController := (self builder componentAt: #petsLB) widget 
controller. 
 listController keyboardHook: self myKeyboardHookBlock. 
 listController dispatcher doubleClick: [self blockDoubleClick]. 
 

A keyboard hook is a block of code taking two parameters, the event and the controller. It should return the 

keyboard event or nil, nil meaning that no further processing should be done on the keyboard event. We'll always 

return the event so that the list can do its usual processing. Because we store the actions in a Dictionary, we can 

change the keystrokes that we are looking at, and the actions they should perform, based on the current context. 

 
ListDemo >myKeyboardHookBlock 
 ^ 
 [:event :controller |  
 | selector | 
 selector := keyboardSelectors at: event keyValue ifAbsent: [nil]. 
 selector notNil ifTrue: [self perform: selector]. 
 event] 
 

When the block is executed in response to a double mouse click on a selection, we'll change the double click 

mechanism to specify a method to be executed rather than a block. Then when the method we specify is invoked, 

we'll change the mechanism back to using a block. 

 
ListDemo>>blockDoubleClick 
 Dialog warn: 'Block double click'. 
 (self builder componentAt: #petsLB)  
  widget controller dispatcher doubleClickSelector: 
#selectorDoubleClick 
 
ListDemo>>selectorDoubleClick 
 Dialog warn: 'Selector double click'. 
 (self builder componentAt: #petsLB)  



Changing Widgets at Runtime 11
 

  widget controller dispatcher doubleClick: [self 
blockDoubleClick]. 


	Changing Widgets at Runtime
	The builder
	Components
	Widgets
	Controllers
	Modifying things
	Enabling and Disabling
	Visible and Invisible
	Changing labels
	Changing selections and cursor position
	Changing colors and fonts
	Changing Menus
	Replacing menus
	Modifying menus and menu items
	Creating the menu at selection time

	Keyboard events and double-clicking



