
Chapter

24
MVC Dependencies

In the previous chapter we talked about the Model-View-Controller philosophy and about how it requires that

we break the solution into model, view, and controller pieces, where each piece has relative

independence from the others. A key part of MVC is that the views be separated from the model so that a given

model can have multiple views looking at it or different aspects of it. To inform all the views of changes in the

model, we use the dependency mechanism. In this chapter we take a look at some of the different ways that we

can implement the dependencies. In most applications, there is only one view and the view and the controller are

tightly tied. Some of the mechanisms we will look at only work in this tight environment and will not support

additional views. The more general situation of course, is one where the controller and one view are tightly tied,

but other views of the model also exist.

Our example will be a person with a name and an age. The person object is the underlying model. We will

allow the user to set or change the name or age using a window with input fields. We also create some additional

windows that simply show the values of the person's name and age. The three superclasses for the MyPerson,

MyInput, and MyView examples are as follows, showing only the important information.

Model subclass: #MyPerson
 instanceVariableNames: 'name age '

ApplicationModel subclass: #MyInput
 instanceVariableNames: 'person '

ApplicationModel subclass: #MyView
 instanceVariableNames: 'person '

All the code for these examples is shown in the appendix at the end of the chapter. Enough code is shown in

the following text to illustrate certain points, but for more details, you'll need to refer to the chapter appendix.

Additionally, you can find the code in the file mvcdep.st. Since we are just illustrating points in the text, we'll

use only the age variable in our examples.

We will create one window that allows input and several other windows that simply display the data. When

we change the name or age in the MyInput window, we expect the MyView windows to update their displays.

Unless otherwise noted, all input and view windows have one instance variable, person, to hold their model. We

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

MVC Dependencies 2

will not show any accessors for person to save space, and will reference it directly. Figure 24-1 shows how the

windows look when you run the examples.

Figure 24-1. The view and input windows.

Shown are several examples of different dependency mechanisms. Each is numbered so that, for instance,

Example One has a MyPerson1 model, a MyInput1 input window, and a MyView1 display window. Let's start

by writing MyApp, an application that will run the various examples. Of course, we'll need to write the example

code before this code will do anything.

MyApp class>>newExample: aNumber
 ^super new initialize: aNumber

MyApp>>initialize: aNumber
 | model window modelClass inputClass viewClass windowType num |
 num := aNumber printString.
 modelClass := Smalltalk at: ('MyPerson' , num) asSymbol.
 inputClass := Smalltalk at: ('MyInput' , num) asSymbol.
 viewClass := Smalltalk at: ('MyView' , num) asSymbol.
 model := modelClass new.
 1 to: 4 do:
 [:index |
 windowType := (index == 4)
 ifTrue: [inputClass]
 ifFalse: [viewClass].
 window := (windowType open: model) window.
 window application: self.
 window bePartner]

This code opens three MyView windows and one MyInput window and makes them peers, so that if you

close one, they all close. For this to work, you must make sure that MyApp is subclassed off ApplicationModel.

To start up Example1 when you've written the Example1 code, from a workspace evaluate:

MyApp newExample: 1.

Now we need to create the user interface for our examples. Using the Canvas Tool, create a small window

with two input fields: a string field with aspect name and a numeric field with aspect age. Give the window the

label "Input". Install the window on class MyInput1 and define it as an Application. Modify the window label to

MVC Dependencies 3

be "View" and make both fields read only, then install it on class MyView1, again defining it as an Application.

All MyView and MyInput examples have a class side method open: as follows.

open: aPerson
 ^self openOn: (self new initialize: aPerson)

Example One: Using addDependent:
The basic dependency mechanism is to register as a dependent using addDependent:, then to filter the

change notifications in which you are interested. We will take a look at an example using this mechanism, but I

don’t particularly recommend it since VisualWorks provides much easier and more powerful mechanisms.

We'll start by looking at how data gets into the application, through the MyInput window. Below is the

initialization code for MyInput1. We register ourself as a dependent of the age variable, so that when the age

variable changes we'll be told about it (we'll see more about the onChangeSend:to: message in a later

section).

We are assuming that the MyInput window is the only way that the age and name values can change. If the

application can change a person's data behind the scenes, we would need to have the MyInput window register as

a dependent of the parent, which means we would need extra code to prevent changes sent to us generating

changes back to the model (which would lead to an infinite loop). In reality, we wouldn't be using this

mechanism since better ones exist, as we will see in the other examples.

MyInput1>>initialize: aPerson
 person := aPerson.
 age := 0 asValue.
 age onChangeSend: #ageChanged to: self

When the user enters a new age, the MyInput1 object is sent the ageChanged message. It then sends a

message to the model — the person — telling it to set its age.

MyInput1>>ageChanged
 person age: self age value

When we set a new age in our model, it sends itself a changed message to inform its dependents. We include

the new value so that the dependents don't have to come back and ask us for it. Since no one asks us for the

value, we don't need a get accessor. Note that in Chapter 19, The Dependency Mechanism, we adopted the

convention of sending the old value in the changed message. In this chapter, we adopt the alternative convention

of sending the new value.

MyPerson1>>age: aValue
 age := aValue.
 self changed: #age with: age

Here's a diagram showing the mechanism used for notifying dependents when you use the

addDependent: message.

MVC Dependencies 4

MyView Person
1. addDependent: self

4. update:with:from

3. changed: #age with: age

anObject

2. age: aNumber

Figure 24-2.
The addDependent: mechanism.

The views all register as dependents of the person using addDependent:. This means that when the

person informs all its dependents of changes, the views will have to filter the update messages to see if they are

interested in the change. The age variable contains a ValueHolder since the input field widget expects to get an

instance of a subclass of ValueModel when it sends the age message.

MyView1>>initialize: aPerson
 person := aPerson.
 person addDependent: self.
 age := 0 asValue.

MyView1>>update: aSymbol with: aValue from: anObject
 aSymbol == #name ifTrue: [self name value: aValue].
 aSymbol == #age ifTrue: [self age value: aValue]

Example Two: ValueHolders
The problem with the basic dependency mechanism of addDependent: and update: is that we register

an interest in hearing about any changes made to the model, then have to filter out the ones we are not interested

in. If we had become dependent on the value of the instance variable we were interested in, we would have lost

the dependency as soon as the instance variable had a new value. Instead of being dependent on the value, we

can wrap the value in a ValueHolder, register a dependency on the ValueHolder, and be informed every time it

gets a new value to hold.

MyView
1. onChangeSend:to:

3. changed: #value

anObject

2. age value: aNumber

ValueHolder
on age

DependencyTransformer

update:with:from:

5. ageChanged

Person

Figure 24-3.
The ValueHolder mechanism.

MVC Dependencies 5

If you remember from Chapter 19, The Dependency Mechanism, we can register an interest in changes by

sending onChangeSend:to: a subclass of ValueModel. In Example 2 we make the age and name variables

into ValueHolders so that when the actual value changes, the dependents of the ValueHolder will be sent the

appropriate message.

MyPerson2>>age
 ^age isNil
 ifTrue: [age := 0 asValue]
 ifFalse: [age]

In MyView2 the initialize: method tells the person object's instance variables to send it a message

when they change. It then has to implement the methods it has asked to be sent.

MyView2>>initialize: aPerson
 person := aPerson.
 person age onChangeSend: #ageChanged to: self.
 age := 0 asValue.

MyView2>>ageChanged
 self age value: person age value.

The model's instance variables are ValueHolders, which internally send the message changed: #value.

This update message is trapped by a DependencyTransformer and transformed into the message we specified; in

this case ageChanged. Because the new value is not passed back, we have to ask the person for the age

ValueHolder, to which we sent the value message to get the new age that it is holding.

Again, I don’t recommend using ValueHolders as the general mechanism for GUI dependency work because

VisualWorks provides an easier and more powerful mechanism, AspectAdaptors.

Example Three: AspectAdaptors
Using ValueHolders forces domain models to use artifical wrappers around their instance variables for the

convenience of any potential GUI. The problem with using ValueHolders for the instance variables of your

model is that a model models some domain object. Conceptually it has instance variables that are real data,

rather than having instance variables that are wrappers of real data.

An AspectAdaptor is a powerful mechanism for handling GUI dependencies without forcing the model to use

these artificial wrappers around its data. The model has various pieces of information, all contained in different

instance variables. AspectAdaptors allow you to associate the GUI (ApplicationModel) with a particular subject

(the model) and different aspects of the subject (the instance variables).

MVC Dependencies 6

Person

Dependent
(View)

AspectAdaptor

UI Object

5. update:with:from:

6. value
to retrieve
new age

age
2. age:

1. value:
7. age

3. changed: #age

4. update:with:from:

Figure 24-4. The AspectAdaptor mechanism.

An AspectAdaptor is an easy way to set up an intermediary between the GUI and the model’s data. When a

user types something in a field in the GUI, the model’s data is updated. Also, when the model’s data is updated,

the views of the data are updated. Let’s see how we would code this.

MyInput3>>initialize: aPerson
 person := aPerson

MyInput3>>age
 ^(AspectAdaptor subject: person sendsUpdates: true)
 forAspect: #age

The code for MyView3 is exactly the same as that for MyInput3 (the only difference is that the fields are

read-only).

There are two places we can define the AspectAdaptor: in initialize or in the get accessor. To make the

examples clearer, we will define it in the accessor. The normal approach to creating the AspectAdaptor is to use

the CanvasTool and the Definer. If you select the input fields and press the Define button in the Canvas Tool,

this will create the aspect methods for you, which you can then modify to use an AspectAdaptor. Here's an

example of what the Definer will create.

age
 "This method was generated by UIDefiner. Any edits made here
 may be lost whenever methods are automatically defined. The
 initialization provided below may have been preempted by an
 initialize method."

 ^age isNil
 ifTrue:
 [age := 0 asValue]
 ifFalse:
 [age]

We would simply assign an AspectAdaptor to the age variable rather than a ValueHolder. In addition to

creating the aspect method, the Definer will also create instance variables with the same name. The Definer

approach has the advantage that you can send the age message more than once with no harmful effects.

However, in our application the age message is only sent once, by the UIBuilder, when the window is being

built. In the interests of saving space we'll take the less safe approach and simply create the AspectAdaptor. Note

that by doing this, we don't need the MyInput3 or MyView3 class to have instance variables.

MVC Dependencies 7

Look again at the AspectAdaptor in the age method.

MyInput3>>age
 ^(AspectAdaptor subject: person sendsUpdates: true) forAspect:
#age

When we create the AspectAdaptor, we tell it what its subject is (the person). We also get to specify whether

the subject (the person) sends update messages — ie, whether it does self changed:. An AspectAdaptor

provides a fairly tight coupling between a field in a window and a value in the model. Since it knows when the

model changes, the AspectAdaptor can send the update message. However, the only dependent of the

AspectAdaptor is the one field it is tied to. This means that none of the other views will find out about the

change. Instead, we want the subject (the person) to send the update messages so that all the views are told the

model has changed.

AspectAdaptors by default assume that the aspect is #value. Once we have created the AspectAdaptor we

tell it to look at the #age aspect. To get the age value the AspectAdaptor sends age to the model. To set the age

value, it sends age:. In other words, when you tell it the aspect name, the AspectAdaptor assumes it can send

get and set messages using the aspect name and the aspect name with a colon appended. It also assumes that the

changed: message sends the aspect (ie, the model sends self changed: #age).

Example Four: Subject Channels and differently named accessors
Suppose we want our user interface to look at and be dependent on a different model. In our example, this

means that one minute we may be looking at the name and age for John Doe, and the next minute at the data for

Nikki Smith. If our AspectAdaptor is dependent on John Doe, we have no way of being informed about updates

to Nikki Smith.

Also, the instance variables of the domain model may be accessed using different names than suggested by

the aspect (in our example, the accessors will be something other than age and age:). In this section we will

show two ways of modifying AspectAdaptors to handle these two problems.

ValueHolder

Person

Dependent
(View)

AspectAdaptor

UI Object

5. update:with:from:

6. value
to retrieve
new age

age
2. yearsOld:

1. value:
7. yearsOld

3. changed: #age

4. update:with:from:

Figure 24-5. AspectAdaptors with a subject channel and different accessors.

MVC Dependencies 8

To solve the first problem, remember that a ValueHolder is a way to wrap a value so that you can be

dependent on the ValueHolder and be informed when the value it is wrapping changes. In our example, we will

wrap the model in a ValueHolder, and instead of creating an AspectAdaptor with our person as the subject, we

will create an AspectAdaptor with the ValueHolder containing the person as the subject channel. Ie, the

ValueHolder is the channel through which the AspectAdaptor talks to the subject (the person). An analogy is the

channel at a seance, through whom you can communicate with many different spirits, one at a time.

MyPerson4>>yearsOld
 ^age

MyPerson4>>yearsOld: aValue
 age := aValue.
 self changed: #age

MyInput4>>initialize: aPerson
 "Wrap the model in a ValueHolder"
 person := aPerson asValue

MyInput4>>age
 | adaptor |
 adaptor := AspectAdaptor subjectChannel: person sendsUpdates:
true.
 adaptor
 accessWith: #yearsOld
 assignWith: # yearsOld:
 aspect: #age.
 ^adaptor

The code for MyView4 is exactly the same as that for MyInput4 (the only difference is that the fields are

read-only). Note that we create the AspectAdaptor by sending subjectChannel:sendsUpdates: rather

than subject:sendsUpdates:. This tells the AspectAdaptor that the subject is wrapped in a ValueHolder.

Again, the subject sends the changed messages otherwise not all the AspectAdaptors will be informed.

Notice that we tell the AspectAdaptor what accessors to use to get and set the person's data. This solves the

second problem we described above, that the accessors may have different names than the name suggested by

the aspect.

Example Five: Delaying updates
Person

AspectAdaptor ageage:
age

nameAspectAdaptor

BufferedValueHolder

BufferedValueHolder name

value: true

name:

update:with:from

changed: #value

ApplicationModel
ValueHolder

trigger

MVC Dependencies 9

Figure 24-6. The BufferedValueHolder mechanism.

In the examples so far, whenever you changed the person's name or age, the change was immediately

reflected in the other windows. However, in an application, you may want to present a screen with the data, let

the user make changes to multiple fields, then update the model and other views all at once.

The MyInput5 ApplicationModel no longer has a simple AspectAdaptor sitting as intermediary between the

field and its model's data. Instead, it adds a BufferedValueHolder between the field and the AspectAdaptor and

talks to the BufferedValueHolder. The BufferedValueHolder registers as a dependent of a special trigger

ValueHolder. When the trigger value changes, the BufferedValueHolder is informed, and if the trigger value is

true the BufferedValueHolder talks to the AspectAdaptor, which then talks to the model (the person), setting the

data appropriately.

MyInput5>>age
 | adaptor |
 adaptor := AspectAdaptor subject: person sendsUpdates: true.
 adaptor forAspect: #age.
 ^BufferedValueHolder subject: adaptor triggerChannel: trigger.

You will need to modify the MyInput5 canvas to also have an Accept button, with an action of accept (you

can call it whatever you want as long as you give the action method the same name). Also, MyInput5 will now

have an instance variable called trigger which will hold a ValueHolder. MyInput5 sets the trigger value to false

during initialization. When the value is set to true, the AspectAdaptors will do their work of taking the values in

the user interface fields and using them to set the person's data. The trigger is set to true when the user presses

the Accept button.

MyInput5>>initialize: aPerson
 person := aPerson.
 trigger := false asValue

MyInput5>>accept
 "The user has accepted the data. Set the trigger to true to update
the model"
 trigger value: true

Since the view window is not setting the data, it doesn't need to have triggers and BufferedValueHolders.

Instead, it uses a basic AspectAdaptor as in Example Four.

Using BufferedValueHolders, the user can now edit many fields on a form but not have the model updated

until they commit the changes (for example, by pressing the Accept button). Unfortunately, a

BufferedValueHolder suffers from a serious drawback: it does not get cleared or updated when its subject

changes. A better mechanism for editing domain objects is to make a copy of the domain object and use

AspectAdaptors to connect between the user interface and the domain object. We cover this briefly in Chapter

27, Extending the Application Framework.

MVC Dependencies 10

Example Six: Aspect Paths

Figure 24-7. Specifying an Aspect Path.

Despite the relative ease of setting up an AspectAdaptor, you might wonder why it's not easier still. In fact, it

can be very easy. Using aspect paths, we can eliminate all the methods that created AspectAdaptors in the

previous examples. Instead, we use the Canvas Tool to specify the aspect path. When building the window, we

can specify in the Properties Tool the path to the variables we want associated with each field.

In the Aspect fields in the Properties Tool type person age and person name. This specifies the paths

to use to access the data in the model. The underlying model will be accessed through the accessor person. To

get the age and name data, the user interface builder will generate code to send the messages age and name to

the person — ie, it will send the messages person age and person name. To set the data, it adds a colon to

the end of the message thus sends person age: and person name:. (You can specify a path that consists

of several messages if necessary. For example, if the person had an address object which consisted of street

name and town, you could edit these fields by using an aspect path of person address street and

person address town.) Note that using aspect paths violates encapsulation because you are giving the

user interface knowledge of the domain model's methods. The more method names you specify in the path, the

worse the violation.

 If you ask the Definer to define these fields, it will create a single access method for the model, person.

Below are all the methods that are needed. The code for MyView6 is the same as the code for MyInput6 apart

from the read-only fields. Note that the model (ie, the person) needs to be wrapped in a ValueHolder if you want

to use aspect paths.

MyInput6>>initialize: aPerson
 person := aPerson asValue.

MyInput6>>person
 ^person

MyPerson6>>age
 ^age

MVC Dependencies 11

MyPerson6>>age: aValue
 age := aValue.
 self changed: #age

When you run this, you will find that the view windows are not updated when you type in the the input

window. Aspect paths are very easy to create, but their downside is that they provide very tight coupling

between the model, view, and controller. When you type (using the controller), the model is automatically

updated, and the view is automatically informed and updated.

(When you use aspect paths, AspectAdaptors are created for you when the code runs. Because you have no

control over how the AspectAdaptors are created, you can't get them to understand the update messages sent by

the model. All the changed message code is done behind the scenes, out of your control. Thus the self

changed: #age in the age: method doesn't do anything. However, it's worth leaving in because the model

doesn't know how the views will register their dependency, and there may be some views that rely on it.)

The bottom line is that if you have a user interface with a single view of the data (ie, very tight coupling

between the model, the view, and the controller), aspect paths are a very convenient way to go. If you want

multiple views of the data, use another mechanism. (It's possible to use aspect paths for the input window and

another mechanism for the read-only views.)

Example Seven: Buffered Aspect Paths
In Example 5, we saw how to use BufferedValueHolders to delay updating the model's data until the user

indicates that everything is correct by pressing the Accept button. In Example 6, we used aspect paths to simplify

the code, and had very little software to write. Now we combine BufferedValueHolders and aspect paths to

provide a way to buffer input with very little code writing.

Figure 24-8. Specifying a Buffered Aspect Path.

In MyInput7, create an Action button labelled 'Accept' with an action of accept. In the Aspect fields in the

Properties Tool type person age | trigger and person name | trigger for the appropriate input

fields. The message name after the vertical bar, trigger, is the message that is sent to get hold of the

MVC Dependencies 12

ValueHolder holding the trigger. We initialize the trigger to false, and when the user accepts the data, we set it to

true. This tells the generated code to go ahead and update the model's data.

The code for MyView7 looks exactly like the code for MyView6 since we don't need to do buffering on the

View windows. As in Example 6, the model (ie, the person) needs to be wrapped in a ValueHolder. And, as in

Example 6, when you run Example 7, you will find that the view windows are not updated when you type in the

the input window. Again, this is because of the tight coupling between the model, view and controller that you

get when you let VisualWorks generate all the AspectAdaptor code.

MyInput subclass: #MyInput7
 instanceVariableNames: 'trigger '

MyInput7>>initialize: aPerson
 person := aPerson asValue.
 trigger := false asValue.

MyInput7>>person
 ^person

MyInput7>>trigger
 ^trigger

MyInput7>>accept
 trigger value: true.

When you run this you will see no difference between Example 6 and 7 because in both examples, the input

window shows what you have typed but the views don't change. How can you tell whether the data really is

being buffered until the user presses Accept? We show this by writing to the Transcript when the person's data

changes

MyPerson7>>age: aValue
 age := aValue.
 Transcript cr; show: 'Age changed'.
 self changed: #age

Example Eight: PluggableAdaptors

Person

PluggableAdaptor age

age:

age

Code to
manipulate the

object before is is
stored

Code to
manipulate the
object after it is

retrieved

Figure 24-9. The PluggableAdaptor mechanism.

A PluggableAdaptor is the most powerful type of adaptor, because it lets you manipulate the model's data

when getting it from the model and when setting it in the model. Why would you want to do this? You might

MVC Dependencies 13

want to convert input to a standard format before storing it. Or perhaps you have stored a date and want to

display it according to some user defined format.

Our model, the person, has basically the same methods we saw in the previous examples. The only difference

is that we want to initialize the age to a meaningful value rather than letting it default to nil, because in our

example we manipulate the data before displaying it.

MyPerson8>>age
 ^age isNil
 ifTrue: [age := 0]
 ifFalse: [age]

MyPerson8>>age: aNumber
 age := aNumber.
 self changed: #age

The Input window creates a PluggableAdaptor for each field (name and age). The subject of the

PluggableAdaptor (the parameter to on:) is the model (the person), and the get and put blocks tell how to get

and set the particular instance variable of the person. For the Input window we are doing some manipulation of

the data before storing it in the model: we are multiplying the age by three.

MyInput8>>initialize: aPerson
 person := aPerson.

MyInput8>>age
 ^(PluggableAdaptor on: person)
 getBlock: [:model | model age]
 putBlock: [:model :aValue | model age: aValue * 3]
 updateBlock: [:model :aspect :parameter | aspect == #age]

The update block tells the PluggableAdaptor whether to execute the get block and update the field in the user

interface. The get block is executed if the block returns true. In the PluggableAdaptor above, since the

PluggableAdaptor is interested in the person's age variable, it only cares when the age changes — ie, when the

person does self changed: #age. So it tests to see if the aspect it received is the one it is interested in,

#age. Similarly, the name PluggableAdaptor will check to see if the change was associated with the #name

symbol.

The View window has exactly the same initialize: method as the Input window, but the

PluggableAdaptors are slightly different because the View window can't change the data and so doesn't have to

worry about the put block.

MyView8>>age
 ^(PluggableAdaptor on: person)
 getBlock: [:model | model age * 10]
 putBlock: [:model :aValue |]
 updateBlock: [:model :aspect :parameter | aspect == #age]

The put block doesn't do anything because the View doesn't update the model. It still has to check for the

aspect that changed so the update block is the same as for MyInput8. The get block multiplies the model's value

by ten before it gets displayed.

When you run Example 8, the age will be multiplied by three before storing it in the model. Because the

value has changed, the age field in the MyInput window will be updated, showing three times what you typed. In

MVC Dependencies 14

the MyView windows the age will be ten times the value stored in the model — thirty times what you typed. The

name you typed will be lowercased before storing it in the model and will therefore display as lowercase in the

MyInput window. In the MyView windows the name will be all uppercase.

One thing to note in this example is that we created the PluggableAdaptor on the model. When the model

sends itself a changed message after one of its instance variables is changed, all the PluggableAdaptors get

sent the update message. They use the update block to find the particular change they are interested in. So

there is the potential for a lot of redundant message sends since each PluggableAdaptor will receive all the

update messages even though it is not interested in most of them.

Summary
� The addDependent: message provides the basic dependency mechanism. It suffers from the disadvantage

that all dependents get all update messages and have to filter out what they want. VisualWorks provides

better mechanisms.

� ValueHolder provides a cleaner interface. It provides the ability to inform dependents of only the specific

changes they are interested in. It has the disadvantage that models must wrap their data in ValueHolders.

� AspectAdaptor provides a better still interface because it sits between the user interface widget and the

model's data. The model does not have to wrap its data in ValueHolders.

� BufferedValueHolder provides a way to delay updating the model until the user chooses to commit the

changes. It is a wrapper around all the ValueHolders or Adaptors that should be grouped together in a single

update.

� Aspect Paths make it easy to set up AspectAdaptors using the CanvasTool rather than having to write

methods. They have the disadvantage that there is a very tight coupling between the model, controller, and

view, and they cannot update other views.

� Buffered Aspect Paths combine the buffering of BufferedValueHolder with the ease of creation of Aspect

Paths. Again, there is a very tight coupling between the model, view and controller.

� PluggableAdaptor provides a very powerful mechanism to modify data either on its way from the view to the

model, or on its way from the model to the view.

	MVC Dependencies
	Example One: Using addDependent:
	Example Two: ValueHolders
	Example Three: AspectAdaptors
	Example Four: Subject Channels and differently named accessors
	Example Five: Delaying updates
	Example Six: Aspect Paths
	Example Seven: Buffered Aspect Paths
	Example Eight: PluggableAdaptors
	Summary

