
Chapter

28
Eliminating Procedural Code

In procedural programming, we write a lot of code that gets information then makes a decision based on the

information. In C, we see a lot of if/else if/else blocks, and a lot of switch statements. If we wrote the same type

of code in Smalltalk we might see the following.

MyClass>>myDoLoop
 [self myProcessObject: self myGetObject] repeat

MyClass>>myProcessObject: anObject
 anObject isSuccessResponse
 ifTrue: [^self myProcessSuccess: anObject].
 anObject isFailureResponse
 ifTrue: [^self myProcessFailure: anObject].
 anObject isHeartbeat
 ifTrue: [^self myProcessHeartbeat: anObject].
 self myProcessUnknown: anObject

The trouble is that this code demonstrates procedural thinking. In fact, if you start writing code like this, the

logical conclusion is “why is there no switch statement in Smalltalk?” At one time, we wrote a Switch class, but

each time we used it we got into trouble. Eventually we realized that while a switch statement was seductive, it

caused us to think procedurally and our objects got messed up. We finally removed the class and rewrote all the

code that used it.

Tell, don't ask
How might we write the above code if we use the OO tell, don't ask approach. The classic solution is use

polymorphism, to simply tell the object to process itself, and rely on each type of object being able to do this in

its own way. Give the object responsibility and make it responsible for carrying out the action. For example,

MyClass>>myProcessObject: anObject
 anObject processYourself

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Eliminating Procedural Code 2

Sometimes, however, this approach doesn't work because some or most of the behavior and knowledge is in

MyClass. If the work will be shared between MyClass and the object it is processing, we can give the objects

knowledge of each other. For example,

MyClass>>myProcessObject: anObject
 anObject processYourselfWith: self

OtherClass>>processYourselfWith: anObject.
 self myDoSomeStuff.
 anObject doSomeStuffWith: self.
 self myDoMore Stuff

MyClass>>doSomeStuffWith: anObject

If all the work will be done in MyClass, we need a mechanism to figure out what method in MyClass to

execute. The classic answer to this problem is double dispatching, where the first object tells the second object to

tell the first object what to do. In our example, MyClass doesn't know what method to execute, so it tells the

other object to tell it what method to execute.

MyClass>>myProcessObject: anObject
 anObject processUsing: self

Then in each class that the object could belong to, we see the following.

SuccessResponse>>processUsing: anObject.
 anObject processSuccessResponse: self

FailureResponse>>processUsing: anObject.
 anObject processFailureResponse: self

Heartbeat>>processUsing: anObject.
 anObject processHeartbeat: self

We also add processUsing: to Object to trap all the situations where we come across an object that

doesn’t understand processUsing:. Ie, an object for which we haven't yet written processUsing:.

Object>>processUsing: anObject
 anObject processUnknown: self.

Back in MyClass, we implement the code that knows how to handle the different types of objects we might

be processing.

MyClass>>processSuccess: anObject
 .. do success stuff ..

MyClass>>processFailure: anObject
 .. do failure stuff ..

MyClass>>processHeartbeat: anObject
 .. do heartbeat stuff ..

We also add processUnknown: to handle those situations where the other object inherited

processUsing: from Object. Ie, where we forgot to write processUsing:.

Eliminating Procedural Code 3

MyClass>>processUnknown: anObject
 self error: anObject printString,
 ‘ does not understand processUsing:’.

Processing external objects
Another type of object we may need to deal with is an object we get from an outside source such as a socket

or a serial line. For example, we might be talking with an external device and getting back status codes. Or we

might be getting requests sent in over sockets, each request telling the program to do something different.

Typically we will get information in the form of a string and we'll have to figure out what to do based on the

contents of the string. An obvious procedural answer is to compare the data with known strings and do different

things for different data. However, we want an OO answer, so let’s look at ways to deal with this type of object

without having to make explicit decisions.

perform:
One way is to use one of the perform: family of messages. When you write a Smalltalk method, you

usually specify all the messages that it will send. So, although the arguments won't be know until runtime, all the

message names are known at compile time (when you accept the method). The perform: family of messages

give us the ability to create a symbol and use this symbol as a message name. By using perform:, we don't

have to specify the message names when we write the method and can delay this knowledge until runtime. The

perform: family has several members, depending on how many keywords there are in the message to be

performed. For each keyword, you need one argument.

self perform: selector.
self perform: selector with: argument.
self perform: selector with: argument1 with: argument2.
self perform: selector with: argument1 with: argument2 with:
argument3.
self perform: selector withArguments: argumentArray.

Suppose that from an external device we get back status codes as numeric strings, and we take different

actions for different status codes. We could prefix the code with a string, then perform this as a method. For

example:

MyInterface>>handleResponse
 statusCode := self myDeviceResponse.
 selector := (‘msg’, statusCode) asSymbol.
 self perform: selector.

In a production system you would pass in additional information to the performed method, so let’s assume

that we get back a status code followed by a space followed by some real data.

MyInterface>>handleResponse
 response := self myDeviceResponse.
 selector := ('msg', (response copyUpTo: Character space))
asSymbol.
 self perform: selector with: response.

Eliminating Procedural Code 4

Instead of having meaningless methods such as msg0215, let’s keep a dictionary of message selectors

(alternatively, you could keep a dictionary of code blocks). The relationship between status codes and selectors

could be set up in the class side initialize method, storing the relationships in an instance of Dictionary.

We may have to take the same action for several status codes so this technique has the added benefit that we

don't have to write several methods to do the same thing.

MyInterface class>>initialize
 "self initialize"
 StatusCodeDictionary := Dictionary new.
 StatusCodeDictionary
 at: ‘0215’ put: #performDeviceOffline;
 at: ‘0216’ put: #performInvalidParameters

MyInterface>>myStatusSelector: aString
 ^StatusCodeDictionary
 at: aString
 ifAbsent: [#performUnknownStatusCode]

MyInterface>>handleResponse
 response := self myDeviceResponse.
 selector := self myStatusSelector: (response copyUpTo: Character
space).
 self perform: selector with: response.

Notice that we've prefixed the method names in the dictionary with perform. A drawback to performing

methods is that if the method name is created programatically, there will be no references to the method. If you

run Class Reports (a tool in the Advanced Tools that offers some lint-like capabilities), it will tell you that the

method is implemented but not sent. Unsent messages are always candidates for removal, so having a distinct

prefix for performed methods reduces that likelihood that you will unknowingly remove methods that are

needed.

Dictionary of classes
The technique shown above can be useful when we get some data and want to execute different methods

based on the data. Sometimes, however, we will want to create a new object and have the object do the

processing. For example, from a socket we get a string representing a request and the various request parameters.

We want to create a request object of the right type then tell the request object to process itself.

One approach is to have a set of request classes, with a superclass of MyRequest. On the class side,

MyRequest has a dictionary containing relationships between strings and class names. To create a request object,

we ask the superclass, MyRequest, to create the appropriate type of request. An instance of InvalidRequest is

created if the string does not correspond to a valid request type. This InvalidRequest should respond with error

information when sent the message processYourself.

MyInterface>>handleRequest
 input := self mySocketInput.
 request := MyRequest newFrom: input.
 request processYourself

MyRequest class>>newFrom: aString
 requestType := aString copyUpTo: Character space.
 requestClass := RequestDictionary

Eliminating Procedural Code 5

 at: requestType
 ifAbsent: [#InvalidRequest].
 ^requestClass new initialize: aString.

The dictionary could be built explicitly as in the previous example. However, this has the disadvantage that

every time you add a new request class, you have to remember to update the RequestDictionary. You're taking

responsibility away from the objects themselves and putting it somewhere else.

Another approach is for each request class to know the string that is associated with it. In MyRequest we

write an initialization method, initializeRequests, which asks all the subclasses of MyRequest for their

string. Depending on whether you fileIn your code or keep it in the image, you could have initialize send

initializeRequests or you could do MyRequest initializeRequests during product startup.

MyRequest class>>initializeRequests
 "self initializeRequests"
 RequestDictionary := Dictionary new.
 self allSubclassesDo:
 [:each | each requestName notNil
 ifTrue: [RequestDictionary
 at: each requestName
 put: each]]

MyRequest class>>requestName
 "Don't inherit the name. Make sure the request explicitly
implements it"
 ^(self class includesSelector: #myName)
 ifTrue: [self myName]
 ifFalse: [nil]

SomeRequestSubclass class>>myName
 ^'register'

We don't want a request class to inherit its request name from a superclass, so we have code to handle classes

that don't implement myName. We simply don't put them in the dictionary. If we get a string for which there is

no entry in the dictionary, the code in newFrom: returns the InvalidRequest class, which generates the

appropriate error code when instantiated and sent the processYourself message.

Summary
To eliminate procedural code we should tell rather than ask. Ideally we use polymorphism and simply tell

the object to process itself in some way. We may have to split the responsibility, in which case we may tell the

object to process itself using us. Or we may use double dispatching to avoid a pseudo switch statement. With

certain types of object we can use the perform: family of messages, or we can build dictionaries that store

relationships between classes and another object such as a string or a symbol.

	Eliminating Procedural Code
	Tell, don't ask
	Processing external objects
	perform:
	Dictionary of classes

	Summary

