
Chapter

16
Processes

Smalltalk allows you to create separate processes so that your application can do several things in parallel.

For example, you might have a process for handling communication with sockets, another process for handling

communication with an external device, and separate processes for each request that comes over a socket. Note

however, that processes are not operating system processes — they are internal to the Smalltalk image. There is

a process scheduler which schedules the Smalltalk processes, allocating time based on their priority and when

they last ran. The scheduler is stored in the global variable Processor, and is the single instance of the class

ProcessorScheduler. The most common way to fork a new process is to send a block of code the fork message.

For example,

[Transcript cr; show: 'Hello World'] fork.

When this process runs, it prints 'Hello World' to the Transcript. Once the right hand bracket of the block is

reached, the process terminates. Let's took at the interactions of two processes.

[10 timesRepeat: [Transcript show: '1']] fork.
[10 timesRepeat: [Transcript show: '2']] fork.

11111111112222222222

You will see 10 1's printed on the Transcript then 10 2's. This is because processes are partially preemptive.

A running process will not be interrupted by another process of equal or lesser priority. A process will keep

running until it does a time consuming operation such as waiting on a socket read or on an instance of Delay, or

the process explicitly gives up control, or a higher priority process is ready to run. If we add a delay to both

loops we see that the numbers alternate.

[10 timesRepeat: [Transcript show: '1'. (Delay forMilliseconds: 1)
wait]] fork.
[10 timesRepeat: [Transcript show: '2'. (Delay forMilliseconds: 1)
wait]] fork.

12121212121212121212

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Processes 2

Alternatively, we can give up control by sending a yield message to Processor. The scheduler will then

figure out the next process to run.

[10 timesRepeat: [Transcript show: '1'. Processor yield]] fork.
[10 timesRepeat: [Transcript show: '2'. Processor yield]] fork.

12121212121212121212

Priority
When the process scheduler is looking for the next process to run, it looks first at the priority of the processes

that are waiting to run. When you create a new process using fork, it inherites the priority of the process that

forked it. However, you can specify the priority of the processes you create by sending the forkAt: message to

the BlockClosure, with the priority as the parameter.

For example, if your application communicates with other applications via sockets, you might have one

process sitting in an input loop, another process sitting in an output loop, and other processes doing the

application work. You might run the application processes at one priority, the input process at a higher priority,

and the output process at a still higher priority.

Let's look at how a higher priority process can preempt a lower priority process. We'll use absolute numbers

rather than names for our priorities to make the examples clearer. VisualWorks supports priorities from 1 to 100,

where the default priority is 50.

In the first example, we fork a process with priority 50. Since the user interface is also running at priority 50,

the forked process is not interrupted, and therefore completes. The user interface then forks the second process,

which also runs to completion. (The delay exists to make sure that the first process gets a chance to run. If we

didn't have the delay, the user interface process would keep running and would fork the second process. At that

point it would have nothing to do so the scheduler would look for another process to run, and would run the

second process since it has higher priority.)

[10 timesRepeat: [Transcript show: '1']] forkAt: 50.
(Delay forMilliseconds: 1) wait.
[10 timesRepeat: [Transcript show: '2']] forkAt: 51.

11111111112222222222

In the second example, the first process is forked with a priority of 49, which is lower than the priority of the

user interface process. The forked process just gets started and is then interrupted by the user interface process,

which forks the second process. The second process is running at a higher priority than the first process, so it

runs to completion. Then the first process gets the scheduler and completes.

[10 timesRepeat: [Transcript show: '1']] forkAt: 49.
(Delay forMilliseconds: 1) wait.
[10 timesRepeat: [Transcript show: '2']] forkAt: 51.

112222222222111111111

In the third example, the first process gives up control after printing the first number. The user interface then

forks the second process, which gets to run since it has a higher priority. Even though the second process gives

Processes 3

up control after printing its first number, it is immediately run again because it is the highest priority process

with something to do.

[10 timesRepeat: [Transcript show: '1'. Processor yield]] forkAt: 50.
(Delay forMilliseconds: 1) wait.
[10 timesRepeat: [Transcript show: '2'. Processor yield]] forkAt: 51.

12222222222111111111

Smalltalk processes are partially preemptive. They can be interrupted by higher priority processes, but will

not be interrupted by lower or equal priority processes. This is different to a multi-tasking system such as Unix,

which gives timeslices to the different processes, interrupting them when they have consumed their timeslice.

Since a Smalltalk process will not be interrupted by another process of equal or lower priority, it is easy to get

into loops that you can't break out of. We'll look more at this in the section Working with Processes later in this

chapter.

We used numbers in these examples, but a much better policy is to use the names defined in the priority

names protocol of ProcessorScheduler, sending these messages to Processor. For example, at the time of

writing, VisualWorks defines the following priorities.

systemRockBottomPriority 1
systemBackgroundPriority 10
userBackgroundPriority 30
userSchedulingPriority 50
userInterruptPriority 70
lowIOPriority 90
highIOPriority 98
timingPriority 100

Using names allows the values to be changed in future releases of the image without affecting your

application. In fact, I'd go further and define my own names then fork the processes using my names.

MyGlobals class>>appProcessPriority
 ^Processor userSchedulingPriority

[some code] forkAt: MyGlobals appProcessPriority

Unless you have good reason, application process priorities should be kept in the range from

userBackgroundPriority to userInterruptPriority.

Communicating between Processes
In a production application, you will often find two types of process. One type of process is started, runs to

completion, then automatically terminates. The other type of process stays in a loop waiting for an object to

appear, then sends a message to the object. This requires an ability to communicate between processes, and

Smalltalk provides such a mechanism, the SharedQueue.

The SharedQueue
To set up communication between processes, you create an instance of SharedQueue and tell both processes

about it. One process will put objects on the shared queue using nextPut: and the other process will send

Processes 4

next to get an object from the queue. When a process sends the next message, it blocks until there is

something on the queue. (It blocks by waiting on a semaphore, which is set when an object is put on the

SharedQueue. We'll talk more about semaphores in Chapter 17, Coordinating and Sequencing Events.) Figure

16-1 illustrates two processes communicating via a SharedQueue.

Process One

Object
One SharedQueue

Process Two

Object
Two

next

anObject

nextPut: anObject

Figure 16-1.
Using a SharedQueue.

In the following example, the second process prints a number then puts it on a shared queue, while the first

process reads the queue then prints the number. If you try this example, the Transcript will show: W1 R1 W2 R2

W3 R3 W4 R4 W5 R5.

sharedQueue := SharedQueue new.
readProcess := [[Transcript show: ' R', sharedQueue next printString]
repeat] fork.
[1 to: 5 do: [:index |
 Transcript show: ' W', index printString.
 sharedQueue nextPut: index.
 Processor yield]] fork.
(Delay forSeconds: 5) wait.
readProcess terminate.

Notice that the read process will stay in a loop forever unless we terminate it. This we do with the

terminate message (there is more on terminating processes in the next section). If you try this example again

after removing the Processor yield in the second process, you will see: W1 W2 W3 W4 W5 R1 R2 R3 R4

R5. This is because Smalltalk is only partially preemptive and the first process doesn't get a chance to run until

the second process is completed. I generally add Processor yield after putting an object on the

SharedQueue, which ensures that the process waiting on the queue has a chance to run. For example,

sharedQueue nextPut: anObject.
Processor yield.

If the reading process doesn’t want to block it can send isEmpty to find out if there is anything on the

SharedQueue, or peek to get the next object from the SharedQueue without removing it.

The PrioritySharedQueue
SharedQueues are FIFO queues — objects are read from the queue in the order they were put on the queue.

However, sometimes a simple FIFO queue is not sufficient because you might need a prioritization scheme.

SharedQueues don't provide a mechanism for prioritizing objects on the queue, but you can subclass off

Processes 5

SharedQueue to create a PrioritySharedQueue. Here is a simple example of a PrioritySharedQueue, with an

instance variable, defaultPriority. You can find the code for this example in the file psq.st.

PrioritySharedQueue>>defaultPriority: aPriority
 defaultPriority := aPriority

PrioritySharedQueue>>defaultPriority
 ^defaultPriority isNil
 ifTrue: [defaultPriority := 0]
 ifFalse: [defaultPriority]

A simple implementation puts all objects on the shared queue in an Association of the priority and the object.

You will need to override next, peek, and nextPut: to handle the Association. Additionally, nextPut:

will simply invoke nextPut:priority: as follows.

PrioritySharedQueue>>nextPut: anObject
 ^self nextPut: anObject priority: self defaultPriority

The heart of the PrioritySharedQueue is in the nextPut:priority: method, which places objects in the

queue according to their priority first, and their chronology second. Higher numbers indicate higher priority.

PrioritySharedQueue>>nextPut: anObject priority: aPriority
 [accessProtect critical:
 [|foundElement |
 foundElement := contents
 reverseDetect: [:element | aPriority <= element key]
 ifNone: [nil].
 foundElement isNil
 ifTrue: [contents addFirst: (aPriority –> anObject)]
 ifFalse: [contents add: (aPriority –> anObject) after:
foundElement]]
] valueUninterruptably.
 readSynch signal.
 ^anObject

A general SharedQueue reading mechanism
A general mechanism for taking objects off a SharedQueue and processing the objects is to sit in a loop like

the following. This is very generic code and can easily be inherited. It has two specific virtues. First, it makes no

assumptions about where the object is coming from and how it will be processed, so myProcessObject: and

myGetObject can be overridden by subclasses to do things differently. Second, it allows you to put

breakpoints in these two methods when you are debugging. Since myDoLoop is in a repeat loop, you can't add a

breakpoint to this method while it is executing and have the breakpoint take effect.

MyClass>>myDoLoop
 [self myProcessObject: self myGetObject.
 Processor yield] repeat

MyClass>>myGetObject
 ^self mySharedQueue next.

We can extend this further for situations where we process the object in its own forked process. There are

operations where it may be necessary to cancel the processing, such as time consuming operations or operations

where a needed resource does not become available. If we need to cancel the processing, we can set an instance

Processes 6

variable in the object (protected by a mutual exclusion semaphore). At appropriate times during its processing,

the object can look to see if it has been cancelled and take the appropriate action. In the code below, we store the

object, then after the the object has executed the processYourself method, we remove the object from our

collection. The valueNowOrOnUnwindDo: message ensures that the object is removed whether the

processYourself method completes or is interrupted by a raised exception.

MyClass>>myProcessObject: anObject
 self myAdd: anObject.
 [[anObject processYourself]
 valueNowOrOnUnwindDo:
 [self myRemove: anObject]] fork

Terminating processes
Processes terminate when they reach the right square bracket of the block that was forked. However, some

processes are set up to stay in a loop, never reaching the right square bracket. We therefore need another way to

terminate processes, which we get by sending the terminate message to the process. For example,

process := [[Transcript cr; show: 'Hi there'. (Delay forSeconds: 1)
wait] repeat] fork.
(Delay forSeconds: 5) wait.
process terminate.
Transcript cr; show: 'All Done'.

You can send terminate to an already terminated process with no ill-effects so terminate is a benign

message. If you are concerned about terminating a process that is in the middle of doing something, you may

want a way to shut down the process gracefully, allowing it to complete what it is working on. One option is to

allow the process to terminate itself by sending Processor terminateActive or Processor

activeProcess terminate. If the process reads from a SharedQueue, you can put a special termination

object on the SharedQueue. If the SharedQueue reader does something like sharedQueue next

processYourself, this special object would have the following code.

TerminationObject>>processYourself
 Processor terminateActive

Making shared data threadsafe
Objects running in different processes often require access to shared data. To make sure that only one process

is reading or modifying the data, you need a mechanism to serialize access to the data. Smalltalk provides the

mutual exclusion semaphore for just this situation. To create a mutual exclusion semaphore, you send the

forMutualExclusion message to Semaphore. To serialize access to shared data, you ask the semaphore to

run the access code. For example,

mutexSemaphore := Semaphore forMutualExclusion.
mutexSemaphore cricital: [code to access shared data]

We talk more about mutual exclusion semaphores in Chapter 17, Coordinating and Sequencing Events.

Processes 7

Controlling the running of the process
In most applications you won't suspend and resume processes, but the ability is there should you need it.

When you want to suspend a process, send it the suspend message. To resume the process, send it the

resume message. You can start a process in suspended state by sending newProcess to a BlockClosure, and

in fact, fork is implemented by sending newRequest followed by resume. Here's an example of creating a

process that does not immediately run.

process := [Transcript cr; show: 'Done'] newProcess.
(Delay forSeconds: 3) wait.
process resume

If you decide to control the running of processes using suspend and resume, be very careful about when

you suspend the process. It may be in the middle of doing something that should be completed before the process

is suspended. One option is to have the process suspend itself when it is safe to do so. If you try the following

code, you'll see that the process prints out the time five times, suspends itself, then is resumed five seconds later.

process :=
 [1 to: 10 do: [:index |
 Transcript cr; show: Time now printString.
 index = 5 ifTrue: [Processor activeProcess suspend]]] fork.
(Delay forSeconds: 5) wait.
process resume.

Interrupting Processes
Smalltalk allows you to interrupt a process to have it do something else. You may never need to do this, but

we'll mention the mechanism briefly. To interrupt another process and have it run some code, send

interruptWith: aBlockOfCode to the process. The process saves its context, executes the passed-in

block, restores its context, then resumes its business.

There is a way to prevent interruptions, in case the process is doing something it really doesn’t want

interrupted. You can protect the uninterruptable code by putting it in a block and sending the block the message

valueUninterruptably. SharedQueues make use of this capability. All access to a SharedQueue is

protected by a mutual exclusion semaphore. This access is wrapped in another block which is executed by

sending valueUninterruptably. For example, SharedQueue>>size is implemented as

^[accessProtect critical: [contents size]] valueUninterruptably. Will you ever

use the interrupt capability? Probably not, but it's worth knowing about.

Working with Processes
When you first work with processes, it's easy to write processes that stay in a tight loop so that you can't do

anything. You can't even interrupt them with ctrl-C if they are running at userSchedulingPriority or

above — ie, at or above the priority of the user interface process. For this reason it's always a good idea to file

out (or save in some way) your changes before trying out new process code. It's also a good idea to run processes

at a priority lower than userSchedulingPriority.

 If you do get locked up, you can kill the virtual machine process or you can use the Emergency Evaluator.

Unless you have remapped the interrupt key, pressing Shift-Ctrl-C will bring up the Emergency Evaluator.

Processes 8

From here you can type ObjectMemory quit followed by pressing the Escape key, which will cause

Smalltalk to quit.

Another thing that can happen when working with forked processes is that you can lose them. Suppose you

have a process running in a loop, possibly even yielding control. If you don't have a way to reference the process

you can never terminate it. Here are some mechanisms for tracking processes.

Tracking processes with a Global variable
One way to track your processes is to keep each process in a global variable. Let's say you choose to keep

track of global variables in class MyGlobals. If you have a class variable called Processes that you initialize to

an OrderedCollection (using class initialization or lazy initialization), you can have two methods:

MyGlobals class>>addProcess: aProcess
 ^Processes add: aProcess

MyGlobals class>>removeProcess: aProcess
 ^Processes remove: aProcess ifAbsent: [nil]

At any time you can inspect MyGlobals to see a collection of all the processes you have forked. You can

terminate them individually or create a method to terminate all of them. To better know what process you are

looking at, you could add an Association of the process and a name.

MyGlobals class>>addProcess: aProcess name: aName
 ^Processes add: aProcess –> aName

MyGlobals class>>removeProcess: aProcess
^Processes removeAllSuchThat: [:each | each key = aProcess]

This scheme assumes that the forked processes you add can also be removed. Many processes are simply

short-lived process that terminate naturally and there will be no easy way to remove them from the collection

(unless they remove themselves before expiring). This scheme works best with long-lived processes that the

application can both start and terminate.

Tracking processes by subclassing
Another approach is to create your own process class, say MyProcess, as a subclass of Process (you can find

the code in the file process.st). We'll give it an instance variable to store the process name.

Process subclass: #MyProcess
 instanceVariableNames: 'processName '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'MyStuff'

Add processName and processName: accessors, and write a printOn: method.

MyProcess>>printOn: aStream
 super printOn: aStream.
 aStream nextPutAll: ' ('.
 aStream nextPutAll: self processName.
 aStream nextPut: $)

Processes 9

Without going into all the details, this involves writing three new methods for BlockClosure. The first

method is newProcessWithName:, which creates an instance of MyProcess rather than Process, and sets the

process name. The other two methods are forkWithName: and forkAt:withName: which send

newProcessWithName: rather than newProcess. You will then need to add an

allInstancesAndSubInstances method to Behavior (we show this method in Chapter 29, Meta-

Programming). Once you have this, the final change is to modify Process>>anyProcessesAbove: to

send allInstancesAndSubInstances rather than allInstances. You can now fork all your

processes by doing:

 [some code] forkWithName: 'some name'.

If you then inspect MyProcess allInstances, you can take a look at all your processes that are

running (or which have terminated but not been garbage collected). To terminate a lost process, you can open an

inspector on the appropriate element of the array then evaluate self terminate in the inspector window.

To handle the problem of a process locking up the image, you can write a class side method to terminate all

instances of MyProcess. From the Emergency Evaluator (Shift-Ctrl-C), you can now type MyProcess

terminateAll followed by Esc, and you should get back your cursor.

MyProcess class>>terminateAll
 self allInstances do:
 [:each |
 Transcript cr; show: each printString.
 each terminate]

It may be easier to modify Process rather than subclass off it. If you choose this approach, you would add a

processName instance variable. You will still need to add fork-type methods to BlockClosure to set the process

name before sending resume to the process. Finally, instead of MyProcess class>>terminateAll, you

might write something like the following.

Process class>>terminateNamed
 self allInstances do:
 [:each | each processName notNil ifTrue:
 [Transcript cr; show: each printString.
 each terminate]]

	Processes
	Priority
	Communicating between Processes
	The SharedQueue
	The PrioritySharedQueue
	A general SharedQueue reading mechanism

	Terminating processes
	Making shared data threadsafe
	Controlling the running of the process
	Interrupting Processes
	Working with Processes
	Tracking processes with a Global variable
	Tracking processes by subclassing

