
Chapter

13
Streams

Streams and their uses
It's not immediately obvious what a Stream is and why you should use one, so let's approach this chapter the

opposite way and show how certain things are done. We'll look at streams being used for printing objects, for

reading and writing files, and for speeding up string manipulation. Then we'll take a look at how to create

streams and the messages you can send them. In what follows, to save space I've put more cascaded messages on

a line than I would in a real method.

Streams in printOn:
If you have ever modified the information returned from an object when it's sent the printString

message, you've had to write or modify the printOn: method, which writes to a stream. For example,

printOn: aStream
 super printOn: aStream.
 aStream
 crtab; nextPutAll: 'instVar';
 space; print: instVar.

You'll notice from this example that streams know the current location in the stream. We haven't had to

specify where to put anything. Instead, the stream keeps track of its current location and writes the next

information starting at that point. There is a lot of built-in sequencing with streams.

You'll also notice that there are some useful messages you can send to a Stream (you can send a lot of the

same messages to the Transcript, a global instance of TextCollector). For example, crtab writes a carriage

return and a tab character, nextPutAll: writes a string (actually a collection), space writes a space

character, and print: sends printOn: to its parameter.

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Streams 2

Streams in file access
We'll talk a lot more about files in Chapter 14, Files, but here we'll look at the stream aspects of reading and

writing files. The usual way to access a file is by using the buffered IO mechanism, which is the Stream

mechanism. For example, if we want to create a file, write to it, then read from it, we can do something as simple

as:

writeStream := 'myfile' asFilename writeStream.
writeStream nextPutAll: 'Here I am, writing to my file'.
writeStream cr; nextPutAll: 'Here is line two'.
writeStream close.

readStream := 'myfile' asFilename readStream.
Transcript cr; show: (readStream upTo: Character cr).
Transcript cr; show: readStream upToEnd.
readStream close.

Note that this code is not very robust, and in Chapter 14, Files, we'll talk more about robustness and the

different options available to you when reading and writing files. Here we are simply showing the power of

streams for dealing with file access.

Streams on strings
The most common use of a stream with a string is to create a large string out of smaller strings. In the

following example, the stream technique is over three times as fast as string concatenation. If you were simply

concatenating two strings, it would be more efficient to use the comma message. However, as the number of

concatenations increases, so does the performance benefit of using a stream. The main reason for the efficiency

is that concatenation creates a new string each time. On the other hand, in the stream technique, we created a

large enough string up front so all we have to do is fill the string using the stream messages. If we had created

the string using String new, the string would have been created with a size of zero, and would have had to

grow several times as it was filled up. This is very expensive; if you change the stream example to say stream

:= String new writeStream, the performance is about fifty percent slower than using string

concatenation.

string := 'There are ' , 4 printString, ' apples in ',
 1 printString, ' basket.', (String with: Character cr),
 4 printString, ' of you can have ', 1 printString.

stream := (String new: 100) writeStream.
stream
 nextPutAll: 'There are '; print: 4;
 nextPutAll: ' apples in '; print: 1;
 nextPutAll: ' basket.';
 cr; print: 4;
 nextPutAll: ' of you can have '; print: 1.
string := stream contents.

Streams can be created on any sequenceable collection and you will also find them used with Arrays.

However, Streams are used with Strings more than with other types of sequenceable collection.

Streams 3

The benefits of a Stream
Why bother using a Stream? As we saw in the examples above, you don't have a choice if you want to write

your own printOn: methods or if you want to use buffered I/O with files. Leaving these aside, why are

Streams useful? Streams provide several benefits. First, they often provide better performance when adding to

collections. Second, a Stream can automatically grow a collection to which it is adding, even if the collection is a

fixed-size collection such as an Array. Third, Streams provide many more messages for manipulating

collections. Fourth, you don't have to keep track of the position in a stream. For example, If you want to move

about a string, you have to do operations to discover a position in the string, then do some operation at that

position. With a Stream, you can move around and do operations without needing to know precise positions in

the collection.

Creating streams
There are two fundamental subclasses of Stream: InternalStream, which streams over a collection, and

ExternalStream, which streams over a file, providing buffered access to the file. In Chapter 14, Files, we will

look at how to create streams on files; here we will just look at creating streams on collections. InternalStream

has three subclasses: WriteStream, ReadStream, and ReadWriteStream, which allow write access, read access,

and read/write access to the collection.

There are two basic ways of opening a Stream on a collection. You can send the on: or with: message to

the stream class, passing the collection as a parameter, or you can send a message such as readStream to the

collection. The difference between on: and with: is that writing to a stream created with on: will start

writing at the beginning of the collection, overwriting the collection, while writing to a stream created with

with: will append to the end of the collection. Here are some examples of creating streams of different types.

Interestingly, there is no readWriteStream message for collections; perhaps because most collection

streaming is either reading or writing, but not both.

readStream := ReadStream on: aString.
readStream := aCollection readStream.

writeStream := WriteStream on: (Array new: 100).
writeStream := (String new: 100) writeStream.

readWriteStream := ReadWriteStream on: (Array new: 100).

In the VisualWorks image there are a few streams on arrays but the great majority of collection based streams

are on strings.

Reading, writing, and positioning streams

Writing
Typically we write to streams more than we read from them, so we'll look at writing first. There are relatively

few writing operations, and the ones that are used most of the time are nextPut:, nextPutAll:, and

print:, plus some character writing methods. There are a few other messages which you can find by browing

Streams 4

the methods for WriteStream and its superclasses. As we mentioned above, you can create a writeStream on an

arbitrary collection, although it is more usual to see a writeStream on a String. Note that when you write to a

collection, the collection will grow automatically if it needs to.

The nextPut: message puts a single object on the stream. You can put a whole collection on the stream as

a single collection object using nextPut:. The whole collection will be read back as a single object. However,

when using a writeStream on a String, nextPut: only writes characters. If you try to use nextPut: to write a

string (a collection), you will get an error.

The nextPutAll: message puts a collection on the stream as individual objects. They will be read back as

separate objects. When using a writeStream on a String, use nextPutAll: to write a string.

The print: message puts onto the stream the printString representation of an object by sending

printOn to its parameter. If you are using a writeStream on a String, print: anObject is a convenient

way to do the same as nextPutAll: anObject printString. The following two lines achieve the

same result.

writeStream nextPutAll: anObject printString.
writeStream print: anObject.

There are a few special characters that are difficult to represent using the $ prefix. It's easy to represent the

letter X by writing $X, but representing a space or a carriage return is less obvious. Streams provide some

messages to make it easier to write these types of character to the stream.

space Write a space

tab Write a tab character

tab: anInteger Write the specified number of tabs

cr Write a carriage return

crtab Write a carriage return followed by a tab

crtab: anInteger Write a carriage return followed by the specified

 number of tabs

lf Write a line feed.

Reading
There are a lot of messages for reading a collection and we won't go over all of them here. To learn more

about the other messages, browse the methods defined by ReadStream and its superclasses. Some of the more

useful messages are:

next Return the next object on the stream (the next

 character if this is a string based stream). If we are at

 the end of the stream, nil is returned.

next: Return the next specified number of objects. If this

 takes us past the end of the stream, an exception is

 raised.

Streams 5

nextAvailable: Return the next specified number of objects, or the

 stream up to the end of the stream, whichever is less.

contents Return the entire contents of the stream

upToEnd Return the contents from the current position to the

 end of the stream

through: Return the objects up to and including the first

 occurrence of the specified object or the end of the

 stream, whichever comes first.

throughAll: Return the objects up to and including the first

 occurrence of the specified collection or the end of

 the stream, whichever comes first.

upTo: Return the objects up to but not including the first

 occurrence of the specified object or the end of the

 stream, whichever comes first. The stream will be

 positioned after the specified object.

upToAll: Return the objects up to but not including the first

 occurrence of the specified collection or the end of

 the stream, whichever comes first. The stream will be

 positioned before the specified collection.

Positioning
The basic positioning messages are:

atEnd Are we at the end of the stream?

position The current position in the stream

position: Set the current position

readPosition The current reading position in the stream

writePosition The current writing position in the stream.

reset Set the position to the start of the stream

setToEnd Set the position to the end of the stream

skip: Skip forward the specified number of elements

skipSeparators Skip foward over separator characters: space, tab,

 carrriage return, etc.

skipUpTo: Position the stream just before the object.

skipThrough: Position the stream just after the object.

You can move to different positions in the stream using the position: message or one of the skip

messages. For convenience, reset and setToEnd set the position to the start and the end of the stream. You

can determine if you are at the end of the stream by sending atEnd, which returns a Boolean. In fact, when

reading a stream we often stay in a loop that looks something like like one of the following

Streams 6

[readStream atEnd]
 whileFalse: [self myProcessObject: stream next].

[readStream atEnd]
 whileFalse:
 [doneWithStream := self myProcessObject: readStream next.
 doneWithStream ifTrue: [readStream setToEnd]]

Example
Here's an example of writing to a stream on an array then reading it back. Notice that we can write out

collections either as a collection object using nextPut: or as a sequence of individual objects using

nextPutAll:. When we read back what we wrote, it comes back just as we wrote it. Following the code of

the example is the output to the Transcript. (Note that the Transcript, an instance of TextCollector, also responds

to many of the same writing messages as a Stream. You can therefore use messages such as cr,

nextPutAll:, print:, and flush with the Transcript.)

stream := ReadWriteStream on: (Array new).
stream nextPut: 2.
stream nextPut: 'How are you'.
stream nextPutAll: 'Alec'.
stream nextPutAll: #('Fine' 'thanks').
stream nextPut: OrderedCollection new.
stream reset.
[stream atEnd]
 whileFalse:
 [Transcript cr; show: stream next displayString]

2
How are you
$A "16r0041"
$l "16r006C"
$e "16r0065"
$c "16r0063"
Fine
thanks
OrderedCollection ()

	Streams
	Streams and their uses
	Streams in printOn:
	Streams in file access
	Streams on strings

	The benefits of a Stream
	Creating streams
	Reading, writing, and positioning streams
	Writing
	Reading
	Positioning
	Example

