
Chapter

11
Collections

Collections are objects that contain a group of other objects. Collections are among the most useful classes in

Smalltalk and you'll find yourself using them constantly — even a string is nothing more than a collection of

characters. The top level collection class is Collection, which is an abstract superclass that provides the generic

behavior common to all collections. For example, Collection implements the methods size and capacity,

the testing methods isEmpty, contains:, and includes:, the converting methods such as asArray,

asOrderedCollection, the powerful enumeration methods such as do: and collect:, and the basic

adding and removing methods add:, remove:, and remove:ifAbsent:. (Many of these methods are

inherited by subclasses of Collection, but some act as placeholders to tell subclasses they should implement the

method appropriately.)

The main subclasses of Collection that you will use are Bag, Set, and SequenceableCollection.

SequenceableCollection is an abstract superclass for all the collections that understand sequencing, such as

Array, OrderedCollection, and String. Because it expects all its subclasses to understand the concept of

sequencing, SequenceableCollection adds behavior such as first and last, which is not generic enough to be

placed in Collection. As we go further down the hierarchy, each subclass provides increasingly specific

functionality, sometimes by adding new methods and sometimes by overriding methods defined in one of its

superclasses. The hierarchy of basic collection classes that you will use is shown in Figure 11-1.

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Collections 2

Collection

Bag Set

Dictionary

IdentityDictionary

SequenceableCollection

Interval LinkedListOrderedCollection

SortedCollection

ArrayedCollection

Array ListCharacterArray

String Text

Figure 11-1. The basic collection hierarchy.

Not described here, but worth looking at so you know of their existence are: IdentitySet, WeakDictionary,

Symbol, IntegerArray, ByteArray, WordArray, RunArray, WeakArray, and KeyedCollection.

Unfortunately, the hierarchy doesn't tell us as much as we'd like about the operations that can be performed.

For example, if we look at removing items from a collection, Bags and Sets allow removal. In the

SequenceableCollection hierarchy, Intervals don't allow removal, but LinkedLists and OrderedCollections do.

Most ArrayedCollections don't allow removal, but Lists do allow it. So we'll try to generalize where possible, but

will largely have to consider each class on its own.

Because there is so much specific functionality associated with collections, we will look at mainly the basic

functionality. We'll start by looking at the main types of collection, with a brief explanation of how to use them

and when you might use them. Then we'll take a look at the general mechanism for creating a collection, at the

general aspects of adding objects and removing objects, at the powerful enumeration methods that are used to

loop through collections, and at the general messages that collections understand. However, there is a vast

amount of behavior that I’ve left out so it’s well worth spending some time looking through the Collection

hierarchy. If you use a Full Browser (from the VisualWorks Advanced Tools) and switch on supers, you will get

a better feel for what behavior is inherited and what is implemented by each collection you look at.

Collection types
In what follows, note that collection indexing schemes are 1-based, rather 0-based as in C or C++. If the

collection allows indexing, such as an Array or an OrderedCollection, the first element has index 1.

OrderedCollection
OrderedCollection is the workhorse of collection; I use OrderedCollections and Dictionaries more than any

other types of collection. OrderedCollection stores objects in the order they were added, and will grow and

shrink as you add and remove objects. Because the size is dynamic, OrderedCollections are generally more

useful than Arrays, which are not dynamic. Because OrderedCollections are sequenced, you can use them as

queues (FIFO) or stacks (LIFO). Here's an example that shows the chronological sequencing of

OrderedCollection. You will see the string 'xyz' if you do the following.

orderedCollection := OrderedCollection new.

Collections 3

orderedCollection add: 'xyz'; add: 'abc'.
orderedCollection first inspect

The basic operations to add and remove items in an OrderedCollection are add:, remove:, and

remove:ifAbsent:. This last message is useful because remove: raises an exception if the object is not

present. For example,

orderedCollection := OrderedCollection new.
orderedCollection add: #here.
orderedCollection remove: #here.
orderedCollection remove: #there ifAbsent: [nil].

OrderedCollections also understand a lot of messages related to order of objects in the collection, such as

first, last, after: and before:.

SortedCollection
If you want the objects sorted according to some collating sequence, use a SortedCollection. SortedCollection

is subclassed off OrderedCollection and inherits most of its behavior. The main difference between a

SortedCollection and an OrderedCollection is the order in which it keeps its elements. SortedCollection keeps its

elements in sorted order by comparing pairs of elements. It's default mechanism is to send the <= message to one

element, passing the second element as a parameter. The alternative way is for the programmer to specify a

block of code that will compare two objects, in which case the SortedCollection executes the block for pairs of

elements.

If you let the SortedCollection send the <= message, the only requirement is that each object you add to the

collection responds to the <= message and returns true if it is less than or equal to the parameter object, and false

otherwise. This generally means that SortedCollections will contain homogeneous objects, objects of the same

type. Numbers and strings both know how to respond to <= but if you are storing your own objects, you will

need to implement <=. Your implementation may compare the values of instance variables, or may do something

as simple as

MyClass>> <= anObject
 ^self printString <= anObject printString

If you choose to specify the sort algorithm, you can create an instance of SortedCollection by sending the

sortBlock: message to the SortedCollection class. The parameter is the block of code that does the

comparison. For example,

sortedCollection := SortedCollection sortBlock: [:x :y | x name < y
name]

Alternatively, you can specify a new sort algorithm by sending the sortBlock: aSortBlock message

to the instance of SortedCollection. This causes the collection to be resorted, and any additions to be put in the

correct place. You can create a new instance of SortedCollection, with a different sort sequence, by sending a

collection the message asSortedCollection: aSortBlock.

Keeping elements in sorted order makes it expensive to add objects. If you spend a lot more time adding

elements than reporting on elements, there are three options that are more efficient. The first is to use a List,

Collections 4

which is described below. The second is to use an OrderedCollection, then to ask a

SequenceableCollectionSorter to sort it in place when required. The easiest way to do this is to send the

messages sort: or sort:using: to the SequenceableCollectionSorter class. For example, the following

code sorts the array in place, giving #(1 2 3 4 5).

array := #(5 4 3 2 1).
SequenceableCollectionSorter sort: array.
array inspect.

The third option is to send the collection asSortedCollection or asSortedCollection: if you

don't mind getting back a new collection.

List
List is a collection that provides the chronological ordering (and indexing) of OrderedCollection, the sorting

of SortedCollection, and the dependency notification of Model. Because of their dependency notification, Lists

are used by both SelectionInList and MultiSelectionInList in user interface applications. Because of the

versatility of Lists, there is a school of thought that says Lists should be used instead of OrderedCollections and

SortedCollections. (For a time I did just this, but have now gone back to using the OrderedCollection as my

workhorse. I liked having to type in only four characters for the class name, but disliked the seeming lack of

elegance of a List. In particular, I like my classes to do one thing well, but a List tries to be all things to all

people. Also, I never really liked inspecting a List.)

To sort a List in place, simply send it the sort message, or the sortWith: message to specify a sort

algorithm. Internally, Lists use a SequenceableCollectionSorter to sort themselves.

Array
Arrays are fixed size collections where objects are stored in fixed locations, referenced by integer indexes.

Since Arrays are fixed size, you can't add to the end of an array or delete elements from an array. However,

Arrays provide faster accessing than other collections and are most useful when there will be lots of accessing.

Unlike C and C++, where all elements of an array must be of the same type, in Smalltalk, array elements can be

of arbitrary type. The disadvantage of Arrays are that you need to know the size of the array when you create it

and they are of fixed size 1.

If you send the new message to Array, you get an instance of Array with a size of 0, so the usual way to

create an instance of Array is to send the new: message and specify the size. For example,

array := Array new: 10.

The usual way to access an array is to send at:put: to put an object in the array and at: to retrieve the

object at an index. The parameter to at: must be an integer. For example,

array at: 3 put: anObject.
anObject := array at: 3.

1 Actually, you can grow an array in one of two ways: by sending changeSizeTo: or grow to it, or by
creating a Stream on the Array, the latter being the preferred technique. We'll talk more about Streams in
Chapter 13, Streams.

Collections 5

Dictionary
Dictionary is one of my favorite classes. A Dictionary is a collection where you look up values based on a

key, and the key can be any object (except nil). A Dictionary is like an Array in that you access it using at: and

at:put:. However, whereas Arrays are fixed size and you need an integer index to access elements, a

Dictionary can automatically grow, and you can access elements using any object as a key. For example,

dictionary := Dictionary new.
dictionary at: 'abc' put: 'def'.

Dictionaries store Associations, so besides at:put:, you can add Associations directly to a Dictionary. The

example above could also be written as one of:

dictionary := Dictionary new.
dictionary add: 'abc' –> 'def'.

dictionary := Dictionary new.
dictionary add: (Association key: 'abc' value: 'def').

To remove an object from a Dictionary, send either the removeKey: or removeKey:ifAbsent:

message.

In the section on centralized error messages in Chapter 20, Error Handling, we'll see the use of Dictionaries

with symbols as their keys. If you choose to use objects of your own creation as keys, you will need to

implement = and hash for your object (whenever you implement =, you need to implement hash because two

objects that are equal should also generate the same hash value).

IdentityDictionary uses == rather than = to compare keys, so it is a little faster than Dictionary if you have

symbols for keys. Since many Dictionaries use symbols for their keys, you'll often find IdentityDictionaries used

in preference to Dictionary. However, where Dictionaries keep a collection of Associations, IdentityDictionaries

keep two parallel collections for keys and values. Because of the way PoolDictionaries are implemented, you

can't use an IdentityDictionary as a PoolDictionary.

Set
A Set is an unordered collection of unique objects, so if you want a collection that guarantees no duplicates,

use a Set. There is no structured accessing of a Set because there is no order to the elements. Instead, the way to

access the elements of a Set is through the enumeration messages described below. If you try to add an object

that already exists, the Set silently ignores it. If you try the following, you'll see a size of 2 since nothing was

added when we tried to add the duplicate 7.

set := Set new add: 7; add: 8; add: 7; yourself.
set size inspect

When adding an object, a Set uses both the hash and = messages to determine if it is a duplicate of any

other object in the collection. Sets are fairly expensive if you are doing a lot of adding, so use them only when

you specifically want the property of uniqueness. One use of Set is to test for duplicates in a collection; for

example, the following gives a Boolean that says whether the collection includes duplicate items.

includesDuplicates := collection size ~~ collection asSet size.

Collections 6

Bag
A Bag is another unordered collection that contains objects of arbitrary type. It is very similar to a Set except

that a Bag keeps track of the number of occurrences of each object. Like a Set, it sends both hash and = to

determine if an object already exists in the collection. One use of a Bag would be to collect duplicate items from

another type of collection by doing something like the following. However, I've never seen a Bag used in an

application.

duplicateList := List new.
collection asBag valuesAndCountsDo:
 [:each :count | count > 1 ifTrue: [duplicateList add: each]].

LinkedList
A LinkedList is a collection where each element points to the next element. OrderedCollections can do

everything LinkedLists can do, the only difference being that LinkedLists are more efficient at doing large

numbers of inserts and deletes. Elements of a LinkedList must be instances of Link or one of its subclasses (or at

least be polymorphic with Link — respond to the same messages), which means that you will usually create a

new subclass of Link in order to use a LinkedList. VisualWorks uses LinkedLists to manage processes, so

Process is defined as a subclass of Link. This is the only example of LinkedList I've seen used.

Creating new collections
There are three usual ways to create a collection. One is to send the new message to the collection class. The

second is to send new: aCapacity. The third is to use a message from the with: family and pass in the

initial elements of the collection.

new:
The underlying instance creation mechanism is to use new:, which is implemented as a primitive by the

class Behavior. Some of the collection classes override new:, usually invoking super new: then adding class

specific code. new: creates an instance of a collection with indexed variables, where the parameter to new:

specifies the number of indexed variables. (You can tell if a class is indexed because the top line of the class

definition will say variableSubclass: rather than subclass:. The other type of variable is the named

variable, which is an instance variable with a name.) For fixed size collections such as Array, the parameter to

new: is both the capacity and the size of the collection. For collections that can grow, such as

OrderedCollection, the collection has an initial size of 0, and the parameter specifies the capacity — the number

of elements the collection can hold before it has to grow.

Because new: is used to specify a capacity, it's poor style to use new: to pass in parameters other than the

capacity. When writing your own classes, it's better style to use with:, or to specify the parameter type in the

instance creation message, such as newLabel:.

Collections 7

new
The new message is also implemented by Behavior but is overridden by the collection classes, and is usually

implemented by sending new: someInitialSize. For example,

OrderedCollection class>>new
 ^self new: 5

Many collections will grow automatically as you add to them, so you don't need to specify an initial size and

can simply send new. However, growing a collection is expensive, so if you know how large the collection will

be, it's more efficient to send the new: message, specifying the size. In a timing test, it took over three times as

long to add a hundred items to an OrderedCollection when the OrderedCollection was created using new as

when it was created using new:. The first example took 1253 microseconds while the second example took 372

microseconds.

orderedCollection := OrderedCollection new.
1 to: 100 do: [:index | orderedCollection add: index]

orderedCollection:= OrderedCollection new: 100.
1 to: 100 do: [:index | orderedCollection add: index]

The with: family
You can create a collection and populate it with some initial elements by sending the class a message from

the with: family of messages. There are five messages, each specifying a different number of objects to add. If

you want to add more than four objects, they must already be in a collection of some type (in which case you

could have sent the original collection the asSomeTypeOfCollection message; for example,

asOrderedCollection).

with: objectOne
with: objectOne with: objectTwo
with: objectOne with: objectTwo with: objectThree
with: objectOne with: objectTwo with: objectThree with: objectFour
withAll: aCollectionOfObjects

For example,

collection := OrderedCollection with: 'how' with: 'are' with: 'you'.
collection := List withAll: #('how' 'are' 'you' 'today' 'Alec?').

Adding to and removing from Collections
The standard messages to add elements to a collection are at:put: for keyed collections such as Array and

Dictionary, and add: for collections such as Bag, Set, and OrderedCollection. The general behavior when

adding to or removing from a collection is to return the object being added or removed. Thus, both add: and

at:put: return the object being stored. When you add to a collection, the collection may have to grow to fit in

the new object. OrderedCollections will grow in size automatically when necessary. For more information, see

the section on Growing Collections below. An alternative, and efficient approach to adding objects to collections

is to create a Stream on the collection. We'll talk more about Streams in Chapter 13, Streams.

Collections 8

A common bug when using add: is forgetting that add: returns the object added rather than self. So, if you

are creating a collection and adding to it, the following will not give you what you expect.

collection := OrderedCollection new
 add: objectOne;
 add: objectTwo.

Instead, use one of the following techniques.

collection := OrderedCollection new.
collection
 add: objectOne;
 add: objectTwo.

(collection := OrderedCollection new)
 add: objectOne;
 add: objectTwo.

collection := OrderedCollection new
 add: objectOne;
 add: objectTwo;
 yourself.

The standard messages to remove elements from a collection are remove: and remove:ifAbsent:. For

keyed collections such as Dictionary, use removeKey: and removeKey:ifAbsent:. Note that you can't

remove elements from an Array. When you send remove:, the object that was removed will be returned. If the

object can't be found in the collection, an exception is raised. The alternative message remove:ifAbsent:

will return the object if it is successfully removed. If the object can't be found, it will execute the block of code

passed as the parameter to ifAbsent:, returning the value of the block.

A subtle remove: bug is to iterate over a collection and remove from the same collection. This will cause

problems as the collection may be reorganized underneath you when you remove elements. Instead, you should

iterate over a copy of the collection and remove from the original collection. For example,

collection:= OrderedCollection withAll: #(1 2 3 4 5 6).
collection copy do: [:each | each even ifTrue: [collection remove:
each]].

Sometimes you don't even need to remove objects explicitly, Instead, you can use select: or reject: to

create a new collection. We'll talk more about these messages below, in the section on Enumerating, but here are

examples of doing the above operation using these two messages.

collection:= OrderedCollection withAll: #(1 2 3 4 5 6).
collection select: [:each | each odd].

collection:= OrderedCollection withAll: #(1 2 3 4 5 6).
collection reject: [:each | each even].

Enumerating
One reason it is difficult to have off-by-one errors or array size errors in Smalltalk is that collections provide

some very powerful ways of iterating through their elements without having to specify sizes or bounds.

Collections 9

Collections know how big they are. Methods that do things over all the elements of a collection live in the

enumerating protocol.

The enumeration messages go through each element in the collection, executing a block of code for each

element. The block of code always takes the element as a parameter. In the examples below, you'll see that

instead of getting fancy with the parameter name, I use each (I also use index for objects that are guaranteed to

be index numbers). This has the benefit that if you see each or index you know it refers to the collection element

being processed. You can usually tell what the item is from the collection name or from where it was built.

do:
The do: message is the basic enumeration message. It goes through all the items in the collection (in order,

if the collection is sequenceable) and performs a programmer-specified block of code for each item in the

collection. For example,

#(1 2 3 4 5) do: [:each | Transcript cr; show: each printString].

The block is executed for each item in the collection and is passed that item as a parameter. Use do: when

you want to perform some action for all or some of the elements in the collection. If you just want to create a

new collection, use one of the messages below. The method reverseDo: iterates over the collection in

reverse.

If you send do: to a Dictionary, it iterates through the values in the Dictionary. Three other methods,

keysDo:, associationsDo:, and keysAndValuesDo: iterate over the keys, the associations, and the

key and value pairs.

Another message, with:do:, allows you to iterate over two parallel collections, passing corresponding

elements from the two collections to the do: block.

collect:
The collect: message allows you to do something for each item in the collection and puts the result of

your action in a new collection. For example, if you wanted to create a new collection of the squares of a

collection of numbers you could do either of the following. However, collect: is both better style and is

more efficient because it doesn't use any variables declared outside the block. A timing test showed the first

technique taking 103 microseconds while the second technique took 31 microseconds.

squareCollection := List new.
#(1 2 3 4 5) do: [:each | squareCollection add: each * each].

squareCollection:= #(1 2 3 4 5) collect: [:each | each * each].

It's useful to remember collect: because it's easy to find yourself writing code similar to the first example

when you should be using collect:. Any time you iterate over a collection and add objects to another

collection, consider using collect: or select:.

Collections 10

select:
The select: message allows you to create a subcollection where items from the original collection are

selected based on some condition being true for them. For example, we get the result #(1 3 5) from the

following example.

#(1 2 3 4 5) select: [:each | each odd].

reject:
The reject: message is similar to select: but works the opposite way — items are rejected from the

new subcollection if the condition is true. Using the same example as for select: we get the array #(2 4).

#(1 2 3 4 5) reject: [:each | each odd].

detect:
The detect: message returns the first item in a collection that satisfies a condition. For example, we get

the value 4 from the following example.

 (1 to: 5) detect: [:each | each > 3].

If no item satisfies the condition, an exception is raised. You can avoid this by using detect:ifNone:

and providing another block which is executed if no item satisfies the condition. For example, we get the value

99 from this example.

 (1 to: 5) detect: [:each | each > 30] ifNone: [99].

inject:into:
The inject:into: message is a strange message. Some people never use it, while others love it and use it

whenever possible. The classic example is subtotaling.

(1 to: 5) inject: 0 into: [:subtotal :each | subtotal + each].

When the block is executed for the first item in the collection, the parameter to the inject: keyword is

passed in as the first parameter. The block returns subtotal + each, which for the first item is 0 + 1. This returned

value is then used as the first parameter for the next invocation of the block. Each invocation, the block returns a

value which is passed in as the first parameter for the next invocation. In fact, it might be easier to understand if

we wrote the above example as:

(1 to: 5) inject: 0 into: [:injectedValue :each | injectedValue +
each].

It takes a while to get used to inject:into: and to figure out situations where it is useful. To make this

process a little shorter, here are some examples of its use. Inspect the results and understand what each example

is doing.

(1 to: 5) inject: 0 into: [:max :each | max max: each].

Collections 11

(1 to: 5) inject: 1 into: [:factorial :each | factorial * each].

#('Now' 'is' 'the' 'time' 'for' 'all' 'good' 'men')
 inject: String new
 into: [:string :each | string, each, ' '].

(#(3 $x 'hello' #mySymbol)
 inject: String new writeStream
 into: [:stream :each |
 stream
 print: each class;
 nextPutAll: ' value ';
 print: each;
 cr; yourself]) contents.

Note that in this last example, we send yourself as the last message to make sure that the stream is

returned from the block. A common error is to not return the object that will be injected in the next iteration. In

this case we didn't actually need yourself, but it's good practice to send it just to make sure the correct object

is returned.

Enumeration wrap-up

select:
collect:
detect:
 all written in terms of do:

Collection
(abstract superclass)

do:

Array

do:

Bag

do:

LinkedList

Note: Some of the concrete subclasses,
such as OrderedCollection, override
some or all of the enumeration methods
in order to provide better performance or
because their implementation requires
objects to be added in a different way.

Figure 11-2. Implementing behavior in terms of subclass responsibilities.

The abstract superclass Collection implements all the enumeration methods in terms of do:. By requiring the

subclasses of Collection to implement do: in a way that is appropriate for the subclass, the other enumeration

methods can then be defined by Collection and inherited by all its subclasses. This is shown in Figure 11-2. It

illustrates the useful object-oriented technique of having an abstract superclasses implement behavior in terms of

a few undefined methods that are implemented by its subclasses.

General messages for collections
Below are some of the messages that collections respond to. I've listed them here to give you a feel for the

types of things you can do. However, not all collections respond to all the messages. For example, some of them

only make sense with collections that have a concept of sequence, while others only make sense in collections

where you can remove items.

Collections 12

Adding objects
You can add an object with at:put: and add:, you can add to the front of the collection (addFirst:),

to the end (addLast:, which is the same as add:), after another object (add:after:) or before another

object (add:before:). You can add all the objects in another collection to this collection (addAll:,

addAll:after:, addAll:before:).

Removing objects
Not all collections allow you to remove things. For example, what does it mean to remove the second

element of an array, or to remove the third character in the string 'abcde'? Collections that don't allow you to use

add: also don't allow you to use remove:.

To remove an object from a collection that allows removing, you again have many options. You can remove

an object (remove:), which raises an exception if the object is not found, or you can remove an object without

raising an exception (remove:ifAbsent:). You can remove the first object in the collection

(removeFirst), or the last (removeLast), or the first or last so-many objects (removeFirst: and

removeLast:). You can remove all the objects that satisfy a condition (removeAllSuchThat:) or all the

objects that are contained in another collection (removeAll:). To remove objects from Dictionaries send the

removeKey: or removeKey:ifAbsent: messages.

Accessing and locating objects
To access objects in a collection, you again have a rich set of options. If the collection understands indexing

or keyed access, you can send at: to get the object at that index or key. For collections that understand

sequencing, you can get the first object (first) or the last object (last), and you can find the object before or

after another object (before: and after:). You can find the first position of an object (indexOf: or

indexOf:ifAbsent:), or the last position of an object (lastIndexOf: or

lastIndexOf:ifAbsent:). From there you can find the position of the next or the previous object

(nextIndexOf:from:to: and prevIndexOf:from:to:). You can also find the position of a

subcollection of the original collection (indexOfSubCollection:startingAt: or

indexOfSubCollection:startingAt:ifAbsent:).

Replacing objects
You can replace all occurrences of a particular object with another object (replaceAll:with:), or do the

replacement within a range (replaceAll:with:from:to:). Or you can replace all the elements in a range

with elements from another collection (replaceFrom:to:with: or

replaceFrom:to:with:startingAt:). Finally, you can copy a collection, adding another object to it as

you copy it (copyWith:), or copy it and lose all the elements that are equal to a specified object

(copyWithout:).

Collections 13

Sizes and counts
Collections will tell you how many elements they contain (size) and how many objects they are capable of

holding (capacity). Note that for Arrays, these give the same answer. A collection will also tell you how

many times an object occurs in it (occurrencesOf: anObject).

Testing
Collections respond with Boolean values (true or false) to the following messages. You can tell if a collection

is empty (isEmpty) and you can see if an object is contained in a collection (includes: anObject). A

similar method, contains: [some code], returns true if the code block evaluates to true for any item in

the collection. For example, lines three and four both evaluate to true.

collection := OrderedCollection new.
collection add: 'abc'; add: 'def'; add: 'xyz'.
collection includes: 'def'.
collection contains: [:each | each includes: $y]

Creating other collections from a collection.
Collection provides several methods for creating a collection of one type from a collection of another type.

They are located in the converting protocol. For example, you can send the following messages to create a

new collection of the specified type: asArray, asBag, asList, asOrderedCollection, asSet,

asSortedCollection, asSortedCollection: aSortBlock. If you do the following you will see an

instance of SortedCollection with elements 'abc', 'mno', and 'xyz'.

list := List new.
list add: 'xyz'; add: 'abc'; add: 'mno'.
list asSortedCollection inspect.

You can also send reverse to a sequenceable collection to create a new collection in reverse order.

Growing collections
Many collections can grow in size simply by sending the add: message. If the collection is not large enough

to add another object, it expands the collection. (It does this by creating a new collection of larger capacity,

copying over the collection elements, then becoming the new collection.) However, expanding the collection is

fairly expensive, so if you know the eventual size of the collection it's more efficient to create it with the new:

message, passing a value that is your best guess of the eventual size.

If you create a subclass of a collection that can grow and add instance variables to your subclass, they won't

be automatically copied when the collection grows. To make sure that the values of your instance variables are

retained when the collection grows, you should override the copyEmpty: method that is defined for

Collection. The best way to do this is something like the following. For more information on copyEmpty:, see

Chapter 25, Hooks into the System.

MyClass>>copyEmpty: size
 | new |
 (new := super copyEmpty: size)

Collections 14

 instVar1: self instVar1;
 instVar2: self instVar2.
 ^new

	Collections
	Collection types
	OrderedCollection
	SortedCollection
	List
	Array
	Dictionary
	Set
	Bag
	LinkedList

	Creating new collections
	new:
	new
	The with: family

	Adding to and removing from Collections
	Enumerating
	do:
	collect:
	select:
	reject:
	detect:
	inject:into:
	Enumeration wrap-up

	General messages for collections
	Adding objects
	Removing objects
	Accessing and locating objects
	Replacing objects
	Sizes and counts
	Testing
	Creating other collections from a collection.

	Growing collections

