
Music and Sound Processing in Squeak Using Siren

Stephen Travis Pope

Center for Research in Electronic Art Technology (CREATE)

University of California, Santa Barbara

Introduction
The Siren system is a general-purpose music composition and production
framework integrated with Squeak Smalltalk (1); it is a Smalltalk class li-
brary of about 320 classes (about 5000 methods) for building various mu-
sic- and sound-related applications. Siren can be used on all Squeak plat-
forms with or without support for MIDI or audio input/output (I/O). The
system’s Smalltalk source code is available for free on the Internet; see the
Siren package home page at the URL http://www.create.ucsb.edu/Siren.

This chapter is divided into several sections: (a) the Smoke music de-
scription language used within Siren, (b) Siren’s real-time MIDI and sound
I/O facilities, (c) the graphical user interfaces (GUIs) for Siren objects, and
(d) Siren applications–music/sound databases, and how a composer might
use Siren. The presentation is intended for a Squeak programmer who is in-
terested in music and sound applications, or for a computer music enthusiast
who is interested in Squeak. Many references are provided to the literature
on music software and object-oriented programming

Why Siren?
The motivation for the development of Siren is to build a powerful, flexible,
and portable computer-based composer’s tool and instrument. In the past,
real-time musical instruments such as acoustic instruments or electroacoustic
synthesizers have had quite different characteristics from software-based re-
search and production tools. (There is of course an interesting gray area, and
also a basic dependency on how the implement is applied–hammer-as-
instrument, or piano-as-tool.) One possible description of the basic differ-
ences between tools and instruments is given in Table 1.

Characteristic Too l Instrument

Typical application construction expression

Range of application (hopefully) broad narrow is acceptable

User interface simple, standard potentially complex but learnable

Customizability none or little per-user customizability

Application mode for planned tasks exploratory, experimentation

Table 1: Differences between Tools and Instruments

The Siren system is designed to support composition, off-line (i.e., non-
interactive) realization, and live performance of electroacoustic music with
abstract notations and musical structure representation, as well as sound and
score processing. Other desired application areas include music/sound data-

2

Music and Sound Processing Using Siren

bases, music analysis, and music scholarship and pedagogy. It should ide-
ally be flexible and formal like a tool, and support expression and custom-
izability like an instrument.

The technical goal of the software is to exhibit good object-oriented de-
sign principles and elegant state-of-the-art software engineering practice. It
needs to be an easily extensible framework for many kinds of intricately
structured multimedia data objects, and to provide abstract models of high-
level musical constructs, and flexible management of very large data sets.

Elements of Siren
There are several packages that make up the Siren system:

• a general-purpose music representation system—the Smoke music rep-
resentation language (the name, suggested by Danny Oppenheim, is de-
rived from “Smallmusic object kernel”), which consists of music mag-
nitudes, events, event lists, generators, functions, and sounds;

• a collection of I/O-related objects such as voices, schedulers, and driv-
ers—real-time and file-based I/O objects for sound and MIDI;

• GUI components for musical applications—an extended GUI frame-
work, widgets, and tools; and

• a collection of built-in end-user application prototypes—Squeak editors
and browsers for Siren objects.

Figure 1 shows the basic components of Siren. At the center are the
class categories of the Smoke music and multimedia representation lan-
guage. On the left side are the editors and applications for manipulating
Smoke objects in Siren. To the right are the various objects that handle in-
put-output in various formats and real-time drivers. The components on the
lower-right that are shown in courier typeface are low-level I/O driver inter-
faces written in C.

Figure 1: Siren Architecture

3

Music and Sound Processing Using Siren

History and Relation to Composition
Siren and its direct hardware and software predecessors stem from music
systems that developed in the process of my composition. Starting in the
mid-1970s, I used non-real-time software sound synthesis programming
languages for my composition; I had the very good luck to learn the Mu-
sic10 language that was based on SAIL (Stanford AI Language) and ran on
DEC PDP-10 mainframe computers. This was a very advanced (for its time)
and flexible programming language that served as a synthesis and a score-
generation language at the same time. I quickly became accustomed to
building special representations for each composition and to having flexible
high-level tools for music. When I moved onto DEC PDP-11-series mini-
computers running UNIX in the late 1970s, I was forced to start writing my
own composition tools in the highest-level languages to which I had access.
(This led to having to do my own ports of Lisp and Smalltalk virtual ma-
chines, but that’s another chapter altogether.) The ramification of this is that
the software I describe below (including Siren) is always oriented primarily
towards the representation of musical structures and compositional algo-
rithms, with real-time performance or actual sound synthesis as secondary
considerations. Siren today remains primarily a music description language
and composition structuring tool, with a few MIDI I/O features, simple
graphical tools, and hooks to other Squeak facilities for sound generation.

My first generation of object-oriented music software, called ARA, was an
outgrowth of a Lisp rule-based expert system I wrote between 1980 and
1983 for the composition of Bat out of Hell (2). ARA had a rather inflexible
music representation (designed for a specific software instrument written in
the Music11 sound synthesis language), but allowed the description and
manipulation of “middle-level” musical structures such as chords, phrases,
and rhythmical patterns in the rules of the expert system.

The next generation was the DoubleTalk system (3, 4), which used a
Smalltalk-80-based Petri net editing system built (in Berkeley Smalltalk) by
Georg Heeg et al. at the University of Dortmund, Germany. I used Double-
Talk for the composition of Requiem Aeternam Dona Eis (1986). This sys-
tem allowed me to “program” transitions between states of the composi-
tional system using a Prolog-like declarative language that was used to
annotate the Petri nets. To execute a DoubleTalk net, one defined its initial
“marking”—the placement and types of tokens distributed among the
nodes—and then ran the Petri net simulator, the result of which was a score
generated by the simulated net’s transitions.

In 1986, I started working at Xerox PARC and also at the Stanford
University Center for Computer Research in Music and Acoustics
(CCRMA). I wrote the first flexible version of a Smalltalk music description
language while there, which served as the foundation for the HyperScore
ToolKit (5). This package was used (among others) for the composition
Day (1988), and it was the first to support real-time MIDI I/O as well as
graphical notations. (This was the only composition for which I have used
MIDI, and the last for which I tried to build graphical tools. I have only done
the minimum to support MIDI and GUIs in my tools since 1988.)

Siren’s direct predecessor, known as the MODE (Musical Object De-
velopment Environment) (6, 7), was used for Kombination XI (1990/98) (8)
and All Gates Are Open (1993/95). The MODE was based on ParcPlace
Systems’ VisualWorks implementation of Smalltalk and supported sound

4

Music and Sound Processing Using Siren

and MIDI I/O as well as specialized interfaces (via user primitives) to sound
analysis/resynthesis packages such as a phase vocoder, and to special-
purpose mixing hardware such as the Studer/Dyaxis MacMix system.

In each of these cases, some amount of effort was spent—after the
completion of a specific composition—to make the tools more general pur-
pose, often making them less useful for any particular task. Siren (9, 10) is a
re-implementation of the MODE undertaken in 1997-9; it is based on the
representations and tools I am using in the realization of Ywe Ye, Yi Jr Di
(work in progress). The “clean-up” effort was minimized here; the new Si-
ren package is much more useful, but for a much smaller set of tasks and at-
titudes about what music representation and composition are. If Siren works
well for other composers, it is because of its idiosyncratic approach, rather
than its attempted generality (i.e., the instrument approach, rather than the
tool approach).

Siren and its predecessors are documented in the book “The Well-
Tempered Object: Musical Applications of Object-Oriented Software Tech-
nology” (11), in a series of papers in the Proceedings of the 1982, 1986,
1987, 1989, 1991, 1992, 1994, 1996, 1997, and 1999 International Computer
Music Conferences (ICMCs), in an extended article in Computer Music
Journal from 1992 (6), and in the 1997 book Musical Signal Processing
(12). Many of these papers and related documents are available from the
Web URL http://www.create.ucsb.edu/~stp/publ.html.

Programming Languages for Music
In the computer music literature (e.g., 11), the primary programming lan-
guages used for advanced experimental systems (to this day) have been Lisp
and Smalltalk; this can be traced to several basic concepts. Both languages
provide an extremely simple, single-paradigm programming model (i.e., all
data are of the same basic “type” and all behavior is accessed in the same
way), and both have consistent syntax that scales well to large expressions
(this is a matter of debate among “language bigots”). Both can be inter-
preted or compiled with ease and are often implemented within development
environments based on one or more interactive “read-eval-print loop” ob-
jects. The history of the various Lisp machines and Smalltalk-based operat-
ing systems demonstrates the scalability of Lisp and Smalltalk both “up”
and “down,” so that everything from high-level applications frameworks to
device drivers can be developed in a single language system. The Smalltalk
history shows the independent development of the programming language,
the basic class libraries, the user interface framework, and the delivery plat-
form across at least four full generations.

Two important language features that are common to both Lisp and
Smalltalk are dynamic typing and dynamic polymorphism. Dynamic typing
means that data type information is specific to (run-time) values and not to
(compile-time) variables as in many other languages. In Pascal or C, for ex-
ample, one declares all variables as typed (e.g., int i; means that variable i is
an integer) and may not generally assign other kinds of data to a variable af-
ter its declaration (e.g., i = “hello”; to assign a string to i). Declaring a vari-
able name in Lisp or Smalltalk says nothing about the types of values that
may be assigned to that variable. While this generally implies some addi-
tional run-time overhead, dynamic binding is a valuable language asset be-

5

Music and Sound Processing Using Siren

cause of the increase it brings in software flexibility, abstraction, and reus-
ability.

Polymorphism means being able to use the same function name with
different types of arguments to evoke different behaviors. Most standard
programming languages allow for some polymorphism in the form of over-
loading of their arithmetical operators, meaning that one can say (3 + 4) or
(3.1 + 4.1) to add integers or floating-point numbers. The problem with lim-
ited overloading (limited polymorphism) is that one is forced to have many
names for the same function applied to different argument types (e.g., func-
tion names like playEvent(), playEventList(), playSound(), playMix(),
etc.). In Lisp and Smalltalk (as well as several other object-oriented lan-
guages) all functions can be overloaded, so that one can create many types of
objects that can be used interchangeably (e.g., many different types of ob-
jects can handle the play message in their own ways). Using polymorphism
also incurs a run-time overhead, but, as with dynamic binding, it can be con-
sidered essential for a language that will be used as the base for an explora-
tory programming environment for music and multimedia applications.

The 1991 book "The Well-Tempered Object" (11) describes the second
generation of O-O music software systems (mid- to late-1980s, the first
generation having started in the mid-1970s), and there are several third-
generation systems in both LISP (Stanford's CLM or CMU's Nyquist) and
Smalltalk (the Symbolic Sound Kyma system, Dmix, Siren).

Representation of Multimedia Objects
There is a rich and diverse literature related to the representation, manipula-
tion, and interchange of multimedia data in general, and musical sound and
scores in particular. Two useful surveys are those by Roger Dannenberg
(13) and Geraint Wiggins et al. (14).

Among the important issues are (a) which media related to sound and
music are to be supported—recorded sound, musical performance, musical
structure; (b) what level of sonic semantics and musical structure is to be
supported, and (c) how exactly the representation is to capture an actual per-
formance or recording. In many systems, issue (a) is addressed by a small
and fixed set of data types (e.g., sound-only, control-only, or event-only),
and a trade-off is seen between issues (b) and (c), that is, between what
Wiggins et al. call “structural generality” and “representational complete-
ness.”

Many object models for complex domains (musical or not) start by de-
fining a set of classes of objects that represent the basic “units of measure”
or magnitudes of the domain. In the case of sound and music, this means
classes to model the basic properties of sounds and musical events such as
time (and/or duration), pitch, loudness, and spatial dimensions. Along with
some model of generic “events” (at the level of words or musical notes),
one must build micro-level functions and control objects, and higher-level
“event lists” to represent sentences, melodies, and other composite events.
This basic event/event-list design is very similar to the design patterns found
in graphics systems based on display lists.

6

Music and Sound Processing Using Siren

The Smoke Music Representation Language
The “kernel” of Siren is the set of classes for music magnitudes, functions
and sounds, events, event lists, and event structures known as the Smallmusic
object kernel, or Smoke) (15). Smoke is described in terms of two related
description languages (verbose and terse music input languages), a compact
binary interchange format, and a mapping onto concrete data structures. All
of the high-level packages of Siren—event lists, voices, sound/DSP, compo-
sitional structures, and the user interface framework—interoperate using
Smoke events and event lists.

Smoke supports the following kinds of description:

• abstract models of the basic musical quantities (scalar magnitudes such
as duration, pitch, loudness or duration);

• instrument/note (voice/event or performer/score) pattern for mapping ab-
stract event properties onto concrete parameters of output media or syn-
thesis methods;

• functions of time, sampled sound, granular description, or other (non-
note-oriented) description abstractions;

• flexible grain-size of “events” in terms of “notes,” “grains,” “ele-
ments,” or “textures”;

• event, control, and sampled sound description levels;

• nested/hierarchical event-tree structures for flexible description of
“parts,” “tracks,” or other parallel/sequential organizations;

• separation of “data” from “interpretation” (what vs. how in terms of
providing for interpretation objects called voices);

• abstractions for the description of “middle-level” musical structures
(e.g., chords, clusters, or trills);

• annotation of event tree structures supporting the creation of heterarchies
(lattices) and hypermedia networks;

• annotation including graphical data necessary for common-practice no-
tation; and

• description of sampled sound synthesis and processing models such as
sound file mixing or DSP.

Given a flexible and abstract basic object model for Smoke, it should be
easy to build converters for many common formats, such as MIDI data,
formatted note lists for software sound synthesis languages (16), DSP code,
or mixing scripts. Additionally, it should be possible to parse live perform-
ance data (e.g., incoming MIDI streams) into Smoke objects, and to interpret
or play Siren objects (in some rendition) in real-time.

The “executive summary” of Smoke from (15) is as follows. Music
(i.e., a musical surface or structure), can be represented as a series of
“events” (which generally last from tens of msec to tens of sec). Events are
simply property lists or dictionaries; they can have named properties whose
values are arbitrary. These properties may be music-specific objects (such as
pitches or spatial positions), and models of many common musical magni-
tudes are provided. Voice objects and applications determine the interpreta-

7

Music and Sound Processing Using Siren

tion of events’ properties and may use “standard” property names such as
pitch, loudness, voice, duration, or position.

Events are grouped into event collections or event lists by their relative
start times. Event lists are events themselves and can therefore be nested into
trees (i.e., an event list can have another event list as one of its events, etc.);
they can also map their properties onto their component events. This means
that an event can be “shared” by being in more than one event list at differ-
ent relative start times and with different properties mapped onto it.

Events and event lists are “performed” by the action of a scheduler
passing them to an interpretation object or voice. Voices map event proper-
ties onto parameters of I/O devices; there can be a rich hierarchy of them. A
scheduler expands and/or maps event lists and sends their events to their
voices.

Sampled sounds are also describable, by means of synthesis
“patches,” or signal processing scripts involving a vocabulary of sound
manipulation messages.

Smoke objects also have behaviors for managing several special types
of links, which are seen simply as properties where the property name is a
symbol such as usedToBe, isTonalAnswerTo, or obeysRubato, and the
property value is another Smoke object, for example, an event list. With this
facility, one can built multimedia hypermedia navigators for arbitrary Smoke
networks. The three example link names shown above could be used to im-
plement event lists with version history, to embed analytical information in
scores, or to attach real-time performance controllers to event lists, respec-
tively.

Music Magnitudes
MusicMagnitude objects are characterized by their identity, class, species,
and value. For example, the pitch object that represents the note named c3
has its particular object identity, is a member of class SymbolicPitch, of the
species Pitch, and has the value ‘c3’ (a string). MusicMagnitude behaviors
distinguish between class membership and species in a multiple-inheritance-
like scheme that allows the object representing “440.0 Hz” to have pitch-
like and limited-precision-real-number-like behaviors. This means that its
behavior can depend on what it represents (a pitch), or how its value is stored
(a floating-point number).

The mixed-mode music magnitude arithmetic is defined using the tech-
nique of species-based coercion, that is, class Pitch knows whether a note
name or Hertz value is more general. This provides capabilities similar to
those of systems that use the techniques of multiple inheritance and multiple
polymorphism (such as C++ and the Common Lisp Object System), but in
a much simpler and scalable manner. All meaningful coercion mes-
sages—for example, (440.0 Hz asMIDIKeyNumber) —and mixed-mode
operations—for example, (1/4 beat + 80 msec)—are defined.

The basic abstract model classes include Pitch, Loudness, and Dura-
tion. These classes are abstract and do not even have subclasses; they sig-
nify what kind of property is being represented. They are used as the species
for families of classes that have their own inheritance hierarchy based on

8

Music and Sound Processing Using Siren

how they represent their values. This framework is easily extensible for
composition- or notation-specific magnitudes.

Figure 2 shows the abstract “representation” class hierarchy on the left
and the concrete “implementation” hierarchy on the right. The lines be-
tween the two sides denote the species relationships, for example, both
HertzPitch and SymbolicPitch are of species Pitch and can defer to the
species for performing mixed-mode operations such as (#c4 pitch + 12
Hz). The representation hierarchy has abstract classes such as Chroma (spe-
cies classes representing objects for pitch and temperament), while the im-
plementation hierarchy has abstract classes such as IntervalMagnitude,
which generalizes the concrete classes with fixed numerical ranges.

Figure 2: Class-Species and Subclass Inheritance Relationships
among Siren MusicMagnitudes

The handling of time as a parameter is finessed via the abstraction of
duration. All times are represented as durations of events, or delays between
events, so that no “real” or “absolute” time object is needed. Duration
objects can have simple numerical or symbolic values, or they can be condi-
tions (e.g., the duration until some event occurs), Boolean expressions of
other durations, or arbitrary blocks of Smalltalk-80 code.

Functions of one or more variables are yet another type of signal-like
music magnitude. The Function class hierarchy includes line segment, ex-
ponential segment, spline segment and Fourier summation functions.

In the verbose Smoke format music magnitudes, events, and event lists
are created by instance creation messages sent to the appropriate classes.
The first three expressions in the examples below create various music mag-
nitudes and coerce them into other representations.

The terse form for music magnitude creation uses post-operators (unary
messages) such as 440 Hz or 250 msec, as shown in the subsequent exam-
ples.

9

Music and Sound Processing Using Siren

Users can extend the music magnitude framework with their own
classes that refine the existing models or define totally new kinds of musical
metrics.

Verbose MusicMagnitude Creation and Coercion Messages

(Duration value: 1/16) asMsec “Answers Duration 62 msec.”
(Pitch value: 60) asHertz “Answers Pitch 261.623 Hz.”
(Amplitude value: ‘ff’) asMIDI “Answers MIDI key velocity 100.”

Mixed-mode Arithmetic

(1/2 beat) + 100 msec “ (0.6 beat”)
‘a4’ pitch + 25 Hz “ (465.0 Hz)”
(#a4 pitch + 100 Hz) asMIDI “ (73 key)”
‘mp’ ampl + 3 dB “ (-4.6 dB)”

Events and Event Lists
The AbstractEvent object in Smoke is modeled as a property-list diction-
ary with a duration. Events have no notion of external time until their dura-
tions become active. Event behaviors include duration and property access-
ing, and “performance,” where the semantics of the operation depends on
another object—a voice or driver as described below.

The primary messages that events understand are: (anEvent duration:
someDurationObject)—to set the duration time of the event (to some Du-
ration-type music magnitude)—and property accessing messages such as
(anEvent color: #blue)—to set the “color” (an arbitrary property) to an
arbitrary value (the symbol #blue). This kind of “generic behavior“ is im-
plemented by overriding the method doesNotUnderstand, which is both
very useful and rather dangerous (as it can make broken methods quite diffi-
cult to debug).

The meaning of an event’s properties is interpreted by voices and user
interface objects; it is obvious that, for example, a pitch property could be
mapped differently by a MIDI output voice and a graphical notation editor.
It is common to have events with complex objects as properties (e.g., enve-
lope functions, real-time controller maps, DSP scripts, structural annotation,
version history, or compositional algorithms), or with more than one copy of
some properties (e.g., one event with enharmonic pitch name, key number,
and frequency, each of which may be interpreted differently by various
voices or structure accessors).

There is no prescribed “level” or “grain size” for events in Smoke.
There may be a one-to-one or many-to-one relationship between events and
“notes,” or single event objects may be used to represent long complex
textures or surfaces.

Note the way that Smoke uses the Smalltalk concatenation message “,”
to denote the construction of events and event lists; (magnitude, magni-
tude) means to build an event with the two magnitudes as properties, and
(event, event) or ((duration => event), (duration => event)) means to
build an event list with the given events as components. (The message “=>“
is similar to the standard Smalltalk “->“ message except that a special kind

10

Music and Sound Processing Using Siren

of Association [an EventAssociation] is created.) This kind of convenient
and compact expression is simply Smalltalk syntax using a few additional
implementors of the message “,” for concatenation, as shown in Table 2.

Receiver class Answer Example

MusicMagnitude MusicEvent 440 Hz, (1/4 beat), 44 dB

MusicEvent EventList event1, event2

EventAssociation EventList (dur1 => evt1), (dur2 => evt2)

Table 2: Interpretations of Concatenation Messages in Smoke

The classes Siren uses for events are as follows.

AbstractEvent — Object with a property list (lazily created)

DurationEvent — adds duration instance variable

MusicEvent — adds pitch and voice instance variables

ActionEvent — has a block that it evaluates when scheduled

It is seldom necessary to extend the hierarchy of events. Examples of
verbose and terse Siren event creation messages are given below.

Verbose Event Creation Messages—Class Messages

Create a ‘generic’ event.
MusicEvent duration: 1/4 pitch: ‘c3’ ampl: ‘mf’.

Create one with added properties.
(MusicEvent dur: 1/4 pitch: ‘c3’) color: #green; accent: #sfz.

Terse Event Creation Using Concatenation of Music Magnitudes

440 Hz, (1/4 beat), 44 dB. “Simple event”
490 Hz, (1/7 beat), 56 dB, (#voice -> #flute),

(#embrochure -> #tight). “with an added (arbitrary) property”
(#c4 pitch, 0.21 sec, 64 velocity)

voice: Voice default. “Event using different syntax”

EventList objects hold onto collections of events that are tagged and
sorted by their start times (represented as the duration between the start time
of the event list and that of the event). The event list classes are subclasses of
DurationEvent themselves. This means that event lists can behave like
events and can therefore be arbitrarily deeply nested, that is, one event list
can contain another as one of its events.

The primary messages to which event lists respond (in addition to the
behavior they inherit by being events), are (anEventList add: anEvent
at: aDuration)—to add an event to the list—(anEventList play)—to play
the event list on its voice (or a default one)—(anEventList edit)—to open
a graphical editor in the event list—and Smalltalk-80 collection iteration and
enumeration messages such as (anEventList select: [someBlock])—to
select the events that satisfy the given (Boolean) function block.

11

Music and Sound Processing Using Siren

Event lists can map their own properties onto their events in several
ways. Properties can be defined as lazy or eager, to signify whether they
map themselves when created (eagerly) or when the event list is performed
(lazily). This makes it easy to create several event lists that have copies of the
same events and map their own properties onto the events at performance
time under interactive control. Voices handle mapping of event list properties
via event modifiers, as described below.

In a typical hierarchical Smoke score, data structure composition is used
to manage the large number of events, event generators, and event modifiers
necessary to describe a full performance. The score is a tree—possibly a
forest (i.e., with multiple roots) or a lattice (i.e., with cross-branch links be-
tween the inner nodes) —of hierarchical event lists representing sections,
parts, tracks, phrases, chords, or whatever abstractions the user desires to de-
fine. Smoke does not define any fixed event list subclasses for these types;
they are all various compositions of parallel or sequential event lists.

Note that events do not know their start times; this is always relative to
some outer scope. This means that events can be shared among many event
lists, the extreme case being an entire composition where one event is shared
and mapped by many different event lists (as described by Carla Scaletti in
[17]). The fact that the Smoke text-based event and event list description
format consists of executable Smalltalk-80 message expressions (see exam-
ples below) means that it can be seen as either a declarative or a procedural
description language. The goal is to provide “something of a cross between
a music notation and a programming language” as suggested by Roger
Dannenberg (13).

The verbose way of creating an event list is to create a named instance
and add events explicitly as shown in the first example below, which creates
a D-major triad (i.e., create a named event list and add three events that all
start at the same time).

(EventList newNamed: #Chord1)
add: (1/2 beat, ‘d3’ pitch, ‘mf’ ampl) at: 0;
add: (1/2 beat, ‘fs3’ pitch, ‘mf’ ampl) at: 0;
add: (1/2 beat, ‘a4’ pitch, ‘mf’ ampl) at: 0

This same chord (this time anonymous) could be defined more tersely
using simple concatenation of event associations (note the comma between
the associations),

(0 => (1/2 beat, ‘d3’ pitch, ‘mf’ ampl)),
 (0 => (1/2 beat, ‘fs3’ pitch, ‘mf’ ampl)),
 (0 => (1/2 beat, ‘a4’ pitch, ‘mf’ ampl))

This chord could have been created even more compactly using a Chord
object (see the discussion of event generators below) as,

(Chord majorTriadOn: ‘d3’ inversion: 0) eventList

Terse EventList creation using concatenation of events or (duration,
event) associations looks like this:

12

Music and Sound Processing Using Siren

(440 Hz, (1/2 beat), 44.7 dB), “comma between events”
 (1 => ((1.396 sec, 0.714 ampl) phoneme: #xu))

EventGenerators and EventModifiers
The EventGenerator and EventModifier packages provide for music de-
scription and performance using generic or composition-specific middle-
level objects. Event generators are used to represent the common structures
of the musical vocabulary such as chords, clusters, progressions, or ostinati.
Each event generator subclass knows how it is described—for example, a
chord with a root and an inversion, or an ostinato with an event list and re-
peat rate—and can perform itself once or repeatedly, acting like a Smalltalk-
80 control structure. EventModifier objects generally hold onto a function
and a property name; they can be told to apply their functions to the named
property of an event list lazily or eagerly. Event generators/modifiers are de-
scribed in more detail in (18); some of the other issues are discussed in (19).

EventGenerator Examples
Chords are simple one-dimensional event generators.

((Chord majorTetradOn: ‘f4’ inversion: 1) duration: 1.0) play

Play a drum roll—20 beats/sec (50 msec each) for 2 sec, middle-C, loud
((Roll length: 2 sec rhythm: 50 msec note: 60 key) ampl: #ff) play

Create a low 6-second stochastic cloud with 5 events per second.
Given interval ranges for selection of pitch and amplitude; play a constant rhythm.
(Cloud dur: 6 “Cloud lasts 6 sec.”

pitch: (48 to: 60) “with pitches selected from this range”
ampl: (80 to: 120) “and amplitudes in this range”
voice: (1 to: 8) “select from these voices”
density: 5) “play 5 notes per sec.”

Play a 6-second cloud that goes from low to high and soft to loud—give starting
and ending selection ranges for the properties.
(DynamicCloud dur: 6 "6-second DynamicCloud generator"

pitch: #((30 to: 44) (60 to: 60)) “with starting and ending pitch”
ampl: #((20 to: 40) (90 to: 120)) "and amplitude ranges
voice: (1 to: 4) “single interval of voices”
density: 15) play "play 15 per second"

Edit a dynamic selection cloud that makes a transition from one triad to an-
other—give starting and ending pitch sets for the selection.
The result is displayed in Figure 3(a) in a piano-roll-like notation editor.
(DynamicSelectionCloud dur: 4 "6-second DynamicSelectionCloud"

pitch: #(#(48 50 52) #(72 74 76)) "give sets for pitch selection"
ampl: #(60 80 120) "constant selection set"
voice: #(1 2) "2 MIDI voices"
density: 20) edit "20 notes per sec"

13

Music and Sound Processing Using Siren

Rubato example: apply a “slow-down” tempo-map to a drum roll by scaling the
inter-event delays

| roll rub | “Create a drum roll with 10 beats/sec”
roll := ((Roll length: 2000 rhythm: 100 note: 60) ampl: 80) eventList.

“Create a modifier to slow down by a factor of 1.5“
rub := Rubato new function: (LinearFunction from: #((0 1) (1 1.5))); scale: 10.
rub applyTo: roll. “Apply the event modifier to the event list.”
roll explore “Explore the result“

The object explorer shown in Figure 3(b) illustrates the inner structure
of a Siren event list; the main instance variables are at the top of the property
list, and one of the list's event is expanded to show its internal state. The ef-
fect of the decellerrando function is visible as the increase of the differences
between the relative start times of the events in the list.

Figure 3: (a) DynamicSelectionCloud Chord Cross-fade

Figure 3: (b) EventList Result from Applying a Decellerando
Tempo Map to a Drum Roll

14

Music and Sound Processing Using Siren

Siren I/O
The “performance” of events takes place via IOVoice objects. Event prop-
erties are assumed to be independent of the parameters of any synthesis in-
strument or algorithm. A voice object is a “property-to-parameter mapper”
that knows about one or more output or input formats for Smoke data. There
are voice “device drivers” for common score file storage formats—such as
note lists for various software sound synthesis languages (16), MIDI file
format, or phase vocoder scripts—or for use with real-time schedulers con-
nected to MIDI or sampled sound drivers.

These classes can be refined to add new event and signal file formats or
multilevel mapping (e.g., for MIDI system exclusive messages) in an ab-
stract way. IOVoice objects can also read input streams (e.g., real-time con-
troller data, or output from a co-process) and send messages to other voices,
schedulers, event modifiers, or event generators. This is how one uses the
system for real-time control of complex structures.

Some voices are “timeless” (e.g., MIDI file readers); they operate at
full speed regardless of the relative time of the event list they read or write.
Others assume that some scheduler hands events to their voices in real time
during performance. The EventScheduler (written entirely in Squeak) does
just this; it can be used to sequence and synchronize event lists that may in-
clude a variety of voices.

IOVoice Examples
Create a random event list and write it out to a cmix-format notelist file.

| file list voice |
file := FileStream named: ‘test.out.cmix’.

“This example creates an event list with random notes.”
list := EventList randomExample: 64.

“Create a voice to map the list to a cmix-format score file.”
voice := CmixVoice newNamed: ‘1’ onStream: file.

“Store the event list on the voice’s file.”
voice play: list.
file close. "Close the file."

The resulting cmix score file looks like,

/* cmix MINC data file created 8 May 2000 */
system("sfcreate -r 44100 -c 1 -i out.snd");
output("out.snd"); /* output sound file */
makegen(1, 10, 1024, 1) /* f1 = sine wave */

ins(t, 0.0, 0.264, 79, 0.653401229834836, 0.4343151734556608, 13039);
ins(t, 0.264, 0.255, 74, 0.2897873042569436, 0.39283562343234, 22197);
ins(t, 0.519, 0.281, 75, 0.4070028436402803, 0.399486889950692, 18610);
ins(t, 0.8, 0.232, 77, 0.9441084940657525, 0.421033562096317, 22386);
ins(t, 1.032, 0.28, 73, 0.815713333345816, 0.431038966901153, 22444);
ins(t, 1.312, 0.298, 70, 0.900661926670308, 0.3880002476591618, 12011);
ins(t, 1.61, 0.248, 72, 0.05989623258816834, 0.4281569774952516, 14359);

... etc.

15

Music and Sound Processing Using Siren

Real-time music I/O in Siren is managed by low-level interfaces to the
host operating system’s device drivers for sound and MIDI; Siren objects
use primitive methods that call out to the external functions. The glue code
for these primitives is written in Smalltalk and translated to C for linking
with the Squeak virtual machine (itself written in Smalltalk and translated).
Several sets of primitives exist for Squeak on various platforms, including
support for sound synthesis, digital audio signal processing, MIDI event-
oriented and continuous controller I/O, and VM-level scheduling.

There are rich class libraries for managing MIDI I/O connections, as
shown in the code example below, which creates a port, a device, and a voice
in order to play an event list. Object models for MIDI controllers, extended
MIDI commands, and GeneralMIDI channel maps are provided in Siren as
well, as demonstrated in the following code fragments.

MIDI voice Example
| voice device port scale |
port := MIDIPort default. "Create a MIDI port"
device := MIDIDevice on: port. "Create a MIDI device"
voice := MIDIVoice on: device. "Create a MIDI voice"

"Create an example event list, a scale"
scale := EventList scaleExampleFrom: 24 to: 60 in: 2000.

"Play the event list on the voice"
voice play: scale

Method MIDIPort>>testBend
"Demonstrate pitch-bend by playing two notes and bending them."
"MIDIPort testBend"

| port start |
port := self default.
port open.

"Set the recorder MIDI instrument."
port programChange: 0 to: 'Recorder'.
port programChange: 1 to: 'Recorder'.
start := Time millisecondClockValue + 150.

"Play two notes."
port play: 76 at: start dur: 5000 amp: 60 voice: 0.
port play: 80 at: start dur: 5000 amp: 60 voice: 1.

"Bend them--one up, one down."
0 to: 500 do:

[:i |
port pitchBend: 0 to: 4096 + (i * 8) at: nil.
port pitchBend: 1 to: 4096 - (i * 8) at: nil.
(Delay forMilliseconds: 10) wait]

16

Music and Sound Processing Using Siren

Example of GeneralMIDI instrument banks: load channels 1-16 with tuned per-
cussion instruments
MIDIPort setEnsembleInOrder:

#(Agogo 'Tinkle Bell' Timpani Xylophone
Applause 'Taiko Drum' Glockenspiel 'Synth Drum'
Gunshot 'Steel Drums' Helicopter Vibraphone
Woodblock 'Telephone Ring' Kalimba 'Blown Bottle')

Applications can have direct access to the Siren real-time I/O scheduler,
for example, to add an event list at a specific future time and kick-start the
scheduler, as in the following example.

Siren schedule “Get the ‘global’ real-time scheduler.”
“Add an example event list at some future time.”

addAppointment: ActionEvent listExample
in: (1000 msec);

“start the schedule in case it’s off.”
runAppointments

Because events are medium independent, and voices manage all the de-
tails of output channels, we can write the “multimedia” example below. The
goal here is to generate and play a mixed-voice event list; a cloud event gen-
erator plays alternating notes on a MIDI voice and via the built-in sound
synthesis primitives, and a parallel list of action events flashes random
screen rectangles in parallel with the sound and MIDI output.

| el |
el := (Cloud dur: 6 “Create a 6-second stochastic cloud.”

pitch: (48 to: 60) “Choose pitches in this range.”
ampl: (40 to: 70) “Choose amplitudes in this range.”

“Select from these 2 voices”
“(int 1 means MIDI channel 1).”

voice: (Array with: 1 with: (SynthVoice default))
density: 5) eventList. “Play 5 notes/sec. and get the events.”

“Add some 'action' events, this example's
 events draw ractangles on the screen”

el addAll: ActionEvent listExample2.
el play “and play the merged event list”

User Interfaces for Music/Sound Processing

Navigator MVC in Siren
The Smalltalk-80 Model-View-Controller (MVC) user interface paradigm
(20) is well known and widely imitated. The traditional three-part MVC ar-
chitecture involves a model object representing the state and behavior of the
domain model—in our case, an event list or signal. The view object presents
the state of the model on the display, and the controller object sends mes-
sages to the model and/or the view in response to user input.

17

Music and Sound Processing Using Siren

Many Smalltalk aplpications extend this design pattern to use a separate
object to model the GUI and selection state for the model (giving us four-
part MVC); these manager objects are often referred to as browsers, inspec-
tors, or editors.

“Navigator MVC” (21) (see Figure 4) is a factoring of the control-
ler/editor and view for higher levels of reuse. The traditional MVC compo-
nents are still there, and are connected by the smalltalk dependency mecha-
nism (shown in gray). With this architecture and design pattern for MVC,
most applications are modelled as enhanced display list editors (i.e., the ge-
neric tool is “smart draw”), with special layout manager objects for trans-
lating the model structure into a graphical display list representation and for
translating structure interaction into model manipulation.

Figure 4: Navigator MVC Architecture

A StructureAccessor is an object that acts as a translator or protocol
converter. An example might be an object that responds to the typical mes-
sages of a tree node or member of a hierarchy (e.g., What’s your name? Do
you have and children/sub-nodes? Who are they? Add this child to them.).
One specific, concrete subclass of this might know how to apply that lan-
guage to navigate through a hierarchical event list (by querying the event
list’s hierarchy).

The role of the LayoutManager object is central to building Navigator
MVC applications. Siren’s layout manager objects can take data structures
(like event lists) and create display lists for time-sequential (i.e., time running
left-to-right or top-to-bottom), hierarchical (i.e., indented list or tree-like),
network or graph (e.g., transition diagram), or other layout formats. The
editor role of Navigator MVC is played by a smaller number of very generic
(and therefore reusable) objects such as EventListEditor or Sampled-
SoundEditor, which are shared by most of the applications in the system.

Much of the work of building a new tool within the Siren system often
goes into customizing the interaction and manipulation mechanisms, rather
than just the layout of standard pluggable view components. Building a new
notation by customizing a layout manager class and (optionally) a view and
controller, is relatively easy. Adding new structure accessors to present new
perspectives of structures based on properties or link types can be used to
extend the range of applications and to construct new hypermedia link navi-

18

Music and Sound Processing Using Siren

gators. This architecture means that views and controllers are extremely ge-
neric (applications are modeled as structured graphics editors), and that the
bulk of many applications’ special functionality resides in a small number of
changes to existing accessor and layout manager classes.

Siren MVC Examples
The example screens below (Figure 5) show the simple Siren display list
editor running under Squeak MVC; it allows you to manipulate hierarchical
structured graphics objects. The pop-up menu in the right of the view shows
the default display list controller message. Keyboard commands and mouse
interaction support zooming and scrolling. One item is selected in the view
and can be dragged or resized using its “selection handles.”

Figure 5: Siren DisplayListView Example

The example in Figure 6 shows a class inheritance hierarchy presented
as a left-bound tree. Color is used to denote class species relationships in the
class hierarchies; this is determined by the layout manager used for this ex-
ample. A refined tree layout manager could do graphical balancing or top-
down layout.

Figure 6: Siren LayoutManager Example

A time sequence view is a display list view whose layout manager inter-
prets time as running from left to right. In the example below (Figure 7), the
time sequence is derived from the sentence "Und die Fragen sind die Sätze,
die ich nicht aussprechen kann."

19

Music and Sound Processing Using Siren

Figure 7: Siren TimeSequenceView Example

In a pitch/time view, time runs left-to-right, and pitch is displayed from
bottom-to-top. In the example in Figure 8, the layout manager creates a sepa-
rate sub-display-list for each note, adding lines to the note head image to
show its amplitude and duration, several other properties, and the amplitude
envelope.

Figure 8: Siren Score Editor Example

The multi-function view allows the viewing and editing of up to 4 func-
tions of 1 variable. The example (Figure 9) shows linear break-point func-
tions in red and yellow, an exponential segment function in blue, and a cubic
spline function in green. The buttons along the left are for selecting a par-
ticular function for editing or file I/O.

Figure 9: Siren Function Editor Example

The sonogram view displays an FFT-derived spectrum. Figure 10
shows the spectrum of a swept sine wave.

20

Music and Sound Processing Using Siren

Figure 10: Siren Sonogram Example

Examples of Siren Applications
In this section, we describe two application areas for Siren: (a) a mu-
sic/sound database project that uses Siren together with other languages and
external interfaces, and (b) an application of Siren for composition.

Sound/Music Databases: Paleo
Most prior work in sound or music databases has addressed a single kind of
data (e.g., MIDI scores or sampled sound effects) and has pre-defined the
types of queries that are to be supported (e.g., queries on fixed sound prop-
erties or musical features). Earlier systems also tended to address the needs
of music librarians and musicologists, rather than composers and perform-
ers. In the Paleo system under development since 1996, we have built a suite
of sound and music analysis tools that is integrated with an object-oriented
persistency mechanism in Squeak.

The central architectural feature of Paleo is its use of dynamic feature
vectors and on-demand indexing. This means that annotational information
derived from data analysis can be added to items in the database at any time,
and that users can develop new analysis or querying techniques and then
have them applied to the database’s contents on-the-fly within a query. For
data that is assumed to be musical sound, this might mean performing enve-
lope detection, spectral analysis, linear prediction, physical model parameter
estimation, transient modeling, and so on. For musical performance data
(e.g., MIDI), this might entail extraction of expressive timing, phrase analy-
sis, or harmonic analysis.

Paleo content is assumed to be sampled sound, musical scores, or cap-
tured musical performances. Scores and performance formats can be simple
(e.g., MIDI-derived) or may contain complex annotation and embedded
analysis. Paleo is specifically constructed to support multiple sets of cap-
tured musical performances (for use in comparing performance expression).
This includes the derivation of basic timing and dynamics information from
MIDI performances (to be able to separate the performance from the “dead-
pan” score), and the analysis of timbral information from recorded sounds.

21

Music and Sound Processing Using Siren

For score analysis, we use a variety of methods, including simple statis-
tical models, rule-based analysis, and constraint derivation. Sampled sound
analysis is undertaken using a suite of functions called NOLib that is written
in the MatLab language and can be accessed from within the Paleo environ-
ment over the net via socket-based MatLab servers. The techniques available
in NOLib include all standard time-, frequency-, wavelet modulus-domain
analysis operations, as well as pitch detection, instrument classification, and
sound segmentation.

The two main applications we envision for Paleo are its use as an inte-
grated data support system for composers, and in a performer’s rehearsal
workstation. The first set of applications will put the database at the core of a
composition development environment that includes tools for thematic and
sonic experimentation and sketch data management. The second platform
centers on manipulating rehearsal performance data relative to a “reference”
score (which may or may not be a “dead-pan” interpretation). Users can
play into the system and then compare their performance to another one of
their own or of their teacher’s. Query preparation takes place using pre-built
tools such as the composer’s sketch browser, or by creating direct queries in
a simplified declarative query language.

The implementation of the Paleo database persistency and access com-
ponent is based on the public domain Minnestore object-oriented database
package (22), which allows flexible management of data and indices. The
Squeak port of Minnestore is called SMS (Squeak Minnestore).

Paleo applications can communicate with an SMS database server over
a network and can pass sound sample data or event streams to or from the
database. We currently use a simple socket-based protocol but plan to move
to a CORBA-based distribution infrastructure in the near future.

To stress-test Paleo’s analysis and query tools against a realistic-sized
data set, the test contents included over 1000 scores of keyboard music
(Scarlatti, Bach, Bartok, the Methodist hymnal, etc.), several hundred
“world” rhythms, the SHARC database of instrument tone analyses, 100
recorded guitar performance techniques, flute performances, and spoken po-
etry in five languages. Most of the content is freely available on the Internet.

Paleo Architecture
In Paleo, as in Siren, music and sound data are represented via Smoke ob-
jects. In Paleo’s SMS data persistency layer, Smoke objects are stored in
object sets, which are akin to database tables. Each object set stores one kind
of object and can have any number of stored or derived indices. The collec-
tion of all defined indices determines the feature vector of the object set.
When stored to disk, each object set has its own directory, storage policy,
and a group of index files. For performance reasons, there are also cache
policies per object set, and methods exist for keeping active object sets in a
RAM disk.

Various services can be used by the SMS database server, such as call-
outs to the NOLib functions (see below) or the use of extra Smalltalk proc-
esses for data analysis. The SMS server really only provides the persistency
layer and cache policies for open object sets. The overall architecture is as
shown in Figure 11.

22

Music and Sound Processing Using Siren

Figure 11: Paleo Architecture

The NOLib Analysis Functions
NOLib is a suite of data analysis and feature extraction routines written by
Nicola Orio at CREATE in the MatLab programming language. These func-
tions can be called by analysis scripts (interpreted MatLab programs), which
can themselves be started by a network-based “analysis server.” We use the
public-domain “octave” implementation of MatLab running on UNIX serv-
ers. MatLab was chosen for these analysis functions because of the excellent
support for signal processing, simple and flexible file I/O, and portability of
public-domain MatLab implementations. NOLib functions support sound
analysis, recording segmentation, and instrumental timbre feature extraction
(e.g., for analyzing the performance technique of instrumental performers).

MIDI File Analysis with Constraints
The purpose of the score analysis framework built for Paleo by Pierre Roy
during 1999 is to allow complex queries on various kinds of musical data,
including scores, in the spirit of the Humdrum system (23). A large amount
of digitized music is available as MIDI files, for instance on any of the many
MIDI archives on the Internet.

The MIDI format, however, provides only low-level musical informa-
tion: it is a performance-oriented rather than an analysis-oriented representa-
tion of music. Thus, we need to analyze MIDI files to compute additional
musical features, such as pitch-classes (by resolving enharmonic ambigui-
ties), voice leading, keys, and harmonies.

The different tasks of analysis—enharmonic, melodic, tonal, and har-
monic analysis—are not independent. For instance, the enharmonic analysis
depends on tonal analysis, and conversely, the computation of local keys is
based on the frequency of the different pitch-classes. Therefore, we need a
global strategy in which the different tasks are performed simultaneously.

In the context of our analysis, we often need to perform only a partial
analysis because many queries only involve a few specific elements or in-
complete information. Consider the following queries: “How many of
Scarlatti’s harpsichord sonatas end with a perfect cadence?” or “Are there
more minor than major chords in the preludes of Bach’s Well-Tempered
Clavichord?” In such cases, it is useless to perform a complete harmonic
analysis of the 555 sonatas by Scarlatti, or of the 48 preludes of the Well-
Tempered Clavichord. This mode of usage demands a scheme allowing
partial and incomplete analysis.

23

Music and Sound Processing Using Siren

What to analyze also depends on various parameters, such as the epoch,
the style, and the nature (i.e., form, instrumentation) of the music being con-
sidered, for example, the anatomic limitations of human voice compared to a
keyboard instrument. Our analysis strategy should be easily adaptable to
various situations.

The previous remarks led us to an approach based on constraint satis-
faction, instead of using specific algorithms for the different tasks of analy-
sis (24). As a declarative paradigm, constraint satisfaction allows us to build
systems that can be easily adapted to specific situations. For instance,
adapting the system to vocal or keyboard music analysis is just a matter of
using a different set of constraints for the melodies. Constraint resolution
can also easily provide partial and incomplete analyses. More precisely, the
query “How many sonatas by Scarlatti end with a perfect cadence?” will
only require the computation of elements related to the last two chords of
each sonata. Finally, constraint resolution is a global process, in which the
different elements are progressively computed; thus, interdependent tasks are
interlaced in the resolution.

A constraint satisfaction problem or CSP (25) consists of (a) a set of
variables (each associated with a set of possible values—its domain), repre-
senting the unknown values of the problem, and (b) a set of constraints, ex-
pressing relationships between the domain’s variables. Solving a CSP con-
sists of instantiating each variable with a value in its domain so that the
constraints are satisfied.

Our approach to analyzing a MIDI file is divided into the following
steps. First, we quantify the MIDI file to get rid of slight tempo fluctuations,
and we segment it into a series of positions. Then, we define a CSP, whose
variables represent the different elements of analysis [notes (one for each
MIDI note-event), chords (at each position), keys (at each position), and
melodies], and whose constraints represent the relationships holding be-
tween them. The set of constraints depends on the style and the form of the
piece. Then we solve the CSP using standard CSP resolution. We use the
BackTalk (26) constraint solver to state and solve the problem.

Paleo I/O Formats
Paleo supports compact and efficient data I/O in the form of methods that
work with the Squeak Smalltalk ReferenceStream framework, a custom-
izable binary object streaming format. The trade-offs in the design of object
storage formats are between size, complexity, and flexibility (pick any two).
In Paleo, we opted for a system that is compact but also supports the full
flexibility of the Smoke music representation, including abstract models for
pitch, time, and dynamics, multiple levels of properties and annotation, the
attachment of functions of time to events, and hyper-links between events or
event lists.

Data files in this format are on the order of 10–40 times larger than the
“corresponding” MIDI files, but because this notation supports the full
Smoke annotation, we can store much richer data. Paleo extensions include
simple derived properties such as symbolic pitch (with enharmonic disam-
biguation) and time (with tempo and meter derivation, rest insertion, and met-
rical grouping), and higher-level properties such as harmonic analysis, per-
formance expression, and others.

24

Music and Sound Processing Using Siren

Using Paleo
To set up Paleo, we create a database within a storage directory, then create
one or more object sets in it (these correspond to classes or tables), and
lastly define indices for the object sets (corresponding to instance variables
and accessors). One can then add objects to an object set, or retrieve objects
based on queries.

Create a New Database of Scores
The first example establishes a new database and adds an object set to it. The
objects we add to this set are assumed to respond to the messages composer
and style. The examples that follow are in Smalltalk; comments are enclosed
in double quotes.

| dir db |
dir := ‘Nomad:Paleo’. “base directory”
db := SMSDB newOn: dir. “DB object”
(db addObjectSetNamed: #Scores) “Add an object-set”

objectsPerFile: 1;
storesClass: EventList; “Stores event lists”

“Add 2 indices”
indexOn: #composer domain: String;
indexOn: #style domain: Symbol.

db save. “Save the object set”
“Store objects”

db storeAll: (...collection_of_scores...)

Make a Simple Query
To make a simple database query, we re-open the database and create a
getOne: message with one or more where: clauses, for example, to get a
score by name.

| db |
db := MinneStoreDB openOn: ‘Nomad:Paleo’.
(db getOne: #Scores) “Create a query on name”

where: #name eq: #ScarlattiK004;
execute “Get the first response”

Add a New Index to an Existing Database
To add a new index to an existing object set, we use the indexOn: message,
giving it the name of a “getter” method (i.e., the method that answers the
property of the index), or simply a block of Smalltalk code to execute to de-
rive the index value. In the second part of the next example, we create an in-
dex of the pitches of the first notes in the score database using a block (the
text between the square brackets) that gets the first pitches. This getter block
could involve more complex code and/or calls to NOLib functions.

“Add a new index with getter method.”
(db objectSetNamed: #Scores)

indexOn: #na me domain: Symbol.

25

Music and Sound Processing Using Siren

“Add an index with getter block”
(db objectSetNamed: #Scores)

indexOn: #firstPitch
domain: SmallInteger
getter: [:el | el events first event pitch asMIDI value].

db save.

Make a More Sophisticated Query
To retrieve objects from the database, we use getOne: or getAll: as above
and can, for example, ask for a range or the derived first-pitch feature.

(db getAll: #Scores)
where: #firstPitch between: 62 and: 65;
execute

Concrete examples of the use of the database in the context of a compo-
sition are given in the following section.

Using Siren for Composition
As stressed at the outset, I develop software tools for use in my own compo-
sitions. I documented the use of the earlier MODE system for the piece
Kombination XI in (8) and (27). One of my current works in progress is
called Ywe Ye, Yi Jr Di (abbreviated YYYJD) and is based on the text of a
Chinese poem of the same name by the great T’ang dynasty poet Du Fu.
The sound material for the piece is derived from (a) the voice of a man
speaking the text (in a 700-year-old Chinese dialect) and (b) the sound of
several small bells.

The piece is written for eight or more channels of surround sound, and
the effect should be like that of being inside of a huge collection of different
but similar bells that rotate slowly around you and out of which a quiet chant
gradually materializes. (The bells are singing to you.)

The bell sounds are processed using a software phase vocoder, a sound
analysis/resynthesis package that uses the short-time Fourier transform
(STFT) to analyze a sound. One can alter the results of the STFT before re-
synthesis, allowing, for example, independent control of the pitch and time
progress of a sound. For YYYJD , I elongate the bell sounds, so that they last
several minutes, and transpose their pitches so that I can mix together very
dense non-harmonic “chords” based on the bell timbres. Lastly, I apply a
slight glissando so that the chords are always decreasing in pitch as they ro-
tate and sing.

For the generation of the bell textures, simple Siren event generators are
used to create event lists that are then stored onto text files as programs for
the phase vocoder, cmix, and/or SuperCollider software sound synthesis
languages (16, 28). I use these external languages for historical reasons; the
kind of sound file mixing and layering they do could easily be done in
Squeak as well. The main reason for using SuperCollider at present is its
ease of programming (its source language and class library are close rela-
tives of Smalltalk), and the fact that it supports the ASIO sound interface, so
that one can use eight or more channels of sound output.

26

Music and Sound Processing Using Siren

Extended EventGenerators and User Interfaces for YYYJD
As an example of an extended event generator, I constructed a subclass of
Cluster called RotatingBellCluster for YYYJD . This class allows me to
easily describe, and then generate, 8-channel textures of inharmonic bell
chords where the golden-mean-related “overtones” are placed at separate
(related) spatial positions and rotate around the listener at different (slow)
rates.

To generate the base sound files (each of which is itself a complex bell tim-
bre), a RotatingBellCluster instance can write a command file for the
phase vocoder to process a given sound file (a recorded real bell stored as a
sound file with 32-bit floating-point samples) making time-stretched trans-
posed copies whose frequencies are related by multiples of the golden mean.
This output looks like the following Makefile script for the phase vocoder.
the parameters on each line give the time-stretch factors, pitch transposition
ratios, and the output file names. This script is run under the shell program
on a UNIX compute-server, and often takes several days to process a set of
bell samples.

Phase Vocoder script generated by Siren
rate fftLen win dec int oscPitchFactor … inFile pipe-to outFile
pv 44100 1024 1024 128 213 0.021286236 0 0 < b.2a.l.float | tosnd -h -f b.2b8.snd
pv 44100 1024 1024 128 213 0.013155617 0 0 < b.2a.l.float | tosnd -h -f b.2b9.snd
pv 44100 1024 1024 128 213 0.008130618 0 0 < b.2a.l.float | tosnd -h -f b.2b0.snd
pv 44100 1024 1024 128 213 1.000000000 0 0 < b.2a.l.float | tosnd -h -f b.2bx.snd
pv 44100 1024 1024 128 213 1.618033988 0 0 < b.2a.l.float | tosnd -h -f b.2ba.snd
pv 44100 1024 1024 128 213 2.618033988 0 0 < b.2a.l.float | tosnd -h -f b.2bb.snd
… many more here…

Given a set of sound files, I need a way to precisely describe the way
they are mixed and spatialized to generate the desired texture. The basic de-
scription of a RotatingBellCluster is in terms of two components: (a) the
collection of files that make up the texture (each of which is represented by
an instance of BellPartial), as shown in the first method below, and (b) the
three functions that determine the temporal evolution of the bell texture.
These functions are shown in the second method below. The basic creation
method for RotatingBellCluster instances is parameterized with the
names of the methods to get these two data sets, so that many different com-
plex instances can be generated and tested.

RotatingBellCluster class methodsFor: ‘B2 Bells’

b2Data

“Answer the data for the b2 series of bell partials.

 This array is read and turned into a collection of BellPartial objects.”

“ Name Freq Ampl ”

#̂(‘2ba’ 1.6180 15599

‘2bx’ 1.0000 21007

‘2b1’ 0.6180 8560

… other partials included here …

‘2b0’ 0.0081 21063)

27

Music and Sound Processing Using Siren

b2aFunctions

“Answer an array of 3 functions for the bell cluster”

^Array

“Spectral weighting function”

with: (LinearFunction from: #((0 1.5) (0.4 0.8) (1 0.5)))

“Time/density function”

with: (ExponentialFunction from:

#((0 20 -2) (0.3 60 -5) (0.7 50 2) (1 30 0)))

“Mapping of pitch to angular velocity”

with: (ExponentialFunction from: #((0 0 3) (1 1 0)))

The three functions that describe an instance of RotatingBellCluster
(as given in the method above) are: (a) the relation between the base fre-
quency of a partial and its amplitude (i.e., the virtual spectrum of the
summed complex texture); (b) the density of the texture over time (number
of partials active at any moment in time); and (c) the relation between a par-
tial’s frequency and its angular (rotational) velocity. The functions defined
in the method above are shown in the function editor view in the Figure 12.

Figure 12: Function Editor on a RotatingBellCluster

To edit RotatingBellCluster instances, I use a TemplateMorph with
a few utility methods to support editing functions in place and regenerating
the event lists on the fly. This editor is shown in Figure 13. The Template-
Morph is a simple object editor that lists the “fields” (typically, though not
necessarily, the instance variables) on the left and allows one (where mean-
ingful) to edit them in place on the right.

Figure 13: TemplateMorph for Editing RotatingBellClusters

28

Music and Sound Processing Using Siren

To actually execute this and create a score for doing the sound file
mixing, I first wrote a new subclass (which fits easily on one page) of
NoteListVoice (an IOVoice) to support the SuperCollider score file for-
mat. This formats the events that are generated by a specific RotatingBell-
Cluster and writes out the result as a score file for further processing in
SuperCollider. The method that runs this process is shown below, along
with an excerpt of the resulting SuperCollider language score file.

RotatingBellCluster class methodsFor: ‘performance’

run

“Create, process, and write out a rotating bell cluster from the stored data.”

“RotatingBellCluster run”

| list scorefile filename |

list := (RotatingBellCluster "Instance creation message"

setup: #b2Data "which sounds to use"

functions: #b2aFunctions) "which functions to use"

eventList. "Get the event list"

filename:= ‘panner2.sc’.

"Open a voice on a file and play the event list on it."

scorefile := SuperColliderVoice onFileNamed: filename.

scorefile play: list; close.

(FileStream named: filename) edit "Edit the score file"

// SuperCollider Score for rotating bell clusters;
// generated on 28 July 2000 at 5:04:55 am
// NB: #[is SuperCollider syntax for a literal array, \x is used for Symbols.
// Instrument command format
// [delTime , \panner, \file, dur, att, dec, ampl, angVel]
score = #[

[0.5315 , \panner , \2bx , 10.7 , 2.0 , 2.0 , 0.8866 , 0.5907],
[0.4908 , \panner , \2b7 , 10.7 , 2.0 , 2.0 , 1.3346 , 0.0774],
[0.4575 , \panner , \2b3 , 10.7 , 2.0 , 2.0 , 1.2652 , 0.2520],
… 414 more lines here …

];

Given these three utility classes (and a couple of methods in Tem-
plateMorph), a total of about four pages of code has provided a flexible
tool for describing and generating just the kinds of voluminous and complex
textures I wanted to serve as the basis of YYYJD .

Framework for Linear Prediction
The next phase of production is to take the recorded spoken Chinese voice,
turn it into a slow singing voice in a lower pitch range, and then to “cross-
synthesize” it with the 8-channel bell textures described above. This in-
volves (many CPU-months of) the phase vocoder mentioned above, and also

29

Music and Sound Processing Using Siren

a linear prediction coding (LPC) vocoder. I use a library for LPC developed
for the cmix language (16) by Paul Lansky at Princeton University (parts of
which use even older libraries written in FORTRAN!). For this, I linked the
library functions I need into a Squeak plug-in that is accessed via a Linear-
Predictor object. An example of the inner-most layer of this is primitive
calls to the plug-in of the following form.

LinearPredictor methodsFor: ‘analysis’

lpcAnalyze: input out: output rate: rate poles: poles framesize: frsize skip: sk dur: dur

“Call the CmixPlugin’s LPC analysis primitive.”

<primitive: ‘lpcAnalyzeShort’ module:’CmixPlugin’>

^self primitiveFailed

An example of doing the full LPC analysis is given in the following
code excerpt, which reads an input sound file and sets up a linear prediction
analyzer to process it. The results are returned in the LinearPredictor ob-
ject, which consists of a series of LPC frame objects.

Full analysis example
| sndin data lpc |
sndin := StoredSound fromFile: ‘Siren:Kombination2a.snd’.
lpc := LinearPredictor on: sndin.
lpc npoles: 24.
lpc framesize: 256.
lpc analyze.
lpc stabilize.
lpc packLPCData.
data := lpc pitchTrackLow: 70 high: 500.
lpc packPitchData: data.
lpc explore

In the past, I have built fancy GUI tools for manipulating LPC data (27)
but now stick to simpler, text-based methods, generally using event genera-
tors to generate LPC processing scripts.

Composition Structuring
To manage the larger-scale construction of YYYJD , I built a few extensions
to existing Siren and Squeak tools. The most useful extension is a refine-
ment to the (excellent) ObjectExplorer and ObjectExplorerWrapper to
support flexible editing of hierarchical event list structures at varying levels
of detail. Since Siren events are generic property lists, I need to be able to
treat their properties as if they were first-class instance variables and to add
new properties and annotations from within the editor. A few pages of ex-
tensions to the two classes that make up the explorer made this possible.

Figure 14 shows a simple SirenScoreExplorer on the top-level score
of YYYJD . One can see the hierarchy of the event lists, and the comment of
the selected list in the text field below the list. This field has several uses, as
a do-it field, an annotation editor, and for adding new properties and rela-
tionships.

30

Music and Sound Processing Using Siren

Figure 14: SirenScoreExplorer on the Structure of YYYJD

This editor can be used to “drill down” to arbitrarily low levels of the
structure of a composition, as shown in Figure 15, which shows the details
of the inner structure of the selected (and expanded) RotatingBellCluster.

Figure 15: Details of a RotatingBellCluster

The most powerful extension to the explorer is the ability to select what
to show or hide about a given class of objects. The wrappers hold onto lists

31

Music and Sound Processing Using Siren

of fields and support menu selection for varying levels of detail, as illustrated
by Figure 16.

Figure 16: Showing/Hiding Fields in the SirenScoreExplorer

Database Integration for Composition
The last new tool in use for YYYJD is a browser for the various Paleo

data sets. The current version uses a simple multiple list as in traditional
code browsers. (I hope to have an explorer-based version running soon.)
The left-most list shows the available object sets; when an object set is se-
lected, its indices are shown in the second-level list. Selecting an index al-
lows you to filter the contents of the current object set, and the names of the
selected elements are shown in the third list. The buttons to the right allow
you to load and store individual object or object sets, or to open various user
interfaces (e.g., explorers, template editors, or other tools shown in the fol-
lowing figures) on objects in the database.

The first two examples, given in Figure 17, show the database browser
on the various object sets related to YYYJD . The left-hand screen shot shows
an explorer on the top-level score, with the hierarchy expanded down to the
level of one of the RotatingBellCluster events. The right-hand view
shows a piano-roll-style score for one of the event generators used later in
the piece. The browser can have several kinds of explorers, templates, and
editors for each of the object sets in a database.

32

Music and Sound Processing Using Siren

Figure 17: Database Browsers illustrating Structural and Tem-
poral Views of Scores

In Figure 18, two extended editors are shown, as would be used for ed-
iting functions of time (left) and derived spectra (right).

Figure 18: Editors for Functions and Spectra within the Data-
base Browser

33

Music and Sound Processing Using Siren

The last example, in Figure 19, shows an experimental data set whereby
the structural score of Alban Berg's opera Wozzeck (stored as a hierarchical
event list with annotations, of course) can be used to browse a set of images
of the sketches of the score.

Figure 19: Database Browser on the Images of the Opera Wozzeck

The style of the code extensions and new tools described above are
typical of the way I use Siren in a composition. Programming new event
generators, new basic music magnitude models, adding script-like classes,
extending the system’s graphical tools, and defining new I/O formats are all
normal tasks in composition with the system.

The Future

Status
I have been making my music tools available since 1978. In 1995, I had
pretty much given up on using Smalltalk, largely because of the licensing
policy of ParcPlace Systems, Inc. Their VisualWorks system was simply
too expensive for composers (or even universities) to use, and I was using a
bootleg copy myself. (They have since come out with a free-ware version for
non-commercial use.) I had invested several months in porting the MODE
classes to Java when I heard about Squeak from Dan Ingalls. Because
Squeak is open-source, it is a delight that Siren is freely available in com-
piled (and portable) form. Several components (such as the LPC plug-in and
extended MIDI primitives) are, however, platform specific.

At the beginning of the chapter I implied that I am the only Siren cus-
tomer I listen to; this is not entirely true, but is also not entirely untrue. There
have been extended periods where a group of researcher/programmers col-
laborated on various versions of this software, ranging from the Smoke
committee of the years 1990-92 to the more recent Paleo project team at
CREATE. I have enjoyed these collaborations immensely, and the results of
the team efforts have generally been incorporated into the system.

34

Music and Sound Processing Using Siren

Current Siren is available from my Web site at CREATE, though the
full system only runs well on Apple Macintosh computers (see below). All
of the base Siren system, as well as the SMS database framework and most
of the Paleo code, is included.

Successes
It has been a thrill to develop tools for my own use in Smalltalk and to find
that they are sometimes of use to other composers. Since what I do is al-
ready a pretty elitist effort (contemporary serious music), I am always
pleased when someone actually uses Siren and sends me comments (or a
bug report). It has been interesting to see what features external users add to
the system, and a number of these have been incorporated recently (e.g., Al-
berto De Campo’s microtonal MIDI representation).

Failures
Most of the disappointments for Siren’s users (and me) are based on the
basic profile of what Siren is intended to do in the first place. I have only
used MIDI for one experimental composition (that is now played from tape
in concerts), and I am not a big fan of graphical tools, so many users are dis-
appointed that Siren is not a free MIDI sequencer, a graphical programming
language for music, or an object-oriented sound synthesis system. (All of
these are available elsewhere.)

While it has been very fulfilling to have active collaborators, there have
also been frustrations, such as the difficulty of achieving multi-platform
support for a standard set of high-level MIDI I/O functions. The base set of
primitives included in Squeak is inappropriate for intensive MIDI-oriented
applications, and there appear to be no volunteers to maintain a set of more
powerful primitives on multiple platforms.

Siren 2002
When I look ahead to the future, I hope that in two years I have: more of the
same only faster and more flexible! My main wishes are related to the hard-
ware I use, rather than weaknesses in Squeak or Siren. (I’ve given up on
ever getting the 32-hour day.) That being said, the main features that I miss
in Squeak can be grouped as follows:

Language issues: multiple value returns and multiple value assignment,
true multiple inheritance (to be used rarely, of course), assertions, multiple
kinds of (nesting) comment characters;

Library issues: CORBA IDL and ORB integration, probability distri-
butions (a la ST80), very high-precision floating-point numbers, integrated
namespaces and packages;

Tool issues: integrated source code control system and configuration
management tools, tools for CORBA distributed applications; and

GUI issues: native look and feel, themes.

My primary fear about Squeak is related to “image bloat.” The system
is growing fast, and we have still not integrated namespaces and packages to
the point where image management is easy.

35

Music and Sound Processing Using Siren

My plans for the next few months (as I work on YYYJD), are to inte-
grate the Steinberg ASIO sound libraries (as soon as it is clear what will be
supported on the next generation of Macintosh operating systems), and to
incorporate more of the LPC vocoder functions into Siren. Medium term, I
intend to work on a more powerful synthesis engine (stealing ideas from
SuperCollider) and to integrate Siren and SuperCollider as plug-ins to each
other. Lastly, I have already composed the follow-on pieces to YYYJD
(…nor shall my sword sleep in my hand and To My Younger Brother) and
hope to start working on them in early 2001.

Acknowledgments
It would be extremely unfair to present this work as mine alone. Siren incor-
porates the work of many people who have contributed ideas and/or code;
they include: Paul Alderman, Alberto De Campo, Roger Dannenberg,
Lounette Dyer, Adrian Freed, Guy Garnett, Kurt Hebel, Craig Latta, David
Leibs, Mark Lentczner, Hitoshi Katta, Alex Kouznetsov, James McCartney,
Hans-Martin Mosner, Danny Oppenheim, Nicola Orio, Francois Pachet, Pi-
erre Roy, Carla Scaletti, Bill Schottstaedt, John Tangney, and Bill Walker.
Pierre Roy and Nicola Orio also contributed texts to this chapter.

I must also here acknowledge the generous support of my employers
and the academic institutions where this software was developed, including
PCS/Cadmus GmbH in Munich, Xerox PARC, ParcPlace Systems, Inc.,
CCRMA/Stanford, the STEIM Foundation in Amsterdam, The Swedish In-
stitute for Computer Science, CMNAT/Berkeley, CREATE/UC Santa Bar-
bara, and the electronic music studio of the Technical University of Berlin.
Special thanks for moral and financial support during the writing of this
chapter go to CREATE's director JoAnn Kuchera-Morin and the manager of
the TU Berlin studio, Folkmar Hein, as well as to the Deutscher Akade-
mischer Austauschdienst (DAAD).

Lastly, Mark Guzdial and Juan Manuel Vuletich read and provided very
useful comments on an earlier draft of this text, and Anita Flanzbaum edited
the manuscript.

Conclusions
Siren is a framework in Squeak Smalltalk for music and sound processing.
The main focus is towards the representation of structured music and musi-
cal composition methods. This chapter described the Smoke representation
language that serves as the kernel of Siren, introduced its I/O facilities, and
presented several extended examples of Siren in action.

References
1. Ingalls, D., T. Kaehler, J. Maloney, S. Wallace, and A. Kay. “Back

to the Future: The Story of Squeak, A Practical Smalltalk Written in Itself.”
Proc. ACM OOPSLA 1997.

2. Pope, S. T. “Bat Out Of Hell” (musical composition) in Perspec-
tives of New Music V. 24, 1986 (cassette). Also in Computer Music Journal
Sound Anthology, V. 21, 1997 (CD).

36

Music and Sound Processing Using Siren

3. Pope, S. T. “Music Notation and the Representation of Musical
Structure and Knowledge.” in Perspectives of New Music 24(2), Winter,
1986.

4. Pope, S. T. “The Development of an Intelligent Composer’s Assis-
tant: Interactive Graphics Tools and Knowledge Representation for Com-
posers.” in Proc. 1986 International Computer Music Conference. San
Francisco: International Computer Music Association.

5. Pope, S. T. “A Smalltalk-80-based Music Toolkit.” in Proc. 1987
International Computer Music Conference. San Francisco: International
Computer Music Association.

6. Pope, S. T. “The Interim DynaPiano: An Integrated Computer Tool
and Instrument for Composers.” Computer Music Journal 16(3) (Fall,
1992).

7. Pope, S. T. “An Introduction to the MODE.” in (11).

8. Pope, S. T. “Kombination XI” (musical composition) in Or Some
Computer Music. Touch/OR Records, 1999. Also in The Virtuoso in the
Computer Age (CDCM V. 13). Centaur Records, 1993.

9. Pope, S. T. “Siren: Software for Music Composition and Perform-
ance in Squeak.” Proc. 1997 International Computer Music Conference.
San Francisco: International Computer Music Association.

10. Pope, S. T. “The Siren Music/Sound Package for Squeak Small-
talk.” Proc. ACM OOPSLA 1998.

11. Pope, S. T., ed. The Well-Tempered Object: Musical Applications
of Object-Oriented Software Technology. MIT Press, 1991.

12. Roads, C., S. T. Pope, G. DePoli, and A. Piccialli, eds. Musical Sig-
nal Processing. Swets & Zeitlinger, 1997.

13. Dannenberg, R. “Music Representation Issues, Techniques, and
Systems” Computer Music Journal 17(3), Fall, 1993.

14. Wiggins, G. et al. 1993. “A Framework for the Evaluation of Mu-
sic Representation Systems” Computer Music Journal 17(3), Fall, 1993.

15. Pope, S. T. “Musical Object Representation.” In (12).

16. Pope, S. T. “Machine Tongues XV: Three Packages for Software
Sound Synthesis.” Computer Music Journal 17(2), Summer, 1993.

17. Scaletti, C. “The Kyma/Platypus Computer Music Workstation.”
Computer Music Journal 13(2), Summer, 1989. reprinted in (11).

18. Pope, S. T. “Modeling Musical Structures as EventGenerators.” In
Proc. 1989 International Computer Music Conference. San Francisco: In-
ternational Computer Music Association.

19. Dannenberg, R., P. Desain, and H-J. Honing. “Programming Lan-
guage Design for Musical Signal Processing” in (12).

20. Krasner, G., and S. T. Pope. “A Cookbook for the Model-View-
Controller User Interface Paradigm in Smalltalk-80.” Journal of Object-
Oriented Programming 1(3), 1988.

37

Music and Sound Processing Using Siren

21. Pope, S. T., N. Harter, and K. Pier. “A Navigator for UNIX.” 1989
ACM SIGCHI video collection.

22. Carlson, J. 1998. MinneStore OO Database Documentation. See
http://www.objectcomposition.com.

23. Huron, D. “The Humdrum Toolkit Reference Manual.” Center for
Computer Assisted Research in the Humanities, Menlo Park, California,
1994.

24. Mouton, R.. “Outils intelligents pour les musicologues,” Ph.D.
Thesis, Université du Maine, Le Mans, France, 1994.

25. Mackworth, A. “Consistency in Networks of Relations.” Artificial
intelligence 8(1), 1977.

26. Roy, P., A. Liret, and F. Pachet. “The Framework Approach for
Constraint Satisfaction,” ACM Computing Survey Symposium, 1998.

27. Pope, S. T. “Producing ‘Kombination XI:’ Using Modern Hard-
ware and Software Systems for Composition.” Leonardo Music Journal,
2(1), 1992.

28. McCartney, J. SuperCollider Software. See www.audiosynth.com.

About the Author
Stephen Travis Pope (b. 1955, New Jersey, USA), studied at Cornell

University, the Vienna Music Academy, and the "Mozarteum" Academy in
Salzburg, Austria, receiving a variety of degrees and certificates in electrical
engineering, recording engineering, and music theory and composition. He
has taught both music and computer science at the graduate level, and has
worked as a composer, software engineer, engineering manager, consult-
ant/mentor/trainer, editor, and performing musician. From 1988 through
1997, he served as editor-in-chief of Computer Music Journal, published by
the MIT Press. He is currently active as a software consultant specializing in
object-oriented software, and as a senior research specialist at the Center Re-
search in Electronic Art Technology (CREATE) in the Department of Music
at the University of California, Santa Barbara.

Stephen has over 80 publications on topics related to music theory and
composition, computer music, artificial intelligence, graphics and user inter-
faces, integrated programming environments, and object-oriented program-
ming. He has been an officer of the International Computer Music Associa-
tion, and was elected a lifetime member in 1990. He has realized his musical
works at computer music studios in the USA (CCRMA/Stanford, CNMAT/
Berkeley, CREATE/Santa Barbara) and Europe (IRCAM/Paris, STEIM/
Amsterdam, EMS/Stockholm, CMRS/Salzburg, IEuEM/Vienna). His music
is available in recorded form from Centaur Records/CDCM, Perspectives of
New Music, Touch Records, SBC Records, and on MIT Press Monograph
CD/CD-ROMs.

 Stephen lived in Europe (Austria, Germany and France) from 1977-86,
and has spent several years there since then (in Holland and Sweden).

