
Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications

Overview

 Check boxes are GUI widgets used to turn an option on or off. Radio buttons have a similar
purpose but they are used to select one of many options. If the number of options is large, variable, or
unknown, single or multiple selection lists are preferable to buttons and boxes.
 Check boxes are used independently of one another. Each check box has its own Aspect variable
which holds a Boolean value in a ValueHolder and this value determines whether the box is on or off.
Radio boxes, on the other hand, are used as groups and the whole group shares a single Aspect variable
holding a Symbol in a ValueHolder. Each radio button has its own special symbol and when the button is
selected, this symbol is stored in the group’s Aspect variable.
 Input fields behave like one-line text editors except that the text in the field can be accepted not
only by the accept command but also by pressing the <Enter> key. The accepted value is stored in the
Aspect variable.

A.1.1 Check boxes and radio buttons - an introduction

 Built-in VisualWorks widgets include four kinds of buttons - action buttons, radio buttons, check
boxes, and menu buttons. Action buttons are covered in Chapter 6 and we will now introduce check boxes
and radio buttons (Figure A.1.1).

Figure A.1.1. Four built-in VisualWorks buttons - action button, check box, menu button, radio buttons.

 Before we start dealing with the technical aspects of the new buttons, we will first comment on
their role in user interfaces. This is an important aspect of interface design because all widgets have their
established uses and uncommon use may confuse the user. The conventional uses of buttons are as follows:

• Action buttons are used to send messages, radio buttons and check boxes are used to select options.
• Radio buttons are used in groups and their control is designed so that exactly one radio button is on at

any time. In other words, radio buttons are used to make 1-of-n related but mutually exclusive choices.
Radio buttons are suitable when the number of options is relatively small; when the number of choices
gets large or when it is calculated at run time it is usually preferable to use scrollable single-selection
lists. The purpose of radio buttons is similar to that of menus which have the advantage that they
require less window space. On the other hand, radio buttons show all available choices at all times
whereas menus display choices only when they are activated.

• Check boxes are used to make individual independent choices. When several check boxes are
available, any number of them may be selected at the same time. In other words, check boxes are used
to make m-of-n choices. Check boxes are suitable when the number of choices is relatively small. For
a large number of choices, it is usually better to use scrollable multiple-selection lists.

 1

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 Although almost all applications use buttons in the way described above, these conventions are
not cast in stone or enforced by software and may be violated if there is a good reason.

Main lessons learned:

• GUI widgets are used according to established conventions. Ignoring these conventions may make the
user interface difficult to use.

• Built-in VisualWorks buttons include action buttons, radio buttons, and check boxes.
• Action buttons are used to send messages.
• Radio buttons are used in groups to allow selection of one of several choices. When the number of

choices gets large or when it is not fixed, use list widgets or menus instead.
• Check boxes are used in groups to make any number of simultaneous independent selections. When

the number of choices gets large or when it is not fixed, use multiple-selection lists or menus.

A.1.2 Check boxes

 The aspect of a check box is a ValueHolder containing a Boolean object. Its value is true when the
box is on, and false when the box is off. The default initial value is false (the default setting of the box is
off) but this can be changed programmatically or with the Properties Tool. The value holder is the widget’s
model, and the widget is the value holder’s dependent. The relationship between the model and the check
box is bi-directional: Clicking the box changes the value of the model, changing the value of the model
changes the visual form of the check box.
 The name of the value holder’s instance variable (and the name of the message that accesses it) is
the Aspect of the check box and it must be specified in the Properties Tool (Figure A.1.2). The label and
several additional properties are optional.
 The definition of both the Aspect instance variable and the Aspect accessing method can be
created automatically with the Define command and no further modifications of the Aspect method are
required. As a point of style, we like to derive the name of the Aspect from the label, as in our illustration.
This makes it easier to remember which Aspect method belongs to which check box.

Figure A.1.2. The properties of a check box. If the label is specified as an image, the contents of the Label
field must be the name of the message that returns the image that will be displayed next to the box.

 2

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Example: Math table with check boxes
Problem: Design and implement an application with the user interface in Figure A.1.3. Clicking Display
prints a table of values of mathematical functions selected by the check boxes; values of arguments range
from 1 to 20 in steps of 1. Any number of functions may be selected simultaneously but when no check
box is on, clicking Display does not have any effect. (This is an appropriate use of check boxes because the
application allows any number of selections.)

Figure A.1.3. Example: Math table application.

Solution: This simple application can be implemented as a single application model class and the only
instance variables needed are those required by the check boxes. The work is done by the method activated
by the Display button, and the corresponding method checks the current values of the value holders of all
check boxes and produces the appropriate output to the Transcript.
Implementation: After painting the user interface and installing it on an application model, we defined the
aspect methods and created the stubs using Define. To avoid confusion, we used the same names for button
Aspects and for check box labels. The Define command created Aspect methods such as

square
 ^square isNil ifTrue: [square := false asValue]
 ifFalse: [square]

performing lazy initialization with false as the default value. If we wanted a check box to be initially on,
we would have to initialize its Aspect variable in the initialization method to be a value holder on true, or
specify that the box should be initially on in the Properties Tool.
 The only remaining definition is that of method display sent by the action button. This method
checks the values of the value holders of the check boxes and prints a table of the selected function values
in the Transcript. Note that we use message value to extract the Boolean value from the Aspect variables:

display
"Check which boxes are on, calculate corresponding values, and display them in Transcript. Don't print
anything if no box is selected."
(sin value or: [cos value or: [square value or: [cube value]]])
 ifFalse: [^self].
"For all values in the range, calculate selected functions and print in Transcript."
Transcript clear.
sin value ifTrue: [Transcript show: 'sin'; tab].
cos value ifTrue: [Transcript show: 'cos'; tab].
cube value ifTrue: [Transcript show: 'cube'; tab].
square value ifTrue: [Transcript show: 'square'; cr].
1 to: 20 do: [:argument | "Examine all check boxes to determine which functions to print."
 Transcript show: argument printString; tab.
 sin value ifTrue: [Transcript show: argument sin printString; tab].
 cos value ifTrue: [Transcript show: argument cos printString; tab].
 cube value ifTrue: [Transcript show: (argument squared * argument) printString; tab].
 square value ifTrue: [Transcript show: argument squared printString; cr]]

 3

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 The application works except for a small problem that occurs when you click Display and the
square button is not selected. We leave it to you to identify and correct this minor problem.

Main lessons learned:

• The Aspect of a check box is the name of an instance variable holding a Boolean ValueHolder

representing the state of the box. It is also the name of the accessing method of this variable.
• The Aspect method and variable of a check box can be automatically defined with Define and the

method does not require any modification if the box is initially off. Use the Properties Tool to turn the
box initially on.

Exercises

1. Implement the example from this section.
2. Our definition of display tests all check boxes on each pass and this is quite inefficient. Can you find a

better solution?

A.1.3 Radio buttons

 Radio buttons are always used in groups and exactly one radio button is always selected1. Because
of this, all buttons in the group share one Aspect variable and its value identifies the button that is currently
selected. This is done by assigning one Selection value to each button via the Property tool. Selection acts
like a symbolic tag of the button and the value in the Aspect variable identifies the radio button that is
currently on. Each radio button thus requires an Aspect variable and its accessing method (shared by all
buttons in a group), and a Selection value (unique for each check box in a group). If the window contains
several groups of radio buttons, the scope of Selection values is restricted to each group. As a consequence,
the same Selection value may be used by different radio buttons if they are not in the same group (don’t
share the same Aspect variable).

Example: Controlling the case of a string
Problem: Design an application with the user interface in Figure A.1.4. Clicking Enter text opens a dialog
asking the user to enter a string. Clicking Display prints the string in the Transcript using the style selected
by the setting of the radio buttons as follows: When the unchanged radio button is on, the text is displayed
unchanged, when the capitalize button is selected the text is displayed capitalized, when the lower case
button is selected the text is displayed in lower case. (This is an appropriate use of radio buttons because
exactly one selection must be made at any time.)

Figure A.1.4. Example: Radio buttons used to select one of three display styles.

1 If you don’t initialize the Aspect value holder, the window will open with no radio button selected. This
should normally be changed because it is inconsistent with the normal behavior of radio buttons.

 4

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Solution: The problem can again be implemented using just an application model class. We need one
instance variable to hold the text entered by the user and one instance variable for the Aspect of the group;
both the Aspect variable and its accessing method can be automatically created by Define.
 We selected the name #case for the Aspect of the three radio buttons because its value determines
how the text will be displayed. For the Select parameter of individual buttons, we chose #unchanged,
#capitalize, and #lowerCase - names derived from button labels.
 The accessing method automatically created by Define turns all radio buttons initially off. To turn
the capitalize button on, we can initialize style to #capitalize as follows:

initialize
 case := #capitalize asValue

Alternatively, if we defined a case accessing method by the Definer, it has an accessor with lazy
initialization and we can then initialize the value with

initialize
 self case value: #capitalize

 We leave the method for the Enter text button to you as an exercise. It should open a dialog,
prompt the user for a string, and save its value in an instance variable of the application model; we will call
this variable text. The only remaining method is display. This method checks which radio button is on and
displays the text in the Transcript using the selected style:

display
“Display text using selected style but leave initial text unchanged.”
 | newText |
 “Calculate text using selected style.”
 newText := case == #unchanged
 ifTrue: [text]
 ifFalse: [case == #capitalize
 ifTrue: [text asUppercase]
 ifFalse: [text asLowercase]].
 “Display in Transcript.”
 Transcript cr; show: newText

 This seems perfectly reasonable - but it does not work! The text is always displayed in lower case,
no matter which style we choose. Obviously, something must be wrong with the value of variable newText.
And indeed - we made the typical mistake with value holders: The value of case is a ValueHolder - not a
Symbol - and the value is ‘inside’ it. Expression

case == #unchanged

checks whether the variable holds a Symbol, which it does not. All checks thus fail and the last alternative
of the nested messages is always executed, changing the text to lower case. For proper operation, we must
check what is the value held in the case ValueHolder, not what is the value of case itself. The following
version is correct:

 5

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

display
 | newText |
 newText := case value == #unchanged
 ifTrue: [text]
 ifFalse: [case value == #capitalize
 ifTrue: [text asUppercase]
 ifFalse: [text asLowercase]].
 Transcript cr; show: newText

Exercises

1. Implement the example from this section.

A.1.4 Input fields

 An input field is essentially a one-line text editor complete with an <operate> menu. When set to
read-only operation it can function as a program-controlled label.
 Each input field has an Aspect variable containing a ValueHolder with a string. When the user
enters text into the field and hits <Enter> or selects accept from the <operate> menu, the field stores its
contents in its Aspect variable. Before the user accepts the contents of the text field in this way, the text
displayed in the field and the text stored in its Aspect variable may be different and the text field widget
itself thus has another instance variable which holds the displayed text (Figure A.1.5). In this respect, the
input field is again similar to the text editor.

Main lessons learned:

• Radio buttons are used in groups to select exactly one of several options.
• For each radio button, specify at least Selection, and Aspect.
• The Selection value of a button is a Symbol assigned to the Aspect when the button is clicked. Each

button in a group must have its own unique Selection value.
• The Aspect of a radio button is the name of an instance variable holding a ValueHolder on a Symbol; it

is also the name of the accessing method of this variable.
• The value of the Aspect variable is the value of the Selection property of the currently selected button.
• The Aspect name must be identical for all radio buttons in a group.
• The Selection value of the radio button which should be on when the window first opens must be

assigned as the value of a ValueHolder to the Aspect variable of the group in the initialize method.

cancel

accept
Text: ‘Displayed text’
other instance variables

instance of Text Field widget instance of application model

Aspect: ValueHolder on ‘Accepted text’

Figure A.1.5. The displayed and the accepted text may be different and are held in two distinct variables.

Example 1: Read-write input field connected to a read-only field

 6

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Problem: Create a window with two input fields as in Figure A.1.6. The top field is for input and the
bottom field is for output. When the user enters text into the top field and accepts it, the text is displayed in
the bottom field. The bottom field is a read only field (and the name input field is thus a misnomer).

Figure A.1.6. Example: Accepted changes in the top field are displayed in the read-only field below.

Solution: Paint the widgets and specify their Aspects (we chose inputField for the top field and outputField
for the bottom field), select Read Only as the special property of the bottom field. Install the canvas and use
the Define command to create the Aspect variables and methods of both fields. Both methods perform lazy
evaluation, assigning

String new asValue

to Aspect variables when first accessed. You can now open the application and check that you can type into
the top field but not into the bottom field. Of course, typing into the top field does not have any effect on
the bottom field because we have not defined any mechanism for linking the two fields together.
 The implementation of the desired behavior will be as follows: When the user accepts new text in
the input field and thus changes the value of variable inputField, the change of inputField will send message
newInput to outputField; this message will send the value: message to outputField and change its value.
This, in turn, will change the text displayed in the output field because the output field widget is a
dependent of the outputField variable. In plain English, when the user tells inputField ‘change your value’,
inputField will tell outputField ‘change your value’; since the output field widget is a dependent of
outputField, this will say ‘redisplay yourself with the new text’ to the outputField widget (Figure A.1.7).

3
value holder

sends
newInput

5
‘I changed’

1
user enters text and

clicks accept

inputField outputField Input Field widgetInput Field widget
6

new value?
7

text

2
widget

sends text
as new
value

4
app model

sends value:
text app model

Figure A.1.7. Desired link between the two text fields. Full lines represent built-in behavior, interrupted

line is behavior that must be defined.

To set this mechanism up, we must

1. inform the inputField value holder that when its value changes, it must send message newInput to the

application model.

 7

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

2. write method newInput.

To implement Item 1, we must send onChangeSend:to: to the model of the widget in the initialize method2:

initialize
 inputField onChangeSend: #newInput to: self

Unfortunately, this does not work and we get the exception in Figure A.1.8 even before the window opens.

Figure A.1.8. Error notifier obtained when trying to open the example application.

 We don’t even need to open the debugger to find the reason for this problem - the cause is clear
from the notifier which says that “while executing method initialize, our application model sends message
onChangeSend:to: to an UndefinedObject”. Why UndefinedObject? In the definition of initialize, we are
sending onChangeSend:to: to inputField but inputField is still nil. To make inputField a ValueHolder on the
string in the input field widget, we must first assign a ValueHolder object to inputField:

initialize
 inputField := '' asValue. “This value will be displayed when the window opens.”
 inputField onChangeSend: #newInput to: self

 With this modification, the window opens properly and whenever the user accepts new text in the
input field, inputField sends newInput to self - the application model.
 We have now established the ‘link’ and to complete the program, we must write the newInput
method. When this method is invoked it should simply get the new text (the value of inputField) and assign
it to the value of outputField. The definition is as follows:

newInput
 outputField value: inputField value

The example is now fully operational.

The mechanism behind onChangeSend:to:

 8

2 Alternatively, we could specify #newInput as the Action on changed of the widget in the Notification
property in UI Painter as explained in Appendix 8.

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

We have seen that the result of an expression such as

aValueHolder onChangeSend: aMessage to: aReceiver

is that whenever aValueHolder gets the value: message (for example by a mechanism built into the input
widget), it sends aMessage to aReceiver. To see how this works, we examine the definition of
onChangeSend:to: in class ValueModel and find

onChangeSend: aSymbol to: anObject
"Arrange to receive a message with aSymbol when the value aspect changes on anObject."
 self expressInterestIn: #value
 for: anObject
 sendBack: aSymbol

where the definition of expressInterestIn:for:sendBack: in class Object is

expressInterestIn: anAspect for: anObject sendBack: aSelector
"Arrange to receive a message with aSelector when anAspect changes at anObject"
 | dt |
 dt := DependencyTransformer new.
 dt setReceiver: anObject
 aspect: anAspect
 selector: aSelector.
 self addDependent: dt

This shows that

aValueHolder onChangeSend: aMessage to: aReceiver

creates a DependencyTransformer and adds it to the dependents of aValueHolder. As a consequence, when
aValueHolder gets value:, it tells this new dependent about it.
 What is a DependencyTransformer and what does it do when it is notified by its model
ValueHolder? When you examine DependencyTransformer, you will find that it keeps the selector of a
message (aSelector in the definition above) and a pointer to another object (anObject). When it receives
message update: with argument anAspect, it sends message aSelector to anObject. In summary, the
onChangeSend:to: sets up a new dependent of the value holder, and this new dependent fires its assigned
message to its assigned receiver whenever asked to update itself (Figure A.1.9). Essentially, a
DependencyTransformer’s is a translator that transforms the update: message into another message.

update: #value update: #value update: #value

aMessage

value:

receiver: anObject
selector: aMessage

a ValueHolder

a widget
object

a DependencyTransformer
object

another
object

1

2 3 5

dependents of
a ValueHolder

4

anObject

Figure A.1.90. Events triggered by sending value: to a ValueHolder with a dependent
DependencyTransformer.

 9

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Main lessons learned:

• An input field is a one-line text editor.
• An input field has only one essential property - its Aspect. The Aspect is the name of an instance

variable holding a ValueHolder on the accepted text, and the name of its accessing method.
• To display text when the window opens, assign a ValueHolder with this text to the Aspect variable in

the initialize method.
• To store the text in an input field to the Aspect variable, the user must press <Enter> or execute accept

from the field’s <operate> menu.
• Since the accepted value and the displayed value may be different, the displayed value is held in an

instance variable of the input field; the accepted value is held in the Aspect variable in the application
model.

• An input field may be defined as a read-only widget. This means that the user cannot type into it and
that the field is insensitive to mouse button clicks, making it impossible to give it a menu.

• To change the text displayed in an input field programmatically, send value: to its Aspect variable.
• To force a variable holding a ValueHolder to send a message whenever its value changes, send it the

onChangeSend: aMessage to: anObject message. anObject is normally self because aMessage is
usually defined in the application model.

• The onChangeSend: aMessage to: aReceiver message is the basis for setting up links between
widgets.

• The object that transforms the change of a value holder into a message to an object is an instance of
DependencyTransformer.

Exercises

1. Modify our example 1 to display ‘Input text’ in the input field and ‘Output text’ in the output field when

the window first opens. Note that once you do this, you don’t need lazy evaluation for this variable
any more.

2. Modify our example as follows: Change the type of input/output to numeric, center the text in the
field, change the color of the input field text to blue and that of the output field to red.

3. Write a short description of DependencyTransformer.
4. Trace the behavior of the DependencyTransformer by including a self halt into the newInput method.

Write a description of your findings.
5. Enact a typical scenario for the input field - output field example.

A.1.5 A computerized restaurant menu

 In this section, we will design and implement a simple application using check boxes and an input
field - a computerized restaurant menu that allows the user to choose meals by clicking buttons (Figure
A.1.10). When the user selects or deselects an item, the menu immediately updates the current total at the
bottom of the window. When the user presses the OK button, a window opens saying that the order is
being processed. Check boxes for selection of pizza toppings are enabled only when the Basic pizza check
box is on.

 10

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Figure A.1.10. Computerized restaurant menu.

Design: Although the problem could be a part of a large application that keeps track of bills, supplies, and
other things, we will treat it as an exercise in UI design and implement it with a single application model
class. Aspect methods of individual check boxes and the text field will be created automatically, the Total
will be a read-only field with centered output, and the OK button will require a method that will open the
confirmation window. An initialization method will set up the dependencies.
Implementation: Painting and installing the interface and defining Aspects is, in general, quite routine
except that the value in the input field is a number and should be displayed with two decimal digits (as
dollars and cents). Although input fields display strings, other kinds of objects such as numbers and dates
are also frequently required and the text field widget can convert them to and from strings automatically. In
our case, we select the fixed point format in the Properties Tool window. We also select centered format.
 The next step is an initialization method defining mainly how the application model responds to
state changes of individual check boxes. As we know, registering interest in changes is achieved by the
onChangeSend:to: message and this requires that we make the value of each Aspect variable a
ValueHolder. Since we have 13 check boxes, this will require 13 false asValue messages followed by 13
onChangeSend:to: messages. This would make the definition much longer than the recommended method
size (as a rule of thumb, method definitions should not be longer than the browser’s text field) and we will
thus divide it into the variable initialization part and the change specification part. Each part will be
implemented by a separate method:

initialize

 11

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 self initializeVariables.
 self initializeChanges

The definition of intializeVariables is

initializeVariables
“Set check box Aspect variables as value holders on false to be able to send them onChangeSend:to: during
the next step of initialization, and to set all check boxes off.”
 appleJuice := false asValue.
 applePie := false asValue.
 basic := false asValue.
 brownies := false asValue.
 chicken := false asValue.
 coke := false asValue.
 crepes := false asValue.
 figs := false asValue.
 gazpacho := false asValue.
 halibut := false asValue.
 lentil := false asValue.
 mozzarella := false asValue.
 pineapple := false asValue.
 total := 0.0 asValue “To display 0.0 for total when the window opens”

and method initializeChanges is

initializeChanges
“Specify change messages to be sent on changes of value holder variables”
“Each change message will check the state of the value holder and update the total.”
 appleJuice onChangeSend: #checkAppleJuice to: self.
 applePie onChangeSend: #checkApplePie to: self.
 basic onChangeSend: #checkBasic to: self.
 brownies onChangeSend: #checkBrownies to: self.
 chicken onChangeSend: #checkChicken to: self.
 coke onChangeSend: #checkCoke to: self.
 crepes onChangeSend: #checkCrepes to: self.
 figs onChangeSend: #checkFigs to: self.
 gazpacho onChangeSend: #checkGazpacho to: self.
 halibut onChangeSend: #checkHalibut to: self.
 lentil onChangeSend: #checkLentil to: self.
 mozzarella onChangeSend: #checkMozarella to: self.
 pineapple onChangeSend: #checkPineapple to: self

 This does not appear too intelligent because both methods contain a long sequence of essentially
identical messages. We will examine whether there are better solutions in the next section.
 The Action method of the OK button is trivial - it simply opens a Dialog box - and we leave it to
you as an exercise. The Aspect methods of the check boxes created by Define should be created with
initialization off (we already initialized all Aspect variables) and the only methods that require attention are
the check messages in initializeChanges. Most of them will be defined along the following pattern:

checkAppleJuice
“The apple juice box has just changed its state. If it has been clicked on, add the price of the item to total, if it
has been clicked off, subtract the price from the total.”
 appleJuice value
 ifTrue: [total value: (total value + 0.70)]
 ifFalse: [total value: (total value - 0.70)]

 The logic of the definition captures the fact that the method is executed for every change of the
state of the check box - when the box is clicked on as well as when it is clicked off. Note that we use value:
to set the new total in order to propagate the change to the input field widget.

 12

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 The only change method that is different is the method for the Basic Pizza check box. This
method must perform the following tasks:

• If the box is clicked on, it must change the value of the total and enable the toppings buttons.
• If the box is clicked off, it must disable the toppings buttons and subtract the price of the pizza and the

price of any toppings that have been on from the total.

 To implement this behavior, we must know how to enable and disable a widget. The principle is
that if you give a widget an ID, you can access it at run time via the UI builder, for example to enable or
disable it (messages enable and disable) or to hide or show it (beInvisible and beVisible). An ID is assigned
via the Properties tool as in Figure A.1.11.

Figure A.1.11. Toppings boxes must have IDs so that the program can enable and disable them.

We have just established the principle of the logic of method checkBasic. The details are as follows:

If Basic box is on then
 add basic price to total
 enable toppings boxes
If Basic box is off then
 disable toppings boxes
 subtract basic price from total
 change the value of those toppings boxes that are on to off using the value: message
 (The corresponding value holders will send their change messages which will
 turn toppings boxes off and subtract their price from total)

From this specification, we can now easily write the definition:

checkBasic
“The Basic box has just changed, recalculate the total and modify the display”
basic value
 ifTrue: “Box was just clicked on - enable toppings boxes, add price of basic pizza to total.”
 [total value: total value + 3.50.
 (builder componentAt: #mozzarella) enable.
 (componentAt: #figs) enable.
 (builder componentAt: #pineapple) enable.

 13

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 (builder componentAt: #mozzarellaPrice) enable.
 (builder componentAt: #figsPrice) enable.
 (builder componentAt: #pineapplePrice) enable]
 ifFalse: “Box was just clicked of - disable toppings boxes, subtract price of basic pizza from total.”
 [(builder componentAt: #mozzarella) disable.
 (builder componentAt: #figs) disable.
 (builder componentAt: #pineapple) disable.
 (builder componentAt: #figsPrice) disable.
 (builder componentAt: #pineapplePrice) disable.
 total value: total value - 3.50.
 “Subtract price of selected toppings from total.”
 mozzarella value ifTrue: [mozzarella value: false].
 figs value ifTrue: [figs value: false].
 pineapple value ifTrue: [pineapple value: false]]

 This definition shows how to communicate with widgets at run time: To obtain a widget3, ask the
builder using componentAt: ID; then send the appropriate message.

How widget IDs work

The basis of the operation of IDs is method componentAt which is defined in class UIBuilder as follows:

componentAt: aKey
"Retrieve the SpecWrapper of the indicated component."
 ^namedComponents at: aKey ifAbsent: [nil]

 This definition shows that to the builder gets a widget’s wrapper by asking its instance variable
namedComponents for the component at the given ID. namedComponents holds a registry of ID -> widget
wrapper pairs and we encourage you to examine it with an inspector.

Main lessons learned:

• Any GUI widget may have an ID, an instance of Symbol. Widget IDs must be unique within an

application model or more accurately within the scope of a UI builder.
• An ID is required only for direct communication between the application and the widget, for example

to enable, disable, show, or hide it.
• The builder holds a registry of widget IDs. To obtain a widget (or rather its wrapper), request it via its

ID from the builder using the componentAt: id message. The builder itself is an instance variable of
the application model.

• A method definition should not exceed the size of the browser’s code view by much. If it does, try to
find a more compact solution or split the method into several shorter methods. There are, of course,
justifiable exceptions to this rule.

Exercises

1. Complete the Restaurant Menu application and test it. You will have to learn how to use the region

widget to draw the rectangles around the menu. Make the rectangles blue with a red outline, display
the names of the courses such as Soup and Pizza in red, and the rest in black.

2. Equip the window with a vertical scroll bar to provide more space for courses.
3. Implement meal names with read-only input fields with no borders instead of labels. What are the

relative advantages of the two implementations?

3 In reality, the builder does not return the widget itself but the ‘wrapper’ around it but this distinction is
unimportant at this point.

 14

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

4. Browse class UIBuilder, read its comment, and examine its examples class protocol. These example

methods show how to create a builder and a user interface programmaticaly instead of using UI
painter.

5. Insert a breakpoint into checkBasic to inspect the components of the builder at run time.

A.1.6 Other implementations of Restaurant Menu

 When we introduced the initialize method in the previous section, we noted that both of its
constituent messages are awkward because they contain too much repetitive code. As an example,

initializeVariables
 appleJuice := false asValue.
 applePie := false asValue.
 basic := false asValue.
 brownies := false asValue.
 chicken := false asValue.
 coke := false asValue.
 crepes := false asValue.
 figs := false asValue.
 gazpacho := false asValue.
 halibut := false asValue.
 lentil := false asValue.
 mozzarella := false asValue.
 pineapple := false asValue.
 total := 0.0 asValue

consists of a sequence of identical assignments to different variables. One would think that it should be
possible to rewrite it more compactly, for example as

initializeVariables
“Initialize all Aspect variables as value holders on false to set all check boxes initially off.”
 appleJuice applePie := basic := brownies := chicken := coke := crepes := figs := gazpacho :=
 halibut := lentil := mozzarella := false asValue.
 total := 0.0 asValue “To display 0.0 for total when the window opens”

 Although this solution is legal, it is incorrect because it assigns the same value holder to all Aspect
variables. As it is, changing the state of any check box will thus change all others (Figure A.1.12).

a ValueHolder
value: true
dependents:

Apple Juice

Apple Pie

Basic pizza

Brownies

Chicken

User Interface Variables

value:

chicken

brownies

basic

applePie

appleJuice

Figure A.1.12. Assigning the same ValueHolder to all Aspect variables locks all check boxes together.

We must assign a different value holder to each variable (Figure A.1.13) along the following lines:

initializeVariables
“Initialize all Aspect variables as value holders on false to turn all check boxes off.”

 15

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 #(appleJuice applePie basic brownies chicken coke crepes etc.) do:
 [:variable | variable := false asValue].
 total := 0.0 asValue “To display 0.0 for total when the window opens”

a ValueHolder
value: true
dependents:

value: true
dependents:

a ValueHolder

value: false
dependents:

a ValueHolder

Apple Juice

Apple Pie

Basic pizza

User Interface Variables

etc.

basic

applePie

appleJuice

Figure A.1.13. Each check box must have its own ValueHolder.

 This formulation will not work either because the literal array is an array of Symbols and
consequently the value of the block variable variable is a Symbol. This is unacceptable because the left
hand side of an assignment must be a variable name. Since aspect variables are necessary and assignment
to a variable cannot be avoided, it seems that we cannot simplify the initializeVariables method. But what
about the initializeChanges method?
 To find a working solution, we must return to the origin of our problem and consider what we are
trying to do in initializeChanges. Our ultimate goal is to send onChangeSend:to: to the value holders
associated with the individual check boxes. In other words, the point is not to communicate with the
variables but to use them to access the value holders. If there is some other way to access the value holders
directly, we don’t need to bother with the variables. And if we don’t have to access the variables, then
there may be an easier way.

It turns out that in our case there are two ways to access the value holders directly - one through
their accessing methods and one through the builder. We will now formulate a new solution using both
approaches.

Solution 1: Using the builder to access a widget’s value holder

 To access the value holder of a widget through the UI builder requires an understanding of the
application opening process. From the perspective of our current interest, this process works as follows:

1. When the application model class gets the open message or its equivalent, it creates an instance of a

UIBuilder with, among other things, variable bindings containing an IdentityDictionary.
2. The builder reads the specification of the interface (in our case stored in windowSpec), extracts the

description of each widget, and executes the following steps if the widget has an Aspect method:
a. It sends the component’s Aspect message to the application model, expecting to get the value of

the widget’s Aspect variable, a ValueHolder.
b. It adds the pair
(Aspect name as Symbol) -> ValueHolder
 to the bindings dictionary.
c. It makes the corresponding widget a dependent of the ValueHolder (Figure A.1.14).

 16

a ValueHolder
value: false
dependents: Apple Juice

Apple Pie

Basic pizza

User Interface

a ValueHolder
value: false
dependents: etc.

#basic->
#applePie->

#appleJuice ->

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

a ValueHolder
value: false
dependents: bindings dictionary

Figure A.1.14. Builder’s bindings dictionary.

 Once the bindings dictionary exists, we can access its values (the value holders) by sending
message aspectAt: aSymbol to the builder. As an example, aspectAt: #basic returns the value holder of the
Basic check box.
 We conclude that if we leave the onChangeSend:to: message until after the builder is finished
building the interface, we can remove the initializeChanges method and access the value holders via the
builder instead of going through the variables as in

postBuildWith: aBuilder
“Send onChangeSend:to: to each aspect value holder.”
 (aBuilder aspectAt: #appleJuice) onChangeSend: #checkAppleJuice to: self.
 (aBuilder aspectAt: #applePie) onChangeSend: #checkApplePie to: self.
 etc.

 This definition does not look any simpler than initializeChanges but it can be simplified: We can
now put all Aspect Symbols into an array, put the corresponding change message symbols in another array
so that names of Aspect symbols parallel symbols of their corresponding change messages (Figure A.1.15),
and all messages in a single enumeration statement.

#appleJuice
#applePie

#basic
etc.

#checkAppleJuice
#checkApplePie

#checkBasic
etc.

 variable names

as Symbols
change messages as

Symbols

Figure A.1.15. Parallel arrays of variables as symbols and their corresponding change messages.

The definition can now be written as follows:

postBuildWith: aBuilder
“Send onChangeSend:to: to each aspect value holder.”
aspectSymbols := #(#appleJuice #applePie #basic #brownies etc.).
changeSymbols := #(#checkAppleJuice #checkApplePie #checkBasic #checkBrownies etc.).
aspectSymbols with: changeSymbols do[:aspectSymbol :changeSymbol|
 (builder at: aspectSymbol) onChangeSend: changeSymbol to: self]

Solution 2: Accessing value holders via their accessing methods

 Another way to register change messages is as follows: Since we have accessing methods for the
value holders, we can put their names in an array as Symbols, and execute them using enumeration and
perform:, obtaining the value holders. The principle is that an expression such as

self perform: #appleJuice

executes

 17

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

18

self appleJuice

and returns the value holder for the Apple Juice check box. We can then send onChangeSend:to: to this
value holder as in

(self perform: #appleJuice) onChangeSend: #checkAppleJuice to: self

 The corresponding definition is

postBuildWith: aBuilder
“Send onChangeSend:to: to each aspect value holder.”
aspectMethods := #(#appleJuice #applePie #basic #brownies etc.).
changeMethods := #(#checkAppleJuice #checkApplePie #checkBasic #checkBrownies etc.).
aspectMethods with: changeMethods do[:aspectMethod :changeMethod|
 (self perform: aspectMethod) onChangeSend: changeMethod to: self]

Several notes are in order:

• If we have object-accessing methods, we can use this approach in any situation where we need to

access a collection of objects in a uniform way.
• With this approach, we don’t have to send onChange assignment in postBuild:, it will work equally

well in initialize because of the operation of Aspect methods: When the builder builds the bindings
dictionary, it sends the Aspect message and if the Aspect variables already contain value holders, the
accessing message returns the value holder unchanged. The interface building process thus will not
disrupt the bindings and the onChange message assignments built by our code.

 The last note has a very important flip side: When using Aspect variables, one must be careful not
to affect the bindings built by the builder. As an example, assume that we want to open our window with
all the check boxes on. This requires that the values of the Aspect objects be value holders on true and this
could be achieved for example by

postBuildWith: aBuilder
...
 #(#appleJuice #applePie basic etc.) do:
 [:aspectSymbol | (builder at: aspectSymbol) value: true].
...

 It is tempting to write

postBuildWith: aBuilder
...
 #(appleJuice applePie basic etc.) do:
 [:aspectSymbol | (builder at: aspectSymbol put: true asValue].
...

but this is wrong. The reason is that when the builder constructs the bindings, it makes each check box a
dependent of a particular ValueHolder. Sending value: to this value holder changes its value but leaves the
model→dependent binding between the value holder and the widget unchanged.

If we used at:put: instead of value:, the builder would replace the existent ValueHolder with a new
ValueHolder and since a new value holder does not have any dependents, the dependency between the
value holder and the widget would be broken. Future changes to the value holder and changes to the state
of the widget would thus be independent of one another (Figure A.1.16). This mistake is quite common
and leads to problems that are not easy to trace.

new

value holder

original
value holder

appleJuice nil

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

etc.
basic

applePie ValueHolder
value: true
dependents:

appleJuice
applePie

basic
etc.

ValueHolder
value: true
dependents:

bindings
dictionary

Check Box

ValueHolder

original
value holder

value: true
dependents:

 bindings

dictionary Check Box

Figure A.1.16. Effect of builder at: applePie put: true asValue (left) and (applePie at: symbol) value: true
(right). Since the original value holder on the left is eliminated from the bindings dictionary and garbage

collected, unless other references to it exist.

Another improvement: Updating total by a single method

The use of one total-updating message for each check box as in

checkAppleJuice
 appleJuice value
 ifTrue: [total value: (total value + 0.70)]
 ifFalse: [total value: (total value - 0.70)]

seems redundant because most of the check box total-updating messages are almost identical. Another way
to solve the problem is to define a single method handling all updates (other than the pizza group which is
different) and send it when any value holder changes. The method will go through all value holders, check
their state, and recalculate the total as follows:

updateTotal
| newTotal prices values |
“Check all value holders and update the total.”
values := #(appleJuice applePie etc.).
prices := #(0.70 3.70 etc.).
newTotal := 0.
values with: prices do: [:id :price| (builder at: id) value “If the box is on, add item’s price.”
 ifTrue: [newTotal := newTotal + price]].
total value: newTotal
With this method, we can now change all check methods to the following format:

 19

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

checkAppleJuice
 self updateTotal

 Considering that we must create the values and prices arrays every time when we execute
updateTotal, it will be better to store values and prices in two new instance variables called values and
prices and initialize them to the two arrays shown above once and for all. The complete solution is now as
follows:

ApplicationModel subclass: #DriveIn
 instanceVariableNames: ‘prices values etc.’
 etc.

initialize
 values := #(appleJuice applePie etc.).
 prices := #(0.70 3.70 etc.).

etc.

postBuildWith: aBuilder
 values do: [:id | (builder at: id) onChange send: updateTotal to: self]

updateTotal
| newTotal prices values |
“Check all value holders and update the total.”
newTotal := 0.
values with: prices do: [:id :price| (builder at: id) value “If the box is on, add item’s price.”
 ifTrue: [newTotal := newTotal + price]].
total value: newTotal

and

checkAppleJuice
 self updateTotal

and similarly for all other check methods.
 In this solution, we are doing many more calculations but the solution is much simpler. Since the
number of calculations is still very small and their nature trivial, this solution is better.

Main lessons learned:

• While building the user interface, UIBuilder constructs a dictionary of bindings containing Aspect

Symbols as keys and their value holders as values. To obtain a value holder, it sends the Aspect
message defined as the widget’s Property to the application model. It then registers the widget’s
wrapper as the value holder’s dependent.

• Accessing values of instance variables by enumeration can be simplified by defining an accessing
method for each of them and enumerating over an array of Symbols corresponding to the selectors of
these accessing messages.

Exercises

1. Complete the application.
2. Since all check methods do exactly the same thing if we used the updateTotal method, it does not seem

that we need them after all. Modify the implementation accordingly.

 20

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

A.1.7 Validation of user input

 The logic of an application often requires certain checks and actions when the user enters new
data into an input field, double clicks an entry in a list widget, or triggers another input event. Validation
and Notification properties available for certain widgets provide this facility and we will now show a
simple example of their use.

Example: Validating user input
Problem: Modify Example 1 from Section A.1.4 - entering text into an input field - to prevent the user
from entering and accepting digits.
Solution: This problem is a pure extension of Example 1 and we will implement it as a subclass of its
solution. Before we do, however, let’s explore the validation features available in VisualWorks.
 For several widgets, including input field, the Properties Tool contains two special pages of
additional properties called Validation and Notification (Figure A.1.17). According to User’s Guide,
‘validation properties are specified when you want a widget to ask its application model for permission to
proceed with certain actions, namely, accepting focus, changing internal state, or giving up focus.’
Validation message must return true for ‘proceed’ and false for ‘ignore’. Notification, on the other hand, is
used to inform the application model that one of the three events listed above has occurred. The message
specified as a notification property is automatically sent to the application model when the event occurs.

Figure A.1.17. Validation properties of input fields.

 As an example, if the method specified as the widget’s Exit property returns true, the new text is
accepted but if it returns false, the new value is not accepted. In our example, we specified validate as the
name of the Exit method. If we defined validate as

validate
“Accept new value under all conditions.”
 ^true

the new value would always be accepted. If we defined validate as

validate
“Ignore new value under all conditions.”
 ^false

 21

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

the new value would always be ignored. In our problem, we are to check the input when the user attempts
to accept it, and accept it only if all the characters are letters. To do this, validate must obtain the text
entered (and displayed) in the input field and test whether all its characters are letters.
 To obtain the text displayed in an input field, we cannot go to the Aspect value holder of the
widget because the text has not yet been accepted. Instead, we must get the widget from the builder and
extract the text directly from it. To be able to access the widget, we must give it an ID (we called it
#inputField) and ask the builder for this component. The rest, by trial and error if you don’t know any
better, is to ask the component for the widget (‘component’ is the wrapper around it), get the widget’s
controller, get the view which holds and displays the text, and then get the contents. Altogether, we can get
the string displayed in the input field (whether accepted or not) by sending

(builder componentAt: #inputField) widget controller view displayContents string

 After getting the string, we can check whether the string contains a digit. If the answer is true, we
want to accept the string and proceed. If the answer is false, we want to ignore the input. The following
implementation uses this principle:

validate
“Accept the input if it consists of letters only.”
 | string |
 string := (builder componentAt: #inputField) widget controller view displayContents string.
 ^string contains: [:char | char isDigit] not

 This is only an introduction to validation features available in VisualWorks. We leave it to you to
explore additional details of Validation and Notification in exercises.

Main lessons learned:

• Several VisualWorks widgets, including input field, provide validation of user input.

Exercises

1. Is it possible to implement our example without validation?
2. Write an application to test the exact behavior of Notification and Validation. The user interface will

consists of one input field and one check box, each with all Validation and Notification properties.
Each of the Validation methods will open a confirmation dialog informing the user about the type of
event that occurred and allowing him or her to return true or false as the answer. Notification methods
will simply open an appropriate ‘warning’.

A.1.8 A Course Evaluation program

 As an illustration of the use of radio buttons, we will now design and implement another simple
application whose purpose is to computerize course evaluation forms.

Specification: The user opens the application by executing a Smalltalk expression containing the name of
the course. When the application opens, the user can complete the form by clicking radio buttons
associated with individual questions (Figure A.1.18). Exactly one answer must be selected for each
question and the initial selections when the window opens are N/A (for ‘not applicable’). The student can
also add an optional comment at the bottom of the form. When finished, the student clicks the Print and
close button and a summary of the data on the form is printed in the Transcript.

 22

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Figure A.1.18. Computerized Course Evaluation form.

 Using radio buttons in this problem may seem a bit unusual because we said that radio buttons
should be used only when there are only a few choices and this seems hardly the case here. In fact, this
guideline is still satisfied because we have a relatively small number of buttons for each question and the
number of choices is thus always limited.

Design: As it is, the form simply collects information and does not perform any processing. Consequently,
we will implement it as a single application model class called CourseEvalForm. The full list of its
responsibilities is as follows:

• Allow the user to specify the name of the course when opening the application.
• Provide user interface for entering data.
• When the user clicks Print and close, close the window, gather the information into a suitable form,

and print it in the Transcript window.

 These responsibilities will be implemented by an opening method (specifying course number as
an argument), an initialization method (to set up initial states of radio buttons), a set of Aspect methods
(one for each row of radio buttons), an Aspect method for the comment, and an Action method for the Print
and close button. We will gather the answers to the 13 questions in a 13-element array, and define an
instance variable to hold the comment.

 23

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Implementation: The painting of the user interface and defining the properties is routine but we saved some
time by creating one row of buttons and copying it for each additional row. The Aspect of all buttons in the
first row is identical - #quest1, the Aspect of all buttons in the second row will be #quest2, and so on.
 For the Select property of individual buttons we chose #0 for the Select value of the leftmost
button because this radio button corresponds to choice 0, #1 for the next button, and so on. The Select
value of the N/A button in the last column will be #n/a. All buttons in one column will have the same Select
value but this is acceptable: Although Select must be different for each button in a group, it may be
repeated in different groups. The Aspect of the comment text field will be called comment. The Aspect
variable of the course name read-only field at the top of the form will be courseNumber.
 After painting the interface, installing it, and using Define to define the instance variables and
their associated methods, we can now define the remaining instance variables and implement the methods.
The 13-element array for answers will be called answers. All accessing methods of the radio buttons have
already been created by Define and we don’t need to change them. For the class method that opens the
application, we cannot use the open method because the user must be able to specify the course name. We
will thus create a specialized opening method called openOnCourse: aString with course name as its
argument, to be used as in

CourseEvalForm openOnCourse: ‘COMP 1003’

 This method must create an instance of CourseEvalForm, set its courseNumber to the value of the
argument, and open the interface. The definition is as follows:

openOnCourse: aString
“Assign aString as course name and open Course Evaluation form.”
 | form |
 form := self new. “Create an instance of CourseEvalForm.”
 form courseNumber: aString. “Assign its course number.”
 self openOn: form “Open, using an instance opening message.”

 The accessing method courseNumber: assigns new value to instance variable courseNumber, and
the last line introduces a new built-in opening message called openOn:. The receiver of this method is an
instance of the application model (openOn: is thus an instance method), and the method assumes that the
specification of the window is stored in the default class method windowSpec. There are several other
opening messages and we urge you to explore them. The new method is inherited from ApplicationModel
and it sends the hook message initialize and all the rest as usual. We will use initialize to define the initial
setting of the radio buttons to ‘n/a’ in the way explained earlier:

initialize
“Initialize aspect value holders of all rows to n/a for initial display”
| symbols |
symbols := #(#answer1 #answer2 #answer3 #answer4 #answer5 #answer6 #answer7 answer8
 #answer9 #answer10 #answer11 #answer12 #answer13).
symbols do: [:answer| (self perform: answer) value: ‘n/a’ asValue]

 Some might consider this solution somewhat unsatisfactory because all elements of array symbols
are essentially the same and we should not have to type them one after another. As an alternative, we can
construct the symbols from strings, using the shared part answer and appending the index as follows:

initialize
“Initialize aspect value holders of all rows to n/a for initial display”
1 to: 13 do:
 [:index| (self perform: (‘answer’, index printString) asSymbol) value: ‘n/a’ asValue]

 The only other method that we must write is for handling the Print and close button. Its principle
is as follows:

 24

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

printAndClose
“Gather answers, close window, and print results in Transcript.”
 “Collect all answers, the comment, and the course number.”
 “Close the window.”
 “Print the result in Transcript.”

 Collecting the answers will probably require many messages and we will thus define a separate
message gatherAnswers to do this. The definition is now as follows:

printAndClose
“Gather answers, close window, and print results in Transcript.”
 self gatherAnswers.
 “Close the window.”
 self closeRequest.
 “Print results in the Transcript”
 Transcript clear; show: 'Evaluation of course ' , courseNumber value; cr; cr.
 1 to: answers size do: [:index | Transcript show: 'question ' , index printString , ':'; tab;
 show: (answers at: index); cr].
 Transcript show: comment value

 To finish the program, we need the definition of gatherAnswers which produces the array of
answers. The solution can be described as follows:

• For Question 1, find the value of instance variable answer1 and insert it into the first element of array

answers.
• For Question 2, find the value of instance variable answer2 and insert it into the first element of array

answers.
• Similar for questions 3 to 13.

To get the answer for Question 1 and to insert it into the array, we need

answers at: 1 put: answer1 value “Returns, for example 3.”

For Question 2, the code is

answers at: 2 put: answer2 value

and so on. Using this style, the definition would become

gatherAnswers
"Calculates array of answers"
| array |
 “Create uninitialized array with 14 elements: 13 for questions, 1 for comment”
 array := Array new: 14.
 “Calculate values of its elements”
 answers at: 1 put: answer1 value.
 answers at: 2 put: answer2 value.
 answers at: 3 put: answer3 value.
 etc.
 answers at: 13 put: answer13 value
 questions at: 14 put: comment value

 Since each question is handled by an almost identical statement, we can again use the perform:
message on a dynamically constructed name of the accessing method:

gatherAnswers
"Calculates array of answers"

 25

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 answers := Array new: 14.
 1 to: 13 do: [:row |
 | value |
 value := (self perform: (‘answer’ , row printString) asSymbol) value.
 answers at: row put: value asString].
 questions at: 14 put: comment value

We leave it to you to fill in the missing pieces and test that the application works.

Main lessons learned:

• In addition to open, ApplicationModel provides several other application opening methods such as

openOn:. Some of them are class methods, others are instance methods, but all send hook methods.

Exercises

1. Implement the example from this section.
2. Check how the openOn: method in ApplicationModel works.
3. Study and describe the interface opening protocols on the class and the instance sides of

ApplicationModel.

A.1.9 A (very) simple computerized Tax Form – controlling window closure

 In this section, we will implement a simple tax form application with the interface in Figure
A.1.19. The input fields at the top are for entering textual information. The fields below are divided into an
income column on the left, a deductions column in the middle, and an information column with short help
text and various action buttons on the right. The Married Deductions field is read-only and its contents are
calculated by the program from information about marital status provided by the user. Fields Taxable
Income and Total Tax at the bottom are also read-only and calculated by the program.
 The function of the action buttons on the right is obvious but the Quit button is a bit more
complex. When the user clicks Quit, the program first checks whether at least the first and last names, the
street, the city, and the postal code have been entered. If not, it opens a dialog asking the user whether he
or she really wants to quit. If the user confirms, the program closes the window and quits, otherwise the
request to quit is ignored. The method also checks whether the form has been printed or saved in a file. If
not, it notifies the user and closes only if the user confirms his or her desire to quit. We leave the file
saving operation as an exercise (see Chapter 10 for background material).
 Our tax form is a patented improvement on regular government tax forms: Unlike ordinary tax
forms, we allow the user to change the tax rates and the tax brackets (the values of taxable income at which
the tax rate changes) and thus decide how much money the government deserves. Three tax brackets and
corresponding tax rates will be built in as default values.

 26

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Figure A.1.19. User interface of a simple computerized tax return form.

Design. The problem as stated is again so simple that we don’t need a domain model - all data will be kept
by the application model which will also do all the processing. If this was a part of a larger application, we
would create a domain class to hold the tax information and we leave this extension as an exercise.
 As we already know, we will need value holders for Aspects of all text fields. We will need some
additional variables too: First, variables to hold the limits of tax brackets and the corresponding tax rates.
We will call them limit1, limit2, limit3, and rate1, rate2, and rate3 respectively. We also need variables to
hold information about whether the data has been printed and whether it has been saved, and we will call
them saved and printed. Finally, we will add a variable to keep track of whether the data has changed since
the last save operation; this variable will be used to ignore save requests if there is no new information to
be saved. The variable will be called infoChanged.
 Which behaviors do we need? We must initialize value holders so that the window opens with
zeros in all numerical fields, and we need change methods to change totals and taxes when the user enters
new values into numeric fields. We also need change methods to notify Married Deductions when the user
clicks marital status. Setting these things up will require a postBuildWith:. Finally, we need Action methods
for action buttons.

 27

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Implementation. After painting the user interface and installing it, we specify the properties of all widgets
and Define the necessary instance variables and stubs of Aspect and instance methods. We chose the
following properties:

• For input fields intended for monetary values, we choose Type FixedPoint(2).
• For input fields used for input of text we choose Type String.
• We chose names of Actions, Aspects, and Select parameters to match the function of the corresponding

widgets (for example, #business, #city, #single) to minimize confusion.
• We chose background colors to indicate which fields are to be filled by the user (white) and which

fields are calculated by the program (pink).

 The requirements on initialization are similar to those in the Restaurant Menu because most value
holders must send a message when their value changes. Note that all input fields send the same message to
recalculate the totals and make sure that they are properly displayed. Finally, some variables, such as tax
bracket limits, must be initialized to default values:

postBuildWith: aBuilder
| symbols |
 “Define change messages by taking advantage of accessing methods.”
 symbols := #(#business #city #disability etc.).
 symbols do:
 [:aspectSymbol | (self perform: aspectSymbol)
 onChangeSend: #newTotals to: self)].
 “Initialize Aspect value holder for marital status radio buttons.”
 maritalStatus value: #single.
 “Initialize tax bracket limits and rates.”
 “Change of values must cause recalculation and redisplay of totals - use value.”
 (limit1 := 5000 asValue) onChangeSend: #newTotals to: self.
 (limit2 := 20000 asValue) onChangeSend: #newTotals to: self.
 (limit3 := 40000 asValue) onChangeSend: #newTotals to: self.
 (rate1 := 0.1 asValue) onChangeSend: #newTotals to: self.
 (rate2 := 0.2 asValue) onChangeSend: #newTotals to: self.
 (rate3 := 0.3 asValue) onChangeSend: #newTotals to: self.
 “We have not changed, saved or printed the information yet.”
 infoChanged := false.
 printed := false.
 saved := false

 Note that we stored tax bracket limits and rate values in value holders even though they are not
attached to any widgets. This means that we can send them onChangeSend:to: messages and that change of
their values will automatically cause recalculation of totals and redisplay. This is a common and very
useful application of value holders.
 Our next task is to write the definition of newTotals. The underlying algorithm is a simple
implementation of tax rules:

1. Calculate total income.
2. Calculate deductions, taking into account marital status.
3. Calculate taxable income as difference between income and deductions.
4. Calculate part of taxable income falling into each bracket, and the corresponding tax.
5. Calculate total tax.
6. Assign new values by value: to propagate the change to widgets.

The definition based on this algorithm is as follows:

 28

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

newTotals
“Something has changed, recalculate and redisplay totals.”
 | bracket1 bracket2 bracket3 taxable |
“Calculate total income.”
 totalIncome value: business value + disability value + employment value + farming value +
 pension value + rental value.
“Calculate married deduction.”
 marriedDeduction value: (maritalStatus value == #married
 ifTrue: [500]
 ifFalse: [0]).
“Calculate total deductions.’
 totalDeductions value: pensionPlan value + unionDues value + businessLoss value +
 childCare value + moving value + marriedDeduction value.
“Calculate taxable income – must not be negative.”
 taxableIncome value: ((totalIncome value - totalDeductions value) max: 0).
 taxable := taxableIncome value.
“Calculate tax for each bracket.”
 bracket1 := taxable > limit1 value
 ifTrue: [taxable - limit1 value min: limit2 value - limit1 value]
 ifFalse: [0].
 bracket2 := taxable > limit2 value
 ifTrue: [taxable - limit2 value min: limit3 value - limit2 value]
 ifFalse: [0].
 bracket3 := taxable > limit3 value
 ifTrue: [taxable - limit3 value]
 ifFalse: [0].
“Calculate total tax.”
 totalTax value: (bracket1 * rate1 value) + (bracket2 * rate2 value) + (bracket3 * rate3 value).
“Reset state variables.”
 infoChanged := true.
 printed := false.
 saved := false

 We now come to Action methods. The Load and Save buttons are left as an exercise. The tax
brackets and tax rates buttons open a dialog window and offer initial answers, Help opens a help window
with information about the form, and Print constructs a string containing all information entered by the
user and sends it to the Transcript. We leave these methods as an exercise Finally, we develop the quit
method which has the following previously explained tasks:

1. Check whether all required information has been entered.
2. If yes, check whether final information has been printed or saved.
3. If the last condition is satisfied, close the window and terminate the application.
4. In all other cases, a condition has been violated; ask the user to confirm that he or she wants to quit.

 The basis of the quit method is the principle that when a window is asked to close, it automatically
sends changeRequest to its application model. The window then closes if changeRequest returns true but
the close request is ignored if changeRequest returns false. The default definition of changeRequest in
ApplicationModel simply returns true but we can override it with our own changeRequest method. By
applying these principles, we develop the following definitions:

quit
“Close the window if everything is OK.”
self closeRequest

and

 changeRequest
“Close the window if everything is OK.”
 | isIncomplete |

 29

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

 super changeRequest ifFalse: [^false]. “In case a superclass has a handler.”
 “Is information complete?”
 isIncomplete := city value isEmpty or:
 [firstName value isEmpty or:
 [lastName value isEmpty or:
 [postalCode value isEmpty or: [street value isEmpty]]]].
“If incomplete, ask user to confirm and exit if so specified.”
 isIncomplete
 ifTrue: [^Dialog confirm: 'The form is not complete. Close anyway?'].
 “Has information been printed or saved? Ask for confirmation to close if not.”
 (printed or: [saved])
 ifFalse: [^Dialog confirm: 'The form has not been printed or saved. Close anyway?'].
“If we got here, everything is OK or the user confirmed so confirm that window should be closed.”
 ^true

 Note that before doing our own processing, we first executed the inherited changeRequest
mechanism in case that a superclass provides its own handling of window closure. If this message returns
false, the inherited mechanism requires that the window remains open and we thus return false and exit.
Otherwise, we continue with our own tests. In our case, we could have skipped this precaution because we
know that the only relevant superclass of TaxForm is ApplicationModel and its changeRequest simply
returns true. However, executing the behavior defined by superclasses is a good habit and besides, what if
somebody later inserted a class between TaxForm and ApplicationModel and this new superclass had its
changeRequest?

Main lessons learned:

• The request to close a window sends changeRequest to the application. Its default definition in

ApplicationModel returns true to close the window. This default behavior can be overridden by
redeclaring changeRequest in the application model to provide any tests and communication with the
user that may be necessary. The method must return true or false.

• At the beginning of a new definition of a method defined in a superclass, always consider whether the
superclass behavior should be executed first.

• The use of ValueHolder is not restricted to widgets. Value holders are useful whenever we want to
broadcast every change of the value of an object to other objects.

Exercises

1. Implement and test the tax form application.
2. Reimplement the tax form using a domain model and removing all tax processing from the application

model.
3. We have not paid much attention to instance variables saved, printed, and infoChanged. Are they all

necessary?
4. We used postBuild:with: to perform initialization. Could we have done it in the initialize method?
5. Modify the tax application to create a TaxReturn object and save it in a file. Add Load option.
6. Examine and describe the detailed mechanism of window closure, focusing on changeRequest.

Conclusion

 In this appendix, we presented radio buttons and check boxes, explained the use of the input field
widget, and illustrated these new widgets on several examples. We also explained some of the inner
working of the UI builder.
 All programmers involved in the design of user interfaces must remember that interface design
has two aspects: The technical aspect of declaring the widgets’ functionality, and adherence to GUI

 30

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

conventions and design rules. Ignoring established conventions may make the user interface difficult to
use. Conventional uses of buttons and check boxes are as follows: Radio buttons are used to select one of a
limited number of known alternatives. When the number of choices is large or when it is not fixed or
known beforehand, use single-selection list widgets instead. Check boxes are used individually or in
groups of independent boxes to select any number of choices when the number of choices is not large and
when the choices are known beforehand. When the number of choices is large or when it is not fixed or
known beforehand, use multiple-selection list widgets instead.
 The technical aspects of the use of check boxes and radio buttons are as follows: A check box is
used for selecting or deselecting a choice. It requires the specification of an Aspect, the name of an instance
variable holding a Boolean ValueHolder representing the state of the box (true for on, false for off). It is
also the name of the method accessing this variable. The variable and the method can be automatically
defined with Define and do not require any further modification if the box is initially off.
 Groups of mutually dependent radio buttons achieve their dependence by sharing one Aspect - a
value holder with the current selection. A radio button has two essential properties: Selection, and Aspect.
The Selection is a Symbol which is assigned to the shared Aspect of the group when the button is clicked
on. Each button in a group has its own Selection value. Use the initialize method to assign a ValueHolder
with the Selection value of the button that should be on when the window first opens to the Aspect variable.
 An input field is a one-line text editor. Its only essential parameter is Aspect, the name of an
instance variable holding a ValueHolder on the text accepted by the user, and the corresponding accessing
method. If the text field is to display text when it opens, a ValueHolder with this text must be assigned to
the Aspect variable in the initialize method.
 To store the text displayed in an input field in the Aspect variable, the user must accept it by
pressing <Enter> or by executing accept from the field’s <operate> menu. Until the user accepts the text,
the accepted value may be different from the value displayed and it is thus held in a separate instance
variable of the input field.
 To force a variable holding a ValueHolder to execute a specified message whenever its value
changes (via value:), send onChangeSend:to: to the variable in the initialize method. However, don’t forget
to assign a ValueHolder to the variable first. Alternatively, you can send the onChangeSend:to: message to
the value holder directly via the builder or via its accessing method. The message given as the first
argument of onChangeSend:to: will be sent whenever the receiver gets a value: message. The second
argument is normally self because the change message is usually defined in the application model. The
onChangeSend:to: mechanism is the basis for setting up links between widgets.
 Each GUI widget may have an ID. IDs of widgets accessed by the same builder must be unique
because the builder keeps them in a registry. A widget needs an ID only when we must access it at run
time, for example to enable, disable, show, or hide it. Sending componentAt: anID to the builder returns the
widget’s wrapper. The builder itself can be obtained from the application model.
 In addition to the open class method for starting an application, ApplicationModel contains several
other opening methods, both in its instance and in its class protocols. All provide access to the hook
methods explained earlier.
 In addition to hooks into the window opening process, Smalltalk also provides a hook into the
window closing process. To close a window programmatically, send closeRequest to the application; this,
in turn, sends changeRequest. The default definition of changeRequest in ApplicationModel returns true
but this default behavior can be overridden by redefining changeRequest in the application model to
provide any necessary tests and communication with the user. If the changeRequest method returns false,
the request to close is ignored. When redefining closeRequest and other methods defined in a superclass,
consider executing the behavior defined in the superclass first.
 Code can sometimes be simplified by constructing messages at run time. The perform: message
may then be useful.

 31

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 27/02/2002

Important classes introduced in this chapter

Classes whose names are boldfaced are very important, classes whose names are printed in italics are less
important, classes whose names are printed in regular font are not of much interest.

DependencyTransformer.

Widgets introduced in this chapter

check box - used to turn a feature on or off. Aspect is a ValueHolder on a Boolean
input field - one-line text editor. Aspect is a ValueHolder of accepted text. User must press <Enter> or use

accept to store the text in the Aspect variable
radio button - used in groups to select one of several mutually exclusive choices. Requires Aspect and

Selection properties. Aspect is ValueHolder containin Selection symbol, shared by all buttons in a
group, Selection is a symbolic value of Aspect for a given button.

Terms introduced in this chapter

change notification - specifying that a change in a ValueHolder should send a message, usually to the

application
check box - square button used for turning a selection on or off
input field - one-line text editor
radio button - round button used in groups to select one of several mutually exclusive alternatives
registry of named components – dictionary associating IDs of UI component and their wrappers; held by

the application builder
Selection property - Symbol associated with a radio button; assigned to the shared Aspect variable when the

button is clicked on
widget ID - optional unique ID assigned to a widget so that the application can communicate with it at run

time

 32

	Example: Controlling the case of a string

