
A Tour of the Squeak Object Engine
Tim Rowledge, tim@sumeru.stanford.edu

A. Introduction
This chapter will explain the design and operation of the Squeak Object Engine. The term
Object Engine is a useful phrase that encompasses both the Smalltalk low-level system
code (such as the Context and Process classes) and the Virtual Machine.
We will discuss what a Virtual Machine (VM) is, how it works, what it does for Squeak
programmers and users, and how the Squeak VM might develop in the future. Some
explanation of system objects such as Contexts and CompiledMethods will be
included.

A. What is a Virtual Machine?
A Virtual Machine is a software layer that provides us with a pretense of having a machine
other than the actual hardware in use. Using one allows systems to run as if on hardware
designed explicitly for them.
Object Engine is less commonly used but is a useful concept that includes the lowest
system areas of the language environment running on the VM. Since there is often some
flux in the definition of which components are within the actual VM and which are part of
the supported environment, Object Engine is useful as a more inclusive term. In Smalltalk
we would usually include classes such as Context, Process, Number,
InstructionStream and Class in the definition of Object Engine.
The term Virtual Machine is used in several ways. When IBM refer to VM/CMS they are
referring to a way of making a mainframe behave as if it is many machines, so that
programs can assume they have total control even though they do not. Intel provide a
somewhat similar facility in the x86 architecture, referred to as Virtual Mode. This sort of
VM is a complete hardware simulation, often supported at the lowest level by the
hardware.
Another sort of VM is the emulator - SoftWindows for the Mac, Acorn's !PC, Linux's
WINE are good examples - where another machine and/or OS is simulated to allow a Mac
user to run Windows programs, an Acorn RiscPC or a Linux machine to run Windows98
programs and so on. Emulators of games consoles, such as Bleem, are also popular, if a
little legally contentious.
Many languages and even applications, such as some popular word processors, are built
on a VM. Various implemetations of the BASIC language are probably the most
numerous deployed VMs. BASIC interpreters do not just interpret the BASIC language
but have to provide a varying amount of runtime support code depending on the precise
system. Perl is another popular language that uses a similar form of VM.
We shall focus in this chapter on the form of VM used for Smalltalk, in particular the
Squeak version. Many of the general principles apply equally well to other Smalltalk
systems, and often to other dynamic languages such as Lisp, Dylan and even Java.

A. The basic functionality of a Smalltalk Virtual Machine
In a Smalltalk system all we do is

• create objects,
• send them messages which return objects

In order to send messages we must execute the bytecode instructions found in the
CompiledMethods belonging to the classes making up our system. Some message
sends result in the VM calling primitives to perform low-level operations or to interface to

the real host operating system. Eventually most objects are no longer needed and the
system will recover the memory via the garbage collector.
In this section we will consider the basics of object allocation, message sending, bytecode
and primitive execution, and garbage collection.

1. Creating Objects
Unlike structures in C or records in Pascal, Smalltalk objects are not simply chunks of
memory to which we have pointers, and so we need something more sophisticated
than the C library malloc() function in order to create new ones.
Smalltalk creates objects by allocating a chunk of the object memory and then building
a header that provides the VM with important information such as the class of the
object, the size and some content format description. It also initialises the contents of
the newly allocated object to a safe, predetermined, value. This is important to the VM
since it guarantees that any pointers found inside objects are proper object pointers (or
oops) and not random memory addresses. Programmers also benefit from being able
to rely on the fresh object having nothing unexpected inside it.
Smalltalk allows for four kinds of object, which can contain

I. oops, referred to by name. See, for example, class Class.
II. oops, referred to by an index. Optionally there can be named variables

as in a). See OrderedCollection.
III. machine words, usually 32 bit in current implementations, referred to

by an index. See Bitmap
IV. bytes, referred to by an index. See String

If a pointer object (a or b above) were not properly initialised the garbage collector
would be prone to attempting to collect random chunks of memory -- any experienced
C programmer can tell you tales of the problems that random pointers cause. Objects
containing oops are initialised so that all the oops are nil and objects containing words
or bytes are filled with zeros.
We cannot mix oops and non-oops in the same object - CompiledMethod appears
to do this by an ugly sleight of hand and two special primitives (see Interpreter
> primitiveObjectAt and objectAtPut) . Plans exist to correct this situation
and to break methods into two normal objects instead of one hybrid.

1. Message sending
In order to do anything in Smalltalk, we have to send a message.
Sending a message is quite different to calling a function; it is a request to perform
some action rather than an order to jump to a particular piece of code. This indirection
is what provides much of the power of Object Oriented Programming; it allows for
encapsulation and polymorphism by allowing the recipient of the request to decide on
the appropriate response. Adele Goldberg has neatly characterised this as "Ask, don't
touch".
 Message sending involves three major components of the Object Engine

• CompiledMethods
• Contexts
• the VM

A brief explanation of the first two is required before we can explain the VM details of
sending. Smalltalk reifies the executable code that it runs and the execution contexts
representing the running state. This guarantees that the system can access that state
and manipulate it without recourse to outside programs. Thus we can implement the
Smalltalk debugger in Smalltalk, portably and extensibly.

a) CompiledMethod
These are repositories for the fixed part of a Smalltalk program, holding the
compiled bytecode instructions and a literal frame, a list of literal objects used to
hold message selectors and objects needed by the code that are not receiver
instance variables or method temporary variables. They have a header object
which encodes important information such as the number of arguments, literals
and temporary variables needed to execute the method as well as an optional
primitive number.

figure 1. Format of CompiledMethod instances

a) Context
Contexts are the activation records for Smalltalk, maintaining the program counter
and stack pointer, holding pointers to the sending context, the method for which
this is appropriate, etc. There are two types of context:-
MethodContext - representing an executing method, it points back to the
context from which it was activated, holds onto its receiver and compiled method.
Note how similar it is to a stackframe from a C program.

figure 2. Format of MethodContext instances

BlockContext - an active block of code within some method, it points back to
its home context, the MethodContext where it was defined as well as the caller, the
context from where it was activated.

figure 3. Format of BlockContext instances

Note that both forms have a stack frame private to their own use. This stack frame
is used for the arguments, the local temporary variables and all the working
variables the code requires. In practise, the compiler can work out the size of
stackframe needed by any code it is compiling, but only two sizes are used in
order to aid the implementation of context recycling which helps reduce the
workload on the memory system.

To send a message to a receiver, the VM has to:-
I. find the class of the receiver by examining the object's header.
II. lookup the message in the list of messages understood by that class

(the class's MethodDictionary)
III. if the message is not found, repeat this lookup in successive

superclasses of the receiver
• if no class in the superclass chain can understand the message, send

the message doesNotUnderstand: to the receiver so that the
error can be handled in a manner appropriate to that object.

IV. extract the appropriate CompiledMethod from the
MethodDictionary where the message was found and then -

(i) check for a primitive (see the later section) associated
with the method by reading the method header

(ii) if there is a primitive, execute it.
(iii) if it completes successfully, return the result object

directly to the message sender.
(iv) otherwise, continue as if there was no primitive called.

V. establish a new activation record, by creating a new
MethodContext and setting up the program counter, stack pointer,
message sending and home contexts, then copy the arguments and receiver
from the message sending context's stack to the new stack..

VI. activate that new context and start executing the instructions in the new
method.

In a typical system it often turns out that the same message is sent to instances of the
same class again and again; consider how often we use arrays of SmallInteger or
Character or String. To improve average performance, the VM can cache the
found method. If the same combination of the method and the receiver's class are
found in the cache, we avoid a repeat of the full search of the MethodDictionary
chain. See the method Interpreter > lookupInMethodCacheSel:class:
for the implementation.
VisualWorks and some other commercial Smalltalks use inline cacheing, whereby the
cached target and some checking information is included inline with the dynamically
translated methods. Although more efficient, it is more complex and has strong
interactions with the details of the cpu instruction and data caches.

1. ByteCodes
When a message has been sent and a new MethodContext has been activated,
execution continues by executing the bytecodes from the CompiledMethod.
The bytecodes are byte sized tokens that specify the basic operations of the VM such
as pushing variables onto the context's stack, branching, popping objects from the

stack back into variables, message sending and returning. Unsurprisingly they bear a
strong resemblance to an instruction set for a stack oriented CPU.
As the VM is conceptually a simple bytecode interpreter1, execution follows this
loop:-

• fetch bytecode
• increment VM instruction pointer
• branch to appropriate bytecode routine, usually implemented as a 256 way

case statement.
• execute the bytecode routine
• return to top of loop to fetch next bytecode

a) Bytecode categories
Most bytecodes belong to a category where part of the byte is used to specify the
basic operation and the rest is used to specify and index of some sort. For example
the Squeak bytecode 34 belongs to the push literal variable group that starts at
bytecode 32 and pushes the (34 - 32 = 2) second literal variable onto the stack.
For up to date details on the precise numbering of bytecodes in Squeak, refer to
the Interpreter class > initializeBytecodeTable method.

(1) Stack pushes
Before sending messages the arguments and the receiver need to be pushed
onto the stack. Since the arguments may be receiver variables, temporary
variables of the current method, literal variables or constants, or even the
current context itself, there are quite a few push bytecodes.

• Push receiver variable 0-15. Fetch the referenced variable of the
current receiver and push it.

• Push temporary variable 0-15 from the home context - if the current
context is a BlockContext, the current home context is the
block's home context. See figure 3. above.

• Push literal constant 0-32 from the literal frame of the home
context's CompiledMethod.

• Push literal variable 0-32 - as above, but assumes the literal is an
Association and pushes the value variable of that instead of the
association itself.

• Push special object - receiver, true, false, nil, or the
SmallIntegers negative one, zero, one or two. Since these are
very frequently used, it is worth using a few bytecodes on them.

• Extended push - uses the byte following the bytecode to allow a
larger index into the receiver, temporary or literal variables lists.

• Push active context pushes the actual current context, allowing us to
manipulate the execution and build tools such as the debugger,
exception handling and so on.

(1) Stack pops and stores
The results of message sends need to be popped from the stack and stored into
some suitable place. Just as with the push bytecodes, this may mean receiver

1Virtually all commercial Smalltalks actually take the bytecode list as input to some form of
translator that produces a machine specific subroutine to improve performance. Many
techniques both simple and subtle are used. There are plans to incorporate such a dynamic
translation or JIT system into Squeak.

variables or temporaries but we do not store into the literal frame nor the
current context using bytecodes.

• Store and pop receiver variable 0-8.
• Store and pop temporary variable 0-8.
• Extended pop and store - as above but uses the next byte to extend.

the index range usable.
• Extended store - as the above pop & store but does not actually pop

the stack.
• Pop stack - just pops the stack.
• Duplicate stack top - pushes the object at the stack top, thus

duplicating the stack top.

(1) Jumps
We need to be able to jump within the bytecodes of a CompiledMethod so
that the optimisations applied to control structures such as
ifTrue:ifFalse: can be supported. Such message sends are short
circuited for performance reasons by using test and jump bytecodes along with
unconditional jump bytecodes.

• short unconditional jump - jumps forward by 1 to 8 bytes.
• short conditional jump - as above, but only if the object on the top of

the stack is false.
• long unconditional jump - uses the next byte to extend the jump

range to -1024 to +1023. A small but important detail is that
backwards branches are taken as a hint that we may be in a loop and
so a rapid check is made for any pending interrupts.

• long jump if true/false - if the object on the top of the stack is true or
false as appropriate, use the next byte to give a jump range of 0 to
1023.

(1) Message Sending
As mentioned above, the main activity in a Smalltalk system is message
sending. Once the arguments and receiver have been pushed onto the stack we
have to specify the message selector and how many arguments it expects
before being able to perform the message lookup. The send bytecodes specify
the selector via an index into the CompiledMethod literal frame.

• Send literal selector - can refer to any of the first 16 literals and 0, 1
or 2 arguments.

• Single extended send - uses the next byte to extend the range to the
first 32 literals and 7 arguments.

• Single extended super send - as above but implements a super
send instead of a normal send, as in the code

arf := super fribble.
• Second extended send - uses the next byte in a different way to

encompass 63 literals and 3 arguments.
• Double extended do-anything - uses the two next bytes to specify an

operation, an argument count and a literal. For sends, it can cause
normal or super sends with up to 31 arguments and a selector
anywhere in the first 256 literals. Other operations include pushes,
pops and stores. Rumour has it that it can also make tea and butter
your toast.

(a) Common selector message sending
There are a number of messages sent so frequently that it saves space and
time to encode them directly as bytecodes. In the current Squeak release
they are: +, - <, >, <=, >=, =, ~=, *, /, \\, @, bitShift:, //,
bitAnd:, bitOr:, at:, at:put:, size, next, nextPut:,
atEnd, ==, class, blockCopy:, value, value:, do:, new,
new:, x, y. Some of these bytecodes simply send the message, some
directly implement the most common case(s) (for example see
Interpreter > bytecodePrimAdd) and have fall-through code to
send the general message for any more complex situation.

(1) Returns
There are two basic forms of return

• The method return, from a MethodContext back to its sender,
commonly seen in code as

^foo.
The same form of return will return the result of a BlockContext
to its caller, as in the code

bar := [thing doThisTo: that] value.
• The block return, from a BlockContext to the sender of its home

context, as in the code
boop ifTrue:[^self latestAnswer]

Both return the object at the top of the stack. For performance optimisation
there are also direct bytecodes that return the receiver, true, false or nil
from a method to the sender context.

A good, detailed explanation of the operation of the bytecodes can be found in part 4
of "Smalltalk-80, The Language and its Implementation", otherwise known as the
Blue Book [GoR83], in the section on the operation of the VM and need not be
repeated here.
The use of bytecodes as a virtual instruction set is one of the main factors allowing
such broad portability of Smalltalk systems. Along with the reified object format
applied to the compiled code and activation records, it ensures that any properly
implemented VM will provide the proper behaviour.
For those people that are fans of the idea of implementing Smalltalk specific hardware,
it should be noted that the bytecode implementation part of the VM is typically fairly
small and simple. A CPU that used Smalltalk bytecodes as its instruction set would
still require all the primitives and the object memory code, most of which is quite
complex and would probably require a quite different instruction set.

1. Primitives
Primitives are a good way to improve performance of simple but highly repetitive code
or to reach down into the VM for work that can only be done there. This includes the
accessing and manipulating of the VM internal state in ways not supported by the
bytecode instruction set, interfacing to the world outside the object memory, or
functions that must be atomic in order to avoid deadlocks.
 They are where a great deal of work gets done and typically a Smalltalk program
might spend around 50% of execution time within primitives.
Primitives are used to handle activities such as:-

a) Input
The input of keyboard and mouse events normally requires very platform specific
code and is implemented in primitives such as Interpreter
>primitiveKbdNext and primitiveMouseButtons. In Squeak, these in
turn call functions in the platform specific version of sq{platform}Windows.c and
associated files - See the chapter on porting Squeak for details.

a) Output
Traditionally Smalltalk has relied upon the BitBlt graphics engine to provide all the
visual output it needs. Assorted extra primitives have been made available on some
platforms in some implementations to provide sound output, or serial ports or
networking etc.
Squeak has a plethora of new output and interface capabilities provided via a
named primitive mechanism that can dynamically load code at need.

a) Arithmetic
The basic arithmetic operations for SmallIntegers and Floats are
implemented in primitives. Since the machine level bit representation is hidden
from the Smalltalk code, we use primitives to convert the object representation to a
CPU compatible form, perform the arithmetic operation and finally to convert the
result back into a Smalltalk form. It would be possible to implement most
arithmetic operations directly in Smalltalk code by providing only a few primitives
to access the bits of a number and then performing the appropriate boolean and bit
functions to derive the result; the performance would be unacceptable for the most
common case of small integers that can be handled efficiently by a typical CPU.
This is why Smalltalk has the special class of integer known as SmallInteger;
values that can fit within a machine word (along with a tag that allows the VM to
discriminate whether the word is an oop or a SmallInteger) can be processed
more efficiently than the general case handled by LargePositiveInteger
and LargeNegativeInteger. Many arithmetic primitives are also
implemented within special bytecodes that can perform the operation if all the
arguments are SmallIntegers, passing off the work to more sophisticated
code otherwise.
Clearly, it takes many more cycles to perform an apparently simple addition of two
plain integers than it would in a compiled C program. Instead of

a + b;
being compiled to -
ADD Result, Rarg1, Rarg2
which takes an ARM cpu a single cycle, we have

a + b.
compiled to the special bytecode for the message #+, which is implemented in the
VM as bytecode 176 and presented here in pidgin C code -
case 176: /* bytecodePrimAdd */

t1 = *(int*)(stackpointer - (1 * 4));

t3 = *(int*)(stackpointer - (0 * 4));

/* fetch the two arguments off the stack - note that this
means they must have been pushed before this bytecode! */

/* test the two objects to make sure both are tagged as
SmallIntegers, i.e. both have the bottom bit set */

if (((t1 & t3) & 1) != 0) {

/* add the two SmallIntegers by shifting each right
one place to remove the tag bits and then add normally */

t2 = ((t1 >> 1)) + ((t3 >> 1));

/* then check the result is a valid SmallInteger
value by making sure the top two bits are the same - this handles
both positive and negative results */

if ((t2 ^ (t2 << 1)) >= 0) {/* If the value is ok,
convert it back to a SmallInteger by shifting one place left and
setting the bottom tag bit, then push it back onto the Smalltalk
stack */

(int)(stackpointer -= (2 - 1) * 4) = ((t2
<< 1) | 1));

}

} else {

/* defer to code handling more complex cases */
This will take at least fourteen operations on most CPUs, even if the memory
system can deliver the stack reads and writes in a single cycle. The most plausible
time on an ARM is twelve cycles due to the ability to mix shifts and logic
operations. The cost of initially pushing the objects onto the stack and of
interpreting the bytecodes can be ignored for this example since it makes little
overall difference. The important point to make here is that although the costs for
adding 1 to 1 and getting 2 seems high, the system will not have any problems
adding 24 billion to 5.6x10200 and getting a suitable answer, nor in using the #+
message to combine two matrices. Mostly, it demonstrates yet again the limited
utility of most benchmark programs.

a) Storage handling
In order to create an object we need a primitive (primitiveNew for objects
with only named instance variables and primitiveNew: for objects with
indexed variables). These primitives work with the object memory to build the
object header and to initialise the contents properly as described above. Object
creation needs to be atomic so that there is never a time when the garbage collector
might have to try to scan malformed memory.
Reading from and writing to arrays with at: and at:put: is done by primitives
that access the indexed variables of the object. If used with an object that has no
indexed variables, the primitive fails, leaving the backup Smalltalk code to decide
what to do. Reading or writing to Streams on Strings or Arrays is very
common and two primitives are provided to improve performance in those cases.
Just as with the simple addition example shown above, the number of CPU cycles
required for these primitives seems at first glance to be much higher than you
might expect from a compiled C program. In the same way, we gain in flexibility,
bounds checking and reliability.

a) Process manipulation
Suspending, resuming and terminating Processes, as well as the signalling and
waiting upon Semaphores are all done in primitives. Since changing structures
such as the process lists, the VMs idea of the active process and semaphore signal
counts needs to be performed atomically, primitives are used to ensure no
deadlocks occur.

a) Execution control
Smalltalk has two unusual ways of controlling execution, evaluating blocks and
the perform: manner of sending a message.
When a block is sent the message value (or indeed value: or one of its
relatives) as in the phrase

[burp + self wonk] value.
the primitiveValue (or primitiveValueWithArgs) primitive is used to
activate the BlockContext and thus to set the program counter, stack pointer,
caller and then to copy any arguments into the BlockContext. Execution then
proceeds with the bytecodes of the block until either we return to the caller context
(the sender of the value message) or the sender of the block's home method
(where the block was defined). See also the above section on return bytecodes.
The perform: message , as in

arkwright perform: #anatomicallyImpossibleAct.
and its siblings, as in

arkwright perform: #ludicrousAct: with: thatThing.
allow us to specify a message at runtime rather than compile time and so the
primitive has to pull the chosen selector from the stack, slide all other arguments
down and then proceed as if the message had been sent in the normal manner.

 In general it is best not to use primitives to do complex or heterogenous things; after
all, that is something that Smalltalk is good for. A primitive to fill an array with a
certain value might well make sense for performance optimisation, but one to fetch,
process and render an entire webpage would not, unless you happened to have the
code already available in some shared library. In such a case we would use the foreign
function interface to make use of outside code.
Primitives that do a great deal of bit-twiddling or arithmetic can also make sense, since
Smalltalk is not particularly efficient at that (see above). The sound buffer filling
primitive (PluckedSound>mixSampleCount: into: startingAt:
leftVol: rightVol: is a good example) as are complex vector graphics
primitives such as those in the B3DEnginePlugin 'primitive support'
protocol for examples.

1. Garbage collection
One of the most useful benefits of a good object memory system is that unwanted, or
garbage, objects are collected, killed and the memory returned to the system for
recycling. There are many schemes for performing this function, and quite a few
Ph.D.'s have been awarded for work in this area of computer science. Dr Richard
Jones keeps an impressive bibliography of garbage collection literature on his website
[Jo99] and is one of the authors of [JoL96], a thoroughly recommended source for
further reading.
Garbage collection (GC) is simply a matter of having some way to be able to tell when
an object is no longer wanted and then to recycle the memory. Given some known
root object(s) it is generally assumed that we can trace all possible accessible objects
and then enumerate all those not accessible. If you read [GoR83] you will see that the
exemplar system used a reference counting system combined with a mark-sweep
system. Most commercial Smalltalks use some variant of a scheme known as
Generation Scavenging. Brief explanations of these follow.

a) Reference Counting
Reference counting relies on checking every store into object memory and
incrementing a count field (often contained in the header) of the newly stored
object and decrementing the count of the over-written object. Any object whose
count reaches zero is clearly garbage and must be collected. Any objects that it
pointed to must also have their count decremented, with an obvious potential for
recursive descent down a long chain of objects.
One problem with a simple reference counting scheme is that cycles of objects can
effectively mutually lock a large amount of dead memory since every object in the
cycle has at least one reference. Consider a small web of objects with a cycle
comprised of C, E and F.

figure 4. Net of object in initial state

If we now replace the reference from B to F, the cycle is orphaned but since each
object still has a reference count greater than zero, none of them will be garbage
collected.

figure 5. Object B no longer points to F - the cycle F/C/E is orphaned

Another problem is that every store into object memory will need the reference
incrementing and decrementing to be done, even pushes and pops on the stack.
Deutsch and Bobrow [Debo76] developed an improved way of dealing with
reference counting the stack, known as deferred reference counting. This
technique allows us to avoid reference counting pushes and pops by keeping a
separate table of objects where the reference count might be zero but that might be
on the stack -- if they are on the stack then the actual count cannot be zero. At
suitable intervals we scan the stack, correct the count values of the objects in the
table and empty the table. Objects that have a zero count at this stage are definitely
dead and are removed. Reference counting is still done for all other stores, and
those objects that appear to reach a count of zero are added to the table for later
processing as above.

a) Mark-Sweep compaction
To avoid completely running out of memory due to cycles, most systems that use
reference counting also have a mark-sweep collector that will start at the known
important root objects and trace every accessible one, leaving a mark in the object
header to check later. In figure 6 the tracing will touch object A, follow its pointer
to B and thence out of the diagram. Then the trace will follow the pointer from A
to D, where it terminates since D points to no other objects. The second pointer to
D will also terminate, but this time because the mark bit in the object header is set.
Object F, C and E will not be marked since no other object points to them.

figure 6. Tracing objects in the mark phase

Once the marking phase is completed, every object marked can be swept up (or
down) the memory space, effectively removing all the untouched ones, and the
mark removed. There are important details to consider with respect to object
cycles, which objects are actually roots, how to move the objects memory and
update all the reference to it and so on. One useful side effect of the mark-sweep
collector is that in compacting all the objects it leaves all the free space in a
contiguous lump. In most cases this can be used to make subsequent memory
allocation simpler.

figure 7. Object memory before and after the sweep compaction phase

a) Generation Scavenging
The most commonly used garbage collection scheme in current commercial
Smalltalk systems is based on the generation scavenger idea originally developed
by David Ungar [Ung87]. He noticed that most new objects live very short lives,
and most older objects live effectively forever.
By allocating new objects in a small eden area of memory and frequently copying
only those still pointed to by a known set of roots into one of a pair of small
survivor areas, we immediately free the eden area for new allocations. Objects

previously in the survivor area that are still live are also copied, leaving one of the
survivor spaces empty. Subsequently we keep copying surviving objects from
eden and this survivor area into the other and eventually into an old space where
they are considered tenured. Various refinements in terms of numbers of survivor
generations and strategies for moving objects around have been developed.
An important part of a generation scavenger is a table of those old objects into
which new objects have been stored. Each time an object is stored into another, a
quick check is done to see if the storee is new and the storand is old; this is
simpler than the zero count check needed by a reference counting system. If
needed, the storand object is added to the table, usually referred to as the
remembered set or remembered table. This table is used as one of the roots when
the search for live objects is performed; each of these objects is scanned and new
objects pointed to are scavenged.

figure 8. Generation scavenging system before a scavenge

In figure 8, notice that the set of roots and the remembered table both refer to
objects in eden and a survivor space. The set of roots may also refer to objects in
old space. Eden has partially filled with new objects and survivor space A is near
empty. Survivor space B is completely empty and not in use at this point.
To perform a scavenge cycle, we first trace the root objects, moving any that are
in eden or survivor space A into survivor space B. Then the objects referred to by
the remembered set are traced. Once all the new objects pointed to by the table and
other roots have been scavenged, these 'survivors' are also scanned and any new
objects found are also scavenged. The process continues until no further objects
are found. Any old object that no longer points to new objects can be removed
from the table.

figure 9. Generation scavenging system just after a scavenge

In figure 9, we have just completed a scavenge cycle. Eden is completely emptied,
with all surviving object moved to survivor space B. Still-live objects from
survivor space A have also been copied to B, or to old space if they met suitable
criteria. The remembered table has lost some entries as objects die and get left
behind. The next scavenge cycle will copy objects into survivor space A.
Note that scavenging a generation is similar to a mark and sweep of the memory in
which the generation lives, though the objects get moved to a different space rather
than simply compacted within the same space. The chief benefit of scavenging
comes from the reduction in amount of memory touched; only a few live objects
are moved in most cases rather than every object being touched to trace through it.

A. Why is an Object Engine better than C and a library?
One might reasonably ask why this rather complex seeming system is better than a
'normal' programming environment and a C library.
The most obvious answer is that the message sending support allows, helps, and strongly
encourages an object oriented form of programming. Good object oriented programs form
extremely useful libraries that can increase programming productivity greatly. Although it
is possible to use almost any language to work in an object oriented style, doing so
without proper support makes it much harder than just 'going with the flow' and slipping
into procedural programming.

1. Memory handling
Much of the code in a complex C program is taken up with storage management;
memory allocating, freeing, initialising, checking and error handling for when it goes
wrong. A good VM will handle all this automatically, reliably (making some
assumptions about the quality of the VM) and transparently. Although many C
programs do not bother to check the bounds of arrays, exceeding those bounds is a
major cause of problems. Consider how many computer viruses are spread through or
otherwise rely upon buffer overflow and other bounds problems. A Smalltalk VM
checks the bounds of any and all accesses to its objects, thus avoiding this problem
completely. Furthermore, since an object is absolutely a member of its class (there is
no concept of 'casting' in Smalltalk) you cannot fool the system into allowing you to
write to improper memory locations. This referential safety is a very useful property
of Smalltalk systems.

1. Meta-programming capability
One of the great virtues of a virtual machine is that you can precisely define the lowest
level behaviour that the higher level code can see. This allows us to provide a
reflective system with meta-programming capabilities and thus to write programs that
can reason about the structure of the system and its programs. One good example is
the Smalltalk debugger. Since the structure of and interface to the execution records
(the BlockContext and MethodContext instances) is defined within Smalltalk,
we can manipulate them with a Smalltalk program. We can also store them in memory
or in files for later use, which allows for remote debugging and analysis.

1. Threads and control structures programmer accessible
When it is possible to cleanly manipulate the contexts, we can add new control
structures. See the article "Building Control Structures in the Smalltalk-80 System" by
Peter Deutsch in [SCG81] which illustrates this with examples including case
statements, generator loops and coroutining. With only a tiny amount of support in the
VM, it is possible to add threads to the system; although they are known as Processes
within the class hierarchy.

1. Portability of the system
In much the same way that the VM allows meta-capability, it can assist in providing
high levels of portability. The interface to the machine specific parts of the VM is
uniform, the data structures are uniform and thus it is possible to make a system that
has total binary portability. No recompiling, conversion filters or other distractions are
needed. Squeak, like several commercial Smalltalks, allows you to save an image file
on a PC, copy it to a Mac, or a BeOS, or Acorn, or almost any Unix machine and
simply run it. The bits are the same and the behaviour is the same, barring of course
some machine capability peculiarities.

A. Squeak VM peculiarities
Squeak's VM departs from the design shown in the Blue Book [GoR83] in quite a few
ways. It has a quite different object memory format and uses an interesting variant of
mark-sweep garbage collection that approaches generation scavenging in many respects.
There are many new primitives, often implemented in dynamically loadable VM plugins, a
form of shared library or DLL developed by the Squeak community. A completely new
form of graphics engine has been introduced, including 3D capabilities. There is extensive
sound support and full internet connectivity.
Perhaps most radically for the VM per se, the kernel of the VM and most of the code for
the assorted plugins is actually implemented as Smalltalk code that is translated to produce
C source code to compile and link with the lowest level platform specific C code.

1. Object format
The Blue Book definition of the ObjectMemory used an Object Table (OT) and a
header word for each object to encode the size and some flags. Each object table entry
contained some flags (the reference count for example) and a pointer to the memory
address for the body of the object. Any access to the instance variables or class of the
object required indirection through the object table to find the body.

figure 10. Smalltalk-80 Object table mechanism.

In figure 10 we see that to find the class, object 'C', of object 'A', we have to use the
oop in the object header to be able to read the entry in the OT and thereby find the
address of the body of the class. In a similar manner we have to indirect through the
OT to find the body of object 'A's instvar1. When looking up methods as part of a
message send, we have to indirect several times in order to find the class of the
receiver, the MethodDictionary of that class and so on.
A sometimes useful attribute of an OT is that objects once created keep the same oop
throughout their existence, making the oop a very acceptable hash value for most
cases.
Squeak uses a more direct method, whereby the oops are actually the memory
addresses of a header word at the front of the object body. This saves a memory
indirection when accessing the object, but requires a more complicated garbage
collection technique because any object that points to a moved object will need the oop
updating.

figure 11. Squeak direct pointer object format
* note variable object header format describe below

Since we still need to have the class oop, size and some flags available for each object,
Squeak generally uses a larger header. The canonical header is three words:-
flags/hash/size encoded in one word, class oop, size. However as a high proportion
of objects are instances of a small set of common classes, and since few objects are
large, it was decided to use three header formats as follows:-

• One word - all objects have this header.
• 3 bits reserved for GC state machine (mark, old, dirty)
• 12 bits object hash (for hashed Set usage)
• 5 bits compact class index, non-zero if the class is in a group of

classes known as 'Compact Classes'
• 4 bits object format
• 6 bits object size, in 32-bit words
• 2 bits header type (0: 3-word, 1: 2-word, 2: free chunk of memory,

not an object at all, 3: 1-word)
• Two word - objects that are instances of classes not in the compact classes

list. This second word sits in front of the header shown above.
• 30 bits oop of the class
• 2 bits header type as above

• Three word - objects that are too big for the size to be encoded in the one-
word header, i.e. more than 255 bytes. This third word sits in front of the
two shown above.
• 30 bits of size
• 2 bits header type as above

figure 12. Squeak object header layout

The set of compact classes that can be used in the compact headers is a Smalltalk array
that can be updated dynamically; you can even decide that no classes should qualify.
See the methods Behavior > becomeCompact and becomeUncompact as
well as ObjectMemory > fetchClassOf: and
instantiateClass:indexableSize: for illustration. Whether the space
savings are worth the complexity of the triple header design is still an open question in
the Squeak systems community. With the flexibility to designate classes as compact or
not on the fly, definitive experiments can someday answer the question.

1. Garbage Collection
Squeak uses an interesting hybrid of generation scavenging and mark-sweep
collection as its garbage collector. Once the image is loaded into memory the end
address of the last object is used as a boundary mark to separate two generations, old
objects existing in the lower memory area and new objects are created in the upper
memory area.

figure 13. Squeak memory organization

When the remaining free memory runs low, or a preset number of objects have been
allocated, the VM will pause to garbage collect the new object region
(ObjectMemory > incrementalGC). This is done with a Mark-Sweep
algorithm modified to trace only those objects in the new region, thus touching
considerably less memory than an entire-image sweep. As in the generation
scavenging scheme described above, the remembered table (the rootTable instance
variable in ObjectMemory) is maintained of old objects that might point to new

objects for use as roots when tracing which objects still live. These are added to other
important root objects such as the active context and the specialObjects array and used
as starting points for the depth first tracing implemented by ObjectMemory >
markPhase.

figure 14. Tracing only new objects in Squeak

Tracing starts with the root objects, touching 'A', then 'B' and stopping there since
'F' is an old object. 'D' would not be traced since it is also old. When tracing from the
remembered table, we would touch 'C' since it is pointed to by 'F'.
Once the tracing phase has completed the memory region is swept from bottom to top
with each object header being examined to see it has been marked. Those that have not
been touched are tagged as free chunks of memory. Then a table of address mappings
is built , listing each surviving object and the new address it will have. Once all these
mappings are known the survivors are updated so that all their oops are correct and
finally they are moved down memory to the new addresses. By the end of the
compaction the freed memory is all in one chunk at the top of the new region.
This process might seem complicated but the use of the two generations means that it
can typically run in a very short time; on an Acorn StrongARM machine an average
figure is 8-9 ms, on an Apple 400MHz G3 PowerBook it is 3ms. During activities
like typing or browsing and coding the system will run an incremental garbage collect
one to five times per second. Obviously, the more garbage is created, the more time
will be spent on collecting it.
One limitation of an incremental collection is that any objects from the old region that
are no longer referenced do not get freed and collected. Of course, the observation that
lead to generation scavenging tells us that this usually doesn't matter since old objects
generally continue to live, but sometimes we do need to completely clean out the
object memory. Many systems that use a generation scavenger for incremental garbage
collection also have a secondary collector based on a mark-sweep algorithm. Squeak
simply forces the system to believe that the old/new boundary is at the bottom of the
old region and thus the entire image is now considered to be new objects and all

objects will be fully traced. Look at the ObjectMemory > fullGC method for
details.

1. Extra Primitives
Squeak has added many primitives to the list given in the Blue Book. They include
code for serial ports, sound synthesis and sampling, sockets, MIDI interfaces, file and
directory handling, internet access, 3D graphics and a general foreign function
interface. Most of them are implemented in VM plugins - see the chapter 'Extending
the Squeak VM' for an explanation of the VM plugin mechanism that is used to
implement these extra capabilities.

1. Speeding up at: & at:put:
The messages at: and at:put: are very commonly used - as mentioned above they
are both already installed as special bytecode sends. Squeak uses a special cache to
further try to speed them up. See Interpreter > commonAt: and
commonAtPut: for the implementation details.

1. Extended BitBlt and Vector Graphics extensions
The original BitBlt worked on monochrome bitmaps to provide all the graphics for
Smalltalk-80. Squeak has an extended BitBlt that can operate upon multiple bit-per-
pixel bitmaps to provide colour. It can also handle alpha blending in suitable depth
bitmaps, which can, for example, give anti-aliasing. Different depth bitmaps can be
mixed and BitBlt will convert them as required. New extensions to BitBlt allow for
mixed pixel endianness as well as depth, and make external OS bitmaps accessible so
that graphics accelerator hardware can be used when provided by the host machine.
WarpBlt is a variant of BitBlt that can perform strange transforms on bitmaps by
mapping a source quadrilateral to the destination rectangle and interpolating the pixels
as needed. There are demonstration statements in the 'Welcome To...' workspace
which show some extremes of the distortions possible, but simple scaling and rotation
is also possible.
Perhaps most exciting, there is a new geometry based rendering system known as
Balloon, which can be used for 2D or 3D graphics. This has introduced sophisticated
vector based graphics to Smalltalk and is the basis of the Alice implementation
included in the system (see the chapter 'Alice in a Squeak Wonderland' later in this
book).

1. VM kernel written in Smalltalk
The VM is largely generated from Squeak code that can actually run as a simulation of
the VM, which has proven useful in the development of the system. See the
Interpreter and ObjectMemory classes for most of the source code.
Note how the VM is written in a fairly stilted style of Smalltalk/C hybrid that has come
to be known as Slang. Slang requires type information hints that are passed through to
the final C source code anytime you need variables that are not C integers. A
somewhat more readable dialect of Slang is used in the VM plugins described in the
chapter on extending the VM.
You can try out the C code generator by looking at the classes TestCClass1/2 or 3.
Printing
TestCClass2 test

will run a translation on a fairly large example set of methods and return the source
code string that would be passed to a C compiler. To build a new VM for your
machine, see the chapter on porting Squeak for instructions on how to generate all the
files needed and compile them.

A. Things for the future
Squeak is not finished and hopefully never will be. Already it represents one of the most
interesting programming systems in existence and people are constantly expanding their
vision of what it might be used for. The following are some notes on what might be done
in pursuit of a few of the author's interests.

1. Bigger systems
Probably the largest known Squeak image is the one used by Alan Kay for public
demos. Without any special changes to the VM it was quite happy with over a
hundred Projects and one hundred and sixty megabytes of object space. To extend
Squeak's range to truly large systems we would probably need to consider changing
to a 64bit architecture and a more sophisticated garbage collection system. Large
systems are often very concerned with reliability and data safety - a corporate payroll
system ought not crash too often. An object memory that incorporates extra checking,
transaction rollbacks, logging, interfaces into secure databases etc. might be an
interesting project.

1. Smaller systems, particularly embedded ones.
It is possible to squeeze a usable Squeak development image down to approximately
600kb, although there is not very much left by then. To get to this size involves
removing almost everything beyond the most basic development environment and
tools - look at the SystemDictionary > majorShrink method.
Building a small system for an embedded application would involve a more
sophisticated tool, such as the SystemTracer, to create the image, but what Object
Engine changes would be useful? Since such a system would not need any of the
development tools, we could remove some variables from, or change the structure of,
classes and methods and method dictionaries.
From classes we could almost certainly remove,

• organisation - this simply categorizes the class's methods for development
tools

• name - it is unlikely that a canned application would have any use for this
• instanceVariables - this is a string of the names of the instance variables
• subclasses - the list of subclasses is rarely accessed.

None of these would require major VM changes except in some debugging routines
such as Interpreter > printCallStack that attempt to extract a class' name.
From compiled methods we could remove the source code pointer and possibly go so
far as to use integers instead of symbols to identify the message selectors. This would
work in Squeak since the method dictionary search code already handles such a
possibility. This would reduce the size of the Symbol global table significantly.
MethodDictionary relies on having a size that is a power of two for the purposes
of the message lookup algorithm and will double the size of the dictionary anytime it
gets to 3/4 full - typically the dictionaries are a little under half full. By changing the
system to allow correctly sized dictionaries we might save some crucial tens of
kilobytes.
Depending on the application involved, it might also be possible to make most of the
classes in use be compact classes. This would allow most objects to have one word
object headers and reduce the average object overhead in the system.
The VM itself can be shrunk quite simply. In Squeak 2.8, the VM was broken into a
number of plugin modules to accompany the kernel. Systems that do not need sound,
sockets or serial ports need not have any of the code present. A Linux VM can be built
as small as 300Kb with just the basic kernel capabilities.

1. Headless server systems.
If we want to use Squeak as a server program we need to be able to run headless,
which is to say without a GUI.
Most of the changes needed are in the image, in low-level code just outside what we
would normally consider part of the object engine. For example, there are methods in
the FileStream classes that open dialogues to ask a user whether to overwrite a file or
not; clearly this is not appropriate in a server. Proper use of Exceptions and
exception handlers would be required to correct this problem, with probable changes
to code in the object engine in order to signal errors and to raise some of the
appropriate exceptions.
One major change needed in the VM is to avoid attempting to open the main Squeak
window as soon as Squeak starts up. Headless systems would not need nor support
this window. The Acorn port already handles this by not creating and opening the
window until and unless the DisplayScreen > beDisplay method is executed.
Another important capability would be to communicate with the running system via
some suitable channel. Although Squeak already supports sockets, it seems that an
interface to Unix style stdin/stdout streams would be useful.

1. Faster systems.
Although Squeak is amazingly fast - any reasonably modern machine can execute
bytecodes faster than most machines could execute native instructions just a few years
ago - we would like still more performance.
The Squeak VM is a fairly simple bytecode interpreter, with some neat tricks in the
memory manager and primitives to help the speed. To drastically improve
performance we would need to move to a quite different execution model that can
remove the bytecode fetch-dispatch loop costs, improve the primitive calling interface
speed, reduce the time spent pushing and popping the stack and reduces the runtime
cost of having reified contexts. At the same time, this new system must not break any
system invariants nor reduce the portability.
The overhead of using bytecodes can be almost eliminated by using some form of
runtime translation to native machine code [DeS84]. The VM would need extending to
provide a subsystem that can use the bytecodes as input to a machine specific
compiler. This has been done in most commercial Smalltalks; it adds a considerable
degree of complexity to the VM and particularly to porting the VM to a new machine.
The porter has to know the machine CPU architecture and the VM meta-architecture
well enough to combine them. Subtleties of the CPU can become major problems - are
registers usable for both data and addresses? Does the data cache interact with the
instruction cache in a useful manner or not? Do these details change across models of
the CPU?
Since the Squeak execution model is a simple stack oriented machine and most
modern CPUs are register oriented, we lose a lot of time in manipulating a stack
instead of filling registers. When code is translated to native instructions, we can
avoid a lot of this by taking advantage of the opportunity to optimise out many stack
movements. This will likely interact with the use of Contexts with their distinct
individual stackframes and potentially non-linear caller/sender relationships; CPUs
normally work with a single contiguous stack and a strict call/return convention.
Fortunately most Smalltalk code is quite straightforward and it is possible to
implement a Context cacheing system that performs almost as well as an ordinary
stack and yet handles the exceptional conditions caused by BlockContext returns or
references to the activeContext [Mi87].
The best news of all is that by the time this book is published, Squeak will very likely
have a VM making use of all these performance improving techniques!

A. References
GoR83
Adele Goldberg & David Robson, "Smalltalk-80: the Language and its Implementation",
Addison-Wesley May 1983
Currently out of print. A second, smaller edition was published as -
GoR89
Adele Goldberg & David Robson, "Smalltalk-80: The Language", Addison-Wesley 1989
The section on Smalltalk implementation that was removed from GoR83 is available
online at http://users.ipa.net/~dwighth/

DeS84
L. Peter Deutsch & Allan M. Schiffman, "Efficient Implementation of the Smalltalk-80
system", Proc. POPL 1984.

DeBo76
L. Peter Deutsch and Daniel G. Bobrow, "An efficient, incremental, automatic garbage
collector", Comm.ACM Sept 1976

SCG 81
Members of the Xerox Palo Alto Research Centre systems Concepts Group, Byte August
1981 special edition on Smalltalk-80.

Ung87
David Ungar, "The Design and Evaluation of a High Performance Smalltalk System",
Addison-Wesley 1987.

Mi87
Eliot E. Miranda, "BrouHaHa - A portable Smalltalk interpreter", Proc.OOPLSA 1987.

JoL96
Richard Jones and Rafeal Lins, "Garbage collection: algorithms for automatic dynamic
memory management", Wiley 1996

Jo99
Richard Jones' website at :-
http://www.cs.ukc.ac.uk/people/staff/rej/gcbib/gcbib.html

1. Bibliography: Papers of interest not directly referenced in
the text

Glenn Krasner, ed. "Smalltalk-80: Bits of History, Words of Advice", Addison-Wesley
1983

Patrick J. Caudill and Allen Wirfs-Brock, "A third generation Smalltalk-80
implementation", Proc.OOPSLA 1986.

Alan C. Kay, "The early history of Smalltalk", ACM SigPLAN Notices March 1993

David M. Ungar, "Generation Scavenging: A non disruptive high performance storage
reclamation algorithm", ACM Practical Programming Environments Conference, pp153-
173, April 1984.

