
Contents

42 Porting Squeak 3

42.1 Introduction . 3

42.2 About this chapter . 5

42.3 Source code . 6

42.3.1 Generating the Squeak source �les 7

42.3.2 Generating the Macintosh support �les 7

42.4 Getting started . 8

42.4.1 Roadmap to porting Squeak 8

42.4.2 Stealing code from other ports 13

42.5 Squeak's C conventions . 14

42.5.1 Squeak does not believe in pointers 14

42.5.2 C strings vs.Squeak strings 14

42.5.3 Interacting with Semaphores 15

42.5.4 Primitive success and failure 15

42.6 Compilation environment: sq.h 16

42.6.1 Declaring functions for dynamic libraries 18

42.6.2 Reading and writing the image �le 19

42.6.3 Allocating memory . 20

42.6.4 Keeping track of elapsed time 20

42.6.5 Reading and writing Floats 21

42.7 Graphical output . 22

42.7.1 Updating the display 22

42.7.2 Display depths and the colormap 23

42.7.3 Other display functions 23

42.8 Mouse and keyboard input 26

42.8.1 Reconciling polling with event-driven input 28

42.8.2 Event-driven keyboard/mouse input 30

1

2 CONTENTS

42.9 The clipboard . 32

42.10 Files and directories . 33

42.11 Time . 35

42.12 Image name . 36

42.13 Miscellany . 37

42.14 Initialization and the function main() 38

42.15 System attributes . 40

42.16 Support subsystems . 41

42.17 Networking . 42

42.17.1 Network initialization and shutdown 43

42.17.2 Socket creation and management 43

42.17.3 Connecting and disconnecting 46

42.17.4 Sending and receiving data 47

42.17.5 Optional BSD-style connection semantics 48

42.17.6 Backwards compatibility 49

42.17.7 Host name lookup . 49

42.18 Sound . 51

42.19 Serial port . 53

42.20 Plugin modules . 54

42.21 Pro�ling . 55

42.22 \Headless" operation . 56

42.23 Conclusion . 57

Chapter 42

Porting Squeak

\Nothing will ever be attempted if all possible objections must �rst be over-

come." The famous words of Samuel Johnson are particulary relevant to the

task of porting Squeak. As we shall see in this chapter, it is a task where

most of the objections need not be overcome; they can quite cheerfully be

left for that proverbial rainy day. . .

42.1 Introduction

Squeak must be one of the most ubiquitous programming languages to date.

In addition to the original version for MacOS, Squeak has been ported to a

wide variety of very di�erent platforms: most major
avors of Unix, MacOS-

X, several variations of Windows and Win/CE, OS/2, several \bare hard-

ware" systems, and so on.

The impressive list of ports has been possible because of the way Squeak

cleanly separates the task of interpreting Smalltalk from the task of communi-

cating with its host platform. The interpreter is actually a Smalltalk program

within the image (in class Interpreter) which is translated into an equivalent

C program that can subsequently be compiled on any system that has an

ANSI C compiler. This program makes only one assumption: that pointers

and integers are 32 bits wide.1 Communication with the host platform is per-

formed through a collection of a hundred or so \support functions", which

1This assumption may change in the future as 64-bit systems become more widespread.

Existing 64-bit systems sometimes provide compiler options to limit pointers and integers

to 32-bits, making them \Squeak-friendly".

3

4 CHAPTER 42. PORTING SQUEAK

CCodeGenerator

InterpreterSupportCode

Interpreter

interp.c

sq.h

sqMiscPrims.c
sqSoundPrims.c

sqCrayWindow.c
sqCrayNetwork.c
sqCraySound.c
sqCrayFile.c

link

compile

compile

squeak

platform-dependent
support code

Squeak virtual machine

Squeak image

Figure 42.1: The majority of the Squeak virtual machine is generated automati-

cally from an executable speci�cation written in Smalltalk. The class Interpreter is

a fully-functional implementation of the Squeak interpreter written in a subset of

Smalltalk. The CCodeGenerator converts this Smalltalk program into an equivalent

C program. The class InterpreterSupportCode adds many primitives (also written

in Smalltalk and converted automatically to C) to the generated code, as well as

some hand-written header �les that are stored as String constants in the image (for

convenience). The generated source and header �les are compiled and then linked

with platform-dependent support code (written by hand) to create the Squeak

virtual machine.

perform platform-dependent tasks such as �le input/output, updating the

screen, and reading keyboard and mouse input. The generated interpreter

code and platform support functions are compiled and then linked together

to create the �nal virtual machine. Figure 42.1 illustrates this division of

labor.

Looking at the amount and complexity of support code that comes with

Squeak, it may seem that porting it to a new platform is a daunting task.

This is not necessarily the case. A couple of points in particular make the

42.2. ABOUT THIS CHAPTER 5

task much easier than it might appear.

First is the optional nature of many of the \advanced" features of Squeak

(such as support for CD-quality stereo sound recording and output, MIDI,

network connectivity, and so on). These features are associated with primi-

tive methods in the Squeak image. Each of these primitives calls an associated

C function in the support code, which normally implements some \external"

action (such as opening a network connection) before returning. However, it

is perfectly acceptable for these primitives to \fail" instead of implementing

the external actions expected of them. An initial port can therefore avoid

an immense amount of complexity by implementing tiny \stubs" in the as-

sociated support functions that simply \fail" the primitive from which they

were called and then return, without performing any additional work at all.

Squeak might be a less exciting place in which to play as a result, but at

least it will be \up and running" far sooner because of the optional nature

of its advanced features.

Second is the inclusion of the tiny �le sqMacMinimal.c along with the

regular Squeak source code. This �le is a kind of \skeleton": it contains a

complete set of declarations for both the mandatory and optional support

routines, and the simplest possible de�nitions for the mandatory support

that yield a running virtual machine on the Macintosh. (The optional func-

tionality is de�ned too, but trivially|indicating its absence to the Squeak

interpreter.) It is a very good starting point for porting Squeak to a new

platform. Generating the Macintosh source �les from within the image will

also generate a copy of this �le (see Section 42.3.2).

42.2 About this chapter

This chapter begins by explaining the structure of the Squeak virtual ma-

chine, and the process of putting it together based on the various pieces.

These pieces are either provided, generated automatically based on Small-

talk code, or written by hand for each supported platform. The mechanism

for extracting the provided and generated code from the image is described

in Section 42.3.

Section 42.4 gives an overview of the steps involved in porting Squeak,

and some tips on how to make the process as painless as possible. Following

the instructions in this section will yield a minimal, but working, virtual

machine for Squeak on a new platform.

6 CHAPTER 42. PORTING SQUEAK

Next come some important details about how the generated code interacts

with the support code (Section 42.5), and how the compilation environment

is set up for both generated and support code (Section 42.6). This last

section also describes the additions that must be made to the compilation

environment in order to support a port to a new platform.

The next few sections (42.7 through 42.14) deal mainly with the �ne

details of each of the mandatory \subsystems" in Squeak, and tell the full

story behind the outline given earlier (in Section 42.4). These sections de-

scribe functionality that is required for Squeak to work properly, and will

therefore be a major source of information during an initial porting e�ort.

The remaining sections (42.15 through 42.22) tell the tales of the various

optional subsystems such as networking and sound. Once an initial port to

a new platform is running reliably, they describe how to extend Squeak's

capabilities in important and interesting ways.

Finally Section 42.23 o�ers some closing remarks, including why the sig-

ni�cant rate of change in Squeak does not present additional diÆculty to the

task of porting, before closing the book on the Squeak Porting Story.

This chapter assumes that the reader is already familiar with Smalltalk,

and preferably with Squeak. The text refers to several standard Squeak

classes without explaining either their purpose or the details of their im-

plementation, except where such explanation is required to understand how

they interact with the support code.

Only two typographic conventions are used. Quantities from the C uni-

verse (variable and function identi�ers, constants, and so on) appear in

fixed-width font. Quantities from the Squeak universe (expressions and

class or method names) appear in sans serif font.

42.3 Source code

Squeak tries to generate as much of its own implementation as possible au-

tomatically. Such code is referred to in this chapter as generated code. The

code that depends on the host platform, and which is written by hand when

porting Squeak to a new platform, is referred to as support code.

The generated code can be extracted from any running Squeak system.

The next section explains how.

Writing the support code for a new platform is a more diÆcult task. To

make things simpler, the support code is divided into several subsystems,

42.3. SOURCE CODE 7

each of which deals with a particular aspect of Squeak's connectivity with

the \outside world". They include user interaction (screen, keyboard and

mouse), networking, sound, serial and MIDI ports, and so on. Some of

these subsystems are mandatory: they must be implemented (or \mostly

implemented") to obtain a working Squeak system. The other subsystems

are optional; they represent the parts that can be left for that rainy day.

42.3.1 Generating the Squeak source �les

The very �rst task when starting a new port is to generate the platform-

independent source �les, which will be compiled and then linked with the

hand-written support code. These �les include the Squeak interpreter itself,

automatically-generated implementations of various primitive functions, and

a few hand-written header �les that are stored in image as String constants.

The Squeak interpreter is traditionally called interp.c. It is generated

automatically by translating a complete, functional implementation written

in Smalltalk into an equivalent C program. (See the class Interpreter for

details.) This is done by evaluating the expression

Interpreter translate: 'interp.c' doInlining: true

in a Squeak Workspace. (See the method of the same name in Interpreter class

for further details.) This takes a couple of minutes, and writes the generated

code to the named �le in the current working directory.

The automatically-generated primitives are created in the same manner

as the Squeak interpreter itself|from equivalent Smalltalk implementations

that are translated into C. The hand-written header �les are stored in the

image as constants, just for completeness. Both sets of �les can written to

the current working directory by evaluating the expression

InterpreterSupportCode writeSupportFiles

in a Squeak Workspace. (See the method of the same name in Interpreter-

SupportCode class for further information.)

42.3.2 Generating the Macintosh support �les

The Squeak image also contains a complete copy of the support code for the

Macintosh, divided into several source �les, each of which corresponds to one

8 CHAPTER 42. PORTING SQUEAK

of the subsystems described in this chapter. Some of these �les contain very

good documentation, and o�er much more information (as comments) than

could reasonably be included here.

Porting these susbsystems to a new platform is therefore best accom-

plished by copying and then modifying the Macintosh version; unless one of

the other ports of Squeak already o�ers support that is similar to the target

platform, of course. Evaluating the expression

InterpreterSupportCode writeMacSourceFiles

in a Squeak Workspace will write these �les to the current working directory.

If no �le system is available for writing out copies of the hand-written

�les stored in the image, their contents can be browsed by looking in the

`source �les' protocol of InterpreterSupportCode class.

42.4 Getting started

This section gives some overall advice about how to go about porting Squeak

to a new platform. It begins by outlining which support functions are essen-

tial, and in what order they might be implemented to obtain a (partially)

working Squeak system in the shortest amount of time.

It is very useful to have a running Squeak system available when porting

to a new platform.2 Apart from being able to look inside the image to

see how the generated code interacts with the support code, it also a�ords

the possibility of making a \customized" image for use during testing. (For

example, such an image might disable the logging of errors to a �le until the

�le system is fully operational in the new port.)

42.4.1 Roadmap to porting Squeak

Some Smalltalk programmers like write their code in a \demand-driven"

style, implementing missing functionality when the Debugger pops open in

2This is by no means essential. The very �rst port of Squeak (to Unix) was made

without access to a Macintosh, which at the time was the only platform on which Squeak

ran. Apart from ten minutes spent on a Macintosh right at the start of the porting process

(to generate the interp.c �le and the Macintosh support code for reference purposes),

the port was performed entirely \o�ine" up to the moment when Unix Squeak could load

and run an image for itself.

42.4. GETTING STARTED 9

response to doesNotUnderstand:. This style of development also makes perfect

sense for porting Squeak to a new platform.

A copy of the �le sqMacMinimal.c (extracted from the image, as ex-

plained in Section 42.3.2) already contains trivial implementations of the

optional functions, that will fail \gracefully" when the image tries to use an

unimplemented feature. All that this �le is missing are implementations of

the \essential" functions.

With just a few minutes' work, trivial implementations of the essential

functions can be added to sqMacMinimal.c. They can simply print a message

(indicating the name of the function) before exiting.

Once this is done, the next step is to try to compile and link the Squeak

virtual machine. At the time of writing, the following �les are required:

� interp.c | automatically-generated bytecode interpreter;

� sqMiscPrims.c | automatically-generated primitives;

� sqNamedPrims.c | as generated by the image;

� sqNamedPrims.h | modi�ed manually so as to declare no primitives

at all (see Section 42.20);

� sqFooWindow.c | the modi�ed copy of sqMacMinimal.c, lacking all

of the essential support for platform \Foo", but destined eventually to

become the \main" program in the \Foo" port of Squeak;

� sqConfig.h | a (slightly) modi�ed copy of the original, with an ad-

ditional section that recognizes the host platform (see Section 42.6);

� sqPlatformSpecific.h | a (possibly modi�ed) copy of the original,

with any modi�cations to the compilation environment that might be

required (see Section 42.6);

� . . . plus any necessary C libraries.

The interpreter code relies only on the following functions from libraries:

� math: exp(), log(), atan(), sin(), sqrt(), ldexp(), frexp(),

modf();

10 CHAPTER 42. PORTING SQUEAK

� standard input/output: getchar(), putchar(), printf();3

� others: memcpy(), strlen(), clock().

Given the above, it should be possible to compile and link a Squeak virtual

machine. Running this VM should cause an almost immediate exit, after

printing the name of the �rst \essential" support function that is missing.

Porting then becomes an iterative process:

� implement the missing \essential" function that caused the exit;

� compile, link, run;

� repeat.

If this methodology is followed, the order in which the various essential

functions are implemented should be approximately as follows. (Don't worry

if some of the comments below seem to make little sense right now. When

the time comes to implement each particular function, the comments will

start to make perfect sense.)

Reading an image �le

sqImageFileRead() and friends (Section 42.6.2).

Squeak can do nothing without an image �le to run, and so the very �rst

thing to get working is the image loading code.

The virtual machine keeps track of the full path name of the Squeak

image �le and the path to the directory containing the virtual machine. In

a minimal implementation, the VM path can be the empty string and the

image name hardwired to squeak.image. It is assumed that the image �le,

the changes �le and the system sources �le are all in the the same directory,

and that this directory is the default working directory for any �le operations.

The rest of the �le system implementation can be left until later.

3On platforms that have no terminal input/output, even the standard I/O functions

could be disabled. They are used only to report fatal errors from within the generated

code. (Hopefully there will still be some way for the code to indicate which function

caused an exit during the initial \demand driven" development.)

42.4. GETTING STARTED 11

Displaying bits on screen

ioShowDisplay() and friends (Section 42.7).

Once the image loading code is working it's time to let Squeak display

something. The critical function here is ioShowDisplay(), and it's likely

that Squeak is now reaching the \stub" that was left in place of this function.

Once this function is working, the latest port of Squeak should actually

be displaying something meaningful on the screen.4 The most likely thing

that Squeak will display is a messages saying that it can't �nd the changes

�le. (Which is already not bad, for two relatively simple steps!)

Now is the time to implement a few boring (but critical) user-interface

related functions.

For graphical output: ioShowDisplay() is already done, but ioScreen-

Size() is also very usful (and easy to implement). Things like ioHasDis-

playDepth() can be hard-wired to 1 (after making sure that squeak.image

is using a depth with which ioShowDisplay() can cope.)

The following functions can be made no-ops at this stage of the port:

ioProcessEvents(),

ioSetCursor(), and

ioSetCursorWithMask().

Handling time

ioMSecs() and friends (Section 42.11).

Squeak relies heavily on knowing how to tell the time, and in particular

on knowing how much time has elapsed since a given event. This step is

critical for many ports: without the timer it is impossible to proceed, since

so much of the user interface code relies on it.

The following functions are essential for timekeeping: ioMSecs(), and

ioMicroMSecs().

The function ioSeconds() can initially be hard-wired to always return

0, with the e�ect that the current date and time will be wrong. On the other

hand, the user interface never needs to know the \wall clock" time, and so

this will not prevent signi�cant further progress.

4Keep a bottle of champagne handy for this moment: the feeling of achievement that

comes with it should not be underestimated.

12 CHAPTER 42. PORTING SQUEAK

Reading the keyboard and mouse

ioGetKeystroke() and friends (Section 42.8).

The following are essential for interacting with Squeak:

ioGetKeystroke(),

ioGetButtonState(), and

ioPeekKeystroke().

The function ioMousePoint() is also needed to track the pointer position.

If the harware is normally polled to retrieve mouse/keyboard input then

ioProcessEvents() can probably be made a no-op. Otherwise it might be

necessary to implement it, in order to help with the conversion of mouse or

keyboard events to a form that Squeak can poll (see Section 42.8.1).

The following functions can be made no-ops at this stage of the port:

ioSetCursor(),

ioSetCursorWithMask(), and

ioBeep().

And the rest...

The new port of Squeak is now basically working!

It should be possible to interact with menus, browse the class hierarchy,

open a Workspace and evaluate expressions in it, and even run some simple

benchmarks. Reaching this point is a second good excuse for celebrating.5

Now that Squeak can interact, a potentially useful thing to do is to open

the \preferences" menu and disable the logging of errors to a �le in the

current directory|just until the port has a working, writable �le system.

(Otherwise the �rst error of any kind will put the virtual machine into an

in�nite \fatal error" recursion.)

5As an indication of how quickly it is possible to arrive at this point, the �rst port

of Squeak (to Unix/X11) was begun late on a Friday evening. After about two days of

hacking, sometime during Sunday afternoon, Unix Squeak could be used to browse the

class hierarchy and evaluate Smalltalk expressions in a Workspace. Later that same day

it successfully saved a renamed .image �le (copying the .changes �le in the process) and

then started up again using the newly-saved image. It was only a matter of a few days

more before the �rst \release" of Unix Squeak was publicly available.

42.4. GETTING STARTED 13

Note that it is possible to delay implementing the �le system for quite a

long time, and even then it can initially be made read-only.6

One very useful thing to get working early in the porting process is the

interrupt key (or button). This is especially handy for ports to machines

that have no keyboard (such as PDAs), to \escape" from prompts asking for

keyboard input.

The rest of the porting process is just a matter of prioritizing which things

to implement �rst. The functions that were mentioned above but left as \no-

ops" would be a good starting point, followed by individual \subsystems" as

described in the remainder of this chapter.

The preceding discussion assumes that the port is being made \in a vac-

uum". On the other hand, it is possible that an existing port o�ers a signif-

icant, reusable code base on which to build the new port.

42.4.2 Stealing code from other ports

By far the easiest way to get started with a new port is to take an existing

port and modify it for the new host. In some cases a signi�cant amount of

work can be avoided by doing this. A good example is the code for updating

the physical display.

The Unix/X11 port (at least) contains code to convert 8-, 16- and 32-bit

deep internal Display formats into 8-, 16-, 24- or 32-bit deep physical screen

data, with or without byte order reversal. It also contains a reusable skeleton

for reconciling an entirely event-driven graphical, keyboard and mouse I/O

model with Squeak's polled model. The network subsystem should also work

with little or no modi�cation on any host that has a BSD-compatible socket

library.

Obviously, other ports might o�er a more sensible \starting point", de-

pending on the target platform. Certain subsystems (such as sound) are so

dependent on the host that they will probably have to be rewritten from

scratch in most cases.

An intermediate case concerns hosts that have signi�cant characteristics

in common with an an existing port, but which have suÆcient di�erences

6Ports to \bare hardware" might also take advantage of the fact that most Flash and

CompactFlash cards can be formatted as a FAT-16 MS-DOS �le system, which has a

published and very simple speci�cation. Any necessary image, changes and sources �les

can be transferred easily to these cards on a workstation equipped with an appropriate

adaptor.

14 CHAPTER 42. PORTING SQUEAK

to warrant an independent existence. In such cases a serious disadvantage

of \forking" a new port is that two sets of essentially identical code must

be maintained. Ideally the code for the new host would be integrated with

the existing port, although this also has a disadvantage: it can only be ac-

complished with the complete cooperation of the maintainer of the existing

port (which might have to be reorganized to isolate the incompatible func-

tionality). This situation is probably rare, but examples of both approaches

already exist.7

42.5 Squeak's C conventions

This section describes several conventions that are used universally by gener-

ated code, and to which support code must adhere in order to work correctly.

42.5.1 Squeak does not believe in pointers

Squeak's implementation treats almost everything as an int. In particular,

pointers that are passed between Squeak and the support code always have

type int. It is up to the support code to perform any casting that might be

required.

42.5.2 C strings vs. Squeak strings

Squeak and C store strings in fundamentally di�erent ways. In C a string

is always terminated with a \null" character (ASCII value 0). Squeak, on

the other hand, stores the length of the string and dispenses with any kind

of terminating character. This di�erence is important whenever string data

is transferred between Squeak and C. In most cases such transfers of string

data follow the same pattern.

To export a string from Squeak to C, the support function is called with

two arguments: a pointer to the string data and the number of bytes in the

string. The support function simply copies the given number of bytes (using

memcpy() for example) from the given address into its own memory. (If

7The Unix version of Squeak was the basis for a signi�cant portion of the (entirely

distinct) OS/2 port. The majority of the Unix code is also reused without modi�cation in

the MacOSX version of Squeak. (MacOSX is essentially BSD Unix, but with a graphics

server that is incompatible with X11.)

42.5. SQUEAK'S C CONVENTIONS 15

allocating memory dynamically then it should always add one to the length

indicated by Squeak, and append a terminating \null" to the copy.)

Importing a string is slightly more complex. In general Squeak will call

two support routines. The �rst should return the length of the string to be

imported from C into Squeak. (This allows Squeak to allocate a new String of

the appropriate size, or to grow a bu�er if necessary, or whatever.) The sec-

ond routine is called with a pointer to the destination, and the actual number

of bytes that Squeak expects to be copied. (strncpy() is the safest way to

actually transfer the bytes into Squeak's memory, to avoid any possibility of

trying to copy too many bytes from the point of view of both Squeak and C.)

The clipboard handling rountines (Section 42.9) illustrate perfectly the

way Squeak and C exchange string data.

42.5.3 Interacting with Semaphores

Several support routines are required to report asynchronous events to the

Squeak interpreter. One example is the networking subsystem, where the

completion of a write() operation or the availablility of data for a read()

operation must be communicated to the interpreter. This is accomplished

by signalling a Semaphore.

Semaphores are identi�ed (to the support code) by an integer index. Sig-

nalling a Semaphore is accomplished by calling the (generated) function

signalSemaphoreWithIndex(int semaIndex)

passing the appropriate Semaphore index as the argument.

42.5.4 Primitive success and failure

Some of the support functions are associated directly with a primitive method

in the Squeak image. Such functions must indicate whether the primitive

operation succeeds or fails. Two generated functions are provided to do this.

The �rst is

void primitiveFail(void)

which is called to \fail" the primitive. (It does not transfer control back

to the Squeak interpreter: the support code must ensure that a return is

executed at the appropriate moment after failing a primitive.)

The second function is

16 CHAPTER 42. PORTING SQUEAK

int success(int successFlag)

which can be called several times from within a primitive support function.

The argument should be either true or false. This function \composes"

successive values of successFlag; that is, if a primitive support routine calls

this function with false as the argument then Squeak will consider the

primitive operation to have failed, regardless of how many times (or when)

the support function calls it with the argument true.

The following sections will indicate when a support function is associated

directly with a Squeak primitive. Such functions should \fail" (as described

above) whenever they cannot complete an operation successfully.

42.6 Compilation environment: sq.h

The generated code does not exist in a vacuum|it requires some kind of

compilation environment to give it access to a few basic system services

on the host platform. Porting Squeak therefore also involves de�ning an

appropriate compilation environment for the generated code. This must be

done before (or during) the initial attempt to compile and link the �rst

\entirely unimplemented virtual machine" (as described in Section 42.4).

Each of the automatically-generated, platform-independent source �les

begins by including sq.h, which establishes a compilation environment for

the source �le. This header �le is also typically included by the (hand-

written) platform-dependent source �les, since it declares many useful func-

tion prototypes|including those for all the functions that should be present

in the support code. (Including it routinely in every source �le therefore helps

to detect errors due to incorrect function signatures.) The overall structure

of sq.h is shown in Figure 42.2.

Generated code makes use of several ANSI and/or POSIX routines that

should be available on most platforms that have a Standard C compiler. Since

the names of the necessary header �les have been standardized, sq.h as-

sumes that they are available and #includes the following directly: math.h,

stdio.h, stdlib.h, string.h and time.h.

Unfortunately, the generated code also uses facilities that may or may

not be present|or that might be present in di�erent forms depending on the

platform. To cope with this, sq.h #includes two �les which will certainly

require modi�cation for a new platform.

42.6. COMPILATION ENVIRONMENT: SQ.H 17

ANSI/POSIX headers

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

these are assumed to exist on all platforms

. #include "sqConfig.h" identi�es the host platform

defaults for platform-speci�c de�nitions

#define true 1

#define false 0

#define null 0

symbolic constants used by generated code

#define EXPORT(type)... return type declaration for functions in dynamic

libraries

#define sqImageFile...

#define sqImageFileOpen...

...

ANSI/POSIX �le types and functions for ac-

cessing �le streams

#define sqAllocateMemory...

#define reserveExtraCHeapBytes...

interface to memory allocation routines

#define storeFloatAtfrom...

#define fetchFloatAtinto...

accessing 64-bit IEEE doubles

int ioMSecs(void);

int ioLowResMSecs(void);

int ioMicroMSecs(void);

prototypes for fetching millisecond time

#define ioMSecs()...

#define ioLowResMSecs()...

#define ioMicroMSecs()...

defaults based on ANSI clock() function

. #include "sqPlatformSpecific.h" rede�nes zero or more of the above defaults for

a particular host platform

prototypes for all support functions

/* file i/o */

/* directories */

...

a list of prototypes which declares the set of

support functions that must be provided by the

platform-dependent support code for each plat-

form on which Squeak runs

variables imported from generated code

extern const char *interpreterVersion; the version string of interp.c

Figure 42.2: The structure of the �le sq.h. The two header �les marked with `.'

must be modi�ed when porting to a new platform. The �le sqConfig.h can de�ne

symbols to change the way the two Float access macros are de�ned. The �le

sqPlatformSpecific.h should rede�ne any macros that did not receive suitable

defaults in sq.h. See the text for further details.

18 CHAPTER 42. PORTING SQUEAK

The �rst of these is sqConfig.h, which is responsible for identifying the

host platform. A new port will have to add a corresponding section to sq-

Config.h (cut-and-paste from an existing section with minimal modi�cations

will probably do the trick). The new section must de�ne at least the symbol

SQ_CONFIG_DONE, to indicate that the platform has been recognized.8

sq.h goes on to de�ne various \sensible" defaults for things that the

generated code will need, before including the second of these �les: sqPlat-

formSpecific.h. As its name suggests, this �le is responsible for providing

the generated code with access to basic facilities that di�er between plat-

forms. On ANSI/POSIX platforms it will have almost nothing to do. On

more exotic platforms it will have to \undo" some of the assumptions made

in sq.h. It does this by selectively rede�ning the macros previously set up

by sq.h, in a section of code compiled conditionally according to the host

platform (as detected previously in sqConfig.h). If any system header �les

(other than those already included by sq.h) are required by the host, then

sqPlatformSpecific.h is the place in which to #include them.

The macros that sqPlatformSpecific.h should consider rede�ning are

concerned mainly with declaring functions for dynamically-loaded libraries,

�le access, memory allocation, and keeping track of elapsed time. They

are described in the following four sections. Their default \reasonable"

ANSI/POSIX de�nitions (provided by sq.h) are shown in Table 42.1.

42.6.1 Declaring functions for dynamic libraries

Some of the generated code is intended to be \pluggable"|compiled sep-

arately from the main virtual machine as a dynamically-loadable library,

to be read into the virtual machine \on-demand" at runtime when �rst

needed. Unfortunately, some compilers and hosts require special declarations

for functions that are to be exported from a dynamic library. The macro EX-

PORT(type) is therefore used to declare the return type of any function that

might be placed in a dynamic library; for example:

EXPORT(int) someDynamicallyLoadedFunction(void) { ... }

sqPlatformSpecific.h can rede�ne this macro to provide any additional

declaration keywords that might be needed (not forgetting, of course, to

8Some platforms do not have a single, unique prede�ned preprocessor symbol to aid

with their identi�cation. Any disambiguation should be done in sqConfig.h and a unique,

unambiguous identifying symbol #defined for use later on in sqPlatformSpecific.h.

42.6. COMPILATION ENVIRONMENT: SQ.H 19

symbol/macro default (ANSI/POSIX) de�nition

EXPORT(type) type

sqImageFile FILE *

sqImageFileOpen(name, mode) fopen(name, mode)

sqImageFileRead(ptr, sz, count, f) fread(ptr, sz, count, f)

sqImageFileWrite(ptr, sz, count, f) fwrite(ptr, sz, count, f)

sqImageFilePosition(f) ftell(f)

sqImageFileSeek(f, pos) fseek(f, pos, SEEK SET)

sqImageFileClose(f) fclose(f)

reserveExtraCHeapBytes(size, extra) size

sqAllocateMemory(min, desired) malloc(desired)

ioMSecs() ((1000 * clock()) / CLOCKS PER SEC)

ioLowResMSecs() ((1000 * clock()) / CLOCKS PER SEC)

ioMicroMSecs() ((1000 * clock()) / CLOCKS PER SEC)

Table 42.1: Default ANSI/POSIX values for the symbols and macros that sq-

PlatformSpecific.h might want to consider rede�ning.

include the return type of the function).

42.6.2 Reading and writing the image �le

Most of the code needed for loading and saving images is generated auto-

matically. This code assumes an ANSI-like interface to the �lesystem. The

symbol sqImageFile should be de�ned as the type of a \�le handle" on the

host platform.

sqImageFileOpen() is passed the name (a C-style null-terminated string)

and mode (also a C string) of a �le, and should return its handle (of type

sqImageFile, or null if the �le does not exist). The mode is as speci�ed by

ANSI; either "rb" (read binary bytes) or "wb" (create or truncate and then

write binary bytes).9

The reading/writing macros are passed a pointer to an area of memory

(ptr), a �le handle (f, obtained from sqImageFileOpen()) and the number

of bytes to transfer expressed as count \elements" of size sz. These macros

should simply transfer count * sz \uninterpreted" bytes. (Any \endian"

conversions that might be necessary are handled automatically elsewhere).

9\Binary bytes" implies that no CR/LF line-end conversion should be attempted when

reading/writing the image �le.

20 CHAPTER 42. PORTING SQUEAK

Finally, sqImageFilePosition() and sqImageFileSeek() are respon-

sible for retrieving and setting the \�le pointer", i.e. the o�set (from the

beginning of the �le) at which the next read/write operation should com-

mence. (The generated code tacitly assumes that read/write operations will

increment the �le pointer by the number of bytes read or written.)

42.6.3 Allocating memory

The generated code needs to know approximately how much space to reserve

for the virtual machine's data. This space includes the Smalltalk \heap"

(the in-memory copy of the image �le) and any additional data space that

might be required by dynamically-loaded libraries. The macro reserve-

ExtraCHeapBytes(size, extra) is used to calculate how much data space

should be reserved when the VM starts up. The �rst argument is the number

of bytes required for the image; the second is an estimate of how much addi-

tional data space might be needed by dynamic libraries. This macro should

return the total amount of data memory that the VM should \reserve" stat-

ically. If the host knows how to dynamically allocate more data memory as

libraries are loaded (or if it doesn't support dynamic libraries at all) then the

correct result is simply the size of the image �le (the default de�nition).

The macro sqAllocateMemory(min, desired) is used to allocate the

memory for the image (and possibly for the dynamic libraries). The �rst

argument is the minimum acceptable size of memory (measured in bytes),

and the second is the \ideal" size. This memory allocation macro should

return null if it cannot allocate at least min bytes of memory.

42.6.4 Keeping track of elapsed time

sq.h also declares three functions that return the elapsed time (relative to

any convenient point of reference):

int ioMSecs(void)

int ioLowResMSecs(void)

int ioMicroMSecs(void)

(The reason for having three functions to read the time will be explained

later, in Section 42.11). sq.h then immediately \hides" these declarations

with three macro de�nitions of the same names that use the ANSI clock()

function to calculate the time.

42.6. COMPILATION ENVIRONMENT: SQ.H 21

sqPlatformSpecific.h should seriously consider rede�ning these macros

(or simply unde�ning them so that real functions can be called in the support

code) to improve the accuracy of timing within Squeak. The problem is that

clock() usually measures elapsed CPU time rather than elapsed wall-clock

time. Consequently, whenever Squeak goes to sleep (which it does whenever

it runs out of interesting things to do) time will e�ectively stop passing if the

host adheres to the ANSI de�nition of clock().

The remainder of sq.h provides a full set of prototypes for the functions

that should be implemented by the platform support code. Since these dec-

larations should never depend on the host platform (and should therefore

be identical across all platforms) they appear after the inclusion of sqPlat-

formSpecific.h.

42.6.5 Reading and writing Floats

Two macros are de�ned by sq.h to copy 64-bit, double-precision, IEEE

oating-point values between C doubles and the data portion of a Float

object. By default these macros \do the right thing" on big-endian archi-

tectures, where the 64 bits of a double are stored most signi�cant byte �rst

in memory: the data is transferred in the obvious way, by dereferencing a

pointer to double.

Two complications might arise with this. The �rst is that Squeak aligns

all data on 32-bit boundaries, including the 64 bits of data in a Float. If

the host imposes 64-bit alignment on doubles then the symbol DOUBLE_

WORD_ALIGNMENT can be de�ned in sqConfig.h to force these macros to use

two 32-bit transfers to move the data. The second complication arises on

little-endian machines, where the least signi�cant word is stored �rst. For

these hosts, sqConfig.h should de�ne DOUBLE_WORD_ORDER to cause the
oat

macros to swap the two 32-bit halves of a double while copying it.

If some other scheme is necessary to copy doubles between C variables and

Squeak's object memory then sqPlatformSpecific.h will have to rede�ne

the macros

storeFloatAtfrom(i, floatVarName)

fetchFloatAtinto(i, floatVarName)

where i is an int expression giving the address of the data in a Float object,

and floatVarName is the name of a variable of type double (whose address

can be taken using the & operator to e�ect the transfer).

22 CHAPTER 42. PORTING SQUEAK

The two 32-bit halves of a Float's data are automatically byte-swapped to

match the local host when the image is loaded. The Float macros therefore

need not take byte order into account.

42.7 Graphical output

Just like the very �rst releases of Smalltalk-80 in the mid-1980s, Squeak

performs all of its graphical output directly to an object inside the image.

This object (called \Display") includes a Bitmap representing what the user

should see. The task of rendering Squeak's graphical display is therefore

relatively easy. Rather than having to implement a host of di�erent graphical

drawing operations directly, the support code simply copies bits out of the

Display object and onto the screen at the appropriate moments. The precise

nature of \the screen" depends on the platform, and might be a window

on MacOS or Unix (which uses the X Window System), or directly to a

memory-mapped framebu�er device, or even to a tiny LCD panel|which is

the case for at least one port of Squeak to \bare hardware".

The \appropriate moments" are determined entirely within Smalltalk,

and ultimately result in the calling of the support function ioShowDisplay().

This function performs the required copying of bits onto the physical display,

according to a \damage rectangle" that is supplied as an argument to the

function.

42.7.1 Updating the display

The support function

int ioShowDisplay

(int dispBitsIndex, int width, int height, int depth,

int affectedL, int affectedR, int affectedT, int affectedB)

is responsible for updating the physical screen, based on a Bitmap represent-

ing the display within Squeak.

The �rst four arguments provide information about the Bitmap data to

be transferred to the physical display:

� dispBitsIndex is the address of the �rst byte of the data portion of

a Bitmap object in Squeak's memory. This address corresponds to the

�rst pixel (top-left corner) of the display.

42.7. GRAPHICAL OUTPUT 23

� width is the width of the bitmap's data. The \pitch" of the bitmap

(the number of pixels in each scanline) is always rounded up so that

each scanline is word-aligned (i.e. it is a multiple of 4 bytes wide).

� height is the total number of scanlines in the bitmap data.

� depth is the number of bits in a pixel. Currently depths of 1-, 2-, 4-,

8-, 16- and 32-bits per pixel are supported.

The �nal four arguments affectedL, affectedR, affectedT, and af-

fectedB specify a \damage rectangle". They correspond to the left, right,

top and bottom limits (respectively) of the portion of the display that should

be updated.10

Bitmaps are word objects, and their byte order is swapped automatically

if necessary (by generated code) when the image is loaded. No special action

is needed if the host's byte order matches the physical display's byte order.

42.7.2 Display depths and the colormap

In 32-bits per pixel depth, Squeak really uses 24-bit pixels. The blue compo-

nent is in the least signi�cant 8 bits of each pixel, followed by 8 bits of green

and then 8 bits of red. The most signi�cant 8 bits are unused.

In 16-bits per pixel depth, Squeak really uses 15-bit pixels. The blue

component is in the least signi�cant 5 bits of each pixel, followed by 5 bits

of green and 5 bits of red. The most signi�cant bit is unused.

In 1- through 8-bits per pixel depths, Squeak uses the colormap shown in

Table 42.2.

42.7.3 Other display functions

int ioScreenSize(void)

should return the current size of the screen, with the width in the most

signi�cant 16 bits and the height in the least signi�cant 16 bits.

10An initial implementation of ioShowDisplay() could ignore the damage rectangle and

simply update the entire screen area according to the bitmap. Although slow, this would

avoid any possibility of the graphical output appearing to be broken due to misinterpreta-

tion of the damage rectangle (yielding an \update area" of zero size) when it is otherwise

working perfectly.

24 CHAPTER 42. PORTING SQUEAK

pixel color

0 white (or transparent if bpp > 1)

1 black

2 white (opaque)

3 50% gray

4 red

5 green

6 blue

7 cyan

8 yellow

9 magenta

10 1=8 gray

11 2=8 gray

12 3=8 gray

13 5=8 gray

14 6=8 gray

15 7=8 gray

16{39 1=32{31=32 gray (omitting n=8)

36r + 6b + g + 40 6� 6� 6 color cube

Table 42.2: Squeak's color map for 1-, 2-, 4- and 8-bit depths. The pixel column

refers to the pixel values stored in the Display Bitmap. The color column speci�es

the corresponding colors to be rendered on the physical display. For display depths

of less than 8 bits only an initial portion of this table will apply. For example,

for depth 2 only the �rst four lines are relevant (pixel values 0 through 3). For

depth 8, the maximum pixel value (according to the table) corresponds to the �nal

entry with r = 5, g = 5 and b = 5; i.e. 36 � 5 + 6 � 5 + 5 + 40, which is (rather

fortunately) equal to 255. For depths of greater than 8 bits Squeak does not use

a color map; the bits in the pixel specify the red, green and blue intensities of the

color directly. See the text for further details.

int ioHasDisplayDepth(int depth)

should return 1 if the host supports a Squeak Display of the given depth.

(This function is used to avoid passing an unsupported depth to ioShowDis-

play().)

42.7. GRAPHICAL OUTPUT 25

int ioSetFullScreen(int fullScreenFlag)

is used to turn \full screen" display on and o�. If fullScreenFlag is 1 then

the function should save the current screen size before resizing the display

to occupy the entire screen, removing any window decorations if they are

present. (The intention is that Squeak \take over" the entire physical display

area.) If fullScreenFlag is 0 then the function should restore the physical

screen (and any window decorations that might be present by default) to its

saved original size.

int ioSetDisplayMode(int width, int height, int depth,

int fullscreenFlag)

is called before Squeak tries to change its Display characteristics. The argu-

ments have the usual meanings. This function should return 1 to accept the

new Display parameters, or 0 to reject them.

int ioForceDisplayUpdate(void)

is called from generated code whenever Squeak wants to be certain that its

internal Display and the physical display are \synchronized". If the display

is \local" (a framebu�er connected directly to the host) then nothing special

need be done. If the display is \remote" (a network window system, for exam-

ple) then this function should not return until it is certain that any pending

display operations (initiated from ioShowDisplay()) have been completed.

int ioSetCursor(int cursorBits, int offsetX, int offsetY)

cursorBits is the address of a cursor bitmap. The bitmap is 16 bits wide

and 16 bits high. The 16 bits of each \scanline" appear in the most signi�cant

16 bits of a 32-bit word (the least signi�cant 16 bits are unused). (Successive

\scanlines" are therefore in the most signi�cant halves of consecutive 32-

bit words starting at cursorBits.) The host's cursor should be changed to

re
ect the bitmap, with a 1 in cursorBitmap being a black pixel in the cursor,

and a 0 being transparent (the background shows through the cursor). The

\hot spot" of the cursor is given by the second and third argument, which

are measured from the top-left of the cursor (0, 0) and then negated.11

11A hotspot in the top-left corner of the cursor is at o�set (0; 0). A hotspot in the

bottom-right corner is at o�set (�15;�15). (This, and similar, weirdness comes from

Squeak's origins as a Macintosh application.)

26 CHAPTER 42. PORTING SQUEAK

int ioSetCursorWithMask(int cursorBits, int cursorMask,

int offsetX, int offsetY)

is similar to ioSetCursor() except that cursorMask points to a bitmap (in

the same format as cursorBits) specifying where the 0 pixels in cursor-

Bits should be opaque. Wherever cursorMask contains a 1 and cursorBits

contains a 0, the cursor should have an opaque white pixel (obscuring the

background) instead of the normal transparent pixel.

42.8 Mouse and keyboard input

The interpreter reads keyboard and mouse information with the help of four

support functions. The simplest of these is

int ioMousePoint(void)

which should return an int representing the current position of the mouse

pointer. The top 16 bits contain the x coordinate and the bottom 16 bits the

y coordinate. The origin is the top-left corner of the window (or screen, if

Squeak is using a raw framebu�er), with x increasing towards the right and

y towards the bottom of the window.

The remaining three functions read keyboard input and the state of the

\modi�er" keys.12

int ioGetKeystroke(void)

reads (and returns) the next character in the keyboard input bu�er, removing

it from the bu�er in the process. The result is a 12-bit integer, in which the

least signi�cant 8 bits contain the ASCII value of the character and the

next four bits contain the \modi�er" keys that were pressed at the time the

keystroke was recorded. The bit assignments are shown in Table 42.3. A

non-destructive read must also be provided, by the function

int ioPeekKeystroke(void)

12On the Macintosh these are \control", \shift", \option" and \command". On other

platforms there are often \meta" and/or \alt" keys that can take the place of either

\option" or \command". Other combinations, such as \shift"+"control" can be used if

necessary to emulate \command" and/or \option"; the support code should implement

whatever mapping seems appropriate or most natural for users accustomed to the platform.

42.8. MOUSE AND KEYBOARD INPUT 27

bit meaning

11 command

10 option

9 control

8 shift

0{7 ASCII code

Table 42.3: Value returned by ioGetKeystroke() and ioPeekKeystroke(). The

low 8 bits contain the ASCII code. The next four bits are set to 1 if the corre-

sponding modi�er key was pressed when the keystroke was recorded.

bit meaning

6 command

5 option

3 control

3 shift

2 left mouse button

1 middle mouse button

0 right mouse button

Table 42.4: Value returned by ioGetButtonState(). The low 3 bits indicate which

mouse buttons are pressed. The next fours bits are set to 1 if the corresponding

modi�er key was pressed when the mouse button state was recorded. On systems

having a single-button mouse, it should be treated as the left button. The left

button should also obey the modi�er keys, with \control" transforming it into the

middle button and \meta" (or equivalent) transforming it into the right button.

The keyboard handling code should also check for a key code (ASCII

character plus the modi�er bits) equal to the contents of the variable inter-

ruptKeycode (declared and de�ned by generated code). If this key combina-

tion (usually \command" plus \.") is pressed then the support code should

set the variable interruptPending to true, and interruptCheckCounter

to 0 (both variables are declared in generated code). This will cause Squeak

to abort its current activity, returning control to the user interface.

The mouse buttons are read by the function

28 CHAPTER 42. PORTING SQUEAK

int ioGetButtonState(void)

whose result is a 7-bit integer containing three mouse button
ags and the

four modi�er key bits. The bit assignments are shown in Table 42.4.

42.8.1 Reconciling polling with event-driven input

Unlike most window systems and graphical toolkits (which tend to be event-

driven), Squeak \polls" for incoming data from the keyboard, mouse and

other sources. This polling normally occurs whenever the Smalltalk user

interface reads the mouse or keyboard state.

Even on systems such as X (which bu�er incoming events on behalf of the

application) there is a con
ict of interests. For example, Squeak expects to

be able to read the current position of the mouse at any moment, regardless

of how many keyboard events might be waiting in the bu�er. This means

that the support code must \service" events as soon as possible after they

arrive (to keep the mouse position up to date, and to check for the \interrupt"

key in a timely fashion), while providing some mechanism for \saving up"

keyboard events to be delivered at some later time, when Squeak decides to

poll for them.

To help reconcile polling with a possibly (or even probably) event-driven

platform, the interpreter calls the support function ioProcessEvents() be-

fore reading the mouse or keyboard state during interactive operation (and

approximately two times per second when running a CPU-bound activity, to

give the support code chance to set the interruptPending
ag if necessary).

ioProcessEvents() typically has four responsibilities, as follows:

� tracking the current position of the mouse based on any \motion"

events that might have arrived;

� reading and recording any \keypress" and \buttonpress" events that

might have arrived;

� recording the current state of the \modi�er" keys along with button

and keypress events; and

� setting the interruptPending
ag to true if the interruptKeycode

combination has been pressed.

42.8. MOUSE AND KEYBOARD INPUT 29

int ioProcessEvents(void)

{

while (/* input event available */)

{

event = /* next event */;

switch (event.type)

{

case /* mouse motion */:

mousePosition.x = event.x;

mousePosition.y = event.y;

break;

case /* keypress */:

recordKeystroke(event.keycode); /* the character itself */

recordModifiers(event.modifiers); /* shift, control, alt */

break;

case /* window expose */:

fullDisplayUpdate();

break;

}

}

return 0;

}

Figure 42.3: Typical de�nition of ioProcessEvents().

Depending on the precise details of the platform, ioProcessEvents()

might also be a good place in which to check for other sources of input/output

activity (network and sound, for example).

Figure 42.3 shows a \skeleton" for a typical implementation of ioPro-

cessEvents().

If such a scheme is used to match events with Squeak's polling then the

check for the interruptKeycode (described in the previous section) should

be performed in the event handler, to ensure that user interrupts are caught

at the earliest possible moment.13

13Every platform should try hard to decouple the test for the interruptKeycode from

the reading of the keyboard via ioGetKeystroke(). If Squeak is stuck in an in�nite loop,

for example, then it is unlikely to ever call ioGetKeystroke() again|and Squeak would

\freeze", with no possiblity of interruption.

30 CHAPTER 42. PORTING SQUEAK

42.8.2 Event-driven keyboard/mouse input

Starting with version 2.9 of Squeak there is experimental support for true

event-driven input. If the image supports event-driven input then it will call

the support function

int ioSetInputSemaphore(int inputSemaIndex)

once when starting up. The inputSemaIndex speci�es the index of a Sema-

phore to be signalled (Section 42.5.3) whenever an input event becomes avail-

able. If this function is not called during startup then the support code should

continue to provide \polled" input handling as described above, to remain

compatible with older images.14

If the above function is called from generated code during startup then

the support code should arrange for the input Semaphore to be signalled

whenever an event arrives. This will cause the interpreter to call the support

function

ioGetNextEvent(sqInputEvent *evt)

shortly afterwards. evt is a pointer to an sqEvent structure that should be

�lled in appropriately. The event structures (de�ned in sq.h) are shown in

Figure 42.4.

The type �eld should be set to one of the following values (de�ned sym-

bolically in sq.h):

EventTypeMouse for mouse events

EventTypeKeyboard for keyboard events

The timeStamp �eld should be the value of ioMSecs() at the time the

event arrived.

For mouse events, x and y give the position of the mouse (relative to

the top-left corner of the Squeak window). The buttons �eld details which

button caused the event, according to the following constants de�ned in

sq.h:15

14Backwards compatibility should not be a priority in an initial port of Squeak. The

vast majority of Squeak users upgrade to the latest version of the system the instant it

becomes available.
15The rather colorful names are traditional, and come from the colors of the mouse

buttons found on the �rst machines on which Smalltalk ran in the 1970s.

42.8. MOUSE AND KEYBOARD INPUT 31

typedef struct sqMouseEvent {

int type; /* EventType value */

unsigned int timeStamp; /* time of arrival */

int x; /* mouse X position */

int y; /* mouse Y position */

int buttons; /* `or'ed button bits */

int modifiers; /* `or'ed modifier values */

int reserved1; /* reserved for future use */

int reserved2; /* reserved for future use */

} sqMouseEvent;

typedef struct sqKeyboardEvent {

int type; /* EventType value */

unsigned int timeStamp; /* time of arrival */

int charCode; /* character code (see text) */

int pressCode; /* EventKey value */

int modifiers; /* `or'ed modifier bits */

int reserved1; /* reserved for future use */

int reserved2; /* reserved for future use */

int reserved3; /* reserved for future use */

} sqKeyboardEvent;

Figure 42.4: Squeak mouse and keyboard event structures. Note that the common

�eld modifiers is not in the same location in the two structures.

RedButtonBit the left mouse button

BlueButtonBit the middle mouse button

YellowButtonBit the right mouse button

For keyboard events, the charCode �eld contains the character code of

the key that was pressed.16

The pressCode �eld identi�es the physical action that is being reported

for the key, according to the following symbolic constants de�ned in sq.h:

16The details of event-driven input are still being debated at the time of writing. No

�nal decision has been made about the way the keyboard characters should be encoded,

although the tendancy seems to be towards using the 16-bit keysyms de�ned by the X Con-

sortium for use in the X Window System. Conversion to these from an 8-bit ASCII code

is trivial (using a lookup table), and avoids discarding potentially interesting information

encoded in the keysyms on X-based (and similar) systems.

32 CHAPTER 42. PORTING SQUEAK

EventKeyDown the key was pressed

EventKeyUp the key was released

The �nal modifiers �eld in both mouse and keyboard events re
ects the

state of the \shift", \control", \alt" and any other kinds of \meta" key that

might be present on the keyboard. If a given modi�er key is down when an

event arrives, the corresponding bit should be set in the event reported to

Squeak. As before, from sq.h:

ShiftKeyBit obvious

CtrlKeyBit obvious

CommandKeyBit \alt" or \meta" key

OptionKeyBit \ctrl" + \command" if no distinct key available

42.9 The clipboard

Squeak's editing facilities include the usual \cut", \copy" and \paste" op-

erations. In addition to working with text inside the image, they can be

used to exhange data with other applications. To this e�ect, Squeak expects

the support code to maintain a \clipboard" holding the text associated with

these operations.

The clipboard is the destination for \cut" and \copy" operations. When

one of these operations is performed by the user, the interpeter calls the

support function

int clipboardWriteFromAt(int count, int base, int offset)

which should copy count bytes of text from the address base + offset into

some suitably-allocated external storage.17 The text is not terminated with

a \NUL" character. The return value of this function is ignored.

The clipboard is the source for the \paste" operation. The interpreter

�rst calls the support function

int clipboardSize(void)

which should return the number of bytes of text currently stored in the

clipboard. The function

17On platforms that have the standard C library, such storage could by allocated by

calling malloc(), for example.

42.10. FILES AND DIRECTORIES 33

int clipboardReadIntoAt(int count, int base, int offset)

is then called to transfer count bytes of data from the clipboard to the address

base + offset. This function must not store more than count bytes, should

not attempt to terminate the stored text with a \NUL" character, and should

return the number of bytes actually transferred.

The addresses base + offset actually points into the middle of a Small-

talk String, and so any text read or written by these functions should use the

Smalltalk line-end convention: a single \CR" character, ASCII value 13.

If the local platform supports copy-and-paste between applications then

the clipboard is the place where such exchange of data will take place. If

the platform's line-end convention is not the same as Smalltalk's then the

support code will have to take care of any required conversion when exporting

or importing the clipboard to or from other applications.

42.10 Files and directories

All of Squeak's �le primitives are implemented by generated code, which

assumes the existence of the ANSI stdio functions. Operations on directories

are more complicated, and a certain amount of support code is necessary.

Porting to a new platform will require the following support functions to be

implemented. Unless otherwise indicated, these functions should return 1 to

indicate success and 0 to indicate failure.

int dir_Delimitor(void)

should return the ASCII value of the character used to delimit directories in

a pathname.18

18The absence of this function in the very �rst port of Squeak caused a certain amount

of \entertainment". At the time, the image \remembered" the full paths to its .changes

and .sources �les. Since these were originally on a Macintosh �le system, the directory

delimiter in these paths was a colon `:'. It was necessary to make symbolic links (with

ridiculously long names) to these �les before Squeak would start up correctly. The next

step was to change the delimiter to be correct for Unix (a slash `/'), which had the

unfortunate side-e�ect that Squeak began looking for these �les in directories that simply

did not exist on a Unix system. A painful series of symbolic links (starting at the root

of the �lesystem) was needed before Squeak could successfully �nd the �les|at which

point the image could be saved from within Squeak, causing it to \remember" a much

more \reasonable" set of paths to these �les. More than four years after the initial port

34 CHAPTER 42. PORTING SQUEAK

int dir_Create(char *pathString, int pathStringLength)

is called to create a new directory.

int dir_Delete(char *pathString, int pathStringLength)

is called to delete a directory.

int dir_Lookup(char *pathString, int pathStringLength,

int index,

char *name, int *nameLength,

int *creationDate, int *modificationDate,

int *isDirectory, int *sizeIfFile)

is called to read information about a �le in a directory. The �rst three argu-

ments are inputs, specifying the path to the directory to be searched and the

index of the �le within the directory (starting at 1). The remaining argu-

ments are pointers to variables in which the routine should store information

about the entry. The creation and modi�cation dates should be in seconds

relative to the Squeak epoch (see Section 42.11). This function sould return

a success code as follows:

0 to indicate success (an entry was found in the directory at the given

index);

1 to indicate that the index was past the end of the directory;

2 to indicate a problem with the pathString (for example illegal syntax

or a path to some �lesystem object that is not a directory).

Finally,

int dir_SetMacFileTypeAndCreator(char *filename,

int filenameSize, char *fType, char *fCreator)

is intended for MacOS only, can be ignored, and should simply return 1.

of Squeak to Unix, the machine that was used still had bizarre symbolic links lurking

in obscure, seldom-visited corners of the �lesystem. (Removing them had simply been

forgotten in the excitement of having a working Squeak system to play with!)

42.11. TIME 35

42.11 Time

The interpreter needs to recover two kinds of time from the support code.

The �rst is \absolute" time, used for calculating the current date and \wall-

clock" time. The second is \relative" time, used for measuring intervals

between events.

Absolute time is the responsibility of the function

int ioSeconds(void)

which should answer the number of seconds that have elapsed since the

Squeak \epoch"|midnight on the 1st of January 1901. If the host platform

has a di�erent \epoch" then a conversion will be necessary. For example,

many systems use 1 January 1970 as their epoch; such systems would have

to add 2,177,452,800 seconds (the number of seconds in 17 leap and 52 non-

leap years) to the current time.

Three other functions are responsible for \relative" time. It doesn't mat-

ter what \epoch" they use (provided that the point of reference doesn't

change during a single run of the virtual machine), but greater resolution is

required|preferably to the nearest millisecond.

The function

int ioMSecs(void)

should return the number of milliseconds that have elapsed since some suit-

able reference time. (For example, the number of milliseconds since the

virtual machine started running, or the number of milliseconds since the ma-

chine was booted.) The interpreter uses this clock for timing purposes, for

example to determine when Delays should expire and for generating MIDI

events. Although millisecond resolution is not required, the better its resolu-

tion the more accurate these timing activities will be. This clock represents

a compromise between eÆciency and accuracy.

The interpreter can get by with a much lower resolution clock for some

activities, particularly when calling ioMSecs() is relatively expensive. For

these purposes it calls

int ioLowResMSecs(void)

which must be fast, even at the expense of accuracy. A resolution as low as

a few tenths of a second is acceptable.

Lastly, the function

36 CHAPTER 42. PORTING SQUEAK

int ioMicroMSecs(void)

is called only for pro�ling purposes. (The slightly peculiar name is meant

to suggest that this function could be based on a microsecond clock, even

though the answer that it provides is in milliseconds.) It should return the

highest resolution of millisecond time available, regardless of how expensive

it might be to obtain.

42.12 Image name

The support code is responsible for recovering the pathnames of the virtual

machine executable and image �les during initialization. The generated code

uses the following functions and variables to access this information:

int imageNameSize(void)

int vmPathSize(void)

should return the length (excluding any terminating nulls) of the absolute

paths to the image �le and VM executable, respectively.

int imageNameGetLength(int sqImageNameIndex, int length)

int vmPathGetLength(int sqVMPathIndex, int length)

should copy the name of the image �le or virtual machine executable into

memory at the address given by their �rst argument (remember that there are

no pointers in Squeak, only ints) which should not exceed length characters.

int imageNamePutLength(int sqImageNameIndex, int length)

is called to inform the support code that the name of the image has changed

(before saving it with a new name, for example). The support code should

update any data that depend on the name of the image, including

char imageName[]

which should contain the (null terminated) name of the image. (Some gen-

erated code refers explicitly to this array.)

42.13. MISCELLANY 37

42.13 Miscellany

int ioBeep(void)

should ring the keyboard bell. (Since any keyboard manufactured more re-

cently than 1980 will probably not be equipped with a bell, it is acceptable

that this function make some appropriate noise emanate from the computer's

loudspeaker instead.)

int ioExit(void)

is called to terminate execution gracefully. This function should never return,

and (apart from exiting) should perform no action other than releasing any

resources that might have been allocated or reserved by the support code

during initialization.

int ioFormPrint(int bitsAddr,

int width, int height, int depth,

double hScale, double vScale, int landscapeFlag)

is called to save an area of a Squeak Bitmap to a �le in whatever the

host might consider to be a useful format. Formats used on existing plat-

forms include PostScript and PPM (Portable PixMap, a universal format for

bitmapped images that can be converted easily into many tens of other pop-

ular formats). bitsAddr speci�es the address of the �rst pixel in memory,

depth the number of bits per pixel, height the number of scalines in the

bitmap, and width the number of pixels in each scanline.19 The �nal three

arguments are obvious.

int ioRelinquishProcessorForMicroseconds(int microSecs)

is called from the generated code whenever Squeak runs out of interesting

things to do. This function should \sleep" for the indicated number of mi-

croSecs. If any of the support code uses polling to check for input/output

(network, serial port, and so on) then an \intelligent" implementation of this

function would sleep while waiting for input to arrive (or output to complete),

with a suitable timeout to ensure that Squeak wakes up again after no more

19Remember that the \pitch" of a scanline is always a multiple of 4 bytes, which means

that some correction for the start of successive scanlines might be required if width *

depth is not a multiple of 32.

38 CHAPTER 42. PORTING SQUEAK

than the given number of microSecs have elapsed. (If the host is dedicated

to Squeak then a \stupid" implementation is also possible: the function can

return immediately without sleeping. This will cause Squeak to \hog" the

CPU, but on a \dedicated" host this is presumably not a problem.) This

function should return the approximate number of microseconds that were

spent sleeping, or microSecs if this information is not available.

42.14 Initialization and the function main()

The support code is responsible for providing the function main() (or what-

ever function is used for the \standard" entry point of a program on the

host). main() is responsible for performing the following actions:

� parsing any command line arguments passed to the VM;

� determining the path to the image �le either from the command line,

from an environment variable, or from some other source (if the VM

was started by a graphical manipulation for example);

� initializing any input/ouput subsystems that are supported (including

the physical display and any colormaps that might be needed);

� loading the image �le into memory;

� starting the Squeak interpreter to \run" the image.

These actions are described in more detail, and in the above order, below.

Parsing the command line arguments is only relevant on hosts that sup-

port a command-line interface. After parsing the arguments, the absolute

paths to the image and VM executable �les must be available via the func-

tions described in Section 42.12, and the command-line arguments themselves

must be available as system attributes. (Section 42.15 describes system at-

tributes in detail.)

Three kinds of arguments should be distinguished:

� options meant speci�cally for the VM itself;

� the name of the image to run;

� options meant speci�cally for Squeak applications.

42.14. INITIALIZATION AND THE FUNCTION MAIN() 39

The exact format of the command line will depend on the host's conven-

tions, but the above distinction should be respected and the VM should reject

unknown VM options, if at all possible. The approach used on Unix-based

systems, for example, is to enforce the following order on the command line

arguments:

� options intended for the VM, distinguished from the image name by

having a `-' pre�x;

� the name of the image to run (which lacks the option pre�x);

� \uninterpreted" arguments intended for Squeak applications.

(The VM saves all of these arguments for retrieval using negative system at-

tributes, but saves only the arguments following the image name for retrieval

as attributes 2 to 999.)

Initializing the input/output support code depends almost entirely on the

platform, and the required actions must be inferred from the support code

itself. The only platform-independent part of this initialization is related

to the colormap that Squeak uses for 8-bit deep displays. This colormap is

described in detail in Section 42.7.2.

Loading the image �le into memory is accomplished by calling the gener-

ated function

readImageFromFileHeapSize(sqImageFile file, int heapSize)

where file is a handle on the (already opened) image �le (of type sqImage-

File as explained in Section 42.6), and heapSize is the amount of memory

requested by the user (possibly from a command line option or environment

variable). The return value of this function should be ignored.

A suitable default for heapSize should be provided. On a dedicated host

this might be the total size of physical memory; otherwise 20 megabytes is

certainly enough for all but the most demanding of Squeak images.

Finally, the main() function should call the automatically-generated func-

tion interpret(). This function is the entry point into Squeak's interpreter,

and never returns to its caller (it's an in�nite loop). All further interaction

with the support code is made by \callbacks" from the generated interpreter

code to the support functions described in this chapter.

40 CHAPTER 42. PORTING SQUEAK

id meaning of attribute

-1. . . -N the \raw" command line arguments that were supplied

when starting the VM

0 the name of the VM executable

1 the name of the image �le

2. . . M the \cooked" command line arguments that were supplied

when starting the VM

1001 the type of the operating system

1002 the name of the operating system

1003 the architecture of the host CPU

1004 the VM's version string

Table 42.5: Squeak's system attribute identi�ers and their corresponding mean-

ings.

42.15 System attributes

Squeak applications are sometimes interested in knowing about the host on

which they are running. The support code provides this information through

\system attributes", which are strings describing various characteristics of

the host platform.20

Each attribute is identi�ed by an integer. Generated code uses the usual

two-function mechanism to retrieve this information from the support code

(as described in Section 42.5.2).

int attributeSize(int id)

should return the number of characters in the string representing the at-

tribute with the given idenditifer.

int getAttributeIntoLength(int id, int address, int length)

is called subsequently to transfer the string into Squeak's heap at the given

address. The support code can assume that the id will not change between

the generated code calling the �rst and second of these functions.

20The functions described in this section are connected directly to the primitive method

SystemDictionary>>getSystemAttribute:.

42.16. SUPPORT SUBSYSTEMS 41

Table 42.5 lists the currently assigned identi�ers for system attributes,

several of which merit further explanation.

The \raw" command line arguments are exactly as they appeared on the

command line when the VM was invoked. They include both arguments

intended for the VM and arguments intended to be recovered by Squeak

applications. The latter will probably be more interested in the \cooked"

command line arguments, which are uniquely those that the VM did not

recognise as valid switches or the name of an image �le.

The operating system type describes the \class" of operating system run-

ning on the host, while the name gives the particular OS within that class.

(For example GNU/Linux returns "unix" for the type and "linux-gnu" for

the name, whereas BSD returns "unix" and "bsd" respectively.) The proces-

sor architecture is a string such as "68k" (Motorola 68000 series), "x86" (Intel

i386 and compatible), "ppc" (microprocessors based on the Motorola/IBM

Power architecture), and so on.21

Finally, the interpreter version string should be taken from the variable

char *interpreterVersion

which is declared in, and de�ned automatically by, the generated code.

42.16 Support subsystems

A signi�cant part of the support code is concerned with input/output subsys-

tems. Any given subsystem foo implements at least two support functions:

fooInit() is called to initialize it, and fooShutdown() is called to release

any resources that it uses. The arguments to these two functions, and any ad-

ditional support functions that might be necessary, depend on the subsystem

itself.

The Macintosh versions of several subsystems are very well documented,

and contain much more information than can (or should) be included here.

21Two possible ways to help determine the correct values of the OS attributes may exist

on a given platform. The �rst is the \UTS" information for the host which is sometimes

available via the command `uname'; the OS name should be the same as the UTS \system"

and the architecture the same as the UTS \machine". Another possibility exists on hosts

that use the GNU compiler. The output of `gcc -v' includes the canonical name of the

host in the form cpu-vendor-os (with possibly a fourth component, which should be

considered part of the os); the �rst and third components of this canonical host name

correspond to Squeak's architecture and OS name attributes.

42 CHAPTER 42. PORTING SQUEAK

subsystem Macintosh source �le

asynchronous �le i/o sqMacAsyncFilePrims.c

�le directories sqMacDirectory.c

joystick sqMacJoystickAndTablet.c

graphics tablet sqMacJoystickAndTablet.c

MIDI port sqMacSerialAndMIDIPort.c

Table 42.6: Optional subsystems that are well-documented in the Macintosh sup-

port code. The comments in each of these �les are more than suÆcient to modify

the code for a new platform.

Table 42.6 lists these subsystems and the names of the corresponding Macin-

tosh source �les. They will not be described further here; instead the Macin-

tosh �les should be copied and then modi�ed for the new host, according to

the copious comments therein. To omit any given subsystem \foo" it is suÆ-

cient to \fail" the associated initialization primitive from within the function

fooInit(). Section 42.3.2 describes how to extract the corresponding source

�les from the Squeak image.

The following sections describe only those optional subsystems that are

diÆcult to implement, or that have poor documentation in the corresponding

Macintosh source �le: networking, sound, and serial port support.

42.17 Networking

Networking often proves to be one of the trickiest subsystems to implement,

mainly because it inherits some peculiar conventions from the Macintosh

origins of Squeak. For example, Squeak assumes that performing an ac-

cept() on a \listening" socket causes the socket itself to be connected to the

peer|regardless of the capabilities of the socket implemention on the host.

(On the vast majority of platforms the semantics are those of BSD Unix:

the \accepted" socket creates a new connected socket, leaving the original

socket listening for new connections. On such hosts we are obliged to destroy

the original listening socket and create a new one, since that is the model

adopted in MacOS.)

The networking support can be divided into two independent services:

socket-based communication and host name lookup (using the DNS).

42.17. NETWORKING 43

42.17.1 Network initialization and shutdown

Generated code calls the support function

int sqNetworkInit(int resolverSemaIndex)

to initialize the networking subsystem. It should perform any platform-

speci�c initialization and then store the resolverSemaIndex in a variable for

use by the name lookup routines (which are described in Section 42.17.7). It

should also compute (and remember somewhere) a unique integer that will

be used to identify a network \session" (the period between initializing and

shutting down the network subsystem). One possibility is to use the current

millisecond time. This \session ID" is intended to help detect any attempt to

use a \stale" Socket which was saved in the image and subsequently reloaded

into a newly-launched Squeak. This function is a primitive, and should fail

if the network cannot be initialized.

The corresponding shutdown function

int sqNetworkShutdown(void)

should release any resources that were allocated during network initialization.

42.17.2 Socket creation and management

When Squeak creates a Socket it calls a primitive method, associated with

the support function

void sqSocketCreateNetTypeSocketTypeRecvBytesSendBytesn

SemaIDReadSemaIDWriteSemaID

(SocketPtr sptr, int netType, int socketType,

int recvBufSize, int sendBufSize,

int semaIndex, int readSemaIndex, int writeSemaIndex)

(Note that the identi�er has been split simply because it is too long to �t the

width of the page.) The sptr argument is a pointer to a structure (de�ned

in sq.h) containing the following �elds that must be initialized directly by

the support code:

int sessionID as computed during network initialization

int socketType 0 streams, 1 for datagrams

void *privateSocketPtr pointer to the associated privateSocket

structure

44 CHAPTER 42. PORTING SQUEAK

Squeak interpreter Networking support code

aSocket
privateSocketPtr

socketType

sessionID

readSemaphore signalSemaphoreWithIndex(readSemaIndex)

read() completed

aPrivateSocket == {

 int state

 int error

 int connSemaIndex

 int readSemaIndex

 int writeSemaIndex

 ...

}

writeSemaphore

connectSemaphore

Figure 42.5: The relationship between a Socket object belonging to Squeak, and

the corresonding privateSocket structure belonging to the support code. The

three Semaphores are used to signal the completion of operations on the socket:

read and write operations signal the Semaphores corresponding to readSemaIndex

and writeSemaIndex, respectively. Completion of other operations (connecting,

accepting, and so on) signal the Semaphore corresponding to connSemaIndex. See

the text for descriptions of the other �elds.

(Squeak will subsequently identify a Socket to the networking support by its

associated SocketPtr pointer. The support code will have to dereference

the privateSocketPtr �eld in this structure to retrieve the address of the

privateSocket structure associated with the C socket.)

The privateSocket structure is de�ned by the support code, and can

contain any information that might be required to manage a socket on the

host. (The information in this structure is private to the support code, as im-

plied by the name.) This structure should be allocated by the support code

(using malloc(), for example) when a Socket is created, and then deallo-

cated (using free(), for example) when the Socket is destroyed. Figure 42.5

illustrates the relationship between the Socket object in the image and the

associated privateSocket structure maintained by the support code.

Most implementations will probably want to de�ne at least the following

�elds in the privateSocket structure:

42.17. NETWORKING 45

int connSemaIndex \connect" completion Semaphore

int readSemaIndex read completion Semaphore

int writeSemaIndex write completion Semaphore

int state the \connection status" of the socket

int error the error code associated with the last op-

eration performed on the socket

Whatever kind of \handle" the host uses to identify a socket should (of

course) also be stored in this structure.22

The netType parameter is intended to specify alternate network pro-

tocols or interfaces, but is currently always 0. Nevertheless, the support

code should check this parameter (interpreting 0 as meaning \default") and

fail the primitive if the type is non-zero (indicating that the support code

is out of date with respect to the Socket facilities provided in the image).

The socketType is either 0 for stream-based sockets (e.g. TCP), or 1 for

datagram-based sockets (e.g. UDP).

The two bu�er size arguments are used to tune the performance of the

network code to a particular application. They specify (in bytes) the ideal

size of bu�er that should be associated with the socket. (These arguments

can be ignored if the host does not support changing a socket's bu�er sizes.)

The �nal three arguments specify the indices of Semaphores that are to be

signalled (see Section 42.5.3) whenever a connection-, read-, or write-related

operation is completed for the Socket.

The \connection status" of a socket is read by generated code via the

function

int sqSocketConnectionStatus(SocketPtr s)

which should return one of the following values:

0 unconnected (the initial state)

1 waiting for a connection to complete

2 connected

3 closed (by the peer)

4 closed (by the local host)

Similarly, generated code uses the function

22The name privateSocket is an example only: the implementation can call this struc-

ture by any name it likes, since generated code never references it directly.

46 CHAPTER 42. PORTING SQUEAK

int sqSocketError(SocketPtr s)

after the failure of a network operation to retrieve a code identifying the

problem. The error codes are currently not interpreted by Squeak (since

they depend intimately on the host). However, with future expansion in

mind, the support code should remember (and provide via this function)

whatever error code was indicated by the host operating system.

The support code should also provide four functions to retrieve the local

and remote host and port numbers associated with a connected socket, as

follows:

int sqSocketLocalAddress(SocketPtr s)

int sqSocketLocalPort(SocketPtr s)

int sqSocketRemoteAddress(SocketPtr s)

int sqSocketRemotePort(SocketPtr s)

These functions should return the information in host (not network) byte

order, or 0 for a socket that is valid but inappropriate (the remote address

for an unconnected socket, for example), or -1 if the SocketPtr is invalid

(its sessionID is not correct).

Finally, when Squeak destroys a Socket it calls the support function

void sqSocketDestroy(SocketPtr s)

which should release any private resources (including the privateSocket

structure) associated with s. This function is associated with a primitive

method, and should therefore fail the primitive if a problem occurs.

Note that all of the networking support functions that receive a Sock-

etPtr as an argument should perform a minimum of \sanity checking", which

means at least verifying that the sessionID stored in the SocketPtr corre-

sponds to the one computed during network initialization.

42.17.3 Connecting and disconnecting

\Client" and \server" socket connections are implemented by the support

functions

void sqSocketConnectToPort(SocketPtr s, int addr, int port)

void sqSocketListenOnPort(SocketPtr s, int port)

which (as before) use host byte order for addr and port. These functions

should also ensure that signalSemaphoreWithIndex() is called for the con-

nection Semaphore associated with s to let Squeak know when a connecting

42.17. NETWORKING 47

socket is connected or when an accept() has been performed on a listen-

ing socket. (It is entirely the responsibility of the support code to detect

when a connection request arrives at a listening socket and to perform any

subsequent call to accept() that might be required.) Since these functions

are associated with primitives, they should fail if a problem occurs during

connection.

As mentioned above, listening sockets do not have the usual semantics.

After accept()ing a connection, Squeak expects to use the same Sock-

etPtr to perform subsequent data transfer on the connected socket. On

hosts that use BSD-style sockets this involves destroying the listening socket

and reinitializing the SocketPtr and privateSocket structures to refer to

the newly-connected socket.

Connection termination is implemented by the functions

void sqSocketCloseConnection(SocketPtr s)

void sqSocketAbortConnection(SocketPtr s)

which are associated with primitive methods. The �rst should fail if the as-

sociated socket is not connected; the second should fail only if the SocketPtr

is invalid for the current session.

42.17.4 Sending and receiving data

Data transfer is implemented by two functions

int sqSocketReceiveDataBufCount

(SocketPtr s, int buf, int bufSize)

int sqSocketSendDataBufCount

(SocketPtr s, int buf, int bufSize)

in which buf is the address of the data to be transferred and bufSize is the

size of the data measured in bytes. These functions should return the actual

number of bytes transferred (which can be 0, in the case of an error).

Generated code also requires two support functions that answer whether

data transfer can take place.

int sqSocketReceiveDataAvailable(SocketPtr s)

should return true or false to indicate whether data is available for s;

similarly

48 CHAPTER 42. PORTING SQUEAK

int sqSocketSendDone(SocketPtr s)

to indicate whether data can be written without blocking the caller. Both

functions should return -1 if the SocketPtr is not valid for the current

session.

The support code should also ensure that the read or write Semaphore (as

appropriate) associated with the socket is signalled, whenever an operation

completes.23 Figure 42.5 illustrates this interaction for the case of a \read"

operation that has been completed.

42.17.5 Optional BSD-style connection semantics

A recent addition to Squeak supports sockets that implement BSD-style se-

mantics, in which the connected socket does not replace the listening socket

when a connection request is accept()ed. The function

void sqSocketListenOnPortBacklogSize

(SocketPtr s, int port, int backlogSize)

is similar to sqListenOnPort(), but should succeed only if the host supports

BSD-style sockets. The backlogSize indicates the number of pending con-

nections that should be allowed on the listening socket. This function should

ensure that the connection Semaphore associated with s is signalled when

an accept() can be performed (but it should not perform the accept()).

Squeak will subsequently call

void sqSocketAcceptFromRecvBytesSendBytesn

SemaIDReadSemaIDWriteSemaID

(SocketPtr s, SocketPtr serverSocket,

int recvBufSize, int sendBufSize,

int semaIndex, int readSemaIndex, int writeSemaIndex)

to perform the accept(), passing the original listening socket as server-

Socket and a newly-created SocketPtr as s. This function should initialize s

as for any other newly-created socket, including allocating a new private-

Socket structure for it.

Both of these functions are primitives, and should fail if an error occurs.

23Note that these Semaphores should always be signalled when an operation completes,

even if the operation completes immediately.

42.17. NETWORKING 49

If the host does not support BSD-style semantics for listening sockets

then it should fail these two primitives, in which case Squeak will revert to

the (origina, Macintosh-style) behavior described previously.

42.17.6 Backwards compatibility

Prior to version 2.8 of Squeak, all socket-based input/output used a single

Semaphore to communicate asynchronous events to the virtual machine. For

compatibility with older images the support code should therefore implement

simpli�ed versions of the socket creation and accept functions:

void sqSocketAcceptFromRecvBytesSendBytesSemaID

(SocketPtr s, SocketPtr serverSocket,

int recvBufSize, int sendBufSize, int semaIndex);

void sqSocketCreateNetTypeSocketTypeRecvBytesSendBytesSemaID

(SocketPtr s, int netType, int socketType,

int recvBufSize, int sendBufSize, int semaIndex)

These functions are trivial. They are identical to their \three-semaphore"

equivalents, except that they take only a single semaIndex argument. They

can simply call the three-semaphore versions, passing their arguments un-

modi�ed, and reusing their single semaIndex argument three times as the

semaIndex, readSemaIndex and writeSemaIndex arguments.

42.17.7 Host name lookup

Squeak supports host name resolution via the DNS. The interface is a little

larger than might be expected, to permit asynchronous lookup on hosts that

support it.

Initialization is implicit in the network initialization described above. The

support code need only store the resolverSemaIndex that was passed to

sqNetworkInit().

When Squeak wants to convert a host name string into a numeric address

it calls the support function

void sqResolverStartNameLookup(char *hostName, int nameSize)

where nameSize is the length of the (Squeak) string in hostName. The sup-

port code should signal the resolverSema (saved during network initializa-

tion) when the lookup has completed. Squeak will then call

50 CHAPTER 42. PORTING SQUEAK

int sqResolverNameLookupResult(void)

to recover the result, which should be a numeric address in host byte order,

or -1 to indicate failure.

Reverse lookups (addresses to names) should also be provided by the

support code. Squeak calls

void sqResolverStartAddrLookup(int address)

to begin the lookup, which should cause the resolverSema to be signalled

when the lookup is �nished. To retrieve the result, Squeak uses the usual

pair of functions:

int sqResolverAddrLookupResultSize(void)

void sqResolverAddrLookupResult(char *nameForAddress,

int nameSize)

to recover the length of the result and then perform the actual transfer of

bytes into a Squeak String.

Generated code will call the support routine

int sqResolverLocalAddress(void)

if it decides to abort a lookup operation before it has completed.

The support code should also provide three trivial functions:

int sqResolverLocalAddress(void)

should return the address of the local host;

int sqResolverError(void)

should return the operating system error code for the last operation in the

case of failure (this value is currently not interpreted by Squeak, but should

be correct to allow for future expansion); and �nally

int sqResolverStatus(void)

should return one of the following values to indicate the current status of the

resolver subsystem:

0 the resolver is uninitialized (sqNetInit() not yet called)

1 the last lookup was successful

2 a lookup is currently in progress

3 the last lookup failed

42.18. SOUND 51

42.18 Sound

Squeak supports the generation and playback of CD-quality stereo audio.24

The sound subsystem contains, as always, the usual initialization and shut-

down functions.

int soundInit(void);

int soundShutdown(void);

Sound output is initiated by calling the function

int snd_Start

(int frameCount, int samplesPerSec,

int stereo, int semaIndex)

where samplesPerSec is the number of 16-bit samples to be played per sec-

ond, stereo is true for stereo or false for mono, semaIndex refers to a

Semaphore that should be signalled when sound input/output completes (see

Section 42.5.3), and frameSize indicates the amount of bu�er space that

should be allocated for sound output. The size of output bu�er (in bytes)

that should be allocated is twice the frameCount for mono (two bytes per

sample) or four times frameCount for stereo (two bytes per channel per sam-

ple). This function should return true if initialization is successful, false if

not.

The function

int snd_AvailableSpace(void)

sould return the amount of space available in the ouput bu�er, measured in

bytes (not frames).

Three functions are used to insert sound into the output bu�er.

int snd_PlaySilence(void);

is used to �ll the output bu�er with silence. It should return the number of

bytes of space remaining in the output bu�er.

24An upper limit on sound quality is imposed by the amount of processor power available.

Recent machines have no trouble achieving CD quality.

52 CHAPTER 42. PORTING SQUEAK

int snd_PlaySamplesFromAtLength

(int frameCount, int arrayIndex, int startIndex)

is called to insert frameCount samples into the output bu�er, from memory

at the address arrayIndex + (startIndex * 2) (mono) or arrayIndex +

(startIndex * 4) (stereo). The sound should begin playing immediately if

possible. This function should return the amount of available space remaining

in the output bu�er (measured in bytes).

int snd_InsertSamplesFromLeadTime

(int frameCount, int srcBufPtr, int samplesOfLeadTime)

is called to insert frameCount samples from srcBufPtr into the output

bu�er, with the speci�ed number of samples of lead time (delay) before

the sound beings to play. Again, this function should return the amount

of remaining available space in the output bu�er. Finally,

int snd_Stop(void)

is called to abort sound output. It should take appropriate measures to stop

sound output as soon as possible.

Sound input is handled via four support functions.

int snd_SetRecordLevel(int level)

is called to set the input gain to a value between 0 (minimum gain) and 1000

(maximum gain).

int snd_StartRecording

(int desiredSamplesPerSec, int stereo, int semaIndex)

is called to initiate recording, with arguments analogous to those for sound

output. The actual input sampling rate should be returned by the function

double snd_GetRecordingSampleRate(void)

Data transfer from the input bu�er to Squeak's memory is the responsibility

of

int snd_RecordSamplesIntoAtLength

(int buf, int startSliceIndex, int bufferSize)

where buf is the destination address, bufferSize is measured in bytes, and

startSliceIndex is the sample o�set in buf from which data should be

42.19. SERIAL PORT 53

written. Since this o�set is measured samples it should be scaled by 2 (mono)

or 4 (stereo) to arrive at a byte o�set. The routine should take care not to

write past the end of buf (remembering that bufferSize is measured in

bytes, not samples). The return value is the number of samples (not bytes)

that were actually transferred. Finally,

int snd_StopRecording(void)

is called to disable recording. The return value is ignored.

42.19 Serial port

As with the other subsystems, serial port support begins with the two func-

tions

int serialPortInit(void)

int serialPortShutdown(void)

for initialization and subsequent releasing of resources. The �rst of these is

a primitive and should therefore fail if no serial ports are supported.

Serial ports are \opened" via the support function

int serialPortOpen

(int portNum,

int baudRate, int stopBitsType,

int parityType, int dataBits,

int inFlowCtrl, int outFlowCtrl,

int xOnChar, int xOffChar)

The possible values of these parameters are shown in Table 42.7. When a

serial port is no longer needed, the genreated code calls

int serialPortClose(int portNum)

to release any resources owned by the speci�ed port.

Data transfer is e�ected by two support functions

int serialPortReadInto(int portNum, int count, int bufferPtr)

int serialPortWriteFrom(int portNum, int count, int bufferPtr)

where bufferPtr is the address of the data source/destination, and count

is the number of bytes to be transferred. These functions should return the

number of bytes actually read/written, and immediately (even if no data can

be transferred).

54 CHAPTER 42. PORTING SQUEAK

portNum the port number, 0 or 1

baudRate requested port speed

stopBitsType 0 means 1.5 stop bits

1 means 1 stop bit

2 means 2 stop bits

parityType 0 means no parity

1 means odd parity

2 means even parity

dataBits 5{8

inFlowCtrl true to use h/w
ow control

outFlowCtrl true to use h/w
ow control

xOnChar ASCII value of XON character, or 0

xOffChar ASCII value of XOFF character, or 0

Table 42.7: Parameters passed to serialPortOpen().

42.20 Plugin modules

Many primitives are \hardwired" into interpreter, and identi�ed by a numeric

index. This arrangement has several drawbacks, including possibly limiting

the number of primitives that can be provided25 and requiring the virtual

machine to be recompiled whenever primitives are modi�ed or added.

To circumvent these limitations, Squeak provides a mechanism for as-

signing names to primitives whose de�nitions are loaded at runtime from

external, dynamically-loaded, shared libraries (sometimes called \DLLs").

From within Squeak these functions appear as \named primitives", and the

dynamic libraries in which they are de�ned are called \modules" (or \plug-

ins"). For this mechanism to work, the support code must provide functions

for �nding, loading, and resolving names in dynamically-loaded libraries.

int ioLoadModule(char *pluginName)

is called by the generated code to load the dynamic library with the given

pluginName. This name does not make any assumptions about the host. If

there is a standard pre�x or suÆx for dynamic libraries then the support code

25The primitive \dispatch" mechanism is translated into a C switch statement in the

generated code, and some compilers place a limit on the number of case labels that can

appear within a switch.

42.21. PROFILING 55

must add it to the pluginName. Also, if there are several standard places in

which to search for the library then the support code must implement the

search explicitly (the pluginName is never a pathname). This function should

answer a unique non-zero integer \handle" that will be used to identify the

plugin to the two other plugin support functions. If no library corresponding

to the pluginName can be found then this function should return 0.

int ioFindExternalFunctionIn(char *name, int moduleHandle)

should search the plugin module (dynamic library) having the given handle

(obtained from a previous call to ioLoadModule()) for the function corre-

sponding to name. name is an identi�er for a C function, exactly as it appears

in the plugin source code. If the host has any special conventions for sym-

bols in binary �les (for example, some binary formats pre�x all symbols with

an underscore `_') then the support code must take this into account. This

function should return the address of the function corresponding to name, or

0 if the function is not present in the module.

int ioFreeModule(int moduleHandle)

is called when Squeak wants to \unload" a plugin module. This function

should return 1. If the host does not support the unloading of dynamic

libraries, or if an error occurs, then it should return 0.

For an initial port of Squeak, all three of these functions can be de�ned

trivially to return 0. They should not \fail" the primitive. (This detail is

small, but very important.)

42.21 Pro�ling

Smalltalk (the SystemDictionary) contains four methods for collecting run-

time pro�ling information. These are associated with four optional support

functions. (Their return values are ignored.)

int startProfiling(void) turns pro�ling on

int stopProfiling(void) turns pro�ling o�

int clearProfile(void) should delete any stale pro�ling infor-

mation (for example, clearing a bu�er

of sampled PC values to zero)

int dumpProfile(void) should save the collected pro�ling in-

formation in a form appropriate for the

host

56 CHAPTER 42. PORTING SQUEAK

Pro�ling is mainly of interest to the implementors of the Squeak interpreter,

and should not be considered a priority in a new port.

42.22 \Headless" operation

Squeak provides some impressive \server" capabilities (for Web sites in par-

ticular). A Squeak-based server is not normally intended for interactive use,

and the usual graphics/keyboard/mouse facilities are at best irrelevant (and

at worst a security risk). \Headless" operation refers to running Squeak with

these facilities disabled. Most of the current ports of Squeak support this

mode of operation, either in response to a command-line option or by using a

VM compiled with a special preprocessor symbol to conditionally omit these

facilities in the support code.

If appropriate, any new port should try to implement a headless mode

of operation. Doing so should require only the following changes in support

code behavior:

� the warning beep is disabled. ioBeep should therefore return 0 without

doing anything else;

� graphical output \succeeds" without actually transferring anything to

a physical screen. The following functions should therefore do nothing

(and return 0):

ioShowDisplay(),

ioForceDisplayUpdate(),

ioSetFullScreen(),

ioSetDisplayMode(),

ioSetCursor(), and

ioSetCursorWithMask().

� keyboard and mouse input is disabled. ioGetKeystroke() and io-

PeekKeystroke() should return -1 to indicate that there is nothing in

the keyboard input bu�er. ioGetButtonState() and ioMousePoint()

should return 0 immediately;

� there is no screen, so there is no screen size. ioScreenSize() should

return some harmless default value, such as 0x00400040 (64� 64);

42.23. CONCLUSION 57

� ioHasDisplayDepth() should simply answer \yes" (return 1) for all

display depths;

� there are no keyboard/mouse input events. ioProcessEvents() can

return 0 immediately (or possibly after performing any non-interactive

polling that it might also be responsible for|network or serial port

I/O, for example).

42.23 Conclusion

Squeak is a (rapidly) moving target. The user community is adding new

features at a furious rate, and it is almost certain that Squeak will include new

capabilities|and associated support code|by the time this book appears in

print. This need not be a cause for alarm, for two reasons.

First, the fact that most new facilities are \optional" means that they do

not a�ect the initial task of porting Squeak to a new platform; the informa-

tion presented here should remain relevant (and suÆcient) for a long time

to come. Truly platform-dependent additions happen rarely, and are likely

to be limited to very minor details such as provision of additional system

attributes.

Second, Squeak's support for adding new primitive methods decouples

the support code from many new \low-level" parts of the implementation.

Writing new primitives in Smalltalk and then automatically generating the

equivalent C is a routine activity for Squeak virtual machine hackers. Such

generated primitives, which are necessarily platform-independent, are com-

plemented nicely by \plugin modules" for dynamically adding primitives to

a running system. These modules can include (and encapsulate) platform-

speci�c details without a�ecting the \intrinsic" support code for a given

platform at all.

Acknowledgements

I am grateful to Andreas Raab and John Maloney for their detailed comments

on, and suggestions for improving, the �rst draft of this chapter.

