
Chapter 3

Your First Program:
Joe the Box

1 Adele Goldberg’s Joe the Box
Joe the Box was one of the very first curricular elements for teaching
Smalltalk. It was originally developed by Adele Goldberg for Smalltalk-
72. Most recently, she has created a version of it for her LearningWorks
Smalltalk-based environment for learning systems. Alan Kay used Joe the
Box in his 1977 Scientific American article.

Joe the Box works as an introduction to object-oriented programming
at two levels. At the first level, it’s a microworld for exploring objects.
There are a couple of different kinds of boxes, several basic operations
that you can do with them, and many ways of combining the operations to
do something interesting. “Microworlds” were invented by the MIT Logo
Group as a way of providing a programmable space for exploring material.

At the second level, Joe the Box is an interesting small program to
build. It’s an interesting exploration of user input, computer graphics, and
creating an interface for programmers.

Working through the second level with the book is easy: Start with a
bare Squeak image, type things in, and try them! However, this is in some
conflict with the first objective, which is to play with the space first. What
you might do is to load up the Boxes microworld to play with it, and then
delete it before exploring how it’s implemented.

We’ll start out by talking about filing things in as an important skill in
its own right. The Smalltalk community has always been one whose
members share what they do. You use what others have shared by filing
them in.

2 Generating: Filing In New Code
The process of gathering someone else’s code into your image (and
compiling it) is called filing in. You usually do it from the file list. You
typically file in things whose file suffix is .st (for SmallTalk code) or .cs
(for Change Set, which we’ll talk more about in a later chapter.)

You load up the Boxes microworld by filing in the source code from
the disk. To file in a piece of code is to (a) load the class and method
definitions into your image (i.e., compile them) and (b) execute commands
to set up objects and do initializations. The source code file for Boxes is
named Boxes.st. It’s provided on the CD.

2

Joe the Box

It’s easy to create source files by filing out sections of code. FileOut
files are just plain text files with exclamation points "!" in them to delimit
sections. The easiest way to create one is to use the yellow-button menu
over any pane in the System Browser and choose File Out. You can file
out a whole category of classes, or any class, or any protocol of methods,
or any single method. In the next chapter, we’ll talk about more advanced
mechanisms for managing code that appears in different categories and
classes.

You find files and file them in with the File List (Figure 1). Choose
Open… from the Desktop Menu, then File List. You navigate into a
directory by clicking on its name on the right pane. You move up by
clicking on the directory in the left pane. You can limit the filenames that
appear by changing the filename pattern and then choosing Accept (yellow
button menu) on the new pattern. * matches everything, *.st only matches
things that end in “.st”, and so on. When the file appears that you want,
use the yellow-button menu above the file name and choose File in. After
a moment (barring syntax errors), the code is loaded into your image for
you to use.

Directory structure
Files in the directory

Pattern to
match to
filenames

Contents of
selected file

Figure 1: File List with its Pieces Identified

To remove the Boxes microworld, find the Boxes category in the
System Browser. Use the yellow button menu in the category pane to
remove it. It’s okay not to remove it, too. Later sections of the chapter
will show how to extend the existing code to do interesting things.

3

Joe the Box

3 Playing with Boxes
First, we'll create a Box world. Create a workspace and drag it to the left
of your screen, about halfway down the display. Type Box clearWorld
and DoIt.

Figure 2: Creating the Box world to play in

The word Box does refer to an object. It's an object that defines other
objects, like the master documents in Sketchpad. Box is a kind of object
callled a class. We can create a box named Joe by asking Box to give us a
new object.

Figure 3: Creating the Box, Joe

joe is an object. joe is an instance of the class Box. joe knows that
he is an instance of Box. If we ask him his class, he will print it for us. Do
a PrintIt on joe class printString.

4

Joe the Box

Figure 4: Joe knows his Class

Joe (we’ll anthropormophize the object here) understands several
messages. He knows how to turn himself a certain number of degrees.

Figure 5: Joe can turn

He knows how to move himself a given number of pixels. In the
message below, Joe is asked move 30 pixels horizontally (to the right) and
30 pixels vertically (down). By saying 30 @ 30, a Point object is defined
which is added to Joe's current location.

Figure 6: Joe can move

He also knows how to make himself grow larger or smaller by a
certain number of pixels.

5

Joe the Box

Figure 7: Making Joe grow larger and smaller

Joe also knows how to go to a given point. This message can be
combined with messages understood by Sensor (the object that
represents the hardware mouse on the device) to create an interactive Joe.

[Sensor anyButtonPressed] whileFalse:
[joe moveTo: (Sensor mousePoint)].

When this code is executed, Joe moves to whatever point the Sensor
says that the mouse is pointing at. It keeps doing this, until a mouse button
is pressed. What you see when this code is executing is that Joe follows
the mouse pointer wherever it is dragged on the screen.

Let's create another Box, named Jill.

Figure 8: Creating a second Box

Jill understands all of the same messages that Joe does.

6

Joe the Box

Figure 9: Jill understands Joe's messages

But Jill and Joe are complete separate objects. Joe and Jill are at
separate positions on the screen, and they can have different turn angles.
They cannot directly influence one another. Joe cannot change any aspect
of Jill, nor can Jill change any aspect of Joe. All that they can do is to send
messages to one another.

3.1 Joe and Jill as example objects
But Jill and Joe are both instances of the same class. They are both
instances of Box. Classes perform several important roles, which were
presented in earlier chapters. The Box world makes the roles more
concrete.

• Classes group definitions of attributes (the data that objects carry with
them) and services (the behavior that objects do in response to
messages). Without classes, each object would have to be taught its
own attributes and services. Instead, Joe and Jill both have the same
attributes (e.g., an angle of rotation, a size) and the same services (e.g.,
grow:, move:)

• Classes provide pieces to reuse. Whole classes can be reused (e.g.,
maybe you want to use Boxes in another project), or you can inherit
the attributes and services of one class into another. By creating a
subclass, you create something which is just like the class (we say it's
a specialization of the generalization, or the subclass IsA superclass)
but can add its own special attributes and services in it, too.

• Classes act as factories. They produce new instances of themselves.
They can also reprogram instances already created. If the definition of
a given service (that is, a method) is changed in the class, all instances
will now use the new definition of the given service. Later in the
chapter, we’ll redefine a method in Boxes, and both Joe and Jill will
respond differently to that method

7

Joe the Box

We've seen that the class Box understands a couple of different
messages.

Class message Meaning

new Creates a new Box and has it display
itself.

clearWorld Clears a portion of the screen for Boxes.

Box instances understand different messages. joe new would
generate an error. Instances of Box know the instance methods defined in
Box.

Joe and Jill respond to several other messages. The table below lists
the messages that Box provides for Joe and Jill.

Instance message Meaning

draw Draws the Box instance.

undraw Erases the Box instance from the display
(but it still exists).

move: Moves a given increment, where the
increment is expressed as a Point object.

moveTo: Moves the instance to a specific point.

grow: Expands or shrinks the instance as the size
is specified.

turn: Tilts the box a certain amount.

If the definition of what it means to draw, for example, were changed
in Box, it would be changed for both Joe and Jill. The definition of how to
behave in response to a message resides in the class. That means that all
instances of the same class behave the same in response to the same
messages. But the data in each object is its own—it has its own copy.

3.2 Adding a New Kind of Box
There is another kind of Box, called a NamedBox. Instances of
NamedBox are Boxes, but they have some changed features. We say
that NamedBox is a subclass of Box. Instances of NamedBox know
everything and can do anything that a Box can do, but they may know
other things or respond to messages slightly differently. This is an
example of inheritance.

8

Joe the Box

Figure 10: Creating a NamedBox

Notice that Jane draws herself differently on the screen. Jane knows
that she's a kind of Box.

jane isKindOf: Box “PrintIt to see true”

And Jane knows how to do the kinds of things that Joe and Jill do.

Figure 11: Jane responding to the same Joe and Jill messages

Jane, as an instance of NamedBox, really understands two messages
differently than Box, and it adds the definition of one new message. The
re-definition is called overriding the definition in the superclass.

NamedBox instance
message

Meaning

draw A NamedBox draws itself with its name.

drawNameColor: A NamedBox knows how to draw itself in
a given color (black for display, white to
erase).

9

Joe the Box

undraw When a NamedBox erases itself, it also
erases its name.

The rest of what an instance of NamedBox knows how to do is
inherited from Box. The class object NamedBox itself does know a
message that the Box object does not.

NamedBox class message Meaning

named: Creates an instance with the given name.

4 Creating the Box Class and Box Instances
The definition of the class Box says that instances know three things
about themselves: Their position, their size, and their tilt. Every object of
class Box (and any of its subclasses, such as NamedBox) will have these
attributes, that is, these same instance variables. We can create the
definition of Box the same way that we created Muppet in the previous
chapter. We fill out the template and accept. If you already have the
Boxes microworld loaded, you can just select the Box class to see the
below definition.

Object subclass: #Box
instanceVariableNames: 'position size tilt '
classVariableNames: ''
poolDictionaries: ''
category: 'Boxes'

Boxes get created by sending new to the class. There is a class method
new defined in Boxes. You can find (or create) this method by clicking on
the class button in the browser with the class Box selected.

new

^super new initialize

This is the method that gets executed when you execute Box new. It
says that it returns (^) whatever the superclass (super) of Box returns
when sent new, after that new object has been initialized. The superclass
of Box according to the class definition (above) is Object. To help see
how this code works, the below method is equivalent:

new

| temporaryNewObject |

temporaryNewObject ← super new. “Create the new object”

temporaryNewObject initialize. “Initialize it”

^temporaryNewObject “Return it”

10

Joe the Box

An interesting puzzle is why the new object returned by new is
actually an instance of the class Box. We know that it is because we asked
Joe what his class was. Why isn’t the new object an instance of Object?

What happens is that the method which actually creates new objects
creates them as instances of self, that is, the object that received the
original message. Box new is a message to the class Box, so it’s self,
and so an instance of Box will be created. So, whatever object is
originally sent the message new will be the class from which the new
instance will be created.

The initialize message is one that instances of Box understand.
There is no method initialize for the class Box. Here is the instance
method that actually gets executed when a new Box instance is created.

initialize

position := 50@50.

size := 50.

tilt := 0.

self draw.

The purpose for an initialize method in any class is to set the instance
variables to the correct initial values for an object of this type. The
initialize method for Boxes sets a default position for a new box, a
default size, and a default tilt. It then asks the new Box to draw itself for
the first time.

Before we see the draw method for Box instances, let’s see what the
instances are going to be drawing on. If you recall, the first statement that
we executed when working with Joe the Box wasn't joe := Box new but
Box clearWorld. clearWorld is another class message that Box
understands.

clearWorld

(Form extent: 600@200) fillWhite display

This method creates the white rectangle on which the boxes appear.
Let's dissect that single line of code a bit:

• A Form is the Squeak object that represents a bitmap graphic.
Smalltalk has always supported interesting operations on a Form, and
Squeak extends that with support for multiple resolutions, graphics
formats, and new color transformations.

11

Joe the Box

• Form extent: 600@200 creates a blank rectangular bitmap that is
600 pixels across and 200 pixels high.

• fillWhite makes the new Form instance completely white.

• display puts the new Form instance onto the computer display. The
display itself is a kind of Form which can be accessed via the global
variable Display. There are many options for displaying forms.
display simply puts the form at the upper left corner of the Display
(0@0). displayAt: displays the form at a given point, and there are
many others (under the class DisplayObject) that can display under
various transformations.

clearWorld basically paints some white on the screen as a nice
backdrop to our boxes. Note that this backdrop is not a window. If you
chose restore display from the Desktop Menu, the white form (and all our
boxes) would disappear because these forms aren't on the list of objects to
refresh when the screen is repainted. Nonetheless, this works as a simple
place for displaying boxes.

5 Basics of Drawing
Forms are very important in Squeak, so it's worthwhile taking a short
sidetrip to talk about some of the things that Squeak can do with forms.

5.1 Creating Forms
There are many ways to create a Form.

• The easiest way to create a Form is to simply grab one from the
screen. Form fromUser will let you drag a rectangle over a section
of the current display, and return it as a Form instance. Try Form
fromUser display as a simple test for selecting a chunk of the
display and putting it up in the upper left corner of the display. You
can also assign a Form to a variable to keep it around for awhile.

• The second easiest is to use one of the several editors built into
Squeak. Try this in MVC (but not in Morphic!):

| f |
f := Form fromUser.
f edit.

• Morphic has a wonderful editor built into it. Morphic is the alternative
user interface world in Squeak mentioned in the previous chapter.
From the Desktop Menu, choose Open…, then New project (morphic).
Enter the Morphic project by clicking into it.

Click anywhere to get the World menu, then choose new morph... and
then make new drawing. Draw using the various tools, then choose the
button keep. The new sketch (actually an instance of the class

12

Joe the Box

SketchMorph) can now be dragged around, or captured from the
screen. You can open up an inspector on the object to do things with it.
Morphic objects are manipulated via a set of colored halos (Figure 12).
To bring up the menus, select the object with command-click on a Mac
and alt-click on Windows. Hold your mouse over each halo for a
moment to get help on what the halo does. Once you bring up an
inspector on the sketch (via the Debug menu, on the white halo), the
message form to a SketchMorph returns its form. (To do something
interesting, try something like self form display or even
GlobalVariable := self form display.)

Figure 12: Colored halos on a sketch

• If you have a file somewhere in GIF, JPEG, or BMP formats, you can
read it into a Form. Form fromFileNamed: 'my.gif' will read in
any of the above formats and will return the Form for you to
manipulate. (For example, in a workspace, do myForm := Form
fromFileNamed: 'my.gif' and then myForm display.)

• You can also grab images straight off the Web. Take a look at the class
methods for HTTPSocket. For example, you can grab a GIF image
from Georgia Tech's College of Computing website:

HTTPSocket httpGif: 'www.cc.gatech.edu/gvu/images/headers/titles/gvu-
center.gif'

Once you have the form, you can do amazing things with it. Squeak
has a wide variety of graphics primitives available. For example, any
Form can be shrunk by program. Try this (which is the class method
exampleShrink in Form):

| f s |
f := Form fromUser.
s := f shrink: f boundingBox by: 2 @ 5.
s displayOn: Display at: Sensor waitButton

13

Joe the Box

This code will let you select a section of the screen, and then will wait for
you to click somewhere. It will then shrink the selection down and display
it. (Note: In Morphic, try clicking on the workspace itself for dropping the
image. If you try dropping the image on the desktop, the World Menu will
be brought up and will overdraw your image.) Try the same example with
s := f magnify: f boundingBox by: 5 @ 5. and you'll magnify instead
of shrinking.

Besides shrinking and magnifying, you can rotate. All forms
understand the message rotateBy: someDegrees. Here's an example
that's built into Squeak:

| a f |
f := Form fromDisplay: (0@0 extent: 200@200). "Save the screen"
a := 0. "Rotation value"
[Sensor anyButtonPressed] whileFalse: "Rotate until mousebutton"

"Grab screen from mousepoint, rotate, and display"
[((Form fromDisplay: (Sensor cursorPoint extent: 130@66))

rotateBy: (a := a+5)) display].

f display "Put the original corner of the screen back"

Until you press a mouse button, this will capture a chunk 130 pixels by 66
pixels from wherever your cursor is, and rotate it in the space 200 x 200
pixels in the upper left corner of the display. The use of a := a + 5 is an
example of doing an assignment while taking the value of the assignment
(the new value of a) as an argument in a message. The effect is to rotate
the form around and around in 5 degree increments.

The lower level code that enables all of these form capabilities is BitBlt,
the Bit Block Transfer. Basically, graphics manipulations such as these are
carefully constructed memory moves: transfers of blocks of bits in
specialized ways. BitBlt (which is actually a class in Smalltalk) also
allows you to do things like create transparent sections of images, merging
sections of images, and cropping images, besides the translations and
rotations we've seen here. Squeak includes a new kind of BitBlt called
WarpBlt that can do very powerful color manipulations. Investigate the
example methods in the WarpBlt class to see some demonstrations.

5.2 Teaching Boxes to Draw
Now, let's see how Box instances draw themselves.

draw
| myPen |
myPen := Pen new.
myPen up.
myPen goto: position.
myPen turn: tilt.

14

Joe the Box
myPen color: (Color black).
myPen down.
4 timesRepeat: [myPen go: size; turn: 90].

Boxes draw themselves using a Pen class. Pen instances, by
default, draw directly on the display, but you can get them to draw on a
given Form by creating them with the newOnForm: class method.

Pens are a form of Logo turtles, which was the computational object
(in our sense of the word “object”) that can be used to draw. Think of a
Pen as a turtle that is carrying an ink pen. It starts out facing straight up
(north) and has the pen pressed to the surface of the paper (in our case,
the display screen). You can then make drawings by sending messages to
the Pen instance.

Pen instance message Meaning

up Picks the pen up, so that the turtle/pen
moves without drawing

down Puts the pen back down again for drawing

go: Move the pen forward along its current
heading so many steps (pixels on the
display)

turn: Turn the pen a given degree angle

color: Sets the color of the pen

north Sets the turtle’s heading toward the top of
the display.

The draw method for a Box just creates the Pen, moves it to the
position of the Box, sets the tilt appropriately, and draws the box. 4
timesRepeat: [myPen go: size; turn: 90]. is the classic way of
drawing a Box with a Pen or turtle.

Note that the Box draws itself in black. (Color is a class, and the
class knows several messages for creating colors of various kinds.) To
erase itself, undraw, the Box redraws itself in white.

undraw

| myPen |

myPen := Pen new.

myPen up.

myPen goto: position.

myPen turn: tilt.

15

Joe the Box

myPen color: (Color white).

myPen down.

4 timesRepeat: [myPen go: size; turn: 90].

draw and undraw are really the heart of the Box class. Once we
have these, all of the other messages are just:

• Undrawing the current Box representation,

• Changing one of the Box instance variables, and

• Drawing the new Box representation.

Given that basic template, here are all of the other Box drawing methods.

grow: increment

self undraw.

size := size + increment.

self draw.

move: pointIncrement

self undraw.

position := position + pointIncrement.

self draw.

moveTo: aPoint

self undraw.

position := aPoint.

self draw.

turn: degrees

self undraw.

tilt := tilt + degrees.

self draw.

5.3 Getting Input from the User
When first playing with Joe the Box earlier in this chapter (page 6), Joe
followed the mouse through a small example in the workspace.

16

Joe the Box
[Sensor anyButtonPressed] whileFalse:

[joe moveTo: (Sensor mousePoint)]

Sensor is actually a global variable referencing an instance of
InputSensor. The Sensor is the access point for the mouse and
keyboard in Squeak. You can use Sensor to get low-level user input.

Sensor messages for accessing the
keyboard

Meaning

keyboard Return the next character that the user
types

keyboardPeek Looks at the next character that the user
types and returns it, but leaves it available
to be retrieved with keyboard.

keyboardPressed Just returns whether any key has been
pressed since the last time it was checked.

shiftPressed,
commandKeyPressed,
controlKeyPressed,
macOptionKeyPressed

Indicates whether the specified modifier
key is currently pressed.

Sensor messages for accessing the
mouse

Meaning

mousePoint, cursorPoint Point where the mouse/cursor currently is

anyButtonPressed,
noButtonPressed,
redButtonPressed,
yellowButtonPressed,
blueButtonPressed

Returns true if any button is pressed
(anyButtonPressed), no button is
pressed, or if the specified button is
pressed.

waitButton, waitClickButton,
waitNoButton

Pauses execution until some mouse button
is pressed, or until it’s both pressed and
released (a click), or until all buttons are
released.

6 Extending Box to create NamedBox
The NamedBox is a subclass of Box which means that it inherits all

of attributes (instance variable definitions) and services (methods) that
Box already has. But the NamedBox can specialize and extend those
definitions.

Box subclass: #NamedBox

17

Joe the Box

instanceVariableNames: 'name '

classVariableNames: ''

poolDictionaries: ''

category: 'Boxes'!

In the definition of NamedBox, we see that one new instance
variable has been added, name. So, NamedBox instances have the same
position, tilt, and size instance variables that Box instances have, but
NamedBox instances also have a name. None of the existing Box
methods manipulate the name instance variables, so we need to create
accessors if we want to be able to access the name from the outside of this
object.

name

^name

name: aName

name := aName

Smalltalk can differentiate between name and name:. We could
have named these getName and setName:, for getting and setting the
value of the name instance variable. Get/set methods are the style in Java.
In Smalltalk style, the instance variable name without the colon is
typically the getter, and the instance variable name with the colon is the
setter.

We might now try to create a NamedBox instances with code like
this:

jane := NamedBox new.
jane name: 'Jane'.
jane draw.

Figure 13: An unnamed NamedBox named Jane

18

Joe the Box

But the results are not what you might expect (Figure 13). We know
that NamedBox's draw is going to have to draw the name of the box.
NamedBox will try to draw Jane as soon as she's created, but her name
will still be nil (the default value of all new variables). There is code that
enables this to work, but the default name is “Unnamed.” When the box is
then named Jane, it becomes the mishmash of Figure 13. A new way to
created NamedBox instances should provide a name immediately. A new
class method named: will create a new instance, and will also set its
name from the input argument.

named: aName

| newBox |

newBox := super new.

newBox undraw.

newBox name: aName.

newBox draw.

^newBox

For the most part, this is not too surprising of a method: It looks like
the same pattern used in move, grow, moveTo, and other methods. The
object “undraw’s” itself, sets its name, then redraws itself. There are two
interesting pieces to note:

• The first line newBox := super new. accesses super. Super is a
predefined special variable that accesses the superclass of the method.
In this example, super will be Box, since Box is NamedBox’s
superclass. This is an explicit call to Box new, without using the
name Box. (Note: newBox here is a NamedBox, not a Box.)

• This doesn't really get around the problem of drawing an unspecified
name! undraw is going to have to erase the name even if it is not yet
defined.

All that's left to define of NamedBox now is the new definition of
how to draw and undraw NamedBox instances.

draw

super draw.

self drawNameColor: (Color black).

undraw

super undraw.

self drawNameColor: (Color white).

19

Joe the Box
drawNameColor: aColor

| displayName |

(name isNil) ifTrue: [name := 'Unnamed'].

displayName := name asDisplayText.

displayName

foregroundColor: aColor

backgroundColor: (Color white).

displayName displayAt: position.

Each of draw and undraw ask Box to do its version of these
methods (via the reference to super), then draw the name—in black for
drawing, in white for undrawing. The interesting part of these methods is
drawNameColor:.

• The first line of drawNameColor: saves the day if the name isn't
provided. It explicitly checks if the name exists, and if it doesn't, it's
set to 'Unnamed'. That explains the funny look of Figure 13. But
why don't we ever see ‘Unnamed’ when using the new named:
method for creating objects? Because in named:, the default name is
only drawn in white on a white background, via undraw before the
name is set and draw is called.

• We can convert the name from a String into a displayable object via
asDisplayText. We store that new object in the local variable
displayName.

• DisplayText instances can set their foreground and background
colors, so we set it up for our white background, with the foreground
whatever the argument color is.

• The name is then displayed as displayName at the Box instances'
position.

Exercises: Exploring Classes and Boxes
1. Let's say that NamedBox, a subclass of Box, also defined a class method new as

^super new initialize. Will this work? Why or why not? What's the downside?
(Hint: Print something to the Transcript inside of initialize. How many times does it
print?)

2. What would happen if the new method started with self new instead of super
new?

3. Smalltalk’s iteration can be applied to Joe. 10 timesRepeat: [joe move: 10 @ 0]
will move Joe horizontally a total of 100 pixels, in 10 pixel increments. What would

20

Joe the Box

you write to get Joe spinning? To get Joe and Jill spinning at the same time? At
different rates of spin?

4. Even though super just sends a message up to the superclass, we cannot just replace
super with the name of the superclass and have everything work okay. super new
in NamedBox is not the same as Box new. super draw is not the same as Box
draw. Why not?

5. Pens already know how to display text. Modify NamedBox so that it uses the Pen's
method for drawing text, rather than using DisplayText.

7 Generating: How to Go From “Sample Code” to “Reuse”
There are a variety of neat features in the Box microworld, as well as other
examples we’re going to be exploring. You will probably want to use
them in your own code. But it’s not always obvious how to go from a
sample piece of code to something that you can make do what you want.
Fortunately, Squeak provides lots of tools to help with this process.

Let’s say that you want to create an interesting effect on the screen.
You want to print your name in a bunch of colors, maybe even random
colors. You saw this piece of code in the earlier example, so you know
that it should be possible:

displayName := name asDisplayText.

displayName

foregroundColor: aColor

backgroundColor: (Color white).

displayName displayAt: position.

Let’s start out by finding the original method that does the color
drawing. If you type into a workspace
foregroundColor:backgroundColor:, you can type Alt-M (Apple-M)
to get the implementors of this method. There is only one, so you can click
on it to see what’s going on. Nothing much really. Now, click on the list
and choose (yellow button menu) Senders (or just type Alt/Apple-N).
Now we can see how the code gets used in a variety of situations. There’s
even an example, a class method in DisplayText (Figure 14). You can
try it by DoIt on the comment (the line at the bottom in double quotes)
DisplayText example. It generates an interesting pattern with text. (For
this example, note that the comment in the code is actually wrong: You
terminate with a mouse click, not a keypress.)

The example shown (DisplayText example) as well as the other
senders give us a bunch of examples of drawing text with color. We can
even see from the implementation of the example that there is a
transparent color for a background. However, these examples don’t help
us generate different colors.

21

Joe the Box

We know that there is a class named Color, both from the original
sample code and from the example. We can browse the class Color. The
easy way to get there is to select the word “Color” somewhere and type
Alt-B/Apple-B. Choose the class methods of Color, since that’s what all
the colors we’ve seen have been. We can see that there are a lot of named
colors (click on the method category “named colors”), as well as many
ways to generate colors (“instance creation”). One of them, r:g:b: just
takes three numbers between 0 and 1 to generate a color. That sounds
useful for generating random colors.

Figure 14: Implementers and Senders of foregroundColor:backgroundColor:

How do we get random things? A good strategy is to look for a class
that does what you want. If you choose “Find Class” from the first pane
of a Browser, and type Random, you’ll find that there is a class named
Random. That seems to be getting closer, but it isn’t clear how to use it.

When facing a new class, the first thing to do is to check the class
comment. Click on the “?” button on the browser. In this case, the class

22

Joe the Box

comment on Random tells you about how the class is implemented, but
not how it’s used.

The second thing to try is to look for class methods. There are often
examples in class methods that explain how to use classes. In this case,
Random does have an example method with lots of examples. One of
the things it says is:

The correct way to use class Random is to store one in

an instance or class variable:

myGenerator ← Random new.

Then use it every time you need another number between 0.0 and 1.0

myGenerator next

That sounds useful, since the range is the same as the range expected
by r:g:b:. Also, there is a way of generating random integers by sending
atRandom to the highest possible integer. That can be useful to generate
random points where to display names.

Here’s a piece of workspace code based on all of this:

myGenerator ← Random new.

30 timesRepeat: [

name ← 'Mark Guzdial' asDisplayText.

name foregroundColor:

(Color r: myGenerator next

g: myGenerator next

b: myGenerator next)

backgroundColor: (Color transparent).

name displayAt: (100 atRandom) @ (100 atRandom).]

SideNote: You may be wondering why we assign name inside the loop.
Why don’t we create name as a DisplayText before the loop starts, then
just reuse it? It’s a loop invariant, isn’t it? Try it! You’ll find that all the
names are the exact same color. asDisplayText creates a new
DisplayText object each time it’s called. If we only call it once, we just
set the one instance to different colors, and at the end, that one instance
has only one final color, stamped lots of times.

This does what we wanted (Figure 15). Through hunting up
implementors and senders, and looking through examples and comments
in the classes, it becomes pretty easy to build what you want from a good
sample piece of code.

23

Joe the Box

Figure 15: Result of the Random Name Code

8 Improving Boxes: Efficiency, Animation, and Design
The real advantage of an object-oriented structure is the ease with which
changes can be made. We can show that feature easiest by actually making
some changes to Box and NamedBox. In this section, we make them
more efficient and more amenable to animation. Then, we begin
introducing a design perspective on Boxes.

8.1 Drawing Boxes Better
The Box and NamedBox described above are inefficent and poorly
designed. There are two obvious places where the system is flawed:

• Boxes have a tilt and a position, and they use Pens for drawing.
Pens already have a heading and a location. Why not just create one
Pen per Box instance so that we no longer need the tilt and position
variables inside Box?

• draw and undraw are almost identical pieces of code, which is a bad
design. Any changes to how Box instances are drawn requires
changes to both methods.

Implementing these two fixes requires changing fairly little code.
First, we have to redefine the Box class so that we have new instance
variables. We’ll need a pen instance variable to hold the Box’s Pen
instance. We’ll still need a size, but tilt and position will get passed on
to the Pen.

Object subclass: #Box

instanceVariableNames: 'size pen '

classVariableNames: ''

poolDictionaries: ''

category: 'Boxes'

The way that Box instances get initialized also has to change in order
to use the Pen.

24

Joe the Box

initialize

pen ← Pen new. "Put a pen in an instance variable."

pen place: 50@50.

size ← 50.

self draw.

The various accessor methods also need to change, since some of
them now access the Pen instance instead of the Box instance variables.
This activity of asking another object to perform a service for the original
object receiving the message is called delegation. The Box instance is
delegating some of its services down to the Pen instance.

grow: increment

self undraw.

size ← size + increment. "This stays the same"

self draw.

moveTo: aPoint

self undraw.

pen place: aPoint.

self draw.

move: pointIncrement

self undraw.

pen place: (pen location) + pointIncrement.

self draw.

turn: degrees

self undraw.

pen turn: degrees.

self draw.

Drawing and undrawing also has to change in order to utilize the new pen
variable. The code becomes much smaller, since a Pen instance doesn’t
have to be created and loaded up with the right values. But while we’re at
it, it seems like the right time to remove the duplicated code between
draw and undraw. The right thing to do is to create a drawColor:
method that draws whatever color is needed. This makes draw and
undraw very simple.

draw

25

Joe the Box

self drawColor: (Color black).

undraw

self drawColor: (Color white).

drawColor: color

pen color: color.

4 timesRepeat: [pen go: size; turn: 90].

All of the things that we were asking Joe and Jill to do previously now
work just fine. Jane the NamedBox won’t quite work yet. If we try it,
we’ll find that the drawNameColor: method needs the position of the
Box instance. We can solve that by delegating to the Pen.

drawNameColor: aColor

| displayName |

(name isNil) ifTrue: [name ← 'Unnamed'].

displayName ← name asDisplayText.

displayName foregroundColor: aColor

 backgroundColor: (Color white).

displayName displayAt: (pen location).

Now, all of the previous examples work just fine. From the user-
programmer’s perspective, nothing has changed in the Box world at all.
Yet from the microworld-programmer’s perspective, we know that the
world has changed considerably.

8.2 Animating Boxes
This next change will impact how the user of the Box microworld sees the
system. One of the original uses of the Box microworld was to explore
animation. Boxes were moved and spun on the screen, and one of the
activities was to invent a “dance” for the Box instances. However,
animation requires slightly slower performance than modern computers.

Modern computers move so fast that the Squeak boxes can do many
operations before the eye can see them. We need to slow them down so
that the eye can register their positions before they move again. The delay
doesn’t have to be much. Motion pictures show 30 frames per second,
which means that our eye can register a static image in at least 1/30 of a
second. Let’s use that number as a reasonable guess.

Creating a delay is really easy. There is a class in Squeak called
Delay which can create delay objects. We can create them for a certain

26

Joe the Box

amount of time. When the object gets the message wait it pauses the
processor for the correct amount of time.

Where should we have the Box slow down? The first guess might be
in drawColor: so that every drawn object would be slowed down. But
this turns out to produce really jerky animations. (Please do go ahead and
try it.) The reason is that we now use drawColor: for erasures, too. We
don’t need to wait for undraws, just for draws.

If we add a Delay creation and wait in draw, the result is very nice.

draw

self drawColor: (Color black).

(Delay forSeconds: (1/30)) wait.

Try something like this workspace code to see the effect.

joe ← Box new
jane ← Box new

30 timesRepeat: [jane turn: 12. joe turn: 10.
jane move: 3@4. joe move: 2@3].

8.3 Designing Boxes
What we did in Section 8.1 isn’t that complicated. We simply moved

variables from one object to another. But that may not be obvious to
anyone. We could show them the code, but it would be nice if there was a
way of describing the objects that we manipulated and how we did it.

One way of describing the two sets of relationships is with UML
(Unified Modeling Language). Figure 16 is one way of looking at the
original class structure that was in the Box microworld. NamedBox is a
subclass of Box, and Box provided position, size, and tilt attributes.
We can also see that NamedBox inherits a bunch of services from Box.

Figure 16: The Original Box Class Structure

27

Joe the Box

Figure 17 is a UML depiction of how the Box microworld was
modified. A Pen was included as part-of the Box. We removed two of
the attributes of the Box because we were able to delegate them to the
Pen. We added one attribute to Box to keep track of the new Pen
instance.

The next chapter starts from here: How do we think about designing
in objects, and how do we use things like UML to facilitate the designing?

Figure 17: The Modified Box Class Structure

Exercises: More with Boxes and Graphics
6. Try to create a “dance” with the Box microworld. Create two boxes who move

around the screen and respond to each other’s motions.

7. Write the workspace code to assemble a pyramid of boxes.

References
Joe the Box appeared in Scientific American in:

Kay, A. C. (1977). Microelectronics and the Personal Computer.
Scientific American(September), 231-244.

Turtle graphics (the way that Pens work) is an amazingly powerful way of
looking at mathematics. For a formal and deep treatment, see:

Abelson, H. and A. A. diSessa (1986). Turtle Geometry: The
Computer as a Medium for Exploring Mathematics. Cambridge, MA, MIT
Press.

28

Joe the Box

BitBlt is covered in great detail in the original Smalltalk-80 book:

Goldberg, A. and D. Robson (1983). Smalltalk-80: The Language.
Reading, MA, Addison-Wesley.

