
Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Chapter 12 - Developing user interfaces

Overview

 The group of classes supporting graphical user interfaces (GUIs) is one of the most complex parts
of VisualWorks and its detailed coverage is beyond the scope of this book. Fortunately, to be able to use
the tools for routine applications and to create interesting extensions of the widget library, you only need to
understand a limited number of concepts, and specialized books are available for more advanced uses.
 The first requirement for creating a user interface is to be able to draw objects such as lines,
widgets, and text on the screen. VisualWorks perspective is that drawing requires a surface to draw on
(such as a computer screen or printer paper), the graphical objects being drawn, and an object that does the
drawing and holds the parameters that describe the drawing context (such as fonts, colors, and line widths).
 Being able to draw an object on the screen is, however, only a part of a typical GUI. Unless the
displayed windows are completely passive, the user must also interact with them via the mouse and the
keyboard. A user interface must also ensure that the display reflects changes of the displayed data model,
and that damage caused, for example, by resizing a window is automatically repaired.
 To implement automatic response to model changes and user interaction, Smalltalk uses the
model-view-controller paradigm - MVC for short. The model part of the MVC triad holds data and
provides notification when the data changes. The view is responsible for drawing the component on the
screen, response to model changes, and damage repair. The controller handles user input.
 To maintain the UI painting paradigm supported by the UI Painter, we also need a way to
integrate a new visual component into a canvas. This is achieved by a widget called the subview which
implements access to its view part and the connection to its window container.

12.1 Principles of user interfaces - display surfaces, graphics contexts, and visual parts

 This section is dedicated to the principles of VisualWorks user interfaces and provides
background for customization of windows and their main components. In routine applications, no
programming involving these components is necessary but understanding of these concepts is useful.

Displaying graphical objects on the screen is a complex task and different languages and even
different dialogs of Smalltalk approach it differently. The view of VisualWorks is that drawing requires a
drawing surface, objects to be displayed, and an object that can do the drawing and holds parameters
describing how and where the drawing takes place. We will now deal with these concepts one by one and
illustrate them on simple examples. A larger example follows in the next section.

Display surfaces

Display surfaces are the media on which all visuals, including geometric objects, images, widgets,
and text, are displayed. The hierarchy of display media is large and its skeleton is as follows:

Object
 GraphicsMedium
 DisplaySurface
 UnmappableSurface
 Mask
 Pixmap
 Window
 ScheduledWindow
 ApplicationWindow
 TransientWindow
 HostPrintJob
 MockMedium
 PostScriptFile

 1

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 The abstract class GraphicsMedium at the top of the hierarchy defines the protocol for accessing
information such as display defaults (paint, font, and look preferences which include background and
foreground color), size of the display surface, number of bits used to represent the color of pixels, and
graphics context (an object responsible for display of geometric objects, images, and text).
GraphicsMedium Al the supporting instance variables are defined in subclasses.

Subclasses of GraphicsMedium can be divided into those displaying on the screen, those used to
construct displayable surfaces in memory, and those dedicated to printing. We will deal only with the first
two categories and leave printing to you as an exercise. The group of classes responsible for screen display
and display construction are headed by DisplaySurface whose comment essentially says

Class DisplaySurface is the abstract class for all classes that act as destinations for graphics operations
targeted for a bitmap video display (as opposed to printing, for example).

Instance variables:
 handle <GraphicsHandle | nil> handle to the host resource, an interface to the

operating system which performs the low
level display functions

 width <SmallInteger> width of the surface in pixels
 height <SmallInteger> height of the surface in pixels
 background <Paint> paint used to clear the surface

Even though DisplaySurface is abstract, it provides a lot of useful functionality such as closing the
display surface (for example, a window) and access to any part of the display area. Subclasses of
DisplaySurface can be subdivided into classes whose instances correspond to windows displayed on the
screen, and classes that instantiate display surfaces in memory but don’t display them.

Windows

 Class Window at the top of the window hierarchy is a concrete class with much functionality but
rather useless by itself because its instances have neither a controller (thus allowing only minimal user
interaction) nor a component (thus incapable of containing widgets). A lot of the behavior inherited from
Window is, however, essential. This includes the knowledge of the window's origin on the screen, its label,
its icon, and its sensor which holds information about mouse and keyboard events that occur within the
window's extent. Window also defines methods for opening a window (redefined in subclasses), collapsing
it into an icon and re-expanding it, moving and resizing a window, and raising it to the top to become the
active window on the screen. It also knows the currently active window (class message currentWindow).

As an example of window manipulation, execute the following code fragment to see some of the
Window functionality:

"Open window, collapse it, expand it, and close it."
| window |
window := Window openNewIn: (100@100 corner: 200@200).
(Delay forSeconds: 3) wait.
window label: 'Test'.
(Delay forSeconds: 3) wait.
window collapse.
(Delay forSeconds: 3) wait.
window expand.
(Delay forSeconds: 3) wait.
window close “Without this statement, you will not be able to close the window.”

Class Window has very little direct use and we will thus proceed to its subclass ScheduledWindow.
This class adds several behaviors and instance variables, the most important being controller (handles user
interaction), component (makes it possible to include a visual part or a collection of visual parts in the
window), and model (allowing another object to control a window). The controller of ScheduledWindow is
an instance of StandardSystemController which provides the <window> menu and methods for closing,

 2

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

resizing, moving, relabeling, and other window operations. The window controller is also the means by
which Smalltalk keeps track of all its windows and the controllers of all open Smalltalk windows are kept
in ScheduledControllers, an instance of ControlManager. The following is a simple example showing how
to open a ScheduledWindow:

"Open window with label but with no component, and let user close it."
| window |
window := ScheduledWindow new.
window insideColor: ColorValue blue;
 label: 'Test'.
window openIn: (100@100 corner: 200@200)

The user can close a ScheduledWindow in the usual way which is not true for a Window. The
window in this example does not have any components so it’s not of any interest but we will do an
example with a component later.

Until recent VisualWorks releases, ScheduledWindow was the basis of all user interfaces - there
was no UI Painter and all UIs had to be created programmatically using ScheduledWindow. With the
introduction of the UI Painter, this has changed and applications based on the application model use the
ApplicationWindow subclass of ScheduledWindow. ScheduledWindow has thus lost its importance except
that it defines many behaviors inherited by ApplicationWindow. In the current class library, most references
to ScheduledWindow are in examples because (as our example shows) it is easier to create a very simple
demo window programatically than to paint one using the UI Painter.

From within an application, the ApplicationWindow of the interface can be accessed by sending
message window to the application builder. As an example, the application model could send

self builder window label: 'New label'

to change the window’s label at run time. The essential part of the comment of ApplicationWindow is as
follows:

ApplicationWindow adds functionality required by the User Interface building classes. It also provides for
tighter coordination with a corresponding ApplicationModel. In particular, an ApplicationWindow can notify
its application of window events (e.g. closing or collapsing), so that other dependent windows can follow suit.
Recognized events are #expand, #collapse, #bounds, #enter, #exit, #close, #hibernate, #reopen, and
#release.
Instance Variables:
keyboardProcessor <KeyboardProcessor> Manages keyboard input
application <Object | nil> The application, typically an ApplicationModel
receiveWindowEvents <Array | nil> Window events the receiver should respond to
damageRepairIsLazy <Boolean> Used to control when damage coming up from below is repaired.

Variable damageRepairIsLazy is used to determine whether a damaged window should be

repaired (redrawn) immediately or whether redisplay can wait until a suitable later time. We will talk about
damage repair later.

Typical messages sent by the application model to an application include changing its label or
background color at run time (messages label: and background:), moving it to a new position (message
moveTo:) obtaining its bounding rectangle (displayBox), closing the window (close - usually achieved by
sending closeRequest to the application model), collapsing it to an icon and expanding the icon back to a
window (collapse and expand), and hiding the window without destroying its internal representation
(message unmap) and restoring it without having to reconstruct it (message map). In many cases, a window
changed at run time must be redisplayed by message display.

When an application model needs to access more than one window, create a new builder for each
of the secondary windows, specify its source as the application model, specify the window’s application as
the application model, and ask the secondary builder to open the interface. You can also make the
secondary window a slave of the master window (message slave). The result is that the slave will mimic
closing, collapsing, and expanding of the master window. The slave window may also be made sensitive to

 3

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

other master window events such as cursor entry or exit. Finally, windows can also be partners by sending
bePartner to the window. Partner windows are tied together in the same way as master and slave windows.

We will see examples of some of this functionality in the following sections and other examples
are provided in the cookbook.

Main lessons learned:

• In the perspective of VisualWorks, display requires a display surface, objects to be displayed, and a

drawing engine (a graphics context).
• Display surfaces are subclasses of GraphicsMedium which has two subtrees, one for display on screens

and one for printing on paper.
• Display on screen uses windows and the window hierarchy includes classes Window,

ScheduledWindow, and ApplicationWindow.
• Windows created with the UI Painter and used by application models are ApplicationWindows. They

inherit most of their functionality from ApplicationWindow superclasses.
• ApplicationWindow has numerous instance variables holding parameters such as bounding box,

clipping rectangle, graphics context, background paint, and others.
• Pixmap and Mask are display surfaces used to construct displays before they are mapped to the screen.

12.2 An example of the use of windows – a Virtual Desktop

One annoying aspect of graphical user interfaces is that computer screens are always too small to
display all the windows that one would like to see at a time. A partial solution to this problem is a ‘virtual
desk’ program which allows the user to place individual open windows on ‘desks’ and view only one desk
at a time. We will design and implement a very simple version of such a program. We will call it Desk
Manager and implement it via class SmallDesk.

Our program will make the screen behave as a peep hole on a much larger desktop divided into
four screen-size rectangular areas. The selection of the desired desk is via the user interface in Figure 12.1.
The four buttons on the left represent the virtual desks and the button of the currently displayed desk is
highlighted. When the user clicks an un-selected desk, SmallDesk hides all VisualWorks windows on the
current desk and displays all VisualWorks windows assigned by the user to the selected desk. The Desktop
window itself remains visible at all times.

Figure 12.1. Default user interface of SmallDesk manager.

The buttons on the top right allow the user to open a Workspace and a Browser on the current

desk because opening a Browser or a Workspace is the most common way to start populating a desk with
windows. The two buttons on the bottom right allow the user to rename desk buttons and to move a
selected window from one desk to another. A desktop can also be opened with other than default desk
names and the user can specify which applications should be displayed on individual desks.
Additional specification details:

• When SmallDesk opens with the default open message, it selects desk 1 and maps (displays) all

windows already on the screen on this desk. All other desks are empty.

 4

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

• When SmallDesk closes, it maps all windows from all desks. In other words, it displays all

VisualWorks windows assigned to all four desks on the screen.
• When the user clicks Rename desk, a prompt requests the new name for the current desk and displays

it on the button.
• The Move button allows the user to move a window from the current desk to another desk. It opens

two consecutive prompts that allow the user to identify the window to be moved and its new desk. If
the destination is different from the current desk, the selected window is unmapped and assigned to
the specified desk; no desk switch occurs. The Desk Manager window itself cannot be moved to
another desk and is always displayed.

• The user can also open SmallDesk by one of several more powerful messages. As an example, to open
the desk on desk 2 with button names, and assign application LecturePad to the first desk, two
workspaces to the second, a Browser to the third, and two copies of Notes to the fourth, the user will
execute

SmallDesk

openWithManyApps: #(#(LecturePad) #(ComposedTextView ComposedTextView) #(Browser)
#(Notes Notes))

andNames: #('desk 1' 'desk 2' 'desk 3' 'desk 4')
onDesk: 2

Preliminary design

We only need one class - an application model to be called SmallDesk. This class will be
responsible for user interface specification, opening messages, and action buttons. We will keep the
mapping of windows to desks in a dictionary, using windows as keys and integer numbers of desks as
values.

The major responsibilities of SmallDesk are as follows:

Opening. The default opening message assigns all VisualWorks windows on the screen to desk 1 and
highlights its button. Specialized opening messages do one or more of the following: rename buttons,
assign specified applications to specified desks, open on specified desk.

Action methods. Action methods can be divided into the following groups:

• Desk button action methods. The user clicks a desk button either to switch to a different desk or to

identify the destination desk when moving a window from one desk to another.
• Browser button and Workspace button open the Browser and the Workspace on the current desk.
• The Rename button displays a prompt and assigns the obtained string as the label to the currently

selected desk button.
• The Move button displays a prompt to identify a window, another prompt to identify the destination

desk, unmaps the window from the current desk, and assigns it to the destination map. An attempt to
move the Desk Manager window itself will be refused with a warning.

Closing. This button will prompt the user to confirm when he or she attempts to close SmallDesk. It will
then map all windows to the screen and close SmallDesk.

Design refinement

Before writing the specification of SmallDesk, we will examine some of the details that we
ignored in preliminary design starting with instance variables. We need a window registry that holds
information about the assignment of windows to desks. We also need to know the current desk’s number
so that we can rename it and map and unmap windows on desk change request, and check whether a new
desk selection is different from the current one.

 5

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

To deal with the two different modes of operation that affect the result of clicking a desk button
(switching to a different desk versus renaming it), we must also keep track of the mode. We will represent
it by a Symbol which will be identical to the name of the method that executes the operation so that we can
execute the method by the perform: message. Finally, we will use ‘lazy opening’ to open applications
specified by the user in the opening message. SmallDesk will initially open only applications on the
opening desk, and the remaining applications will only be opened when the user switches to the desk
assigned to them. We will keep unopened applications in a four-element array with one element
corresponding to each desk.

We can now start thinking about the methods. Default initialization puts all VisualWorks
windows on the screen on desk 1, sets current desk number to 1, and mode to ‘switch to another desk’. It
also initializes the array of unopened applications.

The method performing desk change checks whether the new desk is different from the current
one (and do nothing if it is), change the colors of backgrounds of the current and new desk buttons, update
window registry (windows may have opened or closed on the current desk since the last registry refresh
and this must be recorded), unmap the windows on the current desk, map windows on the new desk, open
the unopened applications assigned to this desk, and make new desk the current desk.

Finally, when the user clicks to close SmallDesk and confirms, all scheduled windows from all
desks are mapped to the screen.
We can now write the following detailed specification of class SmallDesk:

SmallDesk. This class helps the user to reduce screen clutter by creating four virtual screens called desks.
SmallDesk continuously displays a Desk Manager window with four buttons representing the virtual desks
and allows VisualWorks windows to be associated with any one of them. Only windows assigned to the
current desk are displayed. Desk buttons can be renamed and windows can be moved from one desk to
another. The application can open on any desk, with any combination of desk button names, and with
specified applications assigned to individual desks.
Superclass: ApplicationWindow.
Instance variables: windowRegistry <IdentityDictionary> pairs windows with desktops (integers),
waitingApps <Array> contains an array with class names of unopened applications for each desk,
currentDesk <Integer> identifies currently displayed desk, mode <Symbol> identifies the current
context of operation - one of #changeTo:, #moveTo:
Responsibilities:
• Opening

• openWithManyApps: andNames: onDesk: opens the application on the specified desk and with the
specified applications. All currently displayed Smalltalk windows are assigned to desk 1.

• open – special case of the above method that opens with default button names, on desk 1, and
with no new applications.

• Initialization and closing.
• initialize – the standard opening hook method. Gets all VisualWorks windows from

ScheduledController to initialize windowRegistry, initializes currentDesk to 1 (overridden
later when a different desk is specified), mode to #changeTo:.

• closeRequest asks the user to confirm SmallDesk closing, maps all windows referenced by
ScheduledControllers and allows the Desk Manager window to close.

• Action methods responding to UI buttons.
• desk1, desk2, desk3, desk4 methods all act in the same way and the only difference between

them is that each identifies a different desk. Consequently, they all send private message
updateDesk: with their number as the argument and further processing happens in this method.
Since the same method is used for changes, its operation depends on the context: It performs one
of the two possible actions corresponding to the two possible contexts in which the button may be
activated. These two actions will be implemented by

• changeTo: - checks whether the new desk is different and if it is, hides currently
displayed windows, displays windows assigned to the new desk, opens waiting
applications assigned to this desk, and colors the buttons appropriately.

 6

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

• moveTo: is triggered by the Move button via the move method (below). It displays
prompts to select the window to be moved and the destination desk, unmaps the window,
and assigns the number of the specified desk to this window in the registry.

• openBrowser and openWorkspace buttons open the Browser and the Workspace.
• rename requests a new name for the currently selected desk button and assigns it to the

button as its label.
• move asks the user to select a window and click the destination desk button. The internal

assignment of the desk is performed by updateDesk:.
• Private support methods.

• updateDesk: is activated by a desk button. It performs the value of the mode variable and
supplies the desk number as the argument. The result is either a change of desk (method
changeTo:) or reassignment of a window to a new desk (method moveTo:), depending on the
context.

Implementation

We will now list and explain some of the methods.

Opening

openWithManyApps: classArray andNames: nameArray onDesk: anInteger
"Open on desk anInteger, with classes as specified in classArray, and button names according to
nameArray. Applications that are not on desk anInteger do not open yet."
| desk deskBuilder |
desk := self new.
“Create the desk manager but stop short of opening so that the manager window can be positioned, etc.”
deskBuilder := desk allButOpenInterface: #windowSpec.
“Rename desk buttons via the builder and button widget Ids.”
1 to: 4 do: [:index | | buttonView |
 buttonView := (deskBuilder componentAt: ('desk' , index printString) asSymbol) widget.
 buttonView label: (Label with: (nameArray at: index))].
“Position Desk Manager window in upper left.”
deskBuilder source finallyOpenIn: (10 @ 10 extent: deskBuilder window bounds extent) withType: #normal.
“Assign user specified applications to desks.”
1 to: 4 do: [:index | | classes |
 ((classes := classArray at: index) isNil or: [classes isEmpty])
 ifFalse: [classes do:

[:class | desk waitingApps at: (Smalltalk at: class) put: index]]].
“Open user-specified desk.”
desk openDesk: anInteger.
^deskBuilder

The opening of the desk is executed by

openDesk: integer
"Switch to the specified desk or edit button label or move window."
 self perform: mode with: integer

A part of the execution of new is execution of the hook method initialize which is defined as follows:

initialize
"Initialize registry of windows and desks, start in 'move' mode with existing windows in desk 1."
waitingApps := Array with: Set new
 with: Set new
 with: Set new
 with: Set new.
windowRegistry := IdentityDictionary new.
ScheduledControllers scheduledControllers do: [:controller | windowRegistry at: controller view put: 1].

 7

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

self changeSystemController.
mode := #changeTo:

The response to a desk button clicks is handled by methods desk1, desk2, desk3, and desk4

defined as follows:

desk1
"Action method of button desk 1."
 self updateDesk: 1

The operation of updateDesk: depends on the current mode and its definition is as follows:

updateDesk: integer
"Depending on the context, switch to integer desk or edit button label or move window."
self perform: mode with: integer

Depending on the value of mode, this method performs one of changeTo: or moveTo:. Method
changeTo: switches from one desk to another and its definition is

changeTo: newDesk
"Switch to the specified desk if different from the current one."
newDesk = currentDesk ifTrue: [^nil].
“Change button colors.”
currentDesk isNil ifFalse: [self colorButton: currentDesk color: ColorValue white]. self colorButton: newDesk
color: ColorValue yellow.
“Update the registry – windows may have been added or removed.”
self refreshWindowRegistry.
currentDesk := newDesk.
“Go through registry, mapping windows on the current desk and unmapping the rest. Always keep the Desk
Manager – the window corresponding to self.”
windowRegistry keysAndValuesDo: [:key :value | (key = self builder window or: [value = newDesk])
 ifTrue: [key = self builder window ifFalse: [key map]]
 ifFalse: [key unmap]].
“Open unopened applications waiting on this desk, if any.”
(waitingApps at: currentDesk) do: [:app | self open: app]

An important part of the definition is method refreshWindowRegistry which is defined as follows:

refreshWindowRegistry
"We are switching to a different desk. Make sure to update the desk being abandoned - windows may have
been added or deleted."
| newRegistry |
“Create a new empty registry .”
newRegistry := IdentityDictionary new.
“Copy active windows in the registry and new windows to the new registry.”
ScheduledControllers scheduledControllers do:
 [:controller |
 | window |
 (windowRegistry includesKey: (window := controller view))
 ifTrue: [newRegistry at: window put: (windowRegistry at: window)]
 ifFalse: [newRegistry at: window put: currentDesk]].
“Replace old registry with new one.”
windowRegistry := newRegistry

The open: method on the last line of changeTo: opens a waiting application, removes it from its
array and adds the resulting window to the registry:

open: anApplication
"Open anApplication, remove it from waitingApps, and add its window to the registry."

 8

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

| window |
(waitingApps at: currentDesk) remove: anApplication.
window := anApplication open.
windowRegistry at: window put: currentDesk

Note that we assume that all unopened applications open with the open message. This restriction
could, of course, be easily removed. The moveTo: method moves a selected window to a selected desk. Its
definition is

moveTo: newDesk
"Move previously selected window to the specified desk (registry) and hide it."
newDesk = currentDesk ifTrue: [^nil].
windowRegistry at: currentWindow put: newDesk.
currentWindow unmap.
mode := #changeTo:

Note that the method ends by switching to the default mode of operation.

Who sends the moveTo: message? Its trigger is the activation of the Move button whose action
method move first lets the user select a window by waiting until ScheduledControllers reports that the user
pressed the red button, and then identifies the active window. After this, the user is asked to click a desk
button (to identify the destination desk). The mode changes to #moveTo:, and when the user clicks one of
the desk buttons, this sends updateDesk: (as listed above), which then performs moveTo:. The action
method move is defined as follows:

move
"User clicked Move to move a window to a different desk. Identify the window and ask user to select
desk. The rest of the operation is handled in moveTo:."
Dialog warn: 'Select window to be moved'.
“Wait for user to press leftmost mouse button.”
[ScheduledControllers activeController sensor redButtonPressed]
 whileFalse: [].
“Get active window, assuming that this is the one the user wants.”
currentWindow := Window currentWindow.
“Don’t let the user try to move the Desk Manager window to a different desk.”
currentWindow = self builder window ifTrue: [^Dialog warn: 'You cannot move Desk Manager window'].
Dialog warn: 'Click destination desk'.
mode := #moveTo:

Finally, opening the browser and the workspace is done as follows:

openBrowser
"Open Browser on current desk."
 (Smalltalk at: #Browser) open

and

openWorkspace
"Open Workspace on current desk."
 (Smalltalk at: #ComposedTextView) open

Exercises

1. Design and write a method to open SmallDesk with applications whose opening message is not open.
2. An alternative to unmapping windows is to collapse them to icons. Change SmallDesk to use

collapsing.
3. SmallDesk mechanism for moving a window to another desk is awkward: The user must click the

Move button, complete the dialog, click a window, complete another dialog, and finally click the

 9

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

destination desk. To simplify the process, add a new ’move to another desk’ command to the
<window> menu when SmallDesk is running. When the user selects this command, SmallDesk asks
him or her to click a desk button, and when the user does so, SmallDesk moves the window to that
desk.

12.3 Principles of displaying - graphics contexts, geometric objects, and other concepts

 In this section, we will explain the principles of displaying components inside a window and
illustrate them on simple examples.

Graphics context

 When we want to display a geometric object such as a rectangle, we must specify which part of
the display surface we want to paint on, and which color and line width to use. For text, we must also know
the font. VisualWorks keeps this information in a GraphicsContext object attached to the display surface.
The GraphicsContext knows about its graphics medium and is also responsible for all display operations.
We will see numerous examples of the use of GraphicsContext but first, we will examine its definition. The
place of GraphicsContext in the class hierarchy is as follows:

Object
 GraphicsContext
 HostPrinterGraphicsContext
 PostScriptGraphicsContext
 ScreenGraphicsContext

and the essence of its comment says

I display graphical objects on a display medium and maintain graphics state parameters specifying how
graphical objects should be rendered.

Instance variables:
 medium <GraphicsMedium> where to render graphics
 clipOriginX <nil | SmallInteger> in untranslated device coordinates
 clipOriginY <nil | SmallInteger> In untranslated device coordinates
 clipWidth <nil | SmallInteger>
 clipHeight <nil | SmallInteger>
 lineWidth <SmallInteger> draw lines with this width in pixels
 capStyle <SmallInteger> style to render line caps
 offsetX <SmallInteger> translation
 offsetY <SmallInteger> translation
 phaseX <SmallInteger> tile phase for tiling the background
 phaseY <SmallInteger> tile phase
 scaleX <Float> scaling factor
 scaleY <Float> scaling factor
 font <ImplementationFont> font for drawing strings
 paint <Paint> color or tile for displaying graphical entities
 paintPolicy <PaintPolicy> how to render paints that do not exactly

correspond to host paints
 fontPolicy <FontPolicy> how to map FontDescriptions to the fonts

available on the graphics device

A more detailed description of some of the less obvious instance variables is as follows:

clipOriginX, clipOriginY, clipWidth, clipHeight describe the clipping rectangle - the part of the display surface

on which the GraphicsContext will draw. This rectangle acts as a stencil and all drawing that falls
outside it is ignored.

capStyle specifies the style used for straight line endings; it is visible only on thick lines.

 10

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

offsetX, offsetY: translates coordinates of graphics context with respect to the origin of its medium
scaleX, scaleY: scaling factor
paint: Default paint used when the visual part being drawn does not specify its paint. The concept of a

paint requires a brief comment. Display surfaces can be painted either with colors or with patterns.
The distinction is similar to the distinction between painting a wall and wallpapering it: A color
paints the whole object the same color (filling a rectangle with red color, for example) whereas
pattern repeats a tiling pattern across the whole area.

phaseX, phaseY: Tile phase specifies the starting point of the first tile of a painting pattern.
paintPolicy, fontPolicy: If the platform cannot provide the required color or font, this object finds a suitable

available replacement.

Most display methods are defined in this class, and subclasses implement differences between
screen display and printing such as conversion between pixels (screen distance units) and printer units
(corresponding but different printer distance units).

We will now present two examples showing how to use the GraphicsContext to display text and
geometric objects in a window, how to control display via the graphics context, and how to use patterns.
You will note that our code does not provide automatic damage repair which means that if you change
window size, collapse and expand it, or partially cover the window and then uncover it, the drawing will be
lost. As we noted earlier, automatic damage repair is a separate mechanism that will be covered later.

Example 1: Drawing geometric objects and controlling their color

Problem: Implement an application with the user interface in Figure 12.2. Clicking Color opens a multiple
choice dialog listing all available colors and accepts the selected color for drawing. Clicking Draw opens a
dialog requesting information needed to display the object selected by the radio button, for example the
end points of a straight line when Line is selected. A predefined clipping rectangle inside the window is
used to restrict display to the upper part of the window.

Figure 12.2. Example 1: Clipped drawing of a line with end points in the upper left and lower right corners
of the application window.

Solution: The solution revolves around the graphics context which controls the parameters and does the
drawing. The graphics context is obtained from the window which, in turn, is known to the builder of the
application. From within the application model, the graphics context of the window is thus accessed by

builder window graphicsContext

Although this expression suggests that a window keeps its graphics context, this is not so. Instead,
a window manufactures a graphics context with default parameters whenever it is asked for one. Changes

 11

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

made to a graphics context are thus transient, and when a graphics context is modified and then retrieved
another time, it will again be a graphics context with default parameters. This is an important but often
forgotten principle.

To implement the program, we painted the user interface installed it on class DrawObjects, and
defined instance variables color, clippingRectangle, object, and width and initialized them as follows:

initialize
"Set initial parameters for use on graphics context."

clippingRectangle := 20 @ 20 corner: 180 @ 100. "Upper part of the window."
color := ColorValue black. "Default color."
object := #Line asValue. "Aspect variable of the radio button group."
width := 1

The color action method gets a color Symbol from a dialog and executes it to get a ColorValue:

color
“Get color from user and save it.”
| colorName |
colorName := Dialog choose: 'Choose color'
 fromList: ColorValue constantNames “Names of built-in named colors.”
 values: ColorValue constantNames
 lines: 8
 cancel: [nil].
colorName isNil ifFalse: [color := ColorValue perform: colorName]

The action method of the Draw button obtains the window’s graphics context, changes its paint,

line width, and clipping rectangle according to instance variables, and sends a message to draw the selected
object:

draw
''Get graphics context, set its parameters, and execute appropriate drawing message.
 | gc |
 gc := self builder window graphicsContext.
 gc paint: color.
 gc lineWidth: width; clippingRectangle: clippingRectangle.
 self perform: 'draw', object value, 'On:' with: gc

The last statement is possible because we assigned radio buttons aspects to match the required
display message, such as #Circle. As a consequence, when the Circle button is selected, the last line is
equivalent to self drawCircleOn: gc. Each of the drawing methods then obtains the appropriate parameters
from the user and asks the graphics context to draw the object. As an example, the method to draw a square
is defined as follows:

drawSquareOn: aGraphicsContext
''Get origin coordinates and side length from user, draw a square.
 | startx starty side |
 'Obtain origin and side of square from user.”
 startx := (Dialog request: 'Upper left x' initialAnswer: '30') asNumber.
 starty := (Dialog request: 'Upper left y' initialAnswer: '30') asNumber.
 side := (Dialog request: 'Side' initialAnswer: '20') asNumber.
 ''Draw unfilled square inside the clipping rectangle using current parameter settings.''
 ^aGraphicsContext displayRectangularBorder: (startx @ starty extent: side @ side)

It is worth noting that instead of asking a graphics context to draw a visual object, we can also ask
the object to draw itself using the graphics context. As an example, the effects of

aGraphicsContext displayRectangularBorder: aRectangle

 12

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

and

aRectangle displayOn: aGraphicsContext

are exactly the same. The advantage of the second method is that it can be used even if we don’t know the
kind of visual part being drawn, as when we have a whole collection of objects to draw:

objects do: [:object| displayOn: aGraphicsContext]

We will use this approach in another example.

Example 2: Drawing with patterns and drawing with color

Problem: Design an application with the user interface Figure 12.3. When the user selects a color via the
Color button and clicks Draw, the program requests square parameters from the user and draws a square
filled with the selected color. When the user clicks Pattern, the program displays the cross hair cursor and
the user selects a rectangle on the screen. If the user then clicks Draw, the program requests square
parameters and tiles the square with copies of the selected area.

Figure 12.3. Example 2: Displaying a square filled with a pattern copied from the screen.

Solution: In class Patterns, we define instance variable paint, and initialize it to black color:

initialize
 paint := ColorValue black

The color method is as in Example 1 and the action method of the Pattern button is as follows:

pattern
''Ask user to select screen area with desired pattern.''
 Dialog warn: 'Select a rectangle on the screen'.
 paint := Screen default contentsFromUser asPattern

The action method of the Draw button obtains a rectangle from the user, assigns the paint to the
graphics context, and asks the graphics context to draw the square with the assigned fill:

draw
"Obtain square parameters from user and draw the square filled with the current paint."
 | startx starty side gc |
 “Get parameters.”

 13

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 gc := self builder window graphicsContext.
 gc paint: paint.
 startx := (Dialog request: 'Upper left x' initialAnswer: '30') asNumber.
 starty := (Dialog request: 'Upper left y' initialAnswer: '30') asNumber.
 side := (Dialog request: 'Side' initialAnswer: '20') asNumber.
 “Disply.”
 ^gc displayRectangle: (startx @ starty extent: side @ side)

Main lessons learned:

• All display within a window is performed by an instance of GraphicsContext.
• GraphicsContext is central to everything related to display of visual components.
• In addition to being the drawing engine, a GraphicsContext also holds display parameters such as line

width, paint, and fault.
• Display parameters stored in the graphics context can be controlled programmatically.

 14

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Exercises

1. Browse and explain the operation of GraphicsContext.
2. Browse and explain class Paint.
3. Modify Example 1 to obtain the clipping rectangle from the user rather than using a fixed

preprogrammed value. (Hint: Look for implementers of method fromUser:.)
4. Modify Example 2 to ask the user to specify a rectangle interactively instead of obtaining square

parameters via a dialog. (Hint: Look for implementers of method fromUser:.)
5. We mentioned that asking an object to draw itself on a graphics context is equivalent to asking the

graphics context to draw the object. This suggests that one of the two approaches is implemented by
double dispatching. Check whether this is indeed the case.

12.4 Images, pixmaps, masks, and paints

In addition to displaying geometric objects and text, we can also display images and use masks to
control which part of the image is visible. In this section, we will explain the principles of these concepts
and illustrate them on simple examples. We will also talk about cursors because they are related but we
will leave an example of their use for later.

Image

 An Image (more accurately an instance of one of its concrete subclasses) is a rectangular array of
pixels, each represented internally by a of group of bits and displayed as a colored dot. Since different
images may use a different number of bits to represent pixel color, a single class cannot represent all
possible kinds of images. Image is thus an abstract class which leaves concrete image representation to its
subclasses:

Image

Depth1Image
 Depth2Image
 Depth4Image
 Depth8Image
 Depth16Image

Depth24Image
 Depth32Image

 The depth of an image is the number of bits used to represent each pixel. An image with depth 1
(monochrome image) uses one bit per pixel and allows only two colors (represented as 0 and 1
respectively), depth of 2 allows 22 = 4 different colors encoded as 00, 01, 10, and 11, depth of 8 means
that each pixel may have any one of 28 = 256 colors, and so on. The greater the depth, the more subtle an
image (if your computer can display them) and the more memory required to store the image. In ordinary
situations, you don't need to be concerned about depth, and address all your messages to class Image.
 The most common ways of creating an image are capturing an image on the screen or reading it
from a file. We will see that cursors, which use an Image as a part of their definition, often create an image
by specifying the individual pixels.

Example 1: Capturing an image and painting it in a window

Problem: Write a program to let the user capture an image from the screen and paint it in the
currently active window. The upper left corner of the image should be located in the center of the window.
Figure 12.4 shows what the outcome might look like.

 15

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Area captured from screen

Figure 12.4. Example 2: Displaying image from user in the active window.

Solution: To get an image from the user send message fromUser to Image. To find the currently active
window, ask Window. To find its center, ask for its bounds rectangle and its center. Finally, get its graphics
context and display the image. The graphics context displayOn:at: message displays the image at the
specified point. The whole solution is as follows:

| view |
"Get current window, obtain a rectangular screen area from the user, and display it."
view := Window currentWindow.
Image fromUser displayOn: (view graphicsContext) at: (view bounds center)

The following example is from the library,

ScheduledWindow new
 component: ((BorderDecorator on: Image fromUser)
 useHorizontalScrollBar);
 open

It opens a default-size window showing an image captured from the screen by the user. Note how
we specify the image as the window’s component. We can improve on this code a bit by making the
window the same size as the captured window as follows:

| image |
ScheduledWindow new
 component: ((BorderDecorator on: (image := Image fromUser))
 useHorizontalScrollBar);
 openIn: ((10@10) corner: image bounds extent)

Example 2: Image from file

Problem: Write a code fragment to read a graphics file and display it in a scheduled window.
Solution: Abstract class ImageReader can read a limited number of image file formats, delegating its
conversion to an Image to a subclass corresponding to the encoding. Sending message fromFile: to
ImageReader returns an object containing the image; the image can then be extracted with message image
and displayed in the usual way. As an example,

(ImageReader fromFile: 'C:\MSOffice\Clipart\flower.bmp') image

displayOn: Window currentWindow graphicsContext

 16

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

displays an image from the specified file. Message display: displays the image in the upper left corner
(origin) of the window but displayOn:at: allows you to specify the position.

Cursor

 A cursor is the visual representation of the current position of the mouse on the screen. On first
thought, a cursor is just an image that can be moved around. On closer examination, cursors are partially
transparent, showing some of the underlying background as the cursor moves across the screen. This is
achieved by combining the cursor’s image with a mask, a concept discussed in more detail later.
 Class Cursor defines more than 20 predefined cursor shapes (such as write, hand, and crossHair)
and some interesting cursor behaviors. In addition, the user can create new cursors as well.
 As an example of a built-in cursor, the cross hair cursor is defined as a class variable in class
Cursor and initialized as follows:

initCrossHair
 CrossHairCursor := (self
 imageArray: #(

 2r0000000000000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0111111111111110
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000100000000
 2r0000000000000000
 2r0)

 maskArray: #(
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r1111111111111111
 2r1111111111111111
 2r1111111111111111
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0000001110000000
 2r0)

 hotSpot: 7@7
name: 'crossHair')

 The method defines the four Cursor instance variables: the image, the mask, the position of the hot
spot, and the cursor name. The hot spot is the Point returned when a program requests cursor position and
represents the mouse position on the screen. The individual pixels of the image and the mask are specified
as binary numbers such as 2r0000001110000000 (2r means radix 2 - binary representation). The 1's in the
image array are the black pixels and 0's are white pixels and when you half close your eyes and look at the

 17

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

pattern of 0's and 1's, you can see the crosshair shape easily. The 1's in the mask define the pixels that are
opaque (not transparent), in this case the crosshair and a one-pixel band around it. 0's are transparent and
allow you to see the background behind the cursor. You can use this same method to define your own
cursors and Appendix 4 shows how you can create a cursor with the Image Editor tool.
 Class Cursor is typically accessed to display a special cursor during a special operation. As an
example, VisualWorks displays a special cursor while reading a file, while performing garbage collection,
or while waiting for the user to select a point on the screen (for this, it uses the crossHair cursor above).
The two common messages for changing the cursor are showWhile: aBlock and show. The showWhile:
message changes the cursor for the duration of execution of its block parameter, and changes it back to its
original shape when aBlock executes. A typical example of its use is in the following method from class
FileBrowser:

hardcopyStream: aStream
"Use the 'wait' cursor while printing aStream. "
 Cursor wait
 showWhile: [aStream contents asText asParagraph hardcopy]

Method show also changes the cursor but the programmer must remember to change it back. Its
typical use is shown in the definition of showWhile: itself:

showWhile: aBlock
"While evaluating aBlock, make the receiver be the cursor shape. Then revert to the original cursor."
 | oldcursor |
 oldcursor := self class currentCursor.
 self show.
 ^aBlock valueNowOrOnUnwindDo:
 [oldcursor show]

Pixmaps – drawing surfaces behind the scenes

A Pixmap is a display surface and you can ‘display’ on it, just as on the screen. However,
displaying on pixmap does not show on the screen until you ask the screen’s graphics context to display
the pixmap. Pixmaps are thus used to construct displayable rectangles before they are displayed on the
screen. The typical procedure is to transfer an Image to a Pixmap, modify it by a mask to display only some
selected part of it, and ask a graphics context to display the result. We will show an example of this shortly.
Pixmaps can also be created by copying the contents of the clipboard of your machine using the clipBoard

Extracting a part of an image - masks

To display a part of an image, transfer the original image to a Pixmap, combine it with a Mask,
and display the result. If the desired mask is rectangular, a mask is not necessary because the Pixmap can
do rectangular clipping itself. We will now describe and illustrate both techniques.

Displaying a rectangular part of an image without using a mask

1. Create the image as a Pixmap object or convert an Image to a Pixmap using asRetainedMedium.
2. Construct the clipping rectangle.
3. Apply the clipping rectangle to the Pixmap and extract the corresponding area as Image. Use message

completeContentsOfArea: clippingRectangle.
4. Display the obtained Image on a graphics context.

Example 3: Extracting a rectangular portion of an image without using a mask
Problem: Display the image from the previous example and its lower half side by side (Figure 12.5).

 18

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Figure 12.5. Example 3: Image from the Microsoft Office clip art library and its rectangular part.

Solution: Following the procedure described above and using a .bmp file, the solution is as follows:

| gc clippingRectangle clippedImage original pixmap |
"Get image from file."
original := (ImageReader fromFile: 'C:\MSOffice\Clipart\flower.bmp') image.
"Display original image on window’s graphics context."
gc := Window currentWindow graphicsContext
original displayOn: gc.
"In memory, construct a Pixmap containing the original image."
pixmap := original asRetainedMedium.
“Construct clipping rectangle.”
clippingRectangle := (0 @ (original height / 2)) corner: (original width @ original height).
“Extract area corresponding to rectangle from pixmap.”
clippedImage := pixmap completeContentsOfArea: clippingRectangle.
“Display the clipped image on the graphics context next to the original.”
clippedImage displayOn: gc

at: (original width @ 0)

 An alternative approach is to use a Mask. This method is more powerful because it allows the
clipping area to have any shape. During the discussion of Cursor, we saw that a mask acts as a decal – a
display area painted in such a way that it is transparent in some places but opaque in others. A mask is thus
like a surface covered with a 'paint' that is either transparent or opaque and this is why the paint is called
coverage value.

Extracting a non-rectangular part of an image with a mask

1. Create the image as a Pixmap object or convert an Image to a Pixmap using asRetainedMedium.
2. Construct the clipping mask. The shape drawn on the mask will be the transparent area.
3. Display the Pixmap overlaid with the mask on the graphics context using copyArea:from:sourceOffset:

destinationOffset:. You can control the position of the mask with respect to the pixmap by the argument
of sourceOffset:, and the position of the pixmap with respect to the display area by the argument of
destinationOffset:.

 19

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Example 4: Extracting a triangular portion of an image with a mask

Problem: Display an image from user and its above-the-diagonal part in the current window (Figure 12.6).
Shift the clipped part so that its origin coincides with the corner of the original image.

Figure 12.6. Example 4: Bitmap image clipped with a mask.

Solution: Following the steps listed above we create a Pixmap, a Mask containing the masking

triangle, and display the combined image and mask on the graphics context of a window:

| pixmap image window mask maskTriangle gc imageRectangle destOffset sourceOffset |
"First get the image and display it in the current window."
image := Image fromUser.
window := Window currentWindow.
gc := window graphicsContext.
gc display: image at: 10@10.
"Now start constructing the masked image. First transfer image to pixmap."
pixmap := image asRetainedMedium.
"Find the bounding box of the image and use it to construct mask rectangle."
imageRectangle := image bounds.
mask := Mask extent: imageRectangle extent.
maskTriangle := Array with: 0 @ 0
 with: (imageRectangle width) @ 0
 with: imageRectangle width @ imageRectangle height.
"Display the triangle on the mask."
mask graphicsContext displayPolygon: maskTriangle.
"Display masked image on window's graphics context at an offset."
sourceOffset := 0@0. “No offset from pixmap origin to mask origin.”
destOffset := imageRectangle extent + (10@10). “Window origin to pixmap origin offset.”
gc copyArea: mask
 from: pixmap graphicsContext
 "Origin of mask when placed over the image (in image coordinates)."
 sourceOffset: sourceOffset
 "Origin of masked image on the display surface (in window coordinates)."
 destinationOffset: destOffset

 20

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 21

Main lessons learned:

• An Image is a pixel-by-pixel representation of an image displayed on screen or printed by printer.
• An Image may use one of several depths, resulting in greater or smaller color variety and a

corresponding increase or decrease of memory requirements.
• An Image can be read from a file, copied from the screen, or constructed from pixels.
• Class Cursor defines the visual representation and behaviors of the mouse cursor.
• Cursor shape is defined by a 16@16 image and a 16@16 mask that determines which part of the

cursor is transparent.
• An Image can be clipped to any shape with a mask.
• A Pixmap is a display surface stored in memory but not necessarily displayed on the screen.

Exercises

1. You may have noticed that our image from use in Example 1 does not show the whole rectangle

selected by the user. Why is it? Can you correct this shortcoming?
2. In Example 4, we set the offset of the origin of the mask at the origin of the pixmap. What happens

when you use a non-zero offset?
3. Write a simple clip art browser that finds all .bmp files on a user-specified disk drive, lists their names

in a multiple choice dialog, and displays user's selection in a new ScheduledWindow.
4. It would be nice if CoverageValue could handle any values between 0 and 1, making pixels less and

less transparent as the value moves from 1 to 0. A reasonable approximation of this behavior is to make
some of the pixels transparent and leave the remaining pixels opaque. As an example, if the coverage
value of all pixels in a 10 by 10 rectangle is 0.6, we could make 60 percent of all pixels opaque and 40
percent transparent using random assignment of 0's and 1's in proportions corresponding to the
specified coverage value. Implement this idea.

5. Explore class Pixmap, in particular its comment and displaying protocol. Write a summary.
6. Explore class Mask and write a summary.
7. Explore class Image, in particular its bit accessing and image processing protocols. Write a summary.
8. Write a method that creates a smooth visual transformation of one image to another. Allow several

styles of transitions such as left to right, top to bottom, and so on.

12.5 Models, views, and controllers revisited

 Although the graphics context, display surfaces, images, and the other concepts presented above
provide a lot of power, they don't address three essential aspects of user interfaces: interactive user control,
window damage repair, and automatic dependency on domain data. We will now explain what we mean by
these concepts and how VisualWorks deals with them.

• By user control, we refer to the ability of the user to interact with the application using the mouse and

the keyboard. Clearly, the programs that we wrote in the previous sections did not allow any user
interaction with the painted objects and images. We will see shortly that the concept of a controller
provides a mechanism for user control.

• Automatic damage repair is another GUI feature that we take for granted: If a window is 'damaged', for
example collapsed to an icon and then expanded, or covered by another window and then uncovered, or
simply resized, we expect that the damage will be automatically repaired. In other words, we expect a
certain permanence of the GUI. You may have noticed that the drawing and painting in our example
programs did not have this permanence. If you painted something on the sample window and then
collapsed and restored it, the painting was gone. We will see that the basic mechanism for automatic
repair can be obtained by subclassing views to the View class.

• Finally, we expect that if the value of the domain model changes in a way that should be reflected in the
view, the user interface will automatically adjust to this change. As an example, if the window displays

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

a circle and the application changes its diameter, we expect that the circle will be automatically
redrawn. The previous sections do not give any hints as to how this could happen but we will see that
the principle of dependency implements this mechanism.

In the rest of this section, we will explain the principles of views, controllers, and their

dependency on models. The remaining sections will then explain the basic details and demonstrate how
they can be used to build new UI components by using the 'any component' widget of the UI painter called
the view holder or the subview.

As we already know from Chapter 6, the principle of user interface components in Smalltalk is the
model-view-controller (MVC) paradigm. According to this principle, every UI component that represents a
value of a domain object uses this value as its model, the graphical representation of the model is the
responsibility of a view, and the object that manages user interaction within the boundaries of a view is the
view's controller. We will now outline how the MVC paradigm implements the three UI operations listed
above.

User interaction

User interaction via mouse and keyboard is constantly monitored by the operating system. When an
event occurs, the operating system sends information about it to the running application, in this case
VisualWorks. After some opening message sends, an instance of a concrete subclass of Event sends a
message corresponding to the event that occurred to the active controller, usually the controller responsible
for the screen area under the cursor. The message contains information about the kind of event that has
occurred and its parameters. If the controller is interested in the event, it must have its definition of the
method, otherwise a 'do nothing' hook definition inherited from class Controller is executed.

As an example, the controller of a chess board view will need its own definition of
redButtonPressedEvent: that will respond when the player presses the red button over a chess board
square.

Damage repair

When a window or its part is damaged, it records the smallest rectangle containing the damage.
When processing priority allows it, the window redraws the damaged rectangle or the union of all damage
rectangles. To do this, the window constrains its GraphicsContext to the clipping rectangle corresponding
to the damaged area and sends a message to its components, asking them to redraw themselves.

Unless the window consists of only one widget, it contains a ‘composite part’ containing other
parts, as in Figure 12.7. Damage repair sends message displayOn: graphicsContext down the tree to all parts
of the window and eventually reaches all views. Each view must have a definition of displayOn: (possibly
inherited) and this definition redraws the view within the limits of the clipping area of the graphics context.

application window

composite part

subcanvas check box input field

label action button text editor

Figure 12.7. Simplified structure of a multi-component window.

Redrawing caused by a change in the model

 22

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

In an active application, the value of a model frequently changes. As an example, a stopwatch
application using integer seconds as its model changes the value of the model every second. There are two
ways in which this change may be translated into a view change:

The preferred approach is to use dependency, already introduced earlier. To use dependency, the
programmer includes a changed message in each method that changes the model in a way that affects the
view. In the chess example (Figure 12.8), the model method that changes the configuration of pieces on the
board when a player makes a move calculates new piece positions and sends changed to self1. In response
to this, the model automatically sends the update message to each of its dependents - in this case the chess
board view. The chess board view's customized update method then asks the model for the necessary data
and redraws itself appropriately. To redraw itself, the view usually sends invalidate to self and the invalidate
message travels up the component tree to the window at the top, and the window then sends display down
the component tress in the same way as after a request for damage repair.

Figure 12.8. Communication involved in moving a chess piece from one square to another. Redrawing
based on dependency and changed message is assumed.

invalidateRectangle: message

displayOn: message

Squares that must be redrawn

Ask which squares are to be redrawn

Chess board model Chess board controller Chess board view Window

Redisplays itself

update message to dependents

changed message

User clicked a destination

User clicked a piece

The other way in which a model change may be translated into view redrawing is to send the

invalidate message directly from the model's method when the change occurs. The result is the same as
when we use dependency but the implementation is less centralized.

It is useful to note that invalidation provides two refinements. One is that we can specify whether
the redrawing of the view must occur immediately or not. (This gives rise to the concept of 'lazy repair'.)
The message may also specify that only a part of the view rather than the whole view should be redrawn
and this can greatly improve the behavior of the user interface. As an example, when the position of a
chess piece changes, only the start and the destination squares need to be redrawn. (The exceptions are
capturing 'en passant' which affects three squares, and castling where four squares must be redrawn.)
Invalidating only two squares instead of redrawing the whole board means that only 2/64 of the view must
be redrawn and although this does not speed up the process, it eliminates unpleasant flashing that would
otherwise occur. We use this technique in our implementation of the chess board in Appendix 3.

 23

1 The best way to do this is to change the aspect only via an accessing method that includes the changed
message.

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 After this general introduction, we are now ready for details and examples. In the next two
sections, we will explain how to create views using the view holder widget and how to create controllers.
A larger example showing the implementation of the chessboard is given in Appendix 3.

12.6 Creating UI components with the view holder widget

 Older versions of Smalltalk did not have user interface painters and the only way to create a
graphical user interfaces was programmatic. With the current technology, the UI Painter almost eliminates
the need to program views and controllers because standard widgets are available from the Palette and non-
standard UI components can be created rather easily with the view holder (subview) widget. (We will use
the term view holder for the widget, and subview for the visual component displayed in the view holder.)

The process of creating a new component using the view holder widget is simple. It consists of
painting the view holder on the canvas, defining its properties, creating the view that it will display, and
defining its controller. We will now demonstrate the procedure on two simple applications that do not
allow user interaction and therefore do not require a custom controller. In the next section, we will then
give an example that requires a custom controller and show how to design it.

Example 1: Image display.

Problem: Design and implement an application with the user interface in Figure 12.9. Before the window
opens, the program asks the user to select two images on the screen. When the window opens, the view
shows help text and when the user clicks one of the image buttons, the view displays the corresponding
image.

Main lessons learned:

• The principle of Smalltalk’s user interfaces is the separation of domain objects, display objects, and

user interaction objects into a model, a view, and a controller. This principle is called the MVC
paradigm.

• The model of a visual component holds the displayed domain object and treats the view as its
dependent. When the model changes in a way that should affect the view, it sends itself a changed
message which triggers notification of the view and any other dependents via update messages. The
view is responsible for having an appropriate definition of update to redisplay itself.

• The view is responsible for drawing the model’s visual representation on the screen. It should be a
subclass of View to inherit basic damage repair mechanism and connections to its model and controller.

• The controller is responsible for handling mouse and keyboard events within the view’s limits.

Image 1
selected by

user on
screen

 24

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Figure 12.9. Example 1: Desired user interface when the application first opens (left), and when the user

clicks an image button (right).

Solution: We will solve this problem by using dependency. The application model will be the model of the
subview and when the user clicks an action button, the application will execute the changed message. This
will trigger the update message in the subview which will then request the image from its model (the
application) and invalidate itself. This will cause the subview to redraw itself.
 The solution requires an application model (class TwoImages) and a view class (class ImageView)
for the subview displayed by the view holder. Before discussing the details of implementation, we will first
describe how to create the view holder:

Creating a view holder

1. Create the canvas and paint the view holder (Figure 12.10).
2. Define view holder properties, at a minimum the View property which is the name of the method that

returns the subview to be displayed in the view holder. We called this method imageView.
3. Install the canvas.

Subview button

Figure 12.10. The view holder action button on the UI Palette.

Design

Class TwoImages is the application model class. It will have instance variables to hold the subview
(imageView), the currently displayed image (image), and the two images selected by the user on the screen
(image1 and image2). During initialization, TwoImages will ask the user to select two rectangles on the
screen and save the corresponding images in image1 and image2. When the user clicks an action button,
the corresponding action method assigns the appropriate image to image and sends the changed message.

Initialization must also create an instance of a view (class ImageView), assign it to imageView, and
assign itself as its model. (ApplicationModel inherits dependency from its superclass Model.) The definition
of initialize is thus as follows:

initialize
"Get two images from user and define subview."
 Dialog warn: 'Select the first image.'.

 25

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 image1 := Image fromUser.
 Dialog warn: 'Select the second image.'.
 image2 := Image fromUser.
 imageView := ImageView new.
 imageView model: self “Create dependency of the subview class on the model.”

The action method for Image 1 assigns image1 as the current image and triggers the change mechanism:

image1
"Assign image1 as current image and send change notification to dependent (subview)."
 image := image1.
 self changed

and image2 is similar. The remaining methods in TwoImages are only accessing messages for image and
imageView.

Class ImageView

 Class ImageView implements the subview. As in all situations involving the view holder widget,
the superclass of ImageView will be View because it implements the damage repair mechanism.
 When a view is being built by the builder, a new instance is created and in the process, message
defaultControllerClass is sent. Our view does not allow any user interaction and we will thus return the
NoController class - a controller that ignores all input events:

defaultControllerClass
 ^NoController

Note that a controller is required even if it is not active.

When a change occurs in the model (TwoImages), the model sends itself the changed message
which then sends an update message to its view holder dependent. In response to this, the view holder must
redraw itself, usually by sending itself the invalidate message which travels up the component tree of the
window and causes the window to send a display message with its graphics context clipped to the damage
area down the tree again. The definition of update is thus simply

update
"Trigger a redisplay."
 self invalidate

but since this behavior is inherited, we don’t need this method at all.

The only remaining method (and the method that does all the work) is displayOn: which redisplays
the contents of the view holder whenever it is required (during initial display, during each model change,
and during invalidation). To display itself, our subview must ask its model for the current image and if the
image is not nil, ask the graphics context to display it. Since we have not initialized image, its value is
initially nil. In this case, we will display a help text in the center of the subview. To get the proper location
for the text, we will ask the subview for its bounding rectangle, ask the graphics context to measure the
width of the text, and display the text at an appropriate place. The whole definition is as follows:

displayOn: aGraphicsContext
"Display yourself on the graphics context supplied by the window."
| string width center |
 model image isNil
 ifTrue: “Display help text.”
 [center := self bounds center.
 string := 'Click action button'.
 width := aGraphicsContext widthOfString: string.
 aGraphicsContext displayString at: (center x (width/2)) @ 30).
 string := 'to display an image.'.

 26

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 width := aGraphicsContext widthOfString: string.
 aGraphicsContext displayString at: (center x (width/2)) @ 50)]

ifFalse: “Display currently selected image.”
[aGraphicsContext displayImage: image at: 0@0]

The program is now fully functional. Note that unlike our previous programs it automatically

repairs window damage due to collapsing, reshaping, and other window events.

Improvements

 We know that it is better to centralize shared behavior and in our case both image methods share
the changed message which is always executed when image changes. In such a case, image should be
changed by an accessing message which sends the changed message. As a consequence, image1 should be

image1
 self image: image1

and the corresponding accessing method should be

image: anImage
 image := anImage.
 self changed

We conclude that the process of creating a subview and inserting it into a canvas is quite simple
and can be summarized into the following three steps:

1. Paint the canvas with a view holder widget, specifying the name of the application model method

that returns the corresponding view object as its View property.
2. In the application model,

a. create an instance variable to hold the view displayed in the view holder, and the
corresponding accessing method specified as the View property in Step 1

b. initialize the view holder instance variable to an instance of the subview class and specify
the application model (self) as the view's model (needed only if you use dependency)

c. when using dependency, every method that changes the model and affects the view must
send changed to self. This is best implemented by busing accessing messages and
including changed in them. When not using dependency, send self invalidate to the view
when a change of the subview is desired. You can also redraw parts of the view
selectively using invalidateRectangle: or invalidateRectangle:repairNow:.

3. In the definition of the subview class
a. specify View as the superclass
b. define a controllerClass method to return the class of the desired controller
c. define an update method if you use dependency to control the subview; if updating

consists of sending invalidate and nothing else, this behavior is inherited and update: is
not required.

d. define a displayOn: method (always); it generally obtains data from the model (the
application) and uses it to redraw itself

As another illustration of the procedure, we will now do an example that shows how to display

geometric shapes. The problem will give us an opportunity to see that geometric objects are not displayable
in their raw form and require additional care.

Example 2: Displaying geometric figures

Problem: Implement an application with the user interface in Figure 12.11. When the user selects a radio
button and clicks Draw, the window displays the corresponding geometric shape.

 27

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Figure 12.11. Example 2: Display of stroked rectangle (left), display of filled wedge (right).

Solution: We will use a subview with NoController to implement the drawing area. The application model
(class GeometricFigures) keeps reference to the view in instance variable drawingView, and aspect variable
object holds the current radio button selection. The draw action method will use dependency and send
changed to the model The corresponding update method will only invalidate the view so we don’t have to
define it. update will trigger displayOn: which will ask the application model for the selected geometric
object (derived from the aspect value of the selected radio button), and display it. Implementation of the
corresponding methods is as follows:

Initialization of GeometricFigures

initialize
“Select the top radio button, create a binding to the subview, and define yourself as the subview’s model.”
 object := #line1 asValue. “Initial selection when the window opens.”
 drawingView := GeometricView new.
 drawingView model: self

The action method of the Draw button simply triggers the dependency-based update mechanism:

draw
“To redraw the subview, trigger the dependency mechanism.”
 self changed

The display:at: method triggered by invalidate is defined in GeometricView as follows:

displayOn: aGraphicsContext
“Obtain currently selected geometric object and display it in the center of the view.”
 aGraphicsContext display: model currentObject at: self bounds center

The general-purpose display:at: method in GraphicsContext can display any displayable object. In
our earlier example, we used shape-specific messages such as displayLineFrom:to: but this strategy would
be very awkward in this case. The currentObject message is defined in GeometricFigures and uses the radio
button selection to get the desired object as follows:

currentObject
“Use currently selected radio button value to obtain the corresponding geometric object.”

^self perform: object value

 28

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

If the selected button is, for example, Rectangle (aspect object == #rectangle), the last line executes

self rectangle

and to complete our implementation, we must define the methods that calculate and return the appropriate
displayable geometric objects. A very important feature of all of them is that display:at: cannot display
geometric objects in their raw state and the object must first be ‘wrapped’ by conversion messages
asStroker (for empty figures such as the rectangle on the left of Figure 12.11) or asFiller (for filled figures
such as the wedge on the right of Figure 12.11). As an example, the method creating the wrapped rectangle
is

rectangle
“Return a displayable rectangular border. The coordinates are calculated on the premise that the view
displays the object in the center.”
 ^(Rectangle origin: -60 @ -30 corner: 60 @ 30) asStroker

and the method creating the wrapped wedge is

wedge
“Return a displayable rectangle. The coordinates are calculated on the premise fact that the view displays
the object in the center.”
 ^(EllipticalArc
 boundingBox: (-50 @ -20 corner: 50 @ 20)
 startAngle: 0.0
 sweepAngle: 300.0) asFiller

We leave the remaining methods as an exercise.

Main lessons learned:

• Custom components can be created with the view holder widget which contains a subview with a

controller.
• The only required property of a view holder is View. Its value is the name of the method that returns

the subview’s view object.
• In order to inherit the damage repair mechanism, the subview should be a subclass of View.
• The view class must define the displayOn: message which is sent automatically whenever the window

needs to draw or redraw the subview. Also required is message defaultControllerClass.
• If response to changes of the view’s model uses dependency, the view must also define an update

method. If the only required action is invalidate, the behavior is inherited and update: is not needed.

Exercises

1. Does View define a default controller class? If so, what consequences does it have for view design?
2. Describe in detail what the asStroker and asFiller messages do. Inspect the result of sending such a

message to a rectangle.
3. Write a description of wrappers.
4. Reimplement Example 1 using direct invalidation instead of dependency.
5. Extend Example 2 by adding a group of radio buttons labeled stroked and filled that allow the user to

select how the geometric object should be displayed.
6. Which class defines the update message inherited by views?
7. Record a complete trace of an update of a view.

12.7 Controllers

 29

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 Controllers are responsible for managing user input and the class library contains many controller
classes for various kinds of widgets and tools. Only a few, however, are of interest to most programmers.
The essence of the controller class hierarchy (with controllers commonly needed in applications shown in
bold) is as follows:

Object ()
 Controller ('model' 'view' 'sensor')
 ControllerWithMenu
 ModalController
 ParagraphEditor
 TextEditorController
 SequenceController
 LauncherController
 MenuItemController
 NoController
 ScrollbarController
 StandardSystemController

The Controller class on the top defines all essential instance variables and behaviors and is often

used as the direct superclass of custom controllers. Its instance variables include model and view which are
responsible for communication with the other two components of the MVC triad, and sensor - an instance
of a concrete subclass of the abstract class InputSensor which handles mouse and keyboard input and can
provide information on such parameters as cursor coordinates.

In the past, all VisualWorks controllers used polling, a technique which constantly tests whether
the user performed an input event, and takes the appropriate action if necessary. Polling requires extra
processing time and this may cause some of several input events issued in quick succession to be missed.
The preferred modern implementation of controllers is thus event-driven where VisualWorks is
immediately notified by the operating system when an input event takes place, and sends this information
to a controller in the form of an appropriate predefined notification message2. These notification messages
are defined in the events protocol in class Controller and include entryEvent: and exitEvent: (automatically
sent to the controller when the cursor enters or leaves the area of the controller's view), doubleClickEvent:,
redButtonPressedEvent:, keyPressedEvent:, and many others.

All event messages have a single argument called event - an instance of an appropriate Event
subclass such as CloseEvent, KeyPressedEvent, and MouseMovedEvent. The Event object contains
information relevant for the event that triggers it such as the x and y coordinates of the current position of
the hot spot of the cursor or the activated key. All of these predefined messages are stumps containing only
an empty body, and concrete subclasses redefine them to perform whatever actions are necessary when the
corresponding event occurs. In other words, event messages are hooks. We will see examples of them
shortly.
Besides Controller, the most important controller classes are

• StandardSystemController - in charge of window interaction, in particular its <window> pop up menu
• ControllerWithMenu - has a menuHolder for the <operate> menu, and a performer (the object that

performs menu commands)
• TextEditorController - used by the text editor widget
• ParagraphEditor- superclass of TextEditorController defining most of its functionality
• NoController - controller that does not respond to any user input

In this chapter, we are interested in controllers in the context of creating new UI components. We
have already seen that this is done by using the view holder widget and defining a view-controller pair for
it. In the previous section, we used NoController because our subviews did not allow any user interaction.

2 The actual implementation of events in VisualWorks is still based on polling but the outward appearance
is event-driven.

 30

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

In the following example, we will create a UI component with an active user interface and show how to
create an active controller that responds to user input.

Example: Subview with clickable hot spots

Problem: Implement an application that displays a bordered subview (Figure 12.12) equipped with an
<operate> menu and capable of responding to mouse clicks. When the subview is empty, the menu
contains only the Add hot spot command. When the view contains at least one hot spot, the menu also
displays a Remove hot spot command.
 When the user selects Add hot spot, the program requests a string (hot spot name) and the cursor
changes to cross hair. (The cursor changes back to the original shape whenever it leaves the subview area
and changes back to cross hair when it re-enters the subview.) Clicking the left mouse button inside the
subview creates a ‘hot spot’ and displays it as a small red rectangle. The cursor then changes back to its
original shape.
 When the user clicks Remove hot spot, the cursor changes to cross hair and clicking the left mouse
button over a hot spot displays a warning with the name of the hot spot and deletes the hot spot from the
subview. (During this procedure, the cursor again changes to the original shape whenever it leaves the
subview area.) After redisplaying the view, the cursor changes back to its original shape.

Figure 12.12. Example: Clickable subview with four hot spots.

Solution: We will need three classes - the application model (ClickableImage), the subview class
(ClickableView), and its controller (ClickableController).

Class ClickableController

 ClickableController will be a subclass of ControllerWithMenu because the specification requires an
<operate> menu. It will define menu building methods, and event behaviors for subview entry and exit and
for red button press.
 To implement the desired cursor behavior, ClickableController must have an instance variable to
hold the shape of the cursor before it changed to cross hair so that we can restore it upon exit from the
subview or when a hot spot related operation ends. We will call this variable cursor. Since cursor is
undefined before the first user action, the exitEvent: method will access it via the following lazy accessing
method:

cursor
“Lazy initialization of cursor.”
^cursor isNil
 ifTrue: [Cursor current cursor] “Get current cursor shape from the system.”

 31

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 ifFalse: [cursor]

The enterEvent: message is sent when the cursor enters the subview. It must ask the application
model which command is currently executing (we will call this method state), and display the cross hair
cursor if the command is not nil:

enterEvent: event
"If the model is executing the Add or the Remove command, change cursor to cross hair."
model state isNil
 ifFalse: [cursor := Cursor currentCursor.
 Cursor crossHair show]

Since this method is defined in the subview’s controller, it will only be executed when the
controller is in charge and this happens only when the cursor is in the subview’s area. The exitEvent:
method resets the cursor if state is not nil. Note that we would get the same result if we did not check state
at all:

exitEvent: event
"If the model is executing Add or Remove, reset cursor on exit from subview."
model state isNil
 ifFalse: [cursor show]

The state method in ClickableImage returns #addHotSpot, #removeHotSpot, or nil, depending on
the command currently being executed.

The handler of the red button click event (again executed only if the cursor is within the subview)
asks the model to execute the operation corresponding to the current state (add/remove hot spot or do
nothing), sending the coordinates of the cursor as the argument:

redButtonPressedEvent: event
"Send message with cursor coordinates to model."
|position|
 position := self sensor cursorPointFor: event. “Extract position from event.”
 model executeOperationWith: position “Result depends on the state of the model.”

 The next task of the controller is to implement the menus. Since the menu depends on the state of
the application, we will leave it to the application to construct the menu as necessary. We are thus finished
with the controller!

Class ClickableView

 Our next class is ClickableView, naturally a subclass of View. From the previous section, we know
that its responsibilities include accessing its controller class, responding to update (we will again use
dependency), and responding to displayOn:. The controller is ClickableController, hence

defaultControllerClass
 ^ClickableController

There is no need for update since it only invalidates and this is an inherited behavior. And the display
message displays all hot spots held by the model as little red squares:

displayOn: aGraphicsContext
"Display all hot spots as red squares centered at hot spot coordinates."
 aGraphicsContext paint: ColorValue red.
 model hotSpots do: [:hotSpot|

aGraphicsContext displayRectangle: (hotSpot at: 1) -2 extent: 4 @]

Class ClickableImage

 32

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

 The last undefined class is ClickableImage - the application model. Its instance variables will be
clickableView (for accessing the view displayed in the subview - the view holder’s View property), hotSpots
(a collection of two-element arrays containing hot spot coordinates and names), and state. We will also
find useful two extra variables: hotSpotName will hold the name of a new hot spot, and controller will
provide direct access to the controller for menu control - although the controller could be accessed via
imageView, the need is frequent and 'caching' the controller in a variable is better.
 Variable state requires closer attention. As we noted above, Add and Remove actions are triggered
by message executeOperationWith: from the controller. The easy way to execute a message that depends on
aSymbol is perform: aSymbol. Since the operation requires cursor coordinates, the perform message must
be a keyword message with cursor coordinates. To satisfy the different possible states, we will use the
following three values of state: nil (not executing a menu command), #addHotSpotAt:, and
#removeHotSpotAt:, and define methods corresponding to the last two values.

We are now ready to implement ClickableImage. Initialization involves setting up instance
variables and telling the controller that the performer of the menu messages (the executor of menu
commands) will be the model. We must also initialize the menu:

initialize
 hotSpots := OrderedCollection new.
 imageView := ClickableView new.
 imageView model: self.
 controller := imageView controller. “Construct and assign the controller.”

controller performer: self. “The performer of menu commands is the application model.”
 controller menuHolder value: self menuWithAdd “The initial value of <operate> menu.”

The following two methods construct the <operate> menu when there are no hot spots and the
menu for a view with at least one hot spot. The definitions are as follows:

menuWithAdd
"Menu when no hot spots exist."
| menuHolder |
 menuHolder := MenuHolder new.
 menuHolder add: 'add hot spot' -> #addHotSpot.
 ^menuHolder menu

and

menuWithRemove
"Menu when at least one hot spot exists."
| menuHolder |
 menuHolder := MenuHolder new.
 menuHolder add: 'add hot spot' -> #addHotSpot.
 menuHolder add: remove hot spot' -> #removeHotSpot.
 ^menuHolder menu

When the user clicks add hot spot or delete hot spot in, the controller sends addHotSpot or
removeHotSpot to its menu performer - the ClickableImage object and our next step is to define these two
methods. Method addHotSpot asks the user for the name of the new hot spot and changes state to
#addHotSpotAt:. Control then passes into the hands of the controller (defined above) which tracks cursor
entry and exit into the subview and sends executeOperationWith: to ClickableImage when the user clicks
the red mouse button in the subview. This analysis leads to the following definition:

addHotSpot
"Start 'add hot spot' operation - get hot spot name and change state; leave the rest to the controller."
 hotSpotName := Dialog request: ‘Enter hot spot name.'.
 state := #addHotSpot "Name of method to be executed on click button event."

 33

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Method removeHotSpot only changes the state:

removeHotSpot
"Start remove hot ' operation - change state; leave the rest to the controller."
 state := #removeHotSpot "Name of method to be executed on click button event."

 After the execution of any of these two methods, the application waits for the user to
move the cursor or click the mouse button which then sends the appropriate mouse event to the controller.
This triggers redButtonPressedEvent: defined above, which sends executeOperationWith: aPoint. As we
already explained, the method simply performs the state symbol with a Point argument provided by the
controller:

executeOperationWith: aPoint
"Execute state operation with point supplied by controller. Ignore if not in 'add' or 'remove' state."
 state isNil “If nil, we are not in executing a menu command – no action.”
 ifFalse: [self perform: state with: aPoint.

self changed]

The real work of adding and removing hot spots is performed by addHotSpotAt: and
RemoveHotSpotAt: and by the dependency mechanism invoked by changed. Method addHotSpotAt: resets
the cursor to what it was before it changed to cross hair. It then adds the new hot spot to the collection,
makes sure that the <operate> menu now includes remove because we now have at least one hot spot, and
resets state to nil (end of add state):

addHotSpotAt: aPoint
"Add hot spot to collection, reset state and cursor, update menu."
 controller cursor show.
 hotSpots add: (Array with: aPoint with: hotSpotName).
 controller menuHolder value: self menuWithRemove.
 state := nil

Method removeHotSpotAt: is slightly more complicated because it must check whether the clicked
point lies within one of the red squares:

removeHotSpotAt: aPoint
"Check if aPoint corresponds to a hot spot and if it does, inform user, display name, remove hot spot from
collection, reset state and cursor, and update menu if necessary."
| hotSpot |
 controller cursor show.
 (hotSpot := self hotSpotAt: aPoint) isNil “Return hot spot under cursor or nil.”
 ifTrue: [^Dialog warn: 'Not a hot spot'].
 "Display name of hot spot being removed."
 Dialog warn: 'Hot spot to be removed: ', (hotSpotAt: 2).
 hotSpots remove: hotSpot.
 hotSpots isEmpty "Change menu if there are no more hot spots."

ifTrue: [controller menuHolder value: self menuWithAdd.
 state := nil

The only remaining method is hotSpotAt: aPoint which checks whether aPoint corresponds to a
hot spot. It returns a hot spot corresponding to the position if the cursor is in a small area surrounding the
hot spot, and nil otherwise:

hotSpotAt: aPoint
"Is aPoint within 2 pixels from a hot spot center? If so, return the hot spot."
 ^hotSpots detect: [:hotSpot | (aPoint - (hotSpot at: 1)) abs <= (2 @ 2)]
 ifNil: [nil]

Note the use of point arithmetic and comparison.

 34

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

Main lessons learned:

• Although VisualWorks provides polling as one of the ways to program controllers, event driven

controllers are now preferred.
• Every view must have a controller, even if it does not allow user interaction.
• Custom controllers are usually subclasses of Controller or ControllerWithMenu.
• Class Controller defines many stump event methods that are triggered by the operating system when a

input event occurs. When defining a custom controller, redefine those events methods that must be
handled by the subview.

• All event methods have an event argument which contains all necessary information about the event
that has occurred.

• Class ControllerWithMenu adds a menu holder for the <operate> menu, and a reference to the
performer of the menu commands. The performer is often the application model but the default is the
controller itself.

• Class ParagraphEditor and its subclass TextEditorController add text editing and code execution menu
and its support.

Exercises

1. Reimplement our Example without lazy accessing and evaluate both approaches.
2. Reimplement the hot spot example by replacing the array representation of hot spots with a class called

HotSpot and consisting of a name and a rectangle with the appropriate dimensions.
3. Draw a scenario diagram showing what happens when the user clicks add or remove in our example.
4. Explore classes Controller, ControllerWithMenu, StandardSystemController, and NoController and write a

description of their essential behaviors.
5. It is not always necessary to specify the performer of a menu because performer has a default. What is

this default and what does this definition imply?
6. Explore classes ParagraphEditor and TextEditorController and write a description of their essential

behaviors.
7. Explore event methods and event classes and write a description of their essential behaviors.
8. Method displayOn: in our example redraws the whole subview which is not necessary. If we just added

a new hot spot or deleted an existing one, we only need to redraw the corresponding small part of the
subview and this can be achieved by using invalidateRectangle: instead of invalidate. Modify the
program to use this approach and comment on the result.

9. Add command change background color to the <window> menu. The command will display a multiple
choice dialog listing all predefined colors and when the user selects one, it will change the color of the
currently active window. (Notes: You must reinitialize class StandardSystemController after changing
the menu - why? After changing the color, send display to the window for the change to take effect.)

10. The concept of a clickable view has uses beyond our simple example. List several applications that
could use mouse sensitive areas and design a general purpose ClickableController suitable for as many
uses as possible.

11. Develop an application for drawing curves defined by mathematical formulas. We leave the detailed
specification to you but the general principles should be as follows: The user interface allows the user
to enter a function as a one-argument block, the start and end points of the argument, and the color in
which the curve is drawn. Several curves may be drawn in the window at the same time and on the
same scale. The window is self-repairing.

12. The previous exercise suggests the idea of a curve-drawing widget, along the lines of the Calendar
widget described in Appendix 2. Write the specification and develop such a widget. Test your widget
by reimplementing the previous exercise.

13. Reimplement the Calendar widget using a subview.
14. The TextCollector class which is the model of the Transcript is a very interesting counterpart of the Text

Editor because it maintains focus at the end of its text contents: All output to it is automatically
appended at the end. This is very useful in applications such as system logs or logs of network activity

 35

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

which must be maintained in the order in which they are generated. Unlike the Text Editor, however the
TextCollector does not have its own button on the UI Palette and if you wish to use it, you must use
other means. Give a detailed description of how you could incorporate Transcript-like behavior in an
application window.

Conclusion

 VisualWorks user interfaces are based on three kinds of objects: display surfaces, the objects
being displayed, and the object doing the drawing and holding the drawing parameters.
 Display surfaces can be divided into those dedicated to displaying on the screen and those
dedicated to printing. Screen related display surfaces include windows, masks, and pixmaps. Among the
several kinds of windows, ApplicationWindow is most important because it implements canvases drawn
with the UI Painter. Pixmaps are used to construct displayable objects in memory before they are displayed
on the screen, and masks are used to control which part of an underlying image is displayed and which is
hidden or transparent.

Programming of a window is usually restricted to controlling window parameters such as window
label or background paint. The programming of a pixmap usually consists of displaying an image on it and
masking it with a mask. Sometimes, a pixamp is used just to construct an image, for example as a
composition of geometric objects. The programming of a mask usually consists of displaying a shape
object that defines the mask’s transparent area.
 The drawing of visual objects is performed by a GraphicsContext. This crucial class defines
methods for displaying objects such as images, text, and geometric objects, and holds display parameters
such as line width, text font, color, and clipping rectangle which defines the part of the window or subview
used for display. All of these parameters can be modified programmatically at run time. GraphicsContext is
essential for the design of custom GUIs because it implements all display.
 Visual objects that can be drawn by a GraphicsContext on a display surface include strings,
geometric objects, and images. Geometric objects can be drawn either as anonymous objects using
display:at: or by object-specific messages such as displayRectangle:at:. In the first case, the object must
first be wrapped as a stroker or as a filler. Object-specific methods such as displayRectangle:at: include this
operation.
 Although most applications of paint use instances of ColorValue and paint the surface or display
the object in a single uniform color, paint can also be an instance of a Pattern. A Pattern is essentially an
image used as a tile to wallpaper a rectangular area on a display surface.
 Images are pixel-by-pixel representations of rectangular areas. Their public protocol is defined in
the abstract class Image which transparently delegates work to its concrete subclasses that implement
images for specific image depth. (Image depth is the number of bits used to represent the color of one
pixel.)
 Another object useful in GUIs is the cursor representing the position of the mouse on the screen.
Class Cursor contains a variety of predefined cursor shapes, and new ones can be created by specifying
cursor image, mask (defines the see-through area), hot spot (the Point returned when the cursor is queried
for its position), and name. A convenient way to create a cursor shape is by using the Image Editor tool
which contains a special command for saving an image as a mask.
 To create a new GUI component such as a chess board or the face of a clock, select the subview
widget (view holder) from the UI Palette, paste it on the canvas, and define at least its View property - the
method that returns the view object displayed in the subview. As the next step, construct your view class,
defining at least method displayOn: aGraphicsContext which is the basis of the display of the subview. The
method displays on a GraphicsContext supplied by the application window, with its default parameters
which can be changed in displayOn:. If you use dependency, you must also sometimes define an update
method. In most cases, update sends invalidate to self and this behavior is defined in a superclass of View
and inherited. If your update is more complex, for example requiring invalidateRectangle: you must define
update in your view class. Invalidate messeages travel up the component tree to the window which then
calculates the clipping area of its GraphicsContext and sends displayOn: aGraphicsContext down the tree to
its components with the clipped GraphicsContext. Each component then redraws that part of itself which

 36

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 27/02/2002

falls within the clipping rectangle, using the supplied default graphics context parameters or redefining
them temporarily.
 Older versions of VisualWorks used polling controllers which repeatedly queried the sensor for
UI events such as mouse movement or button clicks. Since polling requires extra overhead and since UI
events occur fast, this approach often missed UI events. Modern implementations still provide polling
controllers but add event-driven controllers which obtain event notification directly from the operating
system, eliminate the polling overhead, and thus provide better performance. All you have to do to create a
custom event-driven controller is create a new controller class subclassed to ControllerWithMenu (if you
require an <operate> menu) or Controller (if you don’t need an <operate> menu) and redefine those of its
event tracking methods that are important for your subview. If your subview does not have an active user
interface, specify NoController as the default controller class.

Important classes introduced in this chapter

 Classes whose names are boldfaced are very important, classes whose names are printed in italics
are less important, classes whose names are printed in regular font are not of much interest.

ApplicationWindow, Controller, ControllerWithMenu, CoverageValue, Cursor, GraphicsContext, Mask,
NoController, Paint , Pattern, Pixmap, TextCollector.

Terms introduced in this chapter

controller - part of GUI responsible for user interaction via mouse and keyboard events
clipping rectangle - rectangle restricting display area
cursor hot spot - Point reported by cursor when it is queried about its position
damage repair - repainting of surfaces damaged by closing or overlaying a window
display surface - screen or printer page on which painting is taking place; memory representation in the

case of mask
event-driven controller - controller whose UI event messages are triggered by the operating system (see

also polling controller)
filler - filled geometric object (see also stroker)
graphics context - object that holds display parameters and performs the display
mask - shape overlaid over display area; determines which part of area is visible or transparent
image depth - number of bits used to represent one pixel
invalidation - the process of notifying a window that a view or its part should be redisplayed; the

propagation of this request to the components
pattern – a form of paint, a tile that can be used to wallpaper a rectangular area
paint - a color used to paint a surface or a pattern used to tile it
pixel – picture element, an addressable dot on the screen
polling controller - a controller that repeatedly asks its event sensor for UI events and responds

appropriately; outdated (see event-driven controller)
stroker - contoured geometric object (see also filler)
subview - contents of a view holder
view - object responsible for displaying a predefined or custom GUI component
view holder - widget used to create custom visual components

 37

	Preliminary design
	Design refinement
	Implementation
	Opening
	Exercises

	Pixmaps – drawing surfaces behind the scenes
	Redrawing caused by a change in the model

	Improvements
	
	
	Conclusion

