
Alice in a Squeak Wonderland

Jeff Pierce

Computer Science Department

Carnegie Mellon University

About this Chapter
This chapter is an introduction to Squeak Alice, an authoring tool for
building interactive 3D worlds in Squeak. The first part of this chapter
introduces some of the commands that Squeak Alice provides, as well as the
ideas behind them. This part of the chapter does not require any previous
knowledge of 3D graphics and should be accessible to everyone from
Squeak novices to Squeak experts. The second part of this chapter
describes the implementation of Squeak Alice, and requires a more
advanced understanding of Squeak classes and 3D graphics.

What is Alice?
Printed text, radio, and motion pictures are all different types of media.
Although each medium has different strengths and weaknesses, one factor
common to all of them is that people use the medium for storytelling.
Storytelling is one of the oldest and most persistent professions: sooner or
later people attempt to use every new medium for storytelling.

Interactive 3D graphics is a new medium that people are still
experimenting with for storytelling. The need for expensive and specialized
hardware used to be a barrier for potential 3D authors, but the development
of inexpensive graphics accelerator cards has largely eliminated this barrier.
A significant barrier that still remains is the authoring problem: creating an
interactive 3D world requires specialized training that most people interested
in telling stories do not possess.

Working with 3D graphics typically requires experience with the C or
C++ programming languages, as well as familiarity with linear algebra (e.g.
4x4 homogeneous matrix transformations). Unfortunately, the people who
possess the skills to work with 3D graphics are not typically the same
people who want to use the medium to tell new kinds of stories. To allow
the latter group of people to work with interactive 3D graphics you need a
new type of 3D authoring tool. The goal of the Alice project was to create
an authoring tool for building interactive 3D worlds that is easy for novices
to learn and use.

Where did Alice come from?
Randy Pausch and his research group started the Alice project at the
University of Virginia. The stated goal of the project was to make it
possible for a sophomore Art or English major with little or no
programming experience to build an interactive 3D world. We actually

2

Alice in a Squeak Wonderland

exceeded this goal: we commonly find that motivated high school students,
and even some elementary school students, can use Alice.

The first version of Alice ran on Silicon Graphics workstations, but
increasingly powerful hardware made it possible for us to port Alice to
Windows PC computers at the end of 1995. We made the first public
release of Alice at SIGGRAPH 1996, and to date over 100,000 people have
downloaded Alice and tried it out for themselves. The current version of
Alice is available free from http://www.alice.org for Windows 95, 98, and
NT.

In 1997 Randy Pausch and some of the original Alice team moved to
Carnegie Mellon University (CMU) to form the Stage 3 Research Group
(http://www.cs.cmu.edu/~stage3). At CMU we continue to develop Alice
and learn how to make interactive 3D graphics even more accessible to
people. Our current goal is to make Alice easier for younger children by
eliminating as much of the typing as possible.

How Squeak Alice got started
The impetus for the Squeak version of Alice, or simply Squeak Alice, was
born when Randy Pausch, the director of the Alice project, and Alan Kay,
the leader of the Squeak development team, met and exchanged views on
how to make authoring in different media more accessible to children. As a
result of that meeting, Alan decided that he wanted to take the lessons we
learned from developing Alice and implement them in Squeak. To
accomplish that goal he asked me to spend a semester interning at Disney
Imagineering to implement a Squeak version of Alice. As a Ph.D. student
working with Randy and a member of the Alice design team I was familiar
with both the lessons we learned from Alice and the structure of the system
itself. I leaped at the chance to work with Alan, and after three and a half
months of hard work during the 1999 spring semester the first version of
Squeak Alice was born.

Using Alice in Squeak
To use Squeak Alice you first need to create a Wonderland. A Wonderland
is essentially the collection of all the things you will need to create your own
interactive 3D world: a camera window to give you a view into your world
and a script editor that allows you load actors into your world, give them
commands, and create behaviors for them.

How to create a Wonderland
To create a Wonderland you need to first make sure you are in a Morphic
project, and then open a Workspace. To open a workspace first display the
World menu by left clicking your mouse, select “open…”, and in the new
menu that appears select “workspace”. In the workspace that appears type:

Wonderland new

and tell Squeak to DoIt (by hitting Alt-D for PC users, Cmd-D for Mac
users). A number of windows will pop up as Squeak creates your
Wonderland.

3

Alice in a Squeak Wonderland

The window on the left is the camera window. This window is your
view into the 3D world. In this window you will see the effects of the
commands you execute. You can also “reach through” this window to
manipulate 3D objects in your world using the mouse.

Figure 1: The Camera Window

The window on the right is the Wonderland script editor. The editor is
composed of four different parts. On the far left is the object tree, which
lists the objects in your scene. Later in this chapter you will learn more
about the object tree. To the right of the object tree at the top of the window
are three buttons. These buttons choose which part of the editor is active:
the script tab, the actor info tab, or the quick reference tab.

The script tab is where you type commands to Squeak Alice and
execute scripts. This tab is very similar to a Workspace (DoIt will execute
commands, while PrintIt will print out results), but also pre-defines names
(e.g. left, green, and camera) for the Wonderland. This chapter will
provide lots of sample commands to try. To try out a command, type it into
the script tab and execute it using DoIt.

Figure 2: The Script Editor Showing the Script Tab

The actor info tab provides a view of the actor and some current
information about that actor. Left clicking on an actor in the object tree
determines what actor the actor info tab will display information about.

4

Alice in a Squeak Wonderland

Figure 3: The Actor Info Tab

The quick reference tab provides examples for many of the commands
that Squeak Alice provides. If you forget how to format a command you
can check this tab.

Figure 4: The Quick Reference Tab

Changing the display depth
To run faster and conserve memory Squeak initially uses a low display
depth. The display depth is the number of bits Squeak uses to represent the
color for each pixel. 3D graphics generally requires a higher display depth
to look nice, so you will probably want to change the display depth to 16 or
32 bits. To do this, left click to open the World menu, select
“appearance…”, then “set display depth…”, and finally choose “16” or
“32”.

Creating an Actor
Now that you have created your Wonderland, you need to add some 3D
objects to it. In Squeak Alice 3D objects are known as actors. Squeak

5

Alice in a Squeak Wonderland

Alice can create actors from a variety of 3D file formats, including Alice
MDL files, 3DS files, and VRML files. To create an actor you need to tell
the Wonderland what file to use. For example, to create an Actor from the
Alice MDL file bunny.mdl you would type and execute the following
command in the script tab:

w makeActorFrom: ‘path/to/file/bunny.mdl’

Figure 5: The Wonderland After Loading a Bunny

This tells the Wonderland (w is the name for your Wonderland in the
script tab) to create an actor using the bunny.mdl file. By default Squeak
Alice will try to name the actor using the file name; in this case it will create
an actor named “bunny”. If an actor with this name already exists (for
example, if you already created an actor using the bunny.mdl file) Squeak
Alice will try to name the actor bunny2, bunny3, etc.

As a public service the CMU Alice team has made their library of 3D
objects available to the Squeak community free of charge. You can
download these objects from:

http://www.cs.cmu.edu/~jpierce/squeak/SqueakObjects.zip

The only restriction is that you must acknowledge that these objects are
copyright CMU if you choose to use them.

You can also create actors from other file formats by using the methods
makeActorFrom3DS: and makeActorFromVRML:. One thing
to remember when loading 3DS or VRML files is that these formats specify
the size of 3D objects using an abstract “unit”, so your 3DS model of a car
might be, for example, 200 units tall. However, Squeak Alice specifies size
in meters rather than some abstract unit, so if you load your car into Squeak
Alice it will be 200 meters tall. Luckily you can quickly bring your 3D
object down (or up) to size using the resize: method that you will
encounter later in this chapter.

Simple commands
One of the key lessons we learned from the Alice project is that vocabulary
matters. Many 3D authoring tools use commands like “translate” and
“rotate” to manipulate objects. Unfortunately, these are not the best
commands for novices. Consider that, for our target audience, translate is

6

Alice in a Squeak Wonderland

usually thought of as something you do to a language (e.g. translating from
English to French) rather than a 3D object.

Thus, instead of translate and rotate, Squeak Alice users “move” and
“turn” objects. However, this only solves part of the problem. Other
authoring tools usually also require users to specify directions in terms of
the X, Y, and Z axes, yet most people generally do not think in terms of
moving objects in the X direction. In Squeak Alice we instead allow users
to specify directions using left, right, forward, back, up, and down. Each
object then defines its own coordinate system (e.g. the bunny has built in
forward, left, and up directions). While not all objects have an intrinsic
forward direction, we note that no object has an intrinsic X direction. If an
object has no intrinsic forward direction then we assign one arbitrarily.

Figure 6: The Bunny's Built-In Directions

Type the following commands into the Wonderland script window and
execute them to try moving and turning an actor.

bunny move: forward

bunny turn: left

Both of these commands provide a default amount to move or turn. By
default actors will move one meter or turn a quarter turn. Users can also
specify the desired amount themselves. For the move: command users
specify the distance in meters, while for the turn: command they specify the
number of turns. This is another lesson we learned from Alice: novices do
not think about turning objects in terms of radians or degrees. Instead, they
prefer to think about quarter, half, or full turns.

Try the following commands for yourself, and see what happens when
you change the distance or number of turns.

bunny move: forward distance: 2

bunny turn: left turns: 1/2

Working with the mouse
Rather than type commands to objects, users can also manipulate them
using the mouse. Simply clicking and dragging with the left mouse button
on an actor moves the actor parallel to the ground plane. To move the actor
up or down, the user first left clicks on the actor and then holds down the
Shift key before dragging. Left clicking and then holding down the Control

7

Alice in a Squeak Wonderland

key and dragging will turn the actor left or right (around the scene’s up
vector). Finally, the user can left click on the actor and then hold down
both the Shift and Control keys to rotate the actor without any constraints.

Users can also access a menu of commonly used commands. To
access this menu the user first left clicks on the actor’s name in the object
tree to select it, and then right clicks on the object tree. This will bring up a
menu of useful commands that will turn the selected object around once,
point the camera at it, make it grow, shrink, etc.

Squeak Alice also makes it possible for users to create new responses
for actors when users click on them. We will cover how to change an
actor’s responses later in this chapter.

Camera controls
By default every Wonderland contains a camera, and users can give this
camera commands using the commands for actors. For example, try the
following:

camera move: back distance: 3

camera turn: left

Users can also maneuver the camera around the world using the
mouse. To do this they first need to show the controls for the camera. You
can do this by evaluating:

cameraWindow showCameraControls

Figure 7: The Camera Window and Camera Controls

To hide the camera controls again, evaluate:

cameraWindow hideCameraControls

Showing the camera controls will show a small morph beneath the
camera window that depicts four arrows. To move the camera around the
scene you left click in the camera controls morph and then drag the mouse.
Moving the mouse up relative to the center of the controls morph will move
the camera forward; the further the mouse pointer is from the center the
faster the camera will move. To move the camera backward you move the
mouse down from the center, while to turn the camera left or right you
simply move the mouse pointer left or right of the center. Note that you do
not need to release and then re-click to change direction. While holding the
left mouse button down you just move the mouse pointer to a different
position relative to the center of the camera controls morph.

8

Alice in a Squeak Wonderland

You can change the way the camera moves by holding down one of the
modifier keys. To move the camera up or down hold down the Shift key.
To force the camera to only rotate left or right, hold down the Control key.
Because Squeak interprets a left click while you are holding down the
Control key as a different command you will need to click on the camera
controls first and then press the Control key. Finally, you can tilt the
camera up or down by holding down both the Shift and Control keys and
then left clicking on the controls and dragging the mouse.

Ubiquitous animation
If you are experimenting with Squeak Alice as you read through this chapter
you have no doubt noticed that the commands to move and turn the bunny
animated over time. All commands in Squeak Alice animate by default over
one second whenever it makes sense to do so. This is actually based on a
psychological principle: people take a second or two to assimilate any
instantaneous change. Given this fact, we can make use of that second to
animate the command so that users can watch the command unfold. We
find that this tends to make scripts easier for users to debug. For example,
rather than instantaneously disappearing off the screen an actor might move
out of view to the left, letting the user know where the actor went.

Squeak Alice also allows users to specify durations other than one
second. Any command that animates by default also allows the user to
explicitly set the duration. For example:

bunny move: left distance: 2 duration: 4

bunny turn: forward turns: 1 duration: 10

There is something else interesting about animations in Squeak Alice.
Specifically, these animations are time based rather than frame based.
Users specify how many seconds an animation lasts, rather than the number
of frames. There are two reasons for this. First, novices intuitively think
about duration in terms of seconds. The notion of a frame requires a more
detailed understanding of how computer graphics works. Second, the
actual amount of time that an animation specified in frames takes depends on
the speed of the computer you run it on. On a computer that can render at 30
frames per second, a 30 frame animation will last one second. However,
on a computer that can render at 60 frames per second that same 30 frame
animation will only last half a second. Animations with a duration specified
in seconds, by contrast, will last the same amount of time on both
computers.

Zero duration animations and rightNow
Squeak Alice allows you to create an animation with a duration of zero
seconds by setting the duration to 0. However, this does not actually cause
the command to happen instantaneously. When you evaluate a command
with a zero duration Squeak Alice still creates an Animation object for that
command.

bunny move: forward distance: 2 duration: 0

This means that Squeak Alice will not evaluate the command until the
next time it processes animations, which will be slightly later. This can

9

Alice in a Squeak Wonderland

cause problems if the next line in your script assumes that the bunny has
already moved.

To make Squeak Alice execute a command instantaneously, you need
to use the rightNow primitive. This tells Squeak Alice to execute the
command right away, without creating an Animation object. You use
rightNow like this:

bunny move: forward distance: 2 duration: rightNow

Styles of animation
By default Squeak Alice animates commands using an ease-in / ease-out
(also known as slow in / slow out) animation style. Therefore if you tell the
bunny to move one meter over one second it will not move at a constant
speed; instead, the bunny will accelerate to a maximum velocity and then
decelerate.

Although this is the default animation style, you can also specify other
animation styles using the style: keyword. In addition to the default style
(known as gently), you can also use the beginGently, endGently, or
abruptly animation styles. The beginGently style will accelerate to the
maximum velocity but will not decelerate gradually, while the endGently
style will start at the maximum velocity and then decelerate smoothly. The
abruptly style will cause the animation to happen at a constant velocity.

bunny move: forward distance: 2 duration: 2 style: abruptly

bunny move: forward distance: 4 duration: 8 style: endGently

Ubiquitous undo
Part of the goal of the Alice project is to encourage users to explore the
possibilities of 3D graphics. Before users will explore, however, they need
to feel safe. Specifically, they need to feel like actions will not have
irretrievable consequences, so that they can eliminate any changes they do
not like. One of the ways we accomplish this is by providing an ubiquitous
undo mechanism, so that users can always roll back to a safe state.

Squeak Alice provides a big, green Undo button in the Wonderland
Editor. Each time you click on this button Squeak will undo one action or
command, starting with the most recent. The Wonderland actually keeps
track of all of your previous commands, so if you click the Undo button
five times Squeak will undo your last five actions. In keeping with our
philosophy of ubiquitous animation Squeak Alice animates the undo
operation over one second as well.

Figure 8: The Undo Button

10

Alice in a Squeak Wonderland

Parent – child relationships
Alice actors are hierarchical objects, which means that they are divided

up into different parts with a parent-child relationship. This parent-child
relationship is important because commands that you give to the parent actor
can affect its children. For example, because the head is a child of the
bunny, the head will move if you move the bunny.

In Squeak Alice the object tree, located underneath the Undo button in the
Wonderland Editor, depicts the parent-child relationship between the
different actors. The scene, located on the top left, is the parent of all the
actors in the Wonderland. The ground, camera, light, and bunny
are the immediate children of the scene, so Squeak Alice displays them one
level down and to the right of the scene. The bunny actor is also composed
of different parts (a head, body, and drum) that are in turn built of more
parts.

Figure 9: The Object Tree

Because these constituent parts are actors we use the same Alice
commands that we do with the whole actor. Try out the following
commands:

bunny turn: left

bunny head turn: left turns: 1

bunny drum move: forward distance: 2

The effect of some commands on an actor’s children depends on
whether a given child actor is a first class or part object. The easiest way to
think about the distinction is a first class object is a complete, separate entity
like a table or a book, while a part is a piece of an object (e.g. a table leg).

The reason we created this distinction is that we needed a way for users
to be able to decide whether or not property changes to an actor would affect
the actor’s children. Thus a book might be a child of a table, so that the
book moves when the table does, but if the user changes the color of the
table the book should remain the same color. The user can create this

11

Alice in a Squeak Wonderland

behavior by making the book a child of the table and setting both actors to
be first class. You can see for yourself how this works by changing the
first class or part status of an actor. Try the following:

bunny setColor: green

bunny head becomeFirstClass

bunny setColor: red

bunny head becomePart

bunny setColor: blue

The first class or part status of an actor also affects how that actor handles
events, as we will see shortly.

In addition to changing the first class or part status of an actor, you can
change the parent of the actor. The following makes the bunny’s head a
child of the ground:

bunny head becomeChildOf: ground

Now if you click on the bunny and drag you will move the bunny’s body
and drum, but his head will remain in place. The bunny’s head is now a
part of the ground. This also causes the name of the head actor to change.
Because the head is a child of the ground, the actor’s name changes to
ground head. You can give it commands using this new name:

ground head turn: left

Advanced commands
The Move and Turn commands are both the simplest and the most
commonly used commands in Alice. Squeak Alice also provides some
useful higher level commands for users to work with.

• Squeaks Alice provides an animated destroy command that
removes objects from the Wonderland. Like all other Alice
commands users can Undo this operation if they destroy an object
accidentally.

bunny destroy

bunny destroy: 4

• The resize: command allows users to change the size of objects.
Many 3D authoring tools refer to this operation as scaling, but we
found that users tend to associate the word “scale” with the notion
of weighing. The basic version of resize allows users to specify an
amount and duration. More advanced versions allow the user to
specify non-uniform resizing and a volume preserving resize.

bunny resize: 2

bunny resize: 1/2 duration: 4

bunny resizeTopToBottom: 2 leftToRight: 1 frontToBack: 3

bunny resizeLikeRubber: 2 dimension: topToBottom

12

Alice in a Squeak Wonderland

Figure 10: The Bunny After a resizeLikeRubber

• We found that users intuitively understood using turn: to specify
yaw (left/right) and pitch (up/down). However, there was no
direction that users associated with Turn to describe roll. We
implemented the roll: command for this operation.

bunny roll: right

• Squeak Alice provides moveTo: and turnTo: commands that
allow users to specify motion to an absolute position or orientation.
The user can specify an absolute position or orientation using either
a numerical triple or a reference object. The triples use a {Left. Up.
Forward} notation and describe positions or orientations in the
actor’s parent’s reference frame. For example, for the bunny {0.
2. 0} is the point two meters above the origin of the scene’s
coordinate system, while for the bunny’s head this same triple is
two meters above the bunny’s origin.

bunny moveTo: {0. 2. 0}

bunny turn: left

bunny turnTo: {0. 0. 0} duration: 3

bunny moveTo: camera duration: 2

bunny turnTo: camera

• Although users can tell an actor to align with another actor using the
turnTo: command, we also provide an alignWith: command.

bunny alignWith: camera

• Sometimes rather than aligning one actor with another you want to
turn one actor to face the other. The pointAt: command provides
this functionality: the command rotates the actor so that it is pointed
at the specified target. Note that you can specify either another
actor or a {Left. Up. Forward} triple as the target.

camera pointAt: bunny

camera pointAt: {0. 0. 0} duration: 3

• The place: command moves actors to a specific position relative
to another actor. The positions that Place supports are

13

Alice in a Squeak Wonderland

inFrontOf, inBackOf, onTopOf, onBottomOf,
toRightOf, toLeftOf, onCeilingOf, and onFloorOf.

light place: onTopOf object: bunny

light place: inFrontOf object: bunny duration: 4

• After you have been turning and rolling an actor or the camera you
occasionally want to realign the actor with the Wonderland’s up
vector. This is especially true for the camera, as we found that
users quickly become disoriented when the camera is rolled too far
left or right. We created the standUp command to provide this
functionality.

camera standUp

camera standUpWithDuration: 4

• The nudge: command moves actors in multiples of their length,
width, or height.

bunny nudge: forward

bunny nudge: up distance: 2 duration: 2

• Occasionally users need to temporarily hide an actor in their
Wonderland. The hide command will stop Squeak from drawing
an object, while show makes Squeak start drawing it again.

bunny hide

bunny show

• The playSound: command will make an actor play a specified
WAV file. Squeak Alice creates an Animation object that controls
the playback.

bunny playSound: ‘bangdrum.wav’

This is of course not all of the commands that Squeak Alice provides
for actors. For a more comprehensive listing you can look at the Quick
Reference tab in the Wonderland Editor, or you can look at the
WonderlandActor implementation itself.

Beyond time dependent animations
Although the majority of the commands in Squeak Alice create time
dependent animations, you can also use Squeak Alice to create more
persistent actions. First, you can use the speed: keyword to cause actors
to move at a constant rate. When you add the speed: keyword to the
move: command, Squeak Alice will move the object at the specified
velocity in meters per second. If you specify a distance: the actor will
move that distance and then stop; if you do not then the actor will move at
the constant rate forever (or until explicitly stopped). The speed: keyword
works similarly with the turn: command, but the associated quantity is
rotations per second.

14

Alice in a Squeak Wonderland

bunny move: forward distance: 5 speed:1

bunny move: forward speed: 1

bunny turn: left turns: 2 speed: 1/2

bunny turn: left speed: 1/2

We found that using speed to create a persistent action involving
moving or turning made sense to our users. Unfortunately, not all
commands naturally involve a speed. We needed a way for users to be able
to establish simple constraints like making the bunny’s head always point at
the camera. For this type of action we created the eachFrame
parameter. You can use eachFrame as the duration to create an action
that occurs every time Squeak redraws the Wonderland.

bunny head pointAt: camera duration: eachFrame

In addition to allowing users to supply eachFrame as the duration,
Squeak Alice also provides eachFrameUntil: and eachFrameFor:
keywords that users can add to commands. The eachFrameUntil:
command allows users to provide a block context that returns true or false;
the command will repeat until the block returns true. The
eachFrameFor: keyword makes the command repeat for the specified
number of seconds. The following command makes use of another
parameter, asIs, to constrain the bunny to only move along the ground for
10 seconds.

bunny moveTo: {asIs. 0. asIs} eachFrameFor: 10

The asIs parameter tells Squeak Alice to leave the current value “as
is”. Note that this does not prevent the value from changing at all, it merely
prevents that command from changing the value. Thus while the previous
command is active the user can left click on the bunny to drag it around (the
moveTo: command will not cause any change in the bunny’s left or
forward position). However, if the user holds down Shift while dragging
to move the bunny up or down then the moveTo: command will always
reset the bunny’s up position to 0.

Frames of reference
By giving each actor its own reference frame we make it very easy to talk
about moving actors forward, up, etc. However, another way that people
talk about moving objects in the real world is relative to other objects, e.g.
move it to your left. Users can move actors in Wonderlands relative to
other actors using the asSeenBy: keyword. The following command
will move the bunny one meter to the camera’s left:

bunny move: left distance: 1 asSeenBy: camera

You can also move actors to an absolute position relative to another actor.
The following command moves the bunny to a position one meter in front
of the camera and one meter above it:

bunny moveTo: {0. 1. 1} asSeenBy: camera

15

Alice in a Squeak Wonderland

Controlled Exposure to Power
One of the basic design principles we used in the creation of Alice was the
notion of controlled exposure to power. This principle in essence states that
commands should have sensible defaults, so that the user can work with
them in their simplest forms and still be able to accomplish useful work.
Then as the user becomes more sophisticated he learns how to explicitly
specify values rather than relying on these defaults. The user continues to
work with the same commands, but those commands advance with user.
For example, the move: command can take all of the following forms:

bunny move: forward

bunny move: forward distance: 1

bunny move: forward distance: 1 duration: 1

bunny move: forward distance: 1 speed: 1/2

bunny move: forward speed: 1/2

bunny move: forward speed: 1/2 for: 5

bunny move: forward asSeenBy: camera

bunny move: forward distance: 1 asSeenBy: camera

bunny move: forward distance: 1/10 duration: eachFrame

And that is only some of the forms move: can take. Even though users
can start out by simply specifying a direction, there’s a lot of different ways
they can use move: as they become more advanced users.

Animation Methods
When you give a command to an Actor in a Wonderland Squeak creates a
WonderlandAnimation instance that governs the time dependent behavior of
that command. You can assign this instance to a variable and access the
methods defined on animations. Four useful methods that animations
provide are pause, resume, stop, and start. pause will
temporarily stop an animation until you resume it. stop will stop that
animation altogether, while start will run the animation again from scratch.

spin := bunny turn: left turns: 20 duration: 40

spin pause

spin resume

spin stop

spin start

You can also cause an animation to repeat using the loop command.
If you supply a number with loop: the animation will repeat that number of
times. Otherwise the animation will repeat forever until explicitly stopped.
If you want the animation to finish the current iteration before stopping you
can use stopLooping.

flip := bunny turn: forward turns: 1 duration: 2

16

Alice in a Squeak Wonderland

flip loop: 2

flip loop

flip stopLooping

Composing Animations
Squeak Alice provides a set of primitive commands (e.g. move: and
turn:) as well as a set of more advanced commands (e.g. pointAt: and
alignWith:). During the initial design of Alice we realized that these
commands alone did not provide the user with the control and flexibility that
we wished. We therefore provided a way for users to compose primitive
animations to create more complex animations. There are two ways to
compose animations: doTogether:, which causes the animations to run
at the same time, and doInOrder:, which runs the animations one after
another. These commands are defined by the Wonderland itself, rather than
by the WonderlandActors. With the doInOrder: command we can, for
example, create an animation the causes the bunny to hop up and down.

jump := bunny move: up distance: 1 duration: 1/2

fall := bunny move: down distance: 1 duration: 1/2

hop := w doInOrder: {jump. fall}

hop start

You can also compose the animations that you create with doInOrder:
and doTogether: with other animations.

spinJump := w doTogether: {hop. bunny turn: left turns: 1 duration: 1}

spinJump loop

Setting Alarms
Because commands in Squeak Alice are animated over time, each
Wonderland needs to keep track of the passage of time. To do this, each
Wonderland has a Scheduler instance responsible for keeping track of the
passage of time and for updating the animations of commands. When you
create a Wonderland the scheduler sets the time to zero and then updates this
time every frame. You can find out the current time (in seconds) in a
Wonderland by printing the result of:

scheduler getTime

Squeak Alice makes use of the fact that Scheduler keeps track of the
passage of time by allowing you to set Alarms. An Alarm is some action (a
BlockContext) that you want the Wonderland to execute at a specific time or
after some specified time has elapsed.

The two commands the Alarm class provides for this are
do:at:inScheduler: and do:in:inScheduler:. The first takes a
BlockContext, the time to execute the action, and the scheduler to add the
alarm to.

17

Alice in a Squeak Wonderland

Alarm do: [bunny turn: left turns: 1] at: (scheduler getTime + 10)
inScheduler: scheduler

The second command takes a BlockContext, how time much to wait (in
seconds) before executing the action, and the scheduler to add the alarm to.
Both of these commands return an Alarm instance.

myAlarm := Alarm do: [bunny turn: left turns: 1] in: 5 inScheduler:
scheduler.

The Alarm instance has a checkTime command that you can use to
determine when the alarm will go off, and a stop command you can use to
stop the alarm before it goes off.

Making objects react to the user
All of the commands that I have covered so far are useful for creating
behaviors for objects, but they do not make the Wonderland interactive. To
create interactive behaviors for the actors in a Wonderland you need to use
the respondWith:to: or addResponse:to: methods.

These methods allow you to specify what you want the actor to
respond to, and how you want it to respond. Actors can respond to
leftMouseDown, leftMouseUp, leftMouseClick,
rightMouseDown, rightMouseUp, rightMouseClick, and
keyPress events. Responses then take the form of a BlockContext that
accepts a single parameter. This parameter is a WonderlandEvent instance
that Squeak generates to encapsulate data about the event (e.g. what key the
user pressed).

The respondWith:to: method tells the actor to respond to the event
with only the specified response; the actor ignores all other previously
defined responses for that event. The following command will make the
bunny spin around once every time you click on it with the left mouse
button. Notice that clicking and dragging the bunny will no longer move it
around.

bunny respondWith: [:event | bunny turn: left turns: 1] to: leftMouseClick

The addResponse:to: method will add the new response to any
other defined responses for the specified event. The method returns the
new reaction, so that you can later remove the reaction using the
removeResponse:to: method.

newReaction := bunny addResponse: [:event | bunny turn: left turns: 1] to:
leftMouseClick

bunny addResponse: [:event | bunny move: forward distance: 2] to:
leftMouseClick

Now you can click and drag the bunny around, and when you let up on
the left mouse button the bunny will move in a small circle. If you now
remove the first response you added, the bunny will only move forward
when you let up on the button.

bunny removeResponse: newReaction to: leftMouseClick

18

Alice in a Squeak Wonderland

Helper Actors
Most of the time users work with actors that have geometry (a polygonal
mesh that Squeak Alice uses to create the visual depiction of the actor).
When writing scripts, though, users will occasionally need to describe the
motion or behavior of an object relative to some arbitrary position or
orientation. Consider as a simple example trying to make the bunny orbit
around the scene coordinate {0. 0. 2}. The simplest way to do this is to
create an actor without any geometry (informally dubbed a helper actor):

helper := w makeActor

Move that helper to the desired position:

helper moveTo: {0. 0. 2} duration: rightNow

And then rotate the bunny around that point:

bunny turn: left turns: 1 asSeenBy: helper

Multiple Cameras
Although Squeak Alice provides only a single camera by default, you can
create new cameras to provide multiple views into the Wonderland. There is
a drawback to creating new cameras: because your processing resources are
finite, each new camera decreases the overall frame rate for all camera
views. If your frame rate with one camera is F, then your frame rate with N
cameras will be approximately F / N.

Despite this drawback, users often find it useful to provide multiple
views onto a scene. For example, multiple views can make it easier to find
and manipulate actors in the scene. The syntax for making a new camera is:

w makeCamera

When you execute this command Squeak Alice will create a new camera
(named camera2 for the second camera you create, camera3 for the third,
etc.) and add it to the scene. New camera windows all start in the same
default position, so you may need to move one camera window to see the
other. You can either move the camera window morph with your mouse, or
you can actually issue Squeak Alice commands to the camera window
morphs themselves. The distance units for morphs are pixels.

cameraWindow move: down distance: 50 duration: 2

Squeak Alice actually represents the position of a camera in a
Wonderland using a 3D camera model. Although with a single camera you
will never see this model, with two or more cameras you can actually
position one camera to view another. You can even left click on a camera
model in a Wonderland to move that camera around with the mouse like any
other 3D object.

19

Alice in a Squeak Wonderland

Figure 11: Multiple Cameras Providing Multiple Views

Blending 2D and 3D
Unlike other 3D authoring tools (including the CMU version of Alice),
Squeak Alice allows you to smoothly integrate a 3D Wonderland with other
2D content in Squeak. To do this you simply turn off the background in the
camera window:

cameraWindow turnBackgroundOff

You may also want to hide the ground to focus more on composing the
actor with current Project.

ground hide

Figure 12: The Bunny Blended With the Script Editor

Assuming you pointed the camera at an actor in the Wonderland, you
should now see that character blended smoothly with the Project. To move
the actor around the Project you need to move the camera window, not the
actor itself. Try the following one at a time to see the difference:

cameraWindow move: right distance: 50

bunny move: right distance: 5

Now that you have created a 3D character integrated with your 2D
Project, you can make that actor interact with the Project. Squeak Alice
provides commands for converting 2D points to 3D points, as well as
commands to change the Z ordering of the camera window morph in the
Project. Thus you can, for example, make the bunny’s head watch your
cursor:

20

Alice in a Squeak Wonderland

bunny head doEachFrame:

[bunny head pointAt: (camera transformScreenPointToScenePoint: (Sensor
mousePoint) using: bunny) duration: rightNow].

This example introduces the doEachFrame: method, which allows you
to send a snippet of code to an actor to execute each frame, and the camera
transformScreenPointToScenePoint:using: method, which
converts a 2D point to a 3D point using the bunny to determine the relative
depth of the 3D point.

Two other useful methods are the sendInFrontOf: and
sendBehind: methods provided by the camera window. These methods
allow you to (for instance) make a 3D character wander around (in front of
and behind) a 2D morph.

Active textures
Andreas Raab implemented a method of drawing the contents of a morph on
a 3D object in a Wonderland that he calls active textures. To create an active
texture you need to open the camera window morph to drag and drag,
enable active textures for a particular 3D object, and then drop a morph on
it.

To open a camera window morph to drag and drop you need to show
its menu by holding down Control and left clicking on the camera window
morph. Select “open to drag and drop” from this menu.

Next create a 3D object that you want to draw the morph on. It’s
usually easiest to use a 2D plane. Wonderlands provide a shortcut for
creating a simple flat square:

w makePlaneNamed: ‘myPlane’

Now you need to enable active textures for your object. Hold down
Alt (option for Mac users) and left click on the plane to show its halos.
Click on the red halo to show the plane’s menu and select “enable active
texture”. Repeat these steps to show the plane’s menu again, but this time
select “auto adjust to texture”.

 You can create a sample morph to use as your active texture by left
clicking in your project to show the World menu and selecting “new
morph”. In the new menu select Demo!BouncingAtomsMorph. Squeak
should create a new morph and attach it to your cursor. Now just left click
on the plane to drop the morph on top of it, and you should see the
bouncing atoms morph appear on the plane inside your Wonderland.

21

Alice in a Squeak Wonderland

Figure 13: An Active Texture in a Wonderland

Quitting a Wonderland
Squeak creates classes that are specific to each Wonderland and are only
used within that Wonderland. As a result, when you want to delete a
Wonderland you need to make sure Squeak removes those classes correctly.
To do this you click on the red Quit button in the Wonderland Editor;
Squeak will delete the Wonderland for you and clean up after it properly.

Instead of deleting a Wonderland you can instead pause it by exiting the
project containing that Wonderland. You can also reset the Wonderland to
its initial condition (but keeping the script you have written in the Editor) by
clicking the yellow Reset button.

The Squeak Alice Implementation
This part of the chapter provides a brief overview of how I implemented
Alice in Squeak. My intention is to provide a high level understanding of
how Squeak Alice works. Advanced Squeak developers who want a more
detailed understanding of how Squeak Alice works should find that this
discussion at least provides a framework for reading and understanding the
actual code.

Balloon3D
Balloon3D is an immediate mode 3D renderer written by Andreas Raab.
Balloon3D provides the necessary primitives (lighting, shading, texturing,
mesh and matrix transformations, compositing operations, etc.) that are
needed to draw a single frame of a 3D scene. However, Balloon3D does
not provide any continuity between frames, nor does it have any notion of a
hierarchical, persistent scene. Put simply, Balloon 3D knows how to draw
triangles, not objects.

Squeak Alice uses Balloon3D to create a scene graph-based retained
mode renderer. This means that Squeak Alice knows how to draw objects:
it creates a 3D world that persists from frame to frame. Squeak Alice
organizes the objects in the 3D worlds (lights, cameras, and actors) in a
scene graph. A scene graph is a hierarchical structure that describes the
relationship between objects in the scene and their properties (color,

22

Alice in a Squeak Wonderland

lighting, texture, position, etc.). By incrementally modifying the properties
of objects in the scene graph each frame Squeak Alice can animate the 3D
world.

Scheduler
Each Wonderland has a Scheduler instance. The scheduler keeps lists of
active Animations, Actions (e.g. BlockContexts that should be executed
each frame), and Alarms. The scheduler causes time to pass in Wonderlands
by iterating through these lists.

The scheduler updates itself as often as possible (using the Morphic
step method). Each time the scheduler updates it first determines how
much time has elapsed and what the current time in the Wonderland should
be. The scheduler then processes the lists of active actions, alarms, and
animations.

The scheduler executes any current actions and checks to see if the
actions should be removed from the active list. The scheduler removes an
action if the action’s for: time has expired or its associated until: condition
is true.

The scheduler next checks to see if any alarm times have passed. If the
scheduler finds an alarm whose time has passed it executes the
BlockContext associated with the alarm and then removes it from the list of
current alarms.

The scheduler’s last step is to update the active animations. Animations
know their start state and time, end state and time, and the interpolation
function to use to move between states. The scheduler thus merely needs to
tell an animation the current time to cause the animation to update to the next
intermediate state. The scheduler ends by removing any animation whose
end time is earlier than the current time. Note that it does update these
animations first to make sure that they actually reach their end state.

WonderlandActor
The WonderlandActor class is the most important Squeak Alice class. This
class encapsulates the mesh and texture that comprise the visual
representation of the actor, and defines the core behaviors that you use to
interact with the actors. Internally the WonderlandActor classes uses 4x4
homogeneous matrices to represent the position, orientation, and size of
objects. However, this internal representation is hidden from the user; part
of the design philosophy for Alice is to present the user with an interface
based on ease of use, not on implementation details.

The behaviors that the WonderlandActor class provides all work in a
similar manner. If the user specifies that the behavior should occur
rightNow then the effect of the behavior is instantaneous. Otherwise the
behavior method actually creates an animation that encapsulates the current
(start) state, the desired target (end) state, the duration, and the interpolation
function to use (usually gently, or slow-in/slow-out). In either case the
behavior method also creates an undo animation and pushes it on the
WonderlandUndoStack instance for that Wonderland.

23

Alice in a Squeak Wonderland

WonderlandCamera
The WonderlandCamera class defines a special type of WonderlandActor.
In addition to possessing the same behaviors as actors, cameras know how
to render a frame of the Wonderland from its current point of view. The
camera creates an offset for drawing the scene based on its current position
and orientation, and then tells the Wonderland to walk the scene graph.
Walking the scene graph involves setting the background color and then
telling the top-level actors (immediate children of the scene) to draw
themselves. Each child actor draws itself (using its position, orientation,
mesh, and texture) and then tells any of its children to draw themselves.

Each WonderlandCamera instance has a WonderlandCameraMorph instance
that it actually renders into. You can access this morph using the
getCameraWindow method on cameras. This morph uses the
Morphic step method to re-render the view into the Wonderland as often as
possible.

Wonderland
The Wonderland class is the container for the 3D world. This class contains
lists of the cameras, lights, and actors in the world and provides methods
for creating or loading these objects. The Wonderland class is also
responsible for cleanly initializing a new Wonderland instance when you
create it (e.g. creating a scheduler and undo stack), as well as cleaning up
after a Wonderland instance when you delete it (by quitting the
Wonderland).

The Future of Squeak Alice
Very little has changed with Squeak Alice since I completed my internship
with Alan’s group. While I believe that Squeak Alice has great potential, at
least in the short term my time is focused on completing my Ph.D.
However, when I next have time to turn my attention to Squeak Alice (or
the next time another of the Alice team interns with Alan and his group)
there should be many possibilities for its development. Andreas will have
finished a new version of Balloon3D that is capable of taking advantage of
hardware 3D acceleration, and the Alice team at CMU will have learned a
whole new set of lessons about making 3D graphics easy for novices. In
addition I hope that the next generation of Squeak Alice will be able to take
advantage of feedback directly from its intended audience: novices to 3D
graphics.

Further Reading
To learn more about the Alice project visit the Alice web page at
http://www.alice.org. For more information on the lessons we learned
from Alice, try these references:

Matthew J. Conway. Alice: Interactive 3D Scripting for Novices. Ph.D.
dissertation, University of Virginia, May 1998.

Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove,
Kevin Christiansen, Rob Deline, Jim Durbin, Rich Gossweiler, Shuichi
Koga, Chris Long, Beth Mallory, Steve Miale, Kristen Monkaitis, James

24

Alice in a Squeak Wonderland

Patten, Jeff Pierce, Joe Shochet, David Staack, Brian Stearns, Richard
Stoakley, Chris Sturgill, John Viega, Jeff White, George Williams, Randy
Pausch. Alice: Lessons Learned from Building a 3D System For Novices.
Proceedings of CHI 2000, pages 486-493.

About the author
Jeff Pierce is working on his Ph.D. in computer science at Carnegie Mellon
University. During his Ph.D. student career he has worked on the Alice,
consulted for Disney Imagineering on DisneyQuest, worked at Microsoft
Research on handheld devices and 3D interaction, and implemented Squeak
Alice for Alan Kay and his team. These days he is busily trying to complete
his dissertation on novel 3D interaction techniques. Jeff can be reached at
jpierce@cs.cmu.edu. For more information visit
http://www.cs.cmu.edu/~jpierce.

