
The Future of Squeak

Dan Shafer

The WeTalk Network, Inc.

Introduction
Friedrich Nietzsche once said, “Our destiny exercises its influence over us even when, as
yet, we have not learned its nature; it is our future that lays down the law of our today.”

If ever there was a topic to which Nietzsche’s thought could be applied, it is Squeak.
We have not yet learned the nature of the destiny of Squeak because it continues to unfold
before our very eyes and because we are about the business of creating that destiny. Yet,
to an extent not attained by other programming languages and environments, Squeak has
always been about the future. Its future has in fact determined many of the ways it works
and thinks today.

In this chapter, we’ll take a look at where Squeak might well be headed over the
next two to five years. To choose a shorter time horizon would result in a chapter that
would be obsolete almost before the book could see the light of day. To project further
would be foolhardy in the extreme given the uncertainty not only of Squeak but of the
world in which it will play its role.

Much of the content of this chapter derives from conversations I have been
privileged to have with the group of Squeak developers and insiders known affectionately
as “Squeak Central.” Some of it also comes from extensive conversations I have had with
my colleague, Laurence Rozier, who is among the most forward-thinking object-aware
software professionals I have met. Rozier has been carrying Squeak’s message to me and
thousands of others for many years, as he carried the Smalltalk and JavaScript and other
object-oriented language message before and since.

I have also sprinkled a few of my own predictions liberally through the text. What
emerges is not a guaranteed future or even a “certified” future bearing the imprimatur of
the Squeak Central team or of the Squeak community. Rather, this is an attempt to have
some fun speculating about where our favorite programming language and environment
might take us and where we might guide it.

The chapter is divided into two major sections. In the first, we’ll focus on the future
of the Squeak kernel, the heart of the beauty, as it were. In the second, we’ll concentrate
on applications and implementations that Squeak may facilitate in the relatively near term
as the Squeak community broadens, deepens, and learns.

Some Basic Concepts

Because this chapter is about the broad-scoped future of Squeak, I use a couple of terms in
ways that are probably not completely technically accurate. Certainly they aren't entirely
precise.

When I talk about Squeak in this chapter, I mean to include not only what is clearly
and inherently part of what the Squeak Central team is building (i.e., the kernel and
virtual machine along with such core additions as Morphic, SqueakToys, and the Swiki),
but also important and widely used classes and packages being developed by others.
Comanche is one example of this kind of extension that I will bring under the umbrella

2

The Future of Squeak

name of "Squeak" because it feels to me like the future of Squeak with Comanche is
richer than its future without that Web server.

The other term that is hard to define and confine not just in Squeak but in Smalltalk
dialects of all types is "application." Traditionally, this has meant a file on which a user
could double-click with a mouse and which ran as a sort of stand-alone piece of
functionality from that time forward. The problem is that this kind of analogy doesn't
resonate with people. In your real life, you don't have things lying around on your
desktop (particularly not a trash can!). You may not even have a desktop.

In the world of Smalltalk and Squeak, though, things are much more natural,
though this naturalness means we have to think more carefully about what we are doing
than we would have to if we weren't so conditioned to metaphors that don't map to our
real lives. In some cases, an application might exist as a set of objects the user simply
adds to his or her system and which extend what the user can do. In that scenario, there is
presumably an underlying environment, whether a Squeak image or an operating system
or a chip with Squeak embedded. In some cases, transparent background downloads of
packages might make the very existence of something even vaguely resembling an
application irrelevant. There would be no such thing as a "system" or an "environment";
rather the Squeak "thing" would in fact become the environment or the system. This kind
of behavior will be particularly predominant, I suspect, when it comes to portable devices
and TV set-top boxes. In still other cases, packaging might well be used to create what
looks more like the traditional double-clickable application.

On some levels, this explanation is part of a much larger issue which centers on
how humans interact with and perceive computers. In just the past few years, we've seen
the perception of a computer as a desktop where stuff (documents and applications,
principally) is stored to a sort of transport mechanism. "I just went over to Yahoo! and
looked it up" has become such a part of the way we think and talk about our experience
that Web sites like yahoo.com are clearly places in our minds, just like Grandmother's
house. In no real sense, of course, to we "go" to Yahoo. But that's what it feels like and
it's how we describe the activity. This has deep implications for how we build the user
interfaces of the future, how we help people make the shift from the analog world to the
digital world of their computers and other electronic devices. Squeak and Morphic are
destined to play a major role in that evolution.

The Squeak Kernel in the Future

In speculating about the future of the Squeak kernel, we are in some sense on relatively
firm ground, at least as far as prediction itself can ever be on a solid foundation. The
kernel, after all, is in the figurative control of Squeak Central. Though its design clearly
allows for extension by other members of the Squeak community, Squeak Central plays a
sort of central arbiter role akin to that played in other Open Source community projects
by those who are ultimately seen as the keepers of the vision.

This is not to suggest, however, that other members of the Squeak community
cannot or will not influence the direction of the kernel. They clearly have and they just as
clearly will continue to do so.

Small is Good, Modular is Even Better

The size of the Squeak kernel will ultimately be quite small, almost certainly smaller
than 1MB. The Version 1.18 Squeak release image only occupied 968K on the
Macintosh, with VM support adding another 290K.

3

The Future of Squeak

Development work past that early release of the technology bloated the image
somewhat but Squeak Central has repeatedly assured the community that it is intent at
some point on getting back to these size parameters if not even smaller.

In a message posted to the Squeak mailing list in late 1999, Dan Ingalls said, “[W]e
still need to extend our reach…before we will really know what the kernel should be and
how it wants to be seen by users.” In that same email message, Ingalls warned, “It’s
going to get worse before it gets better, but it will get better.”

The size of the kernel is important and interesting, but even more significant is the
concept of Squeak modularity. “The monolithic Squeak environment will go away,”
predicted Squeak Central’s Ted Kaehler. He points to then-recent development of
ImageSegments as an important bit of technology in terms of making Squeak modular.
“ImageSegments are capsules of live objects. We are using them to make stand-alone
importable projects with their own Internet URLs,” Kaehler says.

ImageSegments is a facility that can begin with a defined list of root objects and
write to a binary file all of those objects and other objects to which the original objects
point. This allows Squeak developers to create remarkably stand-alone pieces of
functionality which can be readily imported into a different Squeak image.

Combined with ImageSegments, the Squeak Central team has been perfecting a
technique which will allow developers to create Morphic “SqueakPages” which can be
saved to a server as external objects and dynamically loaded into a running Squeak image
as needed.

In addition to the obvious advantages ImageSegments present for the delivery of
Squeak functionality in small packages, they also facilitate the kind of robust project and
change management that is essential to the success of environments like the Web, which
must be subject to being updated at any given moment.

The Internet and Distributed Computing Models

As Squeak becomes more and more modular, it lends itself increasingly to distributed
computing applications. Older, monolithic versions of Smalltalk were notoriously
unfriendly to networking; even creating networked applications was a major undertaking.
Squeak, by contrast, is coming of age in an era when the Internet in general and the World
Wide Web more specifically are integral parts of the software landscape. It acknowledges
this fact and thrives in it.

“We now foresee,” Ingalls has said, “the possibility of an extended universe of
Squeak worlds, distributed over the Internet as Web pages, downloaded and
internalized…and swappable in a reasonable memory footprint….”

This ability to save, send, store, and dynamically reload segments and pages will
allow Smalltalk, for the first time, to play a crucial role in the creative development
process where collaboration is important. The implications of this capability, as we will
see in the second major part of this chapter, are staggering.

It is almost certain that within the next two years, Squeak will also support a
notion very close to that of the Java applet: a bit of relatively stand-alone functionality
that can be downloaded, embedded into a Web page (or some similar future form factor) on
the client, and executed.

Meanwhile, the Audience Evolves

People encountering Squeak for the first time are often bewildered by the question of
whether, in a world of the Internet and Java programming, there is room, let alone a need,

4

The Future of Squeak

for yet another programming language. For those who are already comfortable creating
software in Java or C++, Squeak Central has a simple answer: for you, there isn’t.

“We expect to grow Squeak in the direction of a significantly broadened user base
rather than by attracting or even attempting to attract Java and C++ programmers,” Scott
Wallace of Squeak Central says.

Expect Squeak’s evolution along these lines to focus on the Squeak Toy
environment and extensions to it, built on top of the Morphic substrate that has emerged
as everyone’s preferred way of interacting with and managing Squeak development. The
idea is to attract an increasing audience of users who are not programmers but rather
multimedia authors and others who can bring to the table contributions that, in Ingalls’
words, “are more generally enlightening and educational, enabled by Squeak.”

Squeak Central has indicated it plans to focus significant energy on increasing
support for first-time users in coming versions of Squeak. Specifically, the team plans to
explore four aspects of Squeak to see what kinds of improvements can be made to make
Squeak more accessible to new users and non-programmers:

• experiments with alternative syntaxes

• making it easier to create simple applications

• a new, streamlined programming framework focusing on an integrated “object
operating table”

• integration of “SqueakToy” scripting tiles

Discussions of audience among the members of Squeak Central often devolve to
trying to find a word to describe the user base, composed as it inevitably is of both
programming users and what have traditionally been called “end” users as if there were in
fact a theoretical end point to the use process. Alan Kay and others have begun adopting
the word “omni-user” to encompass all types of empowered users accessing Squeak
capabilities and services.

Fitting Squeak Into Your Hand

One of the most exciting and interesting areas of Squeak development has been the
emergence of hand-held devices capable of running (and in some cases even supporting
development in) Squeak in small memory footprints and on small form-factor screens.
Sharp has two Personal Digital Assistants (PDAs) available only in Japan at this writing
which support Squeak and on which Squeak programs operate.

Squeak has also been successfully ported to Microsoft’s WinCE platform and the
Cassiopeia from Casio, among other small form-factor devices.

“We are,” says Wallace, “coming closer and closer to the famed DynaBook dream” of
Alan Kay’s early career.

The portability of Squeak even to places where no operating system yet exists has
been a reality for Squeak Central from early in the product’s life. In the first year of its
development, the Squeak team brought in an undergraduate college student who had never
seen Squeak. They asked him to port Squeak to a bare microprocessor then being
developed by one of the major semiconductor firms. That chip had only a minimalist
software design kit (SDK) available, and it was purely text-based.

“In three weeks,” recalls John Maloney of Squeak Central, “this guy had Squeak
ported to this chip. Most of that time was eaten up getting peripheral drivers to work so

5

The Future of Squeak

it could display graphics on a screen in color and respond to keyboard input.” The team
says that when Kay saw the demo for the first time, he immediately began to demonstrate
to others who were present the implications of this. Once you’ve done the port, a huge
body of work and content is suddenly immediately available in the new enviornment.

He asked the student to let him “drive” the demo and proceeded to astound the
audience of semiconductor executives by showing off some of his best demonstrations
running on this bare-chip implementation of Squeak.

3-D in Squeak

3-dimensional graphics are important elements of realistic multimedia and virtual-reality
worlds, but creating them on any modern computer platform within the reach of the
average person is so difficult that almost nobody attempts the task. The Squeak
community has long been interested in overcoming this obstacle to multimedia creation.

It has a strong ally in the person of Randy Pausch (see Chapter X, “Alice in a
Squeak Wonderland,” by Jeff Pierce for a detailed discussion of this technology), whose
teams first at the University of Virginia and later at Carnegie-Mellon University have
created an experimental 3D tool called Alice. This tool has been ported to Squeak from its
origins in Python (an object-oriented Open Source scripting language) and is under active
use by dozens of teachers, multimedia developers, and tool designers who are striving to
make it as easy to create 3D objects as it is to create 2D documents in a word processor.

The Squeak team has felt strongly that 3D support belongs directly in the kernel, or
at least at the heart of the language. In late 1999, Squeak Central integrated the 3D engine
in the language with the Morphic interface technology which is rapidly becoming the core
of the Squeak development environment. This allows the projection of 3D images onto
Morphic canvases.

“Our real goal here,” explains Maloney, “is to create a place where 2D and 3D
objects can both play on the same screen or canvas without any performance penalty.
When we accomplish that, we will have gone a very long way toward the Holy Grail
Pausch and his colleagues envision.”

This will allow for the first time the seamless integration of 3D with existing text
and graphical content, a development whose impact on computing it might be difficult to
overstate. The entire segment of the software industry which is interested in exploring the
3D representation and visualization of 2D data would be greatly accelerated in its efforts
by the availability of this functionality.

Taking a page from the book of Macintosh (not coincidentally the OS of choice for
Squeak Central, most of whom were part of Apple Computer at some point), the idea of a
3D Finder has some serious interest among Squeak developers. Rozier has had visions of
such a top-level interface for many years, having created an environment called
HyperOffice more than 15 years ago. HyperOffice, which Rozier first built in Framework
and later re-deployed in Digitalk Smalltalk/V and JavaScript, uses the concept of a
building with floors dedicated to certain functionality (like the accounting department) and
offices or rooms where individuals keep their projects and documents.

In its Framework incarnation, the program used crude 3-D file drawers but by the
time it reached its Smalltalk/V incarnation under the name CyberTalk, it boasted a strong
representation of a 3-D office environment.

Users can “beam” between offices, use other users’ computers with appropriate
permission, and generally get the feeling of inhabiting a real-world building while they
accomplish their work goals.

6

The Future of Squeak

Rozier is, at this writing, finishing a Morphic project bringing this work up to date
and implementing it in Squeak. By the time you read this, it will be available through
Rozier’s Web site, The Pattern (http://www.thepattern.com).

 “Extending the flat 2D desktop to a set of rooms and places to navigate among is
the next logical step in system user interface design,” says Maloney. “Whereas in today’s
Squeak environment, we switch projects by clicking on icons representing windows and
their contents, in the future, we will run down hallways into adjacent and distant rooms
containing our various projects.”

Major Graphic Changes Coming Soon

In some ways, 3D graphics implementation alongside 2D graphics is a sub-set of a larger
future direction Squeak is taking. Squeak Central has indicated it is at this writing close
to being able to take full advantage of the graphics acceleration hardware on each kind of
machine on which Squeak runs. At the same time, Andreas Raab is finishing up a “Just
in Time” version of the graphics engine in Squeak that will compile efficient new,
machine-native code for each bitmap movement on the screen. Speed, then, lies just
around the bend.

One of the major reasons Squeak Central chose to undertake this step is to permit
Squeak to take full advantage of hardware graphics acceleration.

Once this new bitmapped imaging is in place, Squeak Central plans to reconstruct
Morphic from scratch, preserving as much of the existing Morphic as possible in the
process but making the new Morphs more lightweight objects that can be more easily and
compactly manipulated and scripted.

There is also very little doubt that the Squeak community plans to create a blizzard
of new widgets for user interface design and construction, probably on top of Morphic. In
early 2000, the Squeak mailing lists were abuzz with conversations on the subject and
several volunteers were already gathering resources and energy to tackle the problem. Once
these widgets are available, it will become easier to create business applications that look
and feel like native platform applications. (Not everyone believes that this is either good
or necessary, but since Squeak allows for such widget kits, it is guaranteed that they will
be built.)

As the new Morphic is completed and widgets are built and ported to the new
environment, Ingalls has signaled his intent to create a Squeak version of a 1988
programming concept he and other members of the team presented at the annual Object-
Oriented Programming Systems and Languages (OOPSLA) conference called Fabrik. This
is a visual “wiring” development environment which would facilitate the assembly of
Morphs and widgets into full-blown interfaces and applications.

It is safe to bet that over the next two years, Squeak will become a visually
programmable environment in which the creation of easily packaged stand-alone
applications with native look-and-feel will become an eminently achievable goal even for
a non-programmer.

What Belongs in the Kernel?

In the very early days of Smalltalk, someone suggested that the world of computing had
had some of its ideas out of kilter for some time. Asked why there was so much
operating-system-like functionality in Smalltalk, Squeak Central’s Ingalls replied, “An
operating system is a collection of things that don’t fit into a language. There shouldn’t
be one.”

7

The Future of Squeak

Ever since then, the Smalltalk and Squeak worlds have become involved in frequent,
largely friendly debates about what should be in the language kernel, what should be in
the operating system, and what should be in the language but not in the kernel.

With modularity emerging as a touchstone of the new versions of Squeak that will
emerge in the near future, this discussion merits even closer examination. Before the
existence of ImageSegments or any equivalent idea, there was little if any practical
distinction between a Smalltalk image and the Smalltalk kernel. There were, to be sure,
technical differences, but to the application builder or end user, the line was largely
indistinct and irrelevant.

Now that we are able to externalize and load on demand major pieces of
functionality, it is inevitable that the tendency is going to swing strongly toward
eliminating from the kernel anything that doesn’t need absolutely to be present all the
time.

This will mean that some of the elements contained in today’s “basic” or “core”
image (which remains for practical purposes indistinguishable from what is technically
the kernel) will now be externalized. Multimedia graphics, for example, will probably
become an externally loadable set of objects rather than integrated into core Squeak.
Similarly, Web servers, swiki capability, speech recognition and synthesis, MIDI
interfaces, and many other pieces of Squeak that veteran Squeakers have come to think of
as core elements of the environment will be loaded as needed.

The other side of this coin is that in a connected world – even where that connection
might be file-based URLs on local hardware – the distinction between what is contained
in the distributed image and what is stored externally to be loaded as needed becomes
largely irrelevant. If you use a bit of code that calls some routine that isn’t in the current
image you or your user is running, Squeak simply uses the URL of the missing object(s)
to load the functionality on the fly and completely transparently.

All of this leads to a suggestion that we will almost certainly see a Squeak-based
operating system – or, to be somewhat more accurate, Squeak running in the absence of
an operating system – in the near future. Indeed, there has already been one abortive
attempt at such a project1 which even empowered the creation of device drivers in Squeak.
(“Imagine being able to write device drivers for new peripherals and form factors entirely
in Squeak Morphic,” Squeak Centralist John Mahoney enthuses.)

Why would one want to create or use a Squeak OS? When asked that question,
Maloney said, “I can see a future in which everything you might want to fine-tune or
control on your computer is right there for you to access through a Squeak Morphic
interface. You can change anything. You are in control.”

The advantages of such an approach, Maloney says, “are transitional. You can just
sit there in native mode and real time and manage everything. Given a low-latency
Squeak, this is entirely feasible. “All of the missing elements that used to constitute gaps
between Squeak and OS capability are now perfectly capable of being filled.”

1 A project conducted at Interval Research, a product and company incubator, had a
working version of a Squeak OS on a handheld device, but the project was shelved in
favor of implementing Microsoft’s WinCE instead. The outcome was foreseeable given
that Interval is funded in large part by Microsoft co-founder Paul Allen, a lifelong friend
of Microsoft founder Bill Gates.

8

The Future of Squeak

Some Reasonably Clear Directions

Over the next few years, it is fairly certain that Squeak will be applied to a broad range of
problems and needs. Many of these are obvious; they derive either from the use to which
computers are already being put or they have been made clearly a conscious part of the
way Squeak works and is being created.

But some of the ways we are almost certain to see Squeak evolve may not be readily
apparent from our present vantage point.

Squeak Gets Corporate MIS Buy-In, a la Linux

IBM, if not uniquely at least unusually among large computer companies, understands the
ultimate value of Smalltalk. Its VisualAge development environments for Smalltalk,
Basic, C++, and Java, are all based on work done entirely in Smalltalk several years ago.
To this day, the company maintains a very active and moderately large group of Smalltalk
developers and related programs and technologies.

At the same time, IBM has more recently become an avid advocate of the Open
Source movement of which Squeak is also a part. When in late 1999, Big Blue opened its
arms to the Linux world and began supporting that free operating system, the rules of
computing began a major upheaval, the entire effect of which has yet to be felt.

But IBM is not alone among large global corporations embracing Linux, which has
with blinding speed become all but the de facto server operating system of choice.
Companies like Red Hat Software, VA Research, and LinuxCare have sprung up around
this phenomenon and have enjoyed immense market approval in public stock offerings.
At this writing, the Linux train is just leaving the station and it’s already traveling at the
speed of sound.

Squeak may well enjoy the same kind of success in a few years. Rozier says,
“Squeak at this point is very nearly in a parallel position with where Linux was two years
ago,” and he cites the following criteria as evidence to support his contention:

• It is completely Open Source.

• It is surrounded and enhanced by a small but fanatical group of developers and
fans.

• It enjoys just enough central management control from Squeak Central to keep
it from veering so far off course as to become unusable while allowing for
individual creativity.

• It is ubiquitous: it already runs on more platforms today than Linux does and it
seems destined to continue to spread to new chips and operating systems all the
time.

• It is in widespread use in academic settings where it can grow and be nurtured
without the pressure of productization or profitability.

At the same time, Squeak enjoys some advantages over where Linux was at
relatively the same point in its growth:

• Because it is a language and a development environment and a deployment
platform, Squeak is more useful to a much larger audience. Very few people
make decisions about operating systems and even fewer do more than simply
run them. Programming environments are a horse of a different color, because
they allow mere mortals to create applications, solutions, and projects.

9

The Future of Squeak

• Built as it is on a very long-term language base going back to Smalltalk-80,
Squeak enjoys a legacy of books, experienced programmers, documentation,
sample applications, and real programs that form a sound basis for newcomers
to learn it.

• It is pre-equipped to deal with the changing world of the Internet and the Web.
Whereas it is sometimes difficult to adapt Linux to new technologies as they
emerge, Squeak is inherently adaptable and extensible. It includes classes that
allow straight-forward abstraction to deal with networking and multimedia needs
and issues.

• As we have indicated earlier, Squeak’s nature supports dynamic management of
its configuration. This in turn results in a huge win for users and for corporate
IS/IT departments supporting those users. As the speed at which business is
conducted continues to accelerate, reducing the time to adjust to change is a
major economic win. Squeak will play a key role in facilitating this cost-
reduction by bringing user-configurable and easily programmable configurators
and change mechanisms to the desktop.

Ultimately, for these and a number of other reasons related to some of the specific
applications we’ll be looking at later in this chapter, Squeak could become the next
big story in corporate computing.

If Squeak has a downside in all of this, it is simply that it relies on Squeak
Smalltalk syntax, which programmers accustomed to C, C++, and Java often find
too cumbersome. Even that problem is relatively easily addressed in the
“assimilation” strategy of Squeak, though. Anyone can write a module that shows
methods in a particular syntax and accepts changes in that syntax. “We have been
experimenting with new looks for Squeak with kids in mind,” Kaehler says, “but
anyone could create, for example, a C-syntax module.”

Squeak’s Potential to Alter Education Approaches

From its inception, of course, Squeak has been viewed primarily as a language to enhance
and support the education of the world’s children. The very first Smalltalk efforts were
aimed at developing a language that would be accessible to children; in fact, that goal
gives the language its name.

Squeak is, if anything, more clearly deliberate in its aim at education as its primary
market space. The Squeak Central team are all strongly if not exclusively education-
focused. Wallace says, “One of our big dreams for Squeak is for it to disconnect learning
from the necessity of sitting in rows in a classroom.”

Kaehler envisions a time when a small number of hand-held devices in a remote
Third World classroom will be able to connect to a collection of the world’s great works
of literature such as that embodied in Project Gutenberg. “Can you imagine what learning
could take place in such a free-form environment where Squeak could be used to open up
all those avenues of learning and wisdom?” he says wistfully.

Rozier is a strong believer in the global importance of this kind of distributed
education. “Imagine how much the world will be able to learn from those brilliant,
sophisticated wise men and women of indigenous populations once we have a language
rich and expressive enough with which we can communicate with one another.”

Much of the potential for Squeak to alter radically how students are taught rests in
its historical roots in Simula and the degree to which an object-oriented architecture lends
itself to the creation of simulations. The SqueakToys capability executed in Morphic in
the current release of Squeak is an excellent example of how simulation can be brought to

10

The Future of Squeak

bear in a learning environment where students add to their knowledge and wisdom by
experimentation and experience rather than by passive reception of lectures and limited
feedback loops.

Squeak as Hand-Held OS: At the Amusement Park

Today’s cellular phones and PDAs allow their users very little control over their behavior
or their appearance. Because of their small memory footprints and their primitive
interfaces (did you ever try to enter a long, complicated email address into a cell phone
with its simple keypad?), these devices tend to stay in fixed configurations. If you want a
phone with more functionality, you toss your old one and buy a new one.

Squeak has the potential to change that situation dramatically. If Squeak can run on
top of a raw semiconductor CPU, it can certainly replace the operating system running in
a cell phone or a PDA. And if it can do that, it can open up worlds of possible
extensions, enhancements, and unheard-of functionality for users of these small devices.

Imagine, for example, a family going to a theme park in the not-so-distant future.
When they arrive at the gate and pay their admission fee, instead of a fistful of tickets or a
paper or magnetic badge, each member of the party is given a palm-sized device with a
color LCD screen running a Squeak application.

Throughout their stay at the park, the family members can communicate with one
another via text messages or short voice data bursts. Built-in global positioning system
(GPS) software and hardware will ensure that lost parents can be easily located by their
children. Want to ride the most popular attraction at the park? Rather than traipsing a
mile over to the ride to find out there’s a 2-hour line, just tap on your Squeak
application’s screen and get an instant update on the wait. Want to buy something? Just
beam your credit card information into the infrared receiver on the cash register of the
vendor.

Oh, by the way, you might not want to leave this wonderful little device behind
when you go home. That’s OK. You can buy it and take it home with you where you can
use it to keep up with the latest news about the amusement park owner’s business, new
cartoons and movies, cable broadcasts, video releases, and to keep up with your own
personal email account at the home address of some famous rodent.

All of that and more is certainly well within reach with Squeak as an embeddable
system.

In fact, Rozier believes that Squeak might enjoy extremely widespread adoption by
telecommunications companies and hand-held device manufacturers. “It is, after all,” he
points out, “the only Open Source technology suitable to meet the needs of creating both
servers and devices needed by these companies. The future of small is Squeak Smalltalk.”

There is, in fact, another level on which Squeak’s potential importance in the world
of operating systems is becoming obvious. At its heart, Squeak has a virtual machine
(VM). This virtual machine essentially replaces the notion of an operating system with
the concept of a true computing environment. In the earliest days of Smalltalk, Dan
Ingalls described the operating system as a place to put things that didn’t fit into the
programming language, going so far as to sayh that there shouldn’t even be an OS.

Squeak is, in many respects, an operating environment that is at once richer and
more malleable than the typical chip-dependent OS. It happens also to have a very
powerful and accessible programming language (Smalltalk dialect) in it, but that feature is
almost incidental for some purposes and many users.

11

The Future of Squeak

Squeak Supplants Netscape and Internet Explorer

There is widespread agreement among those who are building content and sites for the
Worldwide Web that they are being severely hampered by the inability (some would say
refusal) of AOL/Netscape and Microsoft to create a Web browser that is even remotely
capable of accessing all the kinds of content people would like to experience.

Browsers were first designed to be fairly passive display pieces. They could be
pointed at various URLs and from those sites they could retrieve and display static text
and graphics. Over the first two or three years of the Web, browsers evolved rapidly so
that they supported interaction, form completion, animated graphics, and then even
multimedia. But their mechanisms for supporting these additional types of content were
primitive and lacked standards support.

To make your browser show you a movie, for example, you have to have the site
owner help you figure out what kind of add-on functionality in the form of a browser
plug-in you need. It must then guide you to the place where you can obtain that plug-in,
download and install it. Then you often have to close your browser application and restart
it, remembering where you were when this whole ordeal began.

When the browser manufacturers tried to implement a more standards-based solution
to users’ expressed desires to have more fluidity and interactivity in their browsers, they
fumbled the ball again. They decided to promulgate something called dynamic HTML
(DHTML). But DHTML isn’t a single technology; it is a term that describes the rather
unhappy marriage of JavaScript scripting, HTML markup, and extensions to both the
language and the markup that facilitated the creation and manipulation of individual
objects in the browser.

This idea, which is at its heart right and helpful, became ensnared in the usual
standards battle with the ultimate result that both Microsoft and AOL/Netscape
implemented it so differently that it is all but impossible to write truly cross-browser
DHTML pages without a lot of experience and much trial-and-error.

Morphic, particularly with its extended Macromedia Flash player, could provide the
solution to this browser dilemma. If an Open Source Squeak project were started with the
intent of producing a freely distributed browser that would natively understand how to deal
with Flash content and which could be easily adapted – programmatically or behaviorally
– to deal with other kinds of content, it would fill a huge gap. It could, in fact, become
the new browser of choice, first in corporate settings and behind firewalls where the
browser decision is centralized, and later in homes and schools interested in the
adaptability of this new design.

Rozier says this will happen. “First,” he predicts, “we’ll see helper applications and
browser companions done in Squeak. When people see the unlimited potential for
extension and enhancement Squeak tools represent, the move to a Squeak-based browser,
perhaps surrounding Flash as a multimedia file format, will be too compelling to resist.”

Squeak-Based Comanche Becomes Cross-Platform Personal Web Server of Choice

Today, there is no cross-platform personal Web server. Linux has Apache, Microsoft
Windows has Internet Information Server (IIS), Macintosh has WebSTAR, large-scale
UNIX machines have Netscape, and there are a number of other variants, but none of
them is cross-platform or ubiquitous.

Why should we want such a beast?

The magic of the Web is the degree to which it allows every individual who owns a
node on the Internet to become a publisher of content. Whether the audience for that

12

The Future of Squeak

publishing effort is a group of co-workers on a LAN or the entire known world on the
Web, all of us need or want to share information with others.

Historically, the Internet is built on the TCP/IP protocol suite, which in turn was
created to prevent single points of failure on a communications network. That means that
every node has some important role to play and that nodes tend to be relatively equal to
one another. The Web builds further on those ideas.

Furthermore, people obviously want to share or publish information in numbers
that were unheard-of before the advent of the Web. How else explain the raging success of
such businesses as Geocities and Xoom, which find themselves with millions of ordinary
people creating and publishing Web sites for the world to see?

In some ways, however, the idea of requiring people who want to share information
with others to upload their information to someone else’s computer is anti-Internet. If
you want to publish content, you have a personal computer almost by definition. So why
can’t you just turn your computer into a Web server?

You can.

All major home computers today come with a personal Web server. The problem is
that these Web servers are closed, proprietary, and limited.

So along comes Comanche, a Squeak-based, open source Web server built on the
original Squeak Pluggable Web Server (PWS; see Chapter XX for full details). Comanche
is a project being driven principally by Bolot Kerimbaev and Stephen Pair, with the usual
supporting cast of many others helping with debugging and feature enhancement.

For all the reasons that Squeak should gain widespread corporate acceptance similar
to that attained by Linux in the recent past, Comanche should become the personal Web
server of choice in the future. It’s cross-platform, Open Source, infinitely extensible, and
eminently usable.

Given the boundless nature of the underlying Squeak environment, Comanche
becomes a true Web platform in its own right. It will be trivial for people to publish
Web sites or Swikis (see Chapter XX) on their own local machines and extend those sites
with functionality only dreamed about by today’s Web site designers and developers.

Rozier puts it this way: “Linux continues to try to find a suitable client
environment at the same time as Windows struggles to become a decent server. Squeak is
becoming the first environment to provide the best of both worlds, a truly distributed peer
network.”

Squeak and the Microsoft .NET Initiative

In mid-2000, Microsoft announced what it characterized as a revolutionary new product
strategy which will see all of its products and technologies converge on an interoperable
Internet. At the core of this new initiative – which in many ways is not nearly as
astounding as Microsoft would have us believe, building as it does on dozens of existing
Open Source projects and products – is a language-independent virtual machine. Much of
the work on this VM was done by Smalltalk guru David Simmons, who created
SmalltalkAgents and Smalltalk 2000. In fact, a Smalltalk-based scripting language called
SmallScript will be incorporated into the .NET strategy when it is released some time in
the second half of 2001.

This has interesting potential implications for Squeak as well. Simmons has invited
the Squeak community to join the SmallScript and .NET initiatives and to port the VM
and other technologies to the Squeak platform. At this writing, a number of Squeak
advocates are getting ready to do just that.

13

The Future of Squeak

Ultimately, this could prove to be a huge win for Smalltalk as it enters into a
mainstream, widely adopted new application platform, the interoperable World Wide Web.

Squeak Web Server and Scriptable Intelligent Agents

Mobile agents have been an important area of computer research for a number of years.
Like other kinds of objects and components, agents need a backplane, a place from which
to be dispatched to undertake their masters’ bidding and to which they return with their
results. At the same time, their value increases with the network effect of an increasingly
diverse collection of nodes on which they can operate.

By providing the platform for a truly distributed peer network (see previous section)
Squeak will also become the launch pad for these agents. Rozier has spent the past 15
years perfecting a technology he calls Scriptable Intelligent Agents (SIAs) and he sees
Squeak as the ultimate platform on which these agents can be nurtured and trained.

The first place such agents might well find acceptance in the world of the Web will
be in the emergence of 24/7 custom pricing. A Web site called Priceline.com emerged in
late 1999 with a custom pricing model that was sufficiently unique that it was granted a
U.S. Patent. The concept was simple: consumers could go to the site, indicate an interest
in purchasing, say, an airline ticket to Los Angeles for any time in the week of March
13, and a desire to be able to buy it for $200 or less. Within an hour, Priceline.com
infrastructure would search out and identify a vendor willing to match the user’s
requirements.

Imagine how powerful this idea becomes if you can dispatch your own SIAs to the
Web to locate the best prices –within your parameters – for goods and services you wish
to purchase. You are no longer tied to a single site’s limited resources but you are free to
have your agent roam cyberspace looking for bargains and deals and partners. The
fundamental shift in pricing this technology represents is ground-shaking in its
implications.

And Squeak plays a key role in this development because of its ease of
customization, accessible programmability, and incorporation of personal Web servers as
“farms” for agents.

Squeak as a Multimedia Tool and Platform

By its nature and origins, Squeak is intensely graphical. As it has rapidly evolved in the
past year or so, Morphic has made it even more graphical. It should come as no real
surprise, then, that Squeak has also become a fertile playground for multimedia developers
and producers, and that much of its near-term future evolution is likely to concentrate in
this area.

We’ve already touched on the issue of including 3D capabilities in the kernel and on
the implications of the Alice 3D project being ported to Squeak.

Andreas Raab, at this writing the latest addition to Squeak Central, has been
working on multimedia aspects of the language for some time. He implemented the
Macromedia Flash player, which was among the first full-scale Squeak tools to
demonstrate the feasibility of what Rozier calls “Borg-like assimilation” of external
standards and technologies. It is already possible to load any file stored in the publicly
documented Macromedia Flash file format into Squeak and play the resulting movie. In
the process, we can get our hands on the individual objects within the Flash movie and
thus create whole new types and levels of interaction.

14

The Future of Squeak

But beyond 2D and 3D graphics, beyond even the ability to play Flash and Virtual
Reality Modeling Language (VRML) files directly in the Squeak environment and in
Morphic worlds, the Squeak community has always been strongly interested in sound.
The use of music, voice, and sound effects in computing has not been well-developed. On
the Web and in programming environments like Squeak, even less has been done with
determining precisely how audio influences ought to be brought to bear on the user
experience.

Stephen T. Pope, one of the early Smalltalkers, has for many years been working
on MIDI tools and interfaces. His work is included in the Squeak image as of this
writing. It represents some of the most interesting and advanced work being done with
incorporating musical capabilities into computers.

Already this work has been built into an interactive MIDI Jukebox and a piano-roll
type of interface for composing, arranging, playing, and editing music.

Squeak developers have done much with audio engines. Work will now be focused
on the creation of great voices for these engines and in the area of file compression. The
SqueakTime asynchronous file reader included in the current releases of Squeak are not
very efficient at compression, resulting in large file sizes and often poor playback.

In the near future, expect to see an MPEG player (assuming licensing and royalty
issues can be worked out satisfactorily).

Ultimately, its developers expect to see Squeak spawn a successful effort to create a
dynamite tool for multimedia development that will allow composers and producers the
ease of drag-and-drop incorporation and mixture of 2D and 3D graphics, MIDI and
compressed sound and music, and animations including Flash movies.

Combining the best of what we’ve learned from watching thousands of developers
use commercial tools, Squeak could form the basis for the creation of a new generation of
multimedia development aids by making an infinitely extensible platform core to the
success of the tool. Much as Adobe has maintained its leadership in the photo-
manipulation market by opening its widely used Photoshop to plug-ins, so Squeak, by
allowing extensions to be coded in Morphic and Smalltalk, could allow the end users of a
Squeak-based multimedia tool to extend it at will. The results will no doubt be
astonishing.

The First Fully Extensible Collaboration Tool?

In building and extending Squeak, the Squeak Central team and the broader community
have almost coincidentally managed to create an environment for collaboration that is
probably already better than anything on the commercial market.

The sharing of files and live objects between Squeak images is easy and becoming
trivially transparent as this is written. The Morphic environment empowers individuals to
share graphical representations of their ideas very quickly; the narrow but enthusiastic and
successful use of “whiteboard” technology will be dwarfed by what is possible in Squeak.

“We are all interested in generic collaborative tools,” Wallace says. “We use them
all the time and we know where they are strong and where they are weak. A really general-
purpose collaborative tool, infinitely extensible in Squeak, of course, is definitely in the
offing if for no other reason than that it grows naturally out of the work we are doing.”

Clearly the notion of taking collaboration and its big sibling, online community, to
the next level, would greatly benefit from Squeak and Morphic. Not only because it is
object-oriented but also because the components already available to facilitate
collaboration – and others to come in the near future – make Squeak a powerful and

15

The Future of Squeak

infinitely extensible platform for the construction of discussion boards and for meaningful
real-time interaction with whiteboard-supported chat, graphical instant messaging, and
other such feature sets. All of this can be easily integrated into the underlying system
because of Squeak’s nature as a VM and OS-replacement.

Web-Based Games

The first Web-based game written in Squeak, “Oceanic Panic,” made its debut in kiosks at
Disney’s Epcot Center as this was being written. More are under development.

Games delivered and experienced on the Web would have a number of advantages
over those played on either personal computers or dedicated proprietary game-playing
platforms:

• They would be easier to install than those on PCs because they would carry
their infrastructure – sound support and the like – around with them.

• They would lend themselves more easily to multi-player scenarios since they
would by nature be networked and sharable.

• They could be personalized, customized, and extended using Smalltalk,
Morphic, and other, similar programming and development techniques that are
at the core of Squeak.

Expect to see a huge increase in the number, variety, and kinds of Web-based games
and fun educational applications as Squeak moves more and more into this arena.

Finally, the Dynabook?

During the early days of Smalltalk, Kay was going around talking about and describing
his vision for a new type of device he dubbed the Dynabook (dynamic book). He saw this
device as featuring a graphical interface, connected to external links in some then-
unknown way, and embodying a way for children (its users) to program, or extend, it. His
ideas grew out of his early experience with object-manipulation programs during his days
at the University of Utah.

It seems that Kay has infected most, if not all, of the Squeak Central team with his
notions so that it is difficult to have a conversation with any of them about the future of
Squeak without the Dynabook being mentioned repeatedly.

Certainly Squeak has moved the marker a long way toward the realization of Kay’s
dream. Out of the Morphic interface has grown Ingalls’ and Kaehler’s work with
ActiveEssays, which in many ways are the content Kay would have chosen as a primary
type of information to be presented on the Dynabook.

The fact that Squeak can be deployed on highly portable, even hand-held, devices,
and that such devices are easily connected to wireless networks over which Squeak runs
quite efficiently and effectively certainly lead to the conclusion that the Dynabook is
finally within reach.

