
Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

Appendix 8 - Tidbits

Overview

 This appendix presents several unrelated topics that are interesting enough to be included in the
book but that did not fit into the main chapters or other appendices. Consider this appendix to be a dessert.
 The topics included here are material on the processing of keyboard events and how you can take
advantage of it to define or redefine the behavior of selected keys, an introduction to text and fonts, a
presentation of drag-and-drop in GUIs, an introduction to garbage collection, and an introduction to the
classical model of the Virtual Machine.

A.8.1 Keyboard input

In this section, we will explore the basics of Smalltalk’s processing of keyboard keys and how we
can take advantage of the process.

How it works

 When you press a key on the keyboard and a Text Editor or Transcript is in control, Smalltalk first
checks whether the key has a special meaning. If it does (as an example, if you press the <Delete> key), it
executes the appropriate operation, if it does not, it just adds the corresponding character to the output. We
will now explore how this process works and how you can take advantage of it.
 The processing of user input is of course performed by the controller of the Text Editor which is
an instance of ParagraphEditor. Processing of keyboard keys occurs in the editing protocol which defines
response to a variety of special keys and we will use the method defining response to one of the less
offensive keys to examine how the process works.
 The method that we selected is backspaceKey: aCharEvent and we inserted self halt at its
beginning to intercept the activation of the <Backspace> key and to open a Debugger. We then typed some
text and pressed <Backspace>. The Debugger opened, and we observed the following (Figure A.8.1).

Get ready to output

Controller finds action associated with key in table

‘Normal’ key‘Non-normal’ key

Controller performs action

Controller checks key using dispatch table

User presses a key

Figure A.8.1. Keyboard processing sequence.

 The existing implementation of the ParagraphEditor is based on polling. When an activity occurs,
the controlActivity method in the polling loop execute two messages in the order pressKeyboard, and
processMouseButtons. We will focus on pressKeyboard and leave processMouseButtons as an exercise.
 Method processKeyboard first checks whether a key has indeed been pressed. If so, it sends
message readKeyboard. This message check whether the character is a ‘normal’ character or not
(<Backspace>, up or down arrow, <ESC> followed by another character, and so on). Normal characters

 1

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

are added to a stream and displayed in the text view, whereas non-normal characters are ‘dispatched’ for
further processing. This processing consists of checking ParagraphEditor’s dispatch table, an instance of
DispatchTable, whose function is to associate keyboard keys and their combinations with methods. A non-
normal character or its combination with other characters results in the lookup of the appropriate method,
which is then executed. In our case, we pressed <Backspace>, its associated method is backspaceKey:, and
this method is executed next.
 The essence of keyboard processing, from the developer’s point of view, is the dispatch table
associated with ParagraphEditor. To take advantage of the keyboard response process, we must thus
understand the contents of the dispatch table. The dispatch table is associated with the ParagraphEditor
class, and the initialization of the dispatch table thus happens in a class initialization method. This method
is called initializeDispatchTable and the representative pieces of its definition are as follows:

initializeDispatchTable
 Keyboard := DispatchTable new.
 “First define default behavior.”
 Keyboard defaultForCharacters: #normalCharacterKey:.
 Keyboard defaultForNonCharacters: #ignoreInputKey:.
 “Now define non-default behavior by associating keys with methods for keys that have

distinguished behavior.”
 “First behaviors for special keys on the keyboard.”
 Keyboard bindValue: #deleteKey: to: Cut. “Execute method deleteKey: if Cut (?) is pressed.”
 Keyboard bindValue: #pasteKey: to: Paste.
 Keyboard bindValue: #backspaceKey: to: BS.
 Keyboard bindValue: #backWordKey: to: Ctrlw.
 “First special Ctrl keys for creating frequently needed text.”
 Keyboard bindValue: #displayIfTrueKey: to: Ctrlt. “Hot key for inserting ifTrue:”
 Keyboard bindValue: #displayIfFalseKey: to: Ctrlf.
 Keyboard bindValue: #displayDateKey: to: Ctrld. “An example of what you might do.”
 Keyboard bindValue: #displayColonEqualKey: to: Ctrlg.
 “Now some text editing hot keys.”
 Keyboard bindValue: #findKey: to: Ctrls.
 Keyboard bindValue: #findDialogKey: to: Ctrla.
 Keyboard bindValue: #replaceKey: to: Ctrlr.
 Keyboard bindValue: #replaceDialogKey: to: Ctrle.
 “Now keys such as Enter, up and down arrow keys, etc.”
 Keyboard bindValue: #displayCRKey: to: #Enter.
 Keyboard bindValue: #cursorUpKey: to: #Up.
 etc.
 “Next behaviors for special key combinations of a character preceded by ESC.”
 '<''"[{(' do: “Any of these preceded by ESC puts ‘brackets’ around the selected text.”
 [:char |
 Keyboard
 bindValue: #encloseKey:
 to: ESC
 followedBy: char].
 'sSuUbBiIx+-' do: “This one changes the style of the selected text.”
 [:char |
 Keyboard
 bindValue: #changeEmphasisKey:
 to: ESC
 followedBy: char].
 Keyboard “This one performs mini-formatting of code when you press ESC and then f.”
 bindValue: #miniFormatKey:
 to: ESC
 followedBy: $f.
 etc.

 The only mystery in this definition is the meaning of symbols such as Ctrlt,Ctrlf, Cut, Paste, and
BS. According to the way that these identifiers are written, they must be global variables (no, they are not

 2

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

of global interest), or class variables, or keys in a pool dictionary1. It turns out that they are keys in the pool
dictionary TextConstants because they are used by several other classes as well. When you inspect this
dictionary, you will find that Ctrlt ,Ctrlf, Cut, Paste, and BS are among many characters that are assigned
special names for ease of processing. As an example, Ctrlt’s vale is the character whose hexadecimal code
is "16r0014", in other words, the character whose ASCII code is 14H, often referred to as control t2.
 Now that we fully understand how this works, we can explore how we can use it.

How we can take advantage of it

There are three ways in which we can use this knowledge: We can use the built-in behaviors, we
can modify the key combinations, and we can define new behaviors.

Existing behaviors. Surprisingly, much of the built-in behavior is not documented in the User Guide. As an
example, did you know that if you select text and then click ESC followed by i, the selection will be
italicized? If you read the above method carefully and explored the behaviors implemented by the dispatch
table, you now know. The following is a summary of most of the predefined behaviors and we urge you to
explore the definition for the rest and test them in the Workspace.

Key or key combination Brief description Detailed description
Arrow keys
<Ctrl> <a> ‘Find’ dialog Same effect as find command in the <operate> menu.
<Ctrl> <d> Display date Display today’s date at current cursor position.
<Ctrl> <e> ‘Replace’ dialog Same effect as replace command in the <operate> menu.
<Ctrl> <j> Paste Same effect as paste command in the <operate> menu.
<Ctrl> <h> Erase character Same effect as delete command in the <operate> menu.
<Ctrl> <w> Erase word Erase word preceding current position of cursor.
<Ctrl> <i> Tab Same effect as <Tab> key.
<Ctrl> <f> ifFalse: Enter ifFalse: at current cursor position.
<Ctrl> <g> := (get) Enter := at current cursor position.
<Ctrl> <t> ifTrue: Enter ifTrue: at current cursor position.
<Ctrl> … Control characters According to the ASCII standard, control codes such as

<Ctrl> <I> have functions such as Tab and others. See
TextConstants and an ASCII table for definition.

<ESC> Tab Select typed Select (highlight) recently typed text.
<ESC> surround character brackets toggle Add or remove < around selected text. Similar effect also for

<[> <{> <‘> <(> <“> keys.
<ESC> <f> mini-format Format highlighted text.
<ESC> style character change emphasis Turn style of selection on or off. bold, <u> underline,

<I> italic, <s> serif, <+> larger font, <-> smaller font, <x>
emphasis at start of block. Lowercase letter turns emphasis
on, uppercase letter turns it off.

F1 function key Select typed Select (highlight) recently typed text. Same as <ESC> <tab>

Redefining keys. The next thing you can do is redefine the keys defining the existing behaviors. As an
example, if you are used to Microsoft Word conventions, you might want to redefine the Paste key to be
<Ctrl> <v> instead of <Ctrl> <v>. When you look at the definition of the dispatch table above, you will
see that the paste key is defined by the Paste pool variable and to change it, you must change the value of
Paste in the TextConstants pool dictionary. One way to do this is to execute

1 They are not, obviously, classes.
2 The first 32 ASCII codes do not have printable representation although some of them represent characters
such as Tab that have effect on output. Because they have control functions, they are known as control
characters and often referred to by letters of the alphabet: Code 1 is control a, code 2 is control b, etc.

 3

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

TextConstants at: #Paste put: (TextConstants at: #Ctrlv)

 After this, you can check that Paste in TextConstants has now the value of "16r0016". However,
this is not the end because we must now reinitialize the ParagraphEditor with this new value by

ParagraphEditor initialize

Everything should now work. If you have an open Workspace, type something in, make a
selection, copy it, and try <Ctrl> <v> to see if it performs the Paste operation. You may be surprised to
find that it does not and the reason is that if the Workspace existed before you made the change, it still has
the old setting associated with it. Open a new Workspace and try it, and this time it works.

Before we conclude this subsection, we must note that you cannot redefine <Ctrl> <c> because
this key is permanently assigned to the Break function (open User Interrupt Exception) in the Virtual
Machine.

New behaviors and keys. We can define new key behaviors in the same way as the old ones, as long as our
new definition does not override existing ones. In this example, we will define a new hot key combination
to display self halt at the cursor position because this is a frequently needed expression. We will assign this
function to <Ctrl> <h> to make it easy to remember.
 In our implementation, we will, of course, shamelessly steel from existing code (the term is
‘reuse’). What we need to do is update the dispatch table and this must be done by editing its initialization
method and then reinitializing the PragraphEditor. When you analyze the definition of
initializeDispatchTable above, you will find that we should model our addition after

 Keyboard bindValue: #displayIfTrueKey: to: Ctrlt

and we thus add

 Keyboard bindValue: #displaySelfHalt: to: Ctrlh

It now remains to add the new method displaySelfHalt: which we edit from the existing definition
of displayIfTrueKey: as follows:

displaySelfHalt: aCharEvent
"Replace the current text selection with the string 'self halt'."
 self appendToSelection: 'self halt'

After this, we reinitialize ParagraphEditor by

ParagraphEditor initialize

open a new Workspace, try <Ctrl> <h> - and it works! Unfortunately, there is one problem: <Ctrl> is
already used for the Backspace character and when we redefined it, Backspace does not delete the previous
character but inserts self halt. We suggest that you change the combination from <Ctrl> <h> to <Ctrl>
for ‘create break’. This works without problems.
 In addition to binding an action to a single key, the dispatch table can also bind an action to a
combination of two keys. The following statement from initializeDispatchTable shows how to do this:

 Keyboard
 bindValue: #selectCurrentTypeInKey:
 to: ESC
 followedBy: Tab.

 Finally, a note on one keyboard feature that is implemented differently. As you know, the Delete
key by default acts like the Backspace key, in other words, deletes the previous character. In most word

 4

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

processors, such as Word, Delete remove the next character. This can be change by sending the following
class message

LookPreferences deleteForward: true

Since this message changes a class variable and since values of class variables are persistent, this
changes the behavior of your Delete key permanently, until you change it back again.

Main Lessons Learned

•
•

•
•

•

•

Keyboard processing is handled by the controller class ParagraphEditor.
ParagraphEditor checks each activated key and if the key (or a combination of this key and other keys)
is in its dispatch table, it executes the associated action by performing the attached method.
The dispatch table defines a number of useful undocumented behaviors.
The method initializing the dispatch table can be edited to obtain new behaviors or to bind different
keys to existing behaviors.
The operation of <Ctrl> <c> is an exception because it is defined in the Virtual Machine and cannot be
redefined.
Class LookPreferences also plays a role in keyboard processing.

Exercises

1. Class DispatchTable is a very interesting class that is the basis of keyboard mapping. Write its short

description.
2. The effect of different entries in ParagraphEditor’s dispatch table can be grouped into several

categories. List these categories and explain how they are implemented.
3. Classify entries in TextConstants into categories and give one example of each.
4. How is the change of emphasis implemented?
5. Redefine other shortcut keys including <Ctrl> <x> to Delete, and <Ctrl> <z> to Undo. Try whether

you can redefine <Ctrl> <c> to Copy.
6. As we noted, <Ctrl> <d> prints today’s date. Define an escape sequence <ESC> <d> to open a notifier

window with today’s date and current time.
7. Explain the operation of the binding of a block to a function key. (Hint: The table above includes an

example.)
8. Reimplement Exercise 6 to use function key F2 instead of the combination <ESC> <d>.
9. What is the mechanism by which class LookPreferences changes the behavior of the Delete key?
10. Our extension of hot keys to include <Ctrl> <h> works in the Workspace but not in the Browser.

Why? Correct this shortcoming.

A.8.2 Text and fonts

 As we know, a Text object consists of a string and emphasis where emphasis assigns to each
character in the text one or more symbols or an association, such as #bold, or #(#bold #underlined), or
#color -> ColorValue red. The obvious question that arises is how is this information converted to a font,
size, color, and additional information needed to display the text such as line spacing, number of pixels
representing a tab, and so on. To understand the mechanism and to be able to understand it, we must now
introduce class ComposedText and its relatives.

Class ComposedText and its relatives

For display, Text, must be converted to ComposedText as in

aText asComposedText

 5

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

A ComposedText contains Text and has access to a dictionary of text styles via its TextAttributes
component (Figure A.8.2). The TextAttributes object does not itself contain the style dictionary but has
access to a CharactersAttribute object which contains this dictionary. (In addition to an instance of
CharacterAttributes, TextAttributes also contains information such as how many pixels is a tab, how many
pixels separate two lines, what is the alignment of the text – centered, left aligned, and so on – etc.). The
style dictionary in CharacterAttributes translates individual emphasis symbols using blocks that modify the
base (default) font associated with the CharacterAttribute. (This default font is an instance of
FontDescription.) Depending on how many arguments the block has, the transformation is done by

• accessing the font only or
• the font and an argument that could prescribe, for example the size of the font, or font, argument, or
• a FontPolicy object which transforms a FontDescription to an available platform font

ImplementationFont. Note that the value of the dictionary might also be an array of symbols, in
which case the translation is performed again using the same dictionary.

When a ComposedText is asked to display itself, as in

a ComposedText displayOn: aGraphicsContext

it uses its TextAttributes to convert tabs to pixels, calculate line spacing, and so on, and performs the
translation of the emphasis of its individual characters from symbols to fonts. Using FontPolicy it then
translates the obtained desired font to the nearest available ImplementationFont.
 Given these principles, we can now explain how to control the font and other visible aspects of the
displayed text (Figure A.8.3). A ComposedText normally uses default system TextAttributes associated
with default CharacterAttributes and its associated dictionary. For most applications, the default dictionary
with its definition of #color, #bold, #large, #small, #underlined, and other text styles is sufficient. When it is
not sufficient, we have the following two possibilities which can be combined:

• We can associate the ComposedText with its own TextAttributes object with its own parameters,

including a new CharacterAttributes object with its own custom dictionary. This dictionary can define
new emphasis symbols and associate each of them with a block that transform the base font as desired.
The base font itself is the font returned by message defaultQuery sent internally to the
CharacterAttributes object. Some of the parameters that we might want to define for our new
symbols are color, size, font family, underlining, and so on.

• Another way to introduce new fonts is to redefine the base font by defaultQuery: aFontDescription.
With this approach, the blocks that transform the base font when they implement emphases start from
a non-default font.

 6

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

ComposedText TextAttributes
contains

CharacterAttributes

contains

Text

Sym

interpreted by

contains

Array

Symbol

contains
interpreted by

Implement

attributes contains

their

Exam
Probl
Solut
font)
1. C
2. D
3. A

p
4. C
5. A

emphasis
is a
bol IdentityDictionary Symbol

finds nearest
available font inationFont FontPolicy

tw
w

threeArgumentBlock
with font, argument,

and policy

defined by

value
transfor
base fo

value

FontDescription

converted to
platform font by

Figure A.8.2. Object diagram showing the participants in conversion of

Figure A.8.3. Usage diagram showing the process of conversion of te

We will now give several examples showing these basic approache
variations.

ple 1: Define new font color attributes – a problem requiring a one-argum
em: Define new emphases #red and #blue that change font color.
ion: The solution does not require a new kind of font (we are just modify
 and consists of the following steps:

reate a new CharacterAttributes object from the default CharacterAttr
efine its defaultQuery to return the default font.
dd the symbol -> block entry to the CharacterAttributes dictionary
redefined default emphases).
reate a TextAttributes with the new CharacterAttributes.
ssign the new TextAttributes as the text's new text style.
key – emphasis
name
BlockClosure

ms
nt
uses as base

font
FontDescription

oneArgumentBlock
with font

oArgumentBlock
ith font, argument

is one of

text symbols to fonts.

xt symbols to fonts.

s to creating new fonts and

ent emphasis block

ing attributes of the existing

ibutes.

 (which already contains all

7

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

The code fragment implementing this algorithm and displaying the text in the currently active window is as
follows:

| composedText ca ta gc |
"Get text."
composedText:= 'A text' asComposedText.
"Construct CharacterAttributes."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: text textStyle defaultFont.
ca at: #red put: [:fontDesc | fontDesc color:ColorValue red].
ca at: #blue put: [:fontDesc | fontDesc color:ColorValue blue].
ta := TextAttributes characterAttributes: ca.
composedText textStyle: ta.
gc := Window currentWindow graphicsContext.
composedText displayOn: gc at: 400@400.
composedText text emphasizeAllWith: #red.
composedText displayOn: gc at: 400@450.
composedText text emphasizeAllWith: #blue.
composedText displayOn: gc at: 400@500

Example 2: Defining font size emphasis – a problem requiring a two-argument character attribute block
Problem: Define a new emphasis symbol #size used in size -> 20, such that a character assigned this
emphasis is displayed with pixel size specified as its argument.
Solution: This problem requires a character attribute block with two argument, the second of which will be
the size. The size argument will be used to assign pixel size. The general procedure is the same as in
Example 1.

| composedText ca ta gc |
composedText:= 'A string' asComposedText.
"Construct CharacterAttributes."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: text textStyle defaultFont.
ca at: #size put: [:fontDesc :size| fontDesc pixelSize: (fontDesc pixelSize + size)].
ta := TextAttributes characterAttributes: ca.
composedText textStyle: ta.
gc := Window currentWindow graphicsContext.
composedText displayOn: gc at: 400@400.
composedText text emphasizeAllWith: #size -> 16.
composedText displayOn: gc at: 400@450.
composedText text emphasizeAllWith: #size -> 20.
composedText displayOn: gc at: 400@500

Example 3: Display a part of the text using a different font family.
Problem: We are to display the string 'This string uses a different family' using font AvantGarde as
indicated. The rest is displayed using default font and using the indicted styles.
Solution: We will use the same procedure as in the previous examples with the default font and a new text
style called #avantgard. The program is as follows:

| composedText ca ta gc |
composedText:= 'This string uses a different family' asComposedText.
"Construct CharacterAttributes."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: text textStyle defaultFont.
ca at: #avantgarde put: [:fontDesc | fontDesc family: 'avantgarde*'].
ta := TextAttributes characterAttributes: ca.

 8

mailto:400@500
mailto:400@500

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

composedText textStyle: ta.
text text emphasizeFrom: 20 to: 36 with: #avantgarde.
gc := Window currentWindow graphicsContext.
composedText displayOn: gc at: 400@450.

Note that we used the wild card character in 'avantgarde*' because we were not sure of the exact
name of the font family.

Example 4: Display the whole text using a non-default font family and combine it with various other styles.
Problem: We want to display the whole string 'This string uses a different font family'. using
AvantGarde again and emphasize the whole text by underlining as shown.
Solution: In this case, it is better to modify the base font from which the whole string is defined. This is
done by creating a new FontDescription object and using it as the default font for the
CharacterAttributes. The program is as follows:

| composedText ca ta gc fontDescription |
composedText:= 'This string uses a different font family' asComposedText.
"Create a new base font description object."
fontDescription := FontDescription new
family: 'avantgarde*';
pixelSize: 16.
"Construct CharacterAttributes."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fontDescription.
ca at: #avantgarde put: [:fontDesc | fontDesc family: 'avantgarde*'].
ta := TextAttributes characterAttributes: ca.
composedText textStyle: ta.
composedText text emphasizeAllWith: #underline.
gc := Window currentWindow graphicsContext.
composedText displayOn: gc at: 400@450

Example 5: Find fonts available on the current platform.
Problem: We may want to allow the user to select any font from a multiple choice dialog (Figure A.8.4).
How do we find which fonts are available?

Figure A.8.4. Multiple dialog offering a choice from all available fonts.

 9

mailto:400@450

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

Solution: The 'graphic device' on which we are printing (in this case the screen) knows about available
fonts. A possible solution is as follows:

| fontFamilies fontFamily |
"Collect all available font families."
fontFamilies := (Screen default defaultFontPolicy availableFonts collect:

[:fontDesc | fontDesc family]) asSet asSortedCollection.
"Allow user to select a family."
fontFamily := Dialog choose: 'Which font do you want?'

fromList: fontFamilies
values: fontFamilies
lines: 8
cancel: [#noChoice]

Example 6: Allow the user to select a style and display the stylized text in the current window.
Problem: Use the multiple choice window from the previous example to choose a font family from all
families available on the current platform, and display text using this family.
Solution: The principle of the solution is to use the collection of font families to add new emphases to the
dictionary. The program is as follows:

| fontFamilies fontFamily ca composedText ta gc |
composedText := 'Experimental text.' asComposedText.
"Get available font families."
fontFamilies := (Screen default defaultFontPolicy availableFonts

collect: [:fontDesc | fontDesc family]) asSet asSortedCollection.
"Construct CharacterAttributes."
(ca := CharacterAttributes newWithDefaultAttributes)

setDefaultQuery: composedText textStyle defaultFont.
"Create dictionary with all font styles."
fontFamilies do: [:family | ca at: family asSymbol put: [:fontDesc | fontDesc family: family]].
"Let user select a font family."
fontFamily := Dialog choose: 'Which font do you want?'

fromList: fontFamilies
values: fontFamilies
lines: 8
cancel: [#noChoice].

ta := TextAttributes characterAttributes: ca.
composedText textStyle: ta;

text emphasizeAllWith: fontFamily asSymbol.
gc := Window currentWindow graphicsContext.
composedText displayOn: gc at: 400@500

Example 7: Controlling font in a text editor widget
Problem: Implement a window with a text editor widget and an <operate> menu with command font that
allows the user to select any platform font for the currently highlighted text. The font command should
open a multiple choice window as in the previous example, from which the font selection is made.
Solution: We will reuse the techniques from previous examples. The only new aspect of this problem is
how to force the new emphasis on the selection in the text editor widget and this task is performed simply
by changing the emphasis of the current text editor selection, assigning it as the new selection, and
invalidating the widget. The methods implementing the application are as follows:

Initialization

initialize
"Define context of the text editor widget."

 10

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

 text := Array comment asComposedText asValue

postBuildWith: aBuilder
"Create new TextAttributes with all platform fonts."
 | ca ta |
 fontFamilies := (Screen default defaultFontPolicy availableFonts

collect: [:fontDesc | fontDesc family]) asSet asSortedCollection.
 ca := CharacterAttributes newWithDefaultAttributes.
 ca setDefaultQuery: text value textStyle defaultFont.
 fontFamilies do: [:family | ca at: family asSymbol put: [:fontDesc | fontDesc family:
family]].
 ta := TextAttributes characterAttributes: ca.
 widget := (self builder componentAt: #textWidget) widget.
 widget textStyle: ta

Menu

menu
"Extend built-in text editor menu."
 | mb |
 mb := MenuBuilder new.
 mb addDefaultTextMenu;
 line;
 add: 'font family' -> #fontFamily;
 add: 'font size' -> #fontSize.
 ^mb menu

where command font family is implemented by

fontFamily
"Let user select a font family and redisplay the selection with the new font."
 | fontFamily selection |
 (selection := widget controller selection) isEmpty ifTrue: [^self].
 (fontFamily := Dialog choose: 'Which font family do you want?'
 fromList: fontFamilies
 values: fontFamilies
 lines: 8
 cancel: [nil]) isNil ifTrue: [^self].
 self applyNewEmphasis: fontFamily asSymbol onText: selection

which uses

selectFontFamily
"Let user select a font family."
^Dialog choose: 'Which font do you want?'
 fromList: fontFamilies
 values: fontFamilies
 lines: 8
 cancel: [#noChoice]

and command font size is implemented by

fontSize
"Let user select a font family and redisplay the selection with the new font."
 | fontSize selection |

 11

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

 (selection := widget controller selection) isEmpty ifTrue: [^self].
 (fontSize := Dialog choose: 'Which font size do you want?'
 fromList: #(#small #normal #large)
 values: #(#small #normal #large)
 lines: 3
 cancel: [nil]) isNil ifTrue: [^self].
 self applyNewEmphasis: fontSize onText: selection.
 widget invalidate

Finally, the method that applies emphasis and refreshes the widget is

applyNewEmphasis: aSymbol onText: aText
"Emphasize current selection with chosen emphasis."
 aText emphasizeAllWith: aSymbol.
 widget controller replaceSelectionWith: aText.
 widget invalidate

Closing notes

FontPolicy

 You might be wondering how FontPolicy which converts the desired font to an available font
does this work. The principle is that if it does not find the desired font, it takes the parameters of the
desired font (an instance of FontDescription) and compares them with the parameters of available fonts,
and finds one that matches the desired font most closely. In doing this, it applies various weighting
coefficients to all parameters as explained in the class comment whose essential part is as follows:

I represent a policy mapping FontDescriptions to actual ImplementationFonts available on a
particular device. Mapping is done by assigning weights to the various properties that a
FontDescription can have, and using those weights to assign a quality value to each of the
available fonts as it is compared to a font request. A quality value of 0 indicates an exact match.
A high quality value indicates a poor match. Any concrete font whose quality is greater than the
policy's tolerance is removed from consideration.

Assigning weights can be somewhat tricky. Perhaps the easiest approach is to start by choosing
a default tolerance (for example, the system default is 9), and then choose the other weightings
relative to that. For example, the default system assumes that the size of characters and whether
they are fixed width is moderately important, so they have weights of 3. Boldness is a little less
important, and serifness even less so. The name of a font is very specific, so it's given a very
high weight of 10, because the user probably has very high expectations of seeing a particular
font.

 Note that you can be easily redefine the weighting attributes or the whole scheme of font matching
if you wish to do so. In fact, you may want to redefine the whole font management architecture if you find
it unsatisfactory, for example for some of the reason mentioned in the following notes.

Notes on TextAttribues

Our presentation implies that each ComposedText has exactly one TextAttributes. Since this
object defines properties that apply not only to individual characters but also to the text as a whole, the
whole object is displayed with the same alignment (centered, left aligned, etc.), the same line separation,
and so on. If this is not desirable, the text must be divided into sections of ComposedText elements with
their own parameters.

Note also that the default value of TextAttributes is shared by all ComposedText objects that
use it. As a consequence, changing its parameters changes text attributes for all ComposedText objects

 12

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

that use it. When defining new text styles, a new instance of TextAttributes should thus be created – as we
have been doing all along. textattr. shared – make copy

Finally, a note on emphases and the attributes dictionary. If an undefined emphasis (one that does
not appear as a key in the attributes dictionary) is encountered during display, this emphasis is ignored. If a
sequence of conflicting emphasis is encountered (such as a sequence of emphases specifying different font
sizes), the last one is applied.

Exercises

1. We mentioned that the fact that the whole ComposedText object shares the same TextAttributes

may be too limiting. Since text editor widgets are designed to use a single ComposedText object as
their model, this imposes limits on the extendibility of text editor widgets. The easiest way to obtain a
window with sufficient text processing power thus seems to be to use subviews and appropriately
extended existing views supporting ComposedText display - the ComposedTextView view, and the
ParagraphEditor controller. Use this approach to create a window with a subview that allows the user
to control the font family, pixel size, color, and other text parameters via <operate> menu commands.

2. Modify the implementation from Exercise 1 to implement font control using an interface similar to
Microsoft window font controls.

3. Extend the above exercises to allow simple drawing. This exercise is better suited for a project.
4. Extend the previous exercise to allow 'pluggable' drawing tools selectable from a menu. This exercise

is also better suited for a project.

A.8.3. Drag-and-Drop

 Drag and Drop is the familiar process of selecting an item in a source widget by pressing the
<select> mouse button over an item, dragging the mouse pointer over another widget with the button
pressed, and dropping the data into a target widget by releasing the mouse button over it. The action is
usually accompanied by a visual feedback, typically by changing the shape of the mouse pointer as it
moves over windows and widgets. In VisualWorks, the source may be a list, and the target may be a
window or any widget.

We will give a simple example of the implementation of drag and drop but first the principles. The
operation involves the cooperation of the following new classes:

DragDropManager. An instance of this class coordinates the whole drag and drop operation from the
moment the user presses the <select> button over a source widget, to the moment the button is released
over a target.

•

•

•

•
•

DragDropContext is carried by DragDropManager and contains all information necessary for the
operation including the dragged data (an instance of DragDropData), information about cursor shape,
and information stored in it by a drop target, usually the one that was most recently entered. An
instance of this class is used as the argument of messages sent by DragDropManager as it carries out
the drag and drop operation and provides access to all necessary drag and drop information.
DragDropData holds data to be transferred and information about the drag origin widget. The data is
often held in an IdentityDictionary which makes it possible to story any number of items and access
them by arbitrary keys. It also contains a key object, a Symbol identifying the nature of the data for
use by the target.
DropSource is used to provide information about cursor shapes at various stages during the operation.
ConfigurableDropTarget is an object representing the target widget. It is automatically created by the
UIBuilder when a widget’s properties specifies that the widget is a drag and drop target. When the
mouse pointer moves into this widget’s bounds, the DragAndDropManager recognizes this and sends
mouse motion-related messages to it.

The basic operation of drag and drop is as follows (Figure A.8.5):

 13

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

•
•

•

1. User presses <select> button over a widget identified as a source via its DragStart property.
2. The source widget sends its DragStart message to the application.
3. The DragStart method is responsible for creating a DragDropData instance containing the data and

possibly other information such as a Symbol identifying the nature of the data. The method also creates
a DropSource object containing information about entry effects. Finally, the DragStart method must
create an instance of DragDropManager which will be responsible for the whole drag and drop. The
DragDropManager now takes over.

4. As the user moves the mouse with the pressed button, the DragDropManager monitors the windows
and widgets over which the mouse pointer is passing. If the mouse passes over a window or widget set
up as a drop target via its properties, it sends the following messages to the application model:

a designated entry message (a specified property of the widget) – when it enters a target widget
a designated over message (a specified property of the widget) – when the mouse pointer moves
while over a target widget
a designated exit message (a specified property of the widget) – when it exits a target widget

All these messages have a DragContext as their argument and obtain information such as the data and
the key Symbol from it. They typically provide visual feedback by changing the cursor or highlighting
the widget.

5. When the user releases the button over a target window or widget, DragDropManager sends a
designated Drop message (a specified property of the widget) to the application. This message
typically processes the data and provides visual feedback.

6. The drag and drop operation is finished and the DragDropManager is released.

 14

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

User drags mouse, and …

DragDropManager executes exit
property method

If drag OK, drag start method create DragDropManager with drag data

User presses <select> button over drag source widget

Figur

After this introduction, we will n

Example: Library Cataloguing T

Problem: Assume that a part o
books and ‘reserve’ books. As
examines each book and classifi
version of a tool to computerize
in the list which displays its info
book is removed from the origin

pointer moves over a drop target
id
re

DragDropManager executes over
property method

DragDropManager exe
property method and dra

e A.8.5. Essence of the Drag and Drop pro

ow present a simple example of a drag and

ool

f the process of cataloguing new books
sume that all new books are entered in
es it manually as regular or reserve. Our ta
 this task (Figure A.8.6). To use this tool,
rmation, and then drags the title to one of
al list.

pointer enters a drop target
id
pointer exits a drop target
id
leases <select> button over a target

DragDropManager executes entry
property method

cutes drop
g drop ends

cess.

 drop user interface.

is classifying them as ‘regular’
to a list, and a ‘reserve clerk’
sk is to implement a preliminary
 the clerk first clicks a book title
 the list below. At this point, the

15

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

Figure A.8.6. Book classification tool.

Design

 Assume that we already have a suitable class Book to represent individual books. To keep things
simple for this example, we will hold the new books and the classified books in the application model’s list
aspect variables newBooks, regularBooks, and reserveBooks. The application model class will be called
BookClassifier.
 For the sake of this example, we will assume that the new books list already exists (we will
initialize it to a few books during initialization) and the only responsibility of BookClassifier will be the
drag and drop operation. In addition to the collection instance variables, BookClassifier will have aspect
variables author, title and year for the input fields.

Implementation

Draw the user interfaceWe specified the following properties for the three lists:

New Books – drop source:
Drag OK: #dragOK
Drag Start: #dragStart
Notification:
Change: #newSelection - equivalent to sending onChangeSend: newSelection to: self on initialization

Regular Books – drop target:
Entry: #entry
Over: #over
Exit: #exit
Drop: #addRegularBook

Reserve Books – drop target:
Entry: #entry

 16

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

Over: #over
Exit: #exit
Drop: #addReserveBook

Note that we specified the same Entry, Over, and Exit methods for both drop target lists because
we want the same visualization behavior for both: Both will change the cursor in the same way on entry
and on exit.

We will now implement initialization and all the above methods.

initialize
“Create test list of new books and assign it to the New Books list widget.”
 | books authors titles years |
 books := SortedCollection sortBlock: [:x :y | x author < y author].
 authors := #('Orwell' 'Steinbeck' 'Wright' 'Moliere' 'Carre' 'Ross' 'Turgenev' 'Crane' 'Richardson').
 titles := #('Nineteen Eighty-Four' 'Of Mice and Man' 'Black Boy' 'Tartuffe' 'The Little Drummer Girl'

'As For Me and My House' 'Fathers and Sons' 'The Red Badge of Courage' 'Wacousta').
 years := #(1980 1975 1960 1670 1992 1980 1985 1970 1977).
 1 to: authors size do: [:index | books add: (Book
 author: (authors at: index)
 title: (titles at: index)
 year: (years at: index))].
 self newBooks list: books

Now the drag and drop related methods, starting with the drag source widget. The dragOK method
is executed when the user presses <select> over the widget. It returns true if drag is OK, false otherwise.

dragOK: aController
“Allow drag operation only if the list is not empty.”
 ^newBooks list isEmpty not

If dragOK returns true, the following method sets up a DragDropManager and starts the drag
operation. All the messages in the method are required for drag and drop to work.

dragStart: aController
“Create and strt a dd with data necessary for visualization and data drop.”
 | data ds dm |
 data := DragDropData new.
 data clientData: newBooks selection.
 data contextWindow: self builder window.
 data contextWidget: aController view.
 data contextApplication: self.
 ds := DropSource new.
 dm := DragDropManager withDropSource: ds withData: data.
 dm doDragDrop

Proceeding now to the target lists, we will first define the entry, over, and exit methods that
respond to the passing of the mouse into, over, and out of the widget. They all return a Symbol which is
used by DropSource to select the appropriate cursor. This value – an effect symbol – has the following
default values: #dropEffectMove, #dropEffectNone, #dropEffectCopy, and #dropEffectNormal, associated
with special cursors; custom cursors may be defined for user-defined symbols as well. Our definitions
don’t do anything except for returning the appropriate effect symbol:

entry: aDragContext
“Show that it is possible to move the object to this list.”
 ^#dropEffectMove

over: aDragContext

 17

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

“Show that it is possible to move the object to this list.”
 ^#dropEffectMove

exit: aDragContext
“Show that no drop operation is possible outside the list.”
 ^#dropEffectNone

Finally, we will define the drop method when the user executes the drop operation by releasing the mouse
button. The method returns the effect symbol defining the shape of the cursor after the operation.For the
Regular Books list the method is

addRegularBook: aDragContext
“User released mouse button. Get data and add it to this list, remove the item from the New Books list.”
 | book |
 book := aDragContext sourceData clientData.
 regularBooks list: ((regularBooks list) add: book; yourself).
 self removeBook: book.
 ^#dropEffectNone

and addReserveBook: is similar. Both method share removeBook: which is defined as follows:

removeBook: aBook
“User dropped aBook into another book list, remove it from the New Books list.”
 newBooks list: ((newBooks list) remove: aBook; yourself).
 title value: ''.
 author value: ''.
 year value: ''

This completes the implementation and the program is now fully functional. As mentioned in the
introduction, this example shows only the basic features of Drag and Drop and we encourage you to study
the more involved examples in the Cookbook, and to implement the exercises.

Main Lessons Learned

•
•
•

•

•

Drag and drop involves widgets whose properties define them as drop source or drop targets.
A widget may be a drop source, a drop target, both, or none of these.
Drop source properties include the name of a method that determines whether it I OK to perform a
drag and drop, and a method that creates a DragDropManager with appropriate data to realize the
operation.
Drop target properties include the name of methods that determine what happens when the mouse
pointer enters the widget, moves inside it, and leave it. They all return an effect symbol which
determines the new shape of the mouse cursor. Another method is activated when the user releases the
mouse; it executes the drop action and returns an effect symbol.
The Notification property of a widget may be used with the same effect as onChangeSend:to: during
initialization.

Exercises

1. Implement the example from the text.
2. We
3. Extend the example by allowing the user to drag a book from Regular Books to Reserve Books and

vice versa. This is possible because a widget may be both a source and a target.
4. Extend the example by allowing the user to drag a book from Regular Books or Reserve Books to a

garbage bin. (A label may be an image and a drop widget.)

 18

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

5. Add a list of Archived Books reserved for old books. Only a book published before 1800 may be

dropped into Archived Books. (Hint: Calculate a Symbol - #old or #notOld – when a book is picked,
assign it as key to the DragDropContext, and use it to make a decision.)

A.8.4 The Virtual Machine

 Every programming language that allows its users to create objects dynamically must have a
mechanism for removing objects that are no longer needed. Otherwise, many applications would soon run
out of memory. According to the mechanism for destroying unneeded objects, programming languages can
be divided into two groups: those that destroy unneeded objects automatically (such as Smalltalk, Java, and
LISP), and those that require the programmer to destroy unneeded objects by explicit destructor
construction (such as C++). Modern programming practices generally prefer automatic garbage collection.
 Automatic garbage collection is several decades old and underwent a lot of evolution because its
inefficient implementation may render it practically unusable. In terms of strategies, there are two basic
approaches to identifying inactive objects (also known as ‘corpses’: One is to associate a count of existing
references for every new object and increment or decrement the count when a reference to the object is
created or dropped. The other approach is to establish a part of the system as the ‘root’ and decide whether
an object is live by attempting to trace a chain of references from the roots of the system to the object. Both
strategies are recursive in that the marking of referenced objects requires proceeding down to object
components until finding a primitive object with no components, and that incrementing or decrementing
the count also requires going down to the primitive objects. The disadvantage of reference counting is that
it must be done whenever an object is created, destroyed, or assigned and this approach is thus inefficient
and not used any more.
 In addition to an algorithm for distinguishing live objects from corpses, we also need a storage
strategy and a strategy for deciding whether all objects need to be examined or not, and if all objects are
not examined on every garbage collection pass then which ones are and which ones are not. As the
experience with garbage collection grew, it was discovered that a very large majority of objects created
during execution have a very short life span while other objects are very stable. This means that once an
object remains live long enough, it will probably remain so for a very long time and testing it is a waste of
time. On the basis of this finding, modern garbage collection techniques divide objects into several
categories, store them in separate memory spaces, and deal with them separately.
 After this general introduction, we will now describe how garbage collection is performed in
VisualWorks. Our description is based on comments and other information available in class
ObjectMemory which is responsible for performing garbage collection, and class MemoryPolicy which
defines the garbage collection strategy and parameters.

Garbage collection in VisualWorks

A.8.5 Garbage collection

Conclusion

Important classes introduced in this chapter

Classes whose names are boldfaced are very important, classes whose names are printed in italics are less
important, classes whose names are printed in regular font are not of much interest.

 19

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 27/02/2002

ConfigurableDropTarget, DispatchTable, DragDropContext, DragDropData, DragDropManager,
DropSource, LookPreferences, ParagraphEditor,

 20

	How it works
	How we can take advantage of it
	
	
	Main Lessons Learned

	Exercises
	A.8.2 Text and fonts

	Example 1: Define new font color attributes – a p
	Example 2: Defining font size emphasis – a proble
	
	
	
	Example 7: Controlling font in a text editor widget
	Initialization
	Menu

	Closing notes

	FontPolicy

	A.8.3. Drag-and-Drop

	Example: Library Cataloguing Tool
	
	Design
	Implementation
	Main Lessons Learned

	Exercises
	A.8.4 The Virtual Machine

	Garbage collection in VisualWorks

