Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus

Overview

Dataset widgets look like tables but all their rows have the same structure and display items of the
same kind. Individual cells may be check boxes, combo boxes, or input fields.

A subcanvas is a rectangular window area holding another canvas. The contents of a subcanvas
area may be changed at run time. One of the main uses of subcanvases is in notebook widgets because each
notebook page is a subcanvas.

Notebooks are familiar from the UI Properties Tool. Navigation through notebook pages is via
one or two sets of tabs. One set of tags called major tags is required, minor tabs are optional.

A dialog window, also called a modal or pre-emptive window is a window that retains focus (does
not let the user activate any other window) until the dialog is closed.

Menus that can be created with the Ul Painter include popup menus, menus buttons, and menu
bars. Popup menus are the familiar menus that open when the <operate> button is pressed, menu bars are
the drop down menus residing on the top of the window, and menu bars are drop down menus that look
like input fields.

A.2.1 Dataset widgets

A dataset looks like a table (Figure A.2.1) but its purpose and behavior are somewhat different. Its
main characteristics are as follows:

e Datasets are used to display a list of related multi-component objects, all instances of the same class.
(Tables, which are in many ways similar to datasets, can display heterogeneous information.) Two
examples of the use of dataset are displaying a list of employees and displaying a list of books in a
library catalog.

e All items in the same column of a dataset are accessed by the same method. As an example, items in
the Author column in Figure A.2.1 might all be accessed by method author. Individual cells are
accessed by Point coordinates.

e Cells may display text, combo boxes, or check boxes. (Tables display only non-editable text.)

e Dataset cells are directly editable ‘in place’.

e The data model of a dataset is a SelectionInList object whose List components are usually arrays of
objects displayed in row cells. As an example, each row in the dataset in Figure A.2.1 is an array
whose elements are strings and numbers representing components of Book objects including author
name, book title, and year of publication. (The model of a table is a SelectionInTable.)

e Datasets have simpler decorations.

We will now demonstrate datasets on two examples.

Example 1: Dataset as a user interface to a book catalog
Problem: Implement the user interface for accessing and editing a catalog of Book objects shown in Figure
A.2.1. Each Book has an author, a title, and a year of publication; author and title objects are strings, year is
an integer. All cells in each row must be editable. The interface will be used in conjunction with data
stored in a file but for this test, implement it so that it will open with a few Book objects already in place;
additional books can be entered by the user at run time.

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus

© Ivan Tomek 27/02/2002
= Drd atalog - || -
Author Title Year fid
Kerouac On the road 1980 B
Steinbeck The grapes of wrath 1970
Chandler The zleepy blonde 1975
Chrishie Mizz Marple remembers | 1983 +
Add row I | Remove row I

Figure A.2.1. Desired library catalog interface.

Solution: Two classes are involved in the solution: Book (simple subclass of Object holding book
information - left as an exercise), and an application model (we will call it LibraryCatalog). To implement
the solution, define Book, paint the interface, install it on an application model, define widget properties,
and define the necessary methods. The procedure for specifying a dataset is a bit more complicated and
must be followed carefully:

1.

2.

After painting the dataset widget, specify its Aspect property, the name that will return a

SelectionlnList object. We will call it bookList (Figure A.2.2).

To create the three columns required by the specification, click New Column in the Properties tool

(Figure A.2.2) three times.

Specify the properties of each column. To do this, select the column by holding the <Ctr/> key down

and clicking the <select> button with the mouse cursor inside the column. The column will be

highlighted.

Select the Column page of the Properties Tool (Figure A.2.3) and fill in the following information':

a. Column label (String property) - we chose Author for the first column.

b. Aspect expression. This expression will return the data for the cell at the intersection of this
column and the row currently selected by the user. Our expression is

selectedBook author

where selectedBook is the name of an instance variable holding a Book object (defined in our
application model to hold the selected row); author is the name of the accessing method that
extracts the author value from the Book object. This method is defined in class Book.

c. Change the width of the column if desired.

d. Specify the desired Type of cell - the available choices are shown in Figure A.2.3 and we selected
Input Field for each column because we want to be able to edit the cells at run time.
Repeat this step for each column (with expression selectedBook title and selectedBook year). The
third column is slightly different because its value year is a number and requires Number as Data
Type in the Column Type page of Properties. With this type, the widget will automatically convert
between the string-based display and the number-based year object.

Install the canvas and Define all properties. Examine the definition of bookList in the aspect protocol

to see its non-trivial character.

"If the Column page is disabled, you have not selected the column in the Canvas.

Methods:

1.

2.

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

== E E ool o 1 - |-
Dataset
liE
Aszpect: H#bookLisy Basics |
Menu: Eﬁ:tails |
Traversal |
1D:
Column |
Hew Column | Remove Column
Column Type |
=
HAppds flanoed | Aupds & Uloas | Prev | Hext
Figure A.2.2. The essential part of the Basic page of the Properties Tool
= Prope pol o hra ataloq v | -
D atazet
Baszics |
Label: [] Supplied by Application ' -
Details |
String Author ITra?ersal |
Column |
[Label Is Image

Width:

ﬁ Font:

Column Type

System

Yalidation

|4

Aszpect:

selectedB ook author

M otification

Type: Input Field

Read Only
Input Field
Combo Box

+ | [Fixed

Color

Poszition

Drop Target

Check Box

| £ gl

Sy

fpdy & Clovs

Prey

| Mext

Figure A.2.3. The main part of Column Properties.

We will start with the initialize method for LibraryCatalog. It will create the underlying
SelectionlnList model for the dataset, and initialize its list component. The algorithm is as follows:

Create a List whose elements are the rows of the dataset that will be displayed when the window
opens. If the window were to open with an empty dataset, we would not put any elements into the List.
Create the SelectionInList object for the dataset Aspect by sending the Aspect message bookList to the

model . Then send the list: message with the list created in Step 1.

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

The whole definition is as follows:

initialize
“Create and initialize the SelectionInList underlying the dataset widget.”
| list authors titles years |
“Create a List object to hold the data.”
list := List new.
“Initialize the list - we use three arrays representing columns to do this more compactly.”
authors := #('Kerouac' 'Steinbeck' 'Chandler' 'Christie' 'Homer' 'Kundera').
titles := #('On the road' 'The grapes of wrath' ' The sleepy blonde' 'Miss Marple remembers' 'llias’
'Farewell party").
years := #(1980 1970 1975 1983 11 1980).
“Create the rows.”
1 to: authors size do: [:index | list add: (Book author: (authors at: index)
title: (titles at: index)
year: (years at: index))].
“Create the SelectionInList model of the dataset and assign the list to it.”
bookList := self bookList list: list ~ “A somewhat malicious use of the identifier list.”

We assume that instances of Book are created with the author:title:year: message.

The next task is to create action button methods addBook and removeBook for adding and deleting
rows (Figure A.2.1). The essence of both methods are List messages for adding and removing elements.
Since the dataset widget is the list’s dependent, changes to the list automatically redraw the widget.

Adding a row

To add a row, get the SelectionInList model of the dataset using the Aspect message bookList, get
its List via list, and add a new Book object with the add: message. This adds an empty row and the user will
now presumably enter data into it. The definition is

addBook
“Get the List object and add a new item of the appropriate kind.”
self bookList list add: Book new

Removing a row

This action assumes that the user has selected a row, and checking that this is indeed so is the first
task of the method. The method asks the SelectioninList object for the index of the selected row. If the
index is 0, no row is selected and no action will be taken. Otherwise, the method sends removeAtindex:
index to the List. The definition is as follows:

removeBook
| index |
index := bookList selectionIndex.
index = 0 ifTrue: [*self].
bookList list removeAtindex: index

This completes the solution.

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Example 2: Add sorting buttons to Library Catalog
Problem: As an improvement of the library catalog, add three buttons to allow the user to sort book entries
by author, by title, or by year. The desired user interface is as in Figure A.2.4.

= Drad atalog - ||
Author Title Year fid
K.erouac On the road 1980 —
Steinbeck The grapes of wrath 1970
Chandler The sleepy blonde 1975
| Christie | Miss Marple remembers | 1983 ¥
T T Sort
| Add row: I o
| by authnrl | by title I | by pear I
Remove row

Figure A.2.4. Library catalog for Example 2.

Solution: To sort the list by author, we must get the list from the SelectionInList object, ask it to sort itself
with a sort block based on book authors, and assign the result to bookList via the list: message; this takes
care of redrawing the dataset via dependency. The definition is as follows:

byAuthor

“Resort the list by author names and redisplay it.”
bookList list sortWith: [:book1 :book2 | book1 author < book2 author].
bookList list: bookList list

We leave the remaining sorting buttons to you and conclude this section with a comment that may
save you some frustration. In our first attempt at byAuthor, we wrote the definition as follows:

byAuthor
bookList list: (bookList list sortWith: [:book1 :book2 | book1 author < book2 author])

This did not work because the sortWith: message returns a SequenceableCollectionSorter rather
than the sorted List.

Main lessons learned:

e Dataset widgets look like tables but their behavior and underlying models are different.

e A dataset is essentially a list widget whose individual lines are multi-item objects.

e The underlying dataset objects are SelectionInList whose list elements are rows, and a selected row
object. Cells may be input fields, check boxes, or combo boxes. The nature of each cell in a given
column is the same and its contents are obtained via the Aspect of the column.

e Row elements are usually consecutive elements of an array.

e The type property of a dataset column ensures automatic conversion between the cell and the internal
representation of the displayed object. Built-in types include String, Number, Time, Boolean, and
others.

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

e Dataset properties are more complicated than properties of most other widgets and the procedure for
creating and using them must be followed carefully.

Exercises
1. Complete Example 2.
2. Add a Print button to the library catalog. In an initial implementation, clicking Print will display the

catalog in the Transcript in a format similar to the dataset. In a second implementation, Print will print
the dataset on a printer.

3. One of the data types available for columns is Text. Modify the library catalog to display author
names in italics. (Hint: Conversion can be performed via the column Aspect expression.)

A.2.2 Subcanvas

Many application windows contain parts that are themselves applications (for example a digital
clock). Others contain parts that are swapped with other parts at run time. And many applications contain
groups of widgets that are repeated in several windows — the Property Tool is an example. Subcanvases are
used in all these situations and they are also the basis of notebook widgets because every notebook page is
a subcanvas.

A subcanvas is basically a rectangular window space that displays another canvas. To make it
possible to display a canvas in the subcanvas area, the properties of a subcanvas include the name of the
class with the specification and support for the inserted canvas, the name of the canvas specification
method, and the name of the method returning the application that provides the initial contents of the
subcanvas. These properties allow a variety of behaviors but in this section, we will demonstrate only the
simplest one - using a subcanvas to swap a part of two alternative versions of a larger canvas back and
forth. More complicated uses will be presented later.

Example: Using subcanvases to swap a part of a canvas at run time
Problem: Create a user interface whose look is controlled by a pair of radio buttons (Figure A.2.5). When

the user selects Interface 1, the label at the bottom of the window becomes This is Interface 1; when the
user selects Interface 2, the label becomes This is Interface 2.

Solution: We will implement the two alternative labels as swap-in canvases to illustrate the subcanvas
concept. In this case, the same effect could be achieved more easily by changing the label via the builder at
run time or by creating the main canvas with both sets of labels, and selectively hiding and showing them
as required; but our goal is to introduce the use of a subcanvas in the simplest way possible.

) Interface 2 @glnterface 2

This iz Interface 1 Thiz iz Interface 2

Figure A.2.5. The two alternative looks of a user interface.

To solve the problem, we will create three canvases. The first one will be the ‘main’ window with
two radio buttons and a subcanvas widget for the label. The second canvas will provide the first label and
the third will contain the second label (Figure A.2.6).

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

= - || & = - || -
i Interface 1 |

{1 Interface 2 | — This iz Interface 1

This iz Interface 2

<« |

Figure A.2.6. The main canvas (left), and the two subcanvases. The subcanvas component of the main
canvas is identified only by its handles because we turned its Bordered property off.

We start by painting the three canvases with the UI Painter. On the main Properties page of the
subcanvas widget of the main canvas (Figure A.2.7), we must specify the name of the method that returns
the application model of the subcanvas specification (subcanvasAppModel), and an ID because we will
access the subcanvas via the builder to swap a new interface in when necessary.

T 7j Properties Tool on: Subcanvas Test =] E3
SubCanvas m'l'h.,
Baszics |
: H#zub shppMod F—
Clazs: Color |
Position
Canvas: |
Drop Target |
1D- #zubcanvas
Apply | Cancel ‘ Apply & Cloze Prev | Hext
e

Figure A.2.7. The Basics Properties page of the subcanvas widget.

After creating and installing the main canvas (class SubcanvasTest and spec method windowSpec)

we created the two swap-in canvases, exactly as any other canvas, and installed them on the same class
with spec methods interface1 and interface2 respectively.

The next step is to write an initialize method. Its tasks will be to
e initialize the radio buttons so that the window opens with the Interface I button on
e register interest in changes in radio button settings.

The definition is as follows:

initialize

“Activate radio button #interface1, register interest in button setting.”
interface := #interface1 asValue.
interface onChangeSend: #newlnterface to: self

Next, we must write the change method newlInterface which is sent when the user clicks a radio
button. The method gets the subcanvas, the spec method’s symbol (#interface1 or #interface2) from the

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

aspect variable shared by the radio buttons, and tells the subcanvas to display it. This last step is performed
by the client:spec: message:

newlinterface
"Switch to the subcanvas corresponding to the active radio button."
| subcanvas |
“Get subcanvas widget from the builder.”
subcanvas := (self builder componentAt: #subcanvas) widget.
“Assign to it the canvas described in the appropriate spec method defined in this class.”
subcanvas client: self spec: interface value

Our solution is very simple because we used the same names (#interface1 and #interface2) for
both the Selection properties and for the names of the corresponding canvases.

The next task is to write the method that will ensure that the window opens with the correct
subcanvas. The definition simply sends the newlnterface message:

postOpenWith: aBuilder
"Display the initial subcanvas."
self newlnterface

Note that sending message newlnterface at this point is valid because we have already selected a
radio button in initialize. Finally, the method that supplies the application model containing the
specification of the subcanvas returns self because the subapplication is the model itself.

subcanvasAppModel
Aself

The builder sends this message when it builds the bindings dictionary associating model names and
their values. (Models of widgets such as input fields are their value holders, the model of a subcanvas is the
application model that defines it.)

Main lessons learned:

e A subcanvas is a space holder widget that can be used to swap different user interfaces into a
predetermined area at run time.

e A subcanvas is specified by a spec method that may be defined in the main application model or in
other application models. This makes it possible to swap a whole application into another application.

e If the purpose of a subcanvas is limited to swapping interfaces, the same result can often be achieved
by hiding and showing groups of overlaid widgets or by changing the components via the builder at
run time.

e The underlying class of the subcanvas widget is SubCanvas. It provides several messages that make it
possible to swap in an interface defined in an arbitrary class and window spec method.

e The model of a subcanvas is the application model that defines it.

Exercises

1. Reimplement the example from this section using
a. overlaid widgets and hiding
b. asingle label widget whose value changes at run time.
2. Trace the opening of our example application and write a description of the building process.

A.2.3 Diary - Using a subcanvas to reuse a complete application

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

In this section, we will build a simple diary with the user interface shown in Figure A.2.8.
Clicking a day button in the calendar will display notes stored for this day in the text editor at the bottom of
the window. The text can be edited and saved with the Save notes button. To switch to another month and
year, the user clicks the New date button. This opens a dialog requesting the number of the month and the
calendar then opens on this new date. When the diary first opens, the calendar displays the date of the day.

= Diary | *I -

March 1999
u Mo Tu e Th Fr S5Sa

1 2 3 4 5 6

I LE] j10]11]12] 13

14 |15 | 16 | 17] 18] 19] 20

21| 221 23| 241 25] 26 | 27

281 29 30| AN

Mew date I 1 March 1999 Save nutesl

Jana's hig hirthday. |s it possible? Don't forget (X
to buy a big gift!

Figure A.2.8. Diary interface.

When you think about this application, you will realize that the calendar part looks like a useful
component that might be reusable in other applications and we will thus create two application models -
class Diary for our problem, and the reusable class Calendar. Class Calendar will be designed to be used as
a new ‘widget’, somewhat like an extension of the palette, a stand alone application that can be plugged

into a subcanvas and provide the necessary communication with its ‘master’ window and its application
model.

Design and implementation of Calendar

Calendar is a sub-application, the user interface component in the upper half of the Diary window.
It displays the currently selected month and year, abbreviated names of the days of the week, and several
rows of action buttons with dates. The buttons are arranged to match the days of the week, and the numbers
displayed on them correspond to the days in the selected month and year. The layout and contents of the
canvas is given by the selected month.

One way to design the day-buttons part of the user interface is to use the Ul painter to draw
enough buttons to satisfy even the most demanding months (Figure A.2.9). To display a calendar for a

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

particular month, we would then show and enable only the required buttons and display the appropriate
number as a label on each of them. We will leave this approach as an exercise and use a different strategy.

B Diary BE

June 1996
Su Mo Tu e Th Fr Sa

16 | 17| 18| 19] 20] 21 | 22

23| 24| 25| 26 27 | 28] 29

30

Mew date I 1 June 1996 Save nutesl

This manth begins on Saturday and ends on | X

Monday so it requires six rows of buttons

Figure A.2.9. A month that requires six rows of buttons.

The approach that we will use is to paint all the fixed parts of the calendar (button labels and
names of the days of the week) programmatically: The builder will add the buttons and change labels to
display the correct month and year at building time.

To open the calendar, the builder needs the month and the year to calculate the layout of the day
buttons and their number. This information will be stored in two instance variables called month and year,
both integers. In principle, the creation message should look like

Calendar month: 3 year: 1996

but since we want to be able to reuse Calendar as a subcanvas, in other words as a part of another
application, it must be able to communicate with the application model of the main window. This means
that the Calendar must be able to tell the window’s model when the user clicks a date button. And to be
able to communicate with the master application, the Calendar must have a reference to its application

model. We will thus add an additional instance variable called master and the creation message will be as
follows:

10

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

newOnMonth: monthinteger year: yearinteger from: appModel
A(self new) month: monthinteger;
year: yearinteger;
master: appModel

where month:, year:, and master: are simple accessing messages. The typical use of the method is as in
Calendar newOnMonth: 3 year: 1996 from: self

Our next step is to define the postBuildWith: aBuilder method of Calendar, to add day buttons to
the painted background and change the labels. For adding new components programmatically (at run time),
UlIBuilder provides the add: aComponent method where aComponent is obtained in a way that depends on
the component’s nature. Examples in class Builder provide templates for several kinds of widgets. In our
case, we need an action button and the expression for creating one is

ActionButtonSpec model: aBlock label: aStringOrText layout: aRectangle

where layout: is a Rectangle defining the upper left and lower right corners of the button (in window
coordinates), and block: is the action executed when the button is clicked; this is similar to the Action
property of an action button but arguably more powerful because it is a block rather than a message. The
following is an example of a complete button-specifying expression in the context of our creation message:

aBuilder add: (ActionButtonSpec
model: [master selection: date] “Evaluated when button is clicked.”
label: date printString
layout: (x1 @ y1 extent: X2 @ y2))

To create a whole array of rows and columns of buttons, we will repeat the button adding
statement for every button in the array. Because of the variety of possible month and day layouts, the loop
will iterate over six rows and process seven buttons in each. For each button (each row-column cell) it will
first calculate the corresponding date. If the date is at least 1 and not greater than the last day of the month,
the builder will add the action button with the date displayed. Buttons that don’t satisfy the ‘within the
month’ condition are ignored. At the beginning of each new row, the x position (the upper left corner of the
button) is reset; at the end of each row, the y position is incremented. The x coordinate is incremented after
each column. The complete code to create the buttons is as follows:

1 to: 6 do: [:row |“Outer loop - one row at a time. Initialize x coordinate of first button.”

x := xStart.
1 to: 7 do: [:column | | date | “For each row, enumerate for all 7 positions.”
date := boxNumber - startBox. “Convert button position to date.”

(boxNumber >= (startBox + 1) and: [date <= maxDay])
ifTrue: [“We have a valid date - add the button.”
aBuilder add: (ActionButtonSpec
model: [master selection:

(Date newDay: date
monthNumber: month
year: year)]

label: date printString
layout: (x @ y extent: width @ width))].
“Calculate position and box number of next button in the current row.”
X := X + width.
boxNumber := boxNumber + 1].
“End of row, update the y coordinate for the next row of buttons.”
y :=y + width]

where boxNumber starts from 1 and startBox is the number of the first day of the month in the week. As a
result of the model: argument, clicking a day button sends message selection: with the date corresponding

11

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

to the clicked button to the master object - the application containing the calendar. Any application using
Calendar will thus have to define method selector: aDate to deal with a new selection in the Calendar sub-
application. In the diary application, for example, selection: will check whether a message was recorded for

aDate and display it in the text view.

To complete the postBuildWith: method, we must determine how to calculate the date from month
and year. To do this, we need to know the first day of the month and the number of days in a month to lay
out the buttons and to number them. After examining the protocols of class Date, we find that this

information can be obtained as follows:

“Construct the Date object corresponding to the first day of the month.”
startDate := Date newDay: 1

month: (nameOfMonth := Date nameOfMonth: month)

year: year.
“Convert startDate to day name and its number within the week.”
startBox := Date dayOfWeek: startDate weekday. “Number of start box in first row.”
“Calculate number of days in the current month - needed to recognize last row.”
maxDay := Date daysinMonth: nameOfMonth forYear: year.

With this information, we can now write the whole definition:

postBuildWith: aBuilder
"Add day buttons to the fixed part of the interface, change label to show month and year."
| xStart yStart width startBox boxNumber x y nameOfMonth startDate lastDay |
"Change date label to display current month and year."
startDate := Date newDay: 1 month: (nameOfMonth := Date nameOfMonth: month)
year: year.
(aBuilder componentAt: #date)

label: (Label with: (hameOfMonth asString , ' ", year printString) asText allBold).

"Calculate position of first valid button and the number of days in current month."
startBox := Date dayOfWeek: startDate weekday. "Number of start box in first row."
lastDay := Date daysInMonth: nameOfMonth forYear: year.

"Initialize upper level corner coordinates of the leftmost button in the first row."

xStart := 10.
yStart := 45.
y := yStart.

width := 32.

boxNumber := 1.
"Execute loop for 6 rows."
1 to: 6 do: [:row | x := xStart. "First button in the row."
1 to: 7 do: [:column | | date | "7 columns."
"Number of date for this position in the button array."
date := boxNumber - startBox.
"Display only buttons corresponding to valid dates in the month."
(boxNumber >= (startBox + 1) and: [date <= lastDay])
ifTrue: [aBuilder add: (ActionButtonSpec
model: [master selection: date]
label: date printString

layout: (x @ y extent: width @ width))].

"Calculate x position for next button in the row."
X := X + width.
"Update button number."
boxNumber := boxNumber + 1].
"Increment y to start of next row."
y :=y + width]

This method is too long and we leave it to you to split it into several more elementary methods.

Add accessing methods and test, executing, for example

(Calendar onMonth: 3 year: 1996 master: self) open

12

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

A more flexible implementation

One weak point of our new ‘widget’ is that every application that wants to use it must implement
a method called selection: for communication with Calendar. If the master application already has such a
method and uses it for another purpose - for example because another sub-application also requires this
name - the Calendar class must be redefined. This is, of course, possible, but very undesirable. What if five
other sub-applications used the same selector name?

A tempting solution is to rename the method to something that is very unlikely to be used by
another sub-application, such as calendarSelection: but this does not guarantee that the name will be
unique. As a general principle, ‘hardwiring’ the name of a communication method of a reusable sub-
application is not a good strategy.

If hardwiring is not desirable, we should make the selector ‘programmable’. In other words, the
master application should fell Calendar what is the name that it want to use for communication as in

Calendar newOnMonth: 3 year: 1996 from: MeetingPlanner message: #calendarSelection:
or
Calendar newOnMonth: 3 year: 1996 from: self message: #selection:

With this approach, any application using Calendar is free to use any ‘callback’ selector it wants.
The implementation of this idea is quite simple. We only need to add a new instance variable to Calendar
to hold the name of the callback message, modify the creation message, and change the button handling
message which performs the callback (in postBuildWith:).

The new definition of the creation message is

newOnMonth: monthinteger year: yearinteger from: appModel message: aSymbol
A(self new) month: monthinteger;
year: yearlnteger;
master: appModel;
message: aSymbol

where message: is an accessing method for the new instance variable message. The postBuildWith: method
which specifies the message sent by clicking the date button must be modified as follows:

postBuildWith: aBuilder
“Add day buttons to the fixed part of the interface, change label to show month and year.”
| xStart yStart width startBox boxNumber x y maxDay nameOfMonth startDate |
etc.
“Calculate position of first valid button and the number of days in current month.”
boxNumber := 1.
“Execute loop for 6 rows.”

1 to: 6 do: [:row | x := xStart. “First button in the row.”
1 to: 7 do: [:column | | date | “7 columns.”
etc.

(boxNumber >= (startBox + 1) and: [date <= lastDay])
ifTrue: [aBuilder add: (ActionButtonSpec
model: [master perform: message with:
(Date newDay: date
month: nameOfMonth
year: year)]
label: date printString
layout: (x @ y extent: width @ width))].
etc.

13

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Note an important detail: When the user clicks a day button, its action method evaluates the block

[master perform: message with: (Date newDay: date
month: nameOfMonth
year: year)]

with arguments date, nameOfMonth, and year. Although the block is not at this point evaluated within
postBuild: (this message was already executed), its arguments (temporary variables declared in postBuild:)
have the values assigned to them in postBuild:. In other words, the block executes within the context in
which it was originally defined, carrying its context with it. This is a very important property of blocks and
a reason why blocks should only use their arguments and their own temporary variables if possible.

An implementation with an adapter

Another way to avoid a hardwired method is to insert a proxy, an adapter, between the two
communicating objects (Figure A.2.10). This proxy translates the communication from the ‘language’ used
by the message sender into the language of the receiver, and possibly also in the opposite direction. A class
called PluggableAdaptor that performs this tasks for user interface widgets is in the VisualWorks library.
This class is designed for a specific purpose in user interfaces and its general use is limited but another
pluggable adapter can easily be designed along the same lines. We leave this approach as an exercise.

sender sends message
selection:

1 ble adapter translat i derstand
Ffrom sender’s lnguage 1o |_SelectedMonth: T e
receiver’s language selectedMonth:

selection:

Figure A.2.10. The concept of a proxy/pluggable adapter.

Design and implementation of Diary

After creating the Calendar sub-application, we are now ready to implement the diary. We will
implement it as class Diary, and its task will be to define the user interface, provide communication with
Calendar, and hold the diary information (instance variable notes). The window includes the input field
(aspect selectedDate), the buttons, the notes Text Editor (aspect note), and a Subcanvas with the Calendar.
The Subcanvas properties entered via the Properties Tool will be as follows:

Property Value Purpose

Name: #newCalendar name of Diary method that supplies the new subcanvas

Class: #Calendar name of class defining sub-application

Canvas: #windowSpec name of Calendar method containing subcanvas specification
1D: #subcanvas to provide access the subcanvas

When you define the properties of the date input field, select type Date (its value holder will hold
a Date object) and a suitable display format.

According to the specification, the Diary must open on today’s date. If we use the standard open
message, we can use the initialization method to assign the proper date to the Aspect property of the date
text field (we called it selectedDate), and initialize the Text Editor:

initialize
selectedDate := Date today asValue.
notes := Dictionary new

For now, we don’t assume that the notes are held in a file. We will hold the notes in a Dictionary
called notes whose keys will be dates and values the corresponding notes, if any.

14

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

As the builder builds the canvas, it sends message newCalendar (see table above) to itself to
obtain a Calendar and since the Calendar does not yet exist, we must now create it. Using the results of the
previous section, the definition of newCalendar is thus as follows:

newCalendar
"Return and possibly calculate appropriate date by lazy initialization."
“newCalendar isNil
ifTrue: [| date |
date := Date today.
newCalendar := Calendar
newOnMonth: date monthindex
year: date year
from: self
message: #selection:] “Assume callback selector selection:”
ifFalse: [newCalendar]

You can now test that opening a diary with
Diary open

gives the desired result.

When the user clicks a date button, class Calendar sends the selection: message (according to the
newCalendar method above) which must change the date in the input field (aspect selectedDate) and the
displayed note (aspect note). The definition is thus

selection: aDate

“User clicked a Calendar button. Update displayed date and note accordingly.”
selectedDate value: aDate.
note value: (notes at: aDate ifAbsent: ["])

As the next step, we will define the Action message of the New date button. The purpose of this
message (we called it newDate) is to get a new month and year from the user and display it. To do the
display, it will get the subcanvas widget from the builder and send it the client: message with an instance of
the calendar constructed for this particular month to open the calendar. The definition is as follows:

newDate
“Request new date and open calendar on the corresponding month and year with the appropriate note.”
| month year sub |
selectedDate value:
(Date newDay: 1
monthNumber:
(month := (Dialog request: 'Enter number of month' initialAnswer: ") asNumber)
year: (year := (Dialog request: 'Enter year' initialAnswer: ") asNumber)).
"Create new Calendar and assign it to subcanvas."
newCalendar := Calendar newOnMonth: month
year: year
from: self
message: #selection:.
sub := (self builder componentAt: #subcanvas) widget.
sub client: newCalendar spec: #windowSpec.
self selection: (Date newDay: 1 month: (Date nameOfMonth: month) year: year)

Two functions are still unimplemented: saving of notes in a file (button Save Notes) and
assignment of a new note to the dictionary when the user clicks Accept in the note popup menu. We will
leave the popup menu until the end of this chapter when we deal with menus, and saving is left as an
exercise.

Main lessons learned:

15

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Whenever possible, design classes so that they can be reused in other applications.

When a part of an application appears to be a candidate for reuse, design it as a stand-alone application
and swap it into a new application as a subcanvas.

If a plug-in sub-application needs to communicate with its master application, create it with a message
whose argument provides a link to the master, and equip the master with communication methods so
that the sub-application can ‘call back” when necessary.

When a part of the user interface depends on parameters that vary from one execution to another, it
may be appropriate to have the builder construct it programmatically.

To construct a part of the interface programmatically, use postBuildWith: and send add: aComponent to
UlIBuilder to add components to a previously painted window background.

To make a reusable component useful, specify its interface messages as symbols and execute them
using perform:.

If the message required by another object is not suitable, use an adapter object.

Blocks carry along the context in which they are defined. To speed up operation and save memory,
this context should be minimal and as many argumnts as possible should be defined in the block.

Exercises

1. Modify newDate so that the date input field initially displays the date of the first day of the month.

2. Re-implement Diary using the other suggested implementation of day buttons and compare the two
approaches.

3. Write a code fragment to find all months between 1900 to 1999 that have 31 days and begin on
Saturday.

4. None of the Date formats available for input fields via the Property Tool looks like the format that we
desire. Design a new date format to match our specification. (Hint: See class InputFieldSpec.)

5. Write a pluggable adapter with a creation message as in Translator from: symbol1 to: symbol2 for:

anObject used as in Translator from: #set to: #setlt for: anObject. When the translator with these
parameters gets message set, it sends message setlt to anObject. Use this principle to re-implement the
Diary.

A.2.4 The Notebook widget

In its minimal configuration, the notebook widget is a collection of pages selectable by a tab on

the side (Figure A.2.11). Each page is an empty area with a ‘book binding’ and tabs, and displays a
subcanvas determined by the program. Different pages may use different subcanvas definitions or the same
canvas definition with different contents. In addition to the required ‘major’ tabs normally displayed on the
side, one can also specify ‘minor’ tabs along the bottom and change various notebook properties including
tab positioning, binding width and location, and colors, either via the Properties Tool or via the builder at
run time.

16

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus

© Ivan Tomek 27/02/2002
= Simple Notebook | '| o =| Simple Notebook | v| -
pagel pagel
page? page? |

Figure A.2.11. The two pages of the notebook in Example 1.

A notebook with tabs is essentially a single-selection list controlled by tabs, and the tab model is
thus a SelectionInList. If the notebook uses both major and minor tabs, each set of tabs has its own
SelectionlnList model. To define a notebook widget, paint the notebook on the canvas and assign Aspect
symbols to major tabs and minor tabs (if required). The Aspect is a method that accesses the model of the
tabs, a SelectionlnList. Finally, one must define the swap-in subcanvas or subcanvases.

The initialization and change response requirements are as follows:

e initialize
e assigns a SelectionInList with a list of names to the Aspect property of the tabs,
e registers interest in the changes of tab selections.

e postOpenWith: defines the initial tab selection and the corresponding subcanvas. We will see shortly
that specifying the subcanvas is not always necessary.

e The change method registered in initialize determines the notebook’s response to changed tab selection.
If the desired new page uses the same subcanvas as the current page, only the new contents need to be
specified. If the new page requires a different subcanvas, the change method must specify it. If the
method explicitly assigns the subcanvas, the postOpenWith: method does not have to include
subcanvas specification because the change message is automatically sent when the notebook opens.

We will now illustrate the basic procedure on a simple example. A more sophisticated use of
notebooks is shown in an application developed later in this chapter.

Example 1: A simple notebook - notebook with major tabs only

Problem: Implement an application consisting of a notebook with the interface shown in Figure A.2.11.
The first page contains some rectangles, the second page contains some ellipses, and there are no minor
tabs.

Solution: Following our outline, paint a canvas with a notebook widget and specify an /D (#notebook) for
accessing the notebook through the builder to display a new subcanvas, and an Aspect for major tabs
(#pages) to access the SelectionInList model. This will make it possible to paint new pages (subcanvases)
when tab selection changes.

17

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

After painting and installing the canvas (class SimpleNotebook), create the two canvases
representing the two notebook pages making sure that they will fit into the subcanvas of the notebook, and
install them on the same application model as the main window (we called the window spec methods
#page1 and #page?2). In our example, the geometric shapes are simply Region widgets.

The initialization method assigns a SelectionInList to the major tab Aspect of the notebook and
registers interest in changes in tab selections:

initialize
"Define tabs and their labels, register interest in tab changes."
pages := SelectionlnList with: #('page1' 'page2').
pages selectionindexHolder onChangeSend: #newPage to: self

Method postBuildWith: changes tab selection (see below) and sends message newPage. The
message is, of course, also sent when the user changes tab selection. The message checks the current tab
selection and gets the corresponding subcanvas using the appropriate window spec method:

newPage
"Tab selection has changed, display the appropriate page."
| widget |
“Get notebook widget from the builder.”
widget := (self builder componentAt: #notebook) widget.
“Display appropriate canvas.”
pages selectionindex = 1
ifTrue: [widget client: self spec: #page1]
ifFalse: [widget client: self spec: #page2]

Method postOpenWith: defines the initial tag selection and this change triggers the newPage
message which selects the subcanvas displayed when the notebook opens. The definition is as follows:

postOpenWith: aBuilder
"Specify initial tab selection."
pages selectionindex: 1

Example 2: File display - a notebook with major and minor tabs
Problem: Implement an application that allows the user to select a directory, displays the corresponding
file names in a notebook, and the contents of the selected file in the adjacent text view (Figure A.2.12).

18

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

E Filez in directory: C:4

File name Contents of selected file

G INDOWSAS Y STERS de. bat |2
AUTOEXEC. D05 o _rngs.ba
ALUTOEXEC BAT CAINDOWYSASY STEM o5
AACE rem - By Windows 35 Mebwork - call |

AEROPLAN.DOC

V 1
files v

CoYINDOWSASY STEMY rwnds. b
CoYINDOWSASY STEM

G@ECHD OFF

PROMPT $p5y

rerm - By Windows Setup -
COWVINDOWSNC OMMANDVM S CDEX EXE
iS5 D:MSC000T M

FATH
COWVINDOWYS, CWYIMD OV S OB AM DY
CADOS, CABIN, C:WAYORK, cvmouse; D yava
Yhin

rem set
CRATH=C:WWINDOWYS, CADOS, CABIM, C:A
WDIRK

FEFT

It

alphabet

an ‘h]-z 5

Agiler Mouse Litility

contents

Figure A.2.12. Desired user interface for Example 2 and assignment of widget Aspect variables.

Solution: This is a simple tool that can be implemented by a single application model class (FileDisplay)
with two window specs — one for the main window (windowSpec) and the other for the subcanvas
(subCanvas). The required instance variables include Aspect variables for major and minor tabs, the list
widget, and the text editor. We will call them alphabet, divider, files, and contents respectively as indicated
in Figure A.2.12. We will also store the string representing the current directory in variable directoryString.
Figure A.2.14 shows how the Aspects of major and minor tabs are specified in the Properties Tool.

EFmperties Tool on: Hotebook and hles |_ O] x|
Motebook
liE
M ajor: H#alphabet Baszics |
Minor: Hdivider Eﬁ:tails |
Validation |
1D #pageHolder |
[7]
Apply I| Cancel | Apply & Cloze Prev | Mext

19

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Figure A.2.14. Specifying major and minor tabs for a notebook.

In addition to Aspect variables, the program must switch between the two overlapping lists of
letters a-to-n and m-to-z corresponding to the two alphabet settings of the major tabs; we will call these
lists list1 and list 2. Finally, the file name selected in the list will be used in more than one place and we will
assign it another instance variable called filename.

The required methods include initialization, change methods responding to changes in the
selection of major and minor tabs and in the filename list, and an Action method for the New directory
button. We must also create the subcanvas containing the list displayed in the notebook. Its specification
will be stored in class method subcanvas in the same application model class.

We are now ready for the details and we will start with initialization. Initialization consists of two
steps. Method initialize initializes Aspect and auxiliary variables, and specifies change messages. Method
initialize is as follows:

initialize
| offset |
“Calculate tab labels. They are one-letter strings containing consecutive letters of the alphabet.”
list1 := Array new: 14.
list2 := Array new: 14.
offset := $a asinteger - 1.
1 to: list1 size do: [:index | list1 at: index put: (String with: (index + offset) asCharacter)].
1 to: list2 size do: [:index | list2 at: index put: (String with: (index + offset + 12) asCharacter)].
“Define major and minor tabs. Minor tabs are fixed, major tabs depend on the selected minor tab.”
alphabet := SelectionlnList with: list1.
divider := SelectionInList with: #('a-n' 'm-z').
“Define change messages for notebook tabs.”
alphabet selectionindexHolder onChangeSend: #changedLetter to: self.
divider selectionIndexHolder onChangeSend: #changedHalf to: self.
“The contents of the file list will initially be files in C:\ starting with letter a.”
files := SelectionlnList with: ((filename := Filename named: 'C:\') directoryContents
select: [:fName | (fName at: 1) asUppercase = $A)).
files selectionindex: 0. “No file is initially selected.”
“Change of filename list selection triggers a change message.”
files selectionindexHolder onChangeSend: #newFileSelection to: self.
“Select the ‘a’ major tab initially.”
alphabet selectionindex: 1

Note that there is no difference between the principles of treatment of major and minor keys.
Assignment of label to the window and assignment of the subcanvas to the notebook page happens in
postOpenWith: because it depends on the bindings dictionary:

postOpenWith: aBuilder
postOpenWith: aBuilder
"Assign window label."
self builder window label: 'Files in directory: c:\'.
"Assign the file list subcanvas to the notebook page.”
(aBuilder componentAt: #pageHolder) widget client: self spec: #subCanvas

Our next definition is the Action method of the New directory button. It gets the name of a new
directory from the user, and checks that it corresponds to an existing directory name. If it does, it first
changes the label of the window to show the filename. It then resets major and minor buttons to show letter
a, and assigns a new value to the filename list value holder, triggering its redisplay with new file names, all
starting with $A. Via the implicitly invoked change message, this also blanks the text editor view.

newDirectory
"Get directory name and switch to it if it is valid."
| dirString dirName |
dirString := Dialog request: 'Enter complete filename path as in C: or C:\visual' initialAnswer: 'C:'.

20

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

dirString isEmpty | (dirName := dirString asFilename) isDirectory not
ifTrue: [*"Dialog warn: dirName asString , ' is not a valid directory.']
ifFalse: [directoryString := dirString].
self builder window label:
('Files in directory: ', directoryString copyWith: Filename separator).
divider selectionindex: 1.
alphabet selectionindex: 1

Finally the change messages. When the user makes a new selection in the filename list, we must
check whether a file is now selected or not and if it is, display it by changing the value of the value holder
of the text editor. The display will, of course, work only for ASCII files.

newFileSelection
"A new file has been selected. Display its contents or blank Text Editor for no selection."
| text |
files selectionindex = 0
ifTrue: [text :="]
ifFalse: [text := ((directoryString copyWith: Filename separator), files selection)
asFilename contentsOfEntireFile].
self contents value: text

The change message for major tabs checks whether a tab is selected. If there is no selection, we
select tab a because the initial display of the notebook would otherwise cause problems via change
messages that depend on tab selection. We then use the value of the major tab to find all files in the current
directory starting with the selected letter and assign them to the filename list. This redraws the list and
sends a change message (see initialization) that blanks the text editor view.

changedLetter
"User selected new major tab, display new list of files."

| path |

alphabet selectionindex = 0 ifTrue: [alphabet selectionindex: 1].

path := directoryString copyWith: Filename separator.

files list: (path asFilename directoryContents

select: [:string | (path , string) asFilename isDirectory not & (
(string at: 1) asUppercase = (alphabet selection at: 1) asUppercase)])

Note the use of Filename separator which makes the path platform independent — different
platforms select appropriate separators. Finally the change message for minor keys. When minor key
selection changes, major keys must display the appropriate part of the alphabet. The message also selects
the first letter of the list as the major tab selection, calculates the corresponding filename list, and assigns it
to the list value holder. Through change messages, this modifies the contents of the text editor as well.

changedHalf
"Minor tab selection has changed. Display the alternative list of minor tabs and propagate changes."
| letter |
divider selection = 'm-z'
ifTrue: [alphabet list: list2.

letter := $m]
ifFalse: [alphabet list: list1.
letter := $al.

files list: (flename directoryContents select: [:fleName | (fileName at: 1) asUppercase = letter])

21

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Main lessons learned:

e A notebook is a list of pages accessed by tags.

e Up to two sets of tabs can be defined - major and minor. Major tabs are required, minor tabs are
optional.

e Each set of tabs uses its own SelectioninList as its model.

e Each notebook page is a subcanvas holder.

e All pages in a notebook may use the same canvas and differ only in the displayed information.
Alternatively, different pages may insert different canvases into their subcanvas.

o Flipping pages is achieved by change messages triggered by tag selections.

e Major and minor tabs are handled identically.

Exercises

1. Why didn’t we use postBildWith: instead of postOpenWith:? Try it.
2. Modify the Diary to use a notebook instead of a text editor for notes.
3. Implement Example 2.

4. Trace change in tab selection.

A.2.5 Dialog windows

A dialog window is the window used by Dialog class messages such as confirm: and warn:. Its
distinguishing feature is that it is modal or pre-emptive, which means that it does not give up control until it
is closed. In other words, you must finish all interaction and close the window before you can interact with
another window. This behavior is implemented in class SimpleDialog, a subclass of ApplicationModel. In
this section, we will explain how to create your own dialog window. Although modal windows provide an
interesting and sometimes necessary behavior, user interface experts discourage their indiscriminate use
because they restrict user’s freedom.

There are several ways to make a window pre-emptive. One way is to install a canvas as a Dialog
instead of an Application, making its model a subclass of SimpleDialog instead of ApplicationModel.
Another possibility is to install the canvas as Application (its model is thus a subclass of ApplicationModel
as usual) but open it as a dialog. You can also construct the dialog programmatically from scratch using
SimpleDialog rather than painting the canvas with the Ul Painter; this is how dialogs in class Dialog are
implemented. Finally, you can change the same window from modal to non-modal and vice versa
programmatically. Each of these methods has its advantages and disadvantages and we will now give a
simple example to illustrate the first two approaches which are most common.

Example: A password dialog window
Problem: A library application requires a password. Create a dialog window that looks like the

request:InitialAnswer: window but shows asterisks as the user types the text in (Figure A.2.14). The dialog
returns the text entered by the user when the user clicks Accept, or an empty string when the user clicks
Cancel.

e Password Dialog

Enter your password

IXIXIXXIXIXX |
Y

| Accept I | Cancel I

22

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Figure A.2.14. Desired look of password dialog window.
Solution 1: Creating a dialog with the UI Painter and installing it as a Dialog

In this implementation, we will create the password dialog as a separate class called
PasswordDialog. Creating its user interface is very similar to creating the usual Application canvas: Paint
the window choosing password style and aspect text for the input field, /nstall it on the model class as
usual, but specify Dialog as the window type (Figure A.2.15). As the figure shows, this makes the
application model a subclass of SimpleDialog (which is a subclass of ApplicationModel.)

CREATE Hew Class

Mame: PaszswordDialog

Category: UlApplicationz-New

-Define As

I y— oot
D.eﬁne the "y Data Form "y Database Application
window as
a Dialog Superclass: SimpleDialog —

[1].4 I | Cancel | Help

Figure A.2.15. A dialog canvas can be created by defining it as a Dialog.

The rest is simple except that we must deal with the fact that when the user closes a modal
window, the window can return only true (built-in and unchangeable behavior of method accept) or false
(built-in and unchangeable behavior of method cancel). As a consequence,

password := PasswordDialog password

can only return true or false, no matter what the user entered into the dialog window. We thus need a way
for the dialog window to communicate its acquired data back to Library. One way to obtain this information
is to create a PasswordDialog with a message that tells it who is the sender and what is the message to be
used to return the appropriate information. (We used the same approach with subcanvases.) As an example,
the opening message could be

openFrom: anObject onClosing: aMessageSymbol
and the method in class Library that obtains it will be, for example,

getPassword
PasswordDialog openFrom: self onClosing: #password:

Assuming this definition, the behavior of the dialog window is as follows: When the user closes
the password dialog window, the dialog window closing method will send the password: message to the
Library object with the string entered by the user as its argument (Figure A.2.16). Its argument will be the
password if the user clicked Accept, and an empty string if the user clicked Cancel.

23

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus

© Ivan Tomek 27/02/2002
a Library @ aPasswordDialog
openFrom: self onClosing: #password:
. open, and send me password: with the Send password: aString
password: aString appropriate argument when you close N back before closing.
password := aString Use instance variable sender

to keep track of sender of opening
< message, callBack to hold the name

password: aString @ of the callback message.

Figure A.2.16. Returning results of a dialog.
The definition of the PasswordDialog opening message is as follows:

openFrom: anObject onClosing: aSymbol
"Open password window , get user input, return result to anObject using message aSymbol."
A(self new sender: anObject; callback: aSymbol) open

where sender: and callback: are accessing message accessing instance variables sender and callBack:.

To implement this solution, we paint the user interface of our password window, define the Action
properties of Accept (acceptAndClose) and Cancel (cancelAndClose) buttons, and install the canvas on
class PasswordDialog as a Dialog. Note that it is not enough to redefine accept and cancel because
instances of SimpleDialog and its subclasses always execute the pre-defined accept and cancel methods and
ignore any other definitions.

Method acceptAndClose will send callback to the sender with the string entered by the user as the
argument. Method cancelAndClose will send callback with an empty string. Both methods conclude by
sending closeRequest to close the window:

acceptAndClose

“Return password to sender and close window.”
sender perform: callback with: text value.
self closeRequest

cancelAndClose

“Return empty string to sender and close window.”
sender perform: callback with: ".
self closeRequest

where sender is an instance variable of class PasswordDialog initialized to the argument of openFrom:
aSender onClosing: aSymbol when the window opens. Note that the callback message has an argument.

To test our solution, define Library with method getPassword as explained above, one instance
variable called password, and accessing methods password and password:. To test the dialog window,
execute the following expression with inspect:

Library new getPassword; password

The password window opens, the inspector opens on PasswordTest, and the returned value of
password is as expected.

Solution 2: Installing a dialog as an Application and opening it as a dialog
In this approach, we will install the canvas on Library which is an ApplicationModel. The new
interface will be stored in a window spec method called passwordWindow but since the superclass is not

SimpleDialog, we will have to open it with openDialoginterface: #passwordWindow rather than open. The
new definition of getPassword will thus be

24

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

getPassword
self openDialoginterface: # passwordWindow

Closing the window will again return true or false and we thus must again define acceptAndClose
and cancelAndClose methods for the Accept and Cancel buttons. This time, we will not send closeRequest
to close the window because we don’t want to close the application but only the password window. To do
this, the closing methods will get the current window (the password window), and ask its controller to
close the window”. In addition, the closing methods will assign an appropriate value to password. The
definitions are

acceptAndClose
password := text value.
Window currentWindow controller close

and

cancelAndClose
password := text value.
Window currentWindow controller close

Finally, note that although we implemented the dialog as a part of Library, we could have
implemented it as a standalone class just as in Solution 1.

Solution 3: Creating the dialog programmatically via SimpleDialog

Class SimpleDialog contains numerous utility messages for building custom dialog windows
programmatically and class Dialog uses these messages to build its utility dialogs. The advantage of this
approach is that it provides full control over the behavior of the window, including the returned object. The
disadvantage is that it requires more complex programming. We will not demonstrate the procedure but if
you wish to see the details, browse request:initialAnswer:onCancel:for: in class SimpleDialog. This method
is the basis of the implementation of the familiar request:initialAnswer: method in class Dialog.

Summary of the three approaches

The most common way of creating modal dialogs is to paint the dialog window with the Ul
painter and install it as a Dialog or as an Application. In both cases, closing the window with accept or
cancel returns true or false and if we want to pass another result to the sender of the dialog opening
message, we must take extra measures: If the canvas is installed as a Dialog, its class needs to know who is
sending the opening message and how to pass the result back. The advantage of this approach is that the
dialog is reusable in many situations. If the canvas is installed as an Application, the sender usually is the
application model itself and the methods that accept or cancel the result of the dialog can access any of the
variables of the application directly. This approach is thus somewhat simpler but the dialog is not reusable
because it is a part of the application model.

Main lessons learned:

e A dialog is a modal (pre-emptive) window that does not relinquish control until it is closed.

e The use of modal windows is discouraged because they restrict user’s freedom.

e There are three ways to create dialogs in VisualWorks: By painting the canvas and installing it on a
subclass of SimpleDialog or a subclass of ApplicationModel, or by constructing the window
programmatically as a subclass of SimpleDialog. The first two approaches are easier and more
common, the third approach provides more control.

2 For more about controllers, see Chapter 12.

25

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

e When installing a dialog as a Dialog, define a creation message that identifies the sender and the
message to be used to return the result. When the dialog is installed as an Application (but opened as a
Dialog), dialog closing messages can access the application model directly.

o Installing a dialog as a Dialog makes the dialog reusable. Installing a dialog as an Application and
opening it as a Dialog is simpler but it ties the dialog interface to the application.

e The nature of a window (application or dialog) can be changed at run time.

Exercises

1. You may have noticed that if you specify text as the argument for Dialog prompts such as warn:, the
emphasis does not have any effect. Find why and modify the code to remove this restriction.

2. One slightly annoying feature of built-in dialogs from class Dialog is that the dialog windows appear at
the latest location of the cursor. Define a new class called PositionableDialog with methods replicating
the behavior of warn:, confirm:, and requestinitialAnswer: but adding position control as in
confirmAtPositionFromUser:. (Hint: The opening message openAt: aPoint allows the programmer to
specify where the dialog window should open.)

3. Implement similar modifications as in Exercise 2 but open the dialog window in the center of the
screen. (Hint: Class Screen provides access to the properties of your computer screen.)

A.2.6 Menus in general and popup menus in particular

A menu is a collection of labels and clicking a label returns a value, possibly calculated by an
expression or a block associated with the label. Functionally, a menu is thus a collection of label-value
pairs.

The UI Painter provides three types of menus: popup menus, menu bars, and menu buttons. Popup
menus that you can build are the familiar menus invoked by the <operate> button, an example of a menu
bar is the list of commands at the top of the Launcher, and a menu button is a drop-down menu that looks
like an input field when inactive but drops down a menu when activated (Figure A.2.17). The purpose of
menus is similar to the purpose of single-selection lists - selecting one of several items - and their
advantage is that they occupy little or no window space. The advantage of selection lists is that they make
the choices visible at all times.

= i amp - = i amp -
Templates Templates

First Motice * First Motice *

Y | First Notice Y

Dear <names,]
Second MNotice

Final Motice

Your account shows a past due balance, our accoan shows & past due balance,
as shown on the accompanying as shown on the accompanying
statement. We would appreciate your statement. We would appreciate your

attention to this matter at your earliest ;[I attention to this matter at your earliest ;[

Figure A.2.17. Passive (left) and activated (right) menu button. The passive view may display the current
choice in the menu. The menu bar at the top of the window has one label.

The distinguishing characteristics of popup menus, menu bars, and menu buttons are summarized
in the following table:

26

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

type of menu | behavior type of GUI component placement

menu bar drop-down window property top of window, no program control
menu button | drop-down stand alone widget any place in window

popup menu | popup widget property - <operate> menu | pops up at cursor location

All types of menus depend on class Menu which holds information about instances of Menultem.
The protocol of Menu deals with the menu as a whole and provides methods for adding and removing
menu items, hiding them, changing the menu’s background color, and accessing individual menu items by
their label. Once a menu item is retrieved, the Menultem protocol can be applied to it, for example to define
the emphasis of the text of the label. A Menultem may also be a collection of menu items — a submenu -
and this recursive structure allows a menu to contain submenus nested to any depth.

Creating menus

A menu can be created in the following ways:

e Using Menu and Menultem directly. This approach provides most flexibility but it is also most
laborious because every detail must be programmed. Use this style only if necessary, for example, if
you must use special fonts for labels, change the background color, etc.

e Using an instance of MenuBuilder. This class has a number of convenience methods that are useful to
build menus with limited programming. An instance of MenuBuilder is exactly what its name suggests
- a tool that builds a Menu object. Once built, this object can be accessed in all ways available through
Menu and Menultem protocols.

e Using the Menu Editor. A Menu Editor is a painting tool that eliminates the need to program the
contents of the menu explicitly. Its purpose is similar to that of the Ul painter - to minimize
programming. Being a substitute for programming, it is also less flexible than other methods of menu
creation and cannot be used, for example, to create menus that change at run time. Use the Menu
Editor when the menu remains unchanged at run time and uses default settings.

The following is a comparison of the three approaches:

Name Creation method | Use Flexibility | Accessing Programming effort
MenuBuilder program dynamic menus | medium instance method | medium

Menu, Menultem | program dynamic menus | full instance method | large

Menu Editor paint static menus limited class method minimal

In this and the following sections, we will now give several examples of creation of simple popup
menus and menu bars, leaving menu buttons as exercises.

Popup menus

Popup menus are attached to the <operate> button and can be specified for certain widgets
including input fields, selection lists, and text editors. They should be used only for commands that are
directly related to the widget. Although this sounds natural, many designers don’t follow this rule and put,
for example, a command to close the window into the popup menu of a list widget contained in the
window. This is illogical and confuses the user.

Each widget that allows a popup menu has a default menu. The default popup menu of selection
lists is no menu whereas the default popup menu of input fields and text editors is the familiar text editing
menu with copy, cut, paste, and other commands. To create a popup menu different from the default, enter
the name of the method that returns the menu into the widget’s Menu property (Figure A.2.18).

27

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Lizt View m'm'zl

Aszpect: m Basics |

Menu: fitestM enuHolder Efta'ls |
Validation |
1D:
[F]
Fpndp | ilanoed | Apnde & Ul Proamy | Rk

Figure A.2.18. To create a non-default menu, enter the name of the method that returns the menu in the
Menu property.

We will now give two examples that show how to create a popup menu using the Menu Editor
tool and programmatically.

Example 1: Creating a menu with the Menu Editor tool

The Menu Editor is suitable for creating popup menus that don’t change while the application is
running. The specification of a menu created with the Menu Editor is stored in a class method that
describes the menu, somewhat like the window specification method.

Problem: Create a popup menu for the selection list in Figure A.2.19. Clicking add will open a dialog
allowing the user to enter a new string which will then be added to the selection list and displayed.
Clicking delete will delete the label currently selected in the selection list, if any.

= Hon 1 P - | &

strawherry ice cream +
add

peach ice cream delete

pistachio ice cream
chocolate ice cream +

Figure A.2.19. Window containing a selection list with a popup menu.

Solution: Paint the canvas, install it on an application class (ListWithPopup1), and Define the properties.
(We called the Aspect of the list list, and its Menu property listHolderMenu.) Since the popup menu for the
list does not change during execution, we will create it with the Menu Editor tool. Open it from the Tools
command in the Canvas tool or from the <operate> menu of the canvas, and enter the label-command pairs
(Figure A.2.20). The symbol entered for Value is the name of an instance method in the application model
that will be executed when the user clicks the label highlighted on the left.

28

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

= P 1 1 -

| Menu Edit Move VYiew Test

s— | = |u= = | 4
add +| I
Label:
Default delete
Yalue: H#ideleteltem
1D:
¥ %Basic %DEE‘“S 1Defaults

Figure A.2.20. Using Menu Editor to create a menu.

After entering the two label-command pairs (add — addltem, delete — deleteltem), click Install
under the Menu command of the Menu Editor. This will open the dialog in Figure A.2.21. For class, enter
the name of the menu-accessing method previously specified as the Menu Property of the selection list, and
click OK. This creates the resource method describing the menu, and stores it in the resources class
protocol. By clicking Test in the Menu Editor, you can now examine what the menu looks like.

29

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

&

INSTALL on Class:

ListwithPopupl

and Selector:

listHoldertdenu +
+

or enter new Selector:

listHolderM enu,

1] 4 Cancel

Figure A.2.21. Dialog for installing a menu.
In our case, the automatically generated resource definition method is

testMenuHolder
"MenukEditor new openOnClass: self andSelector: #testMenuHolder"
<resource: #menu>
Mi#Menu #(
#(#Menultem
#rawLabel: 'add’
#value: #addltem)
#(#Menultem
#rawLabel: 'delete’
#value: #deleteltem)) #(2) nil) decodeAsLiteralArray

and executing the comment line opens a Menu Editor on the menu.

You can now open your application and test the popup menu. The add and delete commands will
appear when you press the <operate> mouse button but they will not do anything, of course, because we
have not defined the corresponding messages yet. We will define these methods now.

The method implementing the add command gets a new label from the user, adds it to the list of
labels, and assigns it to the list widget via list:

addltem
“Ask user for new label and add it to the list widget.”
list list: (list list add: (Dialog request: 'Enter new label' initialAnswer: "))

where the misuse of identifier list is almost not funny any more. To test the method, we opened the dialog

window, selected add, but when we entered ‘label 1, the result was as in Figure A.2.22. This is not what
we desired - and a typical problem.

30

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

[o
= 00 1 - e

B 16006 C" +
ba "160061"
Bh "160062"
be "160065"
B 16006 C"
Character space
51 "160031"

Figure A.2.22. Result obtained with the first version of addltem.

The error clearly occurs when the method adds the new string to the list. Everything looks OK so
we inserted a halt message into addList and traced its execution. We found that when we add: the new
label, the list part of the selection list ceases to be a List and becomes a ByteString. We now realize that the
add: message does not return the modified collection (the list) but the argument - in this case the result of
the Dialog expression. To correct this, we must send yourself after sending add:.

addltem
list list: (list list add: (Dialog request: 'Enter new label' initialAnswer: "); yourself)

This version works correctly.

Finally the definition of the method executing the delefe command. The method first checks
whether the user made a selection. If not, the method does not do anything. If yes, the method gets the
current list, removes the current selection from it, and assigns the new list via list:.

deleteltem
| selection |
selection := list selection.
selection isNil ifTrue: [*self].
list list: ((list list) remove: selection; yourself)

Example 2: Creating and changing a menu dynamically

Problem: The user interface in Example 1 is less than perfect: When no item is selected, the user cannot
delete an item and the menu should not offer the delete command. For proper operation, we need two
different popup menus - one with delete and one without it - and display the menu appropriate for the
situation. Such a dynamic menu cannot be created with the Menu Editor.

Solution: Although the mechanics of the required code is trivial, a minimal understanding of the basics of
menu operation is useful and we will thus start with some background information.

As you already know, active widgets consist of the visual part displayed on the screen (the view),
and the object that tracks user input and responds to it (the controller). If a widget has a popup menu, the
widget’s controller must know what this menu is because the menu pops up in response to mouse button
activation and its operation also depends on user input. To be able to do this, the widget’s controller is an
instance of ControllerWithMenu which holds the widget’s Menu object in an instance variable and if we
want to change the menu at run time, we must thus change the contents of this instance variable.

The easiest way to change the Menu object is to put it into a value holder and control its contents
via value:. In our case, the menu changes whenever the user selects or deselects an item in the list, and to
implement this behavior, we will register our interest in any change of list selection via onChangeSend:to:.
When a change of selection occurs, the change message will send value: with the appropriate menu to the
menu holder. These arrangements will be made in the initialization method which will assign the initial
menu to the menu holder and register interest in selection changes:

initialize

31

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

“Assign initial popup menu to the list and register interest in selection changes.”
listHolderMenu := self menuWithoutDelete asValue.
list := SelectionInList new.
list selectionIndexHolder onChangeSend: #changedMenu to: self

The changedMenu method will check whether the list has a selection and supply the menu without
delete if the list has no selection, or the full menu if there is a selection:

changedMenu
“Context may have changed - assign the appropriate popup menu.”
self listHolderMenu value: (list selection isNil
ifTrue: [self menuWithoutDelete]
ifFalse: [self menuWithDelete])

where listHolderMenu is the Menu method that we specified in the Properties of the list widget:

listHolderMenu
MistHolderMenu

This method is also executed by the builder when it builds the list and its controller. The method
that constructs the full menu uses the MenuBuilder and its definition is as follows:

menuWithDelete
“Calculate menu with add and delete commands.”

| menuBuilder |
menuBuilder := MenuBuilder new.
menuBuilder add: 'add' -> #addltem; “Label-value pair.”

add: 'delete' -> #deleteltem.
AmenuBuilder menu

This method demonstrates the standard usage of a MenuBuilder:

1. Create a new MenuBuilder object to build the menu.
Provide menu information to the MenuBuilder via add: and possibly other building messages.

3. Ask the builder to create and return a Menu object via menu. The MenuBuilder uses the information
gathered in Step 2 to build a Menu object containing Menultem objects and other information. Don’t
forget to return the menu.

Method menuWithDelete is very much the same and we leave it as an exercise. All other methods
remain as in Example 1 but the class method listHolderMenu should now be deleted because it is not needed
any more.

Finally, any menu — whether created programmatically or with Menu Editor — is held in a menu
holder in the Aspect variable specified as the Menu property of the list. Consequently, menus created with
Menu Editor can be also be changed programmatically. The disadvantage is that once the default menu is
replaced, it is not accessible as easily and dynamically changing menus are thus normally created as
described in this example.

Overriding the Text Editor and Input Field default menu

The Text Editor and the Input Field have a pre-assigned popup menu with defined behaviors. As
an example, accept simply assigns the text to the widget’s Aspect variable and cannot be easily redefined.
Sometimes, we might want to change these behaviors. In our Diary, for example, we would like accept to
add the text in the Text Editor to notes. To do this, we must modify the accept command in the built-in
menu and this requires a new menu which can be created as follows:

32

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

1. Specify the name of the method that returns the new menu as the Menu property of the Text Editor.
We will call this menu calculating method newMenu.

2. Write the menu creating method (newMenu in our case).

3. Write the method executing the menu command (we will call the method that executes accept
saveNote).

Method newMenu builds a new menu as follows:

newMenu
"Redefine accept by building a new menu executing non-default menu methods."
| mb |
mb := MenuBuilder new.
mb "First add predefined command combinations with default behaviors."
addFindReplaceUndo;
line;
addCopyCutPaste;
line;
"Now add customized commands."
add: 'accept' -> #addNote; "This is new."
add: 'cancel' -> #cancel. "This is standard."
Amb menu

and mssage addNote executed by accept simply adds a new association consisting of the selected date and
the new note to the notes dictionary:

addNote
“Save new note in notes dictionary.”
notes at: selectedDate value put: note value.

Main lessons learned:

e Menus have the advantage that they don’t consume window space.

e Ul painter menus include popup menus, menu bars, and menu buttons.

e Popup menus are activated by the <operate> button, menu bars are drop-down menus attached to the
window, and menu buttons resemble input fields but provide drop-down menus.

e The basis of all menus is Menu containing Menultem objects and other information.

e Menus are usually created with the Menu Editor tool or programmatically via a MenuBuilder.

e The Menu Editor creates a menu stored as a resource specification and limits programming to writing
methods implementing menu commands. Such a menu is not intended to be changed at run time.

e Dynamically changing menus can be programmed using MenuBuilder.

e MenuBuilder constructs a Menu object via convenience messages.

e Controllers of widgets with a popup menu have an instance variable containing a value holder with the
menu. This variable is specified as the Menu property of the widget.

e When adding a new command to a menu, a common mistake is to forget that add: returns its argument.

e Text Editor and Input Field have popup menus with default behaviors. To change the behavior, build a
new menu using MenuBuilder.

Exercises

1. Class Menu has a rich set of controls over the form of the label and the way in which menus are
constructed. Write a description of Menu and Menultem with detailed information about three selected
protocols and five selected methods.

2. The Menu Editor provides a number of interesting options such as adding an image to a menu item,
indenting, allowing ID access to a menu item, and so on. Write a summary of its functions. (Hint: See
on-line help.)

33

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

3. Use the Menu Editor to color the background of the delete command in our example red and the add
command green.

4. Add command edit to the popup menu in Example 2. The menu should show it only when a label is
selected and it should allow the user to change the selected list item via a dialog.

5. Instead of removing the delete command when there is no selection, disable it. (Hint: See the example
class protocol in class Menu.)

6. Modify the Text Editor menu in Diary to display accept in boldface, and cancel in red.

7. Track how a menu holder is accessed during the opening and operation of an application.

8. Find how the builder determines whether to use a class method or an instance method to construct a
menu.

9. Track and describe the complete sequence of events that occur when a popup menu is activated by
pressing the <operate> mouse button.

10. Find where the <window> popup menu is defined and modify it to display the c/ose command in red.

A.2.7 Menu Bars

A menu bar is a set of labels at the top of a window and their associated drop-down menus (Figure
A.2.23) called submenus. To assign a menu bar to a window, enter the name of the method returning the
menu as the window’s Menu property. In other respects, menu bars are just like popup menus.

Example: Window with a menu bar

Problem: Implement a window with a text editor and a menu bar as in Figure A.2.23. The File command’s
submenu will contain two commands called Print and Exit. The Print command will print the contents of
the text view in the Transcript, and the Exit command will close the window. The Configure command’s
submenu will also contain two commands - Hide Text and Show Text. When the window opens, the text
view will be visible, Hide Text enabled, and Show Text disabled. Clicking Hide Text will make the text
view invisible, enable Show Text, and disable Hide Text. Clicking Show Text will have the opposite effect.

| File Configure

This text subviews can be made |2
invisible or visible with the =
Configure command abave.,

Figure A.2.23. Window with menu bar and text subview.

Solution: Paint the window, enable its Menu property, and provide the name of the menu-returning
message (menuBar) as its Aspect. Paint the text view and define its properties (4spect text) including an ID
(#text) so that we can control its state.

The next step is to define the methods. We will start with the window’s Menu method menuBar
which creates the menu bar with its submenus. A static menu can be built the Menu Editor, remembering
that the menus are submenus and using the left- and right-pointing arrows in the Menu Editor to achieve
the layering. In this example, however, we will create the menu using the MenuBuilder to illustrate how to
create submenus programmatically.

34

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus

© Ivan Tomek 27/02/2002
menuBar
“Create instance of Menu for the menu bar.”
| menuBuilder |
"Create instance of Menu for the menu bar."
| menuBuilder |
"Create a MenuBuilder."
menuBuilder := MenuBuilder new.
"Use it to construct submenus."
menuBuilder beginSubMenuLabeled: 'File'; "This label appears in the menu bar."
add: 'Print' -> #print; "Drop-down menu starts here."
add: 'Close' -> #closeRequest;
endSubMenu. "Drop-down menu ends here."
menuBuilder beginSubMenuLabeled: 'Configure’; "This label appears in the menu bar."
add: 'Show text' -> #showText; "Drop-down menu starts here."
add: 'Hide text' -> #hideText;
endSubMenu. "Drop-down menu ends here."

"Ask MenuBuilder to construct and return the menu."
AmenuBuilder menu

The next step is to write the two methods that enable and disable the show and hide commands in
the drop-down menu. In essence, this consists of extracting the proper components of the menu and
changing them. The details are as follows: Ask the builder for the menu bar using the Menu property
method of the window, extract the submenu Menultem of the Configure label, and access its menu items.
As an example, the enableHideText method which enables the Hide text command and disables Show fext
is

enableHideText
“Enable ‘Hide text’ command and disable ‘Show text’ command.”
| menu submenu |
“Get menu bar menu.”
menu := self builder menuAt: #menuBar.
“Get the appropriate submenu.”
submenu := menu valueForMenultem: (menu menultemLabeled: 'Configure').
“Modify the appropriate menu items.”
(submenu menultemLabeled: 'Show text') disable.
(submenu menultemLabeled: 'Hide text') enable

The enableShowText method which enables the Show text command is similar and we leave it as
an exercise.

In the process of opening the application, we must enable Hide and disable Show after the window
has been built but before it opens using the postBuildWith: method. We do this by sending the
enableHideText message as follows:

postBuildWith: aBuilder
self enableHideText

If you now open the window, it will have the correct menu bar and its commands will have the
correct submenus. However, the Configure commands will not work because we have not defined the
methods that show and hide the text subview widget. These definitions simply get the text editor from the
builder, send it belnvisible or beVisible, and toggle the Configure commands. As an example, the hideText
method is as follows:

hideText
(self builder componentAt: #text) belnvisible.
self enableShowText

We leave the remaining methods to you as an exercise.

35

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Main lessons learned:

e Menu bars are created and used in much the same way as popup menus but a menu bar is a property of
the canvas, and the drop down menus are classified as its submenus.

Exercises
1. Construct the menu bar in our example using the Menu Editor.
2. Draw a diagram showing the structure of the menu bar object being accessed by enableHideText.

(Hint: Start your search from the builder object.)
3. Modify the Print command to open another submenu with two options — Transcript (to print to the
Transcript) and Printer (to print to the printer).

Conclusion

In the first part of this chapter, we introduced datasets. Datasets look like tables but whereas tables
can display heterogeneous objects, dataset display rows of objects of the same kind. Unlike tables which
are read-only widgets, datasets cells may be editable input fields and other types of widgets.

We then introduced a powerful widget called a subcanvas. A subcanvas is essentially a place
holder for a canvas that can be used for swapping of assemblies of Ul widgets at run time and for reuse of
complete subapplications. Subcanvases are also essential for notebook widgets. While talking about
subcanvases, we showed how to use UlBuilder to build user interfaces at run time.

Notebooks are widgets that allow access to pages displaying subcanvases. Individual pages may
use the same subcanvas and change only its contents, or they may display completely different
subcanvases. Access to pages is controlled by major tabs (required) and minor tabs (optional). Tabs are
essentially selection lists and both major and minor tabs are handled in the same way.

The next section introduced dialog windows. Dialog windows are modal windows which means
that they keep input focus until closed, disabling access to other windows. Because of this imposition on
the user, dialog windows are generally discouraged but their use is sometimes necessary. VisualWorks
dialog windows are based on class SimpleDialog and can be created with the Ul Painter. They can be
implemented either by specifying their type as Dialog instead of Application during installation, or by
specifying their type as Application and opening them with a dialog opening message.

When a VisualWorks dialog window closes, it returns either true or false which is usually
unsatisfactory because dialog windows are typically used as forms for entering data. To get around this, the
dialog window must either maintain a link to the application class that opens it (if this class is different
from the class of the dialog window), or it must be defined in the application class itself and access its
instance variables.

In the last part of this chapter, we covered two varieties of menus: popup menus and menu
buttons. A third type of menu is a widget called a menu button. The purpose of menus is similar to that of
single-selection lists and radio buttons but they occupy less window space. Their disadvantage is that they
don’t show the choices at all times. All kinds of menus are created in essentially the same way but whereas
popup menus and menu bars are associated with windows or widgets, menu buttons are stand alone
widgets. When a menu remains the same during the life time of the application, create it with the Menu
Editor tool; when it depends on context, construct it at run time.

Text Editor and Input Field are equipped with default popup menus. To change them or to modify
their built-in behavior, replace the default menu with one constructed by Menu Editor or MenuBuilder.

36

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
© Ivan Tomek 27/02/2002

Important classes introduced in this chapter

Classes whose names are boldfaced are very important, classes whose names are printed in italics are less
important, classes whose names are printed in regular font are not of much interest.

Menu, Menultem, SimpleDialog.

Widgets introduced in this chapter

Dataset - display resembles tables but internal implementation is based on lists. All rows are instances of
the same domain object and all cells in a column thus share the same type which may be selected from
input field, read only, combo box or check box.

Menu Bar - drop down menu attached to a window. Its components are called submenus and may be
nested.

Menu Button - drop down menu widget.

Multiple-Selection List - list allowing any number of selections at a time.

Popup Menu — menu activated by a mouse button. Certain widgets may have associated popup menus
which are invoked by sending a menu-constructing method specified as the widget’s property.

Single-Selection List - list allowing only one selection at a time.

Subcanvas — a canvas holder widget. Can be used to include a subapplication as a part of window or switch
parts of a window at run time.

Terms introduced in this chapter

adaptor - object inserted between two communicating objects, typically for the purpose of translating
messages from the form used by the sender to the form used by the receiver

call back - communication from an object or a program back to the object or program that created it

controller - the part of a widget that interact with the user

view - the visual part of a widget

37

	Overriding the Text Editor and Input Field default menu

