Back to the Future Once More

Dan Ingalls*

September 4, 2000

Author’s note

I began this chapter attempting to duly credit each contributor
appropriately. It soon became clear that either the chapter would
degenerate to an encyclopedia of credits, or that it would be full of
unfair omissions. I have chosen instead to take the point of view that I
write for the entire Squeak community that has worked tirelessly and
selflessly to make Squeak what it is. “We” did this together, and so it
will be reported here. Most of the important contributions are credited
elsewhere.

1 Introduction

The purpose of this chapter is to update the paper “Back to the Fu-
ture — The Story of Squeak, a Practical Smalltalk Written in Itself”
(hereinafter simply “BTF”). As such, the bulk of the text follows the
structure of that paper, with comments and new data presented in a
parallel sequence. However, a mere update of Squeak’s features and
performance would not give a sense of the various forces, technical and
social, that have guided the evolution of Squeak over the three and a
half years since the paper was published. Therefore we begin with an
overview of some of these forces and the effects they have had on the
evolution of Squeak since the publication of BTF.

As documented in BTF, Squeak began as a simple bytecode inter-
preter or VM (virtual machine) written in Smalltalk and translated to
C, together with a modernized version of the Apple Smalltalk image.
The major changes were to extend the object memory to 32-bit point-
ers, and to extend BitBIt to a flexible color model. The innovation
of translating the interpreter made Squeak a practical and portable
Smalltalk while being entirely self-contained and self-describing. Through-
out its life so far, Squeak has enjoyed the ministrations of both the
core development team at Disney (hereinafter “Squeak Central”) and

*Here is the raw text, with apologies for lack of beautiful formatting. The time has
passed for acting on suggestions (other than directly to me), but many thanks to those
who read early drafts and offered many improvements: Mark Guzdial, Alan Kay, David
Lewis, John Maloney, John McIntosh, Chris Norton, Andreas Raab, Stephan Rudlof.



a large and active internet community of developers, academics, and
recreational computer scientists. Key to the continuing synergy be-
tween these two groups have been Squeak’s total openness and the
complete portability of Squeak across all major computing platforms,
including even simple chip sets with only a BIOS.

2 The Evolution of Squeak

BTF is mainly about the implementation of Squeak; how it began, how
it was carried out, and how it performed. Very little is said about the
Squeak image which, in 1996, was simply a classic Smalltalk-80 image,
with extensions for color and sound, and the support for simulating
and generating the Squeak interpreter.

A major difference between then and now, is that most of Squeak’s
evolution has taken place in the Squeak image (the Smalltalk system
class definitions), rather than in the VM. Most of the changes to the
VM have come in response to that evolution, to enable or optimize
various new capabilities needed along the way. Of all the changes
over these years, the areas of greatest impact to Squeak’s place in
the world so far have been graphics and networking, and the flexible
cross-platform support for sound.

Based on experiences with Morphic and Fabrik, we felt a need for
a more flexible and concrete graphics model than the existing MVC
(Model, View, Controller) view framework, and so, over the next cou-
ple of months, we built a reasonable implementation of the Morphic
interface used in the SELF system. This interface was then put to im-
mediate use as the basis for the EToy experiment —a novice interface
to Squeak that allows one to control Morphic objects with halos and ac-
tive inspectors and to script them by assembling tiles that correspond
to Squeak message fragments.

The new Morphic worlds soon cried out for an equivalent to MVC’s
StandardSystemView so that we could “live” (i.e. integrate all our
work) in Morphic as we had lived before in MVC, and this led to the
creation of Morphic parallels to the basic MVC views. Similarly our
educational experiments in these new worlds indicated the need for
arbitrary scaling and rotation of Morphic objects. Not having antic-
ipated this need so soon, and not having the resources to implement
a completely general graphics model at the time, we combined a gen-
eral transform definition with Squeak’s WarpBlt capability to produce
the TransformationMorph. While TransfomrationMorphs are neither
a perfect nor a general solution, as one critic has frequently admitted,
“You guys sure got a lot of mileage out of that Warp thingy.” The ad-
vantage of this approach is archetypal of exploratory programming. In
a couple of weeks, there was a way to experience and experiment with
general scaling and rotation in Morphic, and we could move on to the
next most interesting problem. Moreover, when time actually allows
us to rewrite Morphic with a general approach to transformations, we
will have several years’ worth of working software as examples of what



we want and how we need to use it. !

While WarpBlt actually provides a reasonable anti-aliasing of in-
terior images, the Morphic canvas rendering model had no way to
properly combine morphs with anti-aliasing. At this point, we took on
the task of designing a new canvas model that would incorporate curve
drawing and filling with proper anti-aliasing. This model became the
Balloon 2D rendering engine.

At about this time two other projects sharpened our focus on 3D
graphics. To begin with, we had just begun a collaboration to port the
Alice 3D system to Squeak 2. At the same time, for various internal
reasons at Disney, we wanted to be able to demonstrate a virtual gallery
of computing environments in full 3D. With the Balloon engine in
place, we set about designing a 3D graphics model that could employ
this high-quality rendering onto a general Morphic canvas. This project
became the Balloon 3D engine.

As we used and enhanced the new 3D facilities, performance in-
evitably became an issue. The desire to make use of various hardware
and software accelerators on different platforms led to a serious re-
working of the BitBlt and WarpBlt primitives.

Also crucial to Squeak’s coming of age was the implementation of
decent network support. By the time BTF was published, Squeak
had cross-platform support for client-server protocols for file transfer,
world-wide web, and electronic mail. At OOPSLA 97 two Squeaks,
one on a Mac, and one on a PC, were shown running Telemorphic, a
network-integrated version of Morphic (simply using multiple hands)
with a multi-user paint program, and a multi-user music sequencer
application.

The immediate focus at Squeak Central was not on browser access,
but rather on leveraging the network to distribute “updates” to anyone
participating in the active development of Squeak itself, or managing
their own collaborative development efforts. The update mechanism
is a simple and effective approach to coordinated system development.
Each update is a file containing Squeak source code and possibly exe-
cutable expressions as well. On a server is a list of all updates published
so far, and an index of the order in which they were published. Any
Squeak system connected to the internet can automatically determine
what files have been published since it was last updated, and can read
them in, thus becoming current with the latest work at Squeak Cen-
tral or with the image from which the system updates were issued.
This mechanism immediately brought the entire Squeak community
together and allowed anyone to follow the latest changes with almost
no effort at all.

About the time automatic updating became practical, a Pluggable
Web Server (PWS) was implemented in Squeak. This turned out to
be a very high leverage piece of software. At about this time, Ward
Cunningham’s WikiWiki server was being used to coordinate various
designs and projects in the Squeak community, and it suddenly became

IFor more on this topic, see the chapter on Morphic
2For more on this project, see the chapter on Alice



clear that one could build a server based on Ward’s WikiWikiWeb in
almost no time on top of the PWS. Within a month or two, the first
so-called Swiki server was operational, and it soon became a part of
the Squeak general release. Many people downloaded Squeak just to
get a free cross-platform Swiki server!

Over the next year, Squeak’s mail (Celeste), browsing (Scamper)
and Chat (IRCMorph) facilities became operational, along with FTP
access in the FileList. Other interesting projects to date include Com-
manche, a high performance web server, and Nebraska, a much more
flexible approach to multi-user (and remote headless) applications in
Morphic. 3

Many other factors played a role in the progress of Squeak over these
four years, but they are beyond the scope of this summary. With the
foregoing sketch as context, let us now return to BTF and bring the
major topics up to date.

3 The Interpreter

We have been able to retain the original bytecode interpreter design,
keeping the core of the virtual machine relatively simple and yet we
have constantly improved its efficiency through care in compilation
(register variables), strategies for garbage collection and interrupt han-
dling, and other specific techniques covered under “Performance and
Optimization” below. Also, numerous ancillary “pluggable” primi-
tives, most of them simply compiled from Squeak, have added greatly
to the core computational power of Squeak.

A number of limitations in the original Squeak interpreter have
been improved. For instance, pluggable primitives allow for essentially
unlimited primitive extensions, the maximum number of temporary
variables is roughly quadrupled, the image format has been tested at
over 2.5GB, and so on.

4 The Object Memory

Even more than the interpreter, the original design for Squeak’s object
memory has stood the test of time. The basic object format survives
unchanged, with only one extension to support weak array references.

The feature most often criticized is the use of a special header
format for 1-word headers. While this typically saves an extra word
per object for approximately 90% of the objects in the system, it can
require an extra memory access to check the class of such objects. We
have not yielded to this criticism yet because 1) the hard work has
already been done, so moving to a simpler design would not save work
at this point, 2) cleverness can in many cases avoid the extra penalty
for looking up the class, and 3) 4 bytes per object can be a significant
savings in small systems.

3For more complete coverage of these topics, see the chapter on Networking



One interesting capability has been added to the Squeak Object
memory since the publication of BTF. This is the ability to extract
and install image segments. One day, while musing about how to deep
copy a structure without copying the entire world, it occurred to us
that the garbage collector was in a position to solve this problem for
us. The idea is to first mark a number of root objects, and then run the
normal gc mark phase. Since gc marking stops at any marked object,
the end result would be to mark every object in the system except
those “in the shadow” of the root objects. The unmarked objects are
therefore exactly the objects pointed to by the original roots, but not
from anywhere else in the system.

Squeak image segments are produced by a primitive that accepts
an array of roots, and produces an array of outward pointers from the
segment into the rest of the image, and a binary object containing a
copy of all the objects in the segment. The binary format is identical to
that of a Squeak image, except that non-local pointers are represented
as indices into the table of outpointers. Extraction of an image segment
can be extremely fast, and installation is even faster. For example?:

e Segment size: 940K segment with 16403 objects, 6912 outpointers
e Time to extract: 264 milliseconds (mostly marking)
e Time to install: 43 milliseconds

The simplest application of imageSegments is to perform a fast
deepCopy by extracting an image segment and then installing it again
as a copy. Another application is segment swapping. For swapping, the
extracted segment, is written to disk, and then the roots are converted
into root stub proxy objects that will read the segment back from disk
if they are ever touched. Special care is required to ensure that if a
class is a root, it will still be successfully retrieved when a message is
sent to one of its instances. When swapping segments, the table of
outpointers is retained in the image as part of the root stub complex.

A third valuable application of image segments is for data export.
In this case the binary segment is stored on a file along with a fully
externalized representation of the array of outpointers. Such a struc-
ture can be transferred from one image to another and can be used for
archival data storage as well. A fortuitous discovery about exported
segments is that both internal and external pointers in image segments
are quite local, and as a result, GZIP compression frequently achieves
a factor of 4, as opposed to 2 or less on typical Squeak images.

5 Storage Management

Squeak’s simple two-generation garbage collector has proven to be re-
markably well behaved across a wide variety of applications. Its simple
approach of incremental collection and compaction without maintain-
ing free lists has provided both high performance and full utilization of
available memory. It is still the case that a 600K Squeak image can fit

4Configuration: 8Mb image on a 400MHz Mac



in 1 megabyte along with the VM, and still be happy with the modest
200k of remaining available memory.

As various Squeak applications grow to larger sizes, we have been
fortunate to see processor speeds also increase, leaving the typical la-
tency for incremental collection and compaction well below the 10ms
threshold that is critical to sound I/O and similar real-time response.
A typical Squeak image with a substantial amount of content yields
the following statistics:

e 20Mb old objects
e 2.2Mb young objects
e 2.8Mb free

During a 53 second run, there were 1400 incremental collections aver-
aging 3.0 ms each, for an overall cost of around 8% °

Squeak now provides access to VM parameters, allowing one to
trade latency (time required to perform and incremental GC) against
overhead (% execution time spent in GC). Experimenting with a sys-
tem similar to that above, and changing the quota of objects allocated
between each GC, we found®:

] Allocation quota | Avg. latency ‘ Avg. overhead ‘

2000 2 ms 11%
4000 3 ms 9%
8000 4 ms 6%
16000 6 ms 6%

In BTF we reported on Squeak’s efficient bulk implementation of
object identity reversal known as “become”. The Squeak storage man-
agement system now provides both forms of become, symmetric and
forwarding, both still being done in bulk if appropriate.

6 BitBlt and WarpBlt

The original design of BitBlt and WarpBIlt survives relatively unchanged
in the current Squeak release, but it is soon to be supplanted by a
completely new implementation dubbed FXBLT. This new primitive
responds to a number of forces in Squeak’s evolution. First is the
continued pressure for increased flexibility and low-cost setup when
called by the balloon rendering engine. Second is the ability to take
advantage of hardware acceleration. Third is the potential of improved
performance in the absence of special hardware by applying some of
the dynamic code generation techniques analogous to those used to
accelerate the interpreter. Fourth is the need to reduce latency time
which requires that large blts be interruptible. And last but not least
is the desire to execute efficient transfers between bitmaps of differing

5Configuration: 20Mb image on a 400MHz Mac
SConfiguration: 10Mb image on a 400MHz Mac



formats, including bits per pixel, bits per color, endianness, and even
the order of color components.

Interestingly, while the latency issue is in some cases the most crit-
ical one, it is, at the same time amenable to high-level solution by
recognizing large blts and breaking them into smaller ones outside of
the primitive operation. While we have not applied ourselves seriously
to the task of reducing latency in Squeak, we have implemented a
limited-latency interface to BitBlt which did in fact cure interference
of large blts with music generation. The extended primitives for text
display and line drawing are also potential latency problems but, being
optional, they can simply be eliminated at the cost of somewhat slower
display of text and lines.

7 Smalltalk-to-C Translation

The core translator has remained relatively stable since the original
release of Squeak. Probably the most significant change introduced
since that time is the ability to compile independent primitive modules
in conjunction with Squeak’s “pluggable primitive” facility.

The pluggable primitive facility allows a method to specify a named
primitive implementation. When such a method is executed for the
first time, the interpreter attempts to load a module of that name
from the directory in which the interpreter exists. If it is not found,
then execution proceeds following the normal rules for primitive failure.
If the module is found, then it is loaded, and the specific primitive
name is sought within that module. If found, then the appropriate
code is executed as a primitive in Squeak. A module can be defined
both internally and externally. This means that an interpreter can be
shipped with many intensions built in so that no additional plugins are
needed, yet if a new version is present, it will override the code in the
interpreter. Note that, after the first lookup, subsequent references to
pluggable primitives are resolved with essentially no overhead, whether
the module is present or absent (fast failures can be important).

The ability to compile optional plugins from Squeak has spawned a
number of extensions of great value to various applications of Squeak.
Each of the following plugins enables a significant capability for Squeak
applications:

e Balloon 2D vector graphics engine

e Squeak3D 3D rendering engine

e JPEG decoder Fast JPEG decoder

e FFT Fast fourier transform

e FFT Foreign function interface

e KLATT Speech synthesis

e SoundCodecPrims 10:1 ADPCM sound compression/decompression
e Largelntegers Fast implementation of Largelnteger arithmetic

e GZIP Fast GZIP data compression/decompression



The fast LargeIntegers have enabled practical DSA encryption, and
the GZIP compressor is used in many places to save space in Squeak
and its external files.

The Foreign Function Interface has enabled a number of interesting
experiments and real-world applications, including control of a large
real-time 3D simulator with multiple display screens, a Quicktime tool-
box controller capable of displaying QT movies in Morphic, and an
interface to the FreeType toolbox. 7

8 Sound

Most of Squeak’s sound support is in Squeak itself. However, as de-
scribed in the original BTF paper, a few primitives are necessary to
achieve reasonable performance. The original specification of the prim-
itives has changed somewhat in order to allow fine-grained control over
envelope parameters with relatively little computational overhead.

Much more has been done with music in Squeak since the BTF
paper. The release image includes a MIDI score player (ScorePlay-
erMorph) with pan, gain, and mute controls as well as the ability to
change the orchestration. A MIDI score piano roll (PianoRollScore-
Morph) can display the piece being played in real time, and it sup-
ports some very limited editing facilities as well. Sampled timbres can
be recorded from a microphone or from other sources, cleaned up and
looped in the sample editor (WaveEditor). FM timbres can be edited
in the envelope editor (EnvelopeEditorMorph), and tested with an on-
screen keyboard (or with another music application). Beyond these
primitive but useful facilities, the SIREN system, described elsewhere
in this volume, is a mature application devoted to the creation and
manipulation of musical scores in Squeak.

Merely making sound available in a cross-platform and interactive
manner has spawned many other interesting capabilities. For instance,
the Squeak release includes a real-time speech synthesis facility capable
of reading any text intelligibly. It can even sing “Silent Night” as a
duet with animated singing faces.

Squeak’s 30-line FFT became one of the first pluggable primitives,
and a showcase for fast access to Floating-point arrays. Running in
Squeak, this routine performed a 4096-point Fourier transform in about
580 milliseconds. The plugin computes the same transform in 3 mil-
liseconds. The FFT plugin has enabled Squeak to display real-time
sonograms (SpectrumAnalyzerMorph) and to perform limited speech
recognition.

9 Code Size and Memory Footprint

The size of the kernel interpreter has grown very little, but a number
of added primitives have increased the size of the interpreter module

“For more on pluggable primitives, see the chapter on Extending the Squeak Virtual
Machine



by about 50% since the figures were reported in BTF. The Object
memory has grown very little since it was first written. BitBlt and the
other related graphic routines have nearly doubled in size as a result
of the enhancements and other experiments alluded to above.

It is still possible to produce a practical Squeak that will run (in-
terpreter, image, and adequate free space) in one megabyte. Some
Squeak releases require massaging to produce an adequately small im-
age (700K) to fit within this constraint.

10 Performance and Optimization

Table 5 in BTF documents gradual improvements in the efficiency of
Squeak’s interpreter that achieved an eight-fold improvement over the
course of nine months. When that table was written, we had reached
version 1.18, and we felt we had squeezed about as much as possible
out of a classical bytecode interpreter. We can now compare the 1.18
interpreter with the 2.8 interpreter in use at the time of this writing 8.

e Squeak 1.18: 17.7 million bytecodes/sec; 907 thousand sends/sec
e Squeak 2.8: 36.1 million bytecodes/sec; 1155 thousand sends/sec

It is gratifying to note that, whereas we thought we had reached
the limit of what could easily be done to improve Squeak’s perfor-
mance, we still managed to double the bytecode speed and to squeeze
an additional 27% in the time it takes to perform a send. The latter
was achieved by doggedly reducing the code executed on each alloca-
tion and release of a context, especially eliminating the need to nil
out all fields of a context before use by noting the stack pointer in
garbage collection. The improvement in bytecode speed came from at-
tention to register allocation in the generated C code, streamlined flow
through arithmetic primitives, and the introduction of an “at-cache”.
The at-cache keeps a small cache (8) of recent objects that can respond
primitively to at: and at:put:, along with their size and format (byte,
word, pointer or bits). This cache enables fast treatment of these mes-
sages for such objects, and also similar speedups for next and nextPut:
for streams whose contents satisfy the same conditions.

It must also be noted that during the 3 years that has elapsed be-
tween these two releases, comparable computer speeds have increased
fourfold. One could conclude that it is better to put one’s time else-
where than optimization, since next year’s silicon will make your efforts
seem trivial. However, on slow machines such as PDA’s, every cycle
still counts, and on fast machines the results are multiplicative so it is
still important progress.

An entirely separate assault on performance was mounted in 1998.
The first attempt, code named JITTER, achieved a significant perfor-
mance gain (bytecode speed, send speed). However overall benchmarks
never made it to the level we sought (200-400% overall), and the design
seemed to suffer from a number of tuning sensitivities.

8 Configuration: 10Mb image on a 400MHz Mac



Almost before the first JITTER came to life, another design had
sprung up in its place. Begun half a year later, and dubbed J3, this
design has a better approach to pointer mapping and cache manage-
ment, and works from a table-driven model of code generation. The J3
interpreter has demonstrated the level of performance we had hoped
for (a factor of 3 in bytecode speed, and 6 in send speed), with several
optimizations yet to be tried. It is our hope, looking forward, that J3
technology will soon make it into the mainline Squeak releases.

11 The Squeak Community

BTF is a technical paper, and most of the foregoing information serves
to bring the reported results up to date. The section entitled “The
Squeak Community” is really about the success of Squeak’s portability
and the remarkable achievements of a couple of outside contributors
after Squeak’s release. At this point it seems appropriate to balance
the technical reports with some of the less technical factors that have
made Squeak and the Squeak Community what they are.

If you were to spend time with the principal authors of Squeak,
you would find them to be technically competent, but that is not what
has made Squeak what it is. What sets this group apart is a further
interest in simplicity, leverage and synergy. Look at Smalltalk itself.
A completely different model for computation —sending messages to
objects— looks simple and effective. We carry this through an entire
system design and find enormous leverage from polymorphism and
inheritance in this model. Then extending this out to the world of
graphics, it turns out that many things that used to be hard are easy,
and this feeds back, making the core of the system even more concrete
and accessible; this is the synergy part. It’s more than synergy —it’s
fun.

Thus Squeak, beginning as a Smalltalk system, was already ear-
marked for the adventurous, but with the added meta-circularity of
including its interpreter within itself. Published with complete source
code available free over the internet, Squeak was bound to attract an
interesting community.

Difficult though it may be, it is probably worth trying to charac-
terize the Squeak community. The two major orientations can best be
characterized as “research”, and “development”. The research group
consists of workers similar to the Disney team, whose primary interest
in Squeak is as a vehicle for research, a malleable tool that can easily
be adapted to serve a wide variety of investigations. The academic
members in this group find in Squeak a vast laboratory of interesting
experiments in computer science, many comprising the laboratory it-
self. The commercially oriented developers, on the other hand, see in
Squeak a royalty-free Smalltalk base that runs on every major com-
puting platform and can be easily ported to bare chip sets. Both
constituents of the Squeak community also share certain fun-loving
characteristics. They enjoy the art of programming, they are moti-
vated to improve an open-source facility, and they see it as a sport to



reach results comparable to commercial implementations.

As curators of this particular facility, it has been a constant chal-
lenge to decide where best to put our effort in the growth, refinement
and (hopefully) simplifications that shape the future of Squeak. A
classical planner would ask what is our market, what are our strengths,
what is the competition, and what comprises, therefore, our best “prod-
uct” opportunity.

Now we have to look at one more important aspect of this com-
munity — the role of Squeak Central. Thus far, Squeak Central has
“enjoyed” a central position in shaping the evolution of Squeak. While
we have always had an egalitarian attitude toward the community as
a whole, we are not a neutral player in the process. Squeak was de-
livered to the world because (1) we felt that Smalltalk was the most
malleable and highest productivity environment to serve as a vehicle
for our investigations in personal computing, and (2) we felt that only
by making it open and free would it garner the kind of intellectual
participation needed to become a serious computing environment.

There is therefore a distortion in the original characterization of
our “market” — a primary drive toward support for what we see as the
computational and interactive needs of Squeak Central’s “vision” at
any given time. We have tried to deal with this asymmetry as much as
possible in the manner of a benevolent dictatorship. We make most of
the decisions about what is or is not included in the system, but we also
try to maximize the synergy with the rest of the Squeak community.

Now we can return to the forces at work in Squeak’s “market” as
so defined. A number of Squeak’s attributes are items that every-
one agrees are important. These include cross-platform support, color
graphics, and open source distribution. Many others are not. For in-
stance, developers care more about ANSI compliance than anyone else,
with academics running a close second. This is because they want to
be able to import software from other systems, and they want to be
able to use or ship their products with other Smalltalk systems besides
Squeak. This can be a matter of performance, or one of co-operating
with existing software that is tied to a particular Smalltalk host. For
similar reasons, developers care a lot about including MVC, but re-
searchers do not care so much, because many experiments turn out to
be simpler to build and easier to demonstrate if written using Morphic.

Squeak Central may not care at all about either ANSI compatibil-
ity or support for MVC because it does not import code from other
systems, and it does not use MVC in any of its work. However it is
clear that these features are both very important to synergy in the
Squeak community. Squeak Central benefits constantly and directly
from work done by other members of the community, so concerns such
as these are given high regard in all difficult decisions.

As long as the Squeak community is split between developers and
researchers, between novices and experts, there will be tension sur-
rounding the makeup and presentation of the system. As long as it
makes sense, we try to keep the various forces in balance and maxi-
mize the synergy in the results.



12 Future Work

It is gratifying to see that almost everything we spoke of accomplishing
in BTF’s “Future Work” section has been done. Given that the scope of
BTF was limited to a Smalltalk implementation, this is not surprising.
When we look forward from here, in the broader context of general
purpose multimedia computing, the challenges seem somewhat more
daunting.

Interestingly, one of the future items in BTF was “to supplant
the MVC graphics model with a new one along the lines of Morphic
and Fabrik.” That has all been done, and has successfully spawned
numerous exciting graphical applications including the EToy environ-
ment, music editors and a complete 3D gallery of independent Squeak
projects. Unfortunately Morphic grew uncontrollably in response to
the differing and demanding masters it was asked to serve, and we are
back at the same place a generation later. To paraphrase from four
years ago, we now plan to supplant the Morphic graphics model with
a new one that incorporates what we have learned so far, that will
be simpler and better factored, and that will lend itself better to the
support of multiple environments in 3D and multiple users in those
environments.

Much remains to be done to make Squeak more approachable and
productive for various classes of users, especially for novices or “inter-
net” programmers. We hope to see in the near future a synthesis of
EToy-style environments with the current “serious” software develop-
ment tools. We also hope to introduce types at both the novice and
expert levels, but in a way that is not encumbering to the simplicity
and immediacy of coding in Squeak.

At the time of this writing, we are working to bring the various
just-in-time compilation experiments into the Squeak mainline release
and to support them on all platforms. Improved performance is im-
portant to researchers and developers alike, and it should augment the
convergent forces in both sides of the Squeak community.

However circuitous the path may seem from time to time, Squeak
is destined to follow its authors’ vision of the real potential of personal
computing. As a personal information appliance it will be simple and
convenient. It will be able to store and manipulate many kinds of data
from text and numbers to images and sounds and rules for their be-
havior. Access to different kinds of objects will be simple and uniform,
and the system itself will be equally accessible to inspection and ma-
nipulation. From whatever perspective you choose to investigate the
content or the system itself, the rules for its behavior will be immedi-
ately accessible and admit of change and experimentation. All will be
so well organized and documented that the motto for learning Squeak
would be, “The System is the Curriculum”.

All we have to do is organize and document the system as though
it were a curriculum.



