Don’t Use Arrays?

Juanita J. Ewing
Instantiations, Inc.

Copyright 1994, Juanita J. Ewing
Derived from Smalltalk Report

This column discusses inappropriate use of arrays, and how misuse affects
reusability. We will analyze several Smalltalk methods that use arrays and
revise them to use classes instead of arrays. We will also show you how to
search your image for methods that use arrays.

Motivation

A class in Smalltalk is a specification of behavior and supporting data. Each
instance contains a particular set of related data. For example, the data for an
instance of Rectangle is two points. The points are related because they are
both part of a rectangle: one is the origin point and the other is the corner
point.

In Smalltalk, you can also use a data structure such as an array to represent
related data. Instead of the class Rectangle, you could use an array with the
first element of the array being the origin point and the second element being
the corner point. Which is more reusable?

First, let’s examine how clients access data. Clients of the class Rectangle can
send the messages origin and corner. Clients of the rectangle-as-array must
access the correct element by specifying the index, and the index might not
have any correlation to the values stored in the array.

Accessing the data is not the only consideration. Rectangle has specialized
behavior, such as height, containsPoint:, intersects:, and expandBy:. The
rectangle-as-array has no specialized behavior. For example, each client that
needed the height of the rectangle-as-array would have to duplicate the code
that subtracted the two y coordinates to obtain the height of the rectangle.

There are three reasons why the class is more reusable than the array:
- Ease of Use: Clients of the rectangle-as-array need to know arbitrary

indices to obtain the data. Clients of the rectangle-as-class send messages with
meaningful names.

- Encapsulation: The behavior of rectangle is not encapsulated with the
data in the rectangle-as-array. Clients of the rectangle-as-array would need to
write much more code than the clients of the rectangle-as-class in order to
duplicate the behavior of rectangle. Most clients would write the same code
over and over.

- Information Hiding: The constituent data for the rectangle is accessible
to all clients in the rectangle-as-array. Indeed, it must be in order for clients to
the duplicate the behavior of Rectangle. But, it also means the rectangle-as-
array cannot change its representation without affecting all its clients.

Inappropriate Use |

Standard Smalltalk even provides us with a bad example of array usage
(nobody’s perfect). On page 109 of Smalltalk-80: The Language and its
Implementation is the specification of a class method for Date.

Date class protocol

general inquiries

dateAndTimeNow Answer an Array whose first element is the
current date (an instance of class Date
representing today’s date) and whose second
element is the current time (an instance of
class Time representing the time right now).

Here is one possible implementation of the method.

Date class methods
dateAndTimeNow
"Answer an Array of two elements. The first element is
a Date representing the current date and the second
element is a Time representing the current time."

A (Array new: 2)
at: 1 put: self today;
at: 2 put: Time now;
yourself

Clients of this method must keep track of which elements are where in the
array. The code to compare two data-and-time arrays looks like this (the
variables now and then contain date-and-time arrays):

| now then oldest |

then := self oldDateAndTime.

now := Date dateAndTimeNow.

((now at: 1) >= (then at: 1) and: [(now at: 2) > (then at: 2)])

ifTrue: [oldest := then]

This kind of code is not easy to read, and is likely to be duplicated in an
application that manipulates time stamps.

In the dateAndTimeNow method, the array is merely a shortcut way of
implementing a return of two values. The elements in the array have
nothing to do with their indices. Clients have to remember which element is
which. They also have to remember the algorithm for comparing date/time
pairs. This kind of shortcut is not good coding practice because it does not
facilitate reuse.

A better solution is to create a new class that represents an associated date
and time. We will call this class TimeStamp. It would have messages for
accessing its date and time, and for comparing itself with other TimeStamps.
Using this new class, the dateAndTimeNow method can be rewritten:

Date class methods
dateAndTimeNow
"Answer an instance of TimeStamp containing the current date
and the current time."

ATimeStamp date: self today time: Time now

Even better would be to eliminate the Date method and create a TimeStamp
method that returns the current date and time. A TimeStamp method is better
because the instance is created in the class that relates date and time. The Date
class is a less desirable location because dates don’t have an explicit
relationship with time. Time is not referenced in other Date methods.

TimeStamp class methods
now
“Answer an instance of the receiver containing the current date
and time.”

| current |

current := self new.
current date: Date today.
current time: Time now.
current

The client of this functionality can now write much simpler fragments of
code.

| now then oldest |

then := self oldTimeStamp.
now := TimeStamp now.
now > then

ifTrue: [oldest := then].

Inappropriate Use Il

A method from Directory provides us with another inappropriate use of an
array. In this method, a collection of arrays provides detailed information
about each file in a directory.

Directory methods
formatted
"Answer a collection of arrays of file information for
the receiver directory. Each array has four entries:
file name, size, date/time and attributes.”

| answer fileEntries anArray |
fileEntries := self contents.
answer := OrderedCollection new: fileEntries size.
fileEntries do: [:each |
anArray = Array new: 5.
anArray
at: 1 put: (Directory extractFileNameFrom: each);
at: 2 put: (Directory extractSizeFrom: each);
at: 3 put: (Directory extractDateTimeFrom: each);
at: 4 put: (Directory extractResourceSizeFrom: each);
at: 5 put: (Directory extractCreatorTypeFrom: each).
answer add: anArray].
N answer

Note that the method comment is wrong. It references an array with four
entries, but the code has an array with five entries, indicating that a small
change in the implementation has a big impact on clients. Users of this
method must know where relevant information is stored in the array. It is
impossible to tell, from either the comment or the code, which array element
IS new.

In this fragment of code, the client of Directory needs the names of files of
zero length. This code must reference elements stored at arbitrary locations,
and requires heavy commenting to be maintainable.

| zeros |
zeros := myDirectory formatted

select: [:info | (info at: 2) = 0]. “size is stored at 2”
~zeros collect: [:info | info at: 1] “name is stored at 1”

Related data stored in arrays is more appropriate as an instance of a class. In
this example, the information stored in an array represents detailed status
information about a file. An alternate solution is to create a class, called

FileInformation to store this data. FileInformation has a class method to create
new instances, and instance methods to access its components. A partial class
specification follows:

FileInformation methods
fromFileEntry: aFileEntry
Create and return an instance of the receiver for a file entry

FileInformation methods
fileName
Return the name of the file.
size
Return the size of the file, including both the data and resource fork.
timeStamp
Return the date and time when the receiver was last modified.
resourceSize
Return the size of the resource part of the file.
creatorType
Return the code that indicates the application that created the file.

With the FileInformation class, we can eliminate the usage of Array and
incorporate usage of our new class. The formatted method now looks like:

Directory methods
formatted
"Answer a collection of file informations, one for each entry in the
receiver. "

| answer fileEntries anArray |
fileEntries := self contents.
answer := OrderedCollection new: fileEntries size.
fileEntries do:

[:each |

answer add: (FileInformation fromFileEntry: each)].
N answer

Clients of this method can then use meaningful selectors instead of indexing
into an array. This code is more maintainable now and doesn’t need any extra
commenting.

| zeros |
zeros := myDirectory formatted select: [:info | info size = 0]
~zeros collect: [:info | info fleName]

There are good examples of Array use in your Smalltalk system. These are
uses in which the index is a relevant part of the data structure, such as a

numeric id allocated by the operating system. The array contains the
relationship between the id and a related Smalltalk object. Literal arrays are
convenient for collections of values.

Identifying Inappropriate Use

You can look for inappropriate use of array and other data structures in your
image. Use these techniques to find methods that reference Array. You may
also want to look for references to other data structures such as
OrderedCollection.

In Team/V
In the Package Browser select Array. Select the menu item
Class/Browse Refs.
In Smalltalk/V for OS/2 and Smalltalk/V Windows
Execute Smalltalk sendersOf: (Smalltalk associationAt: #Array)
In Smalltalk/V Mac
Execute Smalltalk referencesTo: #Array
In Objectworks\Smalltalk
In the System Browser select Array. Select the menu item Class
Refs from the class pane menu.

When examining a method, inappropriate use will have one or more of the
following characteristics:

- indices that are irrelevant to data and functionality

- array elements that are related by some abstraction NOT
captured by a class

- awkward client use due to violation of information hiding and

encapsulation

If you find a methods that uses arrays inappropriately, you should improve
the quality of your code by

1. creating classes to represent related array elements and

2. rewriting offending methods to reference new classes and to
eliminate arrays.

Conclusion

Don’t use arrays as a shortcut to pass around related items. Instead, create a
class to represent the abstraction relating the items. Your code will immediately
be more understandable, extensible, maintainable and reusable. Classes are
the basic building blocks of Smalltalk programs. Use them.

