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Abstract
Smalltalk-80 provides a reification of execution state in the form of context objects which represent
procedure activation records.  Smalltalk-80 also provides full closures with indefinite extent.  These
features pose interesting implementation challenges because a naïve implementation entails instantiating
context objects on every method activation, but typical Smalltalk-80 programs obey stack discipline for the
vast majority of activations.  Both software and hardware implementations of Smalltalk-80 have mapped
contexts and closure activations to stack frames but not without overhead when compared to traditional
stack-based activation and return in “conventional” languages.  We present a new design for contexts and
closures that significantly reduces the overall overhead of these features and imposes overhead only in code
that actually manipulates execution state in the form of contexts.
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1 Introduction
Smalltalk-80 provides a reification of execution state in the form of context objects which represent
procedure activation records [Ingalls76].  This feature provides a portable abstraction of execution state
which has several advantages, including

• writing the system’s debugger and the majority of the exception-handling system entirely in Smalltalk

• making processes persistent, typically as snapshots of a running system

• adding new computational mechanisms not directly supported by the underlying execution semantics,
such as backtracking and dynamic (non-lexical) variable binding [Deutsch81] [LaLonde88]

A naïve implementation of contexts, as specified by the “blue book” [Goldberg83] definition, implies
creating a context object for every method and closure activation, and eventually reclaiming a context for
every return.  It also implies copying arguments from the caller context to the callee context on every
activation, and some form of interaction with the garbage collector to manage references from contexts to
arguments and temporary values.  These basic operations can be the source of considerable overhead and
can dominate execution costs.  One hardware implementation managed to achieve good performance with
such an implementation [Deutsch83] but software implementations have been markedly less efficient
[Ungar83] [Ingalls97]. Consequently, much work has been done to implement contexts more efficiently,
both in hardware [Lewis86] [Samples86] and software [Deutsch84] [Caudill86] [Moss87] [Miranda87].
The earliest and highest performance software approach is presented in [Deutsch84] which describes the PS
virtual machine1.  The same techniques were evolved to implement a more portable machine, HPS2, the
virtual machine used in VisualWorks Smalltalk [CINCOM99].  The work in this paper is a modification of
the HPS virtual machine.

                                                       
1 PS stands for either Peter’s Smalltalk, or Portable Smalltalk
2 HPS stands for High Performance Smalltalk
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2 Context-Stack Mapping in HPS
Smalltalk-80 is a late-bound object-oriented programming language with full closures.  Message sends
create method activations which return to their senders.  Conceptually closures are created within method
activations or nested within closure activations within method activations.  Closures can close-over the
receiver and local variables of their lexically-enclosing-scoped closure and method activations.3  The vast
majority of Smalltalk activations obey stack discipline, and the only common exception from this is “non-
local return” from a closure activation where a closure activation returns to the caller of its enclosing
method activation.  Effectively, then Smalltalk-80 obeys stack discipline for procedure (method and
closure) activation.  Hence efficient implementation of contexts can most obviously be achieved by stack
allocation of contexts.

In HPS the key technique for efficient implementation of contexts is to map activations to stack frames
during normal execution and only reify execution state when required.  This, along with other significant
optimizations outside the scope of this paper, is facilitated by translating Smalltalk bytecode into native
machine code which is cached and used to execute all Smalltalk code.  By mapping contexts to
conventional stack frames HPS is able to use the host machine’s native call and return instructions, and to
pass arguments directly on the stack, avoiding copying arguments from caller to callee contexts.

In HPS there are three context representations.  Volatile contexts are procedure activations which have yet
to be accessed as context objects.  These are conventional stack frames, created using native  procedure call
and prologue instructions, and reclaimed by stack discipline on executing native procedure epilogue and
return instructions.  Stable contexts are the standard object form of procedure activations, contexts proper.
Hybrid contexts are a pair of a context object and its associated procedure activation.  The context object
acts as a proxy for the activation.

Objects in HPS are composed of a header and a body.  The header holds an object’s class, a flag word
encoding the object’s size, hash and garbage collector flags, and an indirection pointer which points to the
body which holds the object’s instance variables:

Hybrid contexts adapt this representation such that the class field holds a special class object used to mark
the object as hybrid, the indirection pointer holds the frame pointer, and the actual indirection pointer is
copied to a slot in the frame.

The stack frames of hybrid contexts need to be marked to distinguish them from volatile frames and need to
refer to their hybrid context object.  This requires three extra slots in the frame:

• The saved pc slot. A hybrid frame is flagged as such by using its return pc which has the advantage
that it is set for free on procedure call, when the return pc is always pushed.  To mark a frame hybrid
its return pc is written into the saved pc slot and the return pc is set to zero.  Consequently the return
code sequence must be modified to check for a zero return pc and a hybrid return executed, of which
more below.

• The my data slot which holds the indirection pointer referencing the context’s body.

• The my oop slot which holds the pointer to the context object itself.

These three extra slots are only considered valid if the return pc is zero so the normal procedure prolog
needs to make room for the extra slots but does not need to initialize them.

                                                       
3 This is a departure from the original blue book specification where anonymous functions were
implemented as partially-initialized activation records called BlockContexts.  Evaluation of an anonymous
function involved making its activation record current, hence breaking stack discipline.
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Volatile contexts are converted to hybrid contexts when a volatile context must be referenced as an object.
This can happen in a number of situations (listed approximately from high to low frequency):

• A block is created which references its enclosing activation.

• A hybrid context is converted to stable, in which case its caller, if volatile, must be made hybrid.  Thus
stack walks, e.g. to deliver an exception or construct a stack trace for the debugger, convert volatile
frames to stable.  To avoid this when delivering exceptions, primitives are used to search the stack for
frames marked as handler contexts, without hybridizing intervening volatile contexts.

• A process switch is made.  Processes refer to their chain of activations via the top context.  Thus
operations like a blocking wait on a Semaphore entail making the top context hybrid.

• Volatile and hybrid contexts are housed in a stack zone composed of small stack segments usually 2k
bytes in size.  When a deep call chain overflows a stack segment a new segment is allocated, the top
frame in the previous segment is made hybrid.  Each segment starts with a dummy frame at its base,
the root frame, uses this context to chain back to the stack segment.  A root return is a return from a
root frame, which calls a run-time routine to return to the context.

• Smalltalk code references the thisContext pseudo-variable which refers to the current context.

Volatile or hybrid contexts are converted to stable contexts whenever the full object representation of a
context is required.  This also occurs in a number of circumstances:

• When executing a return, if the current context is hybrid it must be converted to stable, since the
context might be referenced by a block which has outlived its activation.  This is a hybrid return.

• When executing a non-local return all hybrid contexts between the returning context and the home
context from which it returns must be converted to stable.  This is simply a compound form of the
preceding single hybrid return case.

• When allocating a new stack segment if no empty stack segment exists, the least recently used segment
is evacuated by converting all the frames in the segment, volatile or hybrid, into stable contexts.

• Whenever a message is sent to a hybrid context it is converted to its stable form.

• When a snapshot is made all volatile or hybrid contexts are converted to stable so that only objects are
written to the snapshot file.  Since the snapshot may be resumed on a different machine only the
machine-independent stable representation is relevant.

Stable contexts are converted to hybrid in the following circumstances

• A non-local return or a root return returns to a stable context, which must be made hybrid before
execution can resume

• A block activation references a temporary variable on the stack of a stable context, which is hybridized
before the reference is made.

• A process switch switches to a process whose top context is stable which again must be made hybrid
before execution can resume

• A snapshot is resumed and the snapshotting context must be hybridized before execution can continue

Note that whenever a stable context is hybridized a new stack segment must be allocated, potentially
evacuating an entire stack segment to make room for the single context.  However root returns are
implemented such that a long chain of root returns recycles a single stack segment

This representation successfully eliminates the use of contexts for code that does not use blocks, and allows
stack discipline to reclaim volatile contexts.  However the representation still imposes considerable
overhead for a number of high-frequency operations.  The problem is not the creation of the hybrid context;
which merely involves a normal object creation, and swapping the indirection pointer with the frame
pointer.  The significant problem is the introduction of hybrid returns.
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3 Problems with Hybrid Returns
Since a hybrid context has an unusual object representation the incremental garbage collector is potentially
affected by their introduction.  To avoid impacting the garbage collector the header of a hybrid context is
marked as an object containing raw bits rather than object pointers.  Hence the incremental garbage
collector never follows the indirection pointer, which is in fact a frame pointer, when encountering a hybrid
context.  When the scavenger runs all hybrid contexts have their indirection pointer reset, an insignificant
cost.  But there is one very serious side-effect.  The HPS context representation stores the context’s stack in
a separate Array object.  Because a hybrid context is marked as a bit object it cannot prevent the stack array
from being garbage collected.  Hence the stack array is not instantiated with the hybrid context and is
instead deferred until the hybrid return, with the significant disadvantage that long return sequences may
perform many object allocations.  For example, the return from the top of a call chain composed of largely
hybrid contexts, where each activation is poised to return to its caller results in a spate of allocations for
each context’s stack array.  If memory is low this event can exhaust memory and crash the system.4  A
simple fix would be to add an extra slot to the frame which references the stack array.  However, this would
add yet another slot to the frame and would necessitate instantiating the stack array when the context is
allocated, slowing down hybridization.

Since the return pc of a frame is used to mark a hybrid context, returns from hybrid contexts must check the
return pc and perform a hybrid return if it is zero.  Consequently any hybrid context must execute a special
return sequence that performs this check.  Just performing the check is expensive, slowing down simple
activation-return code such as nfib5 by as much as 35%.  To avoid the check in the general case the native
machine code generated for a return comprises a return instruction followed by sufficient no-ops to be able
to replace the sequence with a hybrid return sequence.  Each native method has a flag signifying if the
return sequence is normal or hybrid.  If a volatile frame must be made hybrid and its method’s return
sequences are normal then the sequences are rewritten as hybrid sequences.

On machines where the instruction cache must be flushed rewriting return sequences can be a significant
issue.  As described in [Deutsch84] an inline method cache is used to speed-up message sends.  This
technique involves rewriting the sequence of instructions for a send, a register load followed by a call,
every time a send site is used on a different class of receiver, a process called relinking.  On machines
where instruction cache flushes are sufficiently expensive an alternative representation is used where the
value to be loaded and the address of the call are held in data space and loaded indirectly.  Hence relinking
involves updating locations in data space and avoids the instruction cache flush.  This scheme can be
adapted to hybrid returns.  For example, instead of a saved pc slot a frame could have a slot referencing the
required return sequence, normal or hybrid.  For a return the code generator would generate an indirect
branch through the return sequence pointer.  But this would add considerable overhead to returns, indirect
jumps being relatively expensive on contemporary pipelined microprocessors.

To avoid the cost of the instruction cache flush when creating hybrid frames the Smalltalk bytecode
compiler adds a hint bit to any method that explicitly creates a context, either by creating a block
containing an up-arrow return or by using the thisContext pseudo-variable.  The code generator generates
hybrid return sequences for methods with the hint set.  However, frames whose methods are not hinted can
still become hybrid on a process switch where the current method is non-hybrid.   Even though context
switches are typically far less frequent than hybrid frame creations due to block creation, on some machines

                                                       
4 HPS’s memory manager, apart from the scavenger, is designed to be controlled entirely from the image
level.  Hence it is designed to cope with allocation failure only where allocation occurs through an instance
creation primitive, since the failure code can take appropriate action such as running a full garbage
collection or  growing memory, under full control of the image.  Providing a means of transferring control
to the image when return sequences exhaust memory is judged too complex to be worth while.
5 nfib can be defined in class Integer as follows:
      nfib self < 2 ifTrue: [^1] ifFalse: [^(self – 1) nfib + (self – 2) nfib + 1]
It has the property that the result returned is the count of the number of activations to compute it (hence the
+ 1 in the recursive case).  Thus activations per second can be derived by dividing the result by the time
taken to compute it.  Suitable values are those that take around 30 seconds to compute.
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the cost of the instruction cache flush can be sufficiently high that the system is modified to generate all
return sequences as hybrid, incurring the performance overhead of the check on all returns in return for a
considerably reduced context switch time.

If a hybrid return check indicates that the frame is hybrid then the context must be converted to stable and
the frame’s contents copied to the stable context.  This is too complex to perform in-line and hence a hybrid
return involves calling a runtime routine that actually does the work before returning to the caller.  A
plausible alternative would appear to be one where hybrid frames are given a special return address so that
returning from a hybrid frame returns to the runtime routine without the need for a check.  However, if
interrupts are delivered on the run-time stack, then an interrupt delivered once the epilog has taken down
the frame will overwrite the very state which needs to be written-back to the context.  Hence the check (or
an expensive indirect branch) and the run-time call are in general unavoidable.

The overhead of a full hybrid return is considerable.  Adding a hybrid return to nfib slows execution by a
factor of 10.  On a machine where the average execution time of a single invocation nfib is 0.27 µseconds a
hybrid return from nfib takes about 3 µseconds, of which around 0.1 µseconds is incurred by the return
check.

In summary, the main problems posed by hybrid returns are

• Hybrid returns entail an object allocation for a context’s stack array at a point where allocation failure
is fatal.

• Hybrid return checks are relatively expensive, and hybrid returns are extremely expensive.

• Converting non-hybrid methods to methods with hybrid return sequences can be extremely expensive
due to cache flushing costs; sufficiently expensive for it to be preferable to make all return sequences
hybrid.

For these reasons we would like to eliminate hybrid returns.  Our new design eliminates all copying of state
from the stack to stable contexts at return time by stealing an implementation technique used by Lisp
implementations, and by redesigning the cross-referencing between hybrid contexts and their stack frames.

4 Eliminating Hybrid Returns
Hybrid returns have three effects, the first two required by the implementation, the last required by the
language.  The first effect is to convert the unusual object representation of a hybrid context into the
conventional object representation of a stable context.  This is required by the garbage collector which
cannot cope with this anomalous representation.  The second effect is to free the hybrid context’s frame for
use in a subsequent call. This is required to enable the use of conventional procedure call and prolog code
to create volatile contexts.  Essentially, access to a hybrid context after its frame has been accessed is not
possible, because the frame to which the hybrid context refers is either dead or in use by some other frame.
The last effect is to copy the state of the hybrid frame into the stable context, which comprises the
temporary variables of the frame and the pc.  This is required by the implementation of non-local variable
access in block closures.

Consider the inject:into: method from Collection, which may be familiar as a functional language’s fold:
    Collection methods for enumerating
    inject: thisValue into: binaryBlock
        "Accumulate a running value associated with evaluating the argument, binaryBlock, with the
         current value and the receiver as block arguments. The initial value is the value of the
         argument, thisValue.  For example, to sum a collection, use:
              collection inject: 0 into: [:subTotal :next | subTotal + next]."

          | nextValue |
          nextValue := thisValue.
          self do: [:each | nextValue := binaryBlock value: nextValue value: each].
          ^nextValue
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The block [:each | nextValue := binaryBlock value: nextValue value: each] has two free variables,
nextValue and binaryBlock.  The nextValue variable is assigned-to within the block and accessed from
the enclosing context as the value returned.  Hence both the block and its enclosing activation must share
an lvalue6 used to represent the variable.  Since binaryBlock does not change value after the block’s
creation its value could be copied into an rvalue private to the block.

HPS distinguishes three types of blocks.  Block closures that make no reference to variables in their
enclosing environment are called clean blocks, and can be created at compile time.  Blocks that only make
read-only references to variables in their enclosing environment which cannot change value after the block
is created are called copying blocks.  The values of all so-referenced variables are copied into rvalues
private to the block when it is created, allowing the block to dispense with the reference to its enclosing
environment and avoiding hybridizing the frames comprising that environment.  Blocks that either assign-
to outer variables in the enclosing environment, or read variables whose value might change after block
creation, are called full blocks.  These must share the lvalues of these variables with their declaring
environment.  Historically Smalltalk-80 has implemented access to non-local variables as direct access to
the locations on the stack of the context declaring the variable, and HPS followed suit.  The significant
consequence of this representation is that the stack state of a hybrid context must be copied into its stable
form on returning from the hybrid context so that subsequent non-local access to temporaries on its stack
from blocks see up-to-date values7.  Hence the major reason for hybrid returns is to support non-local
access to temporaries from within blocks.

If instead the lvalues for non-local temporaries were not on a context’s stack, but in some heap object, as is
the case in many Lisp implementations [Bartley86] the copying would be unnecessary.  The remaining
problem is to allow access to a hybrid context after its frame had been exited, so as to avoid the need for a
hybrid return to convert a hybrid context to a stable context.

4.1 New Block Representation
To avoid non-local access to temporaries, the compiler now generates code to place all such shared
temporaries in heap objects, using the Smalltalk Array class for convenience.  Each scope level that
introduces one or more shared temporaries allocates an Array with enough slots to hold all the shared
variables.  This array we call an indirection vector. With this modification a block can copy all required
closed-over state into private rvalues, since though the contents of an indirection vector may change, the
temporary location containing the vector itself is never assigned-to after initialization.  To illustrate, this
modification effectively re-writes the above inject:into: method as follows:
      inject: thisValue into: binaryBlock
          | indVec |
          indVec := Array new: 1.
          indVec at: 1 put: thisValue.
          self do: [:each | indVec at: 1 put: (binaryBlock value: (indVec at: 1) value: each)].
          ^indVec at: 1

Three new bytecodes are added; one to allocate an Array of N slots, and a pair to do an indirect temporary
fetch and store through a temporary holding an indirection vector.  The allocation bytecode avoids having
to store the binding for class Array as a literal in the method, which is unnecessary since class Array is
well-known the virtual machine, and avoids having to send #new: to Array.  The fetch and store bytecodes
                                                       
6 An lvalue is a memory location holding a value which may change. An rvalue is a read-only value which
does not change.
7 Another consequence of this is that non-local temp access must check for the outer context being hybrid
or stable.  In most cases the outer context would be hybrid, so for simplicity the code generated to access
outer temps converts stable contexts to hybrid if required rather than coping with both representations.
Hence in rare circumstances contexts can swap between stable and hybrid representations of they both are
accessed as objects, which causes them to stabilize, and have their temporaries accessed by blocks. More
importantly, hybridizing a stable context may cause an entire stack segment to be stabilized if the stack
zone is full.
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avoid having to send #at: or #at:put: to the indirection vector, avoiding unnecessary lookups and bounds
checks.

This technique is common in the Lisp world [Bartley86] and requires no extra analysis in the compiler.
More interesting is avoiding the conversion of hybrid contexts to stable on return.

4.2 Avoiding Premature Conversion from Hybrid to Stable
To avoid converting hybrid contexts to stable contexts on return the implementation must be able to
convert to stable after a hybrid context’s frame has been exited.  We’ll term hybrid contexts whose frame
has been exited dead hybrids, and call those which still have a frame live hybrids.  To do this requires three
things:

• that dead hybrids have sufficient state from which to construct a valid returned-from stable context

• that dead hybrids can be distinguished from live hybrids

• that live hybrids can be accessed as normal objects

To avoid converting live hybrid contexts to stable contexts when they are accessed for whatever purpose
the implementation cannot use an anomalous object representation for hybrid contexts and must be able to
derive from the hybrid context the equivalent behaviour obtained from a stable context.  In general
avoiding conversion on assignment isn’t possible, since certain assignments to fields of a hybrid context
may involve major manipulations of the stack, for example assigning to a hybrid context’s sender may
involve splitting a stack segment in two. But it is possible to avoid conversion for the majority of accesses.

Before delving into the details it helps to understand HPS’s representation of objects, SmallIntegers and
stable contexts.

Objects in HPS are either normal objects where a 32-bit object pointer points directly to a 32-bit aligned
object header containing an object’s class, size, identity hash and so on, or immediate objects where an
object’s class and state are encoded directly in the 32-bit object pointer. Since normal object pointers point
to a 32-bit aligned header their least significant two bits are zero.  Pointers with non-zero tags are used to
encode 30-bit 2’s complement SmallIntegers and 16-bit unsigned Characters.

Stable contexts in VisualWorks have the following shape:

The method field refers to the context’s Smalltalk method object.  The pc field holds an integer
representing the program counter, and is the index of the current bytecode within the method.  According to
the blue-book specification the pc of a returned-from context should be the index of the last bytecode plus
one.  The sender field holds the context’s caller, i.e. the context to return-to when the current context
executes a normal return8.  According to the specification a returned-from context’s sender is nil.  The
receiver field either holds the method’s receiver, or the BlockClosure from which a block context was
                                                       
8 When a block context executes a non-local return (an up-arrow return from within a block) it returns to
the sender of its home context.  There is a conventional static chain through the block context’s closure
which is stored in its receiver slot.

stack
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method

flags

class

indirection
context oop
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created, but this distinction need not trouble us, since the receiver field merely holds an arbitrary Smalltalk
object.  The stackp and stack fields represent the context’s stack, the stack field holding an Array large
enough to hold the context’s arguments, temporaries and intermediate results, and the stackp holding an
integer that is the one-relative index of the top of stack in the stack array.

The following table lists how values are obtained for live and dead hybrids respectively.

field value in live hybrid value in dead hybrid

method Initialized when created, accessed directly Initialized when created, accessed directly

pc Obtained from frame Set to index of last bytecode + 1

sender Obtained from frame caller Set to nil

receiver Initialized when created, accessed directly Initialized when created, accessed directly

stackp Obtained from frame Initialized when created to SmallInteger 0

stack Obtained from frame Initialized when created to nil

When the implementation creates a hybrid context it

1. Instantiates a context object, setting the class field to one of a pair of constants, HybridMethodContext or
HybridBlockContext, represented as SmallIntegers, which distinguish hybrid contexts from all other
objects and block from method hybrids.

2. Sets the method and receiver fields to the frame’s receiver and Smalltalk method.

3. Sets the sender field to the frame’s frame pointer, represented as a SmallInteger.  Since frame
pointers are aligned on word boundaries this can be done by setting the least significant two bits to the
Smallnteger tag bits without restricting the range of frame pointers.

4. Sets the pc field to the frame’s saved frame pointer, also setting the SmallInteger tags.  This will be
explained below.

5. Sets the stackp to the SmallInteger 0 and stack to nil.

The frame must also be marked as hybrid and referring to the newly-created hybrid context.  Since a hybrid
is just a normal object the frame needs just one slot to hold the hybrid context, and we could use this slot as
the marker, initializing it to zero when creating volatile frames.  But writing zero into a slot on every frame
build is extremely expensive.  You will recall that the advantage of using the return pc to distinguish
between volatile and hybrid frames is that the pc “flag” gets set “for free” when the pc is saved on call.
The existing HPS frame format includes a pointer to the translated method,9 and translated methods are also
at least 32-bit aligned so we use the frame method’s least significant bit to indicate a hybrid frame and
leave the context slot uninitialized.  This gives us the following stack format

                                                       
9 Although not strictly necessary, including the method makes it much easier to parse the stack
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So setting the frame to hybrid entails setting the least significant bit in the frame native method slot and
initializing the frame context oop slot with the newly-created hybrid context.

To distinguish dead hybrids from live we need to determine if a hybrid points to a live frame, and if so, that
the frame is hybrid and its context is the hybrid context in question.  It is straight-forward to check that a
hybrid context’s frame lies in the live portion of a stack segment, but since frames are of differing sizes,
there is no guarantee that a dead hybrid points to a frame.  In fact it may point to an arbitrary location on
the stack.  The implementation must therefore ensure that it is impossible to choose a frame pointer at
random and accidentally find a match with any dead hybrid.  This is easy to achieve since the frame format
is sufficiently constrained.

The above diagram shows a single stack frame which contains some object pointers as arguments, receiver
and stack contents, an address in the stack zone as caller frame pointer, the saved pc which is an address
in the native code segment, and one possibly uninitialized slot, the context oop slot, which may contain an
arbitrary value (since interrupt handlers may run on the stack and could write any value to the stack).
Because the stack zone, the heap, and the native code zone are all in different parts of the address space
they form disjoint sets of addresses.  In particular, the only places in the stack where two adjacent slots can
hold addresses in the stack zone are saved caller frame pointer/context oop pairs where the context oop
contains a garbage frame pointer value.  On either side of these slots lie a saved pc and a frame native
method, whose addresses are in native code.

Whenever a hybrid context is accessed the implementation derives the context’s frame pointer and copy of
the frame caller by stripping the SmallInteger tags from the sender and pc fields.  It then checks that the
derived frame pointer lies below the base above the top of stack10 of an allocated stack segment.  It then
compares the derived copy of the saved caller frame pointer with the slot pointed-to by the derived frame
pointer, compares the context oop slot against the hybrid in question, and checks the is hybrid tag in the
frame method slot.  If the saved caller frame pointer matches then either the derived frame pointer is
pointing to a frame, or is pointing to a stale value in an uninitialized context oop slot.  But if it were
pointing to a stale value then the comparison of the hybrid in question against the context oop slot would
fail since this would be a native method slot which can’t be confused with a non-immediate context
object. Hence if the saved caller frame pointer matches the derived frame pointer is pointing to a valid
frame, and hence the native method slot is also valid.  If the frame’s native method slot has the is hybrid
tag set the frame is hybrid and the context oop slot is also valid.  The garbage collector guarantees that
object pointers are not recycled until the objects pointed-to are unreachable, so if the context oop slot
matches the hybrid in question the hybrid is unambiguously pointing to its frame.

If any of these tests fail the implementation can infer that the hybrid has been returned-from, and can
convert it to a returned-from stable.  To do so it sets the object’s class to either MethodContext or
BlockContext, based on the hybrid’s class, sets the sender field to nil, and the pc field to the returned-from
value.11  Clearly the correct value of the stack and stackp can only be obtained from the frame, but we
depart from the blue book specification and consider it legitimate for a returned-from stable context to have
an empty stack, leaving behind no record of the context’s arguments or temporaries,12 excepting closed-
over variables in block contexts.

                                                       
10 In HPS stacks grow down.
11 In HPS the pc field of a context can hold a native pc, an offset from the start of a native method, stored as
a negative integer.  Because of this one possible returned-from pc value is a negative constant, rather than
the number of bytecodes plus one.
12 However, there is one situation in which the stack contents are useful. According to the blue book
specification if a context cannot be returned-from the virtual machine sends the #cannotReturn message to
that context.  A context will only get into a connot-be-returned-from state if assigned-to, so whenever a
hybrid context is assigned to we also initialize the context’s stack and stackp fields, copying the context’s
arguments to the stack array.  Again we consider it legitimate to discard the temporary variables, and only
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Finally the implementation must ensure that the test for live verses dead hybrids be made whenever
necessary.  For the run-time this means checking at points such as root returns where validity checks have
to be made anyway.  But the implementation must also ensure that any access from the Smalltalk level is
also mediated, which  it does using the translator and a few new primitives.  The primitives are special
versions of the basic access primitives defined in Object, #basicAt:, #basicAt:put:, #basicSize,
#instVarAt:, and #instVarAt:put:13, and a pair of primitives to mediate access to the stack,
Context>>#localAt: and Context>>#localAt:put:. As before, for methods on Context, its superclasses
and subclasses, the code generator translates access to instance variables into calls on run-time routines to
mediate access.  Any access of a dead hybrid first converts the dead hybrid to a returned-from stable as a
side-effect.  No reads of hybrid context state convert live hybrids to stable, so values such as the pc or stack
contents are computed from the context’s frame.  Any assignment to a context or a context’s stack locations
does cause the context to be stabilized, except for the sender field.  In general, assignments to hybrid
contexts only happen in the debugger, by which time it is no longer important to preserve the hybridity of a
context.  But assigning to the sender of a context is done in some cases where performance is an issue, for
example when performing co-routine-style computing with contexts [Deutsch81] [LaLonde88].  If a hybrid
is already at the base of a stack segment then the sender can be assigned to the root frame beneath the
frame.  If not, the hybrid’s frame and the frames “above” it (its callees) are moved to another stack
segment, and the assignment made to the new root frame.

5 Results
The new scheme imposes no overhead on methods which obey conventional stack discipline and which do
not reify execution state as contexts, except for the one word write required to initialize a frame’s native
method slot.  Instead, overhead is shifted to handling of contexts where determining if a hybrid context is
live or dead is more complex.  However, as performance measurements show, this overhead is more than
repaid by the elimination of hybrid returns.

The redesign has improved performance in a number of areas and has not reduced performance elsewhere.
Exception –handling and block non-local return are doubled in speed.  Assigning to non-local temporaries
is also faster, simple #inject:into: examples being some 30% faster.  Process blocking via
Semaphore>>#wait, Process>>#suspend or threaded C call-outs [Miranda 97] are all improved since
these operations create hybrid contexts and used to do hybrid returns.  Surprisingly, Semaphore>>#wait
and threaded call-out benchmarks are improved by about 33%!.

The new block representation is particularly successful at reducing the number of hybrid context creations.
For VisualWorks 3.0, which uses the old representation, in an image containing 3878 block creation
bytecodes, 30.5% are full block creations which cause a hybrid context to be created in block creation.  In a
VisualWorks 5i image containing 3912 block creation bytecodes only 9.3% are full blocks, 2.3% being full
and 7% being full copying blocks.  This image also contains 435 create array bytecodes (the bytecode used
to create assignable non-local temps) showing that statically, only 11% of block creations assign to non-
local temporaries.  So 30.5% of block creations require an additional allocation in the old representation
compared to 20.3% (9.3% + 11%) in 5i.  However, create array bytecodes are considerably faster than
hybrid context creation since they typically only allocate a single element array as opposed to a full hybrid
context.

The new implementation also successfully increases the residency of frames in the stack zone.  The old
implementation would convert hybrids to stable contexts whenever any message was sent to a context, and
convert a stable context to hybrid whenever a full block accessed a non-local variable in a stable context.

                                                                                                                                                                    

preserve the arguments.  Smalltalk enforces constant arguments, so these cannot change after initialization
of the stack.
13 Since in HPS context objects are not indexable #basicAt:, #basicAt:put: and #basicSize are not strictly
necessary, but we define them for completeness.  BlueBook contexts are indexable, and the indexable fields
are used to hold a context’s stack.  In such an implementation these primitives would be necessary.  HPS’s
arrangement is more efficient since the stack does not have to be initialized on hybrid creation.
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The new implementation also has two less fields, so it can fit more frames into the same stack space.

The time profiler is now more accurate since interrupting a computation does not change its code to use
hybrid returns.  But most importantly the system can no longer exhaust memory and crash executing long
sequences of hybrid returns, since no allocation is done at return time.

6 Conclusions
Smalltalk-80’s contexts are an elegant design of the reification of execution state, and the ability to reify
execution state provides much power to the Smalltalk-80 system.  We have redesigned an implementation
of contexts and closures upon conventional hardware which imposes no overhead on code which does not
reify execution state when compared to traditional stack-based activation and return mechanisms.  This
implementation preserves all useful features of the original Smalltalk-80 context specification.  Associated
overhead is imposed only on code which actually uses the reification facilities, and the overhead is
significantly reduced compared to the preceding implementation.  The implementation is suitable for both
software and hardware implementations.  This implementation demonstrates that contexts are an extremely
affordable feature of efficient Smalltalk implementations, and that there is no reason to exclude them on
performance terms.
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7 Appendix
Code for inject:into: in the old and new bytecode sets:

inject:into:
  1 <D4 00> create array size 1
  3 <4E> store local 2; pop

  1 <10> push local 0   4 <10> push local 0
  2 <4E> store local 2; pop   5 <DC 20> store local 2 at 0; pop
  3 <44> push self   7 <44> push self

  8 <11> push local 1
  9 <12> push local 2

  4 <CF 00> make full block 10 <FA 00 02> make copying block (2)
  6 <CE 1B> non-immediate send do: 13 <CE 20> non-immediate send do:
  8 <66> pop 15 <66> pop
  9 <12> push local 2 16 <D9 20> push local 2 at 0
10 <65> return 18 <65> return

block within inject:into:
  1 <CB 02> push 2 copied values

  1 <2D> outer(1) push local 1   3 <11> push local 1
  2 <2E> outer(1) push local 2   4 <D9 20> push local 2 at 0
  3 <10> push local 0   6 <10> push local 0
  4 <90> send value:value:   7 <F0 94> send value:value:
  5 <DD 22> outer(1) store local 2; pop   9 <DC 20> store local 2 at 0; pop
  7 <2E> outer(1) push local 2 11 <D9 20> push local 2 at 0
  8 <65> return 13 <65> return

The new code is more verbose, since it requires the two byte CreateArray bytecode and an extra store
bytecode, and the indirect fetches typically take 2 bytecodes instead of 1 for the old code.  But this adds an
insignificant amount of code to the system since these facilities are used so infrequently.  For example in a
system with 25000 methods there are only 435 uses of the CreateArray bytecode.


