
How Should Classes be Initialized? 1 Juanita Ewing

How Should Classes Be
Initialized?

Juanita J. Ewing
 Instantiations, Inc.

Copyright 1994, Juanita J. Ewing

Derived from Smalltalk Report

Class initialization should be systematic and predictable. Have you ever sent messages to a class
and gotten strange errors related to uninitialized class data? Uninitialized class data is a result of
Smalltalk programming conventions and lack of support by the programming environment. Some
minor changes in the Smalltalk programming environment could greatly improve this situation.

What needs to be initialized? Smalltalk classes have two or three different kinds of class data
that must be initialized:

• class variables,
• class instances variables, and
• pool dictionaries.

Smalltalk-80 derived dialects have class instance variables, but Smalltalk/V dialects do not. Each
kind of class data has semantic differences.

Classes can have class variables, which are shared between all instances and the class. Class
variables can be referenced from both instance and class methods simply by referring to the name
of the class variable.

Class instance variables are storage for the class and can be referenced only from class methods.
Instances methods that need the information stored in a class instance variable must send a message
to a class method, which can return the requested information.

Pool dictionaries are shared between several classes. The keys in a pool dictionary can be directly
referenced from both instance and class methods.

Which of these is inherited? All Smalltalk programmers are familiar with the inheritance
semantics of instance variables. The variable is inherited, but not its value.

Unlike instance variables, a class variable and its value is inherited. That means that the value of a
class variable is shared with subclasses and all of their instances. Figure 1 diagrams a class
variable defined by class A. The subclass B inherits the class variable. Instances methods from the
subclass and superclass are able to reference class variables.

How Should Classes be Initialized? 2 Juanita Ewing

A's instance
methods

A's class
methods

B's instance
methods

B's class
methods

a class
variableA

B

subclass

Figure 1. Class Variables

Class instance variables are much like the instance variables we use all the time in Smalltalk
programming, with one exception: class instance variables are instance variables for a class instead
of for instances of a class. The semantics of class instance variable are similar to those of instance
variables. The variable is inherited, but not its value. Each class must fill in its own value. These
kind of variables are handy because subclasses can easily override values defined in a superclass.

In Figure 2, the class A defines a class instance variable, i. The subclass B inherits the class
instance variable i, and defines another class instance variable. Only class methods can refer to
class instance variables. The receiver of the message determines which storage slot will be
referenced. For example, suppose the method initialize references the class instance variable i. If the
receiver of the message initialize is A, then the storage slot in the class A will be referenced. If the
receiver is B, then the storage slot in class B will be referenced.

How Should Classes be Initialized? 3 Juanita Ewing

A's class
methods

B's class
methods

A

B

subclass

class instance
variable i

class instance
variable i
class instance
variable j

Figure 2. Class Instance Variables

Pool dictionaries are similar to class variables. Pool dictionaries and their values are inherited by
subclasses. In Figure 3, the class A defines a pool dictionary. Both class and instance methods can
reference keys in the pool dictionary. The subclass B inherits the pool dictionary, including its
values. Instance and class methods from the subclass B can reference keys in the pool dictionary.

How Should Classes be Initialized? 4 Juanita Ewing

A's instance
methods

A's class
methods

B's instance
methods

B's class
methods

a pool
dictionary

A

B

subclass

Figure 3. Pool Dictionaries

Let’s examine the inheritance consequences.

What happens if class methods are used to initialize? Class data needs to be initialized.
The most common practice is to use a class method called initialize. This method typically is used to
initialize all class data, no matter what kind of class data it is.

Assume an initialization method initializes a class variable. The class that defines the class variable
needs to execute the initialization method. Since the value of a class variable is inherited,
subclasses don’t need to execute this method. In fact, it may be an error to do so because some
valuable data may have accumulated in a class variable. Subclasses inherit the initialize method, but
should not execute this method. This situation is a violation of good object-oriented programming.

Assume the initialize method initializes a class instance variable. The value of this variable is not
inherited, so subclasses must execute the initialize method to initialize the variable. Either an
inherited method or a local initialization method can be used. The initialization method must be
executed by each class.

Pool dictionaries are shared between several classes. The current Smalltalk convention is for one of
the classes to provide an initialization method. Should the initialization method be executed by
subclasses? No. It may wipe out valuable accumulated data. This case is analogous to the situation
with class variables.

Does Smalltalk have initialization conventions? Smalltalk has a convention for the
initialization of instances which is to invoke the superclasses’ initialization method if subclasses
must override it. The convention arose because the superclass can initialize variables. Subclasses
avoid duplicating the inherited code.

Initialization methods typically look like this:

How Should Classes be Initialized? 5 Juanita Ewing

initialize
“Invoke the receiver’s inherited method.
Initialize my variable to the integer 2.”

super initialize.
myVariable := 2

Can we apply this convention to class initialization? The super initialize convention
doesn’t work well with class initialization methods. A Smalltalk programmer can’t tell if the
initialization method should be executed without examining the code. If only class instance
variables are initialized, this convention works. If class variables or pool dictionaries are initialized,
then this convention doesn’t work since the values of these variables are inherited.

Smalltalk programmers don’t restrict their initialization methods. They use initialize methods for all
kinds of class data. Therefore, the existence of an initialize method in a hierarchy is not a good
indication of initialization requirements.

Do class initialization methods work? Even if you ignore the inheritance issues and the
super initialize convention problems, there are still flaws in class initializations contained in class
methods. Execution of the initialize method is an action that is separate from the compilation of the
initialize method. This separation leads to another problem. How many times have you edited an
initialize method but forgotten to execute it?

If you file in someone else’s class, it may or may not have a do–it to perform an initialize. Dialects
of Smalltalk-80 try to get around this problem by automatically filing out an initialize do–it when a
class containing an initialize method is filed out. When the class is filed back in, the do–it is
executed. This heuristic fails in two common cases. When a developer creates a method for
initialization and calls it something other than initialize, such as initializeVariables, then the
programming environment fails to detect the purpose of the method and does not treat it specially.
Because this heuristic only examines behavior in a single class, it also fails when an inherited
initialization method needs to be executed by a subclass.

Should inherited methods execute without error? Any inherited method should be able to
execute without error. Dialects of Smalltalk-80 override inappropriate inherited methods with an
implementation consisting of self shouldNotImplement. High quality class hierarchies should never
allow users to execute methods that create errors. High quality programming environments should
not encourage the construction of code that creates these errors. Unfortunately, Smalltalk class
initialization conventions promote the inheritance of inappropriate methods.

The Smalltalk programming environment has a quality problem.

Should class initialization be inherited? No. Since it is impossible to tell if a class
initialization method should be inherited without examining the code, class initialization methods
should never be inherited. Initialization methods too frequently contain references to inherited class
variables and pool dictionaries. It is too easy to make a mistake and execute an inherited
initialization method that is inappropriate.

The code that performs class initialization should be compiled in the scope of the class in order to
reference class data, but it doesn’t have to be a class initialization method. The Smalltalk
programming language has enough power and flexibility to provide another mechanism in the
programming environment for class initialization.

How should classes be initialized? Class initialization should not be a class method.
Instead, classes should have a separate component that contains the class initialization code. We
will call this the class initialization.

The class initialization should be bundled with the class and supported by the programming
environment as a part of the class. The code that performs the initialization should be able to
reference all class data: class variables, class instance variables and pool dictionaries. The
initialization code should be executed so that self is bound to the class. These characteristics are

How Should Classes be Initialized? 6 Juanita Ewing

also characteristics of class methods, so programmers don’t have to change the way they write
initialization code. They just have to designate it as class initialization code.

Separate class initialization code is beneficial in several ways. Inheritance of inappropriate class
methods avoids costly errors. Functionality can be added to the programming environment that
improves productivity. When the code to initialize a class is identified, the programming
environment can take special action to support its intended functionality. For example, when the
class initialization is redefined, it could be automatically executed by the environment. The class
initialization could automatically be filed out when a class is filed out, and executed when the class
is filed back in. If just these actions are supported by the programming environment, then much
time would be saved by Smalltalk programmers.

All of this can easily be implemented in a Smalltalk programming environment. The result is
separate class initialization whose purpose is known by the programming environment. This kind
of class initialization is not inherited and so avoids errors. A class initialization can send messages
to the class, and in doing so may execute class methods.

