
How to Create Smalltalk
Scripts

Juanita J. Ewing

 Instantiations, Inc.
Copyright 1994, Juanita J. Ewing

Derived from Smalltalk Report

In my last column I discussed a critical concept in Smalltalk application
development: never view your image as a permanent entity. Most of the last
column was centered on extracting application source from an image and
rebuilding the image by recreating classes and methods from source. But in
complex applications it is not enough to recreate classes and methods. Classes,
pools and global variables must be defined and initialized, usually with a script.

This column tells you how to construct Smalltalk scripts. It includes a discussion
of some useful expressions for scripts, and describes some useful structuring
mechanisms for scripts.

Format
A Smalltalk script is really just Smalltalk code stored in a file, usually in file–out
format1. This is the format with the !’s. Most people are used to seeing class and
method definitions in this format. The most common way to create a file in this
format is to use a file–out menu item in a browser.

A class definition consists of the definition string followed by a single
exclamation point.

Point subclass: Object
instanceVariableNames: ‘x y’
classVariablesNames: ‘ ‘
pools: ‘ ‘!

Method definitions are more complicated. There is a header portion indicating
the class to which the methods belong. The header portion begins and end with
exclamation points. The header is followed by one or more method definitions,
each ending with a single exclamation point. After all method definitions,
another exclamation point is appended, indicating that the series of method
definitions is over.

1Described in Chapter 3 , The Smalltalk-80 Code File Format, of Smalltalk-80 :
Bits of History, Words of Advice

! Point methods !

x
“Return the x component of the receiver”

^x !

= aPoint
“Return true if both the x and y coordinates are equal.”

^self x = aPoint x and: [self y = aPoint y]! !

Most implementations are very picky about a separating character between the
last two exclamation points. This is because exclamation points in the definition
source are doubled when written to a file. If there is no separator between the
exclamations, the system will interpret it as a single exclamation in the method
source.

The header portion of method definitions varies from implementation to
implementation. The example in figure 2 uses a Smalltalk/V style header. In
Smalltalk-80 derived implementations, the header also identifies a protocol.

!Point methodsFor: ‘accessing’!

x
“Return the x component of the receiver”

^x! !

Other interesting pieces of code that people want to put in scripts are really just
do–its. It turns out that class definitions are also do–its, so we already know the
proper format. It is code followed by a single exclamation point.

Useful Script Expressions
I usually start my file–in scripts with a comment, describing the contents of the
script and any relevant assumptions. Filing in a comment has no effect on your
image, but it is a handy way to document the contents of a file. Just like any other
do–it, an exclamation must follow the expression.

“This file contains the script to load the drawing application.
This load procedure has been tested with version 1.4” !

Another common expression in a file is a class initialization. In this example the
message initialize is sent to the DrawingApplication class. The appropriate
initialization method will vary from class to class.

DrawingApplication initialize !

It might be appropriate to query the user for the location of relevant files before
proceeding. Note the use of a temporary variable in this expression.

| directory |
directory := Prompter prompt: ‘Where is the archive
directory?’.
directory isEmpty

ifFalse: [(Disk file: directory, ’\archive’) fileIn] !

A dialog with the user might be appropriate during the file–in process,
particularly if the expression is destructive. In this example, a global name is
going to be removed from the system. Place interaction with the user at the
beginning of the script to allow automated builds.

| confirm |
confirm := Prompter confirm: ‘The next step is irreversible.
Continue?’.
confirm ifTrue: [Smalltalk removeKey: #Vector] !

Some applications make use of global variables. Global variables can be declared
and initialized in scripts. Current ways to declare global variables reveal some
implementation details of the global name space in Smalltalk implementations.
Global variables are stored as symbols in Smalltalk, which is a dictionary. Don’t
forget the # mark which creates a symbol literal in the expression. In our
example we create two global variables, the first with an initial value of nil. There
is no convenient way to declare a global variable without an initial value, so we
use the value nil. Nil is used as the initial value of variables in other places in the
Smalltalk system.

Smalltalk at: #DrawingMode put: nil.
Smalltalk at: #DefaultColor put: ClrBlack !

It is also possible to test if a particular global name has been defined. This can be
useful when combining segments of an application in a mix and match style. In
the first expression the existence of the global name Vector is tested for, and if it
is not defined, then the file containing its definition is loaded. This type of
expression is really ad hoc configuration management.

In the second expression the existence of Vector is tested for and a message
displayed if the name is already defined. Since the user doesn’t furnish any
meaningful input, a better alternative is to write messages to the Transcript
instead of putting dialogs in the middle of a script.

Smalltalk
at: #Vector
ifAbsent: [(Disk file: ‘Vector.st’) fileIn] !

(Smalltalk includesKey: #Vector)
ifTrue: [MessageBox message: ‘About to redefine Vector’] !

Another type of global that needs to be declared is a pool. Current ways to
declared pools also reveal some implementation details. Pools are dictionaries,
and the keys are available in the methods of classes using the pool. Note that the
declaration of the pool is a separate expression from the subsequent references to
it. Each expression is independently compiled. The first expression is compiled
and executed, which declares the pool if neccessary. We avoid redefining the
pool if it already exists because that would orphan existing references to its
variables. After the pool has been declared, subseqent do–its can reference it by
name. The second expression defines three pool variables. This example is
appropriate for Smalltalk/V systems. In Smalltalk–80 derived systems, the keys
should be symbols.

Smalltalk
at: #TypesettingConstants
ifAbsent: [Smalltalk at: #TypesettingConstants put: Dictionary

new] !

TypesettingConstants at: ‘Bold’ put: ‘.B’.
TypesettingConstants at: ‘Italic’ put: ‘.I’.
TypesettingConstants at: ‘Underline’ put: ‘.U’ !

Structuring Scripts
Do–its in a workspace or file are executed, logged in the changes file, and never
referenced again by the system. Typical Smalltalk source control mechanisms
don’t capture do–its, and are therefore do–its are difficult to maintain. To
overcome this problem in scripts, which typically have many do–its, developers
should, whenever possible, turn do–its into methods. Methods are maintained by
the Smalltalk system, and can be browsed and filed–out. They don’t disappear
after execution. An expression to initialize a class variable, for example, can be
turned into a class method.

Files are the basis of another structuring mechanism. Application source can be
composed of multiple files based on functionality. Several files based on

functionality are more reusable than a single large application file. It is easier to
distribute and use a piece of functionality if it is separated from the rest of an
application. Because extracting a unit of functionality from a large application
source file is very challenging, interesting functionality will not be reused if it is
not separated.

Even though application source in separated into multiple files, the application
can be reconstructed quite easily. Scripts often load a series of files in a particular
order. In this expression three files are loaded into an image.

(Disk file: ‘enhancements.st’) fileIn.
(Disk file: ‘classes.st’) fileIn.
(Disk file ‘initialization.st’) fileIn !

An alternative equivalent expression, which is easier to extend, is

#(
‘enhancements.st’
‘classes.st’
‘initialization.st’)

do:
[:each | (Disk file: each) fileIn] !

The final structuring mechanism to discuss is based on a class. In this
mechanism, we devote an entire class to rebuilding an application. This class
probably also has functionality to store the source for an application. Do–it
expressions that are not related to a class should be incorporated into methods in
the rebuilding class. For example, an expression that creates and initializes a
global variable should become a method. Then, all methods that create global
variables should be called from a controlling method.

initializeGlobals
“Define and initialize global variables.”

self initializeDrawingGlobal.
self initializeLabelGlobal.
self initializeDrawingLocationGlobal

Developers should create a similar set of methods for defining and initializing
pools. The entire rebuilding class can now be maintained by the Smalltalk
system, instead equivalent code maintained by the developer in script files. The
source for the rebuilding class also needs to be archived in the same manner as
the source for the rest of the application.

Conclusion

The ability to declare globals and pools, and initialize classes in a non-interactive
mode is important in rebuilding complex Smalltalk applications. Understanding
the file–in format and having a few examples can go a long way toward creating
effective scripts, but script code should be turned into methods and classes
whenever possible. Be wary of scripts and initialization methods that are too
complicated, because they are difficult to debug and maintain.

