
Techniques for Platform

Independence

Juanita J. Ewing and Steve Messick

 Instantiations, Inc.
Copyright 1994, Juanita J. Ewing

Derived from Smalltalk Report

Juanita Ewing and

This articles discusses techniques for writing platform independent applications and class

libraries. The techniques discussed in this article are useful for modeling environmental changes

that affect your application. For example: operating system facilities that vary from platform to

platform, windowing libraries for Windows and OS/2 Presentation Manager, a database

connection that varies depending on the network configuration, archiving libraries that use either

PVCS or Oracle for storage, a color model that depends on the current output device and even

Smalltalk platforms such as Smalltalk/V and Objectworks\Smalltalk. These techniques could also

be useful as part of a system that models user experience level.

All the techniques in this article, one way or another, are based on polymorphism. They rely on

client objects sending messages to platform—dependent objects. The client always sends the

same messages, which is where polymorphism comes into play: every platform—dependent

object must understand those messages. Thus, during both design and implementation phases, it

is important to think about the set of public messages for objects and the requirement for

polymorphism.

This article will refer to classes providing platform services as library classes, and the client

classes that make use of these classes as application classes.

Interchangeable classes
Two library classes with the same set of public messages can be used to interface to two

different platforms. Because they have the same set of public messages, they are

interchangeable. Often, it is convenient to arrange these classes as subclasses of a common

superclass because inheritance supports common behavior. The superclass contains common

messages, and documents requirements for creating additional subclasses. Often, the superclass

is abstract, meaning there are no instances of it. For a discussion on creating abstract classes that

are based on similar concrete classes, see the Smalltalk Report Article Volume 3 Number 2
Abstract Classes by Juanita Ewing.

The currently appropriate platform—dependent class is known as the current class. This is

usually a concrete class: a class that can have instances. Because the current class changes, it

must not be directly referenced by clients. Let’s look at several alternatives for indirectly

referencing the current class.

Abstract
class

Concrete
subclass

Concrete
subclass

Client

Figure 1. How are library classes referenced?

How do application classes reference the current class? Because the class may change,

depending on the environment, application classes cannot reference the current class by name

(Figure 1). At compile time the current class is not known. Instead, application classes must

reference an indirection to the current class, so that the current class can be replaced.

Abstract
class

Concrete
subclass

Concrete
subclass

Client

Global
Variable

Figure 2. Application code sends messages to a global variable.

Some class libraries use a global variable to refer to the current class (Figure 2). Application code

indirectly references the current class with expressions like CurrentDatabaseInterface

cancelConnection, which cancels the connection to the current database. In most cases, a

variable that is global in scope is not necessary.

An alternate solution is to ask the abstract class for the current subclass (Figure 3). A class

instance variable or class variable can be used to hold the actual reference. This solution

produces expressions like DatabaseInterface current cancelConnection. A message to the

abstract class to retrieve the current class is better than a global variable because

¥ the functionality is clearly related to the class

¥ the abstract class is already in the global name scope,

¥ the abstract class is usually named so that its purpose is obvious to clients, and

¥ the use of a class message keeps all related functionality in a nice neat bundle that

is easier to share and maintain.

Concrete
subclass

Concrete
subclass

Client
Abstract

class

lass variable

Figure 3. Application code sends messages to the abstract class.

Using interchangeable classes, we discuss three approaches to portability, each appropriate for

a different set of assumptions. The approach you select will be based on the specifics of your

situation.

Micro—Layering
In the micro—layer approach to portability we recognize that the developer must make a

portable version of a library class, without changing its public interface. One of our goals is to

make the library class itself as portable as possible. The requirement is to extend an existing

class to accommodate multiple platforms. We cannot make a new class to replace the existing

class without affecting clients of the existing class.

Assumptions for the micro—layer approach are:

¥ library class must be made portable

¥ clients must not be affected

We can, however, introduce a new non-portable class that isolates the platform dependencies of

our library class. Then we rewrite the library class methods to use the non-portable class to

perform host-dependent operations. By moving platform-dependent code into a non-portable

class we’ve done two things:

1) eliminated the need to change any public protocol understood by the library class,

2) provided ourselves an easy way to port the non-portable code.

The new class is completely under our control and can be ported by using interchangeable

classes, as described above.

As an example, let’s assume we’re creating a portable Point class that can work with the host’s

coordinate system, and that it must work on a variety of platforms including Macintosh and

OS/2. We immediately see that coordinate system is platform dependent: the x-coordinate

increases as we move from left to right on both platforms, but the y-coordinate increases

downward on Macintosh and upward on OS/2. To test whether one point is above and to the

left of another one we can write for Macintosh:

Point methods
isLeftAndAbove: aPoint

Return true if the receiver is left and above <aPoint>.

^self x < aPoint x and: [self y < aPoint y]

And for OS/2 it becomes:

Point methods
isLeftAndAbove: aPoint

Return true if the receiver is left and above <aPoint>.

^self x < aPoint x and: [self y > aPoint y]

The different interpretation of y-coordinates occurs throughout the class, and also affects other

classes such as Number and Rectangle. These two methods satisfy our second assumption

(clients must not be affected) but not the first: separate implementations are required for

different platforms. Note that most of the methods are identical; only the test of y-coordinates

differs. Isolating the platform-dependent behavior in a new class will make Point (and Number

and Rectangle) portable.

Let’s introduce a class for coordinate system dependencies, called CoordinateSystem. Using

interchangeable classes, we can design a Coordinate System micro layer for Macintosh and

OS/2. We’ll call the classes MacCoordinateSystem and OS2CoordinateSystem, both subclasses

of CoordinateSystem. See Figure 4.

Mac
Coordinate

System
OS2

Coordinate
System

Point
Coordinate

System

current

Figure 4. The Coordinate System micro layer.

Since the interpretation of x-coordinates is the same we will define the x-axis protocol in

CoordinateSystem. MacCoordinateSystem will interpret increasing y-coordinates downward,

OS2CoordinateSystem upward. Rewriting the Point method, we have:

Point methods
isLeftAndAbove: aPoint

Return true if the receiver is left and above <aPoint>.

^(self coordinateSystem is: self x leftOf: aPoint x)

and: [self coordinateSystem is: self y above: aPoint y]

This method is portable, assuming the method coordinateSystem answers an instance of the

correct subclass of CoordinateSystem. Additionally, if Point needed to be ported to a platform

that interpreted x-coordinates increasing from left to right, it is still portable providing a new

subclass of CoordinateSystem is created.

Now let s look at CoordinateSystem and its subclasses. We need to define is:leftOf: and

is:above:.

CoordinateSystem methods
is: firstX leftOf: secondX

Return true if <firstX> is to the left of <secondX>.

^firstX < secondX

is: firstY above: secondY
Return true if <firstY> is above <secondY>.

self implementedBySubclass

MacCoordinateSystem methods

is: firstY above: secondY
Return true if <firstY> is above <secondY>.

^firstY < secondY

OS2CoordinateSystem methods
is: firstY above: secondY

Return true if <firstY> is above <secondY>.

^firstY > secondY

Macro—Layering
The micro—layer approach illustrated the use of interchangeable classes in a microcosm. The

next variation applies the same principle on a bigger scale, as the architectural basis of entire

systems.

In the macro—layer approach, we must make an entire subsystem portable. The assumptions,

as in the micro—layer approach, are:

¥ library must be made portable

¥ clients must not be affected.

This is a good approach to use when developing a portable user interface framework. Digitalk’s

Smalltalk/V version 2.0 for Macintosh uses it. A different form of it also shows up in

ParcPlace s Objectworks\Smalltalk.

The general idea is simple: develop a portable layer that depends upon a non-portable layer for

communication with the host platform.

Portable
Layer

Non-Portable
Layer

Platform
Dependent

Layer

The platform—dependent layer is the service provided by the platform that we need access to in

Smalltalk. In may be a user interface like Windows 3.1, a communications toolbox such as

Apple’s AOCE, or even a third-party product. The only requirement is that it have a well-

defined API that can be used by Smalltalk.

The portable layer implements the classes used by client applications. This is the layer most

commonly used by Smalltalk programmers. A good example is a user interface framework. The

portable classes that implement the framework can be used by application-specific classes to

define windows. The application code is protected from platform dependencies, as long as it

only uses the portable layer, and is therefore portable.

Interfacing between the portable layer and the platform—dependent layer is the responsibility of

the non-portable layer. This layer must do whatever is necessary to transform portable

requests, such as create a new window, into the platform specific requests that actually create

the window. This often requires transformation of data from a portable representation into the

representation used by the platform, and calling the correct subroutines defined by the

platform’s API.

To make the system run on another platform, with that platform’s implementation of the

service, the middle non-portable layer is ported to the new platform. If the portable layer was

implemented without relying on any non-portable assumptions then it will work as is.

Practically speaking, there may be some code in the portable layer that will not work on the

new platform without modification. To ensure portability of client applications the public

protocol defined by the portable layer may not change. But applications will work just fine if

the public protocol preserves its semantics across platforms, no matter how it is implemented.

This brings us to the issue of specifying the portable layer. This is actually the most difficult

part of creating a portable library. Since the underlying service we want to use is itself not

portable, we cannot simply look at its API and define our portable protocol in terms of it. We

have to create a framework that can be implemented on all potential platforms. The syntax and

semantics of the framework has to be specified so that client applications can be defined. The

specification must also define the protocol that future extensions to the framework may and

may not modify. Also, any methods that have a non-portable implementation must be

indicated. To learn more about current research issues in object specification, see the OOPLSA

papers by Kiczales and Lamping (OOPSLA 92 Proceedings, pg. 435; OOPSLA 93

Proceedings, pg. 201).

Let’s consider an example. Suppose we are creating the user-interface framework for a family of

applications for OS/2 and Macintosh that need to use the host’s windowing system. These

applications need some "non-standard" windows that always display on top of "standard"

windows, sometimes called floating windows or palettes. Looking through the OS/2 manuals

we see that this won’t be very difficult. OS/2 provides the capability we need. However,

extremely careful reading of Inside Macintosh reveals that we may be able to get one window of

this sort, but if we need more than one (and we do) then we’re out of luck. It turns out that we

have to reimplement a portion of the Macintosh window manager class to solve this problem.

By applying the principle of interchangeable classes to the problem description, we can design

and specify a WindowManager class that has implementations for OS/2 and Macintosh. In our

portable user interface library we define the classes StandardWindow and FloatingWindow to

implement the two varieties of window we need. These classes use WindowManager to create

and destroy windows and to make windows visible or invisible. We’ll also have non-portable

classes, OS2Window and MacWindow, to implement the platform-specific window functions

like setting window title and size. The result is a user-interface framework for building portable

applications, and a framework that is itself largely portable. The design includes no inherent

performance penalty for either platform.

Standard
Window

Floating
Window

Window
Manager

Mac
Window

Mac
Window

Portable
Layer

Non-Portable
Layer

Figure 4. The major objects required to represent one standard window and one floating window

on a Macintosh.

If, on the other hand, we had tried to design the framework based only on the OS/2 API we

probably would have arrived at a much less portable version of the framework. It is quite likely

that our design would not have included either WindowManager or FloatingWindow. After all,

why should it? OS/2 takes care of all the bookkeeping required. We would, of course, have

StandardWindow and OS2Window because we’re using the layering method to isolate platform

dependencies. But that alone is not enough to ensure portability. If missing functionality must

be implemented for some platform, then the design must allow for that. If the functionality is

not part of the design, client applications will be based on a sub-optimal design and we will be

faced with enormous backward-compatibility problems. Rather than designing a system based

on the functionality available on a platform, we design the system to meet our requirements.

An interesting variation on the layering theme is found in Objectworks\Smalltalk. The non-

portable layer is implemented in the virtual machine. The portable layer is implemented in

Smalltalk; it is entirely portable because all platform dependencies are hidden in the virtual

machine. Using this approach, Objectworks ensures portability of the applications defined in

Objectworks\Smalltalk and also of their image file.

Platform server
The last variation is a pragmatic approach that is often used to extend the set of platforms an

existing application can support. In this approach, a platform server class is used to contain all

platform specific code that the application relies on. There is one platform server class for each

platform, providing a consistent interface to platform functionality.

This can be used when an application relies on two platform libraries that do not have an

identical public interface. Our advice is to use this technique only if you do NOT have control

of library classes, or as a stop gap measure if you can rewrite library classes. If possible, you

should refactor and expand the set of library classes, resulting in many interchangeable classes.

Assumptions for the platform server approach are:

¥ many small variations in library classes

¥ developer cannot rewrite library classes

For this technique, let s discuss an example involving the platforms Smalltalk Agents for

Macintosh, and Objectworks\Smalltalk. Suppose we have an application that must run on

Objectworks\Smalltalk and on Smalltalk Agents for Macintosh. This application requires

streams and a collection that holds its elements in order. We also want the ability to do some

rudimentary performance analysis, and therefore need an operation that can be used to time the

execution of a block.

The way we access the required functionality is different with each Smalltalk platform. In order

to isolate the bulk of our application from platform dependencies, we compartmentalize the

variations for each platform into a platform server class. The class ObjectworksServer is a

mapping to functionality on the Objectworks\Smalltalk platform, and the class

SmalltalkAgentsServer is a mapping to functionality on the Smalltalk Agents platform.

Let’s examine a sample of methods from the server classes. Methods that identify an

appropriate class, such as the method orderedListClass, are useful when two platforms have

similar classes with different names. It can also be useful to help identify dependencies and

collaborations.

Ordinarily, when operating on a object, we send messages directly to the object. When we

provide a mapping to that functionality in a platform server class, we must send a message to

the server class. The original object becomes an argument. The message readFrom:through:

provides an operation on a stream, but it is a message sent to the server class with the stream as

an argument.

Sometimes the server class will end up implementing functionality that is simply not present on

one of the platforms. The message timeToExecute: is a mapping to existing functionality for

Objectworks\Smalltalk, but new functionality for Smalltalk Agents.

****Format suggestion - these two lists, one for Objectworks and one for Agents, would be

nice side by side****

ObjectworksServer methods
orderedListClass

Return a class that holds its elements in order.

^OrderedCollection

readFrom: aStream through: anObject
Return a collection of elements read from <aStream>, starting from the current stream

position up to and including <anObject>.

^aStream through: anObject

timeToExecute: aBlock

Return the number of milliseconds to execute <aBlock>.

^Time millisecondsToRun: aBlock

SmalltalkAgentsServer methods
orderedListClass

Return a class that holds its elements in order.

^List

readFrom: aStream through: anObject
Return a collection of elements read from <aStream>, starting from the current stream

position up to and including <anObject>.

| throughCollection |

throughCollection := aStream upTo: anObject.

throughCollection add: aStream next.

^throughCollection

timeToExecute: aBlock
Return the number of milliseconds required to evaluate <aBlock>, rounded to the

nearest ms. The computation is at best approximate because the basic unit provided by Apple

is a tick (1/60 sec).

| timer startTime |

timer := ClockDevice new.

startTime := timer ticks.

aBlock value.

^timer ticks - startTime * 100 + 3 // 6

Dynamic vs. Static
There is another issue, orthogonal to variations on interchangeable classes, that deserves

discussion. This is the issue of how applications can be configured.

If an application runs on one platform at a time, developers can use configuration management

tools to build their application with the appropriate platform—dependent classes. The result is

several versions of an application, one for each platform. We call this situation a static

configuration, and do not discuss it in detail. There are several commercially available tools for

configuration management of Smalltalk applications such as Team/V and ENVY Developer.

If the application must run on multiple platforms, developers can design their application to

dynamically support the appropriate platform. In this situation, called a dynamic configuration,

the result is one version of the application that includes all platform—dependent classes.

Setting the Current Class

There are several different ways of installing the current platform—dependent class. The exact

mechanism depends on how often the environment changes. Does the current class potentially

change every time it is accessed, or does the default change less frequently?

Some classes are installed when Smalltalk is started. In Smalltalk/V for Macintosh, any object

can register for notification when Smalltalk starts with an expression like this:

SessionModel current

when: #startup

send: #setCurrent

to: PlatformInterface

The setCurrent method includes an expression to set the current class. We use the class

ServiceRegistry to identify the current platform. The method setCurrent is implemented by the

class PlatformInterface.

setCurrent
Set the current platform interface class based on the current platform.

| platformName |

platformName := ServiceRegistry globalRegistry

serviceNamed: #PlatformName

ifNone: [^self installStub].

platformName = ’Macintosh’

ifTrue: [^self current: MacPlatformInterface new].

platformName = ’OS/2’

ifTrue: [^self current: OS2PlatformInterface new].

platformName = ’Windows’

ifTrue: [^self current: WindowsPlatformInterface new]

Another strategy is to wait until a current class is requested and then determine the current class

if necessary.

current
Answer the interface used by the current platform.

Current == nil

ifTrue: [self setCurrent].

^Current

Even with this strategy, the old current class must be flushed at some appropriate time, such as

image startup, so that the current class will be installed when the class is accessed. This

expression should be executed sometime during application startup:

PlatformInterface flushCurrent

Conclusion

Developing platform independent applications means more than writing code for different

hardware platforms such as Macintosh and IBM PC’s. Different software platforms can also be

addressed with the same techniques.

Carefully consider all possibilities for extension of your application while choosing design and

implementation techniques. If you follow the approaches laid out in the article, it will be much

easier to move your application from one platform to another. There are, no doubt, other

interesting techniques that can be used to ease the task of porting between platforms. We’d like

to hear about them. Send descriptions of your own practices to juanita@digitalk.com.

