
thxplay

thxplay ii

COLLABORATORS

TITLE :

thxplay

ACTION NAME DATE SIGNATURE

WRITTEN BY May 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

thxplay iii

Contents

1 thxplay 1

1.1 thxplay.doc . 1

1.2 thxplay.library/--overview-- . 1

1.3 thxplay.library/thxFree . 3

1.4 thxplay.library/thxGetNumSongs . 3

1.5 thxplay.library/thxGetVolume . 4

1.6 thxplay.library/thxInit . 4

1.7 thxplay.library/thxNoteFX . 5

1.8 thxplay.library/thxPause . 5

1.9 thxplay.library/thxPlay . 6

1.10 thxplay.library/thxPlayNote . 6

1.11 thxplay.library/thxPlaytime . 7

1.12 thxplay.library/thxSetSong . 8

1.13 thxplay.library/thxSetVolume . 8

1.14 thxplay.library/thxSignalEnd . 9

1.15 thxplay.library/thxSongEnded . 9

1.16 thxplay.library/thxStop . 10

1.17 thxplay.library/thxStopNote . 10

1.18 thxplay.library/thxSyncByte . 11

1.19 thxplay.library/thxWind . 11

thxplay 1 / 12

Chapter 1

thxplay

1.1 thxplay.doc

--overview--
thxFree()
thxGetNumSongs()
thxGetVolume()
thxInit()
thxNoteFX()
thxPause()
thxPlay()
thxPlayNote()
thxPlaytime()
thxSetSong()
thxSetVolume()
thxSignalEnd()
thxSongEnded()
thxStop()
thxStopNote()
thxSyncByte()
thxWind()

1.2 thxplay.library/--overview--

PURPOSE
To provide an interface to the THX2 player.

OVERVIEW
THX2 is a ’chip’ music tracker by Martin Wodok (Dexter/Abyss). It
comes with a rather cumbersome binary replayer, so you may play THX2
songs in your own programs. This provides an easy and powerful
interface to the THX2 player, providing a wide range of functions.

- Allocation: thxInit(), thxFree()
- Playing: thxPlay(), thxStop(), thxPause(), thxWind()
- Volume: thxGetVolume(), thxSetVolume()
- Multisong: thxGetNumSongs(), thxSetSong()
- Sound FX: thxPlayNote(), thxStopNote(), thxNoteFX()

thxplay 2 / 12

- Misc: thxSignalEnd(), thxSongEnded(), thxSyncByte(),
thxPlaytime()

You need to read a THX song in from disk or ’incbin’ it. You should
load it into PUBLIC memory, however it does not have to be CHIP
memory.

The music play is, as you would expect, interrupt-driven, and
asynchronous. This interface automatically provides fallback support
for a VSYNC based replayer if it cannot allocate a CIA timer.

The interface is 68000 compatible, optimised versions for the 68020
and better are also included.

NOTE
This interface was initially developed as an Amiga E module. With a
little extra effort, it is also available as a runtime shared
library. Therefore, it operates a simple mechanism in thxInit() and
thxFree() to ensure only one task at any time is using the library.
See the notes of thxInit() for more information about this.

Also note that all examples are given in Amiga E code.

Synopsis is given as 3 lines: the assembler/register synopsis, the C
prototype, and the E synopsis.

EXAMPLE
More thorough examples are included with the distribution.
This is an example in Amiga E, using the E module thx-play.m.

MODULE ’tools/thx-play’, ’tools/file’
PROC main()

DEF mod
IF mod := loadfile(arg, 0, MEMF_PUBLIC)

IF thxInit(mod)=0
thxPlay()
REPEAT; WaitTOF(); UNTIL CtrlC() OR thxSongEnded()
thxStop()

thxFree()
ENDIF
freefile(mod)

ENDIF
ENDPROC

Here is the same example, but using the shared thxplay.library.
Note that Amiga E forces library functions to have capitalised
names, and that we must use OpenLibrary() and CloseLibrary().

MODULE ’thxplay’, ’tools/file’
PROC main()

DEF mod
IF thxplaybase := OpenLibrary(’thxplay.library’, 5)

IF mod := loadfile(arg, 0, MEMF_PUBLIC)
IF ThxInit(mod) = 0

ThxPlay()
REPEAT; WaitTOF(); UNTIL CtrlC() OR ThxSongEnded()

thxplay 3 / 12

ThxStop()

ThxFree()
ENDIF
freefile(mod)

ENDIF
CloseLibrary(thxplaybase)

ENDIF
ENDPROC

1.3 thxplay.library/thxFree

NAME
thxFree -- free resources held by player.

SYNOPSIS
void thxFree()

void thxFree(void);

thxFree()

FUNCTION
Stops any THX module playing and frees resources used by the player.
You can call this whether thxInit() suceeded or not.

SEE ALSO
thxInit()

1.4 thxplay.library/thxGetNumSongs

NAME
thxGetNumSongs -- get number of subsongs.

SYNOPSIS
songs = thxGetNumSongs()
D0

UWORD thxGetNumSongs(void);

songs := thxGetNumSongs()

FUNCTION
Returns the number of subsongs in the module, if any. You can use
the thxSetSong() function to play one of the subsongs, if that’s
possible.

RESULT
songs - 0 if there are no subsongs (only the main song), otherwise

returns the number of subsongs.

thxplay 4 / 12

SEE ALSO
thxSetSong()

1.5 thxplay.library/thxGetVolume

NAME
thxGetVolume -- get master volume.

SYNOPSIS
volume = thxGetVolume()

UBYTE thxGetVolume(void);

volume := thxGetVolume()

FUNCTION
Returns the current master volume value. Does not stop play.

RESULT
volume - current volume setting from 0 (silent) to 64 (loudest)

SEE ALSO
thxSetVolume()

1.6 thxplay.library/thxInit

NAME
thxInit -- initialise player and module.

SYNOPSIS
error = thxInit(module)
D0 A0

ULONG thxInit(APTR);

error := thxInit(module)

FUNCTION
Initialises the player (if needed) and initializes the module. You
may also call thxInit(NIL) to initialise the player but not the
module. Does not start to play the module until you call thxPlay().
You must call this each time you want to play a different module.
The allocations made for the player are made only the first time you
call thxInit(), no matter how many modules you want. If allocations
fail, they will be automatically freed.

INPUTS
module - pointer to a THX module or NIL

RESULT
error - zero means all went OK, any other value means failure.

thxplay 5 / 12

NOTE
In the library version of this interface, thxInit() and thxFree()
use a task ownership system - to begin with, nobody ’owns’ THX. The
first task to call thxInit() will then ’own’ THX, and successive
calls to thxInit() and thxFree() will only succeed for this task.
When this task calls thxFree(), the owner goes back to nobody, and
now other tasks are free to use THX.

This is the only arbitration used by the interface. All other calls
may be called from any task at all. Please respect this arbitration
mechanism and avoid calling other THX functions unless thxInit() has
succeeded for you. You must call thxFree() from the same task that
called thxInit().

SEE ALSO
thxFree(), thxPlay()

1.7 thxplay.library/thxNoteFX

NAME
thxNoteFX -- perform FX command on user-specified channel.

SYNOPSIS
void thxNoteFX(channel, command, parameter)

D0:2 D1:4 D2

void thxNoteFX(UBYTE, UBYTE, UBYTE);

thxNoteFX(channel, command, parameter)

FUNCTION
Performs an effect command on the particular channel. You can call
this at any time, even before you play the note, if you want the
note to start off with an initial effect. See THX Sound System’s
documentation for the full list of commands and their parameters.

INPUTS
channel - The channel affected
command - the effect command, eg $C is the Set Volume command.
parameter - the parameter to the command, eg $40 is full volume.

NOTE
No validation of the command or its parameter is done. Beware
feeding wrong or out of range values. Range for command is $0 to $F,
parameter is $00 to $FF.

SEE ALSO
thxPlayNote()

1.8 thxplay.library/thxPause

thxplay 6 / 12

NAME
thxPause -- pause play of a song.

SYNOPSIS
void thxPause()

void thxPause(void);

thxPause()

FUNCTION
Pauses the playing module. Call thxPlay() to continue play again.

SEE ALSO
thxPlay()

1.9 thxplay.library/thxPlay

NAME
thxPlay -- start playing the song.

SYNOPSIS
void thxPlay()

void thxPlay(void);

thxPlay()

FUNCTION
Starts playing the module. If the module has just been initialised
or stopped, or the subsong has just been changed, then play will
start at the beginning of the song/subsong. Otherwise, it will
continue from where it was paused.

SEE ALSO
thxStop(), thxPause()

1.10 thxplay.library/thxPlayNote

NAME
thxPlayNote -- start playing a user-specified note.

SYNOPSIS
void thxPlayNote(channel, note, instrument)

D0:2 D1 D2

void thxPlayNote(UBYTE, UBYTE, UBYTE);

thxPlayNote(channel, note, instrument)

FUNCTION

thxplay 7 / 12

Plays one of the instruments in the THX module at a particular note
on a particular channel. It is up to you to ensure that the channel
you play the note on is empty and so will not interfere with the
note being played. This function is to allow you to play your own
notes during THX play, for example as part of a game as sound
effects. The note played is subject to the same conditions as the
song itself, such as the global volume control. In addition, you can
apply ’FX’ commands to the note. In effect, what is happening when
you call thxPlayNote() is that the ’track data’ for the chosen
channel being played is overwritten (not the module itself, just the
sound output). It is overwritten on the first line by your specified
instrument with note and FX, then on consecutive lines by the
’blank’ note and instrument. This ’overwriting’ stops only when you
call thxStopNote(), or stop the module naturaly.

INPUTS
channel - The channel on which the note is played, from 0 to 3.
note - The halfnote (pitch) at which the instrument is to be

played, from 1 (C-1) to 60 (B-5).
instrument - an instrument from the song, from 1-63. You should know

which instrument you want to play!

EXAMPLE
thxPlayNote(2, 8, 12) is equivalent to this in THX Sound System’s
tracker view:

---00000 | ---00000 | G-112000 | ---00000
---00000 | ---00000 | ---00000 | ---00000
---00000 | ---00000 | ---00000 | ---00000
[...]

SEE ALSO
thxStopNote(), thxNoteFX()

1.11 thxplay.library/thxPlaytime

NAME
thxPlaytime -- get current playtime of song.

SYNOPSIS
seconds [, ticks, tickspd] = thxPlaytime()
D0 D1 D2

ULONG thxGetSyncByte(void);

seconds, ticks, tickspd := thxPlaytime()

FUNCTION
Gets the current playtime into the play of a currently playing song.

RESULT
seconds - the number of seconds elapsed since the start of the song.

it is calculated from the following two results
ticks - number of internal clock ticks.
tickspd - the speed of internal clock ticks in Hz.

thxplay 8 / 12

BUGS
Will wrap at 65536 seconds. Also, due to a bug in the replayer,
will wrap at 65536 _ticks_ first. This will hopefully be fixed,
but the seconds limit probably will not be.

NOTE
Most C compilers will be unable to get the ticks and tickspd
results. Too bad. They’re not that important.

1.12 thxplay.library/thxSetSong

NAME
thxSetSong -- set song to be played.

SYNOPSIS
thxSetSong(song)

D0

void thxSetSong(UWORD);

thxSetSong(song)

FUNCTION
Sets which song to play, if a module contains more than one song.
Most modules only contain one song, but some modules contain
sub-songs as well as the main one. You can use this function to
specify which one should be played. If you call this function and
there is already a song playing, it will be stopped first.

INPUTS
song - 0 to set the main song to be played, any other number will

change to that subsong, if it exists. Otherwise, no change
will be made (other than the stoppage).

NOTE
It is up to you to start playing the module again.

SEE ALSO
thxGetNumSongs()

1.13 thxplay.library/thxSetVolume

NAME
thxSetVolume -- set master volume.

SYNOPSIS
void thxSetVolume(volume)

D0

void thxSetVolume(UBYTE);

thxplay 9 / 12

thxSetVolume(volume)

FUNCTION
Sets the master volume. Does not stop play.

INPUTS
volume - from 0 (silent) to 64 (loudest)

NOTE
This function can take up to two frames to take an audible effect.
If the song is paused, will not take effect until unpaused.

SEE ALSO
thxGetVolume()

1.14 thxplay.library/thxSignalEnd

NAME
thxSignalEnd -- Signal() when song ends.

SYNOPSIS
thxSignalEnd(task, signalset)

A0 D0

void thxSignalEnd(struct Task *, ULONG);

thxSignalEnd(task, signalset)

FUNCTION
Asks THX to send the signalset to the specified task when the song
ends. If songend occurs and the signal is sent, it will not be sent
again unless you call thxSignalEnd() again to reload the trigger.
The signal will also be cancelled if you call thxStop() directly, or
indirectly through thxSetSong() or thxFree().

NOTE
The detection of songend is crap (sorry Dexter :^)

INPUTS
task - pointer to a task or process structure, simply use

FindTask(NIL) to send to yourself.
signalset - a 32bit set of signals, to be sent to task when songend

occurs.

EXAMPLE
thxSignalEnd(FindTask(NIL), SIGBREAKF_CTRL_C) will send you a CTRL-C
when the song ends.

SEE ALSO
thxSongEnded(), exec.library/Signal()

1.15 thxplay.library/thxSongEnded

thxplay 10 / 12

thxSongEnded -- detect if song has ended.

SYNOPSIS
songended = thxSongEnded()
D0

BOOL thxSongEnded(void);

songended := thxSongEnded()

FUNCTION
Returns nonzero value if the player has detected the end of a song
and is now looping.

NOTE
The detection of songend is crap (sorry Dexter :^)

RESULT
songended - nonzero if song is now looping, zero otherwise.

SEE ALSO
thxSignalEnd()

1.16 thxplay.library/thxStop

NAME
thxStop -- stop playing a song/module.

SYNOPSIS
void thxStop()

void thxStop(void);

thxStop()

FUNCTION
Stops the module. Can be restarted from the beginning again with
thxPlay().

SEE ALSO
thxPlay(), thxFree()

1.17 thxplay.library/thxStopNote

NAME
thxStopNote -- stop playing user-specified note.

SYNOPSIS
void thxStopNote(channel)

D0:2

thxplay 11 / 12

void thxStopNote(UBYTE);

thxStopNote(channel)

FUNCTION
Stops anything you started with thxPlayNote(). Please be aware that
notes which don’t fade away on their own will first need to be
silenced with thxNoteFX($C, $00), or such

SEE ALSO
thxPlayNote()

1.18 thxplay.library/thxSyncByte

NAME
thxSyncByte -- get sync byte value.

SYNOPSIS
syncvalue = thxGetSyncByte()
D0

UBYTE thxGetSyncByte(void);

syncvalue := thxGetSyncByte()

FUNCTION
Gets the current setting of the ’external timing’ byte, which can be
set to any byte value at any moment in time during play of the song
BY the song itself, using the ’8’ command in the tracker. This
function is here to allow you to mark specific events in the music
with the ’8’ command and a value, then wait until calling
thxSyncByte() returns that value. The returned value doesn’t change
until another ’8’ command in the song changes it.

NOTE
Be very careful not to busy-wait on a new value if there is the
possibility the song is paused or not playing.

RESULT
syncvalue - current value of the sync byte.

1.19 thxplay.library/thxWind

NAME
thxWind -- wind the song forward or back.

SYNOPSIS
void thxWind(direction)

D0

void thxWind(UBYTE);

thxplay 12 / 12

thxWind(direction)

FUNCTION
Advances forward or backwards through the song by a specified number
of positions. Please use the value 1 to skip forward and -1 to skip
back, for future compatibility.

INPUTS
direction - if 1, winds on to the next position.

if -1, winds back to the previous position,
if 0, ignored.

NOTE
Be wary of stepping beyond the end of a song. Also note this
function only takes effect only once a frame.

	thxplay
	thxplay.doc
	thxplay.library/--overview--
	thxplay.library/thxFree
	thxplay.library/thxGetNumSongs
	thxplay.library/thxGetVolume
	thxplay.library/thxInit
	thxplay.library/thxNoteFX
	thxplay.library/thxPause
	thxplay.library/thxPlay
	thxplay.library/thxPlayNote
	thxplay.library/thxPlaytime
	thxplay.library/thxSetSong
	thxplay.library/thxSetVolume
	thxplay.library/thxSignalEnd
	thxplay.library/thxSongEnded
	thxplay.library/thxStop
	thxplay.library/thxStopNote
	thxplay.library/thxSyncByte
	thxplay.library/thxWind

