
IndeoTM Video's Palette under Video for WindowsTM

A popular frog likes to sing "It's not easy being green". If the frog knew anything about 256-color palettes, he
would be tempted to sing "It's not easy staying green". This article talks about the good and bad attributes of
palettes and shows how to avoid some potentially ugly attributes. It shows how to adjust Indeo video clips to
make them look good with an application's palette. Or, if so desired, it shows how to adjust an application's
palette to make it look good with Indeo video clips. All of this is done to make sure the reds stay red, the blues
stay blue, and as far as frogs are concerned, the greens stay green.

Background on Palettes

A palette refers to the current set of 256 colors used by a graphics card when the card is in 8-bit color mode.
Although, only one palette is active at a time, it is possible to change palettes. When an application's window
comes to the foreground, its palette is asserted.

Palettes are maintained in a Color Lookup Table (CLUT). Each entry of the table represents a color. Although
256 colors are allowed, when a new palette is created, it usually specifies no more than 236 colors. The first 10
and last 10 entries are reserved by the system. This prevents system colors from being disrupted when
palettes are switched.

Indeo Video's Fixed Palette

Indeo video has always used a native fixed palette. The Indeo video palette contains the same 236 colors
regardless of the video content. It was designed to produce good results across a broad range of image types
and is optimized for the fastest possible playback in 8-bit color mode.

Using a fixed palette does have limitations. When a video clip is played, its palette comes to the foreground.
Microsoft Windows* applies the foreground palette to the entire screen. Palette flash occurs at this time if the
video's palette differs from the background palettes. The background images flash as Windows does a "best
match" of the foreground colors to the background colors.

With Indeo video's fixed palette, background windows can avoid palette flash only if one of the following work
arounds is used:

1. The backgrounds only use the 20 system colors.
2. The backgrounds only use Indeo video's fixed palette colors.
3. The backgrounds that use a different palette are not displayed at the same time as Indeo video clips.

Another limitation of a fixed palette is the static colors within the palette. The fixed palette may not provide the
best mix of colors for an application. This can be especially noticeable if highly saturated colors are used.
These limitations can be minimized if an application has the ability to select a single palette designed to
produce a good video image with a specific background image.

Active Palette Support

The term "Active Palette" refers to the ability within Video for Windows to use an external palette. VfW 1.1d
contains an updated Indeo video R3.2 driver that is capable of activating an external palette. When an Indeo
video clip is played, an external palette can be activated rather than the internal fixed palette. Intel has always
recommended using Indeo video's fixed palette throughout an application to avoid palette flash. This is still a
good idea, whenever possible. But now, with active palette support, a custom palette can be created that
closely matches the colors used by an application without worrying about palette flash. When a video clip and
its background images use the same custom palette, no palette flash occurs.

Video for Windows has always been able to assert an external palette. Before active palette was implemented,
Windows would dither the video image after Indeo video dithered the image. This resulted in poor playback
performance and poor color quality. To solve this problem, Microsoft introduced active palette support in Video
for Windows (VfW) 1.1d. With active palette support, the video image is only dithered by Indeo video.

Limitations of Active Palette

Active palette support does have the following drawbacks:

1. Playback performance is slightly degraded.
2. Initialization time is longer.
3. Uses more system memory. 160x120 clips use 64K bytes more memory. 240x180 and 320x240 clips use

128K bytes more memory.

Activating a Palette

Active palette is usually implemented at the Media Control Interface (MCI) level using the SETVIDEO
command. The MCI REALIZE command can also be used but only for activating a background palette. MCI
commands are documented in the Video for Windows Developer's Kit. The following line gives the SETVIDEO
syntax for activating an external palette.

SETVIDEO <alias> PALETTE HANDLE TO <palette-handle>

The alias is a name that can be given a clip when it is opened. The palette handle points to the external
palette.

Active palette can be implemented at a lower programming level using the DrawDibSetPalette() function call.
However, a lot more coding is needed at this level.

It is also possible to activate a palette without entering any MCI commands. Indeo video clips will use whatever
palette is forced to the foreground. Normally, a video clip stays in the foreground while it is playing. However, if
another window is forced to the foreground while an Indeo video clip is playing, the clip will automatically switch
to the foreground window's palette.

This last method can be tested using Media Player. Open up an Indeo video clip with Media Player. Start the
clip playing and use the mouse to click on another window that uses a different palette. This brings the other
window to the foreground along with its palette. The Indeo video clip will switch over to the new foreground
palette and continue playing. The other window can contain any type of image that has its own palette, such as
a bitmap or even another video clip.

MCITest Example

Provided below is a sequence of MCI command strings that implement active palette support. One way to test
these commands is by using the MCITest utility provided as a sample with Microsoft Visual C++*. MCITest puts
up a dialog box that allows MCI command strings to be entered and executed.

The Indeo video clip in this example is called indeo.avi. Rather than using it's internal fixed palette, the
indeo.avi clip is forced to use an external palette that is stored in another AVI file called gray.avi. The gray.avi
file is used to supply the external palette because MCI does not support opening .pal palette files. Gray.avi is a
Microsoft Video 1 clip. It is included with this document. The indeo.avi file is not include with this article. Any
Indeo video R3.2 clip may be used instead.

 open gray.avi alias pal
 status pal palette handle
 open indeo.avi alias movie
 setvideo movie palette handle to XXXX
 window movie state show
 play movie
 close movie
 close pal

Gray.avi contains one video frame and a 236 color palette. Each entry of its palette is a different shade of gray.
The XXXX parameter used by the SETVIDEO command represents the integer handle returned earlier by the

STATUS command. If the external palette is very similar to Indeo video's native palette, it can be difficult to see
if the external palette is really being used. The gray palette in this example makes it easy to detect when that
palette is active. Some colors may still show up in the video because the 20 system colors are still available.

It is important to note the SETVIDEO command must be executed before the WINDOW command. Otherwise,
the external palette is not activated properly. The following sequence of commands does not work:

 window movie state show
 setvideo movie palette handle to XXXX
 play movie

Microsoft's Media Player is also able to execute MCI commands. Typing CTRL-F5 after a clip has been opened
brings up a dialog box for entering MCI commands. Unfortunately, Media Player can not be used to test the
SETVIDEO command. When Media Player opens an AVI file, it immediately shows the clip before the
SETVIDEO command can be entered.

Implementing Active Palette

MCI commands are typically executed within a program. The following lines of code show how to execute the
SETVIDEO command from within a Microsoft Visual C++ program.

 HPALETTE hpal; // palette handle
 wsprintf(achCommand, "setvideo clip palette handle to %d", hpal);
 mciSendString((LPSTR((achCommand, NULL, 0, NULL);

Two longer examples are provided at the end of this article. Both examples use source code from the Video for
Windows Developer's Kit. They are based on the MOVPLAY2 movie player sample. The first example
modifies movplay2.c to allocate a palette and activate it when playing an Indeo video clip. The second example
plays clips using an external palette stored on Window's Clipboard. The executable for the second example is
provided with this article. It was renamed to palplay.exe.

Tips on Creating an External Palette

Here are some tips on how to create a proper external palette:

1. Create a palette with 236 entries. A palette with more than 236 entries will just get truncated after the 236th
entry. It is alright to create a palette with less than 236 entries. However, Windows will automatically fill in
the missing entries with colors from Indeo video's fixed palette.

2. Don't bother including system palette entries with a 236 color palette. They get asserted automatically.
Any duplicates of the system palette entries are dropped. At the end of this article is a chart listing the RGB
values of the system palette entries.

3. Avoid duplicate entries with the same RGB value. For example, a palette that has 200 entries with the
same RBG value, will end up with only one entry of that value. The other 199 entries will be automatically
filled with colors from Indeo video's fixed palette.

4. Minimize or close Microsoft's PalEdit before asserting an external palette. External palettes are asserted
incorrectly if PalEdit is maximized at the same time. Microsoft used to supply PalEdit with Video for
Windows 1.0. Asymetrix now includes PalEdit with their Toolbook* application.

5. Display the current foreground palette during development. By looking at the current foreground palette, it
is easy to verify when the correct palette is asserted. Microsoft supplies sample code with Visual C++ for a
palette utility called palette.exe. The only thing this utility really does is display the current foreground
palette. The previous tips were learned by looking at the foreground palette after an external palette was
asserted. Palette.exe is included with this document.

Grabbing Indeo video's fixed palette

Since an external palettes is normally only activated by an MCI command, some applications can not use this
feature. Using Indeo video's fixed palette throughout an application is still a good option. There are a couple of
steps that need to be followed to properly grab Indeo video's fixed palette. Since the palette resides in the

codec, the Indeo video driver has to be loaded before the palette can be obtained. The following steps use
Microsoft's Media Player and PalEdit utility to grab the palette, edit it, and then save it to a .pal palette file.

1. Put a video frame onto Window's Clipboard.

Open an Indeo video clip with Microsoft's Media Player and copy a frame using the Edit/Copy Object menu
command. This puts the current video frame on the Clipboard along with its palette. A palette with 256 entries
is copied to the Clipboard. This is Indeo video's fixed palette plus the system entries. The Indeo video palette
is preceded by the first 10 system color colors and followed by the last 10 system colors.

Do not use Microsoft's VidEdit to put a video frame on the Clipboard. VidEdit forces the system palette onto a
video clip while it is stopped.

2. Paste the palette into PalEdit.

Use the menu item Edit/Paste to bring the palette into PalEdit.

3. Edit the palette and save it.

The fixed palette does not appear to paste correctly into PalEdit. By looking at the current foreground palette
with the palette.exe file, it can be seen that the first 10 system entries are duplicated. This problem can be
cleaned up by deleting the last 10 entries of the palette and then deleting the first 10 entries. A proper 236
entry palette, containing Indeo video's fixed palette, can then be saved.

Note: The video graphics card needs to be in 256 color mode for this procedure to work properly.

It is not possible to see the duplicate palette entries in step 3 unless the palette.exe utility is used. The Indeo
video palette always begins with two gray entries and ends with two more gray entries. After the palette is
edited, PalEdit shows the Indeo video palette using the first 236 entries.

Once the Indeo video palette has been saved, it can be used by other images within an application, such as
bitmaps. Microsoft's BitEdit utility is capable of switching the palette used by a bitmap. Included with this article
is a file called indeo.pal. It contains Indeo video's fixed 236 color palette.

Conclusion

There are now two ways to avoid palette flash within an application. Use
Indeo video's fixed palette throughout an application or activate an external
palette. Indeo video's fixed palette has the benefit of optimum performance.
Active palette allows a custom palette to be used with colors that closely
match an application's content.

Example #1 - Allocate and Activate an External Gray Palette

This example adds code to the movplay2.c file that comes with the Video for Windows 1.1 Developer's Kit. This
application shows how to allocate and initialize an external gray palette prior to activating it.

// hpal is the palette that will be asserted. It is initialized
// to 236 gray colors in a new function called initPalette().
// hpal is later asserted in fileOpenMovie().

HPALETTE hpal; // new global variable

// initPalette - creates the desired palette for the movie clip

void initPalette() // new function
{
 LOGPALETTE *plgpl;
 int i;
 HANDLE hDC;

 // Allocate the logical palette.
 plgpl = (LOGPALETTE*) LocalAlloc(LPTR,
 sizeof(LOGPALETTE) + 236 * sizeof(PALETTEENTRY));
 plgpl->palVersion = 0x300;
 plgpl->palNumEntries = 236;

 // set each entry to gray color values
 for (i = 0; i < 236; ++i){
 plgpl->palPalEntry[i].peRed = i + 10;
 plgpl->palPalEntry[i].peGreen = i + 10;
 plgpl->palPalEntry[i].peBlue = i + 10;
 plgpl->palPalEntry[i].peFlags = PC_NOCOLLAPSE;
 }

 // Create the palette object and get a handle to it.
 hpal = CreatePalette(plgpl);
 LocalFree((HLOCAL) plgpl);
}
...

void fileOpenMovie(HWND hWnd)
{
 ...
 wsprintf((LPSTR)achCommand,"open %s alias mov style child parent %d",
 ofn.lpstrFile,hWnd);

 /* try to open the file */
 if (mciSendString((LPSTR)achCommand, NULL, 0, NULL) == 0){
 fMovieOpen = TRUE;

 //****** begin new code

 initPalette();
 wsprintf(achCommand, "setvideo mov palette handle to %d", hpal);
 if (mciSendString((LPSTR)achCommand, NULL, 0, NULL) != 0){
 MessageBox(hWnd, "Unable to set palette handle", NULL,
 MB_ICONEXCLAMATION|MB_OK); }

 //****** end new code

 /* we opened the file o.k., now set up to */
 /* play it. */
 mciSendString("window mov state show", NULL, 0, NULL);
 ...
}

Example #2 - Activate Palette on Window's Clipboard

This example adds a few lines of code to the movplay2.c file that comes with the Video for Windows
Developer's Kit. Rather than allocate and initialize a palette as in the first example, this example gets a handle
to an external palette on Window's Clipboard. It uses the Clipboard palette as the active palette. The
executable for this file is supplied with this article. It was renamed to palplay.exe.

A quick way to test palplay.exe is by using the gray palette supplied with this article. Open up gray.avi with
Media Player. Use Edit/Copy Object to put the palette on the Clipboard. Any Indeo video clips that are then
played using palplay.exe will use the gray palette.

...
void fileOpenMovie(HWND hWnd)
{
 HPALETTE hClip_palette; // add this new variable

 ...
 wsprintf((LPSTR)achCommand,"open %s alias mov style child parent %d",
 ofn.lpstrFile,hWnd);

 /* try to open the file */
 if (mciSendString((LPSTR)achCommand, NULL, 0, NULL) == 0){
 fMovieOpen = TRUE;

 //**** begin new code

 // get palette from Clipboard
 if (OpenClipboard(hWnd)){
 if (hClip_palette = GetClipboardData(CF_PALETTE)){
 wsprintf((LPSTR)achCommand,"setvideo mov palette handle to %d",
 hClip_palette);
 mciSendString((LPSTR)achCommand, NULL, 0, NULL);
 }
 CloseClipboard();
 }

 //**** end new code

 /* we opened the file o.k., now set up to */
 /* play it. */
 mciSendString("window mov state show", NULL, 0, NULL);
 ...

System Palette Entries

The following chart shows the RGB entries for a 256 color palette. The
first 10 and last 10 entries are defined by the system. If the middle 236
entries belong to Indeo video's fixed palette, it begins and ends with 2
gray color entries.

Entry Red Green Blue Color
----- --- ----- ---- -----
0 0 0 0 black \
1 0x80 0 0 dark red |
2 0 0x80 0 dark green |
3 0x80 0x80 0 dark yellow |
4 0 0 0x80 dark blue | First 10 System colors
5 0x80 0 0x80 dark magenta |
6 0 0x80 0x80 dark cyan |
7 0xC0 0xC0 0xC0 light gray |
8 0xC0 0xDC 0xC0 green |
9 0xA6 0xCA 0xF0 sky blue /

10 0x81 0x81 0x81 gray \
11 0x81 0x81 0x82 gray |
... | Indeo video's fixed palette
244 0x81 0x81 0x83 gray |
245 0x81 0x81 0x84 gray /

246 0xFF 0xFB 0xF0 offwhite \
247 0xA0 0xA0 0xA4 light gray |
248 0x80 0x80 0x80 medium gray |
249 0xFF 0 0 bright red |
250 0 0xFF 0 bright green | Last 10 system colors
251 0xFF 0xFF 0 yellow |
252 0 0 0xFF bright blue |
253 0xFF 0 0xFF magenta |
254 0 0xFF 0xFF cyan |
255 0xFF 0xFF 0xFF white /

__
* Other brands and names are the property of their respective owners.

