
Microsoft ODBC Interface

Application Programmer's Guide

Microsoft ODBC Application Programmer's Guide 4/29/2025

Contents 3

Contents

µ
Introduction ..7

Audience ..7
Document Conventions...8
Where to Find Additional Information...8

1 ODBC Theory of Operation..9
ODBC Components...10

Application..11
Driver Manager...11
Driver ..11
Data Source...12

Types of Drivers..12
Single-Tier Configuration...12
Multiple-Tier Configuration...13
Network Example...14

Matching an Application to a Driver..15
ODBC Function Call Support..15
SQL Statement Support..15
How to Select a Set of Functionality...16
Connections and Transactions..16

2 A Short History of SQL...17
SQL Background Information..17
ANSI 1989 Standard...17

Embedded SQL...17
Future ANSI Specifications..18

Dynamic SQL...18
Call Level Interface...19

Interoperability..19

3 Guidelines for Calling ODBC Functions..21
Calling ODBC Functions..21

General Information..21
Variable Length Data in Function Arguments..21
Environment, Connection, and Statement Handles.................................22

Submitting SQL Statements..23
Data Type Support..23

Handling Results..24
Handling Errors...24
Processing Result Sets..25

 ODBC Theory of Operation

4 Basic Application Steps...27
Additional Information..28

Chapter 1 ODBC Theory of Operation 5

Introduction 5

5 Establishing Connections..29
Using the Driver Manager...29
Initializing the ODBC Environment...29
Establishing a Connection to a Data Source..29
Accessing ODBC Functions...30
Extensions for Establishing Connections...30

SQLDriverConnect...31

6 Preparing and Executing an SQL Statement..33
Allocating a Statement Handle...34
Assigning Storage for Results (Binding)...34
Choosing Prepared or Direct Execution...34

Prepared Execution...34
Direct Execution...35

Processing Positioned Updates and Deletes...35
Example ..36

Extensions for Processing SQL Statements...37
Obtaining Information about the Data...37
Sending Large Data Values..38
Specifying Arrays of Parameter Values...38
Using Scrollable Cursors..39

Basic Cursors..39
Scrollable Cursors..39

Requesting Asynchronous Processing...40
Using Extended Data Types, Functions, and Outer Joins.......................40
Date and Time Data Types...41
Scalar Functions..42

Data Type Conversion Function..42
Requesting Outer Joins...43

7 Retrieving Results..45
Determining Characteristics of a Result Set..45
Fetching Result Data...45
Retrieving Error and Status Information..46
Related Extension Functions...47

Retrieving Data in Large Columns..47
Processing Multiple Result Sets...47
Processing Blocks of Results..48

8 Terminating Transactions and Connections...49
Terminating Statement Processing...49
Terminating Transactions...49
Terminating Connections..49

9 Constructing an ODBC Application...51
Developer's Kit Contents..51

 ODBC Theory of Operation

System Requirements..52
Hardware Requirements...52
Software Requirements...52
Environmental Requirements...52

Installing the Developer's Kit...53
Constructing an ODBC Environment...57

Data Source Specification..57
Default Data Source Specification...58
Sample Data Source Specifications...58
ODBC Data Source List...59
How ODBC Functions Use the ODBC.INI File.....................................59

SQLConnect...59
SQLDataSources..60
SQLDriverConnect...60

The ODBC SETUP Routine...60
Sample Application Code...61

Static SQL Example..61
Interactive Ad-Hoc Query Example..64

Testing and Debugging an Application..67
Support ..67

Appendix A SQL Grammar...69
Elements Used in SQL Statements...73
List of Reserved Keywords...79

Index ..83

Chapter 1 ODBC Theory of Operation 7

Introduction 7

 9

Introduction

The ODBC (Open Database Connectivity) interface is a C programming language interface for
database connectivity. The ODBC Application Programmer's Guide is designed to address the
following three questions:

n What is the ODBC interface?

n What features does the interface offer?

n How do applications use the interface?

s6
The guide is organized into the following chapters:

n Chapter 1, “ODBC Theory of Operation,” provides conceptual information
about the ODBC interface.

n Chapter 2, “A Short History of SQL,” contains a brief history of SQL.

n Chapters 3 through 8 describe how and when to call ODBC functions.

n Chapter 9, “Constructing an ODBC Application,” lists developer's kit contents,
describes how to build an application, and includes sample code.

s6
Appendix A contains SQL syntax information.

For information about the syntax and semantics of each ODBC function, refer to
the ODBC API Reference. For information about driver development, refer to the
ODBC Driver Developer's Guide.

s11

Audience
The ODBC software development kit is available for use with the C language in a
Windows environment. Use of the ODBC interface spans four areas of knowledge:
SQL statements, ODBC function calls, C programming, and Windows
programming. This manual assumes the following expertise:

n Working knowledge of the C programming language.

n General database knowledge and a familiarity with SQL.

s11

 A Short History of SQL

Document Conventions
This manual uses the following typographic conventions.

Format Used for

 §WIN.INI Names of applications, programs, and other files.

RETCODE SQLFetch (hDBC) Sample command lines and program code.

argument Information that you or the application must
provide, or word emphasis.

SQLTransact Syntax that must be typed exactly as shown,
including function names.

[] Optional items or, if in bold text, brackets that must
be included in the text string.

| Separates two mutually exclusive choices in a
syntax line.

{} Delimits mutually exclusive choices in a syntax
line.

... Arguments that can be repeated several times.

s11

Where to Find Additional Information
XE "SQL:references for additional information"§For more information about
driver development, refer to the ODBC Driver Developer's Guide, included in the
ODBC Developer's Kit.

For more information about SQL, the following standards are available:

n Database Language - SQL with Integrity Enhancement, ANSI, 1989 ANSI

Chapter 2 A Short History of SQL 11

X3.135-1989.

n X/Open and SQL Access Group SQL CAE draft specification (1991).

n Database Language SQL: ANSI X3H2 and ISO/IEC JTC1,SC21,WG3 (draft
international standard).

s6
In addition to standards and vendor-specific SQL guides, there are many books
that describe SQL, including:

n Date, C. J.: A Guide to the SQL Standard (Addison-Wesley, 1989).

n Emerson, Sandra L., Darnovsky, Marcy, and Bowman, Judith S.: The Practical
SQL Handbook (Addison-Wesley, 1989).

n Groff, James R. and Weinberg, Paul N.: Using SQL (Osborne McGraw-Hill,
1990).

n Gruber, Martin: Understanding SQL (Sybex, 1990).

n Hursch, Jack L. and Carolyn J.: SQL, The Structured Query Language (TAB
Books, 1988).

n Pascal, Fabian: SQL and Relational Basics (M & T Books, 1990).

n Trimble, J. Harvey, Jr. and Chappell, David: A Visual Introduction to SQL
(Wiley, 1989).

n Van der Lans, Rick F.: Introduction to SQL (Addison-Wesley, 1988).

n Vang, Soren: SQL and Relational Databases (Microtrend Books, 1990).

n Viescas, John: Quick Reference Guide to SQL (Microsoft Corp., 1989).

 Guidelines for Calling ODBC Functions

1 ODBC Theory of Operation

XE "ODBC"§The Open Database Connectivity (ODBC) interface allows
applications to access data from database management systems (DBMS).

XE "Interoperability"§The interface permits maximum interoperability—a single
application can access diverse database management systems. You can develop,
compile, and ship an application without targetting a specific DBMS. Users can
then add modules called database drivers that link your application to their choice
of database management systems.

The ODBC interface defines the following:

n A library of ODBC function calls that allow an application to connect to a
DBMS, execute SQL statements, and retrieve results.

n SQL syntax. The syntax is based on the X/Open and SQL Access Group SQL
CAE draft specification (1991).. To send an SQL statement, you include the
statement as an argument in an ODBC function call. You need not customize
the statement for a specific DBMS.

Appendix A, "SQL Grammar," contains a SQL syntax based on the X/Open
and SQL Access Group SQL CAE draft specification (1991). To ensure
maximum interoperability, ODBC applications are encouraged to use only the
SQL syntax defined in Appendix A.

n A standardized set of error codes.

n A standard way to connect and log on to a DBMS.

n A standardized representation for data types.

s6
The interface is flexible:

n You can construct SQL statements at compile time or at run time.

n You can use the same object code to access different DBMS products.

n You can connect to multiple instances of DBMS products.

n Your application can ignore underlying data communications protocols
between your application and a DBMS product.

n You can send and retrieve data values in a format convenient to the application.

s6
XE "ODBC:function call types"§The ODBC interface provides two types of
function calls:

n Core functions based on the X/Open and SQL Access Group Call Level
Interface specification.

Chapter 3 Guidelines for Calling ODBC Functions 14

n Extended functions support additional functionality, including scrollable
cursors and asynchronous processing.

s6
An application can check for availability of functions at run-time.

The following code fragment shows one way to use the ODBC interface to submit
an SQL CREATE TABLE statement:
UCHAR sqltext[] ="CREATE TABLE NAMEID (ID integer, NAME varchar(50))";
if(SQLExecDirect(hstmt, sqltext, SQL_NTS) !=SUCCESS)
return(print_err(hDBC,hstmt));

s11
Note that an application could obtain the value of sqltext from a dialog box at run
time.

The following sections describe the ODBC architecture in more detail.

s11

ODBC Components
The following paragraphs describe components within the ODBC architecture.
This information is provided for reference purposes; the boundaries between the
three underlying components are transparent to an application.

XE "ODBC:components"§The ODBC architecture has four components:

n Application Performs processing, possibly on behalf of a user, and calls ODBC
functions to submit SQL statements and retrieve results.

n Driver Manager Loads drivers on behalf of an application.

n Driver Processes ODBC function calls, submits SQL requests to a specific data
source, and returns results to the application. If necessary, the driver modifies
an application's request so that the request conforms to syntax supported by the
associated DBMS.

n Data source Consists of the data the user wants to access and its associated
operating system, DBMS, and network platform (if any) used to access the
DBMS.

s6
The Driver Manager and driver appear to an application as one unit that processes
ODBC function calls. The following diagram shows the relationship between the
four components. The following paragraphs describe each component in more
detail.

s6

 15

s11
s6

 Basic Application Steps

Application
XE "Application"§An application that uses the ODBC interface performs the
following tasks:

n Requests a connection, or session, with a data source.

n Sends SQL requests to the data source.

n Defines storage areas and data formats for the results of SQL requests.

n Requests results.

n Processes errors.

n Reports results back to a user, if necessary.

n Requests commit or rollback operations for transaction control.

n Terminates the connection to the data source.

An application can provide a variety of features external to the ODBC interface,
including spreadsheet capabilities, online transaction processing, and report
generation; the application may or may not interact with users.

s6

Driver Manager
XE "Driver Manager"§The Driver Manager, provided by Microsoft, is a
dynamically-linked library (DLL) with an import library. The primary purpose of
the Driver Manager is to load drivers. (The following section describes drivers.) In
addition to loading drivers, the Driver Manager performs the following:

n Uses the ODBC.INI file to map a data source name to a specific driver
dynamically-linked library (DLL).

n Processes several initialization-oriented ODBC calls.

n Provides entry points to ODBC functions for each driver.

n Provides parameter validation and sequence validation for ODBC calls.

s6

Driver
XE "Driver"§A driver is a DLL that implements ODBC function calls and
interacts with a data source

A driver is loaded by the Driver Manager when the application calls the
SQLConnect or SQLDriverConnect function.

A driver performs the following tasks in response to ODBC function calls from an
application:

n Establishes a connection to a data source.

Chapter 4 Basic Application Steps 17

n Submits requests to the data source.

n Translates data to or from other formats, if requested by the application.

n Returns results to the application.

n Formats errors into standard error codes and returns them to the application.

n Declares and manipulates cursors if necessary. (This operation is invisible to
the application unless you request access to a cursor name.)

n Initiates transactions if the data source requires explicit transaction initiation.
(This operation is invisible to the application.)

s6

Data Source
XE "Database environment"§This manual refers to the general features and
functionality provided by an SQL database management system as a DBMS. The
manual refers to a specific instance of a combination of a DBMS product, remote
operating system, and network as a data source.
An application establishes a connection with a particular vendor's DBMS product
on a particular operating system, accessible by a particular network. For example,
the application might establish connections to:

n An Oracle DBMS running on an OS2 operating system, accessed by Novell
netware.

n A local xBase file, in which case the network and remote operating system are
not part of the communication path.

n A Tandem NonStop SQL DBMS running on the Guardian 90 operating system,
accessed via a gateway.

s11

Types of Drivers
XE "Driver:types"§ODBC defines two types of drivers:

n Single-tier The driver processes both ODBC calls and SQL statements. (In this
case, the driver performs part of the data source functionality.)

n Multiple-tier The driver processes ODBC calls and passes SQL statements to
the data source.

s6
One system can contain both types of configurations.

The following paragraphs describe single-tier and multiple-tier configurations in
more detail.

s6

 Basic Application Steps

Single-Tier Configuration
XE "Configuration:single-tier"§In a single-tier implementation, the database is a
file and is processed directly by the driver. The driver processes SQL statements
and retrieves information from the database. One example of a single-tier
implementation is a driver that manipulates an xBase file.

The set of SQL statements that you can submit may be limited by a single-tier
driver. The minimum set of SQL statements that must be supported by a single-tier
driver is defined in Appendix A, "SQL Grammar."

The following diagram shows two types of single-tier configurations.

s6

s11

Multiple-Tier Configuration
XE "Configuration:multiple-tier"§In a multiple-tier configuration, the driver sends
SQL requests to a server that processes SQL requests.

The application, driver, and Driver Manager reside on one system, typically called
the client. The database and the software that controls access to the database
typically reside on another system, typically called the server.

One type of multiple-tier configuration is a gateway architecture where the driver
passes SQL requests to a gateway process. The gateway process sends the requests
to the data source.

The following diagram shows three types of multiple-tier configurations. From the
perspective of an application, all three configurations are identical.

s6

s11

Chapter 4 Basic Application Steps 19

Network Example
The following diagram shows how each of the preceding configurations could
appear in a single network. The diagram includes examples of the types of DBMS
that could reside in a network.

s6
 Applications can also communicate across wide-area networks:

s11

 Basic Application Steps

Matching an Application to a Driver
XE "ODBC:functionality sets"§One of the strengths of the ODBC interface is
interoperability: you can create your ODBC application without targeting a
specific data source. Users can add drivers to your application after you compile
and ship the application.

From an application standpoint, it would be easiest if every driver and data source
supported the same set of ODBC function calls and SQL statements. However,
drivers and associated data sources provide a varying range of functionality.
Therefore, the ODBC interface defines conformance levels, which determine the
functions and SQL statements supported by a driver.

s6

ODBC Function Call Support
Each ODBC driver supports a set of core ODBC functions and, optionally, one or
more extended functions or data types, defined as extensions:

n Core functions and data types are based on the X/Open and SQL Access Group
Call Level Interface specification. If a driver supports all core functions, it is
said to conform to X/Open and SQL Access Group core functionality. If any
core functions are not supported, the driver does not conform to X/Open and
SQL Access Group core functionality. The specific set of core data types
supported by a driver depends upon the set of data types supported by the data
source.

n Extension functions and data types support additional features, including date,
time, and datetime data type literals, scrollable cursors, retrieval of data
dictionary information, and asynchronous execution of function calls. Extended
functions may not be supported by a specific driver. The SQLGetFunctions
function returns information about supported functions. SQLGetFunctions is
always available to applications.

Extended functions are divided into two conformance levels, Level 1 and Level
2, each of which is a superset of the core functions.

For a list of functions and their conformance levels, refer to the ODBC API
Reference, Chapter 1, "ODBC Function Summary."

 §
Each function description in this manual indicates whether the function is a

core function or a level 1 or level 2 extension.

 §

s11

SQL Statement Support
Each ODBC driver supports one of two sets of SQL statements:

Note

Chapter 4 Basic Application Steps 21

n The Minimum set is a set of SQL statements that can be implemented by
single-tier drivers.

n The Core set is based on the X/Open and SQL Access Group SQL draft CAE
specification (1991).

In addition to the core and minimum sets, ODBC defines SQL syntax for data
literals, outer joins, and SQL scalar functions. For more information about SQL
statement sets, refer to Appendix A, "SQL Grammar."

The grammar listed in Appendix A is not intended to restrict the set of statements
that can be supported. A driver can support additional syntax that is unique to the
associated data source.

 Basic Application Steps

How to Select a Set of Functionality
The decision to use a set of functionality depends on:

n The set of features you want to access from your application, including features
that may not be available from all data sources.

n How much interoperability you would like to provide.

n How much conditional code you want to include to determine whether a
function or data type is supported by the driver.

n Performance requirements. The choice of performance options increases from
the minimum to the extended set, depending on data source support.

s6
To communicate with a specific driver and data source, select the appropriate
functionality set for the driver. If you want additional interoperability, the
following tables may help you select a functionality set.

If you want to communicate with Choose

 §Single-tier and multiple-tier drivers,
with maximum interoperability and the
least amount of application work

Minimum functionality. All drivers
support core ODBC functions and
minimum SQL statements.

Single-tier and multiple-tier drivers,
with maximum interoperability and
maximum functionality

Check before you issue core or
extended functions. If supported, use
them. If not, perform equivalent work
using minimum functions.

Single-tier drivers Minimum functionality.

Multiple-tier drivers only, with
maximum interoperability and the least
amount of application work

Core functionality.

Multiple-tier drivers only, with
maximum interoperability, maximum
functionality, and maximum
performance

Extended functionality. Check
functions and, if not available, perform
equivalent work using core functions.

s6

Chapter 4 Basic Application Steps 23

Chapters 3 through 9 describe how to develop an application that uses ODBC
functions. The ODBC API Reference lists all ODBC functions in alphabetic order.

s6

Connections and Transactions
Before your application can communicate with a data source, you must establish a
connection. If the connection is successful, the driver returns a connection handle
(a pointer to a storage area) for use in subsequent ODBC calls.

The ODBC interface allows you to request multiple connections for one or more
data sources. Each connection is considered a separate transaction space.

An active connection can have one or more statement processing streams.

XE "Transactions"§XE "Connection handles:and transactions"§Each active
connection maintains a transaction in progress. You can request that the results of
each SQL statement be automatically committed upon completion or you can
choose to explicitly request commit or rollback operations. When an application
commits or rolls back a transaction, the driver resets all statement requests
associated with the connection.

 Establishing Connections

2 A Short History of SQL

XE "SQL, overview"§This chapter provides a brief history of SQL and describes
programmatic interfaces to SQL. For more information about SQL, refer to the
references listed in the introduction.

s11

SQL Background Information
SQL, or Structured Query Language, is a widely accepted industry standard for
data definition, data manipulation, data management, access protection, and
transaction control. SQL originated from the concept of relational databases and
uses tables, indexes, keys, rows, and columns to identify storage locations.

Many types of applications use SQL statements to access data. Examples include
ad-hoc query facilities, decision support applications, report generation utilities,
and online transaction processing systems.

SQL is not a complete programming language in itself. For example, there are no
provisions for flow control.

One of the challenges during the evolution of SQL has been to provide a standard
access to SQL database management systems from traditional programming
languages like C, COBOL, and PL/1.

s11

ANSI 1989 Standard
XE "ANSI standards"§SQL was first standardized by the American National
Standards Institute (ANSI) in 1986. The first ANSI standard defined a language
that was independent of any programming language.

XE "Module language"§XE "Embedded SQL (ANSI)"§XE "SQL
statements:embedded"§XE "Direct invocation (ANSI)"§The first ANSI standard
has since been refined; the current standard is ANSI 1989. The ANSI 1989
standard defines three programmatic interfaces to SQL:

n Module language Allows you to define procedures within compiled programs
(modules). You then call these procedures from traditional programming
languages. The module language uses parameters to return values to the calling
program.

n Embedded SQL Allows you to embed SQL statements within your program.
The specification defines embedded statements for COBOL, FORTRAN,
Pascal, and PL/1.

n Direct invocation Access is implementation-defined.

Chapter 5 Establishing Connections 26

s6
Neither the module language nor the direct invocation approach has been widely
implemented; most implementations use the embedded approach.

s6

Embedded SQL
Embedded SQL allows you to place SQL statements into a program that is written
in a traditional programming language (for example, COBOL or Pascal). You
delimit SQL statements with specific starting and ending statements defined by the
host language. The resulting program contains source code from two languages—
SQL and the host language.

When you compile a program with embedded SQL statements, you use a
precompiler to compile the SQL statements. The precompiler replaces the SQL
statements with equivalent host language source code. After you precompile the
program, you use your host language compiler to compile the resulting source
code.

XE "Static SQL"§XE "SQL statements:static"§The term static SQL encompasses
the basic features of embedded SQL. Static SQL has the following characteristics:

n To use static SQL, you define each SQL statement within the source code of
your program. You specify the number of result columns and their data types
before you compile your program.

n Variables called host variables are accessible to both your host-language code
and your SQL requests. You cannot, however, use host variables for column
names or table names. In addition, host variables are fully defined (including
length and data type) prior to compilation.

n If you submit an SQL request that returns more than one row of data, you
define a cursor that points to one row of result data at a time.

n Each run of the associated program performs exactly the same SQL request,
with possible variety in the values of host variables. All table names and
column names must remain the same from one execution of the program to the
next; otherwise, you must recompile the program.

n You use standard data storage areas for status and error information.

s6
Static SQL is efficient; you can precompile SQL statements prior to execution and
run them multiple times without recompiling the statements. The application is
bound to a particular DBMS when it is compiled.

Static SQL cannot defer the definition of the SQL statement until run-time.
Therefore, static SQL is not the best option for client-server configurations or for
ad-hoc requests.

s6

 27

Future ANSI Specifications
XE "SQL2, overview"§SQL2 is the most recent ANSI specification, and is in the
final stages of becoming an international standard. SQL2 defines three levels of
functionality: entry, intermediate, and full. SQL2 adds many new features,
including:

n Additional data types, including date and time.

n Connections to database environments, to address the needs of client-server
architectures.

n Support for dynamic SQL (described in the following subsection).

n Scrollable cursors for access to result sets (full level).

n Outer joins (intermediate and full levels).

s6

Dynamic SQL
XE "Dynamic SQL"§XE "SQL statements:dynamic"§Dynamic SQL allows an
application to generate and execute SQL statements at run time.

You can prepare dynamic SQL statements. When you prepare a statement, the
database environment generates an access plan and a description of the result set.
You can then execute the statement multiple times with the previously-generated
access plan, which minimizes processing overhead.

XE "Parameters:markers"§You can include parameters in dynamic SQL
statements. Parameters function in much the same way as host variables in
embedded SQL. Prior to execution, you assign values to the place held by each
parameter. Unlike static SQL, parameters do not require length or data type
definition prior to program compilation.

Dynamic SQL is not as efficient as static SQL, but is very useful if an application
requires:

n Flexibility to construct SQL statements at run time.

n Flexibility to defer an association with a database until run time.

s11

Call Level Interface
XE "Call level interface"§XE "CLI"§A Call Level Interface (CLI) for SQL
consists of a library of function calls that support SQL statements. The ODBC
interface is a CLI.

The ODBC interface is designed to be used directly by application programmers,
and not as the target of a preprocessor for embedded SQL.

A CLI is very straightforward to programmers who are familiar with function
libraries. The function call interface does not require host variables or other
embedded SQL concepts.

A CLI does not require a precompiler. To submit an SQL request, you place an
SQL command into a text buffer and pass the buffer as a parameter in a function
call. CLI functions provide declarative capabilities and request management. You
obtain error information as you would for any function call—by return code or
error function call, depending on the CLI.

XE "Binding result columns"§A CLI allows you to specify result storage before or
after the results are available. This allows you to determine what the results are
and take appropriate action without being limited to a specific set of data
structures that were defined prior to the request. Deferral of storage specification is
called late binding of variables.

The concept of a CLI is very useful in a client/server environment; the interface
between the application and the data source can be designed to minimize network
traffic.

A CLI is typically used for dynamic access because applications that use a CLI are
often driven by user input. The CLI defined by the X/Open and SQL Access
Group—and therefore the ODBC interface—are similar to the dynamic embedded
version of SQL described by in X/Open and SQL Access Group draft specification
"Structured Query Language (SQL)" (1991).

For a comparison between embedded SQL statements and the ODBC call level
interface, refer to the ODBC API Reference, Appendix E, “Comparison Between
Embedded SQL and ODBC .”

s6

Interoperability
XE "Interoperability"§Interoperability for call-level interfaces can be addressed in

 Preparing and Executing an SQL Statement

the following ways:

n All clients and data sources adhere to a standard interface.

n All clients adhere to a standard interface; driver programs interpret the
commands for a specific data source.

s6
The second approach allows drivers to shield clients from database functionality
differences, database protocol differences, and network differences. ODBC
follows the second approach. ODBC can take advantage of standard database
protocols and network protocols, but does not require the use of a standard
database protocol or network protocol.

 31

3 Guidelines for Calling ODBC Functions

This chapter describes characteristics of ODBC functions and discusses how to
perform the following tasks:

n Calling ODBC functions.

n Submitting SQL statements from ODBC functions.

n Handling ODBC results.

s/11

Calling ODBC Functions
The following paragraphs describe general characteristics of ODBC functions.

s6

General Information
XE "ODBC:functions, general information"§Each ODBC function name starts
with the prefix SQL. Each function accepts one or more arguments. Arguments are
defined for input (to the driver) or output (from the driver).

The initialization file must contain driver location information. For additional
information about initialization file contents, refer to Chapter 9, “Constructing an
ODBC Application.”

C programs that call ODBC functions must use header files that define constants,
type definitions, and function prototypes for all ODBC functions. To view the
SQL.H and SQLEXT.H header files, refer to the ODBC API Reference, Appendix
F, “ C Header Files.”

For a list of valid data types, refer to the ODBC API Reference, Appendix D,
“Data Type Definitions.”

s6

Variable Length Data in Function Arguments
XE "Variable-length data, in arguments"§XE "Arguments:variable-length data
and"§All function arguments that point to variable length data (for example,
column names and parameter values) have an associated length argument.

You can specify one of the following lengths XE "SQL_NULL_DATA"§XE
"SQL_NTS"§for each input argument:

n A length greater than or equal to zero specifies the actual length. A length of
zero describes a zero length string, which is distinct from a NULL value.

 Retrieving Results

n A length equal to SQL_NULL_DATA specifies a null parameter value.

n A length equal to SQL_NTS specifies that a value is a null terminated string.

s6
Nulls are always valid for output pointers, unless otherwise noted in the syntax
description for a function.

Chapter 7 Retrieving Results 33

The application is responsible for allocating memory for output buffers. Therefore,
the application must indicate the length of each buffer. On output, the driver
returns the actual length of data that was stored. For each output argument there
are two length arguments:

n An input argument that contains the buffer length as allocated by the
application, including one byte for a null termination character that the driver
returns for arguments that contain character data.

If a string argument is null for an input parameter, the driver ignores the
argument unless it is required for proper operation of the function. If required,
as in SQLPrepare, the driver returns an error. Nulls are always valid for output
pointers, unless noted otherwise in the syntax description for a function.

n An output argument that contains the actual number of bytes written to the
buffer by the driver (not including the null termination character), or
SQL_NULL_DATA, if null.

If the data does not fit in the output buffer, the driver stores the number of bytes
available and returns the value SQL_SUCCESS_WITH_INFO. If the
application calls SQLError, the driver returns a truncation error. The
application can compare the output length with the buffer size to determine
which value was truncated.

When converting a binary (hexadecimal) SQL data type to a character format, the
output length will always be an even number of bytes.

s6
There may be instances—for example, if the buffer is very large—when you
would like to use a null pointer for the output length, then search for the
termination character in the buffer. If you use null terminated strings, you can pass
a null pointer for the output length, in which case the driver does not return the
length. This is not recommended, however, because the driver cannot return a
truncation indicator if you use a null pointer.

For more information about error names and other predefined constants, refer to
the header file listed in the ODBC API Reference, Appendix F, “ C Header Files.”

s6
s6

Environment, Connection, and Statement Handles
XE "Handles:connection and statement"§XE "Connection handles"§XE
"Statement handles"§To communicate with a data source, an application
establishes a connection with the driver. The driver returns handles that reference
data structures that store information pertinent to the ODBC environment, a
specific connection to an instance of a data source, or a statement being sent to an
instance of a data source. These handles are required by most ODBC functions.

 Retrieving Results

the ODBC interface defines three types of handles:

n Environment handles identify memory storage for global information, including
valid connection handles and current active connection handle. ODBC defines
environment handles as variables of type HENV. An application must request
an environment handle prior to connecting to a data source.

n Connection handles identify memory storage for information about a particular
connection. ODBC defines connection handles as variables of type HDBC. An
application must request a connection handle prior to a connection to a specific
instance of a data source.

n Statement handles identify memory storage for information about an SQL
statement. ODBC defines statement handles as variables of type HSTMT. An
application must request a statement handle prior to submitting SQL requests.
Each statement handle is associated with exactly one connection handle. Each
connection handle can, however, have multiple statement handles associated
with it.

s6
For more information about requesting a connection handle, refer to Chapter 5,
“Establishing Connections.” For more information about requesting a statement
handle, refer to Chapter 6, “Preparing and Executing an SQL Statement.”

s6

Submitting SQL Statements
XE "SQLPrepare:submitting SQL statements"§XE "SQLExecDirect:submitting
SQL statements"§XE "SQL statements:processing"§To submit an SQL statement,
you pass it as an argument in an ODBC function call. For more information about
submitting SQL statements, refer to Chapter 6, “Preparing and Executing an SQL
Statement."

The application is responsible for submitting correct SQL syntax.

For a description of grammar that is valid in ODBC function calls, refer to
Appendix A, “SQL Grammar.” For a comparison between embedded SQL
statements and ODBC function calls, refer to the ODBC API Reference, Appendix
E, “Comparison Between Embedded SQL and ODBC.”

s6

Data Type Support
XE "Data types"§The ODBC interface defines two sets of data types:

n ODBC data types define the SQL data type in the data source. This set is
further divided into two subsets:

n Core data types provide a standard set of data types. If you use the core set
of functionality, the driver maps all data to a core data type. For example, the
driver stores a date as a character string.

Chapter 7 Retrieving Results 35

n Extended data types support data types in many current DBMS products.

n C data types describe how data is stored in your C program.

s6
Each ODBC data type has a corresponding C data type. These data types are
defined in the ODBC header files. For a list of ODBC data types, their meanings,
and how they correspond to C data types, refer to the ODBC API Reference,
Appendix D, “Data Type Definitions.” For information about the header files,
refer to the ODBC API Reference, Appendix F, "C Header Files."

XE "SQLDescribeCol:retrieving data types"§To retrieve the underlying data type
for a column, call SQLDescribeCol.

XE "SQLGetTypeInfo:retrieving supported data types"§The ODBC interface
provides support for any data type from any data source if you retrieve the type
code for the data. If you access extended functions, call SQLGetTypeInfo to
retrieve a description of data types supported by the data source.

s6

Handling Results
XE "Return codes"§XE "SQL_SUCCESS return code"§XE
"SQL_SUCCESS_WITH_INFO return code"§XE "SQL_NO_DATA_FOUND
return code"§XE "SQL_ERROR return code"§XE "SQL_INVALID_HANDLE
return code"§When you call an ODBC function, the driver returns a predefined
status code that indicates success or failure. The status codes indicate success,
warning, or failure status. The application can then call SQLError, if necessary,
to retrieve additional information. The following table lists return constants.

#define name Description

 §SQL_SUCCESS Function completed successfully; no
additional information is available.

SQL_SUCCESS_WITH_INFO Function completed successfully. Call
SQLError to retrieve a warning or
additional information.

SQL_NO_DATA_FOUND All rows from the result set have been
fetched.

SQL_ERROR Function failed. Call SQLError for
more information.

SQL_INVALID_HANDLE Function failed due to an invalid
connection handle or statement handle.
This indicates a programming error. No
further information is available from
SQLError.

SQL_STILL_EXECUTING A function was called asynchronously
and is still executing.

SQL_NEED_DATA While processing an SQL statement, the
driver determined that the application
needs to send large data values.

s6

 37

Handling Errors
XE "SQLError"§If an ODBC function other than SQLError returns
SQL_SUCCESS_WITH_INFO or SQL_ERROR, call SQLError to obtain
additional information. Additional error or status information can come from one
of two sources:

n Error or status information from an ODBC function, indicating that a
programming error was detected.

n Error or status information from the data source, indicating that an error
occurred during SQL statement processing.

s6
The driver buffers errors or messages for only one ODBC call at a time; a
subsequent call overwrites existing error information.

SQLError never returns error information about itself.

If you are familiar with SQLSTATE in the X/Open and SQL Access Group
"Structured Query Language (SQL)" CAE draft specification (1991), note that the
information provided by SQLError is in the same format as that provided by
SQLSTATE.

For more information about error codes, refer to the ODBC API Reference,
Appendix A, “ODBC Error Codes.”

s6

Processing Result Sets
You can use the following mechanisms to retrieve information about results:

n The return code.

n A call to SQLRowCount.

n A call to SQLNumResultCols.

n A call to SQLDescribeCol.

n A call to SQLColAttributes.

n A call to SQLNumParams.

s6
XE "Processing results"§XE "Results:processing"§If the operation does not affect
or return rows, such as an SQL GRANT or REVOKE operation, check the return
code to determine the outcome of the operation. If the operation affected rows,
obtain the row count to determine the outcome of the operation. If your request
was a SELECT query, check the number of result columns and data descriptions
to gain information about the result set.

For more information about retrieving data, refer to Chapter 7, “Retrieving
Results.”

Chapter 8 Terminating Transactions and Connections 39

4 Basic Application Steps

To use ODBC functions, perform the following steps:

1. Establish a connection to the appropriate driver. You specify a data source
name, defined in the initialization file, and additional connection information.

2. For each SQL request:

n Place the SQL text string into a buffer. Your request can include embedded
parameter markers. Set parameter values if necessary. Associate a cursor
name with the request if desired; otherwise, the driver assigns a cursor name.
The driver requests cursor operations automatically.

n Submit the SQL string for execution. The ODBC interface provides separate
function calls for prepared and immediate execution.

n Inquire about the results. For example, for a SELECT query you can request
information about the columns in the result set. You can then allocate
storage and define the data format for each result column.

For unsuccessful requests, process error information.

n Fetch data row by row.

3. When you finish a transaction, perform a commit or rollback command if you
performed INSERT, UPDATE, or DELETE operations.

4. When you finish submitting statements to the data source, terminate the
connection.

s6

 Constructing an ODBC Application

The following diagram shows an example of the basic command flow for
connecting to a data source, processing SQL statements, and disconnecting from
the data source. The words starting with SQL are ODBC function call names.

s6

s11
Depending on the types of requests your application makes, you may decide to use
additional ODBC functions.

Additional Information
Chapters 5 through 8 describe how to use ODBC functions that provide these
services.

The ODBC API Reference lists syntax and usage information for each ODBC
function.

Appendix A SQL Grammar 41

5 Establishing Connections

XE "Connections:establishing"§This chapter describes how to establish a
connection to a target data source.

s11

Using the Driver Manager
XE "Driver Manager:communicating with"§The Driver Manager is a DLL that
provides access to ODBC drivers. You do not need to call an ODBC function to
initiate communication with the Driver Manager; the Driver Manager is
automatically involved in all ODBC calls.

Whenever you call an ODBC function, the Driver Manager performs one of the
following actions:

n For SQLAllocEnv, SQLAllocConnect, SQLDataSources, SQLFreeConnect,
or SQLFreeEnv, the Driver Manager processes the call.

n For SQLConnect, SQLDriverConnect, SQLError, or SQLGetFunctions,
the Driver Manager performs initial processing then sends the call to the driver
associated with the connection.

n For any other ODBC function, the Driver Manager passes the call to the driver
associated with the connection.

s11

Initializing the ODBC Environment
The SQLAllocEnv function initializes the ODBC interface for use by an
application. SQLAllocEnv must be called prior to any other ODBC function:

1. Declare a variable of type HENV. For example, you could declare a variable
called henv1: “HENV henv1.” HENV is defined in the SQL.H ODBC header
file. For Windows, the HENV type is a memory handle. For more information
about the header file, refer to the ODBC API Reference, Appendix F, “C
Header Files.”

2. Pass the address of this variable as an argument in a call to SQLAllocEnv. The
driver allocates storage for environment information and places the address of
the storage into the HENV variable.

These steps needs to be performed only once by an application; SQLAllocEnv
supports one or more connections to data sources.

 SQL Grammar

Establishing a Connection to a Data Source
First, request a connection handle:

1. Declare a variable of type HDBC. For example, you could declare a variable
called hdbc1: “HDBC hdbc1.” HDBC is defined in the ODBC header file. For
Windows, the HDBC type is a memory handle.

2. Pass the address of this variable as an argument in a call to SQLAllocConnect.
The driver allocates storage for connection information and places the address
of the storage into the HDBC variable.

Next, specify a specific driver and data source. Pass the following information to
the driver in a call to SQLConnect:

n Data source name The name of the data source being requested by the
application. For Windows, this corresponds to an entry in the ODBC
initialization file (ODBC.INI). For more information, refer to Chapter 9,
"Constructing an ODBC Application."

n User ID The login ID or account name for access to the data source, if
appropriate (optional).

n Authentication string (password) A character string associated with the user ID
that allows access to the data source (optional).

The Driver Manager establishes a connection with the specified data source and
returns connection status to the application.

s6

Accessing ODBC Functions
The ODBC interface defines two types of conformance:

n SAG core conformance, which is met if a driver supports all core functions and
false if the driver does not support one or more core functions.

n ODBC conformance, which has two levels:

n Level 1. The driver supports all core functions plus an additional set of
functions that provides a basic level of support and optimization for an
interactive query application.

n Level 2. The driver supports all core functions and all ODBC functions.

If the driver does not support Level 1 or Level 2 functionality, it must return
"None" for ODBC conformance, but may support one or more extended functions.
An application can call SQLGetFunctions to determine if the driver supports a
particular function.

The ODBC API Reference, Chapter 1, "ODBC Function Summary," lists

Appendix A SQL Grammar 43

conformance levels for all functions. In addition, all function descriptions in the
reference manual indicate whether a function is a core function or a level 1 or level
2 extension.

In addition, you can call SQLGetInfo to determine the conformance level
supported by a driver.

Extensions for Establishing Connections
Several extended functions support the connection process. The following table
lists these functions in alphabetic order. The paragraphs following the table
describe SQLDriverConnect in more detail.XE "SQLDataSources"§XE "Data
source:listing"§XE "Timeout values, setting"§XE "Rowcount, setting
maximum"§XE "Autocommit, setting"§XE "Transactions:setting autocommit
option"§XE "SQLSetConnectOption"§XE "SQLSetStmtOption"§XE
"SQLGetInfo"§XE "SQLGetTypeInfo"§

s/6
Function Name Description

 §SQLDataSources Requests a list of available data sources. The
Driver Manager retrieves this information from
the ODBC.INI file. You can present this
information to a user or select a database and
driver combination from within your application.

SQLDriverConnect Ask the Driver Manager to present a connection
dialog box to the user.

SQLGetFunctions Returns functions supported by a driver. This
function allows an application to determine at run-
time whether a particular function is supported by
a driver.

SQLGetInfo Retrieves general information about a driver and
data source, including file names, versions, and
the maximum length of names supported by the
data source.

Function Name Description

 §SQLGetTypeInfo Determines the data types supported by a driver
and data source.

SQLSetStmtOption
SQLSetConnectOption
SQLGetStmtOption
SQLGetConnectOption

Set or retrieve operational parameters for the
driver and data source. Options include access
mode, timeout values, implicit commit operation,
and asynchronous execution of ODBC functions.

s11
s11

SQLDriverConnect
XE "SQLConnect:compared to SQLDriverConnect"§XE
"SQLDriverConnect"§The SQLDriverConnect function allows you to request
that the driver and Driver Manager obtain login information from the user prior to
establishing a connection. SQLDriverConnect uses a connection string to connect
to a driver and data source. This function is useful if the data source requires
information that cannot be supplied in the standard SQLConnect function.

A connection string contains the following information:

n Data source name

n One or more user IDs

n One or more passwords

n One or more database-specific parameter values

The connection string is a more flexible interface than the data source name, user
ID, and password used by SQLConnect. You can use the connection string for
multiple levels of logon authorization or to convey other data source-specific
connection information.

You can call SQLDriverConnect in two ways:

n Specify a connection string that allows the driver to connect to the data source.

n Specify a partial connection or no connection string. The Driver Manager
displays a dialog that allows the user to select a data source name. The driver
displays a login dialog, includes any partial information as default values,
obtains necessary connection information from the user, and then establishes
the connection.

Once the driver establishes a connection, SQLDriverConnect returns a
connection string that you can use to call SQLDriverConnect again later, if

necessary.

The Driver Manager displays the following dialog if the application calls
SQLDriverConnect and requests that the user be prompted for information.

s11

Upon request from the application, the driver displays a dialog similar to the
following to retrieve login information.

47

6 Preparing and Executing an SQL Statement

XE "SQL statements:preparing and executing"§Your application can submit the
SQL statements listed in Appendix A, “SQL Grammar” (or data source-specific
SQL statements) in ODBC function calls. The list in Appendix A is similar to the
set of SQL statements that can be prepared in embedded SQL.

s6
 §

To request a commit or rollback operation, call SQLTransact.

 §

s11
The following diagram shows a sample sequence of ODBC commands that can be
used for SQL statement processing. For more information about statement
sequencing, refer to the ODBC API Reference, Appendix B, "ODBC State
Transition Table."

Note that any valid SQL statement can be executed with either the SQLPrepare
and SQLExecute sequence or the SQLExecDirect command, depending on
whether the you plan to submit the SQL statement once or more than once. This
functionality differs from embedded SQL, since both statements with and without
cursors are executed the same way.

Note also that there are other valid calling sequences that include functions such as
SQLBindCol and SQLGetData.

Sample Flow Control

s6

s11
This chapter describes ODBC functions that support SQL statement processing.
For information about results, refer to Chapter 7, “Retrieving Results.”

Note

s11

Allocating a Statement Handle
XE "Statement handles:requesting"§XE "Handles:requesting statement"§Allocate
a statement handle as follows:

1. Declare a variable of type HSTMT. For example, you could declare “HSTMT
hstmt1.” HSTMT is defined in the SQL.H file, listed in the ODBC API
Reference, Appendix F, “ C Header Files.” For Windows applications, the hstmt
variable is a memory handle.

2. Pass the address of this variable and an existing connection handle in a call to
SQLAllocStmt.

s6
The driver allocates a statement handle and returns the handle to your application.

s11

Assigning Storage for Results (Binding)
XE "Binding result columns"§XE "Results:binding"§XE "Results:assigning
storage for"§You can assign storage for results before or after you execute an SQL
statement. XE "SQLBindCol"§To allocate storage for a column of data, call
SQLBindCol and include the following information:

n Decide whether you want the driver to convert the results to a different data
type. If so, include this request in your call to SQLBindCol.

n Define a storage buffer for the data. This storage area must be large enough to
hold the maximum number of bytes needed for the column for the specified
data type.

n Define a storage buffer for the data length.

s11

Choosing Prepared or Direct Execution
XE "Prepared execution"§XE "Direct execution"§XE "SQL
statements:executing"§You have two execution options when you send an SQL
request:

n Prepared Use this option if you want to execute the same statement more than
once without respecifying the SQL string or if you need information about the
result set prior to execution.

n Direct Use this option if you want to submit the statement once and you do not
need the result format prior to execution.

s6
These two options differ from the prepared and immediate options in embedded
SQL. For a comparison between ODBC functions and embedded SQL, refer to the
ODBC API Reference, Appendix E, "Comparison Between Embedded SQL and
ODBC."

s6

Prepared Execution
If you plan to submit the SQL statement multiple times, possibly with intermediate
changes to parameter values, prepare the request as follows.

XE "SQLPrepare"§XE "SQLSetParam"§XE "UPDATE (SQL
statement):positioned"§XE "DELETE (SQL statement):positioned"§XE "SQL
statements:positioned UPDATE and DELETE"§XE "SQLGetCursorName"§XE
"SQLSetCursorName"§Issue the following two calls in any order after
SQLAllocStmt and prior to SQLExecute:

n Call SQLPrepare and pass the SQL statement as an argument.

n If your SQL statement includes parameter markers, call SQLSetParam to
associate storage areas with corresponding parameter markers. If this is not the
first execution of an SQL statement, you can reuse previous storage areas.

If your request requires a cursor name, as in positioned update or delete
(UPDATE WHERE CURRENT OF cursor-name or DELETE WHERE
CURRENT OF cursor-name), you can allow the driver to generate the cursor
name or you can call SQLSetCursorName to associate a cursor name with your
prepared request.

After setting the cursor name with SQLSetCursorName or implicitly obtaining a
cursor name by executing a SELECT statement, you can call
SQLGetCursorName to retrieve the cursor name. (The following subsection,
“Performing Positioned Updates and Deletes,” contains additional information
about positioned updates and deletes.)

Set parameter values for all parameter markers, and then call SQLExecute to
submit the request.

XE "Declare Cursor (SQL statement)"§If you do not set new parameter values
prior to a subsequent call to SQLExecute, the driver reuses existing parameter
values.

XE "Prepared SQL statements, advantages"§The prepare and execute approach
provides the following advantages:

n If the data source supports statement preparation, this is the most efficient way
to perform multiple iterations of the same request, especially for complex SQL
statements. The data source minimizes processing time by compiling the SQL
statements once, producing an access plan, then using the plan for each
execution of the request. An access plan identifier allows the driver to send a
tag instead of the full SQL statement for subsequent requests, thus minimizing
network traffic on subsequent executions of a statement.

n You can retrieve information about the format of the result set prior to
executing the SQL statement.

s6

Direct Execution
XE "SQLExecDirect"§If you do not require information about the result set prior
to completion of your SQL request and you plan to submit a statement only once,
you can call SQLExecDirect to submit the SQL statement.

s11

Processing Positioned Updates and Deletes
A positioned update or positioned delete performs an update or delete operation,
respectively, based on cursor position.

XE "UPDATE, positioned"§XE "DELETE, positioned"§XE "SQL
statements:positioned UPDATE and DELETE"§After you submit a SELECT
statement that returns multiple rows and you fetch one or more result rows, you
can perform a positioned UPDATE or DELETE to update or delete the row

referenced by the cursor. To request a positioned update or delete operation, use
the following SQL syntax:

UPDATE {tablename | viewname} SET {columnname = expression} WHERE
CURRENT OF cursorname

DELETE FROM {tablename | viewname } WHERE CURRENT OF
cursorname

s6
Next, execute the statement:

n Prepared execution Call SQLPrepare with szSqlStr set to the text of the
positioned UPDATE or DELETE statement. Use a different hstmt than that used
for the SELECT statement. Include the cursor name associated with the earlier
SELECT statement. Set parameter values as necessary, and then call
SQLExecute to submit the statement.

n Direct execution Call SQLExecDirect with szSqlStr set to the text of the
UPDATE or DELETE statement. Use a different hstmt than that used for the
SELECT statement. Include the cursor name associated with the earlier
SELECT statement.

The driver associates the new hstmt with the existing hstmt , includes parameter
values if necessary, submits the positioned szSqlStr or DELETE statement, and
returns results to the application.

Example
The following diagram lists sample calling sequences for prepared and direct
positioned update or delete operations. This sequence is an example; you could
include calls to SQLSetParam in either sequence or combine prepared and direct
requests in the same processing stream.

s6

Extensions for Processing SQL Statements
The following table lists related extended functions. The paragraphs following this
table describe the following topics in more detail: retrieving data dictionary
information; sending arrays of parameters; sending large data values; using
scrollable cursors; requesting asynchronous processing; and requesting scalar
functions, extended data types, and outer joins.

 To determine whether a particular driver supports these functions, call
SQLGetFunctions.

Function or Operation Description

 §Data dictionary functions Return data dictionary information.
These functions are useful if the data
source does not support SQL system
views.

SQLDescribeParam Return information about prepared
parameters.

SQLGetData Return one column of one row of data
to the application. SQLGetData is
useful for returning large data values.

Sending large data values Allow the application to send large data
values to the data source.

SQLParamOptions Allow the application to specify
multiple sets of parameter values for a
single SQL statement. This capability,
if supported by the data source,
minimizes network traffic..

SQLSetScrollOptions Establish a scrollable cursor for the
result set.

Asynchronous processing Allow the application to request
asynchronous processing of a subset of
ODBC functions.

Scalar functions Support the use of scalar functions in
SQL statements.

Extended data types Support embedded extended data type
literals in SQL statements.

Outer joins Support outer join requests in SQL
statements.

s11

Obtaining Information about the Data
The following functions return information about data:

n SQLColumnPrivileges returns a list of columns and associated privileges for
one or more tables

n SQLColumns returns the list of columns names in a specified table

n SQLForeignKeys returns a list of column names that compose foreign keys for
a specified table

n SQLPrimaryKeys returns the column name (or names) that comprise the
primary key for a table

n SQLSpecialColumns returns information about the optimal set of columns that
uniquely identifies a row in a table or the columns that are automatically
updated when any value in the row is updated by a transaction

n SQLStatistics returns a list of statistics about a single table and the indexes
associated with the table

n SQLTablePrivileges returns privileges associated with one or more tables

n SQLTables returns the list of table names stored in a specific data source

Each function returns the information as a result set. An application fetches these
results in the same manner as it retrieves query results (through a call to
SQLFetch).

s11

Sending Large Data Values
XE "Large data values:sending"§To send large data values, use the following three
functions:

n SQLSetParam

n SQLParamData

n SQLPutData

n SQLParamOptions

To indicate that you plan to send a large data value, call SQLSetParam to
associate storage with the parameter—and set pcbValue to SQL_LONG_DATA for
the parameter.

In the call to SQLSetParam, set rgbValue to a value that, at run time, references the
location of the data. The driver returns this value to the application at statement
execution time.

When the driver processes a call to SQLExecute or SQLExecDirect, the driver
returns SQL_NEED_DATA as soon as it encounters a parameter that requires a
large data value. The application then calls SQLParamData and SQLPutData to
send data values:

n SQLParamData searches for the next large data value parameter and returns
the value referenced by rgbValue (in the earlier call to SQLSetParam).

n SQLPutData transports the actual data value to the data source.

For additional information, refer to the description of SQLSetParam in Chapter 2
of the ODBC API Reference.

s11

Specifying Arrays of Parameter Values
XE "Parameters:specifying arrays of"§XE "SQLParamOptions"§To specify
multiple sets of parameter values for a single SQL statement, call
SQLParamOptions. For example, if you have ten sets of column values to insert
into a table—and you can use the same SQL statement for all ten operations—you
can set up an array of values, then submit a single INSERT statement.

If you use SQLParamOptions, your application must allocate enough memory to
handle the arrays of values.

s11

Using Scrollable Cursors
SQL was originally designed to return one row at a time to an application.
Scrollable cursors provide more flexible access to blocks of result data. XE
"Scrollable cursors, overview"§The following paragraphs provide an overview of
scrollable cursors and describe ODBC features that support scrollable cursors.

Basic Cursors
An SQL SELECT statement extracts data that meets a set of specifications. For
example, SELECT * FROM EMPLOYEE WHERE EMPNAME = "JONES" returns all columns of all
rows in EMPLOYEE where the employee's name is Jones. This set of information,
called a result set, can contain zero, one, or more than one row.

Applications retrieve single rows as follows:

n A cursor, managed by the driver, points to the current row in the result set.

n A call to SQLFetch moves the cursor to the next row in the result set and
retrieves the row.

s6
This basic form of a cursor is called a forward-only scrolling cursor, and is
supported by core ODBC functions. To fetch a previous row using a forward-only
cursor, the driver closes the cursor, reopens the cursor for the same result set, and
fetches rows until it retrieves the target row.

Scrollable Cursors
Scrollable cursors allow a user to scan results in a flexible manner without
excessive support from the application. Users can view rows within a block of data
and update, delete, refresh, or browse through the data. Scrollable cursors use the
following concepts:

n A block of data is called a rowset.

n A set of keys that uniquely identifies the rows in a rowset is called a keyset. If a
table does not contain unique key fields, the keyset may be the whole row.

XE "Concurrency control, setting"§As the size of a rowset increases, so does the
possibility that another user may want to access or update one of the rows. You
can request four types of locking for a keyset:

n Read only Read the data and build a keyset, but do not lock the data. This
approach does not guarantee that the key will point to the same row at a later
time.

n Locked Read the data with a lock. Other users cannot modify the data until you
remove the lock. This approach guarantees that data is the same when a
subsequent update or delete is performed.

n Optimistic concurrency control comparing timestamps Do not lock the data.

Instead, store the time the row was last modified (if available). If the user
requests a positioned update or delete operation, check the timestamps to make
sure the row was not modified since the keyset was built.

n Optimistic concurrency control comparing values Do not lock the data. Instead,
include all row data values in the keyset. If the user requests a positioned
update or delete operation, compare these values to values in the database to
make sure the row was not modified since the keyset was built.

s6
Call SQLSetScrollOptions to specify rowset, keyset, and concurrency control. If
the application uses scrollable cursors, the application must call
SQLSetScrollOptions before it calls SQLPrepare or SQLExecDirect.

SQLBindCol binds storage areas for result columns.

XE "SQLExtendedFetch"§To fetch a block of data, call SQLExtendedFetch.
Following the extended fetch, the cursor points to the entire rowset for subsequent
positioned operations. To position the cursor on specific rows within the rowset,
call SQLSetPos.

For scrollable cursor operations, the rowset behaves as a single fat cursor.XE
"SQLSetPos"§

Regardless of position, a fetch next or fetch previous operation moves the entire
rowset as if it were one cursor.

The SQLExtendedFetch function supports forward, backwards, and arbitrary
retrieval of blocks, so that there are two levels of movement within a result set: at
the rowset level and at the row level.

s11

Requesting Asynchronous Processing
XE "SQL statements:processing asynchronously"§By default, a driver processes
ODBC functions synchronously; the driver does not return control to your
application until a function call completes. If a driver supports asynchronous
processing, however, you can request asynchronous processing for the functions
listed below.

SQLColAttributes SQLExecDirect SQLGetTypeInfo SQLSetPos

SQLColumns SQLExecute SQLMoreResults SQLSpecialColu
mns

SQLColumnPrivil
eges

SQLExtendedFe
tch

SQLNumResultC
ols

SQLStatistics

SQLConnect SQLFetch SQLParamData SQLTablePrivile
ges

SQLDescribeCol SQLForeignKey
s

SQLPrepare SQLTables

SQLDescribePara
m

SQLGetData SQLPrimaryKey
s

SQLDriverConnec
t

SQLGetInfo SQLPutData

s6
s6
All of these functions either submit requests to a data source or retrieve data. Any
of these functions can initiate extensive processing.

To enable or disable asynchronous processing for the above set of functions, call
SQLSetStmtOption and specify ON or OFF for the SQL_ASYNC_ENABLE
option. To check the setting of the SQL_ASYNC_ENABLE option, call
SQLGetStmtOption. To enable or disable asynchronous processing for all hstmts
associated with an hdbc, call SQLSetConnectOption.

Upon successful initiation of an asynchronously-initiated function, the driver
returns SQL_STILL_EXECUTING. If you resubmit the function call, the driver
returns SQL_STILL_EXECUTING until the function completes. Once the
function completes, the driver returns a standard return code.

s6

Using Extended Data Types, Functions, and Outer Joins
ODBC supports an escape mechanism that allows an application to embed
database-specific data types, scalar functions, or outer join specifications within an
SQL statement. XE "Escape sequence:data types"§The escape mechanism follows
the format for vendor-specific commands as defined in Appendix A, "SQL
Grammar." In addition, ODBC defines canonical forms for the following:

n Date, time, and timestamp data types

n Scalar functions such as string and numeric functions

n Data type conversion

n Outer join request

The application can use one of two forms when specifying a data type or scalar
function:

n The canonical form as defined by ODBC. This approach provides database
independence. The driver translates the canonical form into the database-
specific form.

n The form required by the data source. This approach does not provide
database independence.

s6
s6
 §

An application can submit literal data, without using an escape sequence, as
long as it calls SQLGetTypeInfo to make sure the data type is supported and to
obtain appropriate prefix and suffix information.

 §

s6
s6
The following paragraphs list the syntax for each type of escape clause. In
addition, ODBC defines a shorthand syntax for escape clauses, defined in
Appendix A, "SQL Grammar."

s11

Date and Time Data Types
The following escape clause allows an application to specify a date, time, or
timestamp data type:

--*(vendor(Microsoft),product(ODBC), {d|t|ts} value --*)
s6
The following table describes each element of the preceding clause.

Argument Description

 §vendor(Microsoft), product(ODBC) Identifies the vendor and product that
support the escape clause. Vendor and
product are not used with the shorthand
notation.

d Indicates value is in date format
(yyyy-mm-dd).

t Indicates value is in time format

Note

(hh:mm:ss).

ts Indicates value is in timestamp format
(yyyy-mm-dd hh:mm:ss.[ffffff]), where
the precision represented by fraction of
a second ([ffffff]) depends on the data
source).

value The value of the date, time, or
timestamp variable.

s6
You can specify a date, time, or timestamp escape clause in place of a literal in an
SQL statement. For detailed syntax information, refer to Appendix A, "SQL
Grammar."

To submit a data type in the native form of the data source, submit the SQL
statement with vendor-specific syntax.

Call SQLGetFunctions to determine if a driver supports a specific extended data
type.

For a list of core and extended data types, refer to the ODBC API Reference,
Appendix D, "Data Type Definitions."

Scalar Functions
Scalar functions—such as string length, absolute value, or current date—can be
used on columns of a result set and on columns that restrict rows of a result set.
ODBC supports a set of canonical scalar functions that may be a subset or superset
of functions actually supported by a given DBMS. If the application specifies the
canonical form of a scalar function, the driver translates the function to the syntax
required by the data source. If the application specifies the native form of a scalar
function, the driver does not translate the function, but sends it to the data source
in the form specified by the application. In either case, the data source makes the
final determination of the validity of the scalar function and its arguments.

The following escape clause allows an application to specify a scalar function:

--*(vendor(Microsoft),product(ODBC), fn function--*)

The following table describes each element of the preceding clause.

Argument Description

 §vendor(Microsoft), product(ODBC) Identifies the vendor and product that
support the escape clause. Vendor and
product are not used with the shorthand
notation.

fn Indicates that the escape sequence
requests a scalar function.

function Is an expression that contains one or
more function names and function
arguments. For a list of canonical
functions, refer to
the ODBC API Reference, Appendix G,
"Canonical Functions."

s6
You can use an escape clause with a canonical function in place of a scalar
function in an SQL statement. For information about the syntax of canonical
functions, refer to Appendix A, "SQL Grammar," and the ODBC API Reference,
Appendix G, "Canonical Functions."

An application can also include native DBMS functions in an escape clause. The
following example shows how an application would specify a native function
("round," in this example) and two ODBC canonical functions (ABS and SQRT).
This example uses shorthand escape clause syntax, as defined in Appendix A,

"SQL Grammar," and accesses three columns—EMPNO, EMPNAME, and
EMPDIST—in a table called EMPLOYEE.

SELECT EMPNO, {fn abs(round ({fn sqrt(EMPNAME)}))}, EMPDIST
FROM EMPLOYEE

An application can call SQLGetInfo to determine which functions are supported
by a specific driver and associated data source.

Data Type Conversion Function
ODBC defines a special type of canonical function, called the CONVERT
function, that allows applications to explicitly request a data type conversion when
the database processes the SQL statement. The driver translates the canonical form
into the database-specific form.

The canonical form of the CONVERT function does not restrict the range of data
type conversions. Instead, each driver determines the valid set of conversions. Call
SQLGetInfo to determine which conversions are supported by the data source and
its associated driver.

The following example shows how an application would specify a conversion to a
character data type:

SELECT EMPNO FROM EMPLOYEE WHERE
--
*(vendor(Microsoft),product(ODBC),fn(CONVERT(EMPNO,SQL_CHAR))--
*) LIKE '1%'

For more information, refer to the ODBC API Reference, Appendix G, "Canonical
Functions."

Refer to Appendix G, "Canonical Functions," for a description of the CONVERT
function and its syntax.s11

Requesting Outer Joins
XE "Escape sequence:outer joins"§The ODBC interface uses an escape sequence
to support outer joins. The format is:

--*(vendor(Microsoft),product(ODBC) oj join-type --*)
s11
Join-type specifies a type of outer join. For example, to perform an outer join
between two tables named EMPLOYEE and DEPT, using the DEPT.ID column
for the join condition, use the following statement (shown in shorthand escape
clause syntax):

SELECT employee.name, dept.name FROM
 {oj employee LEFT OUTER JOIN dept ON employee.deptid=dept.deptid}
 WHERE employee.projid=544

This syntax is a subset of ANSI SQL2 outer join syntax.

If you use an escape clause with a outer join request in an SQL statement, the
escape clause must appear after the FROM clause and before the WHERE clause,
if either exist in the statement. For detailed syntax information, refer to Appendix
A, "SQL Grammar."

Call SQLGetFunctions to determine if a driver supports a specific join type and,
if so, what join characters to use in value.

7 Retrieving Results

XE "Results:processing"§This chapter describes result-handling operations.

The steps you take to process results depend on your knowledge about the result
set.

n Known result set You know the exact form of your SQL statement prior to
execution. For example, the query SELECT EMPNO, EMPNAME FROM
EMPLOYEE returns two specific columns. The statement DELETE FROM
EMPLOYEE WHERE EMPNAME = "Harry Jones" returns a row count.

n Variably structured result set You do not know the exact form of your results at
compile time. For example, the ad-hoc query SELECT * FROM
EMPLOYEE returns all currently defined columns in the EMPLOYEE table.
You may not be able to predict the format of these results prior to execution.

s11

Determining Characteristics of a Result Set
XE "SQLNumResultCols:determining result characteristics"§XE
"SQLRowCount:determining result characteristics"§XE
"SQLDescribeCol:determining result characteristics"§XE "Results:determining
characteristics"§To determine the characteristics of a result set, perform these
steps:

1 Call SQLNumResultCols to see if your request returned a set of rows.

2 If SQLNumResultCols returns a nonzero result, your request was a SELECT
statement. Call SQLDescribeCol and SQLBindCol for each column, and then
call SQLFetch to retrieve each row.

If SQLNumResultCols returns a zero, call SQLRowCount to see if your
request inserted, deleted, or modified rows:

n If SQLRowCount returns a nonzero result, that result is the number of rows
modified.

n If SQLRowCount returns a zero, the statement performed other work:
commit, rollback, or other operation that does not modify or return rows.

s6
 §

If you prefer to check for row modification first, call SQLRowCount before
you call SQLNumResultCols .

 §

s11

Note

Fetching Result Data
XE "Results:retrieving data"§If you requested an SQL statement that does not
manipulate data (for example, GRANT or REVOKE), the return code for the
ODBC function call indicates whether your request was successful or not.

If you requested an INSERT, UPDATE, or DELETE operation, SQLRowCount
returns the number of rows affected by the operation.

XE "SQL statements:processing results"§XE "SELECT (SQL statement):storing
results"§XE "SQLFetch:retrieving result rows"§If you requested a SELECT
statement and you did not bind the columns to storage locations prior to execution,
call SQLBindCol to perform bind operations prior to retrieving results. Call
SQLFetch to retrieve each row of results.

The following diagram shows the flow of the preceding two operations:

s6

s11

Retrieving Error and Status Information
XE "SQLError"§XE "Errors, retrieving"§If your ODBC call returns SQL_ERROR
or SQL_SUCCESS_WITH_INFO, call SQLError to find out more information.
SQLError returns standardized messages and data source-specific messages. The
application is responsible for reading these messages and taking appropriate
action.

For information about how to handle standard error and status messages, refer to
“Calling ODBC Functions” in Chapter 3. For more information about ODBC error
codes, refer to the ODBC API Reference, Appendix A, “ODBC Error Codes.”

s11

Related Extension Functions
XE "SQLNativeSql"§XE "SQLDescribeParam"§XE "Escape sequence:translating
to SQL text"§XE "Parameters:obtaining data type information"§The following
table lists related extended functions. The paragraphs following this table contains
additional information about SQLGetData, SQLExtendedFetch, and retrieving
multiple result sets.

s/6
Function Name Description

 §SQLNativeSql Retrieve the SQL statement as
processed by the data source, with
escape sequences translated to native
SQL code.

SQLDescribeParam Retrieve data type information for
parameters in an SQL statement.

SQLParamOptions Specify multiple values for a set of
parameters.

SQLGetData Fetch one column in a result row. This
function is useful for retrieving large
data values.

SQLExtendedFetch Fetch a block of result data.

SQLSetPos Position the cursor within a fetched
block of data.

SQLScrollOptions Request a scrollable cursor.

s11

Retrieving Data in Large Columns
To retrieve data from large columns—or retrieve data one column at a time—call

SQLGetData to retrieve the column into a buffer. If you use SQLGetData to
retrieve data, do not call SQLBindCol for the column.

SQLFetch does not retrieve data for columns that are not bound, but does move
the cursor from row to row and retrieve data in bound columns. Prior to calling
SQLGetData, call SQLFetch to position the cursor at the first row. Call
SQLFetch to move the cursor to subsequent rows.

You can combine SQLGetData with SQLBindCol and SQLFetch access within
a row. To combine these operations, bind as many contiguous columns as
necessary. Call SQLFetch to retrieve all bound rows and leave the pointer at the
end of the bound rows. Call SQLGetData to retrieve the unbound columns. (Note,
however, that you cannot use SQLGetData to retrieve a column to the left of the
rightmost bound column.)

You can call SQLGetData multiple times for a single column, if necessary.

Processing Multiple Result Sets
Call SQLMoreResults function to process multiple result sets. XE "Stored
procedures, processing results"§XE "Batched SQL statements, results"§XE "SQL
statements:batched processing"§The following SQL statements can return multiple
result sets:

n Batched SQL statements You submit more than one SELECT statement in one
request.

n Statements with arrays of parameters You submit more than one set of
parameter values for a SQL statement (SQLParamOptions).

n Stored procedures You submit a stored procedure name as an SQL statement;
such a procedure can return multiple result sets.

s11

Processing Blocks of Results
If the driver supports scrollable cursors, your application can retrieve blocks of
result rows. For more information about scrollable cursors and processing blocks
of result data, refer to "Using Scrollable Cursors," in Chapter 6.

8 Terminating Transactions and Connections

XE "Transactions:terminating"§XE "Handles:releasing statement"§XE "Statement
handles:releasing"§XE "Statements, terminating"§The ODBC interface provides
functions that terminate SQL transactions, statement-processing connections
(hstmts), connections (hdbcs), and environment connections (henvs).

Terminating Statement Processing
Call SQLFreeStmt to free resources associated with a statement handle. The
SQLFreeStmt function has four options:

n SQL_CLOSE Close the cursor, if one exists, and discard pending results. You
can use the statement handle again later.

n SQL_DROP Close the cursor, if one exists, discard pending results, and free
all resources associated with the statement handle.

n SQL_UNBIND Release all return buffers bound by SQLBindCol for the
statement handle.

n SQL_RESET_PARAMS Release all parameter buffers requested by
SQLSetParam for the statement handle.

s11

Terminating Transactions
XE "SQLTransact:terminating a transaction"§At the transaction level, call
SQLTransact to commit or roll back the current transaction.

XE "SQLCancel:terminating statement processing"§XE "SQLError:checking
statement cancellation"§To cancel a specific statement, call SQLCancel, check
the return code of the function that was canceled, and then call SQLError to
determine the status of the cancellation. For additional information about
SQLCancel, refer to the ODBC API Reference, Chapter 2, “ODBC API
Reference.”

s11

Terminating Connections
XE "Connections:terminating"§XE "SQLFreeConnect:releasing a connection
handle"§XE "SQLDisconnect:closing a connection"§To terminate a connection to
a driver and data source, perform the following steps:

1. Call SQLDisconnect to close the connection. You can then use the handle to
reconnect to the same data source or to a different data source.

2. Call SQLFreeConnect to release the connection handle and free all resources
associated with the handle.

3. Call SQLFreeEnv to release the environment handle and free all resources
associated with the handle.

9 Constructing an ODBC Application

XE "Developer's Kit, contents"§The following paragraphs describe how to
construct an application, starting with the contents of the developer's kit and
including sample code, setup information, and references to testing and debugging
information. This manual assumes that you are developing an application for the
Windows environment.

s11

Developer's Kit Contents
Your development kit should contain the following items:

n SDK cover letter and license agreement

n SDK installation instructions

n ODBC Application Programmer's Guide (this manual), ODBC Driver
Developer's Guide, ODBC API Reference, ODBC Test Application User's
Guide, a binder, and tabbed dividers

n One 3.5-inch, 1.44 MB disk and one 5.25-inch, 1.2 MB disk, both containing:

n Installation batch file and utilities (including INSTALL.BAT,
INSTALL2.BAT, and CHKDIR.EXE)

n Driver Manager (DRVRMGR.DLL)

n Driver Manager Import Library (DRVRMGR.LIB)

n Test application (GATOR.EXE)

n Sample Driver DLL (SAMPLE.DLL)

n ODBC core functions header file (SQL.H)

n ODBC extension functions header file (SQLEXT.H)

n ODBC initialization file (ODBC.INI)

n Test application initialization file (GATOR.INI)

n Common dialogs DLL (COMMDLG.DLL)

n Test application source files, header files, object files, makefile, and other
files

n Sample driver source files, header files, make file, and other files

n Other common header files

n Other common libraries

s11

System Requirements
The following paragraphs list hardware, software, and environmental requirements
for the ODBC environment.

Hardware Requirements
ODBC requires approximately two megabytes of disk space for installation of
SDK files and for assembling, compiling and linking the test application and
sample driver.

The SDK software has been tested on the following hardware, although it may be
possible to use other configurations:

n Personal computer with an 80386 processor and at least five megabytes of
RAM.

Software Requirements
The SDK software has been tested with the following system and development
software, although it may be possible to use other configurations:

 n MS-DOS 5.0

 n Microsoft Windows 3.0 or Windows 3.1 Beta-3

 n Microsoft C6.00A

 n Microsoft Windows 3.0 SDK or Windows 3.1 Beta-3 SDK

 n Microsoft MASM 5.3

Environmental Requirements
When using the supplied makefiles to build customized versions of the test
application (gator.exe) or the sample driver (sample.dll), you must be sure that the
\INCLUDE and \LIB directories in your ODBC SDK directory are specified in
your PATH or environment variables as specified in the Microsoft C Compiler
Reference Manual. These two directories should be searched first during the
compile and link process. You must also make sure that the source, object and
other files for the test application or sample driver can be found by the assembler,
compiler and linker. Review the makefiles and any necessary assembler, compiler
and linker documentation to ensure that you have your environment correctly
defined for your configuration.

Installing the Developer's Kit
XE "Installing ODBC"§XE "ODBC:installing"§To install the software for the
SDK, refer to the SDK installation instructions.

Upon successful completion of the installation process, your Windows directory
should contain the ODBC initialization file (ODBC.INI). The directory that you
specified for the installation of the rest of the SDK files should contain the
following files (the default ODBC directory will be used for purposes of
illustration):

Directory File File Description

 §C:\WINDOWS ODBC.INI The ODBC initialization file.
Includes a data source specification
for the SAMPLE.DLL and the
sample driver.

C:\ODBC GATOR.EXE ODBC GATOR; driver test
application.

DRVRMGR.D
LL

ODBC Driver Manager DLL.

COMMDLG.D
LL

Common Dialogs DLL.

SAMPLE.DLL ODBC Sample Driver DLL.

GATOR.INI ODBC GATOR initialization file.

C:\ODBC\GATOR AUTOTEST.C Source for selecting and initiating
auto-tests. For example,
CORQTEST.C is the source for an
autotest and is initiated from here.
Custom autotests can be hooked into
GATOR via this file.

AUTOTEST.H Header file for AUTOTEST.C

CORQTEST.C Source for the core conformance
quick test autotest.

CUSTOM.C An autotest prototype that can be
used as the basis for creating
customized auto-tests.

GATOR.DEF Windows module definition file for
GATOR.

GATOR.H GATOR header file.

GATOR.RES Windows resource file for GATOR.

L1QTEST.C Source for the ODBC conformance
level 1 quick test autotest.

L2QTEST.C Source for the ODBC conformance
level 2 quick test autotest.

MAKEFILE GATOR makefile; a working model.

SQL_0001.AC
T

Results from the query defined by
the file SQL_0001.QRY.

SQL_0001.QR
Y

Example of a query file that can be
run against the sample driver.

Directory File File Description

 §C:\ODBC\GATOR
(continued)

SQL_0001.RST The comparison file for the results
of SQL_0001.QRY.

TESTS.H Contains references to global
variables used in GATOR.

C:\ODBC\GATOR\OBJ AUTO.OBJ The object file that supports the
"Auto" menu selections in GATOR.

CONNECT.OB
J

The object file that supports the
"Connect" menu selection in
GATOR.

DDA.OBJ The object file that supports the
"Dictionary" menu selection in
GATOR.

GATOR.OBJ The object file for the basic GATOR
application.

MFQENG.OBJ The object file that supports the
execution of query files (.QRY)
from the "Auto-Tests..." menu
selection in GATOR.

MISC.OBJ The object file that supports the
"Misc" and "Options" menus
selections in GATOR.

RECEIVE.OBJ The object file that supports the
"Results" menu selections in
GATOR.

SEND.OBJ The object file that supports the
"Statements" menu selections in
GATOR.

SERVERCN.O
BJ

The object file that supports the
"tools" section of the the "Connect"
menu in GATOR.

C:\ODBC\INCLUDE SQL.H ODBC core functions header file.

SQLEXT.H ODBC extension functions header
file.

WINDOWS.H Microsoft Windows header file.

C:\ODBC\LIB COMMDLG.LI
B

Common dialogs import library.

DRVRMGR.LI
B

ODBC Driver Manager import
library.

LIBW.LIB Microsoft Windows library.

MDLLCEW.LI
B

Microsoft Windows library.

MLIBCEW.LI
B

Microsoft Windows library.

C:\ODBC\SAMPLE CONNECT.C Sample driver implementation of:
SQLAllocEnv, SQLFreeEnv,
SQLAllocConnect, SQLConnect,
SQLDisconnect and
SQLFreeConnect.

DATABASE.C Sample driver "database" functions..

DATABASE.H Header file for DATABASE.C.

Directory File File Description

 §C:\ODBC\SAMPLE ECONNECT.C Sample driver implementation of:

(continued) SQLDriverConnect and
SQLGetInfo.

EDATA.C Sample driver implementation of:
SQLGetTypeInfo.

EDICT.C Sample driver implementation of:
SQLTables and SQLColumns.

EMISC.C Sample driver implementation of:
SQLSetConnectOption,
SQLSetStmtOption,
SQLGetConnectOption and
SQLGetStmtOption.

ERESULTS.C Sample driver implementation of:
SQLGetData

ERR.H Header file mapping error code
constants for SQLSTATE values to
error values.

EXECUTE.C Sample driver implementation of:
SQLAllocStmt, SQLPrepare,
SQLSetParam,
SQLSetCursorName,
SQLGetCursorName,
SQLExecute, and SQLExecDirect.

LIBSTART.AS
M

Entry point startup routine for
Windows sharable code libraries.

MAKEFILE Sample driver makefile; a working
model.

MEMORY.C Memory and resource management
cover functions.

MISC.C Sample driver implementation of:
SQLError and SQLCancel.

RESULTS.C Sample driver implementation of:
SQLNumResultsCols,
SQLDescribeCol, SQLBindCol,
SQLFetch, SQLRowCount and
SQLFreeStmt

SAMPLE.DEF Windows module definition file for
the sample driver.

SAMPLE.H Overall header file for the sample
driver.

SAMPLE.RC Windows resource file for the
sample driver.

TRANSACT.C Sample driver implementation of:
SQLTransact.

WEP.C Necessary for writing DLLs for
Windows 3.0.

Directory File File Description

 §C:
\ODBC\SAMPLE\DEB
UG

The directory where object files for
the sample driver are placed at
compile time, if DEBUG is set as an
environment variable.

C:\ODBC\SAMPLE
\NODEBUG

The directory where object files for
the sample driver are placed at
compile time, if DEBUG is not set
as an environment variable or if it is
set to null.

Several components of the Windows SDK have been included with the ODBC
SDK. These need only be used if you are using a beta version of the Windows 3.1
SDK. If you are using a beta version of the Windows 3.1 SDK, make sure that the
\INCLUDE and \LIB directories of your ODBC SDK are searched first during
compilation and link. The specific files of interest are WINDOWS.H, LIBW.LIB,
MDLLCEW.LIB, MLIBCEW.LIB, COMMDLG.LIB and the COMMDLG.DLL.

s11

Constructing an ODBC Environment
The ODBC environment uses an initialization file, called ODBC.INI, to store data
source names and related information.

The ODBC.INI file stores information used by the ODBC Driver Manager, ODBC
drivers and the ODBC SETUP routine. For example, all connection-related ODBC
functions (SQLConnect, SQLDataSources, and SQLDriverConnect) accept a
data source name (DSN) as an argument or as an element of an argument.

ODBC drivers can read the ODBC.INI and can update it in certain instances. The
ODBC Driver Manager reads the ODBC.INI file, but does not update it.
Applications should not read directly from ODBC.INI. ODBC functions supply
information from the initialization file in a consistent and structured manner.

There are two types of sections in the ODBC.INI file. One type of section defines
the data sources accessible through ODBC. These are called data source
specifications. The ODBC.INI file can contain one or more data source
specifications. The section name of each data source specification defines the data
source name associated with the specification.

The other type of section is a list of the data source names of each of the data
source specifications. This is a single section that contains all valid data source
names.

Data Source Specification
Before accessing a driver or data source, the data source must be defined in the
ODBC initialization file. Each data source definition resides in a separate section
in the ODBC.INI file. The data source definition section is called a data source
specification.

A data source specification, at a minimum, consists of:

n A data source name (this must be the name that appears in the section heading)

n The name of an ODBC driver

n A description of the data source

The data source name and description are defined by the user.

The following depicts a basic data source specification:

[data-source-name]
driver = driver-DLL-name
description = description-of-data-source

The specification can include driver-specific information, as well. Driver-specific
information can be supplied by the user or by the driver. Some examples of driver-
specification information are:

server=<server-name>

lastuid=<last user id used to logon>
database=<database name>
OemAnsi=<conversion indicator>

The ODBC SETUP routine allows users to add driver-specific information to the
ODBC initialization file.

Default Data Source Specification
The ODBC.INI file can contain a single default data source specification. This
default specification is optional. If the default specification exists, the data source
name must be "default" and the driver can be any one of the set of installed
drivers. When initially defined through ODBC.SETUP, the default data source
specification consists of only the data source name and the driver DLL. The driver
can add information at connection time.

Sample Data Source Specifications
The exact specification of a data source is dependent upon the implementation of
the ODBC driver used to access the data source and the characteristics of the data
source itself. Therefore, it is important to document your requirements for the
ODBC.INI file.

A data source specification for a driver for DEC Rdb might contain the following
information:

[personnel]
driver=rdb.dll
description=Personnel database: CURLY
lastuid=smithjo
server=curly
schema=declare schema personnel filename"sys$sysdevice:
[corpdata]personnel.rdb"

[inventory]
driver=rdb.dll
description=Western Region Inventory
lastuid=smithjo
server=larry
schema-declare schema filename "sys$sysdevice:
[regionw.inventory]inventory.rdb"

A given driver can be referenced in more than one data source specification.

An example for MS SQL Server might contain the following:

[payroll]
driver=sqlsrvr.dll
lastuid=sa

database=pubs
OemAnsi=no

Note that for SQL Server, a data source specification in ODBC.INI maps to a
server specification in the [SQLSERVER] section of WIN.INI. In this case, the
data source name must be identical to the left side of the server specification entry
in the WIN.INI file.

The data source specification need not contain all of the information necessary for
completing a connection to a data source. Instead, the information can be used by
a driver to obtain information from another source. For example, Microsoft SQL
Server maintains a list of database server connections in the WIN.INI file. A
WIN.INI entry for SQL Server might contain the following:

[sqlserver]
payroll=dbnmp3,\\server\pipe\sqlquery

A data source specification in the ODBC.INI file for the PUBS database accessed
by an ODBC driver—via a server called PAYROLL—might contain the
following:

[payroll]
driver=sqlsrvr.dll
lastuid=sa
database=pubs
OemAnsi=no

In this case, the driver uses the data source name to locate a corresponding entry in
the [sqlserver] section of the WIN.INI file.

ODBC Data Source List
Whenever a data source specification is defined, the data source name must be
added to the list maintained in the section called "[ODBC Data Sources]". The
ODBC Data Sources section permits the list of data source names and associated
specifications to be easily enumerated.

Each entry in the data sources section consists of the data source name and a short
description of the DBMS product associated with the driver referenced by the
corresponding data source specification.

This section in the ODBC.INI file might appear as follows, given the entries in the
preceding example and a default data source specification:

[ODBC Data Sources]
default=SQL Server
personnel=Rdb
inventory=Rdb
payroll=SQL Server

How ODBC Functions Use the ODBC.INI File
Three ODBC functions access data source specifications in the ODBC.INI file.

SQLConnect
SQLConnect accepts a data source name as one of its arguments. When
SQLConnect is called, the Driver Manager reads the data source specification that
matches the data source name (DSN) argument. The Driver Manager loads the
driver DLL listed in the data source specification. Each of the SQLConnect
arguments—data source name, user ID, and authentication ID—is passed to the
driver. The driver can read the data source specification in the ODBC.INI file, if
necessary, to obtain additional connection information.

If the application specifies a data source name in its call to SQLConnect but there
is no corresponding data source specification in the ODBC.INI file, the Driver

Manager locates the default data source specification, listed under the data source
name "[default]," and loads the corresponding driver DLL. The Driver Manager
passes the application-specified data source name to the driver. If there is no
default data source specification, the Driver Manager returns an error.

If the application does not specify a data source name, the Driver Manager
attempts to locate a default data source specification in the ODBC.INI file. If there
is a default data source specification, the Driver Manager loads the driver DLL
named in the default specification and passes "default" to the driver as the data
source name.

If the application does not specify a data source name and no default data source
specification exists, the Driver Manager returns an error.

SQLDataSources
SQLDataSources reads the [ODBC Data Sources] section of the ODBC.INI file
and returns the associated list of data source names. It also reads the data source
specifications that correspond to the names in the data sources section. If there is a
user-defined description associated with a data source specification,
SQLDataSources returns the description.

SQLDriverConnect
SQLDriverConnect is used as an alternative to SQLConnect for data sources
that require connection information other than the three arguments provided by
SQLConnect. The application specifies a data source name as part of the
connection string argument of SQLDriverConnect.

The connection string allows an application to pass all information required by a
driver to establish a connection to a specific data source. SQLDriverConnect can,
however, prompt the user for connection information. The Driver Manager
provides an optional dialog to allow the user to select a data source from a list of
the data source names from the ODBC.INI file. Once the Driver Manager has a
specific data source name, the Driver Manager loads the driver DLL that is listed
in the corresponding data source specification.

Once the driver is loaded, the driver can display a dialog to elicit implementation-
specific logon information from the user. This information depends on the
requirements of the data source; it typically consists of user ID and password. The
driver uses this information to replace or supplement information from the data
source specification in the ODBC.INI file, or to update the data source
specification. For example, after a successful connection, a driver might save the
user ID for later connections to the data source.

If the application supplies a data source name but there is no corresponding data
source specification in the ODBC.INI file, the Driver Manager locates the default
data source specification and loads the corresponding driver DLL. The Driver
Manager passes the application-supplied data source name to the driver as part of

the connection string.

If the application supplies a data source name but there is no corresponding data
source specification in the ODBC.INI file and no default data source specification
exists, the Driver Manager returns an error.

The ODBC SETUP Routine
The ODBC SETUP routine creates the ODBC.INI file when ODBC is first
installed. The SETUP routine prompts for information to create an initial set of
user-defined data source specifications. Once ODBC is installed, the user can run
the SETUP routine to add, modify and delete data source specification entries
from the file.

The SETUP routine uses a two-layer architecture: a top layer for generic
management tasks and a lower layer for driver-specific tasks. Microsoft supplies
the top layer, which supports installation, configuration, and management of
drivers.

A user can run SETUP.EXE to define a default driver or select one or more drivers
to install. Once the user selects a driver. the SETUP routine loads a driver-specific
setup DLL. This DLL, written by the driver developer, displays a configuration
dialog box that prompts the user for all relevant connection information.

Sample Application Code
XE "Application:sample code"§XE "Static SQL:example"§The following
subsections contain two ODBC examples that are written in the C language:

n An example that uses static SQL functions to create a table, add data to it, and
select the inserted data.

n An example of interactive ad-hoc query processing.

s6

Static SQL Example
The following example constructs SQL statements within the application. The
example includes embedded SQL calls for illustrative purposes.
#include "SQL.H"
#include <string.h>

#ifndef NULL
#define NULL 0
#endif

int print_err(HDBC hdbc, HSTMT hstmt);

int example1(server, uid, pwd)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
{
HENV henv;
HDBC hdbc;
HSTMT hstmt;

SDWORD id;
UCHAR name[51];
SDWORD namelen;
UWORD scale;

scale = 0;
/* EXEC SQL CONNECT TO :server USER :uid USING :authentication_string; */
SQLAllocEnv(&henv); /* allocate an environment handle */

SQLAllocConnect(henv, &hdbc); /* allocate a connection handle */

/* connect to database */
if (SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS)
 != SQL_SUCCESS)
 return(print_err(hdbc, SQL_NULL_HSTMT));

SQLAllocStmt(hdbc, &hstmt); /* allocate a statement handle */

/* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME varchar(50)); */
{
 UCHAR create[] ="CREATE TABLE NAMEID (ID integer, NAME varchar(50))";

/* execute the sql statement */
 if(SQLExecDirect(hstmt, create, SQL_NTS) != SQL_SUCCESS)
 return(print_err(hdbc, hstmt));
}
/* EXEC SQL COMMIT WORK; */
SQLTransact(hdbc, SQL_COMMIT); /* commit create table */

/* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name); */
{

UCHAR insert[]= "INSERT INTO NAMEID VALUES (?, ?)";

/* show the use of SQLPrepare/SQLExecute method */
/* prepare the insert*/
 if(SQLPrepare(hstmt, insert, SQL_NTS) != SQL_SUCCESS)
 return(print_err(hdbc, hstmt));
 SQLSetParam(hstmt, 1,SQL_C_LONG, SQL_INTEGER, (UDWORD)sizeof(UDWORD),
 scale, (PTR)&id, (SDWORD *)NULL);
 SQLSetParam(hstmt, 2,SQL_C_CHAR, SQL_VARCHAR, (UDWORD)sizeof(name),
 scale, (PTR)name, (SDWORD *)NULL);

/* now assign parameter values and execute the insert*/
 id=500;
 (void)strcpy(name, "Babbage");
 if(SQLExecute(hstmt) != SQL_SUCCESS)
 return(print_err(hdbc, hstmt));
}
/* EXEC SQL COMMIT WORK; */
SQLTransact(hdbc, SQL_COMMIT); /* commit inserts */

/* EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID; */
/* EXEC SQL OPEN c1; */
/* note that "declare c1 cursor for" is NOT specified by the app.
ExecuteDBL */
{
 UCHAR select[]= "select ID, NAME from NAMEID";
 if(SQLExecDirect(hstmt, select, SQL_NTS) != SQL_SUCCESS)
 return(print_err(hdbc, hstmt));
}
/* EXEC SQL FETCH c1 INTO :id, :name; */
/* use column binding with SQLSetParam */
SQLBindCol(hstmt, 1,SQL_C_LONG, (PTR)&id, (SDWORD)sizeof(SDWORD),
 (SDWORD *)NULL);
SQLBindCol(hstmt, 2,SQL_C_CHAR, (PTR)name, (SDWORD)sizeof(name),
 &namelen);

SQLFetch(hstmt); /* now execute the fetch */

/* finally, we should commit, discard hstmt, disconnect */
/* EXEC SQL COMMIT WORK; */
SQLTransact(hdbc, SQL_COMMIT); /* commit the transaction */

/* EXEC SQL CLOSE c1; */
SQLFreeStmt(hstmt, SQL_DROP); /* free the statement handle */

/* EXEC SQL DISCONNECT; */
SQLDisconnect(hdbc); /* disconnect from the database */

SQLFreeConnect(hdbc); /* free the connection handle */
SQLFreeEnv(henv); /* free the environment handle */

return(0);
}

Interactive Ad-Hoc Query Example
XE "Interactive ODBC example"§XE "Results:determining (example)"§The
following example illustrates how an application can determine the nature of the
result set prior to retrieving results.

#include "SQL.h"
#include <string.h>
#include <stdlib.h>

#define MAXCOLS 100

#define max(a,b) (a>b?a:b)
int print_err(HDBC hdbc, HSTMT hstmt);
int build_indicator_message(UCHAR * errmsg, PTR * data, SDWORD *len);
UDWORD display_length(SWORD coltype, UDWORD collen, UCHAR *colname);

example2(server, uid, pwd, sqlstr)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
UCHAR * sqlstr;
{
int i;
HENV henv;
HDBC hdbc;
HSTMT hstmt;
UCHAR errmsg[256];
UCHAR colname[32];
SWORD coltype;
SWORD colnamelen;
SWORD nullable;
UDWORD collen[MAXCOLS];
SWORD scale;
SDWORD outlen[MAXCOLS];
UCHAR * data[MAXCOLS];
SWORD nresultcols;
SDWORD rowcount;
SWORD rc;

SQLAllocEnv(&henv); /* allocate an environment handle */

SQLAllocConnect(henv, &hdbc); /* allocate a connection handle */

/* connect to database */
if (SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS)
 != SQL_SUCCESS)
 return(print_err(hdbc,SQL_NULL_HSTMT));

/* allocate a statement handle */
SQLAllocStmt(hdbc, &hstmt);

/* execute the SQL statement */
if(SQLExecDirect(hstmt, sqlstr, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc,hstmt));

/* see what kind of statement it was */
SQLNumResultCols(hstmt, &nresultcols);
if (nresultcols == 0) {
 /* no result columns, so must be non-select */
 /* check rowcount */
 SQLRowCount(hstmt, &rowcount);
 if (rowcount > 0) {
 /* rowcount was affected, so must have been update, insert or delete */
 (void)printf("%ld rows affected\n", rowcount);
 }
 else {
 /* rowcount == 0, so assume it was not an update/delete and

 therefore a DDL, Grant/Revoke, or Commit/Rollback.
 Of course this isn't necessarily so--it could be that the
 where clause in the update/delete did not match any rows */
 (void)printf("Operation successful\n");
 SQLTransact(hdbc, SQL_COMMIT);
 }
}
else { /* must have result rows */
 /* display column names */
 for (i=0; i<nresultcols; i++) {
 SQLDescribeCol(hstmt, i+1, colname, sizeof(colname),
 &colnamelen, &coltype, &collen[i], &scale, &nullable);
 /* assume there is a display_length function which computes
 correct length given the data type */
 collen[i] = display_length(coltype, collen[i], colname);
 (void)printf("%*.*s", collen[i], collen[i], colname);
 /* allocate memory to bind column */
 data[i] = (UCHAR *) malloc(collen[i]);
 /* bind columns to program vars, converting all types to CHAR */
 SQLBindCol(hstmt, i+1,SQL_C_CHAR, data[i], collen[i], &outlen[i]);
 }
 /* display result rows */
 while((rc=SQLFetch(hstmt))!=SQL_ERROR) {
 errmsg[0] = '\0';
 if (rc == SQL_SUCCESS_WITH_INFO) {
 for (i=0; i<nresultcols; i++)
 if (outlen[i] == SQL_NULL_DATA || outlen[i] >= collen[i])
 build_indicator_message(errmsg, (PTR *)&data[i], collen[i], &outlen[i], i);
 (void)printf("%*.*s ", outlen[i], outlen[i], data[i]);
 } /* for all columns in this row */
 (void)printf("\n%s", errmsg); /* print truncation messages, if any */
 } /* while rows to fetch */
} /* else select statement */

/* free data buffers */
for (i=0; i<nresultcols; i++) {
 (void)free(data[i]);
}

SQLFreeStmt(hstmt, SQL_DROP); /* free statement handle */
SQLDisconnect(hdbc); /* disconnect from database */
SQLFreeConnect(hdbc); /* free connection handle */
SQLFreeEnv(henv); /* free environment handle */

return(0);
}

/***
The following functions are given for completeness, but are
not relevant for understanding the database processing
nature of ODBC
***/

#define MAX_NUM_PRECISION 15
/* define max length of char string representation of number as:
 = max(precision) + leading sign + E + exp sign + max exp length
 = 15 + 1 + 1 + 1 + 2
 = 15 + 5
*/
#define MAX_NUM_STRING_SIZE (MAX_NUM_PRECISION + 5)

UDWORD display_length(coltype, collen, colname)
SWORD coltype;
UDWORD collen;
UCHAR * colname;
{
switch (coltype) {

 case SQL_VARCHAR:
 case SQL_CHAR:
 return(max(collen,strlen((char *)colname)));
 break;

 case SQL_FLOAT:
 case SQL_DOUBLE:
 case SQL_NUMERIC:
 case SQL_REAL:
 case SQL_DECIMAL:
 return(max(MAX_NUM_STRING_SIZE,strlen((char *)colname)));
 break;

 case SQL_INTEGER:
 return(max(10,strlen((char *)colname)));
 break;

 case SQL_SMALLINT:
 return(max(5,strlen((char *)colname)));
 break;

 default:
 (void)printf("Unknown datatype, %d\n", coltype);
 return(0);
 break;
 }
}

int build_indicator_message(errmsg, data, collen, outlen, colnum)
UCHAR * errmsg;
PTR * data;
UDWORD collen;
SDWORD * outlen;
UWORD colnum;
{
 if (*outlen == SQL_NULL_DATA) {
 (void)strcpy((char *)data, "NULL");
 *len=4;
 }
 else {
 sprintf((char *)errmsg+strlen((char *)errmsg),
 "%d chars truncated, col %d\n", *outlen-collen+1, colnum);
 *len=255;
 }
}

Testing and Debugging an Application
The ODBC developer's kit provides information for implementing Windows-based
ODBC applications. Windows development and debugging tools are available for
the development process. Refer to the Windows development kit for additional
information about testing and debugging your ODBC application.

s6
s6

Support
If you need technical support regarding the Microsoft ODBC Software
Development Kit, you have a wide choice of support offerings, including:

n Developer Services on CompuServe The developer services area is dedicated
to providing developers with access to peer support and information specific to
Microsoft development products. The Microsoft Developer Services area (GO
MSDS) offers:

n Developer Forums This set of public forums covers information on
Windows SDKs, languages, tools, and utilities from a developer’s
perspective. For example, the Client Server forum provides information
about ODBC development. Here, you can receive peer support and
Microsoft Support Engineer support for general API and function questions.

n Developer Knowledge Base An up-to-date reference tool containing
developer-specific technical information about Microsoft products, compiled
by Microsoft Product Support Engineers.

n Software Library A collection of text and graphics files, sample code, and
utilities. The entire library is keyword-searchable, and the files can be
downloaded for use locally.

n Confidential Technical Service Requests Microsoft offers private (fee-based
per incident) technical support to help solve more complex development
problems.

For more information about signing up for a CompuServe account, call (800)
848-8199. Ask for Operator 230 to receive a $15 free usage credit for sampling
the information located in the Microsoft Developer Services area.

n Microsoft Fee-Based Offerings Microsoft offers a wide range of fee-based
comprehensive support plans, one which meets your specific needs. Most plans
offer telephone and electronic Service Request support from knowledgable
Microsoft engineers and access to the Knowledge Base/Software library, all
with a Windows interface.

For more information about ODBC support options, please call Developer
Services at
(800) 227-4679.

Appendix A SQL Grammar

The following paragraphs list the constructs that are valid in a call to
SQLPrepare, SQLExecute, or SQLExecDirect. This grammar is not intended to
restrict the SQL syntax supported by a driver. Instead, it defines a base grammar.
A driver can extend this grammar to include the syntax for a specific data source.

To the left of each construct is an indicator that tells whether the construct is part
of the core grammar, the minimum grammar, or both.

Elements that are part of Integrity Enhancement Facility (IEF) and are separate
from the ANSI 1989 standard are presented in the following typeface and font,
distinct from the rest of the grammar:

table-constraint-definition

The set of data types defined in this grammar is not necessarily supported by a
specific data source; the use and syntax of each data type is database-dependent.

Element Core
Mini-
mum

 §alter-table-statement ::=
 ALTER TABLE base-table-name
 { ADD column-identifier data-type
 | ADD (column-identifier data-type [, column-identifier
data-type]...)
 }

X

create-index-statement ::=
 CREATE [UNIQUE] INDEX index-name
 ON base-table-name
 (column-identifier [ASC | DESC]
 [, column-identifier [ASC | DESC]]...)

X

Element Core
Mini-
mum

 §create-table-statement ::=
 CREATE TABLE base-table-name-1
 (column-element [, column-element] ...)

 column-element ::= column-definition | table-constraint-definition

 column-definition ::=
 column-identifier data-type

[DEFAULT default-value]

[column-constraint-definition
 [, column-constraint-definition]...]

 column-constraint-definition ::=
 NOT NULL
 | [UNIQUE | PRIMARY KEY]

 (column-identifier[,column-identifier]...)

 | [REFERENCES base-table-name-2 referenced-columns]

 | [CHECK (search-condition)]

 default-value ::= literal | NULL | USER

 table-constraint-definition ::=
 UNIQUE (column-identifier [, column-identifier] ...)

 | PRIMARY KEY (column-identifier [, column-identifier] ...)

 | CHECK (search-condition)

 | FOREIGN KEY referencing-columns
 REFERENCES base-table-name-2 referenced-columns

X

create-view-statement ::=
 CREATE VIEW viewed-table-name
 [(column-identifier [, column-identifier]...)]
 AS query-specification

X

delete-statement-positioned ::=
 DELETE FROM table-name WHERE CURRENT OF cursor-
name

X

delete-statement-searched ::=
 DELETE FROM table-name [WHERE search-condition]

X X

drop-index-statement ::=
DROP INDEX index-name

X

drop-table-statement ::=
DROP TABLE base-table-name

 [{ CASCADE | RESTRICT }]

X

Element Core
Mini-
mum

 §drop-view-statement ::=
DROP VIEW viewed-table-name

 [{ CASCADE | RESTRICT }]

X

grant-statement ::=
 GRANT {ALL | grant-privilege [, grant-privilege]... }
 ON table-name
 TO {PUBLIC | user-name [, user-name]... }

 grant-privilege ::=
 DELETE
 | INSERT
 | SELECT
 | UPDATE [(column-identifier [, column-identifier]...)]
 | REFERENCES [(column-identifier [, column-identifier]...)]

X

 insert-statement ::=
 INSERT INTO table-name [(column-identifier [, column-
identifier]...)]
 { query-specification | VALUES (insert-value [, insert-
value]...)}

 insert-value ::=
 | dynamic-parameter
 | literal
 | NULL
 | USER

X

revoke-statement ::=
 REVOKE {ALL | revoke-privilege [, revoke-privilege]... }
 ON table-name
 FROM {PUBLIC | user-name [, user-name]... }
 [{ CASCADE | RESTRICT }]

 revoke-privilege ::=
 DELETE
 | INSERT
 | SELECT

X

 | UPDATE
 | REFERENCES

Element Core
Mini-
mum

 §select-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 [GROUP BY column-name [, column-name]...]
 [HAVING search-condition]
 [UNION select-statement]...
 [order-by-clause]

X

select-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 [order-by-clause]

X

select-for-update-statement ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 FOR UPDATE OF column-name [, column-name]...

X

update-statement-positioned ::=
 UPDATE table-name
 SET column-identifier = {expression | NULL}
 [, column-identifier = {expression | NULL}]...
 WHERE CURRENT OF cursor-name

X

update-statement-searched
 UPDATE table-name
 SET column-identifier = {expression | NULL }
 [, column-identifier = {expression | NULL}]...
 [WHERE search-condition]

X X

Elements Used in SQL Statements
The following elements are used in the SQL statements listed previously .

Element Core
Mini-
mum

 §approximate-numeric-literal ::=mantissaEexponent
mantissa ::= exact-numeric-literal
exponent ::= [+|-] unsigned-integer

X X

approximate-numeric-type ::=
 FLOAT
 | DOUBLE PRECISION
 | REAL

X X

base-table-identifier ::= user-defined-name X X

base-table-name ::= [user-name.]base-table-identifier X

base-table-name ::=base-table-identifier X

between-predicate ::= expression [NOT] BETWEEN expression
AND expression

X

binary-literal ::= {implementation defined} X X

binary-type ::=
 BINARY (length)
 | VARBINARY (length)
 | LONG VARBINARY(length)

X X

character ::= {any character in the implementor's character set
except the
 newline indication}

X X

character-string-literal :: = '{character}...' X X

character-string-type ::=
 CHARACTER(length)
 | CHAR(length)
 | CHARACTER VARYING(length)
 | VARCHAR (length)
 | LONG VARCHAR(length)

X X

column-identifier ::= user-defined-name X X

column-name ::= [{table-name | correlation-name}.]column-
identifier

X

column-name ::= [table-name.]column-identifier X

comparison-operator ::= < | > | <= | >= | = | <> X X

comparison-predicate ::= expression comparison-operator
 {expression | (sub-query)}

X

comparison-predicate ::=
 expression comparison-operator expression

X

Element Core
Mini-
mum

 §correlation-name ::= user-defined-name X

cursor-name ::= user-defined-name X

data-type ::=
 binary-type
 | character-string-type
 | date-type
 | exact-numeric-type
 | approximate-numeric-type
 | time-type
 | timestamp-type

X X

date-literal ::= 'date-value' X X

date-separator ::= -

date-type ::= DATE X X

date-value ::=
 years-value date-separator months-value date-separator
 days-value

X X

days-value ::= digit digit X X

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 X X

dynamic-parameter ::= ? X X

exact-numeric-literal ::=
[+|-] { unsigned-integer [.unsigned-integer]

| unsigned-integer.

X X

| .unsigned-integer }

exact-numeric-type ::=
 DECIMAL(precision, scale)
 | INTEGER
 | SMALLINT
 | NUMERIC(precision, scale)
 | TINYINT
 | BIGINT
 | BIT
 precision ::= unsigned-integer
 scale ::= unsigned-integer

X X

exists-predicate ::= EXISTS (sub-query) X

Element Core
Mini-
mum

 §expression ::= term | expression {+|-} term X X

 term ::= factor | term {*|/} factor X X

 factor ::= [+|-]primary X X

 primary ::= column-name
 | dynamic-parameter
 | literal
 | set-function-reference
 | USER (2)
 | (expression)

X

 primary ::= column-name
 | dynamic-parameter
 | literal
 | (expression)

X

hours-value ::= digit digit X X

index-identifier ::= user-defined-name X

index-name ::= [user-name.]index-identifier X

in-predicate ::=
 expression [NOT] IN {(value {, value}...) | (sub-query)}
 value ::= literal | USER | dynamic-parameter

X

join-condition ::=
 ON search-condition

X X

keyword ::=
 (see list of reserved keywords)

X X

length ::= unsigned-integer X X

letter ::= lower-case-letter | upper-case-letter X X

like-predicate ::= column-name [NOT] LIKE pattern-value X X

 pattern-value ::= character-string-literal | dynamic-parameter |
USER

X

 pattern-value ::= character-string-literal | dynamic-parameter
(in character-string-literal, the percent character ('%') matches 0 or
more of any character; the underscore character ('_') matches 1 or 0
characters)

X

literal ::= character-string-literal | numeric-literal X X

lower-case-letter ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z

X X

minutes-value ::= digit digit X X

months-value ::= digit digit X X

null-predicate ::= column-name IS [NOT] NULL X X

Element Core
Mini-
mum

 §numeric-literal ::= exact-numeric-literal | approximate-numeric-
literal

X X

order-by-clause ::= ORDER BY sort-specification [, sort-
specification]...
 sort-specification ::= {unsigned-integer | column-name } [ASC |
DESC]

X X

outer-join ::= table-reference LEFT OUTER JOIN table-reference
join-condition
 join\-condition ::= ON search-condition

(Notes: For outer joins, search-condition must contain only the join
condition between the specified table-references. The outer-join
syntax must be placed within an escape clause.)

predicate ::=
 between-predicate | comparison-predicate | exists-predicate | in-
predicate |
 like-predicate | null-predicate | quantified-predicate

X

predicate ::=
 comparison-predicate | like-predicate | null-predicate

X

quantified-predicate ::= expression comparison-operator {ALL |
ANY} (sub-query)

X

referenced-columns ::= (column-identifier [, column-identifier]...) X

referencing-columns ::= (column-identifier [, column-identifier]...) X

search-condition ::=
 boolean-term [OR search-condition]
 boolean-term ::= boolean-factor [AND boolean-term]
 boolean-factor ::= [NOT] boolean-primary

X X

 boolean-primary ::= predicate | (search-condition)

seconds-fraction ::= digit digit digit [digit digit digit] X X

seconds-value ::= digit digit X X

select-list ::= * | select-sublist [, select-sublist]... X X

 select-sublist ::= expression | {table-name | correlation-name}.* X

 select-sublist ::= expression X

separator ::=
 The blank character or an implementation-defined end-of-line
indicator.

X X

Element Core
Mini-
mum

 §set-function-reference ::= COUNT(*) | distinct-function | all-function
 distinct-function ::=
 {AVG | COUNT | MAX | MIN | SUM} (DISTINCT
column-name)
 all-function ::=
 {AVG | MAX | MIN | SUM} (expression)

X

SQL-escape-clause ::=
 standard-SQL-escape-initiator extended-SQL-text standard-
SQL-
 escape-terminator

 | extended-SQL-escape-prefix extended-SQL-text extended-
SQL-
 escape-terminator

 standard-SQL-escape-initiator ::= standard-SQL-escape-prefix
SQL-
 escape-identification,

 standard-SQL-escape-prefix ::= --*(
 extended-SQL-escape-prefix ::= {

 standard-SQL-escape-terminator ::= --*)
 extended-SQL-escape-terminator ::= }

 SQL-escape-identification ::= SQL-escape-vendor-clause

 SQL-escape-vendor-clause ::=
 VENDOR(Microsoft), PRODUCT(ODBC)

X X

sub-query ::=
 SELECT [ALL | DISTINCT] select-list
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 [GROUP BY column-name [, column-name]...]
 [HAVING search-condition]

X

table-identifier ::= user-defined-name X X

table-name ::= [user-name.]table-identifier X

table-name ::=table-identifier X

table-reference ::= table-name [correlation-name] X

table-reference ::= table-name X

time-literal ::='time-value' X X

Element Core
Mini-
mum

 §time-separator ::= :

time-type ::= TIME X X

time-value ::=
 hours-value time-separator minutes-value time-separator
 seconds-value

X X

timestamp-literal ::='date-value:time-value.[seconds-fraction]' X X

timestamp-type ::= TIMESTAMP X X

token ::= delimiter-token | non-delimiter-token
 delimiter-token ::=
 character-string-literal
 | , | (|) | < | > | . | : | = | * | + | - | / | <> | >= | <= | ?
 non-delimiter-token ::=
 keyword
 | numeric-literal
 | user-defined-name

X X

unsigned-integer ::= {digit}... X X

upper-case-letter ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z

X X

user-defined-name ::=
 letter[digit | letter | _]...

X X

user-name ::= user-defined-name X X

viewed-table-identifier ::= user-defined-name X

viewed-table-name ::= [user-name.]viewed-table-identifier X

years-value ::= digit digit digit digit X X

List of Reserved Keywords
The following words are reserved for use in ODBC function calls. These words
do not constrain the minimum SQL grammar; however, to ensure compatibility
with drivers that support the core SQL grammar, applications should avoid using
any of these keywords.

ABSOLUTE
ADA
ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BIT
BIT_LENGTH
BY
CASCADE
CASCADED
CASE
CAST
CATALOG
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LEN
GTH
CHECK
CLOSE
COALESCE
COBOL
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
COUNT

CREATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMEST
AMP
CURSOR
DATE
DAY
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFERRABLE
DEFERRED
DELETE
DESC
DESCRIBE
DESCRIPTOR
DIAGNOSTICS
DICTIONARY
DISCONNECT
DISPLACEMENT
DISTINCT
DOMAIN
DOUBLE
DROP
ELSE
END
END-EXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FORTRAN
FOUND

FROM
FULL
GET
GLOBAL
GO
GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IGNORE
IMMEDIATE
IN
INCLUDE
INDEX
INDICATOR
INITIALLY
INNER
INPUT
INSENSITIVE
INSERT
INTEGER
INTERSECT
INTERVAL
INTO
IS
ISOLATION
JOIN
KEY
LANGUAGE
LAST
LEFT
LEVEL
LIKE
LOCAL
LOWER
MATCH
MAX
MIN
MINUTE
MODULE
MONTH
MUMPS
NAMES
NATIONAL

NCHAR
NEXT
NONE
NOT
NULL
NULLIF
NUMERIC
OCTET_LENGTH
OF
OFF
ON
ONLY
OPEN
OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS
PARTIAL
PASCAL
PLI
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
RESTRICT
REVOKE
RIGHT
ROLLBACK
ROWS
SCHEMA
SCROLL
SECOND
SECTION
SELECT
SEQUENCE
SET
SIZE
SMALLINT
SOME

SQL
SQLCA
SQLCODE
SQLERROR
SQLSTATE
SQLWARNING
SUBSTRING
SUM
SYSTEM
TABLE
TEMPORARY
THEN
TIME
TIMESTAMP
TIMEZONE_HOUR
TIMEZONE_MINUT
E
TO
TRANSACTION
TRANSLATE
TRANSLATION
TRUE
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USAGE
USER
USING
VALUE
VALUES
VARCHAR
VARYING
VIEW
WHEN
WHENEVER
WHERE
WITH
WORK
YEAR

Index

µANSI standards, 23
Application, 17
sample code, 67
Arguments
variable-length data and, 27
Autocommit, setting, 36
Batched SQL statements, results, 53
Binding result columns, 25, 40
Call level interface, 25
CLI, 25
Concurrency control, setting, 45
Configuration
multiple-tier, 19
single-tier, 18
Connection handles, 28
and transactions, 22
Connections
establishing, 35
terminating, 55
Data source
listing, 36
Data types, 29
Database environment, 18
Declare Cursor (SQL statement), 41
DELETE (SQL statement)
positioned, 40
DELETE, positioned, 41
Developer's Kit, contents, 57
Direct execution, 40
Direct invocation (ANSI), 23
Driver, 17
types, 18
Driver Manager, 17
communicating with, 35
Dynamic SQL, 24
Embedded SQL (ANSI), 23
Errors, retrieving, 52
Escape sequence
data types, 46
outer joins, 49
translating to SQL text, 53

Handles
connection and statement, 28
releasing statement, 55
requesting statement, 40
Installing ODBC, 59
Interactive ODBC example, 70
Interoperability, 15, 25
Large data values
sending, 44
Module language, 23
ODBC, 15
components, 16
function call types, 15
functionality sets, 21
functions, general information, 27
installing, 59
Parameters
markers, 24
obtaining data type information, 53
specifying arrays of, 44
Prepared execution, 40
Prepared SQL statements, advantages, 41
Processing results, 31
Results
assigning storage for, 40
binding, 40
determining (example), 70
determining characteristics, 51
processing, 31, 51
retrieving data, 51
Return codes, 30
Rowcount, setting maximum, 36
Scrollable cursors, overview, 45
SELECT (SQL statement)
storing results, 51
SQL
references for additional information, 14
SQL statements
batched processing, 53
dynamic, 24
embedded, 23
executing, 40
positioned UPDATE and DELETE, 40, 41
preparing and executing, 39
processing, 29
processing asynchronously, 46

processing results, 51
static, 24
SQL, overview, 23
SQL_ERROR return code, 30
SQL_INVALID_HANDLE return code, 30
SQL_NO_DATA_FOUND return code, 30
SQL_NTS, 27
SQL_NULL_DATA, 27
SQL_SUCCESS return code, 30
SQL_SUCCESS_WITH_INFO return code, 30
SQL2, overview, 24
SQLBindCol, 40
SQLCancel
terminating statement processing, 55
SQLConnect
compared to SQLDriverConnect, 37
SQLDataSources, 36
SQLDescribeCol
determining result characteristics, 51
retrieving data types, 29
SQLDescribeParam, 53
SQLDisconnect
closing a connection, 55
SQLDriverConnect, 37
SQLError, 30, 52
checking statement cancellation, 55
SQLExecDirect, 41
submitting SQL statements, 29
SQLExtendedFetch, 46
SQLFetch
retrieving result rows, 51
SQLFreeConnect
releasing a connection handle, 55
SQLGetCursorName, 40
SQLGetInfo, 36
SQLGetTypeInfo, 36
retrieving supported data types, 29
SQLNativeSql, 53
SQLNumResultCols
determining result characteristics, 51
SQLParamOptions, 44
SQLPrepare, 40
submitting SQL statements, 29
SQLRowCount
determining result characteristics, 51
SQLSetConnectOption, 36

SQLSetCursorName, 40
SQLSetParam, 40
SQLSetPos, 46
SQLSetStmtOption, 36
SQLTransact
terminating a transaction, 55
Statement handles, 28
releasing, 55
requesting, 40
Statements, terminating, 55
Static SQL, 24
example, 67
Stored procedures, processing results, 53
Timeout values, setting, 36
Transactions, 22
setting autocommit option, 36
terminating, 55
UPDATE (SQL statement)
positioned, 40
UPDATE, positioned, 41
Variable-length data, in arguments, 27

	Application Programmer's Guide
	Contents
	Introduction
	The ODBC (Open Database Connectivity) interface is a C programming language interface for database connectivity. The ODBC Application Programmer's Guide is designed to address the following three questions:
	The guide is organized into the following chapters:
	Appendix A contains SQL syntax information.
	For information about the syntax and semantics of each ODBC function, refer to the ODBC API Reference. For information about driver development, refer to the ODBC Driver Developer's Guide.
	s11

	Audience
	The ODBC software development kit is available for use with the C language in a Windows environment. Use of the ODBC interface spans four areas of knowledge: SQL statements, ODBC function calls, C programming, and Windows programming. This manual assumes the following expertise:
	s11

	Document Conventions
	This manual uses the following typographic conventions.
	s11

	Where to Find Additional Information
	XE "SQL:references for additional information"§For more information about driver development, refer to the ODBC Driver Developer's Guide, included in the ODBC Developer's Kit.
	For more information about SQL, the following standards are available:
	In addition to standards and vendor-specific SQL guides, there are many books that describe SQL, including:

	1 ODBC Theory of Operation
	XE "ODBC"§The Open Database Connectivity (ODBC) interface allows applications to access data from database management systems (DBMS).
	XE "Interoperability"§The interface permits maximum interoperability—a single application can access diverse database management systems. You can develop, compile, and ship an application without targetting a specific DBMS. Users can then add modules called database drivers that link your application to their choice of database management systems.
	The ODBC interface defines the following:
	The interface is flexible:
	XE "ODBC:function call types"§The ODBC interface provides two types of function calls:
	An application can check for availability of functions at run-time.
	The following code fragment shows one way to use the ODBC interface to submit an SQL CREATE TABLE statement:
	s11

	Note that an application could obtain the value of sqltext from a dialog box at run time.
	The following sections describe the ODBC architecture in more detail.
	s11

	ODBC Components
	The following paragraphs describe components within the ODBC architecture. This information is provided for reference purposes; the boundaries between the three underlying components are transparent to an application.
	XE "ODBC:components"§The ODBC architecture has four components:
	The Driver Manager and driver appear to an application as one unit that processes ODBC function calls. The following diagram shows the relationship between the four components. The following paragraphs describe each component in more detail.
	s11

	Application
	XE "Application"§An application that uses the ODBC interface performs the following tasks:
	An application can provide a variety of features external to the ODBC interface, including spreadsheet capabilities, online transaction processing, and report generation; the application may or may not interact with users.

	Driver Manager
	XE "Driver Manager"§The Driver Manager, provided by Microsoft, is a dynamically-linked library (DLL) with an import library. The primary purpose of the Driver Manager is to load drivers. (The following section describes drivers.) In addition to loading drivers, the Driver Manager performs the following:

	Driver
	XE "Driver"§A driver is a DLL that implements ODBC function calls and interacts with a data source
	A driver is loaded by the Driver Manager when the application calls the SQLConnect or SQLDriverConnect function.
	A driver performs the following tasks in response to ODBC function calls from an application:

	Data Source
	An application establishes a connection with a particular vendor's DBMS product on a particular operating system, accessible by a particular network. For example, the application might establish connections to:
	s11

	Types of Drivers
	XE "Driver:types"§ODBC defines two types of drivers:
	One system can contain both types of configurations.
	The following paragraphs describe single-tier and multiple-tier configurations in more detail.
	Single-Tier Configuration
	XE "Configuration:single-tier"§In a single-tier implementation, the database is a file and is processed directly by the driver. The driver processes SQL statements and retrieves information from the database. One example of a single-tier implementation is a driver that manipulates an xBase file.
	The set of SQL statements that you can submit may be limited by a single-tier driver. The minimum set of SQL statements that must be supported by a single-tier driver is defined in Appendix A, "SQL Grammar."
	The following diagram shows two types of single-tier configurations.
	s11

	Multiple-Tier Configuration
	XE "Configuration:multiple-tier"§In a multiple-tier configuration, the driver sends SQL requests to a server that processes SQL requests.
	The application, driver, and Driver Manager reside on one system, typically called the client. The database and the software that controls access to the database typically reside on another system, typically called the server.
	One type of multiple-tier configuration is a gateway architecture where the driver passes SQL requests to a gateway process. The gateway process sends the requests to the data source.
	The following diagram shows three types of multiple-tier configurations. From the perspective of an application, all three configurations are identical.
	s11

	Network Example
	The following diagram shows how each of the preceding configurations could appear in a single network. The diagram includes examples of the types of DBMS that could reside in a network.
	s11

	Matching an Application to a Driver
	XE "ODBC:functionality sets"§One of the strengths of the ODBC interface is interoperability: you can create your ODBC application without targeting a specific data source. Users can add drivers to your application after you compile and ship the application.
	From an application standpoint, it would be easiest if every driver and data source supported the same set of ODBC function calls and SQL statements. However, drivers and associated data sources provide a varying range of functionality. Therefore, the ODBC interface defines conformance levels, which determine the functions and SQL statements supported by a driver.
	ODBC Function Call Support
	Each ODBC driver supports a set of core ODBC functions and, optionally, one or more extended functions or data types, defined as extensions:
	For a list of functions and their conformance levels, refer to the ODBC API Reference, Chapter 1, "ODBC Function Summary."
	s11

	SQL Statement Support
	Each ODBC driver supports one of two sets of SQL statements:
	In addition to the core and minimum sets, ODBC defines SQL syntax for data literals, outer joins, and SQL scalar functions. For more information about SQL statement sets, refer to Appendix A, "SQL Grammar."
	The grammar listed in Appendix A is not intended to restrict the set of statements that can be supported. A driver can support additional syntax that is unique to the associated data source.

	How to Select a Set of Functionality
	The decision to use a set of functionality depends on:
	To communicate with a specific driver and data source, select the appropriate functionality set for the driver. If you want additional interoperability, the following tables may help you select a functionality set.
	Chapters 3 through 9 describe how to develop an application that uses ODBC functions. The ODBC API Reference lists all ODBC functions in alphabetic order.

	Connections and Transactions
	Before your application can communicate with a data source, you must establish a connection. If the connection is successful, the driver returns a connection handle (a pointer to a storage area) for use in subsequent ODBC calls.
	The ODBC interface allows you to request multiple connections for one or more data sources. Each connection is considered a separate transaction space.
	An active connection can have one or more statement processing streams.
	XE "Transactions"§XE "Connection handles:and transactions"§Each active connection maintains a transaction in progress. You can request that the results of each SQL statement be automatically committed upon completion or you can choose to explicitly request commit or rollback operations. When an application commits or rolls back a transaction, the driver resets all statement requests associated with the connection.

	2 A Short History of SQL
	XE "SQL, overview"§This chapter provides a brief history of SQL and describes programmatic interfaces to SQL. For more information about SQL, refer to the references listed in the introduction.
	s11

	SQL Background Information
	SQL, or Structured Query Language, is a widely accepted industry standard for data definition, data manipulation, data management, access protection, and transaction control. SQL originated from the concept of relational databases and uses tables, indexes, keys, rows, and columns to identify storage locations.
	Many types of applications use SQL statements to access data. Examples include ad-hoc query facilities, decision support applications, report generation utilities, and online transaction processing systems.
	SQL is not a complete programming language in itself. For example, there are no provisions for flow control.
	One of the challenges during the evolution of SQL has been to provide a standard access to SQL database management systems from traditional programming languages like C, COBOL, and PL/1.
	s11

	ANSI 1989 Standard
	XE "ANSI standards"§SQL was first standardized by the American National Standards Institute (ANSI) in 1986. The first ANSI standard defined a language that was independent of any programming language.
	XE "Module language"§XE "Embedded SQL (ANSI)"§XE "SQL statements:embedded"§XE "Direct invocation (ANSI)"§The first ANSI standard has since been refined; the current standard is ANSI 1989. The ANSI 1989 standard defines three programmatic interfaces to SQL:
	Neither the module language nor the direct invocation approach has been widely implemented; most implementations use the embedded approach.
	Embedded SQL
	Embedded SQL allows you to place SQL statements into a program that is written in a traditional programming language (for example, COBOL or Pascal). You delimit SQL statements with specific starting and ending statements defined by the host language. The resulting program contains source code from two languages—SQL and the host language.
	When you compile a program with embedded SQL statements, you use a precompiler to compile the SQL statements. The precompiler replaces the SQL statements with equivalent host language source code. After you precompile the program, you use your host language compiler to compile the resulting source code.
	XE "Static SQL"§XE "SQL statements:static"§The term static SQL encompasses the basic features of embedded SQL. Static SQL has the following characteristics:
	Static SQL is efficient; you can precompile SQL statements prior to execution and run them multiple times without recompiling the statements. The application is bound to a particular DBMS when it is compiled.
	Static SQL cannot defer the definition of the SQL statement until run-time. Therefore, static SQL is not the best option for client-server configurations or for ad-hoc requests.

	Future ANSI Specifications
	XE "SQL2, overview"§SQL2 is the most recent ANSI specification, and is in the final stages of becoming an international standard. SQL2 defines three levels of functionality: entry, intermediate, and full. SQL2 adds many new features, including:
	Dynamic SQL
	XE "Dynamic SQL"§XE "SQL statements:dynamic"§Dynamic SQL allows an application to generate and execute SQL statements at run time.
	You can prepare dynamic SQL statements. When you prepare a statement, the database environment generates an access plan and a description of the result set. You can then execute the statement multiple times with the previously-generated access plan, which minimizes processing overhead.
	XE "Parameters:markers"§You can include parameters in dynamic SQL statements. Parameters function in much the same way as host variables in embedded SQL. Prior to execution, you assign values to the place held by each parameter. Unlike static SQL, parameters do not require length or data type definition prior to program compilation.
	Dynamic SQL is not as efficient as static SQL, but is very useful if an application requires:
	s11

	Call Level Interface
	XE "Call level interface"§XE "CLI"§A Call Level Interface (CLI) for SQL consists of a library of function calls that support SQL statements. The ODBC interface is a CLI.
	The ODBC interface is designed to be used directly by application programmers, and not as the target of a preprocessor for embedded SQL.
	A CLI is very straightforward to programmers who are familiar with function libraries. The function call interface does not require host variables or other embedded SQL concepts.
	A CLI does not require a precompiler. To submit an SQL request, you place an SQL command into a text buffer and pass the buffer as a parameter in a function call. CLI functions provide declarative capabilities and request management. You obtain error information as you would for any function call—by return code or error function call, depending on the CLI.
	XE "Binding result columns"§A CLI allows you to specify result storage before or after the results are available. This allows you to determine what the results are and take appropriate action without being limited to a specific set of data structures that were defined prior to the request. Deferral of storage specification is called late binding of variables.
	The concept of a CLI is very useful in a client/server environment; the interface between the application and the data source can be designed to minimize network traffic.
	A CLI is typically used for dynamic access because applications that use a CLI are often driven by user input. The CLI defined by the X/Open and SQL Access Group—and therefore the ODBC interface—are similar to the dynamic embedded version of SQL described by in X/Open and SQL Access Group draft specification "Structured Query Language (SQL)" (1991).
	For a comparison between embedded SQL statements and the ODBC call level interface, refer to the ODBC API Reference, Appendix E, “Comparison Between Embedded SQL and ODBC .”
	Interoperability
	XE "Interoperability"§Interoperability for call-level interfaces can be addressed in the following ways:
	The second approach allows drivers to shield clients from database functionality differences, database protocol differences, and network differences. ODBC follows the second approach. ODBC can take advantage of standard database protocols and network protocols, but does not require the use of a standard database protocol or network protocol.

	3 Guidelines for Calling ODBC Functions
	This chapter describes characteristics of ODBC functions and discusses how to perform the following tasks:
	s/11

	Calling ODBC Functions
	The following paragraphs describe general characteristics of ODBC functions.
	General Information
	XE "ODBC:functions, general information"§Each ODBC function name starts with the prefix SQL. Each function accepts one or more arguments. Arguments are defined for input (to the driver) or output (from the driver).
	The initialization file must contain driver location information. For additional information about initialization file contents, refer to Chapter 9, “Constructing an ODBC Application.”
	C programs that call ODBC functions must use header files that define constants, type definitions, and function prototypes for all ODBC functions. To view the SQL.H and SQLEXT.H header files, refer to the ODBC API Reference, Appendix F, “ C Header Files.”
	For a list of valid data types, refer to the ODBC API Reference, Appendix D, “Data Type Definitions.”

	Variable Length Data in Function Arguments
	XE "Variable-length data, in arguments"§XE "Arguments:variable-length data and"§All function arguments that point to variable length data (for example, column names and parameter values) have an associated length argument.
	You can specify one of the following lengths XE "SQL_NULL_DATA"§XE "SQL_NTS"§for each input argument:
	Nulls are always valid for output pointers, unless otherwise noted in the syntax description for a function.
	The application is responsible for allocating memory for output buffers. Therefore, the application must indicate the length of each buffer. On output, the driver returns the actual length of data that was stored. For each output argument there are two length arguments:
	When converting a binary (hexadecimal) SQL data type to a character format, the output length will always be an even number of bytes.
	There may be instances—for example, if the buffer is very large—when you would like to use a null pointer for the output length, then search for the termination character in the buffer. If you use null terminated strings, you can pass a null pointer for the output length, in which case the driver does not return the length. This is not recommended, however, because the driver cannot return a truncation indicator if you use a null pointer.
	For more information about error names and other predefined constants, refer to the header file listed in the ODBC API Reference, Appendix F, “ C Header Files.”

	Environment, Connection, and Statement Handles
	XE "Handles:connection and statement"§XE "Connection handles"§XE "Statement handles"§To communicate with a data source, an application establishes a connection with the driver. The driver returns handles that reference data structures that store information pertinent to the ODBC environment, a specific connection to an instance of a data source, or a statement being sent to an instance of a data source. These handles are required by most ODBC functions.
	the ODBC interface defines three types of handles:
	For more information about requesting a connection handle, refer to Chapter 5, “Establishing Connections.” For more information about requesting a statement handle, refer to Chapter 6, “Preparing and Executing an SQL Statement.”

	Submitting SQL Statements
	XE "SQLPrepare:submitting SQL statements"§XE "SQLExecDirect:submitting SQL statements"§XE "SQL statements:processing"§To submit an SQL statement, you pass it as an argument in an ODBC function call. For more information about submitting SQL statements, refer to Chapter 6, “Preparing and Executing an SQL Statement."
	The application is responsible for submitting correct SQL syntax.
	For a description of grammar that is valid in ODBC function calls, refer to Appendix A, “SQL Grammar.” For a comparison between embedded SQL statements and ODBC function calls, refer to the ODBC API Reference, Appendix E, “Comparison Between Embedded SQL and ODBC.”
	Data Type Support
	XE "Data types"§The ODBC interface defines two sets of data types:
	Each ODBC data type has a corresponding C data type. These data types are defined in the ODBC header files. For a list of ODBC data types, their meanings, and how they correspond to C data types, refer to the ODBC API Reference, Appendix D, “Data Type Definitions.” For information about the header files, refer to the ODBC API Reference, Appendix F, "C Header Files."
	XE "SQLDescribeCol:retrieving data types"§To retrieve the underlying data type for a column, call SQLDescribeCol.
	XE "SQLGetTypeInfo:retrieving supported data types"§The ODBC interface provides support for any data type from any data source if you retrieve the type code for the data. If you access extended functions, call SQLGetTypeInfo to retrieve a description of data types supported by the data source.

	Handling Results
	XE "Return codes"§XE "SQL_SUCCESS return code"§XE "SQL_SUCCESS_WITH_INFO return code"§XE "SQL_NO_DATA_FOUND return code"§XE "SQL_ERROR return code"§XE "SQL_INVALID_HANDLE return code"§When you call an ODBC function, the driver returns a predefined status code that indicates success or failure. The status codes indicate success, warning, or failure status. The application can then call SQLError, if necessary, to retrieve additional information. The following table lists return constants.
	Handling Errors
	XE "SQLError"§If an ODBC function other than SQLError returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, call SQLError to obtain additional information. Additional error or status information can come from one of two sources:
	The driver buffers errors or messages for only one ODBC call at a time; a subsequent call overwrites existing error information.
	SQLError never returns error information about itself.
	If you are familiar with SQLSTATE in the X/Open and SQL Access Group "Structured Query Language (SQL)" CAE draft specification (1991), note that the information provided by SQLError is in the same format as that provided by SQLSTATE.
	For more information about error codes, refer to the ODBC API Reference, Appendix A, “ODBC Error Codes.”

	Processing Result Sets
	You can use the following mechanisms to retrieve information about results:
	XE "Processing results"§XE "Results:processing"§If the operation does not affect or return rows, such as an SQL GRANT or REVOKE operation, check the return code to determine the outcome of the operation. If the operation affected rows, obtain the row count to determine the outcome of the operation. If your request was a SELECT query, check the number of result columns and data descriptions to gain information about the result set.
	For more information about retrieving data, refer to Chapter 7, “Retrieving Results.”

	4 Basic Application Steps
	To use ODBC functions, perform the following steps:
	The following diagram shows an example of the basic command flow for connecting to a data source, processing SQL statements, and disconnecting from the data source. The words starting with SQL are ODBC function call names.
	s11

	Depending on the types of requests your application makes, you may decide to use additional ODBC functions.
	Additional Information
	Chapters 5 through 8 describe how to use ODBC functions that provide these services.
	The ODBC API Reference lists syntax and usage information for each ODBC function.

	5 Establishing Connections
	XE "Connections:establishing"§This chapter describes how to establish a connection to a target data source.
	s11

	Using the Driver Manager
	XE "Driver Manager:communicating with"§The Driver Manager is a DLL that provides access to ODBC drivers. You do not need to call an ODBC function to initiate communication with the Driver Manager; the Driver Manager is automatically involved in all ODBC calls.
	Whenever you call an ODBC function, the Driver Manager performs one of the following actions:
	s11

	Initializing the ODBC Environment
	The SQLAllocEnv function initializes the ODBC interface for use by an application. SQLAllocEnv must be called prior to any other ODBC function:
	These steps needs to be performed only once by an application; SQLAllocEnv supports one or more connections to data sources.

	Establishing a Connection to a Data Source
	First, request a connection handle:
	Next, specify a specific driver and data source. Pass the following information to the driver in a call to SQLConnect:
	The Driver Manager establishes a connection with the specified data source and returns connection status to the application.

	Accessing ODBC Functions
	The ODBC interface defines two types of conformance:
	If the driver does not support Level 1 or Level 2 functionality, it must return "None" for ODBC conformance, but may support one or more extended functions. An application can call SQLGetFunctions to determine if the driver supports a particular function.
	The ODBC API Reference, Chapter 1, "ODBC Function Summary," lists conformance levels for all functions. In addition, all function descriptions in the reference manual indicate whether a function is a core function or a level 1 or level 2 extension.
	In addition, you can call SQLGetInfo to determine the conformance level supported by a driver.

	Extensions for Establishing Connections
	Several extended functions support the connection process. The following table lists these functions in alphabetic order. The paragraphs following the table describe SQLDriverConnect in more detail.XE "SQLDataSources"§XE "Data source:listing"§XE "Timeout values, setting"§XE "Rowcount, setting maximum"§XE "Autocommit, setting"§XE "Transactions:setting autocommit option"§XE "SQLSetConnectOption"§XE "SQLSetStmtOption"§XE "SQLGetInfo"§XE "SQLGetTypeInfo"§
	s11
	s11

	SQLDriverConnect
	XE "SQLConnect:compared to SQLDriverConnect"§XE "SQLDriverConnect"§The SQLDriverConnect function allows you to request that the driver and Driver Manager obtain login information from the user prior to establishing a connection. SQLDriverConnect uses a connection string to connect to a driver and data source. This function is useful if the data source requires information that cannot be supplied in the standard SQLConnect function.
	A connection string contains the following information:
	The connection string is a more flexible interface than the data source name, user ID, and password used by SQLConnect. You can use the connection string for multiple levels of logon authorization or to convey other data source-specific connection information.
	You can call SQLDriverConnect in two ways:
	Once the driver establishes a connection, SQLDriverConnect returns a connection string that you can use to call SQLDriverConnect again later, if necessary.
	The Driver Manager displays the following dialog if the application calls SQLDriverConnect and requests that the user be prompted for information.
	s11

	Upon request from the application, the driver displays a dialog similar to the following to retrieve login information.

	6 Preparing and Executing an SQL Statement
	XE "SQL statements:preparing and executing"§Your application can submit the SQL statements listed in Appendix A, “SQL Grammar” (or data source-specific SQL statements) in ODBC function calls. The list in Appendix A is similar to the set of SQL statements that can be prepared in embedded SQL.
	s11

	The following diagram shows a sample sequence of ODBC commands that can be used for SQL statement processing. For more information about statement sequencing, refer to the ODBC API Reference, Appendix B, "ODBC State Transition Table."
	Note that any valid SQL statement can be executed with either the SQLPrepare and SQLExecute sequence or the SQLExecDirect command, depending on whether the you plan to submit the SQL statement once or more than once. This functionality differs from embedded SQL, since both statements with and without cursors are executed the same way.
	Note also that there are other valid calling sequences that include functions such as SQLBindCol and SQLGetData.
	Sample Flow Control
	s11

	This chapter describes ODBC functions that support SQL statement processing. For information about results, refer to Chapter 7, “Retrieving Results.”
	s11

	Allocating a Statement Handle
	XE "Statement handles:requesting"§XE "Handles:requesting statement"§Allocate a statement handle as follows:
	The driver allocates a statement handle and returns the handle to your application.
	s11

	Assigning Storage for Results (Binding)
	XE "Binding result columns"§XE "Results:binding"§XE "Results:assigning storage for"§You can assign storage for results before or after you execute an SQL statement. XE "SQLBindCol"§To allocate storage for a column of data, call SQLBindCol and include the following information:
	s11

	Choosing Prepared or Direct Execution
	XE "Prepared execution"§XE "Direct execution"§XE "SQL statements:executing"§You have two execution options when you send an SQL request:
	These two options differ from the prepared and immediate options in embedded SQL. For a comparison between ODBC functions and embedded SQL, refer to the ODBC API Reference, Appendix E, "Comparison Between Embedded SQL and ODBC."
	Prepared Execution
	If you plan to submit the SQL statement multiple times, possibly with intermediate changes to parameter values, prepare the request as follows.
	XE "SQLPrepare"§XE "SQLSetParam"§XE "UPDATE (SQL statement):positioned"§XE "DELETE (SQL statement):positioned"§XE "SQL statements:positioned UPDATE and DELETE"§XE "SQLGetCursorName"§XE "SQLSetCursorName"§Issue the following two calls in any order after SQLAllocStmt and prior to SQLExecute:
	If your request requires a cursor name, as in positioned update or delete (UPDATE WHERE CURRENT OF cursor-name or DELETE WHERE CURRENT OF cursor-name), you can allow the driver to generate the cursor name or you can call SQLSetCursorName to associate a cursor name with your prepared request.
	After setting the cursor name with SQLSetCursorName or implicitly obtaining a cursor name by executing a SELECT statement, you can call SQLGetCursorName to retrieve the cursor name. (The following subsection, “Performing Positioned Updates and Deletes,” contains additional information about positioned updates and deletes.)
	Set parameter values for all parameter markers, and then call SQLExecute to submit the request.
	XE "Declare Cursor (SQL statement)"§If you do not set new parameter values prior to a subsequent call to SQLExecute, the driver reuses existing parameter values.
	XE "Prepared SQL statements, advantages"§The prepare and execute approach provides the following advantages:

	Direct Execution
	XE "SQLExecDirect"§If you do not require information about the result set prior to completion of your SQL request and you plan to submit a statement only once, you can call SQLExecDirect to submit the SQL statement.
	s11

	Processing Positioned Updates and Deletes
	A positioned update or positioned delete performs an update or delete operation, respectively, based on cursor position.
	XE "UPDATE, positioned"§XE "DELETE, positioned"§XE "SQL statements:positioned UPDATE and DELETE"§After you submit a SELECT statement that returns multiple rows and you fetch one or more result rows, you can perform a positioned UPDATE or DELETE to update or delete the row referenced by the cursor. To request a positioned update or delete operation, use the following SQL syntax:
	Next, execute the statement:
	The driver associates the new hstmt with the existing hstmt , includes parameter values if necessary, submits the positioned szSqlStr or DELETE statement, and returns results to the application.
	Example
	The following diagram lists sample calling sequences for prepared and direct positioned update or delete operations. This sequence is an example; you could include calls to SQLSetParam in either sequence or combine prepared and direct requests in the same processing stream.

	Extensions for Processing SQL Statements
	The following table lists related extended functions. The paragraphs following this table describe the following topics in more detail: retrieving data dictionary information; sending arrays of parameters; sending large data values; using scrollable cursors; requesting asynchronous processing; and requesting scalar functions, extended data types, and outer joins.
	To determine whether a particular driver supports these functions, call SQLGetFunctions.
	s11

	Obtaining Information about the Data
	The following functions return information about data:
	Each function returns the information as a result set. An application fetches these results in the same manner as it retrieves query results (through a call to SQLFetch).
	s11

	Sending Large Data Values
	XE "Large data values:sending"§To send large data values, use the following three functions:
	To indicate that you plan to send a large data value, call SQLSetParam to associate storage with the parameter—and set pcbValue to SQL_LONG_DATA for the parameter.
	In the call to SQLSetParam, set rgbValue to a value that, at run time, references the location of the data. The driver returns this value to the application at statement execution time.
	When the driver processes a call to SQLExecute or SQLExecDirect, the driver returns SQL_NEED_DATA as soon as it encounters a parameter that requires a large data value. The application then calls SQLParamData and SQLPutData to send data values:
	For additional information, refer to the description of SQLSetParam in Chapter 2 of the ODBC API Reference.
	s11

	Specifying Arrays of Parameter Values
	XE "Parameters:specifying arrays of"§XE "SQLParamOptions"§To specify multiple sets of parameter values for a single SQL statement, call SQLParamOptions. For example, if you have ten sets of column values to insert into a table—and you can use the same SQL statement for all ten operations—you can set up an array of values, then submit a single INSERT statement.
	If you use SQLParamOptions, your application must allocate enough memory to handle the arrays of values.
	s11

	Using Scrollable Cursors
	SQL was originally designed to return one row at a time to an application. Scrollable cursors provide more flexible access to blocks of result data. XE "Scrollable cursors, overview"§The following paragraphs provide an overview of scrollable cursors and describe ODBC features that support scrollable cursors.
	Basic Cursors
	An SQL SELECT statement extracts data that meets a set of specifications. For example, SELECT * FROM EMPLOYEE WHERE EMPNAME = "JONES" returns all columns of all rows in EMPLOYEE where the employee's name is Jones. This set of information, called a result set, can contain zero, one, or more than one row.
	Applications retrieve single rows as follows:
	This basic form of a cursor is called a forward-only scrolling cursor, and is supported by core ODBC functions. To fetch a previous row using a forward-only cursor, the driver closes the cursor, reopens the cursor for the same result set, and fetches rows until it retrieves the target row.

	Scrollable Cursors
	Scrollable cursors allow a user to scan results in a flexible manner without excessive support from the application. Users can view rows within a block of data and update, delete, refresh, or browse through the data. Scrollable cursors use the following concepts:
	XE "Concurrency control, setting"§As the size of a rowset increases, so does the possibility that another user may want to access or update one of the rows. You can request four types of locking for a keyset:
	Call SQLSetScrollOptions to specify rowset, keyset, and concurrency control. If the application uses scrollable cursors, the application must call SQLSetScrollOptions before it calls SQLPrepare or SQLExecDirect.
	SQLBindCol binds storage areas for result columns.
	XE "SQLExtendedFetch"§To fetch a block of data, call SQLExtendedFetch. Following the extended fetch, the cursor points to the entire rowset for subsequent positioned operations. To position the cursor on specific rows within the rowset, call SQLSetPos.
	For scrollable cursor operations, the rowset behaves as a single fat cursor.XE "SQLSetPos"§
	Regardless of position, a fetch next or fetch previous operation moves the entire rowset as if it were one cursor.
	The SQLExtendedFetch function supports forward, backwards, and arbitrary retrieval of blocks, so that there are two levels of movement within a result set: at the rowset level and at the row level.
	s11

	Requesting Asynchronous Processing
	XE "SQL statements:processing asynchronously"§By default, a driver processes ODBC functions synchronously; the driver does not return control to your application until a function call completes. If a driver supports asynchronous processing, however, you can request asynchronous processing for the functions listed below.
	All of these functions either submit requests to a data source or retrieve data. Any of these functions can initiate extensive processing.
	To enable or disable asynchronous processing for the above set of functions, call SQLSetStmtOption and specify ON or OFF for the SQL_ASYNC_ENABLE option. To check the setting of the SQL_ASYNC_ENABLE option, call SQLGetStmtOption. To enable or disable asynchronous processing for all hstmts associated with an hdbc, call SQLSetConnectOption.
	Upon successful initiation of an asynchronously-initiated function, the driver returns SQL_STILL_EXECUTING. If you resubmit the function call, the driver returns SQL_STILL_EXECUTING until the function completes. Once the function completes, the driver returns a standard return code.

	Using Extended Data Types, Functions, and Outer Joins
	ODBC supports an escape mechanism that allows an application to embed database-specific data types, scalar functions, or outer join specifications within an SQL statement. XE "Escape sequence:data types"§The escape mechanism follows the format for vendor-specific commands as defined in Appendix A, "SQL Grammar." In addition, ODBC defines canonical forms for the following:
	The application can use one of two forms when specifying a data type or scalar function:
	The following paragraphs list the syntax for each type of escape clause. In addition, ODBC defines a shorthand syntax for escape clauses, defined in Appendix A, "SQL Grammar."
	s11

	Date and Time Data Types
	The following escape clause allows an application to specify a date, time, or timestamp data type:
	The following table describes each element of the preceding clause.
	You can specify a date, time, or timestamp escape clause in place of a literal in an SQL statement. For detailed syntax information, refer to Appendix A, "SQL Grammar."
	To submit a data type in the native form of the data source, submit the SQL statement with vendor-specific syntax.
	Call SQLGetFunctions to determine if a driver supports a specific extended data type.
	For a list of core and extended data types, refer to the ODBC API Reference, Appendix D, "Data Type Definitions."

	Scalar Functions
	Scalar functions—such as string length, absolute value, or current date—can be used on columns of a result set and on columns that restrict rows of a result set. ODBC supports a set of canonical scalar functions that may be a subset or superset of functions actually supported by a given DBMS. If the application specifies the canonical form of a scalar function, the driver translates the function to the syntax required by the data source. If the application specifies the native form of a scalar function, the driver does not translate the function, but sends it to the data source in the form specified by the application. In either case, the data source makes the final determination of the validity of the scalar function and its arguments.
	The following escape clause allows an application to specify a scalar function:
	The following table describes each element of the preceding clause.
	You can use an escape clause with a canonical function in place of a scalar function in an SQL statement. For information about the syntax of canonical functions, refer to Appendix A, "SQL Grammar," and the ODBC API Reference, Appendix G, "Canonical Functions."
	An application can also include native DBMS functions in an escape clause. The following example shows how an application would specify a native function ("round," in this example) and two ODBC canonical functions (ABS and SQRT). This example uses shorthand escape clause syntax, as defined in Appendix A, "SQL Grammar," and accesses three columns—EMPNO, EMPNAME, and EMPDIST—in a table called EMPLOYEE.
	An application can call SQLGetInfo to determine which functions are supported by a specific driver and associated data source.
	Data Type Conversion Function
	ODBC defines a special type of canonical function, called the CONVERT function, that allows applications to explicitly request a data type conversion when the database processes the SQL statement. The driver translates the canonical form into the database-specific form.
	The canonical form of the CONVERT function does not restrict the range of data type conversions. Instead, each driver determines the valid set of conversions. Call SQLGetInfo to determine which conversions are supported by the data source and its associated driver.
	The following example shows how an application would specify a conversion to a character data type:
	For more information, refer to the ODBC API Reference, Appendix G, "Canonical Functions."
	Refer to Appendix G, "Canonical Functions," for a description of the CONVERT function and its syntax.s11

	Requesting Outer Joins
	XE "Escape sequence:outer joins"§The ODBC interface uses an escape sequence to support outer joins. The format is:
	s11

	Join-type specifies a type of outer join. For example, to perform an outer join between two tables named EMPLOYEE and DEPT, using the DEPT.ID column for the join condition, use the following statement (shown in shorthand escape clause syntax):
	This syntax is a subset of ANSI SQL2 outer join syntax.
	If you use an escape clause with a outer join request in an SQL statement, the escape clause must appear after the FROM clause and before the WHERE clause, if either exist in the statement. For detailed syntax information, refer to Appendix A, "SQL Grammar."
	Call SQLGetFunctions to determine if a driver supports a specific join type and, if so, what join characters to use in value.

	7 Retrieving Results
	XE "Results:processing"§This chapter describes result-handling operations.
	The steps you take to process results depend on your knowledge about the result set.
	s11

	Determining Characteristics of a Result Set
	XE "SQLNumResultCols:determining result characteristics"§XE "SQLRowCount:determining result characteristics"§XE "SQLDescribeCol:determining result characteristics"§XE "Results:determining characteristics"§To determine the characteristics of a result set, perform these steps:
	s11

	Fetching Result Data
	XE "Results:retrieving data"§If you requested an SQL statement that does not manipulate data (for example, GRANT or REVOKE), the return code for the ODBC function call indicates whether your request was successful or not.
	If you requested an INSERT, UPDATE, or DELETE operation, SQLRowCount returns the number of rows affected by the operation.
	XE "SQL statements:processing results"§XE "SELECT (SQL statement):storing results"§XE "SQLFetch:retrieving result rows"§If you requested a SELECT statement and you did not bind the columns to storage locations prior to execution, call SQLBindCol to perform bind operations prior to retrieving results. Call SQLFetch to retrieve each row of results.
	The following diagram shows the flow of the preceding two operations:
	s11

	Retrieving Error and Status Information
	XE "SQLError"§XE "Errors, retrieving"§If your ODBC call returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, call SQLError to find out more information. SQLError returns standardized messages and data source-specific messages. The application is responsible for reading these messages and taking appropriate action.
	For information about how to handle standard error and status messages, refer to “Calling ODBC Functions” in Chapter 3. For more information about ODBC error codes, refer to the ODBC API Reference, Appendix A, “ODBC Error Codes.”
	s11

	Related Extension Functions
	XE "SQLNativeSql"§XE "SQLDescribeParam"§XE "Escape sequence:translating to SQL text"§XE "Parameters:obtaining data type information"§The following table lists related extended functions. The paragraphs following this table contains additional information about SQLGetData, SQLExtendedFetch, and retrieving multiple result sets.
	s11

	Retrieving Data in Large Columns
	To retrieve data from large columns—or retrieve data one column at a time—call SQLGetData to retrieve the column into a buffer. If you use SQLGetData to retrieve data, do not call SQLBindCol for the column.
	SQLFetch does not retrieve data for columns that are not bound, but does move the cursor from row to row and retrieve data in bound columns. Prior to calling SQLGetData, call SQLFetch to position the cursor at the first row. Call SQLFetch to move the cursor to subsequent rows.
	You can combine SQLGetData with SQLBindCol and SQLFetch access within a row. To combine these operations, bind as many contiguous columns as necessary. Call SQLFetch to retrieve all bound rows and leave the pointer at the end of the bound rows. Call SQLGetData to retrieve the unbound columns. (Note, however, that you cannot use SQLGetData to retrieve a column to the left of the rightmost bound column.)
	You can call SQLGetData multiple times for a single column, if necessary.

	Processing Multiple Result Sets
	Call SQLMoreResults function to process multiple result sets. XE "Stored procedures, processing results"§XE "Batched SQL statements, results"§XE "SQL statements:batched processing"§The following SQL statements can return multiple result sets:
	s11

	Processing Blocks of Results
	If the driver supports scrollable cursors, your application can retrieve blocks of result rows. For more information about scrollable cursors and processing blocks of result data, refer to "Using Scrollable Cursors," in Chapter 6.

	8 Terminating Transactions and Connections
	XE "Transactions:terminating"§XE "Handles:releasing statement"§XE "Statement handles:releasing"§XE "Statements, terminating"§The ODBC interface provides functions that terminate SQL transactions, statement-processing connections (hstmts), connections (hdbcs), and environment connections (henvs).
	Terminating Statement Processing
	Call SQLFreeStmt to free resources associated with a statement handle. The SQLFreeStmt function has four options:
	s11

	Terminating Transactions
	XE "SQLTransact:terminating a transaction"§At the transaction level, call SQLTransact to commit or roll back the current transaction.
	XE "SQLCancel:terminating statement processing"§XE "SQLError:checking statement cancellation"§To cancel a specific statement, call SQLCancel, check the return code of the function that was canceled, and then call SQLError to determine the status of the cancellation. For additional information about SQLCancel, refer to the ODBC API Reference, Chapter 2, “ODBC API Reference.”
	s11

	Terminating Connections
	XE "Connections:terminating"§XE "SQLFreeConnect:releasing a connection handle"§XE "SQLDisconnect:closing a connection"§To terminate a connection to a driver and data source, perform the following steps:

	9 Constructing an ODBC Application
	XE "Developer's Kit, contents"§The following paragraphs describe how to construct an application, starting with the contents of the developer's kit and including sample code, setup information, and references to testing and debugging information. This manual assumes that you are developing an application for the Windows environment.
	s11

	Developer's Kit Contents
	Your development kit should contain the following items:
	s11

	System Requirements
	The following paragraphs list hardware, software, and environmental requirements for the ODBC environment.
	Hardware Requirements
	ODBC requires approximately two megabytes of disk space for installation of SDK files and for assembling, compiling and linking the test application and sample driver.
	The SDK software has been tested on the following hardware, although it may be possible to use other configurations:

	Software Requirements
	The SDK software has been tested with the following system and development software, although it may be possible to use other configurations:

	Environmental Requirements
	When using the supplied makefiles to build customized versions of the test application (gator.exe) or the sample driver (sample.dll), you must be sure that the INCLUDE and LIB directories in your ODBC SDK directory are specified in your PATH or environment variables as specified in the Microsoft C Compiler Reference Manual. These two directories should be searched first during the compile and link process. You must also make sure that the source, object and other files for the test application or sample driver can be found by the assembler, compiler and linker. Review the makefiles and any necessary assembler, compiler and linker documentation to ensure that you have your environment correctly defined for your configuration.

	Installing the Developer's Kit
	XE "Installing ODBC"§XE "ODBC:installing"§To install the software for the SDK, refer to the SDK installation instructions.
	Upon successful completion of the installation process, your Windows directory should contain the ODBC initialization file (ODBC.INI). The directory that you specified for the installation of the rest of the SDK files should contain the following files (the default ODBC directory will be used for purposes of illustration):
	Several components of the Windows SDK have been included with the ODBC SDK. These need only be used if you are using a beta version of the Windows 3.1 SDK. If you are using a beta version of the Windows 3.1 SDK, make sure that the INCLUDE and LIB directories of your ODBC SDK are searched first during compilation and link. The specific files of interest are WINDOWS.H, LIBW.LIB, MDLLCEW.LIB, MLIBCEW.LIB, COMMDLG.LIB and the COMMDLG.DLL.
	s11

	Constructing an ODBC Environment
	The ODBC environment uses an initialization file, called ODBC.INI, to store data source names and related information.
	The ODBC.INI file stores information used by the ODBC Driver Manager, ODBC drivers and the ODBC SETUP routine. For example, all connection-related ODBC functions (SQLConnect, SQLDataSources, and SQLDriverConnect) accept a data source name (DSN) as an argument or as an element of an argument.
	ODBC drivers can read the ODBC.INI and can update it in certain instances. The ODBC Driver Manager reads the ODBC.INI file, but does not update it. Applications should not read directly from ODBC.INI. ODBC functions supply information from the initialization file in a consistent and structured manner.
	There are two types of sections in the ODBC.INI file. One type of section defines the data sources accessible through ODBC. These are called data source specifications. The ODBC.INI file can contain one or more data source specifications. The section name of each data source specification defines the data source name associated with the specification.
	The other type of section is a list of the data source names of each of the data source specifications. This is a single section that contains all valid data source names.
	Data Source Specification
	Before accessing a driver or data source, the data source must be defined in the ODBC initialization file. Each data source definition resides in a separate section in the ODBC.INI file. The data source definition section is called a data source specification.
	A data source specification, at a minimum, consists of:
	The data source name and description are defined by the user.
	The following depicts a basic data source specification:
	The specification can include driver-specific information, as well. Driver-specific information can be supplied by the user or by the driver. Some examples of driver-specification information are:
	The ODBC SETUP routine allows users to add driver-specific information to the ODBC initialization file.

	Default Data Source Specification
	The ODBC.INI file can contain a single default data source specification. This default specification is optional. If the default specification exists, the data source name must be "default" and the driver can be any one of the set of installed drivers. When initially defined through ODBC.SETUP, the default data source specification consists of only the data source name and the driver DLL. The driver can add information at connection time.

	Sample Data Source Specifications
	The exact specification of a data source is dependent upon the implementation of the ODBC driver used to access the data source and the characteristics of the data source itself. Therefore, it is important to document your requirements for the ODBC.INI file.
	A data source specification for a driver for DEC Rdb might contain the following information:
	A given driver can be referenced in more than one data source specification.
	An example for MS SQL Server might contain the following:
	Note that for SQL Server, a data source specification in ODBC.INI maps to a server specification in the [SQLSERVER] section of WIN.INI. In this case, the data source name must be identical to the left side of the server specification entry in the WIN.INI file.
	The data source specification need not contain all of the information necessary for completing a connection to a data source. Instead, the information can be used by a driver to obtain information from another source. For example, Microsoft SQL Server maintains a list of database server connections in the WIN.INI file. A WIN.INI entry for SQL Server might contain the following:
	A data source specification in the ODBC.INI file for the PUBS database accessed by an ODBC driver—via a server called PAYROLL—might contain the following:
	In this case, the driver uses the data source name to locate a corresponding entry in the [sqlserver] section of the WIN.INI file.

	ODBC Data Source List
	Whenever a data source specification is defined, the data source name must be added to the list maintained in the section called "[ODBC Data Sources]". The ODBC Data Sources section permits the list of data source names and associated specifications to be easily enumerated.
	Each entry in the data sources section consists of the data source name and a short description of the DBMS product associated with the driver referenced by the corresponding data source specification.
	This section in the ODBC.INI file might appear as follows, given the entries in the preceding example and a default data source specification:

	How ODBC Functions Use the ODBC.INI File
	Three ODBC functions access data source specifications in the ODBC.INI file.
	SQLConnect
	SQLConnect accepts a data source name as one of its arguments. When SQLConnect is called, the Driver Manager reads the data source specification that matches the data source name (DSN) argument. The Driver Manager loads the driver DLL listed in the data source specification. Each of the SQLConnect arguments—data source name, user ID, and authentication ID—is passed to the driver. The driver can read the data source specification in the ODBC.INI file, if necessary, to obtain additional connection information.
	If the application specifies a data source name in its call to SQLConnect but there is no corresponding data source specification in the ODBC.INI file, the Driver Manager locates the default data source specification, listed under the data source name "[default]," and loads the corresponding driver DLL. The Driver Manager passes the application-specified data source name to the driver. If there is no default data source specification, the Driver Manager returns an error.
	If the application does not specify a data source name, the Driver Manager attempts to locate a default data source specification in the ODBC.INI file. If there is a default data source specification, the Driver Manager loads the driver DLL named in the default specification and passes "default" to the driver as the data source name.
	If the application does not specify a data source name and no default data source specification exists, the Driver Manager returns an error.

	SQLDataSources
	SQLDataSources reads the [ODBC Data Sources] section of the ODBC.INI file and returns the associated list of data source names. It also reads the data source specifications that correspond to the names in the data sources section. If there is a user-defined description associated with a data source specification, SQLDataSources returns the description.

	SQLDriverConnect
	SQLDriverConnect is used as an alternative to SQLConnect for data sources that require connection information other than the three arguments provided by SQLConnect. The application specifies a data source name as part of the connection string argument of SQLDriverConnect.
	The connection string allows an application to pass all information required by a driver to establish a connection to a specific data source. SQLDriverConnect can, however, prompt the user for connection information. The Driver Manager provides an optional dialog to allow the user to select a data source from a list of the data source names from the ODBC.INI file. Once the Driver Manager has a specific data source name, the Driver Manager loads the driver DLL that is listed in the corresponding data source specification.
	Once the driver is loaded, the driver can display a dialog to elicit implementation-specific logon information from the user. This information depends on the requirements of the data source; it typically consists of user ID and password. The driver uses this information to replace or supplement information from the data source specification in the ODBC.INI file, or to update the data source specification. For example, after a successful connection, a driver might save the user ID for later connections to the data source.
	If the application supplies a data source name but there is no corresponding data source specification in the ODBC.INI file, the Driver Manager locates the default data source specification and loads the corresponding driver DLL. The Driver Manager passes the application-supplied data source name to the driver as part of the connection string.
	If the application supplies a data source name but there is no corresponding data source specification in the ODBC.INI file and no default data source specification exists, the Driver Manager returns an error.

	The ODBC SETUP Routine
	The ODBC SETUP routine creates the ODBC.INI file when ODBC is first installed. The SETUP routine prompts for information to create an initial set of user-defined data source specifications. Once ODBC is installed, the user can run the SETUP routine to add, modify and delete data source specification entries from the file.
	The SETUP routine uses a two-layer architecture: a top layer for generic management tasks and a lower layer for driver-specific tasks. Microsoft supplies the top layer, which supports installation, configuration, and management of drivers.
	A user can run SETUP.EXE to define a default driver or select one or more drivers to install. Once the user selects a driver. the SETUP routine loads a driver-specific setup DLL. This DLL, written by the driver developer, displays a configuration dialog box that prompts the user for all relevant connection information.

	Sample Application Code
	XE "Application:sample code"§XE "Static SQL:example"§The following subsections contain two ODBC examples that are written in the C language:
	Static SQL Example
	The following example constructs SQL statements within the application. The example includes embedded SQL calls for illustrative purposes.

	Interactive Ad-Hoc Query Example
	XE "Interactive ODBC example"§XE "Results:determining (example)"§The following example illustrates how an application can determine the nature of the result set prior to retrieving results.

	Testing and Debugging an Application
	The ODBC developer's kit provides information for implementing Windows-based ODBC applications. Windows development and debugging tools are available for the development process. Refer to the Windows development kit for additional information about testing and debugging your ODBC application.

	Support
	If you need technical support regarding the Microsoft ODBC Software Development Kit, you have a wide choice of support offerings, including:

	Appendix A SQL Grammar
	The following paragraphs list the constructs that are valid in a call to SQLPrepare, SQLExecute, or SQLExecDirect. This grammar is not intended to restrict the SQL syntax supported by a driver. Instead, it defines a base grammar. A driver can extend this grammar to include the syntax for a specific data source.
	To the left of each construct is an indicator that tells whether the construct is part of the core grammar, the minimum grammar, or both.
	Elements that are part of Integrity Enhancement Facility (IEF) and are separate from the ANSI 1989 standard are presented in the following typeface and font, distinct from the rest of the grammar:
	The set of data types defined in this grammar is not necessarily supported by a specific data source; the use and syntax of each data type is database-dependent.
	Elements Used in SQL Statements
	List of Reserved Keywords

	Index

